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PERFECTLY MATCHED LAYERS FOR HYPERBOLIC SYSTEMS:
GENERAL FORMULATION, WELL-POSEDNESS, AND STABILITY∗

DANIEL APPELÖ† , THOMAS HAGSTROM‡ , AND GUNILLA KREISS†

Abstract. Since its introduction the perfectly matched layer (PML) has proven to be an ac-
curate and robust method for domain truncation in computational electromagnetics. However, the
mathematical analysis of PMLs has been limited to special cases. In particular, the basic question of
whether or not a stable PML exists for arbitrary wave propagation problems remains unanswered.
In this work we develop general tools for constructing PMLs for first order hyperbolic systems. We
present a model with many parameters, which is applicable to all hyperbolic systems and which we
prove is well-posed and perfectly matched. We also introduce an automatic method for analyzing
the stability of the model and establishing energy inequalities. We illustrate our techniques with
applications to Maxwell’s equations, the linearized Euler equations, and arbitrary 2 × 2 systems in
(2 + 1) dimensions.
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1. Introduction. Many important wave propagation problems are posed on
unbounded or large domains. Such problems must be solved on a truncated domain
if numerical methods are to be used. There exist many techniques for truncating the
original domain (see the review papers [15, 16, 23]), but one that has proved both
efficient and accurate is the perfectly matched layer (PML) technique. The PML
technique surrounds the domain where the solution is desired (the computational
domain) by an artificial layer. The layer is constructed so that waves traveling across
the interface between the layer and the computational domain are not reflected; that
is, the layer is perfectly matched. Moreover, the layer is constructed so that, inside
the layer, the solution decays exponentially in the direction normal to the interface.
Hence, if the layer is sufficiently wide, the solution will be close to zero at the outer
boundary, and therefore any stable boundary condition can be used there.

Besides the perfect matching and damping properties of the layer it is also desir-
able that the equations governing the PML be well-posed. This is especially important
if a PML derived for a linear problem is to be applied to a nonlinear problem or a
problem with variable coefficients. If the linearized problem is only weakly well-posed
the corresponding nonlinear or variable coefficient problem can be ill-posed; see [20].
Well-posedness, by definition, allows the solution to grow exponentially in time, and
therefore, for a PML to be practically useful, it must also be stable (in time). To
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summarize, the key properties of a PML are perfect matching, well-posedness, and
stability.

PMLs were originally introduced for Maxwell’s equations by Bérenger [8]. Well-
posedness and stability of the Bérenger PML has been the topic of numerous works.
For example, Abarbanel and Gottlieb [2] showed that Bérenger’s “split-field” PML
was only weakly well-posed and that it supported linearly growing modes. Similar
results were also obtained via Fourier and energy techniques by Bécache and Joly in
[6]. The issue of weak well-posedness led to the development of various well-posed
“physical” or “un-split” PMLs for Maxwell’s equations; see [3, 13, 24]. These “un-
split” PMLs were further improved by the inclusion of the so-called complex frequency
shift (CFS), which has been used by Bécache, Petropoulos, and Gedney [7] to remove
late-time linear growth.

For other applications such as the linearized Euler equations [18], the linearized
shallow water equations [22], and anisotropic elasticity [10], there have been reports
of exponentially growing solutions. In [1] Abarbanel, Gottlieb, and Hesthaven found
that a stable PML could be derived for the linearized Euler equations by transforming
the equations into a system whose dispersion relation resembled the dispersion relation
of Maxwell’s equations. The same transform was later used again to develop a stable
PML for the linearized Euler equations [19, 11] and for the linearized shallow water
equations [22].

Today there exist stable PML models for many important problems, but there
are also problems, e.g., anisotropic elasticity and linearized Magneto Hydro Dynam-
ics (MHD), for which stable PMLs have not yet been found. An open issue, then, is
whether stable PMLs can be constructed in general. Also, stability and well-posedness
for general hyperbolic systems has received less attention than particular cases. One
exception is the paper [5] where Bécache, Fauqueux, and Joly give necessary con-
ditions for stability of the split-field PML in terms of the geometrical properties of
the dispersion relation. Also, in [4] we construct stable PMLs for arbitrary 2 × 2
symmetric hyperbolic systems in (2 + 1) dimensions.

In this work we generalize the formulation of PML models for hyperbolic systems
introduced in [17]. To make the model suitable for future applications, we introduce
a very general formulation including many free parameters. One of these parameters
adds a parabolic term in the tangential directions. By including this parameter, we can
show that the equations of the PML are well-posed as long as the original hyperbolic
system is well-posed. In addition, we give a proof that the layer is perfectly matched.

We also study the stability of our PML model. The question of stability is not
trivial, and in general it has to be investigated separately for each new application.
To simplify these investigations we introduce a technique, based on criteria for the
number of zeros of a polynomial in a half-plane, that can be used to derive necessary
and sufficient conditions for stability of any first order constant coefficient Cauchy
problem. Moreover, if these conditions are fulfilled, there is also a local energy density
that decays with time (see [14]). This energy density is automatically generated from
the necessary and sufficient conditions. We use the technique to derive stability results
for three interesting applications of our general model.

The rest of this paper will be organized as follows. In section 2 we present the
general PML model for symmetric hyperbolic systems and show that it is perfectly
matched and well-posed. In section 3 we introduce techniques from [14] used to
determine the stability of a first order system with constant coefficients. If the system
is stable, the technique will yield an energy with a local density that decays with
time. In section 4 we analyze the stability of a PML model for Maxwell’s equation in
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two dimensions. The PML is constructed by using the general PML model described
in section 2. We use the techniques from section 3 to establish the stability of the
PML and list two associated energies. In section 5 we analyze a PML model for the
linearized Euler equations and show that it is stable. In section 6 we consider the
specialization of our general PML formulation to 2× 2 symmetric hyperbolic systems
in (2 + 1) dimensions. In [4] we demonstrated how to choose the layer parameters
as functions of the coefficient matrices. Here we prove that these choices will lead to
a stable PML. In section 7 we conclude and discuss some possible extensions of the
presented work.

2. A general PML. We consider the symmetric hyperbolic system in d dimen-
sions:

(1)
∂u

∂t
+ Ax

∂u

∂x
+

d−1∑
l=1

Ayl

∂u

∂yl
+ Cu = 0,

with initial data, u0, supported in −H < x < −h, h > 0. Here Ax = AT
x and

Ayl
= AT

yl
. For simplicity we assume that Ax is invertible; if Ax is singular, we apply

the PML only to the equations involving x derivatives.
Our construction of the layer equations matched to (1) follows the ideas suggested

in [17]. It is based on a modification of the eigenvalues of the eigenvalue problem
(equation (9) in the next section) obtained after Fourier and Laplace transformation
of (1). Then one can consider a general transformation of the eigenvalues which is
rationally dependent on the transform parameters, where the restriction to rationally
dependent transformations leads to localizable layer equations. Considering a fairly
general transformation, we are led to consider the following general PML model:

(2)
∂u

∂t
+Ax

⎛
⎝(1 + ση)

∂u

∂x
+ σ

(
d−1∑
l=1

ξl
∂u

∂yl
+ μu

)
+

∑
j

φj

⎞
⎠+

d−1∑
l=1

Ayl

∂u

∂yl
+Cu = 0,

(3)
∂φj

∂t
+ σφj + αjφj +

d−1∑
l=1

βjl
∂φj

∂yl
−

d−1∑
l=1

εjl
∂2φj

∂y2
l

= σ

(
γj

∂u

∂x
+

d−1∑
l=1

δjl
∂u

∂yl
+ νju

)
.

Here all the additional parameters are real, and we also assume

(4) 1 + ση > 0, εjl ≥ 0.

To obtain spatial decay of waves propagating through the layer it is necessary that
the real parts of the modified eigenvalues be bounded away from zero. As yet we have
no general method for constructing stable layers, and it is conceivable that problems
exist which require many more parameters than have been required in the examples
treated so far. Thus we will analyze (2)–(3) in its full complexity when feasible. The
effect of many of the parameters is not yet understood, but we know from the example
in section 6 that acceptable parameter values depend on the matrices in system (1).

2.1. Perfect matching. To investigate the perfect matching of the layer we
consider two problems. In the first, whose solution we denote u1, (1) holds in Rd×R,
and in the second, whose solution is denoted u2, we suppose that (1) holds in x < 0
and that (2) and (3) hold in x > 0. We also insist that u2 be continuous. Our goal is
to show that the restrictions of each solution to x < 0 are identical; that is, the layer
is perfectly matched.
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We begin by performing a Fourier–Laplace transformation in the tangential di-
rections and in time. The duals of y = [y1, . . . , yd−1] are denoted by k = [k1, . . . , kd−1]
and the dual of t by s. This leads to the problems

(5) Ax
∂û1

∂x
+

(
sI +

∑
l

iklAyl
+ C

)
û1 = û0, x ∈ R,

and in the second case, for x < 0,

(6) Ax
∂ûL

2

∂x
+

(
sI +

∑
l

iklAyl
+ C

)
ûL

2 = û0,

and for x > 0,

Ax

⎛
⎝(1 + ση)

∂ûR
2

∂x
+ σ

(∑
l

iklξl + μ

)
ûR

2 +
∑
j

φ̂j

⎞
⎠

+

(
sI +

∑
l

iklAyl
+ C

)
ûR

2 = 0,

(7)

(8)

(
s + σ + αj +

∑
l

iklβjl +
∑
l

εjlk
2
l

)
φ̂j = σ

(
γj

∂ûR
2

∂x
+

(∑
l

iklδjl + νj

)
ûR

2

)
.

The solution of (5) follows from the solution of the eigenvalue problem

(9) λAxw +

(
sI +

∑
l

iklAyl
+ C

)
w = 0.

We note that for �s > |C|2 the eigenvalues, λ, cannot be purely imaginary. In
particular if we normalize w to have length one, a straightforward computation yields

(10) �λ = −�s + �w∗Cw

w∗Axw
,

which implies

(11) |�λ| > (ρ(Ax))−1(�s− |C|2).

Thus, taking �s sufficiently large, we may assume that solutions of (9) fall into two
sets labeled by the sign of the real parts of the eigenvalues:

(12) �λ1, . . . ,�λr < 0,

(13) �λr+1, . . . ,�λn > 0.

Moreover, the matrix

(14) M(s, k) = −A−1
x

(
sI +

∑
l

iklAyl
+ C

)
,
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can be block diagonalized:

(15) QMQ−1 =

(
S− 0
0 S+

)
,

where the eigenvalues (12) are the eigenvalues of S− and the eigenvalues (13) are the
eigenvalues of S+. Now the bounded solution of (5) is easy to write down as

(16) û1 = Q−1

( ∫ x

−∞ eS
−(x−y)f−(y)dy

−
∫∞
x

eS
+(x−y)f+(y)dy

)
,

where

(17) QA−1
x û0 =

(
f−

f+

)
.

In particular the support properties of û0 and thus f± guarantee the existence of the
integrals in (16). We note that at x = 0,

(18) û1 = Q−1

( ∫ −h

−H
e−S−yf−(y)dy

0

)
.

We now compute û2 in each region. We first note that (8) can be solved directly:

(19) φ̂j =
σ
(
γj

∂ûR
2

∂x + (
∑

liklδjl + νj)û
R
2

)
s + σ + αj +

∑
liklβjl +

∑
lεjlk

2
l

.

Now for x > 0 we transform the solution using the same transformation Q, which
block diagonalizes the problem for x < 0. Setting v = QûR

2 , we find

(20) vx =
1

r(s, k) + σp(s, k)

(
r(s, k)S− − σq(s, k)I 0

0 r(s, k)S+ − σq(s, k)I

)
v,

where the polynomials r, p, and q are defined up to a constant multiple by

(21) η +
∑
j

γj
s + σ + αj +

∑
liklβjl +

∑
lεjlk

2
l

=
p(s, k)

r(s, k)
,

(22)
∑
l

iklξl + μ +
∑
j

∑
liklδjl + νj

s + σ + αj +
∑

liklβjl +
∑

lk
2
l εjl

=
q(s, k)

r(s, k)
.

We will argue that for �s sufficiently large these blocks have eigenvalues with negative
and positive real parts, respectively. In particular we note that

(23) lim
|s|→∞

p

r
= η, lim

|s|→∞

q

r
=

∑
l

iklξl + μ.

Thus for large s the eigenvalues are approximately

(24)
λj − σ(

∑
liklξl + μ)

1 + ση
.
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Now by (11) and (4) we conclude that the signs of their real parts are the same as the
signs of �λj if we choose �s sufficiently large, which was what we wished to prove.

From this argument we conclude that the transform of the causal solution in x > 0
takes the form

(25) ûR
2 = Q−1

(
e(r+σp)−1(rS−−σqI)xv−

0

)
.

We see that this can be “perfectly matched” to the restriction of û1 to x < 0 by
setting

(26) v− =

∫ −h

−H

e−S−yf−(y)dy.

Thus we have proven that u1 and u2 restricted to x < 0 are identical.
We note that we can interpret the layer as an (s, k)-dependent change of variables:

(27) û(x) → e−ax̃û(x̃),

where

(28) x̃ =
r

r + σp
x, a = σ

q

r
.

With this interpretation, the new layer can be viewed as a generalization of the
Bérenger layer from the viewpoint of complex coordinate stretching, as introduced
by Chew and Weedon [9].

2.2. Well-posedness of the layer equations. For the applications considered
in this paper it will be sufficient to include only one set of auxiliary variables, leading
to the PML model

∂u

∂t
+ Ax

(
(1 + ση)

∂u

∂x
+ σ

(∑
ξl
∂u

∂yl
+ μu

)
+ φ

)
+

∑
Ayl

∂u

∂yl
+ Cu = 0,

∂φ

∂t
+ σφ + αφ +

∑
βl

∂φ

∂yl
−

∑
εl
∂2φ

∂y2
l

= σ

(
γ
∂u

∂x
+

∑
δl
∂u

∂yl
+ νu

)
.

(29)

Even with just one set of auxiliary variables, there are many free parameters that
must be chosen. Our experience is that the parameters μ, ξ, βl, δl, γ can be determined
from the coefficients of the matrices Ax and Ay. The parameter η is introduced in
the model to increase the damping of evanescent modes. The parameter α, which is
usually referred to as the CFS, typically enhances stability properties at late time.

To our knowledge the parabolic terms εlφylyl
(hereafter called parabolic CFS)

have not been included in PML models before. We have chosen to include them to
guarantee the well-posedness of the model (29). To see this we freeze the coefficients
and perform a Fourier transform in space (kx is the dual of x). Excluding the zero
order terms in the symbol of the equations (29), we obtain

(30) P1(ik) = −
[
(ikx(1 + ση) +

∑
iklξlσ)Ax +

∑
iklAyl

0

−(ikxσγ +
∑

iklδlσ)I
∑

εlk
2
l I +

∑
iklβlI

]
.

Denote the upper diagonal block in P1, (30), by P11. By the hyperbolicity of the
original problem, P11 is diagonalizable with imaginary eigenvalues.
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Without the parabolic complex frequency shift the lower diagonal block also has
purely imaginary eigenvalues, but the system may be only weakly hyperbolic. This is
the case if, for some set of k1, . . . , kd−1,

(31)
∑
l

iklβl

coincides with one of P1’s eigenvalues while

(32) kxσγ +
∑

klδlσ �= 0.

Then it is not possible to diagonalize P1, and the problem is not well-posed. Otherwise
the system is strongly hyperbolic and thus well-posed.

If all εl �= 0, the lower diagonal block always has eigenvalues that are distinct
from the eigenvalues of P11, as shown by the following argument. When at least one
kl is nonzero, the eigenvalue of the lower block has negative real part. For k1 = · · · =
kd−1 = 0, P11 is nonsingular since Ax is nonsingular, while the lower diagonal block
is zero. It follows that P1 is always diagonalizable, and the system is well-posed. This
proves the following claim.

Lemma 1. If εl > 0, l = 1, . . . , d − 1, and the original system (1) is well-posed,
then the PML (29) is also well-posed.

We conclude this section by noting that the PML for many problems is well-posed
without the parabolic CFS. Additionally, if the parabolic CFS is used, εl should be
chosen relative to the grid size such that it does not impose restrictions on the time-
stepping.

3. Construction of energy estimates for constant coefficient Cauchy
problems via annihilating polynomials. As we have seen in the previous sec-
tion, the construction of a layer which is well-posed and perfectly matched is rather
straightforward. However, it is not so straightforward to choose the free parameters
η, ξ, μ, αj , βjl, δjl, εjl, and νj , for a given hyperbolic system, such that the solution
does not grow with time. Related to this question is the stability of the constant
coefficient Cauchy problem

∂u(x, t)

∂t
= P

(
∂

∂x

)
u(x, t), u(x, 0) = u0(x), x ∈ Rd, 0 ≥ t ≥ T.(33)

If we perform a Fourier transform in space, (33) reduces to a system of ordinary
differential equations

∂û(k, t)

∂t
= P (ik)û(k, t), k ∈ Rs, 0 ≥ t ≥ T,(34)

û(k, 0) = û0(k).(35)

We will distinguish between the following two types of stability.
Definition 2 (stability). We say that the Cauchy problem (33) is
(i) strongly stable if all solutions satisfy an estimate ‖u(·, t)‖L2 ≤ K‖u0(·)‖L2 ;
(ii) weakly stable if the solutions satisfy an estimate ‖u(·, t)‖L2 ≤K(1+t)p‖u0(·)‖Hs,

where s > 0.
Note that if (33) is well-posed, we can replace Hs by L2 in (ii). In the remainder

of this paper we will drop the subscript of the L2-norm, i.e., ‖ · ‖ ≡ ‖ · ‖L2 .
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A necessary and sufficient condition for weak stability is that all eigenvalues λj

of the symbol P (ik) satisfy

�{λj(P (ik))} ≤ 0.(36)

Condition (36) can be checked by various methods that determine the number
of zeros of polynomials in a half-plane. Below, we will first present a method that
automatically generates a finite number of algebraic inequalities that can be used to
check (36). Then we will show that if (36) holds, the method can also be used to
construct a local energy density that decays with time.

We begin by recalling some definitions from matrix theory (see, e.g., [12]).
Definition 3 (annihilating polynomial). We say that a scalar polynomial f(λ)

is an annihilating polynomial of the square matrix A if

f(A) = 0.

Two important annihilating polynomials are the characteristic polynomial and
the minimal polynomial.

Definition 4 (characteristic polynomial). The scalar polynomial f(λ) defined
as

f(λ) ≡ det(λI −A)

is called the characteristic polynomial of the matrix A.
Definition 5 (minimal polynomial). By mA(λ) we will denote the uniquely

defined annihilating polynomial of lowest degree and with lead coefficient 1. The poly-
nomial mA(λ) is called the minimal polynomial of A.

Now, let mP (λ) be the minimal polynomial of the symbol P (ik). Suppose its
degree is n. To determine the number of roots with positive and negative real part
of mP (λ) = 0 for fixed k we can use the following lemma, which is a special case of
Corollary (38,1b) in [21].

Lemma 6. Consider any polynomial q(λ) of degree n. Let D be a real number,
and define the polynomials Q0 and Q1 with real coefficients by

q(iD) ≡ in [Q0(D) + iQ1(D)] .(37)

Then there is a continued fraction

Q1(D)

Q0(D)
=

1

c1D + d1 −
1

c2D + d2 −
1

c3D + d3 − · · · −
1

cnrD + dnr ,

(38)

with cj �= 0 and nr ≤ n. The number of roots with positive (negative) real part equals
the number of positive (negative) cj. There are n− nr roots on the imaginary axis.

When we apply Lemma 6 to mp(λ), the number of nonzero coefficients cj may
depend on k. A change in sign corresponds to a root crossing the imaginary axis. We
have the following corollary.

Corollary 7. A necessary and sufficient condition for weak stability is that all
cj defined in (38) are negative, i.e.,

cj(k) < 0, j = 1, 2, . . . , nr(k).(39)
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Remark. Strong stability follows if all eigenvalues (i.e., the roots of mP (λ) = 0)
have strictly negative real part for all k. However, in many cases there are certain
k for which some roots have zero real part. If the corresponding eigenvectors span
their respective invariant subspace, then the problem is still strongly stable. This
condition must be checked in each case. We note that if (33) is well-posed, then, for
sufficiently large |k| ≥ K, P (ik) can always be diagonalized. Thus, we need to check
the eigenvectors only for roots that have zero real part at bounded |k|.

Proposition 8. Let û be the solution of the Fourier transformed system (34).
Then any component ûi satisfies the equation

g

(
∂

∂t

)
ûi = 0,

where g(λ) is any annihilating polynomial of the symbol P (ik). In particular we have
for the minimal polynomial of P (ik)

mP

(
∂

∂t

)
ûi(k, t) = 0.(40)

Proof. By definition we have g(P (ik)) = 0. Multiplying by the solution vector
from the right yields g(P (ik))û = 0. By an easy induction argument we have, for any
integer q, (P (ik))qû = ∂qû

∂tq . The proposition follows.
By the following theorem we can construct decaying energies for the problem (33).
Theorem 9. Let ûi satisfy

(41) q

(
∂

∂t

)
ûi = 0.

If (39) holds for Q0 and Q1 defined as in Lemma 6, there exists an energy

E(t; k) ≡ 1

2

nr∑
j=1

|cj ||ẑ(j)(k, t)|2(42)

satisfying

∂

∂t
E(t; k) = −|ẑ(1)(k, t)|2.(43)

The functions ẑ(j), j = 1, . . . , n, are related to ûi(k, t) via the equations

n−nr∏
j=1

(
∂

∂t
+ ibj(k)

)
ûi(k, t) = −iẑ(1)(k, t), 
bj(k) = 0,

∂

∂t

⎡
⎢⎢⎢⎢⎣

| c1|ẑ(1)

...

...
| cnr |ẑ(nr)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

id1 − 1 −i · · · 0
−i id2 · · · 0

0
...

. . . −i

0
... −i idnr

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ẑ(1)

...

...
ẑ(nr)

⎤
⎥⎥⎥⎥⎦ .

(44)

For the proof of Theorem 9 we refer to [14]. Note that system (44) can be used
to eliminate all ẑ(j) so that the energy (42) is expressed in ûi alone.
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3.1. Localization of E(t; k). Since the coefficients cj are rational functions in
k, localization can be accomplished by multiplication with a suitable polynomial in
k. In particular let γ(k) be a polynomial such that c̃j(k) = −γ(k)2cj(k) is also a
polynomial in k. Then, since by assumption c̃j(k) > 0 for all k, it can be decomposed
as

c̃j(k) =
∑
l

q2
l (k),(45)

where ql(k) are real polynomials in k. By multiplying (43) with γ(k)2 we get

d

dt

1

2

nr∑
j=1

|γ(k)2cj(k)| |ẑ(j)(t, k)|2 =
d

dt

1

2

nr∑
j=1

∑
l

∣∣∣ql(k) ẑ(j)(t, k)
∣∣∣2

= −
∣∣∣γ(k) ẑ(1)(t, k)

∣∣∣2 .
(46)

Integrating over k yields

d

dt

1

2

nr∑
j=1

∑
l

∫
Rs

∣∣∣ql(k) γ(k) ẑ(j)(t, k)
∣∣∣2 dk

= −
∫

Rs

∣∣∣γ(k) ẑ(1)(t, k)
∣∣∣2 dk,

and by applying Parseval’s formula
∫
|f̂(k)|2dk = ‖f(x)‖2, we obtain the following

result.
Corollary 10. There exists a polynomial γ(k) such that the inverse transform

of (46) is

d

dt
E(t) = −

∥∥∥F−1
{
γ(k) ẑ(1)(t, k)

}∥∥∥2

.(47)

Here

E(t) =
1

2

n∑
j=1

∑
l

∥∥∥F−1
{
ql(k) ẑ(j)(t, k)

}∥∥∥2

(48)

contains only local quantities.
Note that Theorem 9 can be used with any annihilating polynomial of P (ik). If

the minimal polynomial is available, it is advantageous to use it since it has lower
degree and thus will produce an energy with lower order derivatives. Its lower degree
also simplifies the computation of the continued fraction.

4. PML for Maxwell’s equations. The first problem we consider is the scaled
TMz problem in a lossless medium. Then Maxwell’s equations can be written

∂u

∂t
+ Ax

∂u

∂x
+ Ay

∂u

∂y
= 0,

Ax =

⎡
⎣ 0 0 0

0 0 −1
0 −1 0

⎤
⎦ , Ay =

⎡
⎣ 0 0 1

0 0 0
1 0 0

⎤
⎦ ,
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where u = [Hx, Hy, Ez]
T . We consider a layer in the x direction. Here Ax is singular

and there are only two modes that propagate in the x direction. Hence, we add
auxiliary variables only to the x-propagating Hy and Ez fields. The layer we will
consider is defined by the equations

(49)

∂Hx

∂t
+

∂Ez

∂y
= 0,

∂Hy

∂t
− (1 + ησ)

∂Ez

∂x
= σφ2,

∂Ez

∂t
− (1 + ησ)

∂Hy

∂x
+

∂Hx

∂y
= σφ1,

∂φ1

∂t
+

∂Ez

∂x
= −(σ + α)φ1 + ε

∂2φ1

∂y2
,

∂φ2

∂t
+

∂Hy

∂x
= −(σ + α)φ2 + ε

∂2φ2

∂y2
.

Here we have included the parameter η, which will improve the damping of evanescent
modes. Note that if ε = 0, the above equations are only weakly hyperbolic and thus
only weakly well-posed. To ensure strong well-posedness we take ε > 0.

4.1. Stability for constant σ. When σ is constant we can take the Fourier
transform in x and y. For simplicity let η = 0. The symbol of (49) then becomes

P (ik) = −
[

ikxAx + ikyAy σD
ikxE (α + σ + εk2

y)I

]
,(50)

where

D =

[
0 0 1
0 1 0

]T
, E = −

[
0 1 0
0 0 1

]
.

The minimal polynomial of (50) coincides with the characteristic polynomial and can
be written as a product of the two polynomials mP (λ) = m1(λ)m4(λ):

m1(λ) = λ,

m4(λ) =
(
λ4 + 2(τ + σ)λ3 + (k2

x + k2
y + (τ + σ)2)λ2

+ 2(τk2
x + (τ + σ)k2

y)λ + k2
xτ

2 + (τ + σ)2k2
y

)
,

where we have introduced τ = α + εk2
y.

To determine the sign of the eigenvalues we apply Lemma 6 to m4(λ). The
coefficients in the continued fraction (38) are

c1 = − 1

2(τ + σ)
,(51)

c2 = − 2 (τ + σ)
2

(τ + σ)3 + σk2
x

,(52)

c3 = −
(
(τ + σ)3 + σk2

x

)2

2σk2
x

(
(τ + σ)(τ2 + στ + k2

y) + τk2
x

)
(τ + σ)

,(53)

c4 = −
2σk2

x

(
(τ + σ)(τ2 + τσ + k2

y) + τk2
x

)(
(τ + σ)2k2

y + k2
xτ

2
)
((τ + σ)3 + σk2

x)
,(54)

d1 = d2 = d3 = d4 = 0.(55)
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Clearly all cj are negative and defined except for the cases kx = ky = 0 and kx =
0, ky �= 0. When kx = 0 the minimal equation reduces to λ(λ2 + k2

y)(λ + σ + τ)2 = 0
with solutions λ = 0,±iky,−(σ + τ),−(σ + τ). The eigenvalues with zero real part
are distinct as long as ky �= 0. For the case ky = 0 there could potentially be algebraic
growth. However, it is easily checked that there are three independent eigenvectors
when kx = ky = 0. Thus (49) is strongly stable when η = 0. When η �= 0 the
coefficients are somewhat more complicated, but strong stability follows similarly.
This concludes the proof of the following lemma.

Lemma 11. For constant σ > 0, α > 0, ε > 0, ησ + 1 > 0, the system (49) is
strongly stable.

4.2. Energy estimates. We now consider decaying energies of the system (49).

We start by noticing that m4(P (ik)) annihilates Êz and φ̂2, while mP (∂/∂t) annihi-

lates Ĥx, Ĥy, and φ̂1. Thus we have that

m4

(
∂

∂t

)
v̂ = 0 for v̂ = Êz, φ̂2,

∂Ĥx

∂t
,
∂Ĥy

∂t
,
∂φ̂1

∂t
.

It follows from Theorem 9 and (51)–(55) that the energy

(56) E(t; k) ≡ 1

2

4∑
j=1

|cj ||ẑ(j)(k, t)|2

decays with time. To express (56) in v̂ we use (44). This yields

|z(1)| = |v̂|, |z(2)| =

∣∣∣∣
(
|c1|

∂

∂t
+ 1

)
v̂

∣∣∣∣ ,
|z(3)| =

∣∣∣∣
(
|c2|

∂

∂t

(
|c1|

∂

∂t
+ 1

)
+ 1

)
v̂

∣∣∣∣ ,
|z(4)| =

∣∣∣∣∣
(
|c3|

∂

∂t

(
|c2|

∂

∂t

(
|c1|

∂

∂t
+ 1

)
+ 1

)
+

(
|c1|

∂

∂t
+ 1

))
v̂

∣∣∣∣∣ .
(57)

Since E is a function of c3 and c4, whose denominators vanish for certain kx and
ky, it is not bounded. To formulate energies in physical space, we first remove the
singularities of E by multiplying (56) by a suitable polynomial in kx and ky. Here we
will consider two different polynomials, the first producing a semilocal energy and the
second a fully local energy.

4.2.1. A semilocal energy. We would like the order of the spatial derivatives
of v appearing in the energy in physical space to be as low as possible. At the same
time, the energy must be bounded for all kx and ky so that we can use Parseval. The
energy

(58) ESL(t; k) = 2(τ + σ)k2
x

(
(τ + σ)2k2

y + k2
xτ

2
)
E(t; k)

satisfies these requirements. We can split ESL into a local and a nonlocal part

(59) ESL(t; k) = EL + ENL.

The local and nonlocal energies are

EL = k2
x

(
(τ + σ)2k2

y + k2
xτ

2
)
|v̂|2,(60)

ENL = 2(τ + σ)k2
x

(
(τ + σ)2k2

y + k2
xτ

2
) 4∑
j=2

|cj ||ẑ(j)(k, t)|2.(61)
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Now by using Parseval we get

(62)
d

dt
(EL(t; v) + ENL(t)) = −2(σ + α)EL(t; v) − 2εEL(t; ∂yv),

where

EL(t; v) = (α + σ)2‖∂x∂yv(·, t)‖2 + α2‖∂2
xv(·, t)‖2 + 2ε(α + σ)‖∂x∂2

yv(·, t)‖2

+ ε2‖∂x∂3
yv(·, t)‖2 + 2εα‖∂2

x∂yv(·, t)‖2 + ε2‖∂3
x∂yv(·, t)‖2.

(63)

We do not state ENL(t) explicitly, since for our purpose it is sufficient to know that
it is bounded and nonnegative. However, we note that ENL(t) is nonlocal in space.

We see that

(64) EL(t; v) ≤ EL(0 ; v) + ENL(0 ; v),

which proves the following claim.
Lemma 12. Let v be any of the fields

Ez, φ2,
∂Hx

∂t
,
∂Hy

∂t
,
∂φ1

∂t
.

If σ > 0, α > 0, ε > 0 and constant, then v satisfies the estimate

(65) (α + σ)2‖∂x∂yv(·, t)‖2 + α2‖∂2
xv(·, t)‖2 ≤ C = EL(0 ; v) + ENL(0 ; v).

4.2.2. A local energy. To obtain a fully local energy we need to clear the
denominators of (56) and (57). Again, this is done by multiplying E by a suitable
factor. For this case we define the fully local energy by

EFL ≡ (τ + σ)2((τ + σ)3 + σk2
x)

×
(
(τ + σ)2k2

y + k2
xτ

2
)
k2
x

(
(τ + σ)(τ2 + στ + k2

y) + τk2
x

)
E .

EFL(t; k) can be split into

EFL(t; k) = EI + EII + EIII + EIV ,

where

EI =
1

2
(τ + σ)((τ + σ)3 + σk2

x)
(
(τ + σ)2k2

y + k2
xτ

2
)

× k2
x

(
(τ + σ)(τ2 + στ + k2

y) + τk2
x

)
|v̂|2 ,

EII = 2(τ + σ)2k2
x

(
(τ + σ)2k2

y + k2
xτ

2
)

×
(
(τ + σ)(τ2 + στ + k2

y) + τk2
x

) ∣∣ (1

2
∂t + τ + σ)v̂︸ ︷︷ ︸

χ̂1

∣∣2,

EIII =
1

2σ
(τ + σ)((τ + σ)3 + σk2

x)
(
(τ + σ)2k2

y + k2
xτ

2
)

×
∣∣ ((σ + τ)∂2

t + 2(σ + τ)2∂t + (τ + σ)3 + σk2
x

)
v̂︸ ︷︷ ︸

χ̂2

∣∣2,
EIV =

∣∣∣∣∣
(

((τ + σ)3 + σk2
x)∂t

(
(τ + σ)

2σ
∂2
t +

(τ + σ)2

σ
∂t +

1

2σ

)

+ k2
x((τ + σ)(τ2 + στ + k2

y) + τk2
x)

(
1

2
∂t + σ + τ

))
v̂

∣∣∣∣∣
2

.
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To localize the energies we need to write them in the form (45). This is a straight-
forward operation, but the resulting expressions become lengthy (they contain many
combinations of higher derivatives) and are therefore presented in Appendix A.

Let En be the physical space version of the energy En. Then we have that

(66)
d

dt

(
EI(t) + EII(t) + EIII(t) + EIV (t)

)
= −EI(t),

which means that(
EI(t) + EII(t) + EIII(t) + EIV (t)

)
≤

(
EI(0) + EII(0) + EIII(0) + EIV (0)

)
.

Thus EI , EII , EIII , and EIV all remain bounded.
It may be possible to derive sharper results from this fully local energy by using

the system (49). We note that the energy estimates obtained by Bécache, Petropoulos,
and Gedney in [7] are stated in terms of the fields rather than the derivatives of the
fields, so that strong stability is a straightforward consequence of the energy inequality.
We emphasize that our results also imply strong stability, even though the energy is
stated in terms of derivatives of the fields.

5. The linearized Euler equations. The next problem we consider is the
Euler equations in two dimensions linearized around a subsonic skew flow

∂u

∂t
+ Ax

∂u

∂x
+ Ay

∂u

∂y
= 0,

where

u =

⎡
⎢⎢⎣

ρ
vx
vy
p

⎤
⎥⎥⎦ , Ax =

⎡
⎢⎢⎣

Mx 1 0 0
0 Mx 0 1
0 0 Mx 0
0 1 0 Mx

⎤
⎥⎥⎦ , Ay =

⎡
⎢⎢⎣

My 0 1 0
0 My 0 0
0 0 My 1
0 0 1 My

⎤
⎥⎥⎦ .

Here ρ is the density; vx and vy are the velocities in the x and y directions, respectively;
p is the pressure; and Mx and My are the Mach numbers in the x and y directions.
We have that 0 < Mx < 1, 0 < My < 1 since the flow is assumed to be subsonic.

From [17] we conclude that a suitable layer in the x-direction should be of the
form

(67)

∂u

∂t
+ Ax

(
∂u

∂x
+ μσu + σφ

)
+ Ay

∂u

∂y
= 0,

∂φ

∂t
+

∂u

∂x
+ My

∂φ

∂y
+ (σ + α)(μu + φ) = 0.

The symbol P (ik) of (67) is

P (ik) = −
[

(ikx + μσ)Ax + ikyAy σAx

ikxI + (σ + α)μI (ikyMy + σ + α)I

]
.(68)

Note that here we do not need to include the parabolic CFS. To establish well-
posedness, we simply freeze the coefficients and consider the principal part of P (ik),

P1(ik) = −
[

ikxAx + ikyAy 0
ikxI ikyMyI

]
.(69)

The eigenvalues of the upper diagonal block are easy to compute. They coincide with
ikyMyI only when kx = 0. Thus P1 is diagonalizable, and well-posedness follows.
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5.1. Stability for constant σ. In [17] it was shown that the choice

μ =
Mx

1 −M2
x

(70)

is necessary for the solution in a layer closely related to (67) to decay in space. Similar
conclusions, from another point of view, were reached by Hu in [19]. The results for
decay in space from [17] apply directly to (67). Here we will show that (70) is also
necessary and sufficient for stability (in time) for (67).

First we show that (70) is sufficient. We note that the real part of the eigenvalues
of P (ik) (with μ given by (70)) coincides with the real part of the eigenvalues of the
matrix P̃ (ik) ≡ P (ik) − ikyMyI. Since P̃ (ik) has a sparser structure, it is easier to
check that its eigenvalues have nonpositive real part.

The minimal polynomial of P̃ (ik) can be factored mP̃ (λ) = m1(λ)m2(λ), where

(71) m1(λ) = λ2 +

(
ikxMx +

σ

ζ
+ α

)
λ + ikxαMx

and

(72)

m2(λ) =λ4 + 2

(
ikxMx +

σ

ζ
+ α

)
λ3

+

(
4αikxMx + ζk2

x + k2
y +

(σ + α)2 −M2
xα

2

ζ

)
λ2

+ 2
(
ikxαMx + ζαk2

x + (α + σ)k2
y

)
λ + ζα2k2

x + (α + σ)2k2
y.

Here we have introduced ζ = 1−M2
x . The continued fraction coefficients for (71) are

c1 = − ζ

2(σ + αζ)
,(73)

c2 = −2(σ + αζ)3

ασM2
xζ

2k2
x

.(74)

For (72) the coefficients are

c1 = − ζ

2(σ + αζ)
,(75)

c2 = −2(σ + αζ)3

c2a
,(76)

c3 = − c32a
2σζ(σ + αζ)4c3a

,(77)

c4 = − 2(αζ + σ)4c33aσ

c42a(k
2
yM

2
x − ζk2

x)2(α2ζk2
x + (α + σ)2k2

y)c4a
,(78)

where c2a, c3a, c4a are positive for all kx and ky and can be found in Appendix B. We
see that all the coefficients are negative and defined for all kx and ky except the cases
(a) kx = ky = 0, (b) kx = 0, ky �= 0, and (c) (1 −M2

x)k2
x = M2

xk
2
y. We will consider

these cases separately.
First we consider the case (a), for which we easily can compute the eigenvalues

of P̃ (kx = 0, ky = 0) = P (kx = 0, ky = 0). They are

0, − σ

1 −Mx
− α, − σ

1 + Mx
− α, − σ

1 −M2
x

− α.
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The zero eigenvalue has multiplicity four, and there could potentially be algebraic
growth. However, straightforward calculations show that there are also four indepen-
dent eigenvectors, and this mode will be strongly stable.

For the case (b), the minimal polynomial of P̃ (ik) can be factored into

mP̃ (λ) = n1(λ)n2(λ)n3(λ),

n1(λ) = λ, n2(λ) = λ +
σ + αζ

ζ
, n3(λ) = m2(λ; kx = 0).

Directly, we see that the eigenvalues λ = 0 and λ = −(σ/ζ + α), being solutions to
n1(λ) = 0 and n2(λ) = 0, have nonpositive real parts. The double zero eigenvalue of
P̃ (ik) corresponds to the double eigenvalue λ = −ikyMy of P (ik). Associated with
λ = −ikyMy there are two linearly independent eigenvectors, and thus stability will
not be lost.

For n3(λ), we compute the coefficients in the continued fraction. They are

c1 = − ζ

2(σ + αζ)
,

c2 = − 2(σ + ζα)2

σM2
xk

2
yζ + (σ + α(1 + Mx))(σ + α(1 −Mx))(σ + ζα)

,

c3 = −
(σM2

xk
2
yζ + (σ + α(1 + Mx))(σ + α(1 −Mx))(σ + ζα))2

2k2
yζσM

2
x(σ + α)(σα + ζ(α2 + k2

y))
,

c4 = −
2σM2

x(σα + ζ(α2 + k2
y))

(σ + α)(σM2
xk

2
yζ + (σ + α(1 + Mx))(σ + α(1 −Mx))(σ + ζα))

.

Due to the assumptions 0 < Mx < 1, ζ > 0, σ > 0, and α > 0 they are all negative.
Finally we consider case (c). For this case mP̃ (λ) again factors into three poly-

nomials

mP̃ (λ) = o1(λ)o2(λ)o3(λ),

o1(λ) = λ− ikx
ζ

Mx
, o2(λ) = m1(λ),

o3(λ) = λ3 +

(
2
σ + ζα

1 −M2
x

+ ikx
1 + M2

x

Mx

)
λ2

+

(
(σ + α)2 − α2M2

x

ζ
+ ikx

2(σ + α(1 + M2
x))

Mx

)
α + ikx

(σ + α)2 + α2M2
x

Mx
.

The eigenvalue belonging to o1(λ) is distinct and does not affect strong stability,
and the polynomial o2(λ) = m1(λ) has already been checked. It only remains to check
the coefficients of the continued fraction arising from o3(λ). They are

c1 = − ζ

2(σ + αζ)
,(79)

c2 = −2(σ + αζ)3

c2a
,(80)

c3 = − c32aM
2
x

4(σ + αζ)4k2
xσζ

2(α2M2
x + (σ + α)2)

× 1

αM2
x(α + σ)(σ + αζ)2 + ζ2k2

x(σ + α(1 + M2
x))2

,(81)
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where

c2a = (σ + αζ)2((σ + α)2 − α2M2
x) + 2σk2

xζ
2(σ + α(1 + M2

x)).(82)

Clearly, (79)–(81) are negative and defined unless kx = ky = 0. However, that
particular case has already been checked.

To see that (70) is a necessary condition we use the parameterization ky = κ, kx =

γκ and compute the minimal polynomial of P̃ (κ, γ) with μ as a free parameter. Again
the minimal polynomial can be factored into a quadratic and a quartic. If we compute
the coefficients in the continued fraction for the quartic, we see that for κ large the
sign of the coefficients c3 and c4 will be determined by the sign of the expression

κ4(M2
x − γ2 + γ2M2

x)(M2
xμ

2γ2 + 2γ2μMx + γ2 − μ2γ2 − μ2).(83)

Since the expression (M2
x − γ2 + γ2M2

x) will change sign when γ2 = M2
x/(1−M2

x) we
must choose μ such that the sign of the last expression in (83) changes simultaneously.
Hence μ must satisfy

(M4
x − 1)μ2 + 2M3

xμ + M2
x = 0;

i.e., we must choose

μ = − Mx

1 + M2
x

or μ =
Mx

1 −M2
x

.

The first choice will violate the conditions for c2 when kx is large and cannot be used,
while the second choice, as we have seen above, yields a strongly stable PML.

We summarize the results in the following lemma.
Lemma 13. For constant σ > 0, α > 0, and 0 < Mx < 1, a necessary and

sufficient condition for strong stability of the system (67) is that

μ =
Mx

1 −M2
x

.(84)

6. A stable PML for general 2× 2 symmetric hyperbolic systems. Our
final example is the symmetric hyperbolic system

∂u

∂t
+

[
a11 a12

a12 a22

]
︸ ︷︷ ︸

A

∂u

∂x
+

[
b11 b12
b12 b22

]
︸ ︷︷ ︸

B

∂u

∂y
= 0.(85)

Here A and B are real matrices, and we can choose a12 = 0 without loss of generality.
Note that the convective wave equation(

∂

∂t
+ M

∂

∂x

)2

u = C2∇2u

is a special case of (85) if we choose

a11 = M + C, a22 = M − C, b12 = C, a12 = b11 = b22 = 0.

Equation (85) also contains the anisotropic wave equation as a special case:

∂2u

∂t2
= ∇ · (T ∇u),

T =

[
a b
b c

]
, a > 0, c > 0, ac− b2 > 0,
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describing electromagnetic waves propagating in an anisotropic dielectric media. Here

a11 = −a22, a12 = 0, b11 = −b22,

a11 =
√
a, b11 =

b√
a
, b12 =

√
c− b2

a
.

The direction in which the waves supported by the system (85) propagate depends
on the coefficients of A and B. If A is nonsingular, there are three distinct cases:

(i) a11a22 < 0, b12 �= 0 : coupled waves moving in opposite x-directions.
(ii) a11a22 > 0, b12 �= 0 : coupled waves moving in the same x-direction.
(iii) b12 = 0, a11a22 �= 0 : decoupled waves.
For the cases (ii) and (iii), there is no need to use a PML since waves can be

damped without reflection by simply adding a damping term[
σ1(x) 0

0 σ2(x)

]
u

to (85). The appropriate signs of σ1 and σ2 can be determined by the sign of ajj ; see
also [4]. The case (i) is more interesting. In [4], the following PML model is suggested:

(86)

∂u

∂t
+ A

(
∂u

∂x
+ σμu + φ

)
+ B

∂u

∂y
= 0,

∂φ

∂t
+ (σ + α)φ + β

∂φ

∂y
= σ

(
γ
∂u

∂x
+ μ(σ + α)u + δ

∂u

∂y

)
,

where

δ =
b22 − b11
a11 − a22

, μ = −a11 + a22

2|a11a22|
,(87)

β = −b11a22 − b22a11

a11 − a22
, γ = −1, α ≥ 0.(88)

We note that this is a special case of the general layer studied above. With this choice
of parameters we have the following claim.

Lemma 14. For σ > 0 and constant, a11a22 < 0, and α ≥ 0, the system (86) is
at least weakly stable.

Proof. For simplicity we give the proof only for the case α = 0. For the general
choice of α �= 0 the coefficients are more complicated, but stability follows similarly.
We consider three different cases, (a) kx �= 0, ky �= 0, (b) kx �= 0, ky = 0, and (c)
kx = ky = 0. First we consider the case (a) and compute the coefficients in the
continued fraction, (38) in Lemma 6. They are

c1 =
2a22a11

σ (a11 − a22)
2 ,

c2 = −2σ (a11 − a22)
4

c2a
,

c2a = σ2(a11 − a22)
4 + 4a2

11a
2
22

(
kx(a11 − a22) + ky(b11 − b22))

2

− 4a11a22b
2
12k

2
y(a11 + a22)

2
)
,
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c3 =
1

32

c32a

(a11 − a22)
2
c3aa2

22a
2
11b

2
12k

2
yσ

,

c3a = σ2(a11 − a22)
4c3b + 4a22a11c

2
3b,

c3b = −k2
yb

2
12(a11 + a22)

2 + a22a11(ky(b11 − b22) + kx(a11 − a22))
2,

c4 = −8
c33aa22a11

c44aσc
2
4b

,

where c4a and c4b can be found in Appendix C. The coefficients are negative except
for the cases (b) and (c), but then the eigenvalues can be computed directly. For case
(b) they are

0, ika11a22 −
σ

2

(
1 − a11

a22

)
, ika11a22 −

σ

2

(
1 − a22

a11

)
,

and for the case (c) they are

0, −σ

2

(
1 − a11

a22

)
, −σ

2

(
1 − a22

a11

)
.

Since a11a22 < 0 they all have nonnegative real part, and the lemma is proved.
As a final remark, in many cases the words “at least weakly” in Lemma 14 can be

replaced by “strongly.” However, to prove this we need to consider all cases when c4a
or c4b vanish. Considering the complexity of the expressions c4a and c4b, we expect
the necessary calculations to be quite tedious.

7. Summary. We have presented a very general PML model for first order hy-
perbolic systems. We believe that the generality should make the model suitable
for many future applications. We have also proven that the equations in the layer
are perfectly matched to the equations in the computational domain. For the model
formulated with one set of auxiliary variables, we have also shown that the layer
equations can always be made strongly well-posed.

The critical step in the construction of a PML is to choose the free parameters
so that the solution in the layer is stable. To simplify the analysis of this step, we
have presented a method with which the stability of the layer can be determined by
checking a fixed number of algebraic inequalities, which in turn can be generated au-
tomatically. Additionally, if these inequalities hold, we showed that there is an energy
density in Fourier space that decays with time. By simple algebraic manipulations
and application of Parseval’s relation, this energy density can be converted to a de-
caying energy in physical space. The energy contains only the solution and its spatial
and temporal derivatives; i.e., the energy is local.

We have used the introduced techniques to show strong stability for a PML for
Maxwell’s equations and a PML for the linearized Euler equations. We also showed
weak stability for a PML for a general 2× 2 hyperbolic system in (2 + 1) dimensions.
For the PML for Maxwell’s equations, we also derived a semilocal and a local energy.
These energies guarantee the time-decay of higher order derivatives in space and time
of the solution.
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Unlike techniques that only involve checking the roots of the characteristic poly-
nomial, our method is applicable to variable coefficient problems. This is important
since in “real life” the damping parameter σ is not constant. The stability of the
variable coefficient problem can be analyzed as a perturbation of the constant coef-
ficient problem. If the constant coefficient problem is stable, our method generates
an energy. Since the energy decays for constant σ we expect it to decay at least for
slowly varying σ.

Appendix A. Space-time energies for Maxwell PML. The space-time en-
ergy version of EIV is obtained by integration over all wavenumbers and application
of Parseval. It is

EIV =

∥∥∥∥∥
(

((α− ε∂2
y + σ)3 − σ∂2

x)∂t

(
1

2σ
(α− ε∂2

y + σ)∂2
t +

1

σ
(α− ε∂2

y + σ)2∂t +
1

2σ

)

− ∂2
x

(
(α− ε∂2

y + σ)((α− ε∂2
y)2 + σ(α− ε∂2

y) − ∂2
y) + α− ε∂2

yk
2
x

)

×
(

1

2
∂t + σ + α− ε∂2

y)

)
v(·, t

)∥∥∥∥∥
2

.

For EIII we first rewrite

1

2σ
(τ + σ)((τ + σ)3 + σk2

x)
(
(τ + σ)2k2

y + k2
xτ

2
)

=
1

2σ
(τ + σ)6k2

y +
1

2σ
(τ + σ)4k2

xτ
2

+
α + σ

2
(τ + σ)2k2

xk
2
y +

α + σ

2
τ2k4

x +
ε

2
(τ + σ)2k2

xk
4
y +

ε

2
τ2k4

xk
2
y.

Integrating over k and applying Parseval to each term in EIII , we get

EIII =
1

2σ
‖(α + σ − ε∂2

y)3∂yF−1 {χ̂2} ‖2

+
1

2σ
‖(α + σ − ε∂2

y)2(α− ε∂2
y)∂xF−1 {χ̂2} ‖2

+
σ + α

2
‖(α + σ − ε∂2

y)∂x∂yF−1 {χ̂2} ‖2

+
σ + α

2
‖(α− ε∂2

y)∂2
xF−1 {χ̂2} ‖2

+
ε

2
‖(α + σ − ε∂2

y)∂x∂
2
yF−1 {χ̂2} ‖2

+
ε

2
‖(α− ε∂2

y)∂2
x∂yF−1 {χ̂2} ‖2,

where

F−1 {χ̂2} =
(
(σ + α− ε∂2

y)∂2
t + 2(σ + α− ε∂2

y)2∂t + (σ + α− ε∂2
y)3 + σ∂2

x

)
v(x, t).
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In the same way we get for EII

EII = 2α‖(α + σ − ε∂2
y)3∂x∂yF−1 {χ̂1} ‖2

+ 2ε‖(α + σ − ε∂2
y)3∂x∂

2
yF−1 {χ̂1} ‖2

+ 2(α + σ)‖(α + σ − ε∂2
y)2∂x∂

2
yF−1 {χ̂1} ‖2

+ 2ε‖(α + σ − ε∂2
y)2∂x∂

3
yF−1 {χ̂1} ‖2

+ 2α‖(α + σ − ε∂2
y)2∂2

x∂yF−1 {χ̂1} ‖2

+ 2ε‖(α + σ − ε∂2
y)2∂2

x∂
2
yF−1 {χ̂1} ‖2

+ 2α‖(α + σ − ε∂2
y)2(α− ε∂2

y)∂2
xF−1 {χ̂1} ‖2

+ 2ε‖(α + σ − ε∂2
y)2(α− ε∂2

y)∂2
x∂yF−1 {χ̂1} ‖2

+ 2(α + σ)‖(α + σ − ε∂2
y)(α− ε∂2

y)∂x∂yF−1 {χ̂1} ‖2

+ 2ε‖(α + σ − ε∂2
y)(α− ε∂2

y)∂2
x∂

2
yF−1 {χ̂1} ‖2

+ 2α‖(α + σ − ε∂2
y)(α− ε∂2

y)∂3
xF−1 {χ̂1} ‖2

+ 2ε‖(α + σ − ε∂2
y)(α− ε∂2

y)∂3
x∂yF−1 {χ̂1} ‖2,

where

(89) F−1 {χ̂1} =

(
1

2
∂t + σ + α− ε∂2

y

)
v.

By similar operations, we can obtain an expression for EI . However, since we have to
split the factor in front of |v̂|2 in EI into many terms, the expression for EI becomes
very lengthy and we have chosen not to include it here.

Appendix B.

c2a = σζ2(σ + 3M2
xα + α)k2

x + M2
xσζ(σ + ζα)k2

y

+ (σ + ζα)2(σ + α(1 + Mx))(σ + α(1 −Mx)),

c3a = (c3b + c3ck
4
x + c3dk

4
y + c3ek

2
xk

2
y + c3fk

2
x + c3gk

2
y),

c3b = (−ζk2
x + M2

xk
2
y)

2(σαζ3k2
x + σ(σ + α)ζ2k2

y),

c3c = αζ3(5Mx
4α3 + 12σMx

2α2 + 10Mx
2α3 + 2ασ2Mx

2 + 5ασ2

+ 2σ3 + 4σα2 + α3),

c3d = M2
x(σ + α)ζ(αζ + σ)(ζα2 + 2σα + σ2 + σM2

xα),

c3e = −ζ2(σ4 + 2σ3α(2 + M2
x) + σ2α2(6 + 11M2

x + M4
x)

+ 4σα3(1 + 4M2
x −M6

x) + αη(1 + 8M2
x + 3M4

x)),

c3f = αζ(σ + α)(3α2M2
x + (α + σ)2)(αζ + σ)2,

c3g = αM2
x(σ + α)(σ + α(1 + Mx))(σ + α(1 −Mx))(αζ + σ)2,

c4a = α2 (σ + α)
2
(ζα + σ)

2
+ c4bk

4
x + c4ck

4
y + c4dk

2
xk

2
y + c4ek

2
x + c4fk

2
y,

c4b = ζ4α2, c4c = ζ2 (σ + α)
2
, c4d = 2ζ3α (σ + α) ,

c4e = 2α2 (σ + α) ζ2
(
α(1 + Mx

2) + σ
)
,

c4f = 2αζ (σ + α)
2
(αζ + σ) .
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Appendix C.

c4a =
(
4kx

2a11
4a22

2 + σ2a11
4 − 4ky

2b12
2a11

3a22 − 8kyb22a11
3kxa22

2

+ 8kxa11
3a22

2kyb11 − 4σ2a11
3a22 − 8kx

2a11
3a22

3 + 6σ2a22
2a11

2

+ 4kx
2a11

2a22
4 − 8ky

2b22a11
2b11a22

2 − 8ky
2b12

2a11
2a22

2 + 8kxa11
2a22

3kyb22

+ 4ky
2b11

2a22
2a11

2 + 4ky
2b22

2a11
2a22

2 − 8kxa11
2a22

3kyb11 − 4ky
2b12

2a11a22
3

− 4σ2a22
3a11 + σ2a22

4
)
,

c4b =
(
a22

2b12
2ky

2 + b11
2a22a11ky

2 + 2a22a11ky
2b12

2 − 2b11a22a11ky
2b22

+ a22a11ky
2b22

2 + b12
2ky

2a11
2 − 2b11kya11a22

2kx + 2kya11a22
2kxb22

+ 2b11kya11
2a22kx − 2kya11

2a22kxb22 + a22
3a11kx

2 − 2a11
2a22

2kx
2 + a22a11

3kx
2
)
.
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E. Heikkola, and P. Neittaanmäki, eds., Springer-Verlag, New York, 2003, pp. 115–119.

[12] F. R. Gantmacher, The Theory of Matrices, Vol. 1, Chelsea, New York, 1959.
[13] S. Gedney, An anisotropic perfectly matched layer-absorbing medium for the truncation of

fdtd lattices., IEEE Trans. Antennas Propagation, 44 (1996), pp. 1630–1639.
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BIFURCATION ANALYSIS OF A MATHEMATICAL MODEL FOR
MALARIA TRANSMISSION∗

NAKUL CHITNIS† , J. M. CUSHING‡ , AND J. M. HYMAN§

Abstract. We present an ordinary differential equation mathematical model for the spread of
malaria in human and mosquito populations. Susceptible humans can be infected when they are
bitten by an infectious mosquito. They then progress through the exposed, infectious, and recovered
classes, before reentering the susceptible class. Susceptible mosquitoes can become infected when
they bite infectious or recovered humans, and once infected they move through the exposed and
infectious classes. Both species follow a logistic population model, with humans having immigration
and disease-induced death. We define a reproductive number, R0, for the number of secondary
cases that one infected individual will cause through the duration of the infectious period. We find
that the disease-free equilibrium is locally asymptotically stable when R0 < 1 and unstable when
R0 > 1. We prove the existence of at least one endemic equilibrium point for all R0 > 1. In the
absence of disease-induced death, we prove that the transcritical bifurcation at R0 = 1 is supercritical
(forward). Numerical simulations show that for larger values of the disease-induced death rate, a
subcritical (backward) bifurcation is possible at R0 = 1.

Key words. malaria, epidemic model, reproductive number, bifurcation theory, endemic equi-
libria, disease-free equilibria
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1. Introduction. Malaria is an infectious disease caused by the Plasmodium
parasite and transmitted between humans through the bite of the female Anopheles
mosquito. An estimated 40% of the world’s population live in malaria endemic ar-
eas. The disease kills about 1 to 3 million people a year, 75% of whom are African
children. The incidence of malaria has been growing recently due to increasing para-
site drug-resistance and mosquito insecticide-resistance. Therefore, it is important to
understand the important parameters in the transmission of the disease and develop
effective solution strategies for its prevention and control.

Mathematical modeling of malaria began in 1911 with Ross’s model [25], and
major extensions are described in Macdonald’s 1957 book [20]. The first models were
two-dimensional with one variable representing humans and the other representing
mosquitoes. An important addition to the malaria models was the inclusion of ac-
quired immunity proposed by Dietz, Molineaux, and Thomas [11]. Further work on
acquired immunity in malaria has been conducted by Aron [2] and Bailey [5]. Ander-
son and May [1], Aron and May [3], Koella [15] and Nedelman [21] have written some
good reviews on the mathematical modeling of malaria. Some recent papers have also
included environmental effects [19], [27], and [28]; the spread of resistance to drugs
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Fig. 1.1. Susceptible humans, Sh, can be infected when they are bitten by infectious mosquitoes.
They then progress through the exposed, Eh, infectious, Ih, and recovered, Rh, classes, before re-
entering the susceptible class. Susceptible mosquitoes, Sv, can become infected when they bite in-
fectious or recovered humans. The infected mosquitoes then move through the exposed, Ev, and in-
fectious, Iv, classes. Both species follow a logistic population model, with humans having additional
immigration and disease-induced death. Birth, death, and migration into and out of the population
are not shown in the figure.

[4] and [16]; and the evolution of immunity [17].
Recently, Ngwa and Shu [23] and Ngwa [22] proposed an ordinary differential

equation (ODE) compartmental model for the spread of malaria with a suscep-
tible-exposed-infectious-recovered-susceptible (SEIRS) pattern for humans and a
susceptible-exposed-infectious (SEI) pattern for mosquitoes. In a Ph.D. dissertation,
Chitnis [7] analyzed a similar model for malaria transmission. In this paper we extend
the Chitnis model.

The new model (Figure 1.1) divides the human population into four classes: sus-
ceptible, Sh; exposed, Eh; infectious, Ih; and recovered (immune), Rh. People enter
the susceptible class either through birth (at a constant per capita rate) or through
immigration (at a constant rate). When an infectious mosquito bites a susceptible
human, there is some finite probability that the parasite (in the form of sporozoites)
will be passed on to the human and that the person will move to the exposed class.
The parasite then travels to the liver where it develops into its next life stage. After
a certain period of time, the parasite (in the form of merozoites) enters the blood
stream, usually signaling the clinical onset of malaria. In our model, people from the
exposed class enter the infectious class at a rate that is the reciprocal of the duration
of the latent period. After some time, the infectious humans recover and move to the
recovered class. The recovered humans have some immunity to the disease and do
not get clinically ill, but they still harbor low levels of parasite in their blood streams
and can pass the infection to mosquitoes. After some period of time, they lose their
immunity and return to the susceptible class. Humans leave the population through
a density-dependent per capita emigration and natural death rate, and through a per
capita disease-induced death rate.

We divide the mosquito population into three classes: susceptible, Sv; exposed,
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Ev; and infectious, Iv. Female mosquitoes (we do not include male mosquitoes in
our model because only female mosquitoes bite animals for blood meals) enter the
susceptible class through birth. The parasite (in the form of gametocytes) enters the
mosquito with some probability when the mosquito bites an infectious human or a
recovered human (the probability of transmission of infection from a recovered human
is much lower than that from an infectious human), and the mosquito moves from
the susceptible to the exposed class. After some period of time, dependent on the
ambient temperature and humidity, the parasite develops into sporozoites and enters
the mosquito’s salivary glands, and the mosquito moves from the exposed class to
the infectious class. The mosquito remains infectious for life. Mosquitoes leave the
population through a per capita density-dependent natural death rate.

The extension of the Ngwa and Shu model [23] includes human immigration,
excludes direct human recovery from the infectious to the susceptible class, and gen-
eralizes the mosquito biting rate so that it applies to wider ranges of populations.
In [23], the total number of mosquito bites on humans depends only on the number
of mosquitoes, while in our model, the total number of bites depends on both the
human and mosquito population sizes. Human migration is present throughout the
world and plays a large role in the epidemiology of diseases, including malaria. In
many parts of the developing world, there is rapid urbanization as many people leave
rural areas and migrate to cities in search of employment. We include this move-
ment as a constant immigration rate into the susceptible class. We do not include
immigration of infectious humans, as we assume that most people who are sick will
not travel. We also exclude the movement of exposed humans because, given the
short time of the exposed stage, the number of exposed people is small. We make the
simplifying assumption that there is no immigration of recovered humans. We also
exclude the direct infectious-to-susceptible recovery that the model of Ngwa and Shu
[23] contains. This is a realistic simplifying assumption because most people show
some period of immunity before becoming susceptible again. As our model includes
an exponential distribution of movement from the recovered to the susceptible class,
it will include the quick return to susceptibility of some individuals. The model in
Chitnis [7] is the same as the model in this paper except for the mosquito biting rate,
which is the same as in [23].

We first describe the mathematical model including the definition of a domain
where the model is mathematically and epidemiologically well-posed. Next, we prove
the existence and stability of a disease-free equilibrium point, define the reproductive
number, and describe the existence and stability of the endemic equilibrium point(s).

2. Malaria model. The state variables (Table 2.1) and parameters (Table 2.2)
for the malaria model (Figure 1.1) satisfy the equations in (2.1). All parameters

Table 2.1

The state variables for the malaria model (2.1).

Sh: Number of susceptible humans
Eh: Number of exposed humans
Ih: Number of infectious humans
Rh: Number of recovered (immune and asymptomatic, but slightly infectious) humans
Sv : Number of susceptible mosquitoes
Ev : Number of exposed mosquitoes
Iv : Number of infectious mosquitoes
Nh: Total human population
Nv : Total mosquito population
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Table 2.2

The parameters for the malaria model (2.1) and their dimensions.

Λh: Immigration rate of humans. Humans × Time−1.
ψh: Per capita birth rate of humans. Time−1.
ψv : Per capita birth rate of mosquitoes. Time−1.
σv : Number of times one mosquito would want to bite humans per unit time, if humans were

freely available. This is a function of the mosquito’s gonotrophic cycle (the amount of
time a mosquito requires to produce eggs) and its anthropophilic rate (its preference for
human blood). Time−1.

σh: The maximum number of mosquito bites a human can have per unit time. This is a
function of the human’s exposed surface area. Time−1.

βhv : Probability of transmission of infection from an infectious mosquito to a susceptible
human, given that a contact between the two occurs. Dimensionless.

βvh: Probability of transmission of infection from an infectious human to a susceptible
mosquito, given that a contact between the two occurs. Dimensionless.

β̃vh: Probability of transmission of infection from a recovered (asymptomatic carrier) human
to a susceptible mosquito, given that a contact between the two occurs. Dimensionless.

νh: Per capita rate of progression of humans from the exposed state to the infectious state.
1/νh is the average duration of the latent period. Time−1.

νv : Per capita rate of progression of mosquitoes from the exposed state to the infectious
state. 1/νv is the average duration of the latent period. Time−1.

γh: Per capita recovery rate for humans from the infectious state to the recovered state. 1/γh
is the average duration of the infectious period. Time−1.

δh: Per capita disease-induced death rate for humans. Time−1.
ρh: Per capita rate of loss of immunity for humans. 1/ρh is the average duration of the

immune period. Time−1.
μ1h: Density-independent part of the death (and emigration) rate for humans. Time−1.
μ2h: Density-dependent part of the death (and emigration) rate for humans. Humans−1 ×

Time−1.
μ1v : Density-independent part of the death rate for mosquitoes. Time−1.
μ2v : Density-dependent part of the death rate for mosquitoes. Mosquitoes−1 × Time−1.

are strictly positive with the exception of the disease-induced death rate, δh, which
is nonnegative. The mosquito birth rate is greater than the density-independent
mosquito death rate, ψv > μ1v, ensuring that we have a stable positive mosquito
population.

dSh

dt
= Λh + ψhNh + ρhRh − λh(t)Sh − fh(Nh)Sh,(2.1a)

dEh

dt
= λh(t)Sh − νhEh − fh(Nh)Eh,(2.1b)

dIh
dt

= νhEh − γhIh − fh(Nh)Ih − δhIh,(2.1c)

dRh

dt
= γhIh − ρhRh − fh(Nh)Rh,(2.1d)

dSv

dt
= ψvNv − λv(t)Sv − fv(Nv)Sv,(2.1e)

dEv

dt
= λv(t)Sv − νvEv − fv(Nv)Ev,(2.1f)

dIv
dt

= νvEv − fv(Nv)Iv,(2.1g)

where fh(Nh) = μ1h+μ2hNh is the per capita density-dependent death and emigration
rate for humans and fv(Nv) = μ1v +μ2vNv is the per capita density-dependent death
rate for mosquitoes. The total population sizes are Nh = Sh + Eh + Ih + Rh and
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Nv = Sv + Ev + Iv, with

dNh

dt
= Λh + ψhNh − fh(Nh)Nh − δhIh,(2.2a)

dNv

dt
= ψvNv − fv(Nv)Nv,(2.2b)

and the infection rates are

λh = bh(Nh, Nv) · βhv ·
Iv
Nv

and λv = bv(Nh, Nv) ·
(
βvh · Ih

Nh
+ β̃vh · Rh

Nh

)
.

(2.3)

We define the force of infection from mosquitoes to humans, λh, as the product of the
number of mosquito bites that one human has per unit time, bh, the probability of
disease transmission from the mosquito to the human, βhv, and the probability that
the mosquito is infectious, Iv/Nv. We define the force of infection from humans to
mosquitoes, λv, as the sum of the force of infection from infectious humans and from
recovered humans. These are defined as the number of human bites one mosquito
has per unit time, bv; the probability of disease transmission from the human to the
mosquito, βvh and β̃vh; and the probability that the human is infectious or recovered,
Ih/Nh and Rh/Nh. Here, we model the total number of mosquito bites on humans as

b = b(Nh, Nv) =
σvNvσhNh

σvNv + σhNh
=

σvσh

σv(Nv/Nh) + σh
Nv,(2.4)

so that the total number of mosquito-human contacts depends on the populations of
both species. We define bh = bh(Nh, Nv) = b(Nh, Nv)/Nh as the number of bites per
human per unit time, and bv = bv(Nh, Nv) = b(Nh, Nv)/Nv as the number of bites per
mosquito per unit time. In the limit that the mosquito population goes to zero or the
human population goes to infinity, the model reduces to that in Chitnis [7] and has the
same mosquito-human interaction as in Ngwa and Shu [23] and the Ross–Macdonald
model (as described by Anderson and May [1]), where the total number of bites is
limited by the mosquito population. The number of bites per mosquito is then σv

(denoted by σvh in [7]), and the number of bites per human is σvNv/Nh. We show a
summary of the model of mosquito-human interactions and its limits in Table 2.3.

Table 2.3

Number of mosquito bites on humans in the malaria transmission model (2.1) and its limiting
cases with population changes.

Number of bites Number of bites Total number
per human, bh per mosquito, bv of bites, b

General σvNvσh

σvNv + σhNh

σvσhNh

σvNv + σhNh

σvNvσhNh

σvNv + σhNhmodel

As Nh → ∞ σvNv

Nh
σv σvNv

or Nv → 0

As Nh → 0
σh

σhNh

Nv
σhNh

or Nv → ∞

To simplify the analysis of the malaria model (2.1), we work with fractional
quantities instead of actual populations by scaling the population of each class by the
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total species population. We let

eh =
Eh

Nh
, ih =

Ih
Nh

, rh =
Rh

Nh
, ev =

Ev

Nv
, and iv =

Iv
Nv

,(2.5)

with

Sh = shNh = (1 − eh − ih − rh)Nh and Sv = svNv = (1 − ev − iv)Nv.(2.6)

Differentiating the scaling equations (2.5) and solving for the derivatives of the scaled
variables, we obtain

deh
dt

=
1

Nh

[
dEh

dt
− eh

dNh

dt

]
and

dev
dt

=
1

Nv

[
dEv

dt
− ev

dNv

dt

]
(2.7)

and so on for the other variables.
This creates a new seven-dimensional system of equations with two dimensions for

the two total population variables, Nh and Nv, and five dimensions for the fractional
population variables with disease, eh, ih, rh, ev, and iv:

deh
dt

=

(
σvσhNvβhviv
σvNv + σhNh

)
(1 − eh − ih − rh) −

(
νh + ψh +

Λh

Nh

)
eh + δhiheh,(2.8a)

dih
dt

= νheh −
(
γh + δh + ψh +

Λh

Nh

)
ih + δhi

2
h,(2.8b)

drh
dt

= γhih −
(
ρh + ψh +

Λh

Nh

)
rh + δhihrh,(2.8c)

dNh

dt
= Λh + ψhNh − (μ1h + μ2hNh)Nh − δhihNh,(2.8d)

dev
dt

=

(
σvσhNh

σvNv + σhNh

)(
βvhih + β̃vhrh

)
(1 − ev − iv) − (νv + ψv)ev,(2.8e)

div
dt

= νvev − ψviv,(2.8f)

dNv

dt
= ψvNv − (μ1v + μ2vNv)Nv.(2.8g)

The model (2.8) is epidemiologically and mathematically well-posed in the domain

D =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

eh
ih
rh
Nh

ev
iv
Nv

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eh ≥ 0,
ih ≥ 0,
rh ≥ 0,

eh + ih + rh ≤ 1,
Nh > 0,
ev ≥ 0,
iv ≥ 0,

ev + iv ≤ 1,
Nv > 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.(2.9)

This domain, D, is valid epidemiologically as the fractional populations eh, ih, rh, ev,
and iv are all nonnegative and have sums over their species type that are less than or
equal to 1. The human and mosquito populations, Nh and Nv, are positive. We use the
notation f ′ to denote df/dt. We denote points in D by x = (eh, ih, rh, Nh, ev, iv, Nv).
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Theorem 2.1. Assuming that the initial conditions lie in D, the system of
equations for the malaria model (2.8) has a unique solution that exists and remains
in D for all time t ≥ 0.

Proof. The right-hand side of (2.8) is continuous with continuous partial deriva-
tives in D, so (2.8) has a unique solution. We now show that D is forward-invariant.
We can see from (2.8) that if eh = 0, then e′h ≥ 0; if ih = 0, then i′h ≥ 0; if rh = 0,
then r′h ≥ 0; if ev = 0, then e′v ≥ 0; and if iv = 0, then i′v ≥ 0. It is also true that if
eh + ih + rh = 1, then e′h + i′h + r′h < 0; and if ev + iv = 1, then e′v + i′v < 0. Finally,
we note that if Nh = 0, then N ′

h > 0 and if Nv = 0, then N ′
v = 0. If Nh > 0 at time

t = 0, then Nh > 0 for all t > 0. Similarly, if Nv > 0 at time t = 0, then Nv > 0 for
all t > 0. Therefore, none of the orbits can leave D, and a unique solution exists for
all time.

3. Disease-free equilibrium point and reproductive number.

3.1. Existence of the disease-free equilibrium point. Disease-free equi-
librium points are steady-state solutions where there is no disease. We define the
“diseased” classes as the human or mosquito populations that are either exposed,
infectious, or recovered, that is, eh, ih, rh, ev, and iv. We denote the positive orthant
in R

7 by R
7
+, and the boundary of R

7
+ by ∂R

7
+. The positive equilibrium human and

mosquito population values, in the absence of disease, for (2.8) are

N∗
h =

(ψh − μ1h) +
√

(ψh − μ1h)2 + 4μ2hΛh

2μ2h
and N∗

v =
ψv − μ1v

μ2v
.(3.1)

Theorem 3.1. The malaria model (2.8) has exactly one equilibrium point, xdfe =
(0, 0, 0, N∗

h , 0, 0, N
∗
v ), with no disease in the population (on D ∩ ∂R

7
+).

Proof. We need to show that xdfe is an equilibrium point of (2.8) and that there
are no other equilibrium points on D ∩ ∂R

7
+. Substituting xdfe into (2.8) shows all

derivatives equal to zero, so xdfe is an equilibrium point. We know from Lemma A.1
that on D ∩ ∂R

7
+, eh = ih = rh = ev = iv = 0. For ih = 0, the only equilibrium point

for Nh from (2.8d) is N∗
h , and the only equilibrium point for Nv in D from (2.8g) is

N∗
v . Thus, the only equilibrium point on D ∩ ∂R

7
+ is xdfe.

3.2. Reproductive number. We use the next generation operator approach
as described by Diekmann, Heesterbeek, and Metz in [10] to define the reproductive
number, R0, as the number of secondary infections that one infectious individual
would create over the duration of the infectious period, provided that everyone else is
susceptible. We define the next generation operator, K, which provides the number of
secondary infections in humans and mosquitoes caused by one generation of infectious
humans and mosquitoes, as

K =

(
0 Khv

Kvh 0

)
,(3.2)

where we use the following definitions:
Khv: The number of humans that one mosquito infects through its infectious

lifetime, assuming all humans are susceptible.
Kvh: The number of mosquitoes that one human infects through the duration of

the infectious period, assuming all mosquitoes are susceptible.
Using the ideas of Hyman and Li [14], we define Khv and Kvh as products of

the probability of surviving till the infectious state, the number of contacts per unit
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time, the probability of transmission per contact, and the duration of the infectious
period:

Khv =

(
νv

νv + μ1v + μ2vN∗
v

)
· b∗v · βhv ·

(
1

μ1v + μ2vN∗
v

)
,(3.3a)

Kvh =

(
νh

νh + μ1h + μ2hN∗
h

)
· b∗h · βvh ·

(
1

γh + δh + μ1h + μ2hN∗
h

)
(3.3b)

+

(
νh

νh + μ1h + μ2hN∗
h

· γh
γh + δh + μ1h + μ2hN∗

h

)

· b∗h · β̃vh ·
(

1

ρh + μ1h + μ2hN∗
h

)
.

In (3.3a), νv/(νv + μ1v + μ2vN
∗
v ) is the probability that a mosquito will survive the

exposed state to become infectious;1 b∗v = bv(N
∗
h , N

∗
v ) is the number of contacts that

one mosquito has with humans per unit time; and 1/(μ1v + μ2vN
∗
v ) is the average

duration of the infectious lifetime of the mosquito. In (3.3b), the total number of
mosquitoes infected by one human is the sum of the new infections from the infectious
and from the recovered states of the human; νh/(νh +μ1h +μ2hN

∗
h) is the probability

that a human will survive the exposed state to become infectious; γh/(γh +δh +μ1h +
μ2hN

∗
h) is the probability that the human will then survive the infectious state to

move to the recovered state; b∗h = bh(N∗
h , N

∗
v ) is the number of contacts that one

human has with mosquitoes per unit time; 1/(γh + δh + μ1h + μ2hN
∗
h) is the average

duration of the infectious period of a human; and 1/(ρh +μ1h +μ2hN
∗
h) is the average

duration of the recovered period of a human.
We define R0 as the spectral radius of the next generation operator, K, i.e.,

R2
0 = KvhKhv. Then, R2

0 is the number of humans that one infectious human will
infect, through a generation of infections in mosquitoes, assuming that previously all
other humans and mosquitoes were susceptible.

Definition 3.2. We define the reproductive number, R0, as

R0 =
√
KvhKhv,(3.4)

where Kvh and Khv are defined in (3.3).
The original definition of the reproductive number of the Ross–Macdonald model

[1] and [3], and the Ngwa and Shu model [23], is equivalent to the square of this R0.
They ([1], [3], and [23]) use the traditional definition of the reproductive number,
which approximates the number of secondary infections in humans caused by one
infected human, while the R0 in Definition 3.2 is consistent with the definition given
by the next generation operator approach [10], which approximates the number of
secondary infections due to one infected individual (be it human or mosquito). Our
definition of R0 includes the generation of infections in mosquitoes, so is the square
root of the original definition. The threshold condition for both definitions is the
same.

3.3. Stability of the disease-free equilibrium point.
Theorem 3.3. The disease-free equilibrium point, xdfe, is locally asymptotically

stable if R0 < 1 and unstable if R0 > 1.
The proof of this theorem is in the appendix section A.1.

1In defining periods of time and probabilities for R0, we use the original system of equations
(2.1) and not the scaled equations (2.8). As the two models are equivalent, the reproductive number
is the same with either definition: μ1h + μ2hN

∗
h = ψh + Λh/N

∗
h and μ1v + μ2vN∗

v = ψv .
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4. Endemic equilibrium points. Endemic equilibrium points are steady-state
solutions where the disease persists in the population (all state variables are positive).
We use general bifurcation theory to prove the existence of at least one endemic
equilibrium point for all R0 > 1. We prove that the transcritical bifurcation at
R0 = 1 is supercritical (forward) when δh = 0 (there is no disease-induced death).
However, numerical results show that the bifurcation can be subcritical (backward)
for some positive values of δh, giving rise to endemic equilibria for R0 < 1.

We first rewrite the equilibrium equations for u = (eh, ev) in (2.8) as a nonlinear
eigenvalue problem in a Banach space:

u = G(ζ, u) = ζLu + h(ζ, u),(4.1)

where u ∈ Y ⊂ R
2, with Euclidean norm ‖·‖; ζ ∈ Z ⊂ R is the bifurcation parameter;

L is a compact linear map on Y ; and h(ζ, u) is O(‖u‖2) uniformly on bounded ζ
intervals. We require that both Y and Z be open and bounded sets, and that Y contain
the point 0. We define Z as the open and bounded set Z = {ζ ∈ R|−MZ < ζ < MZ}.
This set is defined to include the characteristic values (reciprocals of eigenvalues) of
L, so there is minimum value that MZ can have, but MZ may be arbitrarily large.
We use

ζ =
σvσh

σvN∗
v + σhN∗

h

(4.2)

for the bifurcation parameter. We also define Ω = Z × Y so that the pair (ζ, u) ∈ Ω.
We denote the boundary of Ω by ∂Ω.

A corollary by Rabinowitz [24, Corollary 1.12] states that if ζ0 ∈ Z is a char-
acteristic value of L of odd multiplicity, then there exists a continuum of nontrivial
solution-pairs (ζ, u) of (4.1) that intersects the trivial solution (that is, (ζ, 0) for any

ζ) at (ζ0, 0) and either meets ∂Ω or meets (ζ̂0, 0), where ζ̂0 is also a characteristic value
of L of odd multiplicity. We use this corollary to show that there exists a continuum of
solution-pairs (ζ, u) ∈ Ω for the eigenvalue equation (4.1). To each of these solution-
pairs there corresponds an equilibrium-pair (ζ, x∗). We define the equilibrium-pair,
(ζ, x∗) ∈ Z × R

7, as the collection of a parameter value, ζ, and the corresponding
equilibrium point, x∗, for that parameter value, of the malaria model (2.8).

Theorem 4.1. The model (2.8) has a continuum of equilibrium-pairs, (ζ, x∗) ∈
Z ×R

7, that connects the point (ξ1, xdfe) to the hyperplane ζ = MZ in R×R
7 on the

boundary of Z ×R
7 for any MZ > ξ1, where x∗ is in the positive orthant of R

7. Here
ξ1 = 1/

√
AB, where A and B are defined in (A.19).

We show the proof of this theorem and related lemmas in appendix section A.2.
Theorem 4.2. The transcritical bifurcation point at ζ = ξ1 corresponds to R0 =

1. For the set of ζ for which there exists an equilibrium-pair (ζ, x∗), the corresponding
set of values for R0 includes, but is not necessarily identical to, the interval 1 < R0 <
∞. Thus, there exists at least one endemic equilibrium point of the malaria model
(2.8) for all R0 > 1.

Proof. Using the definition of ζ, (4.2), some algebraic manipulations of R0 (see
(3.4)) produce

R0 = ζ
√
AB.(4.3)

Thus, R0 is linearly related to ζ, and when ζ = ξ1, R0 = 1. For any R0 > 1, (4.3)
defines a corresponding ζ. We pick an MZ larger than this ζ. Then, Theorem 4.1
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Fig. 4.1. Bifurcation diagrams for (2.8) showing the endemic equilibrium values for the fraction
of exposed humans, eh, plotted for the parameters in Table 4.1 (except for σv and σh, which vary with
ζ) and two values of the disease-induced death rate (δh = 3.454× 10−4 and δh = 3.419× 10−5). For
the parameter values in Table 4.1, there are three equilibrium points in D: a locally asymptotically
stable disease-free equilibrium point, xdfe, on the boundary of the positive orthant of R

7, and two
endemic equilibrium points inside the positive orthant. Linear stability analysis shows that the
“larger” endemic equilibrium point is locally asymptotically stable, while the “smaller” point is
unstable. Further linear analysis with an increased value of σv = 0.7000, σh = 21.00, and all other
parameters as in Table 4.1 (with R0 = 1.155) shows that xdfe is unstable, and there is one locally
asymptotically stable endemic equilibrium point.

guarantees the existence of an endemic equilibrium point for ζ, and thereby for the
corresponding value of R0. It is possible, though not necessary, for the continuum of
equilibrium-pairs to include values of ζ < ξ1 (R0 < 1).

Typically in epidemiological models, bifurcations at R0 = 1 tend to be supercrit-
ical (i.e., positive endemic equilibria exist for R0 > 1 near the bifurcation point). In
this model (2.8), in the absence of disease-induced death (δh = 0), we prove, using
the Lyapunov–Schmidt expansion as described by Cushing [9], that the bifurcation is
supercritical (forward).

Theorem 4.3. In the absence of disease-induced death (δh = 0), the transcritical
bifurcation at R0 = 1 is supercritical (forward).

Details of this proof are in appendix section A.2.
In the general case, a subcritical (backward) bifurcation can occur for some pa-

rameter values, where near the bifurcation point, positive endemic equilibria exist for
R0 < 1. Other examples of epidemiological models with subcritical bifurcations at
R0 = 1 include those described by Castillo-Chavez and Song [6], Gómez-Acevedo and
Yi [13], and van den Driessche and Watmough [26]. The model of Ngwa and Shu [23]
exhibits only a supercritical bifurcation at R0 = 1. Although we cannot prove the
existence of a subcritical bifurcation, we show through numerical examples that it is
possible for some positive values of δh. This is important because it implies that there
can be a stable endemic equilibrium even if R0 < 1.

We use the bifurcation software program AUTO [12] to create two bifurcation
diagrams around R0 = 1 (Figure 4.1) with parameter values in Table 4.1, except for
σh, σv, and δh. σh and σv change as ζ is varied, as shown in the figure; however,
their ratio, θ = σh/σv = 30, remains constant. One curve has δh as in Table 4.1,
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Table 4.1

The parameter values for which there exist positive endemic equilibrium points when R0 < 1:
R0 = 0.9898. The unit of time is days.

Λh = 3.285 × 10−2

ψh = 7.666 × 10−5 ψv = 0.4000
βvh = 0.8333 βhv = 2.000 × 10−2

β̃vh = 8.333 × 10−2

σv = 0.6000 σh = 18.00
νh = 8.333 × 10−2 νv = 0.1000
γh = 3.704 × 10−3

δh = 3.454 × 10−4

ρh = 1.460 × 10−2

μ1h = 4.212 × 10−5 μ1v = 0.1429
μ2h = 1.000 × 10−7 μ2v = 2.279 × 10−4
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Fig. 4.2. Solutions of the malaria model (2.1) with parameter values defined in Table 4.1 show-
ing only the number of infectious humans, Ih, for two different initial conditions. The parameters
correspond to R0 = 0.9898. Initial condition 1 is Sh = 400, Eh = 10, Ih = 30, Rh = 0, Sv = 1000,
Ev = 100, and Iv = 50. Initial condition 2 is Sh = 700, Eh = 10, Ih = 30, Rh = 0, Sv = 1000,
Ev = 100, and Iv = 50. The solution for initial condition 1 approaches the locally asymptotically
stable endemic equilibrium point, while the solution for initial condition 2 approaches the locally
asymptotically stable disease-free equilibrium point.

while the other has δh = 3.419 × 10−5. The curve with δh = 3.454 × 10−4 has both
unstable and stable endemic equilibrium points. There is a subcritical bifurcation
at ζ = 7.494 × 10−4 (R0 = 1), and a saddle-node bifurcation at ζ = 7.417 × 10−4

(R0 = 0.9897). Thus a locally asymptotically stable endemic equilibrium is possible
for values of R0 below 1. Further bifurcation analysis (not presented here) indicates
that as ζ is increased to ζ = 50 (R0 = 66719), the size of the projection of the
endemic equilibrium on the fractional infected groups increases monotonically, and the
equilibrium point remains stable. For comparison we show the bifurcation diagram
with δh = 3.419 × 10−5. Here, we see only a stable branch of endemic equilibrium
points. There is a supercritical bifurcation at ζ = 7.209 × 10−4 (R0 = 1). There
are no endemic equilibrium points for R0 less than 1. As ζ is increased to ζ = 50
(R0 = 69358), the size of the projection of the endemic equilibrium on the fractional
infected groups increases monotonically, and the equilibrium point remains stable.

Figure 4.2 shows the infectious human population, for two different initial condi-
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tions, of the solutions to the unscaled equations (2.1) for parameter values in Table 4.1
with R0 < 1. One solution approaches the locally asymptotically stable endemic equi-
librium point, while the other approaches the locally asymptotically stable disease-free
equilibrium point.

The parameter values in Table 4.1 are within the bounds of a realistically feasible
range, except for the mosquito birth and death rates, ψv and μ1v, which have been
increased to lower R0 below 1. More realistic values are ψv = 0.13 and μ1v = 0.033,
which result in (with all other parameters as in Table 4.1) R0 = 1.6. More lists of
realistic parameter values, and their references, can be found in [7] and [8]. δh =
3.454 × 10−4 corresponds to a death rate of 12.62% of infectious humans per year.

5. Summary and conclusions. We analyzed an ordinary differential equa-
tion model for the transmission of malaria, with four variables for humans and three
variables for mosquitoes. We showed that there exists a domain where the model
is epidemiologically and mathematically well-posed. We proved the existence of an
equilibrium point with no disease, xdfe. We defined a reproductive number, R0, that
is epidemiologically accurate in that it provides the expected number of new infections
(in mosquitoes or humans) from one infectious individual (human or mosquito) over
the duration of the infectious period, given that all other members of the population
are susceptible. We showed that if R0 < 1, then the disease-free equilibrium point,
xdfe, is locally asymptotically stable, and if R0 > 1, then xdfe is unstable.

We also proved that an endemic equilibrium point exists for all R0 > 1 with
a transcritical bifurcation at R0 = 1. The analysis and the numerical simulations
showed that for δh = 0 (no disease-induced death), and for some small positive values
of δh, there is a supercritical transcritical bifurcation at R0 = 1 with an exchange of
stability between the disease-free equilibrium and the endemic equilibrium. For larger
values of δh, there is a subcritical transcritical bifurcation at R0 = 1, with an exchange
of stability between the endemic equilibrium and the disease-free equilibrium; and
there is a saddle-node bifurcation at R0 = R∗

0 for some R∗
0 < 1. Thus, for some

values of R0 < 1, there exist two endemic equilibrium points, the smaller of which is
unstable, while the larger is locally asymptotically stable.

Although we cannot prove in general that the endemic equilibrium point is unique
and stable for R0 > 1, numerical results for particular parameter sets suggest that
there is a unique stable endemic equilibrium point for R0 > 1. Also, from Theorem 2.1
it follows that all orbits of the malaria model (2.8) are bounded. Thus, if there were
no stable endemic equilibria in D, then there would exist a nonequilibrium attractor
(such as a limit cycle or strange attractor), though for this model we have no evidence
for nonequilibrium attractors.

The possible existence of a subcritical bifurcation at R0 = 1 and a saddle-node
bifurcation at some R∗

0 < 1 can have implications for public health, when the epi-
demiological parameters are close to those in Table 4.1. Simply reducing R0 to a
value below 1 is not always sufficient to eradicate the disease; it is now necessary to
reduce R0 to a value less than R∗

0 to ensure that there are no endemic equilibria.
The existence of a saddle-node bifurcation also implies that in some areas with en-
demic malaria, it may be possible to significantly reduce prevalence or eradicate the
disease with small increases in control programs (a small reduction in R0 so that it
is less than R∗

0). In some areas where malaria has been eradicated it is possible for
a slight disruption, like a change in environmental or control variables or an influx
of infectious humans or mosquitoes, to cause the disease to reestablish itself in the
population with a significant increase in disease prevalence (increasing R0 above R∗

0
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or moving the system into the basin of attraction of the stable endemic equilibrium).
As we have an explicit expression for R0, we can analytically evaluate its sensitiv-

ity to the different parameter values. We can also numerically evaluate the sensitivity
of the endemic equilibrium to the parameter values. This allows us to determine the
relative importance of the parameters to disease transmission and prevalence. As each
malaria intervention strategy affects different parameters to different degrees, we can
thus compare different control strategies for efficiency and effectiveness in reducing
malaria mortality and morbidity. This analysis, in the limiting case of the Chitnis
model [7] shows that malaria transmission is most sensitive to the mosquito biting
rate, and prevalence is most sensitive to the mosquito biting rate and the human
recovery rate. The sensitivity analysis for the new model (2.8) is forthcoming [8].

We are extending the model to include the effects of the environment on the
spread of malaria. Some parameters, such as the mosquito birth rate and the incuba-
tion period in mosquitoes, depend on seasonal environmental factors such as rainfall,
temperature, and humidity. We can include these effects by modeling these parame-
ters as periodic functions of time. We would like to explore this periodically forced
model for features not seen in the autonomous model, including the modifications
to the definition of the reproductive number and the endemic states. This would
provide a more accurate picture of malaria transmission and prevalence than that ob-
tained from models using parameter values that are averaged over the seasons. Other
planned improvements to the model include the addition of age and spatial structure.

An ultimate goal is to validate this model by applying it to a particular malaria-
endemic region of the world to compare the predicted endemic states with the preva-
lence data.

Appendix. Lemmas and proofs of theorems.
Lemma A.1. For all equilibrium points on D∩∂R

7
+, eh = ih = rh = ev = iv = 0.

Proof. We need to show that for an equilibrium point in D, if any one of the
diseased classes is zero, all the rest are also equal to zero. We show, by setting the
right-hand side of (2.8) equal to 0, that if any one of eh, ih, rh, ev, or iv is equal to 0,
then eh = ih = rh = ev = iv = 0. For i′h = 0, eh = 0 if and only if ih = 0.2 Similarly,
for r′h = 0, ih = 0 if and only if rh = 0. Thus, if eh = 0, ih = 0, or rh = 0, then
eh = ih = rh = 0. From e′h = 0, we see that if eh = ih = rh = 0, then iv = 0. Also,
for i′v = 0, ev = 0 if and only if iv = 0. Thus, if ev = 0 or iv = 0, then ev = iv = 0.
Finally, for e′v = 0, if ev = iv = 0, then ih = rh = 0.

A.1. Proof of Theorem 3.3.
Proof. The Jacobian of the malaria model (2.8) evaluated at xdfe is of the form

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

J11 0 0 0 0 J16 0
J21 J22 0 0 0 0 0
0 J32 J33 0 0 0 0
0 J42 0 J44 0 0 0
0 J52 J53 0 J55 0 0
0 0 0 0 J65 J66 0
0 0 0 0 0 0 J77

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(A.1)

2As the right-hand side of (2.8b) is a quadratic function of ih, there are two possible solutions
of ih when i′h = 0 and eh = 0. However, the nonzero solution of ih is greater than 1 and is thus
outside of D.
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As the fourth and seventh columns (corresponding to the total human and mosquito
populations) contain only the diagonal terms, these diagonal terms form two eigen-
values of the Jacobian:

η6 = ψh − μ1h − 2μ2hN
∗
h = −

√
(ψh − μ1h)2 + 4μ2hΛh,(A.2a)

η7 = ψv − μ1v − 2μ2vN
∗
v = −(ψv − μ1v).(A.2b)

As we have assumed that ψv > μ1v, both η6 and η7 are always negative. The other
five eigenvalues are the roots of the characteristic equation of the matrix formed by
excluding the fourth and seventh rows and columns of the Jacobian (A.1):

A5η
5 + A4η

4 + A3η
3 + A2η

2 + A1η + A0 = 0(A.3)

with

A5 = 1,

A4 = B1 + B2 + B3 + B4 + B5,

A3 = B1B2 + B1B3 + B1B4 + B1B5 + B2B3 + B2B4 + B2B5 + B3B4

+ B3B5 + B4B5,

A2 = B1B2B3 + B1B2B4 + B1B2B5 + B1B3B4 + B1B3B5 + B1B4B5 + B2B3B4

+ B2B3B5 + B2B4B5 + B3B4B5,

A1 = B1B2B3B4 + B1B2B3B5 + B1B2B4B5 + B1B3B4B5 + B2B3B4B5

−B6B7B8B9,

A0 = B1B2B3B4B5 − (B3B6B7B8B9 + B6B7B9B10B11),

and B1 = νh + ψh + Λh/N
∗
h , B2 = γh + δh + ψh + Λh/N

∗
h , B3 = ρh + ψh + Λh/N

∗
h ,

B4 = νv + ψv, B5 = ψv, B6 = b∗hβhv, B7 = νh, B8 = b∗vβvh, B9 = νv, B10 = γh, and

B11 = b∗vβ̃vh.
To evaluate the signs of the roots of (A.3), we first use the Routh–Hurwitz cri-

terion to prove that when R0 < 1, all roots of (A.3) have negative real part. Then,
using Descartes’s rule of sign, we prove that when R0 > 1, there is one positive real
root.

The Routh–Hurwitz criterion [18, section 1.6-6(b)] for a real algebraic equation

anx
n + an−1x

n−1 + · · · + a1x + a0 = 0(A.4)

states that, given an > 0, all roots have negative real part if and only if T0 = an,
T1 = an−1,

T2 =

∣∣∣∣ an−1 an
an−3 an−2

∣∣∣∣ , T3 =

∣∣∣∣∣∣
an−1 an 0
an−3 an−2 an−1

an−5 an−4 an−3

∣∣∣∣∣∣ , . . . , Tn =

∣∣∣∣∣∣∣
an−1 · · · 0

...
. . .

...
0 · · · a0

∣∣∣∣∣∣∣
are all positive, with ai = 0 for i < 0. This is true if and only if all ai and either all
even-numbered Tk or all odd-numbered Tk are positive (the Liénard–Chipart test).
Korn and Korn [18] in section 1.6-6(c) state Descartes’s rule of sign as the number
of positive real roots of a real algebraic equation (A.4) is equal to the number, Na,
of sign changes in the sequence, an, an−1, . . . , a0, of coefficients, where the vanishing
terms are disregarded, or it is less than Na by a positive even integer.
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We show that when R0 < 1, all the coefficients, Ai, of the characteristic equation
(A.3), and T0, T2, and T4, are positive, so by the Routh–Hurwitz criterion, all the
eigenvalues of the Jacobian (A.1) have negative real part. We then show that when
R0 > 1, there is one and only one sign change in the sequence A5, A4, . . . , A0, so
by Descartes’s rule of sign there is one eigenvalue with positive real part, and the
disease-free equilibrium point is unstable.

The expression for R2
0 in (3.4) can be written, in terms of Bi, as

R2
0 =

B3B6B7B8B9 + B6B7B9B10B11

B1B2B3B4B5
.(A.5)

For R0 < 1, by (A.5),

B3B6B7B8B9 + B6B7B9B10B11 < B1B2B3B4B5,(A.6)

B6B7B8B9 < B1B2B4B5.(A.7)

As all the Bi are positive, A5, A4, A3, and A2 are always positive. From (A.7) we
see that A1 > 0, and from (A.6) we see that A0 > 0. Thus, for R0 < 1, all Ai are
positive. We now show that the even-numbered Tk are positive for R0 < 1. For the
fifth-degree polynomial (A.3), T0 = A5, which is always positive. T2 = A3A4 −A2A5,
which we can show to be a positive sum of products of Bi’s, so T2 > 0. Lastly,

T4 = A1[A2A3A4 − (A1A
2
4 + A2

2A5)] −A0[A3(A3A4 −A2A5) − (2A1A4A5 −A0A
2
5)].

For ease of notation, we introduce

C1 = A2A3A4 − (A1A
2
4 + A2

2A5),

C2 = A3(A3A4 −A2A5) − (2A1A4A5 −A0A
2
5),

where we can show that C1 > 0 and C2 > 0, so that T4 = A1C1 −A0C2. We define

C
(1)
2 = C2 + B6B7B9B10B11.

As C
(1)
2 > C2 and A0 > 0, for T

(1)
4 = A1C1 −A0C

(1)
2 , T4 > T

(1)
4 . Similarly, we define

A
(1)
0 = A0 + (B3B6B7B8B9 + B6B7B9B10B11).

As A
(1)
0 > A0 and C

(1)
2 > 0, for T

(2)
4 = A1C1 − A

(1)
0 C

(1)
2 , T

(1)
4 > T

(2)
4 . Finally, we

define

A
(1)
1 = A1 − (B1B2B4B5 −B6B7B8B9).

As A
(1)
1 < A1 (for R0 < 1) and C1 > 0, for T

(3)
4 = A

(1)
1 C1−A

(1)
0 C

(1)
2 , T

(2)
4 > T

(3)
4 . We

can show that T
(3)
4 is a sum of positive terms, so T

(3)
4 > 0. As T4 > T

(1)
4 > T

(2)
4 > T

(3)
4 ,

T4 > 0. Thus, for R0 < 1, all roots of (A.3) have negative real parts.
When R0 > 1

B3B6B7B8B9 + B6B7B9B10B11 > B1B2B3B4B5,

and so A0 < 0. As A5, A4, A3, and A2 are positive, the sequence, A5, A4, A3, A2, A1, A0

has exactly one sign change. Thus, by Descartes’s rule of sign, (A.3) has one positive
real root when R0 > 1.
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Thus, the disease-free equilibrium point, xdfe, is locally asymptotically stable if
R0 < 1 and unstable if R0 > 1. If R0 < 1, on average each infected individual infects
fewer than one other individual, and the disease dies out. If R0 > 1, on average each
infected individual, infects more than one other individual, so we would expect the
disease to spread. The Jacobian of (2.8) at xdfe has one eigenvalue equal to 0 at
R0 = 1.

A.2. Proofs of theorems and lemmas for the existence of endemic equi-
librium points. The equilibrium equations for (2.8) are shown below in (A.8). In
this analysis, we use the terms eh, ih, rh, Nh, ev, iv, and Nv to represent their
respective equilibrium values and not their actual values at a given time, t.(

σvσhNvβhviv
σvNv + σhNh

)
(1 − eh − ih − rh) − (νh + ψh + Λh/Nh)eh + δhiheh = 0,(A.8a)

νheh − (γh + δh + ψh + Λh/Nh)ih + δhi
2
h = 0,(A.8b)

γhih − (ρh + ψh + Λh/Nh)rh + δhihrh = 0,(A.8c)

Λh + ψhNh − (μ1h + μ2hNh)Nh − δhihNh = 0,(A.8d) (
σvσhNh

σvNv + σhNh

)(
βvhih + β̃vhrh

)
(1 − ev − iv) − (νv + ψv)ev = 0,(A.8e)

νvev − ψviv = 0,(A.8f)

ψvNv − (μ1v + μ2vNv)Nv = 0.(A.8g)

We rewrite (A.8a) and (A.8e) in terms of the bifurcation parameter, ζ (4.2), and a
new parameter, θ = σh/σv, to obtain

ζ

(
N∗

v + θN∗
h

Nv + θNh

)
Nvβhviv(1− eh − ih − rh)− (νh + ψh + Λh/Nh − δhih)eh = 0,(A.9a)

ζ

(
N∗

v + θN∗
h

Nv + θNh

)
Nh

(
βvhih + β̃vhrh

)
(1 − ev − iv) − (νv + ψv)ev = 0.(A.9b)

We can vary the bifurcation parameter, ζ, while keeping all other parameters fixed. In
terms of the original variables, this corresponds to changing σh and σv while keeping
the ratio between them fixed. We can pick θ, the ratio between them, and sweep out
the entire parameter space.

We reduce the equilibrium equations to a two-dimensional system for eh and ev
by solving for the other variables, either explicitly as functions of the parameters,
or in terms of eh and ev. We solve (A.8g) for Nv, explicitly expressing the positive
equilibrium for the total mosquito population in terms of parameters (exactly as in
the disease-free case (3.1)):

Nv =
ψv − μ1v

μ2v
.(A.10)

Solving for iv in (A.8f) in terms of ev, we find

iv =
νv
ψv

ev.(A.11)

We write the positive equilibrium for Nh in terms of ih from (A.8d) as

Nh =
(ψh − μ1h − δhih) +

√
(ψh − μ1h − δhih)2 + 4μ2hΛh

2μ2h
.(A.12)
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Using (A.12) in (A.8c), we solve for rh in terms of ih:

rh =
2γhih

2ρh + (ψh + μ1h − δhih) +
√

(ψh − μ1h − δhih)2 + 4μ2hΛh

.(A.13)

Given the nonlinear nature of (A.8b), it is not feasible (or useful) to solve for ih
in terms of eh explicitly. We therefore use (A.12) to rewrite (A.8b), and define the
function eh = g(ih) as

g(ih) =
γh + δh + 1

2

(
(ψh + μ1h − δhih) +

√
(ψh − μ1h − δhih)2 + 4μ2hΛh

)
νh

ih.

We note that g(0) = 0, and label the positive constant g(1) = emax
h . As g(ih) is a

smooth function of ih with g′(ih) > 0 for ih ∈ [0, 1] and eh ∈ [0, emax
h ], there exists a

smooth function ih = y(eh) with domain [0, emax
h ] and range [0, 1]. As g′(0) > 0, the

smooth function y(eh) would extend to some small eh < 0. Substituting ih = y(eh)
into (A.12) and (A.13), we can also express Nh and rh as functions of eh.

We now introduce the bounded open subset of R
2,

Y =

{(
eh
ev

)
∈ R

2

∣∣∣∣ −εh < eh < emax
h

−εv < ev < 1

}
,(A.14)

for some εv > 0 and some εh > 0. By substituting (A.10), (A.11), (A.12), (A.13), and
ih = y(eh) into (A.8a) and (A.8e), we reformulate the seven equilibrium equations
(A.8) equivalently as two equations for the components (eh, ev) ∈ Y . To place these
two equations into the Rabinowitz form (4.1), we need to determine lower order terms.
We rewrite (A.8b) as f(eh, ih) = 0, where f(eh, ih) =

νheh −
[
γh + δh +

1

2

(
(ψh + μ1h − δhih) +

√
(ψh − μ1h − δhih)2 + 4μ2hΛh

)]
ih,

and use implicit differentiation to write ih = y(eh) as a Taylor polynomial of the form

ih = y1eh + O(e2
h),(A.15)

where

y1 = −
∂f
∂eh
∂f
∂ih

∣∣∣∣∣
ih=eh=0

=
νh

γh + δh + 1
2

(
(ψh + μ1h) +

√
(ψh − μ1h)2 + 4μ2hΛh

) .
Finally, we substitute the Taylor approximation for ih (A.15) into rh (A.13) and

Nh (A.12), and then all three, along with iv (A.11) and Nv (A.10) into the equilibrium
equations for eh (A.9a) and ev (A.9b), to provide first order approximations to the
equilibrium equations:

(
0
0

)
=

(
f1 10 f1 01

f2 10 f2 01

)(
eh
ev

)
+ O

((
eh
ev

)2
)
,(A.16)
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where

f1 10 = −
[
νh +

1

2

(
(ψh + μ1h) +

√
(ψh − μ1h)2 + 4μ2hΛh

)]
,(A.17a)

f1 01 = ζ · νvβhv(ψv − μ1v)

ψvμ2v
,(A.17b)

f2 10 = ζ ·
νh

(
(ψh − μ1h) +

√
(ψh − μ1h)2 + 4Λhμ2h

)
2μ2h

(
γh + δh + 1

2

(
(ψh + μ1h) +

√
(ψh − μ1h)2 + 4μ2hΛh

))(A.17c)

×

⎡
⎣βvh +

γhβ̃vh

ρh + 1
2

(
(ψh + μ1h) +

√
(ψh − μ1h)2 + 4μ2hΛh

)
⎤
⎦ ,

f2 01 = − (ψv + νv) .(A.17d)

To apply Corollary 1.12 of Rabinowitz [24], we algebraically manipulate (A.16)
to produce

u = ζLu + h(ζ, u),(A.18)

where

u =

(
eh
ev

)
and L =

(
0 A
B 0

)
with

A =
νvβhv(ψv − μ1v)

ψvμ2v

(
νh + 1

2

(
(ψh + μ1h) +

√
(ψh − μ1h)2 + 4μ2hΛh

)) ,(A.19a)

B =

⎛
⎝βvh +

γhβ̃vh

ρh + 1
2

(
(ψh + μ1h) +

√
(ψh − μ1h)2 + 4μ2hΛh

)
⎞
⎠(A.19b)

×
νh

(
(ψh − μ1h) +

√
(ψh − μ1h)2 + 4μ2hΛh

)
2μ2h(ψv + νv)

(
γh + δh + 1

2

(
(ψh +μ1h)+

√
(ψh −μ1h)2 + 4μ2hΛh

)) ,
and h(ζ, u) is O(u2). The matrix, L, has two distinct eigenvalues: ±

√
AB. Charac-

teristic values of a matrix are the reciprocals of its eigenvalues. We denote the two
characteristic values of L by ξ1 = 1/

√
AB and ξ2 = −1/

√
AB. As both A and B are

always positive (because we have assumed that ψv > μ1v), ξ1 is real and corresponds
to the dominant eigenvalue of L. The right and left eigenvectors corresponding to ξ1
are, respectively,

v =

(√
A√
B

)
and w =

(√
B

√
A
)
.(A.20)

For MZ > ξ1, as 0 ∈ Y , (ξ1, 0) ∈ Ω. By Corollary 1.12 of Rabinowitz [24], we
know that there is a continuum of solution-pairs (ζ, u) ∈ Ω, whose closure contains
the point (ξ1, 0), that either meets the boundary of Ω, ∂Ω, or the point (ξ2, 0). We
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denote the continuum of solution-pairs emanating from (ξ1, 0) by C1, where C1 ⊂ Ω,
and from (ξ2, 0) by C2, where C2 ⊂ Ω. We introduce the sets

Z1 = {ζ ∈ Z| ∃u such that (ζ, u) ∈ C1} ,(A.21a)

U1 = {u ∈ Y | ∃ζ such that (ζ, u) ∈ C1} ,(A.21b)

Z2 = {ζ ∈ Z| ∃u such that (ζ, u) ∈ C2} ,(A.21c)

U2 = {u ∈ Y | ∃ζ such that (ζ, u) ∈ C2} .(A.21d)

We denote the part of Y in the positive quadrant of R
2 by Y + = {(eh, ev) ∈ Y | eh >

0 and ev > 0}, and the internal boundary of Y + by

∂Y + =

⎧⎨
⎩
(

eh
ev

)
∈ Y

∣∣∣∣∣∣
⎛
⎝ eh > 0

and
ev = 0

⎞
⎠ or

⎛
⎝ eh = 0

and
ev > 0

⎞
⎠ or

⎛
⎝ eh = 0

and
ev = 0

⎞
⎠
⎫⎬
⎭ .

We can determine the initial direction of the continua of solution-pairs, C1 and
C2, using the Lyapunov–Schmidt expansion, as described by Cushing [9]. Although
we show the proofs only for the expansion of C1 around the bifurcation point at ζ = ξ1
in Lemmas A.2 and A.3, the results for C2 around ζ = ξ2 are similar. We begin by
expanding the terms of the nonlinear eigenvalue equation (A.18) about the bifurcation
point, (ξ1, 0). The expanded variables are

u = 0 + εu(1) + ε2u(2) + · · · ,(A.22a)

ζ = ξ1 + εζ1 + ε2ζ2 + · · · ,(A.22b)

h(ζ, u) = h(ξ1 + εζ1 + ε2ζ2 + · · · , εu(1) + ε2u(2) + · · · )(A.22c)

= ε2h2(ξ1, u
(1)) + · · · .

We substitute the expansions (A.22) into the eigenvalue equation (A.18) and evaluate
at different orders of ε. Evaluating the substitution of the expansions (A.22) into the
eigenvalue equation (A.18) at O(ε0) produces 0 = 0, which gives us no information.

Lemma A.2. The initial direction of the branch of equilibrium points, u(1), near
the bifurcation point, (ξ1, 0), is equal to the right eigenvector of L corresponding to
the characteristic value, ξ1.

Proof. Evaluating the substitution of the expansions (A.22) into the eigenvalue
equation (A.18) at O(ε1), we obtain u(1) = ξ1Lu

(1). This implies that u(1) is the
right eigenvector of L corresponding to the eigenvalue 1/ξ1, v (A.20). Thus, close to
the bifurcation point, the equilibrium point can be approximated by eh = ε

√
A and

ev = ε
√
B.

Lemma A.3. The bifurcation at ζ = ξ1 of the nonlinear eigenvalue equation
(A.18) is supercritical if ζ1 > 0 and subcritical if ζ1 < 0, where

ζ1 = −w · h2

w · Lv ,(A.23)

where v and w are the right and left eigenvectors of L corresponding to the character-
istic value ξ1, respectively.

Proof. Evaluating the substitution of the expansions (A.22) into the eigenvalue
equation (A.18) at O(ε2), we obtain u(2) = ξ1Lu

(2) + ζ1Lu
(1) + h2, which we can
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rewrite as

(I − ξ1L)u(2) = ζ1Lv + h2,(A.24)

where I is the 2 × 2 identity matrix. As ξ1 is a characteristic value of L, (I − ξ1L)
is a singular matrix. Thus, for (A.24) to have a solution, ζ1Lv + h2 must be in the
range of (I − ξ1L); i.e., it must be orthogonal to the null space of the adjoint of
(I− ξ1L). The null space of the adjoint of (I− ξ1L) is spanned by the left eigenvector
of L (corresponding to the eigenvalue 1/ξ1), w (A.20). The Fredholm condition for
the solvability of (A.24) is w · (ζ1Lv + h2) = 0. Solving for ζ1 provides (A.23). If
ζ1 is positive, then for small positive ε, u > 0 and ζ > ξ1, and the bifurcation is
supercritical. Similarly, if ζ1 is negative, then for small positive ε, u > 0 and ζ < ξ1,
and the bifurcation is subcritical.

Lemma A.4. For all u ∈ U1, eh > 0 and ev > 0.
Proof. By Lemma A.1, there are no equilibrium points on ∂Y + other than eh =

ev = 0, so U1 ∩ ∂Y + = 0. We know from Lemma A.2 that close to the bifurcation
point (ξ1, 0), the direction of U1 is equal to v, the right eigenvector corresponding to
the characteristic value, ξ1. As v contains only positive terms, U1 is entirely contained
in Y +. Thus, for all u ∈ U1, eh > 0 and ev > 0.

Lemma A.5. The point u = 0 ∈ Y corresponds to xdfe ∈ R
7 (on the boundary

of the positive orthant of R
7). For every solution-pair (ζ, u) ∈ C1, there corresponds

one equilibrium-pair (ζ, x∗) ∈ Z × R
7, where x∗ is in the positive orthant of R

7.
Proof. We first show that u = 0 corresponds to xdfe. As eh = ev = 0, by

Theorem 3.1 we know that the only possible equilibrium point is xdfe. We now
show that for every ζ ∈ Z1 there exists an x∗ in the positive orthant of R

7 for the
corresponding u ∈ U1. By Lemma A.4, we know that eh > 0 and ev > 0. We now
need to show that for every positive eh and ev there exist corresponding positive ih,
rh, iv, Nh, and Nv. By looking at the equilibrium equation for iv (A.11), we see that
for every positive ev there exists a positive iv. The equilibrium equation for Nv has
a positive and bounded solution, depending only on parameter values (A.10). From
ih = y(eh), we see that for every positive eh there exists a positive ih. The equilibrium
equations for rh (A.13) and Nh (A.12) show that for every positive ih there exists a
positive rh and Nh.

Lemma A.6. The set U1 does not meet the boundary of Y .
Proof. As Lemma A.4 shows us that for all u ∈ U1, eh > 0 and ev > 0, we need

to show that eh < emax
h and ev < 1. By Lemma A.5, we know that all state variables

are positive. Therefore, for (A.8e) to have a solution, ev + iv < 1 so ev < 1. From
the properties of eh = g(ih), we know that as ih increases, eh increases monotonically,
reaching emax

h at ih = 1. However, we have already shown that when eh + ih +rh = 1,
e′h + i′h + r′h < 0, and thus there can be no equilibrium point at eh + ih + rh = 1.
Therefore, ih is always less than 1, and eh is always less than emax

h .
Proof of Theorem 4.1. As shown in Lemma A.4, U1 ∩ ∂Y + = 0 and U1 is entirely

contained in Y +. We can similarly show that U2 is entirely outside of Y + because the
right eigenvector corresponding to ξ2 is ( −

√
A

√
B )T. Therefore, C1 and C2 do

not intersect, and by Corollary 1.12 of Rabinowitz [24], C1 meets ∂Ω. By Lemma A.6,
the set U1 does not meet the boundary of Y , so C1 meets ∂Ω only at ζ = MZ .

By Lemma A.5, for every u ∈ U1, there corresponds an x∗ in the positive orthant
of R

7, and u = 0 corresponds to xdfe (on the boundary of the positive orthant of R
7).

Thus, there exists a continuum of equilibrium-pairs (ζ, x∗) ∈ Z × R
7 that connects

the point (ξ1, xdfe) to the hyperplane ζ = MZ in R × R
7.
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Proof of Theorem 4.3. When δh = 0, we can explicitly evaluate h(ζ, u) in the
nonlinear eigenvalue equation (A.18) from the equilibrium equations (A.8) as

h = ζ

(
C(δh=0)ehev
D(δh=0)ehev

)
(A.25)

since the coefficients of all the other higher order terms are zero. Although we do
not show the explicit representations for C(δh=0) and D(δh=0), they are both negative.
From (A.25) and (A.22) we can evaluate the second order expansion

h2 = ξ1

(
C(δh=0)

√
A
√
B

D(δh=0)

√
A
√
B

)
=

(
C(δh=0)

D(δh=0)

)
.(A.26)

As h2 contains only negative terms and w, v, and L contain only nonnegative terms,
(A.23) implies that ζ1 is positive. Thus, by Lemma A.3, with no disease-induced
death, for any positive values of the other parameters there is a supercritical bifurca-
tion at R0 = 1.
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EQUATIONS USING ENTROPY MINIMIZATION∗
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Abstract. New quantum hydrodynamic equations are derived from a Wigner–Boltzmann model,
using the quantum entropy minimization method recently developed by Degond and Ringhofer. The
model consists of conservation equations for the carrier, momentum, and energy densities. The deriva-
tion is based on a careful expansion of the quantum Maxwellian in powers of the Planck constant.
In contrast to the standard quantum hydrodynamic equations derived by Gardner, the new model
includes vorticity terms and a dispersive term for the velocity. Numerical current-voltage charac-
teristics of a one-dimensional resonant tunneling diode for both the new quantum hydrodynamic
equations and Gardner’s model are presented. The numerical results indicate that the dispersive
velocity term regularizes the solution of the system.

Key words. quantum moment hydrodynamics, entropy minimization, quantum Maxwellian,
moment method, finite-difference discretization, numerical simulations, resonant tunneling diode,
current-voltage characteristics
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1. Introduction. Quantum phenomena in semiconductor devices are increas-
ingly important, as the characteristic lengths of modern devices are of the order of
only deca-nanometers. In fact, there are devices, like resonant tunneling diodes, whose
behavior is essentially based on quantum effects. Since the numerical solution of the
Schrödinger equation (or one of its approximations) or the Wigner equation is very
time-consuming, fluid-type quantum models seem to provide a compromise between
accurate and efficient numerical simulations. Moreover, quantum fluid models have
several advantages. First, they are formulated in macroscopic quantities like the cur-
rent density, which can be measured. Second, for the macroscopic quantum models,
the same types of boundary conditions are commonly employed as for their classical
counterparts.

A fluid dynamical formulation of the Schrödinger equation has been known since
the early years of quantum mechanics [26]. A simple derivation uses WKB wave
functions ψ =

√
n exp(iS/ε) for the electron density n(x, t) and the phase S(x, t),

where ε is the scaled Planck constant. Separating the real and the imaginary parts
of the single-state Schrödinger equation gives Euler-type equations for n and the
“velocity” u=∇S, which are called the quantum hydrodynamic (QHD) model. These
equations include the so-called Bohm potential Δ

√
n/

√
n as a quantum correction

[17, 20]. In the semiclassical limit ε → 0, the classical pressureless Euler equations
are recovered.

In order to incorporate many-particle effects, we are aware of two approaches.
The first approach starts from the mixed-state Schrödinger–Poisson system [17, 20].
Defining the particle and current densities as the superpositions of all single-state
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densities, quantum equations for the macroscopic variables (particle density, current
density, and energy density) are derived. The system of equations is closed by ex-
pressing the heat flux heuristically in terms of the macroscopic variables.

The second approach starts from the (collisional) Wigner equation in position-
momentum space,

∂tf + p · ∇xf + θ[V ]f = Q(f), (x, p) ∈ R
2d, t > 0,(1.1)

where (x, p) is the position-momentum variable, t > 0 is the time, and θ[V ] is a
pseudodifferential operator defined by

(θ[V ]w)(x, p, t)

=
i

(2π)d/2

∫
R2d

1

ε

[
V

(
x +

ε

2
η, t

)
− V

(
x− ε

2
η, t

)]
w(x, p′, t)eiη·(p−p′)dηdp′.

The electric potential V = V (x, t) is self-consistently coupled to the Wigner function
f(x, p, t) via Poisson’s equation

λ2ΔV =

∫
Rd

fdp− C,(1.2)

where λ is the scaled Debye length and C = C(x) the doping concentration charac-
terizing the semiconductor device. Notice that the collisionless Wigner equation is
formally equivalent to the Heisenberg equation for the density matrix.

The above approach allows for an abstract formulation of the collision operator.
In fact, we assume only that its kernel consists of the quantum thermal equilibrium
distribution (defined in section 2) and that the operator preserves certain moments.

The macroscopic variables are defined as the moments of the Wigner function over
momentum space; more precisely, we consider the particle density n= 〈1〉, the fluid-
dynamical momentum density nu= 〈p〉, and the energy density e= 〈 1

2 |p|2〉, where we
have used the notation 〈g(p)〉 =

∫
f(·, p)g(p)dp for functions g(p). In order to obtain

macroscopic equations as well, a moment method is applied to (1.1): we multiply the
equation by 1, p, and 1

2 |p|2 and integrate over the momentum space. This yields evo-
lution equations for n, nu, and e. However, the resulting system of moment equations
needs to be closed.

As a closure condition, Gardner [12] employed a quantum-corrected thermal equi-
librium distribution function in place of f in the derivation of the moment equations.
The use of this closure can be—formally—justified by a hydrodynamic scaling and
passage to the limit of vanishing scaling parameter. Gardner bases his choice of the
quantum equilibrium distribution on a result by Wigner [31]. Arguing that the elec-
tric potential is close to log n near equilibrium, he replaces V by logn, which is the
origin of the Bohm potential.

Another approach, avoiding second derivatives of the potential, consists of deriv-
ing an approximate solution to the Bloch equation by an asymptotic expansion of the
solution for “small” potentials. This leads to the so-called smooth QHD equations in
which the potential V is replaced by a smoothed potential S[V ], where S is a pseudod-
ifferential operator [14]. The drawback of this approach is that the numerical solution
of the “smooth” QHD model is a nontrivial task. Moreover, there is an ambiguity in
the interpretation of the temperature (see the remark in section 6 of [28]).

Our approach to defining a closure is based on Levermore’s entropy minimization
principle. This method was first employed in the context of classical gas dynamics [25]
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and has been recently extended to quantum fluids by Degond and Ringhofer [9]. The
idea is to define the equilibrium distribution as the minimizer Mf of the quantum
entropy subject to the constraints of given moments. (Here, we adopt the mathe-
matical sign convention of decreasing entropy.) The minimizer is called the quantum
Maxwellian since there are some similarities to the classical Maxwellian of gas dynam-
ics (see section 2). The quantum Maxwellian Mf , as the solution of a constrained
minimization problem, depends on Lagrange multipliers which can be interpreted in
the O(ε2) approximation as the logarithm of the particle density, the fluid velocity,
and the temperature, respectively. Expanding Mf in powers of ε2 and assuming as
in [12] that spatial variations of the temperature T = T (x, t) are of the order O(ε2),
we derive the following QHD equations up to order O(ε4):

∂tn + div(nu) = 0,(1.3)

∂t(nu) + div(nu⊗ u) + divP − n∇V = 0,(1.4)

∂te + div
(
(P + eI)u

)
+ divS − nu · ∇V = 0,(1.5)

where I is the unit matrix in R
d; the energy density equals

e =
d

2
nT +

1

2
n|u|2 − ε2

24
n

(
Δ log n− 1

T
tr(R�R)

)
,

with the trace “tr” of a matrix; the quantities P (stress tensor) and S are given by

P = nTI − ε2

12
n

(
(∇⊗∇) log n− 1

T
R�R

)
,

S = − ε2

12
n

((
d

2
+ 1

)
R∇ log n +

(
d

2
+ 2

)
divR +

3

2
Δu

)

+
ε2

12

(
d

2
+ 1

)
n(R∇ log n + divR);

and the vorticity matrix R = (Rij) is the antisymmetric part of the velocity derivative,

Rij = ∂xjui − ∂xiuj .(1.6)

A more general model, allowing arbitrarily large spatial deviations of the tempera-
ture, is derived in section 3. Employing a Caldeira–Leggett-type collision operator,
relaxation-time terms can also be included (see section 3.1).

The quantum correction (ε2/12)n(∇ ⊗∇) log n to the stress tensor in the QHD
equations was first stated in the semiconductor context by Ancona and Iafrate [1] and
Ancona and Tiersten [2]. Since

ε2

12
div(n(∇⊗∇) log n) =

ε2

6
n∇

(
Δ
√
n√
n

)
,

the quantum correction can be interpreted as a force including the Bohm potential
Δ
√
n/

√
n [11]. The hydrodynamic formulation of quantum mechanics has been em-

ployed in solid-state physics for many years; see, for instance, [18] and the references
in the review [22].

For ε = 0 in (1.3)–(1.5), we recover the classical hydrodynamic equations. For
ε > 0 and constant temperature, we obtain the same equations as derived in [21],
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where also the quantum entropy minimization method has been used. Our model
differs from Gardner’s QHD equations (formulas (1)–(3) in [12]) by the vorticity term
R and the dispersive velocity term in the energy equation (1.5),

div qS =
ε2

8
div(nΔu).(1.7)

The origin of this difference lies in the different choices of the quantum Maxwellian.
We refer to section 3.5 for a detailed discussion.

The term qS—but not the vorticity R—also appears in other QHD derivations. It
was derived in [13] from a mixed-state Wigner model and interpreted as a dispersive
“heat flux” (see formula (36) in [13]). Moreover, it appears in the QHD equations
of [16] involving a “smoothed” potential, derived from the Wigner–Boltzmann equa-
tion by a Chapman–Enskog expansion.

An interesting feature of the dispersive term (1.7) is that it stabilizes the QHD sys-
tem numerically. This statement needs some explanation. It is known that the numer-
ical approximation of Gardner’s QHD model (see (6.5)–(6.7)) is quite delicate. The
usual approach is to employ a hyperbolic solver, for instance an upwind method [12]
or a shock-capturing discontinuous Galerkin method [6], originally devised for the
classical hydrodynamic equations. It has been argued in [24] that a hyperbolic solver
may be inadequate for the QHD equations since the numerical viscosity might destroy
the dispersive quantum effects. Therefore, a central finite-difference scheme provides
an alternative (but still simple) numerical approach. In fact, a central finite-difference
approach for Gardner’s QHD equations fails, and a stabilization in the form of nu-
merical viscosity seems to be necessary. The dispersive term (1.7) allows us to solve
the new QHD equations by using a central scheme, thus avoiding numerical viscosity.

Another QHD model with physical viscosity has been derived in [19] using a
Fokker–Planck collision operator. This operator describes the interaction of the elec-
trons with a heat bath modeling the phonons of the semiconductor lattice. In nu-
merical simulations of a resonant tunneling diode, it turns out that the shape of the
current-voltage characteristic is unphysical if the temperature is kept constant [24],
and that the diffusion effects are too strong compared to the quantum dispersion [23].

In this paper we present the first numerical simulations of a QHD model in-
volving the term (1.7). More precisely, a simple one-dimensional resonant tunneling
diode is simulated. The current-voltage characteristics show multiple regions of neg-
ative differential resistance. The dispersive term (1.7) has the effect of “smoothing”
the current-voltage curve; i.e., it decreases the peak-to-valley ratio, the quotient of
the peak to the valley current.

We also examine the existence of conserved quantities of the new QHD equations.
Clearly, the mass is conserved. We prove that also the energy E =

∫
(e+λ2|∇V |2/2)dx

is conserved. This provides gradient estimates for the particle density, velocity, and
temperature, which is useful in the mathematical analysis of the equations.

We summarize the advantages of our approach:
• Starting from the Wigner–BGK (Bhatganar–Gross–Krook) equation, no ad

hoc assumptions are needed in order to derive the QHD equations.
• An energy for the new model can be defined, leading to useful mathematical

estimates.
• The dispersive velocity term seems to stabilize the (numerical) solution of the

system.
• The new model provides current-voltage characteristics showing negative dif-

ferential resistance effects.
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The paper is organized as follows. In section 2 we specify our definition of the
quantum Maxwellian, which is used as the closure in the moment method developed in
section 3. Section 4 is devoted to simplified QHD models, and the system (1.3)–(1.5)
is derived. In section 5 we prove that the energy of the system is conserved. Finally,
in section 6, the new QHD model (1.3)–(1.5) is numerically discretized and solved in
one space dimension, and simulations of a resonant tunneling diode are presented.

2. Definition of the quantum Maxwellian. In order to define the quantum
Maxwellian, we first recall the Wigner transform. Let Aρ be an operator on L2(Rd)
with integral kernel ρ(x, x′), i.e.,

(Aρφ)(x) =

∫
Rd

ρ(x, x′)φ(x′)dx′ for all φ ∈ L2(Rd).

The Wigner transform of Aρ is defined by

W (Aρ)(x, p) =
1

(2π)d

∫
Rd

ρ

(
x +

ε

2
η, x− ε

2
η

)
eiη·pdη.

Its inverse W−1, also called Weyl quantization, is defined as an operator on L2(Rd):

(W−1(f)φ)(x) =

∫
R2d

f

(
x + y

2

)
φ(y)eip·(x−y)/εdpdy for all φ ∈ L2(Rd).

With these definitions we are able to introduce the quantum exponential and the
quantum logarithm formally by

exp f = W (expW−1(f)), Log f = W (logW−1(f)),

where exp and log are the operator exponential and logarithm, respectively. In [8]
it was (formally) shown that the quantum exponential and quantum logarithm are
equal to the usual exponential and logarithm, respectively, up to order O(ε2),

exp f = exp f + O(ε2), Log f = log f + O(ε2).(2.1)

The essential ingredient in the definition of the quantum Maxwellian is the relative
quantum entropy. Let a quantum mechanical state be described by the Wigner func-
tion f solving the Wigner equation (1.1). Then its relative quantum (von Neumann)
entropy is given by [9]

H(f) =

∫
R2d

f(x, p)

(
(Log f)(x, p) − 1 +

|p|2
2

− V (x)

)
dxdp.

Whereas the classical entropy is a function on the configuration space, the above
quantum entropy is a real number, underlining the nonlocal nature of quantum me-
chanics.

We define the quantum thermal equilibrium or quantum Maxwellian Mf for some
given function f(x, p) as the solution of the constrained minimization problem

H(Mf ) = min

⎧⎨
⎩H(f̂) :

∫
Rd

f̂(x, p, t)

⎛
⎝ 1

p
|p|2/2

⎞
⎠ dp =

⎛
⎝ n(x, t)
nu(x, t)
e(x, t)

⎞
⎠ , x ∈ R

d, t > 0

⎫⎬
⎭ ,

(2.2)
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where

n(x, t) = 〈1〉(x, t) =

∫
Rd

f(x, p, t)dp,

nu(x, t) = 〈p〉(x, t) =

∫
Rd

f(x, p, t)pdp,

e(x, t) =
1

2
〈|p|2〉(x, t) =

1

2

∫
Rd

f(x, p, t)|p|2dp.

In [9] it is shown that the solution f∗ of the constrained minimization problem (if it
exists) is given by

Mf (x, p, t) = exp

(
A(x, t) − |p− w(x, t)|2

2T (x, t)

)
.(2.3)

The Lagrange multipliers A, w, and T are uniquely determined by the moments of f .
They correspond in the classical setting to the logarithm of the particle density, the
velocity, and the temperature, respectively (see Lemma 3.4).

3. Derivation of the general QHD model. The derivation of the new QHD
equations is done in several steps. First, we derive the moment equations. Then the
quantum exponential is expanded in powers of ε2 up to order O(ε4). The third step
is to expand the moments accordingly. Finally, the expansions are substituted into
the moment equations.

3.1. Moment equations. We consider the Wigner–Boltzmann equation (1.1)
in the hydrodynamic scaling; i.e., we introduce the scaling

x′ = δx, t′ = δt,

for some parameter δ > 0, which is assumed to be small compared to 1. Then (1.1)
becomes for f = fδ (omitting the primes)

∂tfδ + p · ∇xfδ + θ[V ]fδ = δ−1Q(fδ), (x, p) ∈ R
2d, t > 0,(3.1)

with initial condition fδ(x, p, 0) = fI(x, p). We assume that the collision operator has
the following properties: its kernel consists exactly of (multiples of) Mf and∫

Rd

Q(f)dp = 0,

∫
Rd

Q(f)pdp = 0,

∫
Rd

Q(f) 1
2 |p|2dp = 0 for all f(x, p).(3.2)

An example satisfying these conditions is the relaxation-time or BGK operator Q(f) =
Mf − f (with scaled relaxation time τ = 1) [4].

A more general collision operator, allowing for relaxation-time terms in the macro-
scopic equations, can be defined as follows. Assume that the collision operator can be
written as Q(f) = Q0(f)+δQ1(f), where the operator Q0(f) models elastic collisions
and satisfies the conditions (3.2); Q1(f) is given by the Caldeira–Leggett operator [5]

Q1(f) =
1

τp
(divp(pf) + Δpf),

modeling inelastic collisions; and τp is the momentum relaxation time. Then

∫
Rd

Q1(f)dp = 0,

∫
Rd

Q1(f)pdp = −nu

τp
,

∫
Rd

Q1(f) 1
2 |p|

2dp = − 2

τp

(
e− d

2
n

)
,

(3.3)
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which is (a special case of) the momentum and energy relaxation-time terms employed
in [12].

The formal limit δ → 0 in (3.1) yields Q(f) = 0, where f = limδ→0 fδ, which im-
plies that the limit f is equal to Mf . The moment equations are obtained from (3.1) by
multiplication with 1, p, and 1

2 |p|2, respectively, and integration over the momentum
space. Since∫

Rd

θ[V ]fdp = 0,

∫
Rd

θ[V ]fpdp = −n∇V,

∫
Rd

θ[V ]f 1
2 |p|2dp = −nu · ∇V

(see, e.g., [8]), we obtain

∂tn + div(nu) = 0,(3.4)

∂t(nu) + div〈p⊗ p〉 − n∇V = 0,(3.5)

∂te + div〈 1
2 |p|2p〉 − nu · ∇V = 0,(3.6)

where (p⊗ p)ij = pipj for i, j = 1, . . . , d. Recall that the brackets denote integration
against the Wigner function f = Mf ; i.e., in multi-index notation,

〈pα〉(x, t) =

∫
Rd

Mf (x, p, t)pαdp,

for multi-indices α ∈ N
d. When employing the Caldeira–Leggett operator defined

above, the right-hand sides of (3.4)–(3.6) equal the right-hand sides of (3.3). To close
the system (3.4)–(3.6), we need to express the integrals 〈p⊗ p〉 and 〈 1

2 |p|2p〉 in terms
of the moments n, nu, and e. This constitutes the main step of the derivation.

The following computations are simplified by working with the new variable s =
T−1/2(p− w), where w is the Lagrange multiplier introduced in (2.3). In terms of s,
the quantum Maxwellian reads as

Mf (x, p(s)) = exp

(
A(x) − 1

2
|s|2

)
=: g(x, s).

From now on, we omit the dependence of the time t since it acts only as a parameter.
The substitution p 	→ s yields

〈sα〉(x) = T d/2

∫
Rd

g(x, s)sαds.

In the following lemma we express the moments 〈pα〉 in terms of moments in s. This
allows for a more canonical form of the QHD equations.

Lemma 3.1. The system (3.4)–(3.6) is equivalent to

∂tn + div(nu) = 0,(3.7)

∂t(nu) + div(nu⊗ u) + divP − n∇V = 0,(3.8)

∂te + div
(
(P + eI)u

)
+ divS − nu · ∇V = 0,(3.9)

where I is the identity matrix, u = (nu)/n, P = 〈(p − u) ⊗ (p − u)〉 is the stress
tensor, and S = 〈 1

2 (p−u)|p−u|2〉 is the (quantum) heat flux. Moreover, the following
expansions hold:

P = T 〈s⊗ s〉 + O(ε4), S =
1

2
T 3/2〈|s|2s〉 −

(
d

2
+ 1

)
T 3/2〈s〉 + O(ε4).(3.10)
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Proof. The formulation (3.7)–(3.9) follows immediately from (3.4)–(3.6) since

〈p⊗ p〉 = P + nu⊗ u and

〈
1

2
|p|2p

〉
= S + (P + eI)u.

Using the expansion (2.1), elementary integrations yield for i, j = 1, . . . , d,

〈1〉 = T d/2eA
∫

Rd

e−|s|2/2ds + O(ε2) = (2πT )d/2eA + O(ε2),(3.11)

〈si〉 = T d/2eA
∫

Rd

e−|s|2/2sids + O(ε2) = O(ε2),(3.12)

〈sisj〉 = T d/2eA
∫

Rd

e−|s|2/2sisjds + O(ε2) = nδij + O(ε2).(3.13)

The relations n = 〈1〉, 〈w〉 = w〈1〉 = nw, and nu = 〈p〉 = 〈T 1/2s+w〉 = T 1/2〈s〉+nw
give for the second moments

〈p⊗ p〉 = T 〈s⊗ s〉 +
〈
(T 1/2s + w) ⊗ (T 1/2s + w) − (T 1/2s) ⊗ (T 1/2s)

〉
= T 〈s⊗ s〉 + T 1/2〈s〉 ⊗ w + T 1/2w ⊗ 〈s〉 + w ⊗ w〈1〉

= T 〈s⊗ s〉 +
1

n
〈T 1/2s + w〉 ⊗ 〈T 1/2s + w〉 − T

n
〈s〉 ⊗ 〈s〉

= T 〈s⊗ s〉 + nu⊗ u + O(ε4),

where in the last equality we have employed (3.12). Therefore, P = 〈p⊗p〉−nu⊗u =
T 〈s⊗ s〉 + O(ε4). In a similar way, we compute the third moment:

1

2
〈|p|2p〉 =

1

2
T 1/2〈|T 1/2s + w|2s〉 +

1

2
w〈|p|2〉

=
1

2
T 3/2〈|s|2s〉 + T 〈s⊗ s〉w +

1

2
T 1/2|w|2〈s〉 + ew

=
1

2
T 3/2〈|s|2s〉 + (P + eI)w +

1

2
T 1/2|w|2〈s〉.

By (3.11) and (3.12), the energy density can be expanded as

e =
1

2
〈|p|2〉 =

T

2
〈|s|2〉 + T 1/2w · 〈s〉 +

1

2
|w|2〈1〉 =

d

2
nT +

1

2
n|w|2 + O(ε2).

Thus, since w = u− T 1/2〈s〉/n and P = nTI + O(ε2), we obtain

1

2
〈|p|2p〉 =

1

2
T 3/2〈|s|2s〉 + (P + eI)u− T 1/2

n

(
P + eI − 1

2
n|w|2I

)
〈s〉

=
1

2
T 3/2〈|s|2s〉 + (P + eI)u− T 3/2

n

((
d

2
+ 1

)
nI + O(ε2)

)
〈s〉.

This shows that S = 〈 1
2 |p|2p〉 − (P + eI)u = 1

2T
3/2〈|s|2s〉 − (d/2 + 1)T 3/2n〈s〉

+ O(ε4).
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3.2. Expansion of the quantum exponential. We wish to give asymptotic
expansions of P , S, and U up to order O(ε4). For this, we first need to expand the
quantum Maxwellian. This is done by means of the following lemma, which is adopted
from [9].

Lemma 3.2. Let f(x, p) be a smooth symbol. Then the quantum exponential exp f
can be expanded as follows:

exp f = ef − ε2

8
efQ + O(ε4),

where, using Einstein’s summation convention,

Q = ∂2
xixj

f ∂2
pipj

f − ∂2
xipj

f ∂2
pixj

f +
1

3
∂2
xixj

f ∂pif ∂pjf

− 2

3
∂2
xipj

f ∂pif ∂xjf +
1

3
∂2
pipj

f ∂xif ∂xjf.(3.14)

In the situation at hand, the symbol is f(x, p) = A(x)− |p−w(x)|2/2T (x). Then
we obtain the following result.

Lemma 3.3. The quantum correction (3.14) can be written for f(x, p) = A(x) −
|p− w(x)|2/2T (x) as follows:

Q(s) = T−1
(
X0 + X1

i si + X2
ijsisj + X3

ijksisjsk

+Y 0|s|2 + Y 1
i |s|2si + Y 2

ij |s|2sisj + Z0|s|4
)
,(3.15)

where the coefficients Xi, Y i, and Z are defined by

X0 = −ΔA− 1

3
|∇A|2 +

1

2T
tr (R̃�R̃),

X1
i =

2

T 1/2
∂xm

(
1

3
A− log T

)
R̃mi −

1√
T

Δwi,

X2
ij =

1

3
∂2
xixj

A +
2

3
∂xi(log T )∂xjA− ∂xi(log T )∂xj (log T ) − 1

3T
(R̃�R̃)ij

X3
ijk =

1

3T 1/2
∂2
xixj

wk,

Y 0 = ∇
(

1

2
log T − 1

3
A

)
· ∇(log T ) − 1

2
Δ(log T ),

Y 1
i =

1

3T 1/2
∂xm(log T )R̃mi,

Y 2
ij =

1

6

(
∂2
xixj

(log T ) + ∂xi(log T )∂xj (log T )
)
,

Z0 = − 1

12
|∇(log T )|2,

and R̃ij = ∂xjwi − ∂xiwj. The symbol “tr” denotes the trace of a matrix.
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Proof. The proof consists of computing the relevant derivatives of f with respect
to xi and pj , namely,

∂xif = ∂xiA + T−1∂xiwk(p− w)k +
1

2
T−2∂xiT |p− w|2

= ∂xi
A + T−1/2∂xi

wksk +
1

2
T−1∂xi

T |s|2,

∂2
xixj

f = ∂2
xixj

A− T−1∂xi
wk∂xj

wk − T−2∂xj
T∂xi

wk(p− w)k + T−1∂2
xixj

wk(p− w)k

−T−2∂xi
T∂xj

wk(p− w)k − T−3∂xi
T∂xj

T |p− w|2 +
1

2
T−2∂2

xixj
T |p− w|2

= ∂2
xixj

A− T−1∂xiwk∂xjwk − T−3/2∂xjT∂xiwksk + T−1/2∂2
xixj

wksk

−T−3/2∂xiT∂xjwksk − T−2∂xiT∂xjT |s|2 +
1

2
T−1∂2

xixj
T |s|2,

∂pif = −T−1(p− w)i = −T−1/2si,

∂2
pixj

f = T−1∂xjwi + T−2∂xj
T (p− w)i = T−1∂xjwi + T−3/2∂xjTsi,

∂2
pipj

f = −T−1δij ,

and the products appearing in the sum (3.14), which are

∂2
xixj

f ∂2
pipj

F =
(
− T−1ΔA− T−3/2Δwk + T−2‖∇w‖2 + 2T−5/2∇T · ∇wk

)
sk

+

(
1

2
T−2ΔT − T−3|∇T |2

)
|s|2,

∂2
xipj

f ∂2
pixj

f = T−2∂xi
wj∂xj

wi + 2T−5/2∂xj
T∂xi

wjsi + T−3∂xi
T∂xj

Tsisj ,

∂2
xixj

f ∂pif ∂pjf =
(
T−1∂2

xixj
A− T−2∂xiw�∂xjw�

)
sisj

+
(
T−3/2∂2

xixj
wk − 2T−5/2∂xiT∂xjwk

)
sisjsk

+

(
1

2
T−2∂2

xixj
T − T−3∂xi

T∂xj
T

)
|s|2sisj ,

∂2
xipj

f ∂pif ∂xjf = −T−3/2∂x�
A∂xiw�si − T−2∂xiT∂xjAsisj − T−2∂xiwj∂xjwksisk

−T−5/2∂xiT∂xjwksisjsk − 1

2
T−5/2∂xiwj∂xjT |s|2si

− 1

2
T−3∂xiT∂xjT |s|2sisj ,

∂2
pipj

f ∂xi
f ∂xj

f = −T−1|∇A|2 − 2T−3/2∇A · ∇wksk − T−2∇A · ∇T |s|2

−T−2∇wk · ∇w�sks� − T−5/2∇T · ∇wk|s|2sk − 1

4
T−3|∇T |2|s|4.

Inserting these expressions into (3.14) and simplifying, we arrive at (3.15).

3.3. Expansion of the moments. The aim of this subsection is to specify the
integrals 〈sα〉 in order to expand the moments n, nu, and e. By Lemma 3.2, we obtain

〈sα〉 = T d/2

∫
Rd

g(x, s)sαds

= T d/2

∫
Rd

eA−|s|2/2
(

1 − ε2

8
Q(s)

)
sαds + O(ε4)

= (2πT )d/2eA
(

[sα] − ε2

8
[Q(s)sα]

)
+ O(ε4),
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where [g] denotes the integral of a function g = g(s) against the classical Gaussian
kernel,

[g] = (2π)−d/2

∫
Rd

e−|s|2/2g(s)ds.

Notice that from the expansion

n = 〈1〉 = (2πT )d/2eA
(

1 − ε2

8
[Q(s)]

)
+ O(ε4)(3.16)

it follows that

〈sα〉 = n

(
[sα] +

ε2

8

(
[Q(s)][sα] − [Q(s)sα]

))
+ O(ε4).(3.17)

Thus it remains to calculate the integrals [Q(s)sα].
Integrals of type [sα] can be computed explicitly. Using

∫
R

tme−t2/2dt =
√

2π ×

⎧⎪⎪⎨
⎪⎪⎩

0 if m is odd,
1 if m = 0 or m = 2,
3 if m = 4,

15 if m = 6,

it becomes a matter of combinatorics to conclude for i, j, m, n = 1, . . . , d,

[sisj ] = δij ,

[|s|2] = d,

[sisjsmsn] = δijδmn + δimδjn + δinδjm,

[sisj |s|2] = (d + 2)δij ,

[|s|4] = d(d + 2),

[sisjsmsn|s|2] = (d + 4)(δijδmn + δimδjn + δinδjm),

[smsn|s|4] = (d + 2)(d + 4)δmn.

Then the expansion of Q(s), given in (3.15), yields the following formulas:

[Q(s)] = X0 +
∑
�

X2
�� + dY 0 + (d + 2)

∑
�

Y 2
�� + d(d + 2)Z0,(3.18)

[Q(s)sm] = X1
m +

∑
�

(
X3

m�� + X3
�m� + X3

��m

)
+ (d + 2)Y 1

m,(3.19)

[Q(s)s2
m] = [Q(s)] + 2X2

mm + 2Y 0 + 2
∑
�

Y 2
�� + 2(d + 4)Y 2

mm(3.20)

+ 4(d + 2)Z0,

[Q(s)smsn] =
(
X2

mn + X2
nm

)
+ (d + 4)

(
Y 2
mn + Y 2

nm

)
,(3.21)

[Q(s)|s|2sm] = (d + 2)X1
m + (d + 4)

∑
�

(
X3

m�� + X3
�m� + X3

��m

)
(3.22)

+ (d + 2)(d + 4)Y 1
m.
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Lemma 3.4. The moments n, nu, and e can be expressed in terms of the Lagrange
multipliers A, w, and T asymptotically as follows:

n = (2πT )d/2eA − ε2

24T
(2πT )d/2eA

{
− 2ΔA− |∇A|2 + (d− 2)∇ log T · ∇A(3.23)

− (d− 1)Δ log T −
(
d

2
− 1

)(
d

2
− 2

)

× |∇ log T |2 +
1

2T
tr (R̃�R̃)

}
+O(ε4),

nu = nw + T−1U,(3.24)

e =
d

2
nT +

1

2
n|u|2 − ε2

24
n

{
Δ log n− 1

T
tr (R̃�R̃) +

d

2
|∇ log T |2

−Δ log T −∇ log T · ∇ log n

}
+ O(ε4).(3.25)

Notice that (3.23) and (3.24) imply the inverse relations

A = log n− d

2
log T − d

2
log(2π) + O(ε2), w = u + O(ε2).(3.26)

In particular, the vorticity matrices R̃ and R, defined in (1.6), coincide up to order

O(ε2) since R̃ij = ∂jui − ∂iuj + O(ε2) = Rij + O(ε2).
Proof. The formula for the particle density (3.23) is obtained by first substituting

the expressions for the coefficients X, Y , and Z into (3.18). This yields [Q(s)] in
terms of A, w, and T . Inserting the result into (3.16) then gives (3.23).

In order to derive (3.24), we write, by the definition of U (see (3.10)),

nu = 〈T 1/2s + w〉 = T 1/2〈s〉 + w〈1〉 = T−1U + nw.

Hence, u − w = U/nT = O(ε2). The above equations also show that T 1/2w · 〈s〉 =
nu · w − n|w|2. Hence, using 〈1〉 = n,

e =
1

2
〈|T 1/2s + w|2〉 =

T

2
〈|s|2〉 + T 1/2w · 〈s〉 +

1

2
|w|2〈1〉

=
T

2
〈|s|2〉 + nu · w − 1

2
n|w|2 =

T

2
〈|s|2〉 +

1

2
n|u|2 − 1

2
n|u− w|2.

In view of (3.26), we have |u− w|2 = O(ε4), from which we conclude

e =
T

2
〈|s|2〉 +

1

2
n|u|2 + O(ε4).

The bracket 〈|s|2〉 can be computed from (3.17), employing [|s|2] = d,

〈|s|2〉 = dn +
ε2

8
n
∑
m

(
[Q(s)] − [Q(s)s2

m]
)

+ O(ε4).

Substitution of (3.18) and (3.20) into the above expression and elimination of A and w,
using (3.26), gives 〈|s|2〉 in terms of n, nu, and T . This finally leads to (3.25).
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3.4. Expansion of the terms P , S, and U . The QHD equations (3.7)–(3.9)
are determined by the following expansion of the auxiliary terms P , S, and U , defined
in (3.10), in terms of the macroscopic variables n, nu, and e.

Lemma 3.5. The following expansion holds:

P = nTI +
ε2

12
n

{(
d

2
+ 1

)
∇ log T ⊗∇ log T −∇ log T ⊗∇ log n

−∇ log n⊗∇ log T − (∇⊗∇) log(nT 2) +
R�R

T

}
(3.27)

+
ε2

12
Tdiv

(
n
∇ log T

T

)
I + O(ε4),

S = − ε2

12
n

{(
d

2
+ 1

)
R∇ log

(
n

T

)
+

(
d

2
+ 2

)
divR +

3

2
Δu

}
(3.28)

+
ε2

12

(
d

2
+ 1

)
n

{
R∇ log

(
n

T 2

)
+ divR

}
+ O(ε4).(3.29)

Proof. We apply formula (3.17) to obtain for all m, n = 1, . . . , d,

Pmn = nT

(
δmn +

ε2

8
(δmn[Q(s)] − [Q(s)smsn])

)
,

Sm = − ε2

16
nT 3/2[Q(s)|s|2sm] +

ε2

8

(
d

2
+ 1

)
nT 3/2[Q(s)sm].

Then the components of P are computed by employing (3.18) and (3.21), substituting
the definitions of the coefficients X, Y , and Z, and replacing A and w by n and nu
according to (3.26). In a similar way, S is evaluated using (3.19) and (3.22).

3.5. Discussion of the QHD equations. The differences between our QHD
equations and Gardner’s model can be understood as follows. In both approaches,
closure is obtained by assuming that the Wigner function f is in thermal equilibrium.
However, the notion of “thermal equilibrium” is different.

In order to illustrate the differences, we recall the classical situation. For a system
with the Hamiltonian h(x, p) = |p|2/2 +V (x), the unconstrained thermal equilibrium
distribution is given by the Gibbs measure fG(x, p) = exp(−h(x, p)/T0), which mini-
mizes the relative entropy S =

∫
f(log f−1−h/T0)dp. Here, T0 denotes a temperature

constant. If mass, momentum, and energy densities are given, the constrained ther-
mal equilibrium is realized by a suitable rescaling and a momentum-shift of the Gibbs
state,

f̃G(x, p) = n(x) exp

(
− h(x, p− u(x))

T (x)

)
.(3.30)

The temperature T (x), which is a Lagrange multiplier coming from the minimization

procedure, is determined from the given energy density. The choice of f̃G as a thermal
equilibrium function has its physical justification in the fact that it is the unique
minimizer of the relative entropy S with the prescribed moments.

Analogously, a quantum system, which is characterized by its energy operator
W−1(h) (recall that W−1 is the Weyl quantization), attains its minimum of the rela-
tive (von Neumann) entropy in the mixed state with Wigner function fQ = exp(−h/T0).
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This state represents the unconstrained quantum thermal equilibrium. The expansion
of fQ in terms of the scaled Planck constant ε2 was first given in [31],

fQ(x, p) = exp

(
− h(x, p)

T0

)
(1 + ε2f2(x, p)) + O(ε4)

with an appropriate function f2. As a definition of the quantum equilibrium with
moment constraints, Gardner employed this expansion of fQ and modified it as follows:

f̃Q(x, p) = n(x) exp

(
− h(x, p− u(x))

T (x)

)(
1 + ε2f2(x, p− u(x))

)
+ O(ε4).(3.31)

These modifications mimic the passage from the Gibbs state to (3.30) in the classical

situation. The use of f̃Q as an equilibrium function results in simple formulas for
the moment equations. However, the Wigner function (3.31) is an ad hoc ansatz.

Moreover, in contrast to the classical case, f̃Q is not the constrained minimizer for
the relative von Neumann entropy.

The equilibrium state Mf used here is a genuine minimizer of the relative quantum
entropy with respect to the given moments. In the spirit of the classical situation,
these equilibria seem to be more natural. The price we have to pay is the appearance
of various additional terms in the expansion of Mf .

If the temperature is assumed to be constant and if only the particle density is
prescribed, both approaches to defining a thermal equilibrium coincide. In order to
see this, we write Gardner’s momentum-shifted quantum equilibrium more explicitly
than in (3.31):

f̃G(x, p, t) = e−V/T−|p|2/2T
{

1+
ε2

8T 2

(
−ΔV +

1

3T
|∇V |2 +

1

3T
pipj∂xixj

V

)}
+O(ε4).

The equilibrium function obtained from the entropy minimization with given particle
density equals (see [21, Remark 3.3])

f̃(x, p, t) = exp

(
A(x, t) − |p|2

2T

)

= eA−|p|2/2T
{

1 +
ε2

8T

(
ΔA +

1

3
|∇A|2 − 1

3T
pipj∂xixj

A

)}
+ O(ε4).

Both approximations are essentially derived in the same way. Using n =
∫
f̃Qdp =

(2πT )d/2e−V/T + O(ε2) and assuming constant (or “slowly varying”) temperature,

Gardner has substituted ∇V = −T∇ log n+O(ε2) into the formula for f̃Q in order to
avoid the second-order derivatives of the potential. This substitution in fact yields the
approximation f̃ since, by (3.26), ∇A = ∇ log n + O(ε2), and thus, both expansions

f̃Q and f̃ coincide.

4. Simplified QHD models. The full QHD model is given by (3.7)–(3.9) with
the constitutive relations (3.27)–(3.29). In this section we will discuss some simplified
versions. We recall the QHD equations

∂tn + div(nu) = 0,(4.1)

∂t(nu) + div(nu⊗ u) + divP − n∇V = 0,(4.2)

∂te + div
(
(P + eI)u

)
+ divS − nu · ∇V = 0,(4.3)
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where e is the energy density given by (3.25), and P , S, and U are given by (3.27)–
(3.29) (without the O(ε4) terms).

First, we shall assume that the temperature is slowly varying in the sense of
∇ log T = O(ε2). Then the expressions ε2∇ log T in (3.27)–(3.29) are of order O(ε4)
and can therefore be neglected in our approximation:

P = nTI − ε2

12
n

(
(∇⊗∇) log n− R�R

T

)
,(4.4)

S = − ε2

12
n

{(
d

2
+ 1

)
R∇ log n +

(
d

2
+ 2

)
divR +

3

2
Δu

}

+
ε2

12

(
d

2
+ 1

)
n

{
R∇ log n + divR

}
,(4.5)

e =
d

2
nT +

1

2
n|u|2 − ε2

24
n

(
Δ log n− 1

T
tr (R�R)

)
.(4.6)

The stress tensor P consists of the classical pressure nT on the diagonal, the “quantum
pressure” (ε2/12)n(∇ ⊗∇) log n, and the vorticity correction (ε2/12)nR�R/T . The
term S provides additional quantum corrections not present in [12]. The energy density
consists of the thermal energy, kinetic energy, and quantum energy. Again, due to
the vorticity R, the energy takes a different form than the expressions in [12, 16].

Further simplifications can be obtained if the vorticity is “small,” i.e., R = O(ε2).
In one space dimension this term always vanishes. If R = O(ε2), then ε2R is of order
O(ε4) and can be neglected. We obtain the QHD equations

∂tn + div(nu) = 0,(4.7)

∂t(nu) + div(nu⊗ u) + ∇(nT ) − ε2

12
div

(
n(∇⊗∇) log n

)
− n∇V = 0,(4.8)

∂te + div
(
(P + eI)u

)
− ε2

8
div(nΔu) − nu · ∇V = 0,(4.9)

with the stress tensor and energy density, respectively,

P = nTI − ε2

12
n(∇⊗∇) log n, e =

d

2
nT +

1

2
n|u|2 − ε2

24
nΔ log n.

This system of equations corresponds to Gardner’s QHD model (without relaxation-
time terms) except for the dispersive velocity term (ε2/8)div(nΔu). We already men-
tioned in the introduction that this term has been derived also by Gardner and
Ringhofer [16] by employing a Chapman–Enskog expansion of the Wigner–Boltzmann
equation. They do not obtain vorticity terms, since they assume that the quantum
equilibrium distribution is an even function of the momentum p. Roughly speak-
ing, this gives (in our context) the quantum exponential exp(A− |p|2/2T ) instead of
exp(A − |p − w|2/2T ). The Lagrange multiplier w, however, is responsible for the
presence of the vorticity term R.

Interestingly, most quantum terms cancel out in the energy equation. In fact, by
substituting the above expression for the energy density in (4.9), a computation yields

∂t(nT ) + div (nTu) +
2

d
nTdivu− ε2

6d
div(nΔu) = 0.



NEW QUANTUM HYDRODYNAMIC EQUATIONS 61

5. Conserved quantities. In this subsection we show that the mass and energy
are conserved for the system (3.7)–(3.9) and (1.2) with the relations (3.27)–(3.29),
neglecting the O(ε4) terms. The momentum is not conserved due to the electric force
given by

∫
n∇V dx.

Lemma 5.1. The mass N(t) =
∫
ndx and the energy

E(t) =

∫
Rd

(
e +

λ2

2
|∇V |2

)
dx,

where e is defined in (3.25) (without the O(ε4) term), are conserved; i.e., dN/dt(t) = 0
and dE(t)/dt = 0 for all t > 0. Furthermore, the energy can be written as

E(t) =

∫
Rd

(
d

2
nT +

1

2
n|u|2 +

λ2

2
|∇V |2 +

ε2

6
|∇

√
n|2 +

ε2d

48
n|∇ log T |2

+
ε2

24T
n tr(R�R)

)
dx ≥ 0.(5.1)

Proof. The conservation of N is clear. In order to prove that E is conserved, we
differentiate E and employ (4.3) and (1.2),

dE

dt
=

∫
Rd

(∂te + λ2∇V · ∇∂tV )dx =

∫
Rd

(nu · ∇V − λ2V ∂tΔV )dx

=

∫
Rd

(−div(nu)V − V ∂tn)dx = 0,

taking into account (4.1). Next we prove formula (5.1). The integral of the energy
density e can be written as

E =

∫
Rd

(
d

2
nT +

1

2
n|u|2 +

ε2d

48
n|∇ log T |2 +

ε2

24T
n tr(R�R)

)
dx

+
ε2

24

∫
Rd

(
− nΔ log n + nΔ log T + n∇ log T · ∇ log n

)
dx.

The last integral equals, after an integration by parts,

ε2

24

∫
Rd

(
4|∇

√
n|2 −∇n · ∇ log T + n∇ log T · ∇ log n

)
dx =

ε2

6

∫
Rd

|∇
√
n|2dx,

which shows (5.1).
The energy (5.1) consists of, in this order, the thermal energy, the kinetic energy,

the electrostatic energy, and the energy of the Bohm potential. The remaining two
terms represent additional field quantum energies associated with spatial variations
of the temperature and the vorticity. These last two energy terms are new; i.e., they
do not appear in the QHD equations of [12].

In the case of the QHD equations with slowly varying temperature, i.e., (4.1)–
(4.3) and (1.2) with the definitions (4.4)–(4.5), the energy is given by (5.1) except
the term involving |∇ log T |2. If, additionally, the vorticity is “small,” i.e., in the
case of the model (4.7)–(4.9) and (1.2), which is used in the numerical simulations of
section 6, the energy is equal to (5.1) except for the last two terms.

Unfortunately, we are not able to prove the conservation of the O(ε4) approxi-
mation of the quantum entropy and the positivity of the particle density (as for the
model in [9]) since we obtain O(ε4) correction terms which do not vanish.
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Fig. 6.1. Geometry of the resonant tunneling diode and external potential modeling the double
barriers. The Al mole fraction is x = 0.3.

6. Numerical results. In this section we present the results from our numerical
simulations of a simple one-dimensional Gallium arsenide (GaAs) resonant tunneling
diode, using the new QHD system. The aim is also to compare the new equations with
Gardner’s QHD model; in particular, the influence of the dispersive velocity term will
be explored.

The geometry of the tunneling diode is chosen essentially as in [12] (see Fig-
ure 6.1). The diode consists of highly doped 50 nm GaAs regions near the contacts
and a lightly doped middle region (the channel) of 25 nm length. The channel contains
a quantum well of 5 nm length, sandwiched between two 5 nm AlxGa1−xAs barriers
with Al mole fraction x = 0.3. The double barrier heterostructure is placed between
two 5 nm GaAs spacer layers. The total length of the device is thus 125 nm. The
double barrier height is B = 0.209 eV. It is incorporated into the QHD equations by
replacing V by V + B.

For our simulations, we use the one-dimensional stationary QHD equations for
small temperature variations ∇ log T = O(ε2) coupled to the Poisson equation for the
electric potential. Including the physical parameters, these equations read as follows:

(nu)x = 0,(6.1)

m(nu2)x + kB(nT )x − �
2

12m
(n(log n)xx)x − qnVx = 0,(6.2)

5

2
kB(nTu)x +

1

2
m(nu3)x − �

2

8m
(nu(log n)xx + nuxx)x − qnuVx = kBσ(nTx)x,(6.3)

εsVxx = q(n− C).(6.4)

The physical constants in the above equations are the effective mass m, the Boltz-
mann constant kB , the reduced Planck constant �, the elementary charge q, and the
semiconductor permittivity εs. The values of these constants are given in Table 6.1.
The parameter σ is defined by

σ = κτ0
kBT0

m
,

with the thermal conductivity κ, the relaxation time τ0, and the lattice temperature
T0.
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Table 6.1

Physical parameters for GaAs.

Parameter Physical meaning Value

q Elementary charge 1.602 · 10−19 As
m Eeffective electron mass 0.067 ·m0 with m0 = 9.11 · 10−31 kg
kB Boltzmann constant 1.3807 · 10−23 kg m2/s2K
� Reduced Planck constant 1.0546 · 10−34 kg m2/s
εs Semiconductor permittivity 12.9 · 8.8542 · 10−12 A2s4/kg m3

τ0 Momentum relaxation time 0.9 · 10−12 s
T0 Lattice temperature 77 K

We have allowed the heat flux kBσ(nTx)x since this term has also been used by
Gardner [12] in his model, with which we wish to compare our numerical results.
In fact, we need this term for numerical stability as it is needed in Gardner’s QHD
equations. We expect that the heat conductivity can be obtained by a Chapman–
Enskog expansion of the Wigner–Boltzmann equation, but additional diffusion terms
might appear.

Using a standard scaling (see, e.g., [19]), we derive the scaled QHD equations
(1.2)–(1.5) of the introduction, where the nondimensional parameters are given by

ε2 =
�

2

mkBT0L2
, λ2 =

εskBT0

q2C∗L2
.

Here, L is the device length and C∗ the maximal doping concentration. For the values
we used in the numerical simulations below (see Table 6.1), we obtain ε2 ≈ 0.011,
which justifies our expansion in ε2.

We compare the numerical results with Gardner’s QHD equations, which do not
contain the dispersive expression (1.7) in the velocity but additional relaxation-time
terms of Baccarani–Wordeman type [3]:

(nu)x = 0,(6.5)

m(nu2)x + kB(nT )x − �
2

12m
(n(log n)xx)x − qnVx = −mnu

τp
,(6.6)

5

2
kB(nTu)x +

1

2
m(nu3)x − �

2

8m
(nu(log n)xx)x − qnuVx

= kBσ(nTx)x − 1

τw

(
e− 3

2
nT0

)
,(6.7)

together with the Poisson equation (6.4). Here, the momentum and energy relaxation
times are given by, respectively,

τp = τ0
T0

T
, τw =

τp
2

(
1 +

3T

mv2
s

)
,

where τ0 is given in Table 6.1 and vs = 2 · 107 cm/s is the saturation velocity. The
inclusion of these terms (at least if τp = τw/2) can be justified by employing a
Caldeira–Leggett scattering operator as exposed in section 3.1. We observed that
the relaxation-time terms in Gardner’s QHD model are necessary for numerical sta-
bility; on the other hand, they lead to severe numerical difficulties when included in
the new QHD equations.
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Fig. 6.2. Left: Current-voltage characteristic for the new QHD system with thermal conductiv-
ities κ = 0.2 (solid line) and κ = 0.3 (dashed line). Right: Influence of the dispersive velocity term
(δ2/8)(nuxx)x on the current-voltage curve for thermal conductivity κ = 0.2.

The above QHD equations have to be solved in the interval (0, 1) with the fol-
lowing boundary conditions taken from [12]:

n(0) = C(0), n(1) = C(1), nx(0) = nx(1) = 0,

ux(0) = ux(1) = 0, T (0) = T (1) = T0, V (0) = 0, V (1) = U0,

where U0 is the applied voltage.
First, we discretize the new QHD equations (6.1)–(6.4) using central finite differ-

ences on a uniform mesh with N = 500 points. This corresponds to a mesh size of
x = 1/500 = 0.002. The resulting discrete nonlinear system is solved by a damped
Newton method with damping parameter found by a line search method (see Algo-
rithm A6.3.1 in [10]). We employ the following continuation method for the applied
voltage: first the system of equations is solved for applied voltage U0 = 0 V; then,
given the solution corresponding to the voltage U0, it is taken as an initial guess for
the solution of the system with applied voltage U0 + U . The voltage step is chosen
as U = 1 mV.

The current-voltage characteristics using the thermal conductivities κ = 0.2 and
κ = 0.3 are presented in Figure 6.2. There are apparently two regions of negative
differential resistance (NDR) if κ = 0.2, and three NDR regions if κ = 0.3. It is well
known for Gardner’s QHD model that the behavior of the solutions is quite sensitive
to changes of the value of the thermal conductivity. We observe a similar sensitive
dependence: the peak-to-valley ratio, i.e., the ratio of local maximal to local minimal
current density, is larger for larger thermal conductivities.

The electron density shows a charge enhancement in the quantum well, which is
more pronounced for smaller κ (see Figure 6.3(left)). At the center of the right barrier,
the electron density dramatically decreases. After the first valley in the current-
voltage characteristics, the density develops a “wiggle.” This phenomenon is not a
numerical effect, since it has been observed in various numerical simulations [24, 27].
For larger values of the thermal conductivity, the minimum of the particle density
increases, which stabilizes the numerical scheme.

Next, we study the influence of the dispersive velocity term (ε2/8)(nuxx)x. For
this, we replace the factor ε2/8 by δ2/8 and choose various values for δ. Clearly, only
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Fig. 6.3. Electron density before (dashed line) and after (solid line) the first valley for thermal
conductivities κ = 0.2 (left) and κ = 0.3 (right).
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Fig. 6.4. Thermal energy density (left) and velocity (right) before (dashed line) and after (solid
line) the first valley computed from the new QHD model (thermal conductivity κ = 0.2).

δ = ε corresponds to the physical situation. The dispersive velocity term indeed regu-
larizes the equations in the sense that the current-voltage curves become “smoother”
(see Figure 6.3(right)). A similar “smoothing” has been observed in [23, 24] for the
viscous QHD equations, but there the smoothing originates from a diffusive and not
from a dispersive term. For smaller values of δ, the peak-to-valley ratio of the first
NDR region becomes larger. For δ = 0, we arrive at Gardner’s QHD equations without
relaxation terms. We already mentioned that a central finite-difference discretization
fails for this model; therefore, the limit δ → 0 cannot be done numerically.

In Figure 6.4 the thermal energy density 3
2nkBT and the velocity u = J/(qn) are

reported. The velocity profile is very similar to that computed from Gardner’s model
(see Figure 6.5, N = 500). The velocity is high in the barriers and rather small in the
well; i.e., the electrons spend more time in the quantum well than in the barriers. On
the other hand, the temperature of the new QHD model differs from that obtained by
Gardner’s QHD model, particularly in the region between the barriers. The heating
in the well in our model can probably be explained by the central scheme that we
have used. Gardner’s upwind scheme involves some numerical diffusion that seems to
bring down the thermal energy in the quantum well. We notice that ∇ log T is not
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Fig. 6.5. Thermal energy density (left) and velocity (right) before (dashed line) and after (solid
line) the first valley computed from Gardner’s QHD model (thermal conductivity κ = 0.2).
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Fig. 6.6. Left: Influence of the effective mass meff on the current-voltage characteristic. Right:
Current-voltage characteristic for a barrier height of B = 0.3 eV. In both pictures, κ = 0.2.

of order O(ε2), as assumed in the derivation of the model, except in the high doped
contact regions.

The influence of the effective mass on the current-voltage curves is shown in
Figure 6.6(left). Corresponding to the effective masses m = 0.067m0, m = 0.092m0,
m = 0.126m0, the peak-to-valley ratios are 1.44, 1.79, 2.37, respectively. Here, m0

denotes the electron mass at rest. Similarly to the quantum drift-diffusion model,
the peak-to-valley ratio increases with the effective mass [22]. Strictly speaking, the
effective mass is not constant in the whole device, but it is material-dependent. The
use of a nonconstant effective mass would be more physical, but the modeling and
the numerical approximation is—even in the much simpler quantum drift-diffusion
model—a lot more involved [29, 30].

In Figure 6.6(right) the current-voltage curve for the barrier height B = 0.3 eV is
shown. As expected, the peak-to-valley ratio is larger if the barrier is higher (corre-
sponding to a higher Al mole fraction); the values for the first NDR region are 1.44
for B = 0.209 eV and 2.48 for B = 0.3 eV. The current densities are much smaller
than in Figure 6.2, where the lower potential barrier B = 0.209 eV has been used.
Interestingly, there are at least three NDR regions, whereas there are only two regions
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Fig. 6.7. Influence of the number of discretization points on the current-voltage characteristics
for the new QHD equations (left, using central finite differences) and for Gardner’s QHD model
(right, using an upwind scheme). In both pictures, κ = 0.2.

for the barrier height B = 0.209 eV.
In Figure 6.7, the current-voltage curves for the new QHD equations and for Gard-

ner’s model are compared. Gardner’s model is discretized using a second-order up-
wind method as in [12]. The right figure with N = 500 points corresponds to Figure 2
of the cited paper. Notice that close to thermal equilibrium there are well-known
difficulties in computing the solution, which is not the case for our new model. Due
to the numerical viscosity introduced by the upwind method, it is clear that the so-
lution of Gardner’s model depends on the mesh size. The solution to the new QHD
equations is less mesh-dependent. In particular, the numerical results before the first
valley are almost the same for N ≥ 500 grid points. More importantly, the slope of
the curve in Gardner’s model becomes steeper in the region after the valley when the
mesh size x is decreased. On the other hand, the current-voltage curve of the new
QHD model does not seem to develop such singular slopes. Moreover, it is possible
to solve the discrete system for grid points N > 750 (not shown).
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ELECTROSEISMIC PROSPECTING IN LAYERED MEDIA∗
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Abstract. Electroseismic (ES) prospecting is an experimental method that seeks to use the
conversion of electromagnetic (EM) waves to seismic waves in the earth to explore for oil and gas.
The wave conversion occurs through the phenomenon of electrokinetics, for which a complete set of
partial differential equations was derived by S. Pride. In this paper, we show how Pride’s equations
in plane layered media can be written in a convenient mathematical form suggested by B. Ursin, who
used this form to give a unified treatment of EM waves, acoustic waves, and the waves of isotropic
elasticity in plane layered media. We use Ursin’s formalism, which we develop and simplify for the
case of a stack of homogeneous layers, to derive explicit formulas that can be made the basis of an
efficient computer code. Numerical results are presented for spatially extended electrode sources that
have been used in field tests of ES prospecting. More generally, the methods developed are applicable
to any system that can be put into Ursin’s form. In particular, the code that was written for ES can
be modified to compute purely seismic waves, purely EM waves, or the waves of Biot theory, since
all these phenomena are included in the equations of electrokinetics when parameters are specialized
appropriately.

Key words. electrokinetics, layered media, seismic, electromagnetic, poroelastic
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1. Introduction. In prospecting for oil and gas, seismic methods are the main
tool for imaging of the earth’s subsurface [4] because of the high spatial resolution
that is possible. However, skillful interpretation of the seismic images is necessary to
distinguish hydrocarbon- from nonhydrocarbon-saturated rocks, because there are of-
ten only subtle differences in the rock properties (e.g., densities and compressibilities)
that affect the seismic waves. In contrast, the electrical resistivity of hydrocarbon-
saturated rocks is one to three orders of magnitude greater than that of the sur-
rounding medium, making resistivity an excellent direct indicator of hydrocarbons.
If the earth’s electrical properties could be imaged with the same spatial resolution
as is routine in seismic imaging, then many hydrocarbon reservoirs could be easily
detected and delineated.

Electromagnetic (EM) exploration methods [14, 25] can be used to map the elec-
trical properties of the subsurface. However, the earth is a conducting medium, so
high-frequency EM waves are attenuated rapidly as they propagate in the earth.
Thus EM surveys, except for shallow depths, typically rely on lower frequency/longer
wavelength waves. Then the spatial resolution of the subsurface images are limited
by the long wavelengths of the probes.

Electroseismic (ES) prospecting is an experimental method that seeks to use the
conversion of EM waves to seismic waves in the earth to search for hydrocarbons.
This wave conversion occurs through the phenomenon of electrokinetics [15], i.e.,
in a porous medium such as the earth, an EM wave will excite a seismic wave of
the same frequency, and vice versa, through movement of ions in the pore fluids.
Since EM waves have a much faster propagation speed than seismic, they have much
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longer wavelengths than seismic waves of the same frequency. Thus using seismic
frequencies some of the energy of a long wavelength EM wave probe will be converted
by inhomogeneities in the earth to a shorter wavelength seismic wave, which might
then be recorded at the earth’s surface. The waves recorded will have information
related to the earth’s electrical properties, as is shown below.

In this paper we derive the mathematical basis for an efficient computer code
for solving Pride’s equations [15] of electrokinetics in plane layered media, i.e., earth
models in which the material parameters are functions of the depth coordinate only.
The resulting code has been implemented and, together with the three-dimensional
asymptotic theory of [24], has been used for the planning and interpretation of field
tests of ES prospecting. Although the tests are described elsewhere [21, 20, 18, 10,
9, 8], we will show here how the calculations were done for the type of experimental
source/receiver configurations used in the field.

Our method is based on a formalism introduced by Ursin [23], who showed how
Maxwell’s equations for electromagnetism, the equations of acoustics, and the equa-
tions of isotropic elasticity all have a similar mathematical structure in layered media
when each of these systems is written in an appropriate way. In this paper, we add the
equations of electrokinetics to Ursin’s list. We develop and simplify Ursin’s formalism
for the case of a stack of homogeneous layers, that is, when the material parameters
are piecewise constant functions of depth. In this case many quantities can be com-
puted with explicit algebraic formulas which can then be made the basis of a fast
computer code.

Early field tests of electrokinetic phenomena in the earth were reported in the
1936 paper of Thompson [22]. More recent tests are reported in [19, 3, 12, 13, 5].
All these studies are more properly called “seismoelectric,” i.e., seismic waves were
used as a source and EM waves were recorded. The tests [21, 20, 18, 10, 9, 8] are
“electroseismic,” with EM sources and seismic geophones as receivers.

General properties of ES waves, e.g., source-receiver reciprocity, eigenvectors, and
Green’s functions in homogeneous media, were derived by Pride and Haartsen in
[17]. These authors also wrote a computer code that computes electroseismics for
point sources in layered media, using the “global matrix method,” that is, inverting
a large but banded matrix to solve simultaneously for all quantities in all layers
[7]. In contrast, our method makes use of Ursin’s mathematical structure to solve
for reflection and/or transmission matrices at each layer boundary. Our method is
closer to that adopted by Garambois and Dietrich [6], who also used reflection and
transmission matrices, but in the form proposed by Kennett and Kerry [11]. We feel
that although Ursin’s formulation is less well known, using it one can make better use
of the inherent mathematical structure of the wave problems, including, e.g., explicit
formulas for the jumps across interfaces.

The asymptotic theory of [24] is applicable when seismic ray theory is, i.e., when
the seismic wavelength is much smaller than any of the geometric scales in the earth
model. With this theory, ES calculations can be done for media that are not plane-
layered, but have nontrivial three-dimensional geometry. The asymptotic theory can
then be used to compute the seismic waves that are converted from an EM wave
incident on an interface, that is, a boundary between media whose material parameters
differ. Numerical comparisons of that theory with the computer code described here
are in [24].

The formulas of the asymptotic theory show that seismic signals are generated
by an EM wave incident on an interface, and that a large discontinuity in the electric
field is one of the factors that can cause large conversions of EM to seismic energy.
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Now EM theory dictates that the normal electric field at an interface suffers a jump
discontinuity in proportion to the ratio of electrical resistivities on each side of the
interface (ignoring displacement currents, as is usual in EM prospecting [25]). Thus
the asymptotic theory suggests that ES prospecting should illuminate the boundaries
of hydrocarbon reservoirs—because the high contrast between the resistivity of hy-
drocarbons and that of the surrounding medium will produce a large discontinuity of
the electric field there.

This paper is organized as follows: In section 2 we write Pride’s equations in
Ursin’s form, complete with source terms and boundary conditions. In section 3
we give a self-contained derivation of Ursin’s diagonalization method, in the form in
which it is subsequently used. In section 4 we derive formulas for propagator matrices,
jump matrices, and reflection and transmission matrices for any system that can be
put in Ursin form, and in section 5 we couple the results of section 4 with general
sources and boundary conditions, giving explicit formulas for Pride’s equations. In
sections 6 and 7 we look in some detail at seismic and EM sources, respectively, and in
section 8 we show numerical results for the type of ES modeling used in our field tests.
Conclusions are in section 9 and explicit formulas for eigenvalues and eigenvectors are
in the appendices.

2. Pride’s equations in layered media. Pride’s equations for electrokinetics
in a porous medium are [15], at each point x = (x1, x2, x3) of space,

∇× E = iωμH,

∇× H = (σ − iεω)E + L(−∇p + ω2ρfu + f) + j,

−ω2(ρu + ρfw) = ∇ · τ + F,

−iωw = LE + (κ/η)(−∇p + ω2ρfu + f),

τ = (λ∇ · u + C∇ · w)I + G(∇u + ∇uT),

−p = C∇ · u + M∇ · w.

(2.1)

In (2.1) a time dependence of exp(−iωt), where ω is frequency, is assumed.
The sources in Pride’s equations are the following: F, the imposed force on the

solid, f , the imposed force on the pore fluid, and j, the externally applied electrical
current.

The following are the quantities to be calculated: E, the electric field, H, the
magnetic field, u, the solid displacement, w, the relative fluid displacement, τ , the
stress tensor, and p, the pressure in the pore fluid. I is the 3 × 3 identity matrix.

The material parameters in Pride’s equations are as follows: μ, the magnetic
permeability, ε, the dielectric constant, λ and G, the Lamé parameters, C and M , the
Biot moduli, ρ, the bulk density, ρf , the density of the pore fluid, κ, the permeability,
η, the pore fluid viscosity, and L, the electrokinetic mobility. It is L �= 0 that couples
the EM and mechanical systems. For L = 0 the equations reduce to uncoupled
systems, with Maxwell’s equations governing electromagnetism and Biot’s equations
governing fluid and solid motion in a porous medium [1, 2, 16].

We will write

σ̄ = σ − iεω.(2.2)

It is customary in EM prospecting to make the quasi-static approximation [25] that
σ � εω in the subsurface x3 > 0, so that σ̄ can be replaced by σ there. This
approximation is equivalent to ignoring displacement currents in the earth. In the
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air, x3 < 0, the conductivity is zero, and the dielectric constant is ε0, so that we have
σ̄ = −iε0ω in the air.

We will also define

β1 = [C2 −M(λ + 2G)]−1,

β2 =

[
1 − η

κ

L2

σ̄

]−1

.(2.3)

For material parameters which depend only on the depth coordinate x3 = z we
can take Fourier transforms in the two lateral coordinates x1, x2. Let (k1, k2)

T be the
horizontal wavenumber and let

k =
√
k2
1 + k2

2, γ = k/ω(2.4)

be the magnitude of the horizontal wavenumber and the horizontal slowness, respec-
tively. Define Fourier transforms

F̂(k1, k2, z) ≡ F [F] =

∫ ∞

−∞

∫ ∞

−∞
e−i(k1x1+k2x2) F(x1, x2, z)dx1dx2,(2.5)

with similar expressions for f̂ , ĵ, Ê, Ĥ, û, ŵ, τ̂ , p̂. The lateral Fourier transforms are
inverted by the usual formulas, e.g.,

F(x1, x2, z) ≡ F−1[F̂] =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
ei(k1x1+k2x2) F̂(k1, k2, z)dk1dk2,(2.6)

with similar expressions for the other variables.
To write the equations in Fourier transform space, we first transform the sources to

obtain F̂, f̂ , ĵ. Then for each (k1, k2)
T , plane wave sources of the form ei(k1x1+k2x2)F̂,

ei(k1x1+k2x2)f̂ , ei(k1x1+k2x2 )̂j will produce plane wave responses with spatial depen-
dence of the form ei(k1x1+k2x2). The equations are greatly simplified if we rotate to a
coordinate system (x̃1, x̃2, x̃3)

T with the first coordinate oriented in the direction of
the horizontal wavenumber (k1, k2)

T , so that all of these plane waves have a spatial
dependence of the form eikx̃1 . Therefore, let

Ω =

⎡
⎢⎣

k1

k
k2

k 0

−k2

k
k1

k 0

0 0 1

⎤
⎥⎦(2.7)

and define

x̃ = Ωx, Ẽ = ΩÊ, H̃ = ΩĤ,

ũ = Ωû, w̃ = Ωŵ, τ̃ = Ωτ̂ΩT, p̃ = p̂,(2.8)

F̃ = ΩF̂, f̃ = Ωf̂ , j̃ = Ω̂j.

A straightforward calculation yields the following form for the equations, since the
governing equations (2.1) are invariant under rotations:

Let

˙̃u = −iωũ, ˙̃w = −iωw̃(2.9)
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be the solid and relative fluid velocities, and let

Φ(1) =
[
˙̃u3, τ̃13,− ˙̃w3, H̃2, τ̃33, ˙̃u1, p̃, Ẽ1

]T
,

Φ(2) =
[
˙̃u2, Ẽ2, τ̃23,−H̃1

]T
.(2.10)

Define n1 = 4 and n2 = 2. Then the 2nm-dimensional vectors Φ(m), m = 1, 2, satisfy
uncoupled systems of linear ordinary differential equations of the form suggested by
Ursin [23],

d

dz
Φ(m) = −iωM(m)Φ(m) + S(m), m = 1, 2,(2.11)

where S(m) are 2nm-dimensional source vectors and the 2nm × 2nm matrices M(m)

are of the block form

M(m) =

[
0 M1

(m)

M2
(m) 0

]
(2.12)

with symmetric nm × nm submatrices

M1
(m) =

(
M1

(m)
)T

, M2
(m) =

(
M2

(m)
)T

.(2.13)

The (2n1 = 8)-dimensional System 1 is equivalent to what Haartsen and Pride
[7] call the PSVTM system, since, as we will see, it contains compressional (P) waves,
vertical shear (SV) waves, and transverse magnetic (TM) waves. For this system the
submatrices are

(2.14)

M1
(1) =

⎡
⎢⎢⎢⎣
−β1M β1γ(C2 − λM) −β1C 0

β1γ(C2−λM) ρ + iωρ2
f
κ
η
−4β1γ

2G[C2−M(λ + G)] 2β1γGC−iωρfγ
κ
η

ρfL

−β1C 2β1γGC − iωρfγ
κ
η

−β1(λ + 2G) + iωγ2 κ
η

−γL

0 ρfL −γL σ̄
iω

⎤
⎥⎥⎥⎦,

M2
(1) =

⎡
⎢⎢⎢⎢⎣
ρ γ −ρf 0

γ 1
G 0 0

−ρf 0 −β2η
iωκ

−β2γLη
κσ̄

0 0 −β2γLη
κσ̄ −μ− iωβ2γ

2

σ̄

⎤
⎥⎥⎥⎥⎦.(2.15)

The corresponding source vector is

S(1) =

[
0,−F̃1 − iωρf

κ

η
f̃1, ik

κ

η
f̃1,−j̃1 − Lf̃1,−F̃3, 0, f̃3 − β2

Lη

κσ̄
j̃3,−ik

β2

σ̄
j̃3

]T

.(2.16)

Once Φ(1) has been determined, we may also compute the following four variables,
which are dependent on System 1 only:

Ẽ3 = β2

(
ik

σ̄
H̃2 −

Lη

κσ̄
˙̃w3 −

1

σ̄
j̃3

)
,

˙̃w1 = LẼ1 − ik
κ

η
p̃ + iωρf

κ

η
˙̃u1 +

κ

η
f̃1,

τ̃11 = β1

(
−4γG(C2 −M [λ + G]) ˙̃u1 + (C2 − λM)τ̃33 + 2GCp̃

)
,

τ̃22 = β1

(
−2γG[C2 − λM ] ˙̃u1 + [C2 − λM ]τ̃33 + 2GCp̃

)
.

(2.17)
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The (2n2 = 4)-dimensional System 2 is equivalent to what Haartsen and Pride [7]
call the SHTE system, since, as we shall see, it contains shear horizontal (SH) waves
and transverse electric (TE) waves. For this system we obtain

M1
(2) =

[
1
G 0
0 −μ

]
,(2.18)

M2
(2) =

[
ρ−Gγ2 + iωρ2

f
κ
η ρfL

ρfL
σ̄
iω + γ2

μ

]
,(2.19)

and source vector

S(2) =

[
0, 0,−F̃2 − iωρf

κ

η
f̃2,−j̃2 − Lf̃2

]T

.(2.20)

Once Φ(2) has been determined, we may also compute the following three vari-
ables, which are dependent on System 2 only:

H̃3 =
γ

μ
Ẽ2,

˙̃w2 = LẼ2 + iω
κ

η
ρf ˙̃u2 +

κ

η
f̃2,

τ̃12 = −Gγ ˙̃u2.

(2.21)

To construct an algorithm for a fast computer code, we will restrict the calcu-
lations to the case where the material parameters are piecewise constant. Thus it
is assumed that the material properties are constant within each layer but change
discontinuously as z is varied across a layer boundary which is a horizontal interface.
Then (2.11) is satisfied within each layer, where M(m) is constant. At layer bound-
aries we apply Pride’s interface condition, that u, p, the normal components of w and
τ , and the tangential components of E and H are continuous. Then it is seen that
the vectors Φ(m) are continuous across layer boundaries.

It remains to give boundary conditions for Systems 1 and 2 at the earth/air
interface at z = 0. Applying Pride’s interface conditions, we get that the boundary
conditions for System 1 are

τ̃13 = τ̃33 = 0, p̃ = 0, H̃2 = − ε0
q0

Ẽ1 at z = 0.(2.22)

In (2.22) q0 is the vertical slowness of an EM wave in the air, that is,

q0 =
√
ε0μ0 − γ2,(2.23)

where μ0 is the magnetic permeability of the air so that ε0μ0 is the reciprocal of the
square of the speed of light. The last of equations (2.22) is derived from the fact that
there are no downgoing waves in the air (all sources are in the subsurface), and this
is the relationship for an upgoing EM wave.

The boundary conditions for System 2 are

τ̃23 = 0, H̃1 =
q0
μ0

Ẽ2 at z = 0.(2.24)
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The second of these relationships is again derived as the condition that there are only
upgoing EM waves in the air.

Note that (2.22) gives n1 = 4 conditions for System 1, which has 2n1 = 8 variables.
Similarly, (2.24) gives n2 = 2 conditions for System 2, which has 2n2 = 4 variables.
Consequently, for each system we will need an additional nm conditions to completely
specify the solution. These relations will come from the requirement that there are no
upgoing waves from z = ∞. The decomposition into upgoing and downgoing waves
in the subsurface will be accomplished in section 4.

3. Ursin diagonalization. For completeness we give a derivation of Ursin’s
diagonalization procedure [23] in the form that it will be used here. We consider
matrices of the form (2.12), where for simplicity we drop the superscript (m).

Assume that M1M2 has n distinct nonzero eigenvalues q2
1 , q

2
2 , . . . , q

2
n with asso-

ciated eigenvectors a1,a2, . . . ,an, i.e.,

M1M2am = q2
mam,(3.1)

normalized by the relation

aT
mM2am = qm, m = 1, . . . , n.(3.2)

Here qm =
√
q2
m with the branch of the square root chosen so that Im(qm) ≥ 0 and

qm > 0 if qm is real. (With this choice, eiωqmz represents a downgoing wave.) We
adopt this branch of the square root throughout this paper.

Define

bm =
1

qm
M2am.(3.3)

bm is an eigenvector of M2M1, with eigenvalue q2
m, as can be seen by multiplying

(3.3) by M2M1 and using (3.1) and (3.3). From (2.13), bm is a left eigenvector of
M1M2.

Now

q2
maT

j bm = aT
j M2M1bm = bT

mM1M2aj = q2
ja

T
j bm.(3.4)

Therefore aT
j bm = 0 for j �= m. Coupling this with (3.2) and (3.3) we obtain

aT
j bm = δj,m.(3.5)

Let L1 be the n × n matrix whose mth column is am, and let L2 be the n × n
matrix whose mth column is bm. Then (3.5) implies

L−1
1 = LT

2 , L−1
2 = LT

1 .(3.6)

Let Λ be the n× n diagonal matrix with entries

Λj,m = qjδj,m.(3.7)

Then (3.3) implies

L2Λ = M2L1.(3.8)
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Multiplication of (3.3) by M1 and use of (3.1) implies

M1bm = qmam,(3.9)

and so

M1L2 = L1Λ.(3.10)

Now (3.10), (3.8), and (3.6) yield

M1 = L1ΛLT
1 , M2 = L2ΛLT

2 .(3.11)

Let L be the 2n× 2n matrix defined in block form by

L =
1√
2

[
L1 L1

L2 −L2

]
,(3.12)

and let Λ̃ be the diagonal matrix

Λ̃ =

[
Λ 0
0 −Λ

]
.(3.13)

Then from (3.6) and (3.11) it is readily verified that

L−1 =
1√
2

[
LT

2 LT
1

LT
2 −LT

1

]
(3.14)

and that

M = LΛ̃L
−1

.(3.15)

In the appendices we give explicit algebraic formulas for qm,am,bm for Systems
1 and 2 as described in section 2. From these formulas L1,L2,L,L

−1,Λ can be
calculated rapidly.

4. Upgoing and downgoing waves; reflection and transmission matri-
ces. We first consider a homogeneous, source-free region of space. Then dropping
the superscript (m) we have a 2n-dimensional equation of the form (2.11), with (2.12)
and (2.13), and with M constant and S = 0. Let

Φ = LΨ.(4.1)

Insertion of (4.1) into (2.11) and use of (3.15) yields

d

dz
Ψ = −iωΛ̃Ψ.(4.2)

Let

Ψ =

[
U
D

]
,(4.3)

where U,D are n-vectors. Then from (4.2), (4.3), and (3.13)

Ψ(z) = e−iωΛ̃(z−z0)Ψ(z0) =

[
e−iωΛ(z−z0) U(z0)
eiωΛ(z−z0) D(z0)

]
,(4.4)
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where z0 is a fixed point in the same source-free region of space as z. Here e±iωΛ(z−z0)

are diagonal matrices with mth diagonal element equal to e±iωqm(z−z0). Therefore U
are upgoing waves and D are downgoing waves.

Next consider an interface at z = z̄, where the material parameters vary discon-
tinuously across z̄. We denote by superscript + quantities evaluated at z̄+, just below
the interface, while superscript − denotes quantities evaluated at z̄− just above the
interface. Since Φ is continuous across z̄, we obtain from (4.1) that L+Ψ+ = L−Ψ−

and so

Ψ+ = JΨ−, Ψ− = J
−1

Ψ+,(4.5)

where the jump matrix is

J =
(
L+

)−1
L− =

[
JA JB

JB JA

]
(4.6)

and, from (3.12) and (3.14), JA,JB are the n× n matrices

JA =
1

2

[(
L+

2

)T
L−

1 +
(
L+

1

)T
L−

2

]
,

JB =
1

2

[(
L+

2

)T
L−

1 −
(
L+

1

)T
L−

2

]
.

(4.7)

J−1 can be computed by interchanging the roles of ±. Using this fact in (4.6) and
(4.7) yields

J−1 =

[
JT
A −JT

B

−JT
B JT

A

]
.(4.8)

Now using that JJ−1 = J−1J = I yields four relations:

JAJT
A − JBJT

B = I,(4.9)

JT
AJA − JT

BJB = I,(4.10)

JAJT
B = JBJT

A,(4.11)

JT
AJB = JT

BJA.(4.12)

We next consider a stack of layers, with layer boundaries at the interfaces at
depths 0 < z1 < z2 < · · · < zN < ∞. Homogeneous, source-free regions are assumed
in (zm, zm+1). We denote by subscript m a quantity at interface zm, with superscripts
± as before. From (4.3) and (4.5),[

U−
N

D−
N

]
= J−1

N

[
0
D+

N

]
,(4.13)

where we have used that there is no upgoing wave below the last interface at z = zN .
From (4.8) and (4.13),

U−
N = ΓND−

N ,

D+
N = TND−

N ,
(4.14)
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where

ΓN = −
(
JT
B,N

)(
JT
A,N

)−1
,

TN =
(
JT
A,N

)−1
.

(4.15)

Here ΓN is the reflection matrix from a single interface at z = zN and can be used
to compute the reflected wave, i.e., the upgoing wave from the top of the interface,
when the incident wave, i.e., the downgoing wave on the top of the interface, is
known. Similarly TN is the single interface transmission coefficient and can be used
to compute the transmitted wave, i.e., the downgoing wave beneath the interface,
when the incident wave is known.

Let j < N and define the layer thicknesses

Δzm = zm+1 − zm, m = 1, 2, . . . , N − 1.(4.16)

Then by jumping across the layer boundary using (4.5) and propagating through the
layer using (4.4) we obtain

U−
m = JT

A,meiωΛmΔzmU−
m+1 − JT

B,me−iωΛmΔzmD−
m+1,

D−
m = −JT

B,meiωΛmΔzmU−
m+1 + JT

A,me−iωΛmΔzmD−
m+1.

(4.17)

Define reflection and transmission matrices Γm,Tm by the relations that for any
incident wave D−

m at the top of the stack of layers underlying z = zm

U−
m = ΓmD−

m,

D+
N = TmD−

m.
(4.18)

Therefore Γm computes the reflected wave from the stack and Tm computes the
transmitted wave below the stack, when the incident wave is known. From (4.17) and
(4.18) we obtain by induction

Γm =
(
JT
A,mΓ̃m+1 − JT

B,m

)(
− JT

B,mΓ̃m+1 + JT
A,m

)−1
,(4.19)

Tm = Tm+1e
iωΛmΔzm

(
− JT

B,mΓ̃m+1 + JT
A,m

)−1
,(4.20)

where

Γ̃m+1 = eiωΛmΔzmΓm+1e
iωΛmΔzm .(4.21)

Now all the reflection and transmission matrices can be computed by recursion
using (4.19) and (4.20), starting with (4.15).

Finally, it can be shown that Γm is symmetric:

Γm = ΓT
m.(4.22)

To see this by induction, first note that ΓN is symmetric by using (4.11) in (4.15)
to obtain that ΓN is equal to its transpose:

ΓN = − (JA,N )
−1

(JB,N ) .(4.23)
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Next, assume that Γm+1 and therefore Γ̃m+1 are symmetric. From (4.9) we obtain
for any symmetric Γ̃

Γ̃JBJT
B + JAJT

AΓ̃ = Γ̃JAJT
A + JBJT

BΓ̃.(4.24)

From (4.11) we obtain

Γ̃JBJT
AΓ̃ + JAJT

B = Γ̃JAJT
BΓ̃ + JBJT

A.(4.25)

Subtraction of (4.25) from (4.24) and factoring the result gives(
−Γ̃JB + JA

)(
JT
AΓ̃ − JT

B

)
=

(
Γ̃JA − JB

)(
− JT

BΓ̃ + JT
A

)
.(4.26)

Now use of (4.26) in (4.19) gives the alternative recursion formula

Γm =
(
−Γ̃m+1JB,m + JA,m

)−1(
Γ̃m+1JA,m − JB,m

)
.(4.27)

Comparison of (4.27) with (4.19) gives (4.22).

5. Sources and boundary conditions. We consider a 2n-dimensional system
of type (2.11) with the superscript (m) omitted. Let the source, at a depth zs, be of
the form

S = S0δ(z − zs) + S1δ
′(z − zs)(5.1)

with S0,S1 independent of z. More generally, sources distributed in the depth coor-
dinate may be synthesized by superposition of sources of this type. Let

Φ0 = Φ − S1δ(z − zs).(5.2)

Then from (5.1), (5.2), and (2.11),

d

dz
Φ0 = −iωMΦ0 + [S0 − iωMS1] δ(z − zs).(5.3)

Let SA,SB be n-vectors defined so that[
SA

SB

]
= iωMS1 − S0.(5.4)

Then by integrating (5.3) from just above the source at z−s to just below the source
at z+

s , and using (5.2) and (5.4) we obtain the jump condition across the source:

Φ(z−s ) = Φ(z+
s ) +

[
SA

SB

]
.(5.5)

We insert a fictitious layer boundary just below the source at z = z+
s and use

the methods of section 4 to compute the reflection matrix Γs ≡ Γ(z+
s ) from the top

of this layer. Note that at z+
s , JA = I,JB = 0, since the material properties do not

change at zs. Then the upgoing wave Us ≡ U(z+
s ) is related to the downgoing wave

Ds ≡ D(z+
s ) there by (4.18), and so

Ψ(z+
s ) =

[
ΓsDs

Ds

]
.(5.6)
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From (5.6), (5.5), (4.1), and (3.14) we obtain

Ψ(z−s ) =

[
ΓsDs

Ds

]
+

1√
2

[
LT

2 SA + LT
1 SB

LT
2 SA − LT

1 SB

]
.(5.7)

The expression (5.7) may now be propagated upwards through layers, using (4.4)
and jumped upwards across layer boundaries using (4.5) until we reach the earth/air
interface at z = 0+. Then the n boundary conditions at z = 0 can be used to determine
the n unknowns Ds. We will write the formulas explicitly for when zs is in the first
subsurface layer, i.e., 0 < zs < z1. In this case

Ψ(0+) =

[
eiωΛzsΓsDs

e−iωΛzsDs

]
+

1√
2

[
eiωΛzs

(
LT

2 SA + LT
1 SB

)
e−iωΛzs

(
LT

2 SA − LT
1 SB

)
]
.(5.8)

We next write

Φ(0+) =

[
GAΦg

GBΦg

]
,(5.9)

where Φg is an n-vector of unknowns at z = 0 and GA,GB are n× n matrices.
For System 1, let

Φg
(1) =

[
˙̃u3,− ˙̃w3, ˙̃u1, Ẽ1

]T
z=0+ ,

GA
(1) =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 − ε0

q0

⎤
⎥⎥⎦ ,(5.10)

GB
(1) =

⎡
⎢⎢⎣

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦ .

Then it may be checked that (5.9) holds for System 1 with the boundary conditions
given by (2.22).

For System 2 let

Φg
(2) =

[
˙̃u2, Ẽ2

]T
z=0+ ,

GA
(2) =

[
1 0
0 1

]
,(5.11)

GB
(2) =

[
0 0
0 − q0

μ0

]
.

Then it may be checked that (5.9) holds for System 2 with the boundary conditions
given by (2.24).

Now using (4.1) we may combine equations (5.8) and (5.9) to get

Φg =
[
eiωΛzsΓse

iωΛzs
(
LT

2 GA − LT
1 GB

)
−
(
LT

2 GA + LT
1 GB

)]−1

× eiωΛzs
[
Γs

(
LT

2 SA − LT
1 SB

)
−
(
LT

2 SA + LT
1 SB

)]
,(5.12)
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Ds =
1√
2
eiωΛzs

(
LT

2 GA − LT
1 GB

)
Φg − 1√

2

(
LT

2 SA − LT
1 SB

)
.(5.13)

In particular, when the source is just below the surface we get

Φg =
[
(Γs − I)LT

2 GA − (Γs + I)LT
1 GB

]−1

×
[
(Γs − I)LT

2 SA − (Γs + I)LT
1 SB

]
as zs ↓ 0.(5.14)

Φg gives all of Φ at the surface z = 0, and Ds,Us = ΓsDs give all of Φ just
below the source. Now Φ can theoretically be computed anywhere else in space by
propagating through layers using (4.4) and jumping across the layer boundaries using
(4.5). However, propagation of an upward-going wave in the downward direction is
unstable numerically using (4.4), because the complex exponentials grow rather than
decay with distance. So numerically, one must obtain U from D using Γm, or make
use of the transmission matrices Tm.

From the tilde variables, the lateral Fourier transforms, i.e., the hat variables, can
be computed by inverting the rotation in (2.8) via the formulas

Ê = ΩTẼ, Ĥ = ΩTH̃,

û = ΩTũ, ŵ = ΩTw̃,(5.15)

τ̂ = ΩTτ̃Ω, p̂ = p̃.

It remains to invert the lateral Fourier transforms via (2.6) to get the solution in
real space. Note that the matrices for Systems 1 and 2 depend only on the magnitude,
k (or equivalently the slowness γ), of the vector (k1, k2)

T and not on its direction.
However, factors of k1 and k2 are introduced by the transformation (5.15) and possibly
by the directionality of the source. For any function ĝ(k) let

Θm1,m2
≡ F−1 [km1

1 km2
2 ĝ(k)] = (−i)m1+m2

(
∂

∂x1

)m1
(

∂

∂x2

)m2

F−1 [ĝ(k)] .(5.16)

In cylindrical coordinates x1 = r cos θ, x2 = r sin θ, x3 = z these quantities may be
computed as Hankel transforms. Let Jm be the Bessel functions, and for nonnegative
integers m1,m2 let

Bm1,m2 [ĝ] =
1

2π

∫ ∞

0

km1Jm2(kr)ĝ(k)dk.(5.17)

Then, in particular,

Θ0,0 = B1,0, Θ1,0 = i cos θB2,1, Θ0,1 = i sin θB2,1,

Θ1,1 = sin θ cos θ

[
B3,0 −

2

r
B2,1

]
, Θ2,0 = cos2 θB3,0 −

(
cos2 θ − sin2 θ

)
r

B2,1,

Θ0,2 = sin2 θB3,0 +

(
cos2 θ − sin2 θ

)
r

B2,1.

(5.18)

6. Dynamite; hammer, weight drop, and vibroseis. For a dynamite source
we take the imposed forces on the solid and the fluid to be

F(x) = f(x) = −ĥ(ω)∇δ(x − xs),(6.1)
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where the position of the dynamite charge is xs = (0, 0, zs)
T and ĥ(ω) is the spectrum

of the seismic moment h(t). There are no externally applied electrical currents, so
j = 0. Lateral Fourier transform via (2.5) yields

F̂(k1, k2, z) = f̂(k1, k2, z) = −ĥ(ω)

⎡
⎣ ik1δ(z − zs)
ik2δ(z − zs)
δ′(z − zs)

⎤
⎦ ,(6.2)

and rotation by Ω via (2.8) yields

F̃(k1, k2, z) = f̃(k1, k2, z) = −ĥ(ω)

⎡
⎣ ikδ(z − zs)

0
δ′(z − zs)

⎤
⎦ .(6.3)

Substitution of (6.3) into (2.16) yields the source for System 1, in the form (5.1), with

S0
(1) = ĥ(ω)

[
0, ik

(
1 + iωρf

κ

η

)
, k2κ

η
, ikL, 0, 0, 0, 0

]T
,

S1
(1) = ĥ(ω) [0, 0, 0, 0, 1, 0,−1, 0]

T
.

(6.4)

Substitution of (6.3) into (2.20) shows that the source for System 2 is identically
zero, and so all variables associated with System 2 are zero. This is to be expected
because System 2 contains SH waves, which are not excited by dynamite.

Substitution of (6.4) into (5.4) gives

SA
(1) = iβ1ĥ(ω) [ω(C −M), 2kG(M − C), ω(λ + 2G− C), 0]

T
,

SB
(1) = 0.

(6.5)

Now (6.5) may be used in (5.12) and (5.13), or in (5.14) for a shallow source, to get
all the tilde variables.

To invert the rotation Ω, using (5.15), note that from (2.10) and (2.21) and the
vanishing of System 2, the following variables are identically zero: ˙̃u2, Ẽ2, τ̃23, H̃1, H̃3,
˙̃w2, τ̃12. Furthermore, all the remaining tilde variables are functions of k alone, not
k1, k2 individually. Therefore

˙̂u1 =
k1

k
˙̃u1, Ê1 =

k1

k
Ẽ1, Ĥ1 = −k2

k
H̃2,

˙̂u2 =
k2

k
˙̃u1, Ê2 =

k2

k
Ẽ1, Ĥ2 =

k1

k
H̃2,

˙̂u3 = ˙̃u3, Ê3 = Ẽ3, Ĥ3 = 0,

(6.6)

and so the transforms can be inverted in cylindrical coordinates (r, θ, z) using (5.16)–
(5.18):

u̇ =
(
iB1,1

[
˙̃u1

])
er +

(
B1,0

[
˙̃u3

])
ez,

E =
(
iB1,1

[
Ẽ1

])
er +

(
B1,0

[
Ẽ3

])
ez,(6.7)

H =
(
iB1,1

[
H̃2

])
eθ.

Here er, eθ, ez are unit vectors in the r, θ, z coordinate directions, respectively.
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The stress tensor may be inverted similarly. For the stresses, we get from (5.15)

τ̂11 =
1

k2

[
k2
1 τ̃11 + k2

2 τ̃22
]
, τ̂12 =

k1k2

k2
[τ̃11 − τ̃22] ,

τ̂22 =
1

k2

[
k2
2 τ̃11 + k2

1 τ̃22
]
,(6.8)

τ̂13 =
k1τ̃13
k

, τ̂23 =
k2τ̃13
k

, τ̂33 = τ̃33,

and so the inverse Fourier transforms to real space are

τ11 = Θ2,0

[
1

k2
τ̃11

]
+ Θ0,2

[
1

k2
τ̃22

]
, τ12 = Θ1,1

[
1

k2
(τ̃11 − τ̃22)

]
,

τ22 = Θ0,2

[
1

k2
τ̃11

]
+ Θ2,0

[
1

k2
τ̃22

]
, τ13 = Θ1,0

[
τ̃13
k

]
,(6.9)

τ23 = Θ0,1

[
τ̃13
k

]
, τ33 = Θ0,0 [τ̃33] .

These stresses may now be computed in cylindrical coordinates from (5.18) using
Hankel transforms of the appropriate tilde variables.

We next consider a source which is a vertical point force acting on the earth’s
surface. This models hammer, weight drop, and vibroseis (a shaking truck) sources
[4]. Thus we take

F = f =
[
0, 0, ĥ(ω)

]T
δ(x1)δ(x2)δ(x3 − zs),(6.10)

where ĥ(ω) is the spectrum of the force and zs ↓ 0 puts the force on the earth’s
surface. By lateral Fourier transform and rotation by Ω we get

F̂ = f̂ = F̃ = f̃ =
[
0, 0, ĥ(ω)

]T
δ(z − zs).(6.11)

From (2.16) we obtain

S(1) = [0, 0, 0, 0,−1, 0, 1, 0]
T
ĥ(ω)δ(z − zs).(6.12)

From (2.20) we obtain

S(2) = 0.(6.13)

Therefore all variables in System 2 are zero, as was the case for dynamite.
From (5.1), (6.12), and (5.4) we obtain

SA
(1) = 0, SB

(1) = [1, 0,−1, 0]
T
ĥ(ω).(6.14)

Now all the tilde variables at the earth’s surface may be computed from equa-
tion (5.14) as zs ↓ 0 and propagated anywhere else in space. Note that SA

(1),SB
(1)

are independent of k1, k2, so that the tilde variables depend only on k and not on
wavenumber direction. Therefore, as for dynamite we can transform to the hat vari-
ables using (6.6) and (6.8) and transform back to real space using (6.7) and (6.9).
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7. Source currents in a plane. We consider a distribution of horizontal source
currents in the source plane z = zs. Because of linearity and horizontal translation
invariance, we need only consider a horizontal point dipole at x = (0, 0, zs)

T , with
source current

j = d δ(x1)δ(x2)δ(x3 − zs),(7.1)

where

d = (d1, d2, 0)
T
.(7.2)

Solutions for other horizontal sources in the plane z = zs can be synthesized by trans-
lation and superposition of sources of this type. Then by taking Fourier transforms
and rotating via (2.5) and (2.8) we obtain

j̃ = d̃ δ(z − zs),(7.3)

where

d̃1 = (k1d1 + k2d2)/k,

d̃2 = (−k2d1 + k1d2)/k,(7.4)

d̃3 = 0.

From (2.16) and (2.20) we obtain

S(1) = d̃1S̄
(1), S(2) = d̃2S̄

(2),(7.5)

where

S̄(1) = [0, 0, 0,−1, 0, 0, 0, 0]
T

δ(z − zs),

S̄(2) = [0, 0, 0,−1]
T

δ(z − zs).
(7.6)

Let Φ̄(1) be the solution of System 1 with source S̄(1), i.e., with

S̄
(1)
A = [0, 0, 0, 1]T , S̄

(1)
B = 0,(7.7)

and let Φ̄(2) be the solution of System 2 with source S̄(2), i.e., with

S̄
(2)
A = 0, S̄

(2)
B = [0, 1]T .(7.8)

Then by linearity

Φ(1) = d̃1Φ̄
(1), Φ(2) = d̃2Φ̄

(2).(7.9)

Note that Φ̄(1), Φ̄(2) depend on k but not on k1, k2 individually. We denote the
elements of these vectors, analogous to (2.10), as

Φ̄(1) =
[
˙̄u3, τ̄13,− ˙̄w3, H̄2, τ̄33, ˙̄u1, p̄, Ē1

]T
,

Φ(2) =
[
˙̄u2, Ē2, τ̄23,−H̄1

]T(7.10)

and define the corresponding auxiliary variables for System 1 with normalized sources
analogously to equations (2.17), e.g.,

Ē3 = β2

(
ik

σ̄
H̄2 −

Lη

κσ̄
˙̄w3

)
,(7.11)
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and the auxiliary variables for the normalized System 2 analogously to equations
(2.21), e.g.,

H̄3 =
γ

μ
Ē2.(7.12)

Since ˙̃u1, ˙̃u3 are in System 1, while ˙̃u2 is in System 2,

˙̃u1 = d̃1 ˙̄u1, ˙̃u2 = d̃2 ˙̄u2, ˙̃u3 = d̃1 ˙̄u3.(7.13)

Therefore, using (7.13), (7.4), and (5.15),

˙̂u1 = (d1k
2
1 + d2k1k2)

˙̄u1(k, z)

k2
+ (d1k

2
2 − d2k1k2)

˙̄u2(k, z)

k2
,

˙̂u2 = (d1k1k2 + d2k
2
2)

˙̄u1(k, z)

k2
+ (−d1k1k2 + d2k

2
1)

˙̄u2(k, z)

k2
,(7.14)

˙̂u3 = (d1k1 + d2k2)
˙̄u3(k, z)

k
.

Inverting the Fourier transforms via (5.16) gives u̇ in real space:

u̇1 = d1Θ2,0

[
˙̄u1

k2

]
+ d2Θ1,1

[
˙̄u1

k2

]
+ d1Θ0,2

[
˙̄u2

k2

]
− d2Θ1,1

[
˙̄u2

k2

]
,

u̇2 = d1Θ1,1

[
˙̄u1

k2

]
+ d2Θ0,2

[
˙̄u1

k2

]
− d1Θ1,1

[
˙̄u2

k2

]
+ d2Θ2,0

[
˙̄u2

k2

]
,(7.15)

u̇3 = d1Θ1,0

[
˙̄u3

k

]
+ d2Θ0,1

[
˙̄u3

k

]
.

Now u̇ can be written in cylindrical coordinates using the Hankel transform relations
(5.18).

Next, note that Ẽ1 is in System 1, Ẽ2 is in System 2, and Ẽ3 is an auxiliary
variable in System 1. Therefore

Ẽ1 = d̃1Ē1, Ẽ2 = d̃2Ē2, Ẽ3 = d̃1Ē3.(7.16)

Comparison of (7.16) with (7.13) shows that E may be obtained in real space with
(7.15) by replacing u̇ with E and ˙̄u with Ē.

For the magnetic field, note that H̃1, H̃3 are in System 2, while H̃2 is in System 1.
Therefore

H̃1 = d̃2H̄1, H̃2 = d̃1H̄2, H̃3 = d̃2H̄3.(7.17)

Similar to the procedure for u̇, we first use (7.17) to write Ĥ and then invert the
Fourier transform using (5.16) to get H in real space:

H1 = −d1Θ1,1

[
H̄1

k2

]
+ d2Θ2,0

[
H̄1

k2

]
− d1Θ1,1

[
H̄2

k2

]
− d2Θ0,2

[
H̄2

k2

]
,

H2 = −d1Θ0,2

[
H̄1

k2

]
+ d2Θ1,1

[
H̄1

k2

]
+ d1Θ2,0

[
H̄2

k2

]
+ d2Θ1,1

[
H̄2

k2

]
,(7.18)

H3 = −d1Θ0,1

[
H̄3

k

]
+ d2Θ1,0

[
H̄3

k

]
.
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Again H can be written in cylindrical coordinates using the Hankel transform relations
(5.18).

A similar treatment can be given for the other variables. However, we will focus
on u̇3, i.e., the vertical velocity of the ground, since at the surface z = 0 this is the
response of a conventional geophone. So the behavior of u̇3 gives the seismic response
in an ES land survey. From (7.15) and (5.18) the seismic response for a horizontal
dipole is given in cylindrical coordinates by the order 1 Hankel transform

u̇3(r, θ, z) = i(d1 cos θ + d2 sin θ)B1,1[ ˙̄u3(k, z)].(7.19)

Alternatively, from (7.15), (5.16), and (5.18),

u̇3(r, θ, z) = −d · ∇R(r, z),(7.20)

where the response function R is the order 0 Hankel transform

R(r, z) = iB0,0[ ˙̄u3(k, z)].(7.21)

Note that for the vertical component of the geophone response, only ˙̄u3 need be
computed, so it is not necessary to solve System 2.

The preceding results are for a point dipole at x = (0, 0, zs)
T . Now consider a

source which is a current sheet in a horizontal plane, so that

j = C(x1, x2) δ(x3 − zs),

C = [C1, C2, 0]T .
(7.22)

The vertical velocity for this source may be computed by superposition,

(7.23)

u̇3(r, θ, z) = −
∫ ∞

−∞

∫ ∞

−∞
C(x′

1, x
′
2) · ∇R

(√
(x1 − x′

1)
2

+ (x2 − x′
2)

2
, z
)
dx′

1dx
′
2

=

∫ ∞

−∞

∫ ∞

−∞
(−∇′ · C(x′

1, x
′
2))R

(√
(x1 − x′

1)
2

+ (x2 − x′
2)

2
, z
)
dx′

1dx
′
2,

where the second expression comes from the divergence theorem, assuming that C is
smooth and vanishes sufficiently rapidly at ∞. Therefore the geophone response is a
superposition of cylindrically symmetric scalar response functions R weighted at each
point by the current leakage −∇ · C. In particular, only the leakage of current from
the source plane contributes to the geophone response.

We may obtain a related result for the response to a leaky wire in the plane
z = zs, when the wire follows the path (x̄1(α), x̄2(α), zs), where α is arclength along
the path and 0 ≤ α ≤ l. If I(α) is the current in the wire at position α, then the
source current is

j =

∫ l

0

I(α)

⎡
⎢⎣

dx̄1

dα
dx̄2

dα

0

⎤
⎥⎦ δ (x1 − x̄1(α)) δ (x2 − x̄2(α)) δ (x3 − zs) dα.(7.24)

Let

r̄(α, x1, x2) =

√
(x1 − x̄1(α))

2
+ (x2 − x̄2(α))

2
.(7.25)
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Then superposition of response functions gives the expression

(7.26)

u̇3 = −
∫ l

0

I(α)

⎡
⎢⎣

dx̄1

dα
dx̄2

dα

0

⎤
⎥⎦ · ∇R (r̄(α, x1, x2), z) dα

= I(l)R(r̄(l, x1, x2), z)− I(0)R(r̄(0, x1, x2), z) +

∫ l

0

(
− dI

dα

)
R(r̄(α, x1, x2), z)dα.

Again, only the leakage, both at the end points and along the length of the wire,
contributes to the geophone response.

In particular, for an insulated wire I is constant. Then we have only the end-point
contributions, and the path of the wire between its end points is immaterial. If the
insulated wire is a closed loop, then the end points cancel and the geophone response
vanishes. This fact was derived by Haartsen and Pride [7] for the special case of a
circular current loop.

8. Electroseismic prospecting. A computer code based on the theory of this
paper was written and used for planning and interpretation of several field tests [21,
20, 18, 10, 9, 8]. In these tests, an EM source was used, and geophones on the surface
of the earth recorded the vertical velocity of the ground.

Figure 1 describes the “railroad track” electrode design used for these tests. The
electrodes are two parallel transmission lines buried in the shallow subsurface. The
length and separation of the electrodes are comparable to the desired depth of inves-
tigation, which for the deeper tests is on the order of a kilometer. A power source
is located midway between the two tracks, and insulated bus wires feed current from
the power source to the centers of the two electrodes.

From the center of the west electrode, current from the bus wire flows outward
toward the electrode ends, leaking into the ground all along the electrode’s length.
Because of this leakage the current carried by the electrode decreases linearly from a
maximum at the bus wire feed point to zero at each end. The current behavior in the
east electrode is similar to that described for the west electrode, but with sign reversed.

A number of factors influenced this electrode design. Horizontal sources were
chosen because they allow a large scale geometry that would be impractical with
vertical structures. However, as shown in section 7, current leakage is essential for
horizontal sources if we are to obtain a seismic response from a conventional geophone.
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Fig. 2. Three-layer model.

For example, as shown in section 7, a source consisting of an insulated wire loop, as
is common in EM prospecting [14, 25], would give no seismic response at all in a
layered earth. Furthermore, maximizing the current leakage is essential for enhancing
the magnitude of the seismic signal. Also, because Pride’s equations are linear, the
seismic response for any electrode configuration is directly proportional to the source
current; so the greatest practically obtainable current level is desired in order to
produce the greatest possible seismic response.

To model the ES response to these electrodes over a layered earth, we first obtain
for the specified earth model the horizontal dipole response function R(r, 0) on the
surface of the earth z = 0 using (7.21). The electrodes and bus wires are described
mathematically as segments of curves in the plane, carrying varying amounts of cur-
rent at each point along the length. That is, I is constant in the bus wires, and dI/dα
is constant along each half of each electrode. Then the second expression in (7.26) is
used to calculate the geophone response. Note that in this calculation, the path of
the bus wires is immaterial, because they are insulated.

In modeling the current in the electrodes as linearly decreasing from the bus
wire feed to the end points, we have neglected phase changes in I(α) caused by the
inductance of the earth. Calculation of the inductance is beyond the scope of the
present paper.

Figure 2 shows a layered earth model with three layers, where the free space
ε0, μ0 are assumed in all layers. Figure 3 shows a typical trace, as recorded at a
geophone at coordinates x = 1000 m, y = 250 m. In transforming the computer
calculations to the time domain, a 15 Hz Ricker wavelet pulse form was used. In the
actual field tests pulses are not used; instead a periodic source function is generated
and repeated many times, after which the received seismic signal is averaged over
a period [8, 21, 20, 10, 9]. This methodology allows a great amount of EM energy
to be put into the ground to enhance the received seismic response. The resulting
data can then be Fourier transformed to the frequency domain and a pulse wavelet
inserted before inverse transforming back to the time domain. In this way a trace
of the type of Figure 3, analogous to the geophone responses used in conventional
seismic interpretation, can be constructed.
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Fig. 3. Trace at x = 1000 m.

Note that the scale in Figure 3 predicts that very small signals will be received.
These signals are within the sensitivity of a geophone, but smaller than many noise
sources that can be identified in the field, so considerable signal averaging will be
necessary for detection to be at all feasible. In the computation, we have assumed
a current leakage of 1 amp/m of electrode length, for a total leakage of 1500 amps.
All the results scale linearly with the current, so the small signals predicted can be
enhanced by increasing the current.

Figure 4 shows the resulting electroseismogram, analogous to a conventional seis-
mic gather, for a line of geophones orthogonal to the two electrodes and offset 250 m
from the center. We have labeled a number of the events in Figure 4. Event ES1
results from energy that has been converted from EM to seismic at the first interface
and has subsequently propagated upward to the surface. Note that this event is flat,
that is, the arrival times are the same at all the receivers. This behavior is in con-
trast to that of a conventional seismic reflection, which has “moveout” caused by the
geometry of the ray paths, i.e., a hyperbolic dependence of arrival time with offset of
the receiver from the source. In contrast, the asymptotic theory of ES conversion [24]
shows that the seismic rays resulting from an incident EM wave leave the interface
normal to it. For a layered earth, this means that all the converted seismic rays travel
vertically. Since the propagation of EM energy is virtually instantaneous on the seis-
mic time scale, the converted seismic signals propagating vertically from each point
on the interface arrive at the surface simultaneously. Another way to understand this
phenomenon intuitively is to note that the EM wave speed is much greater than the
seismic wave speed. Therefore Snell’s law predicts that the converted seismic waves
leave the interface in approximately the normal direction.

Note also that the amplitudes of event ES1 go to zero at a point midway between
the electrodes, with a sign reversal as this midpoint is crossed. This is a result of
symmetry of the problem. The asymptotic theory [24] shows that the P-wave con-
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Fig. 4. Electroseismogram (three-layer model).

version is dependent on the electric field normal to the interface, which for a layered
earth is in the vertical direction. From symmetries of the electrode, the vertical E
field changes sign on a line midway between the electrodes, and so the ES conversion
to P-waves changes sign there also.

Moreover, only the P-wave response of the energy converted at an interface con-
tributes to the vertical velocity of the ground. This is because the converted S-waves,
which likewise travel vertically, have a particle motion orthogonal to their direction
of travel, i.e., they contribute a purely horizontal component to the solid velocity.
Furthermore the Biot slow wave is undetectable at the surface. Although Biot slow
waves are generated at the interfaces by the EM field, their rapid decay (typically on
a scale of inches!) makes their amplitudes transcendentally small at the surface.

The amplitude of ES1 peaks at a position 160 m from each electrode, outside of
the area bounded by the two electrodes. This is a general property of conversions from
a single interface, and is used in planning the placement of the geophones. Typically
geophones are placed to cover an area where significant signals are expected. The
geophone line shown here is for illustrative purposes only.

Returning to Figure 4, other flat events, e.g., events ES2, ESM1, and ESM2, can
be identified by comparing their times of arrival with the P-wave velocities in the



ELECTROSEISMIC PROSPECTING IN LAYERED MEDIA 91

layers. Event ES2 results from the primary conversion to seismic propagating upward
from the second interface. Events ESM1 and ESM2 are multiples: Event ESM1 is
energy converted to seismic at the first interface, directed downward where it is re-
flected upward as seismic at the second interface and finally received at the geophones.
Event ESM2 is energy converted at the second interface, with seismic reverberation
between the first and second interfaces before being received at the surface. As is
usual, amplitudes of the multiples are considerably less than those of the primaries.

Other events, which do not have simultaneous arrival times, result from conver-
sion of EM to seismic energy directly where the electrode contacts the ground. This
produces a small, order of L, seismic survey along with the ES survey. Of course the
ES conversions at the interfaces, which are the signals we seek, are also of order L. So
conversion at the electrodes cannot be ignored.

Event P is the direct arrival of the P-wave generated at the electrodes, traveling
just below the surface. Events PP1 and PP2 are reflections of the P-wave generated
at the electrodes from the first and second interfaces, respectively. Event PS1 is a
combination of P to S and S to P conversions at the second interface.

Event RL is a Rayleigh wave, or “ground roll” traveling along the surface and
generated at all points of the east electrode. It is identified by the Rayleigh wave speed
and linear dependence of arrival time with distance from the source. In the layer code,
the Rayleigh wave manifests itself as a pole in k space, and care must be taken in
numerical integration of the Hankel transforms as the path of integration nears this
pole. Since the pole is near the real axis, numerical stability is enhanced by giving the
frequency a small positive imaginary part, that is, replacing ω → ω + iδ. The effects
of complex frequency can then be removed in the time domain by multiplication by
a factor of eδt. Also, to enhance numerical stability, the wavenumber can be given a
small negative imaginary part.

Event RL is approximately what would be obtained if the electrode were an
infinite line source. However, because the actual electrode is of finite length, there are
end-point contributions RE1 and RE2 from the north and south ends of the east elec-
trode, and these manifest as separate events.

Many more events can be identified in Figure 4, and interpretation becomes in-
creasingly complicated as the number of layers increases to model realistic exploration
geometries.

The conductivity in layer 2 is representative of that of an oil reservoir. In Figure 5
we compare this model with that of a similar model where layer 2 conductivity is an
order of magnitude higher, indicating that there is no oil. Shown is the amplitude
versus offset for the ES conversion at the first interface. As expected, the presence
of oil enhances the signal considerably. In contrast, changing the permeability by an
order of magnitude has virtually no effect, as is shown in Figure 6. These results are
qualitatively consistent with conclusions based on the asymptotic theory [24].

In Figure 7 we show that in some carefully chosen cases, the presence of very
small layers can have a dramatic effect on the amplitudes of the received signals.
We compare the model of Figure 2 with a similar model that has a 10 cm gas sand
inserted just above the reservoir, i.e., between layers 1 and 2. The result is that the
ES conversion is more than doubled.

This effect can be understood qualitatively as arising from the much greater com-
pressibility of a gas compared to a liquid; the enhanced compressibility provided by
even a small layer of gas allows for much more movement of the solid matrix. Mathe-
matically, a small layer can have an effect only if the exponential matrices eiωΛmΔzm

that occur in (4.21) differ substantially from the identity matrix. Of course these
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matrices must approach the identity as the layer thickness Δzm becomes sufficiently
small. However, the Biot slow wave has a very large slowness, as is discussed asymp-
totically in [24]. The complex Biot slow wave slowness is one of the eigenvalues of
Λm, namely, q2 in (A.1), and has been computed for the parameters of Figure 2 (and
horizontal slowness γ = 0) as q2 = .348(1 + i). Therefore the matrices in question
have a second diagonal element of e3.28(−1+i), which differs substantially from unity.
In general it is the potentially large slowness of the Biot slow wave, i.e., its short
wavelength, that allows the possibility that a small layer might have an order one
effect.

A small layer can also have a large effect by substantially changing the local elec-
tric field, as is illustrated in Figure 8. For the base case in this figure, we consider the
same model parameters as in Figure 2, except that the reservoir thickness is reduced
to 10 m. The result of this model may be compared with case 1, in which we insert
a thin, 2 cm, highly resistive layer just below the top of the reservoir, with a varying
conductivity profile as shown in Figure 9. This continuously variable conductivity
profile is simulated by discretizing it over 200 layers, each with a thickness of .1 mm.
The result is a dramatic rise of the amplitude of the ES conversion by more than an
order of magnitude, as compared with the base case. The much higher ES conversion
may also be achieved with a constant resistivity layer at the top of the reservoir, as
is illustrated in case 2. For this case, the highly resistive thin layer has a constant
resistivity of 2500 Ω −m and a thickness of 5 cm.



ELECTROSEISMIC PROSPECTING IN LAYERED MEDIA 93

200x10
-15

150

100

50

0

P
ea

k 
am

pl
itu

de
  (

m
/s

)

-2000 -1000 0 1000 2000
X  (m)

With Gas 

Without Gas

A thin Gas sand is inserted below the first interface.

Properties of gas sand are thickness = 0.1m, ρ = 2256 kg/m
3
,

 ρf = 21.0 kg/m
3
, κ = 10

-13
m

2
, η = 0.0001(Pa S), λ = 3.94 GPa, 

 G = 5.07 GPa, C = 0.042 GPa, M= 0.047 GPa, σ = 0.01 S/m 

 and L = 10
-9

 m
2
/(Vs).

Fig. 7. ES conversion enhancement due to gas presence.

2.5x10
-12

2.0

1.5

1.0

0.5

0.0

P
ea

k 
am

pl
itu

de
  (

m
/s

)

-2000 -1000 0 1000 2000
X (m)

All model parameters are the same as in Fiqure 2 except that the reservoir thickness 
is reduced to 10m. Case 1: Highly resistive thin layer (2 cm) with conductivity profile 
shown in Figure 9 is inserted just below top of the reservoir. Case 2: 5 cm highly 
resistive thin layer with constant resistivity 25000 Ωm replaces
the thin layer in Case 1.   

 Base case
 Case 1
 Case 2

Fig. 8. Effect of a high resistivity thin layer on ES conversion.

The normal electric field for case 2 of Figure 8 is plotted in Figure 10. It is
relatively constant over the thin resistive layer, with a discontinuity at the interface
proportional to the ratio of resistivities, as is inherent in Maxwell’s equations. In
the asymptotic theory [24] the size of the discontinuity of the normal electric field
is a major factor in the magnitude of the ES conversion at an interface. Although
the layer in this example is too small for the strict validity of the asymptotic theory,
the qualitative dependence of ES conversion on the normal electric field is seen to be
similar here.

In Figure 11 we demonstrate how fine structure in a reservoir can also raise the
amplitude of the ES conversion. In this figure, we consider a 20 m thick reservoir with
a periodic structure of 67 gas-oil-shale layers, each of thickness 1 cm. The result is
a substantial increase in converted wave amplitude, as compared with the case of a
homogeneous reservoir.
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9. Conclusions. We have shown how the equations of electrokinetics can be
put into Ursin’s form in a plane-layered medium. Using this form we have derived
explicit formulas that can be used as the basis of an efficient layer code, and have
shown numerical results for spatially extended electrode sources that have been used
in field tests.

More generally, the methods developed are applicable to any system that can
be put into Ursin’s form. In particular, the code that was written for ES waves
can be modified to separately compute seismic waves, EM waves, or the waves of
Biot theory, which are all included in Pride’s equations: For seismic waves, isotropic
elasticity is recovered from the third and fifth equations of (2.1) by simply taking
ρf = 0, C = 0; then E,H,w, p vanish, so their components may be deleted to reduce
the dimensionality of the systems. Similarly, in the limit L → 0 we recover either
Maxwell’s equations or Biot’s equations separately.
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contains three layers: gas-oil-shale with equal thicknesses of  1 cm. The oil layer 
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properties are the same as the background.   
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Fig. 11. Effect of fine structure on ES conversion.

As expected, the higher electrical resistivity of hydrocarbons does considerably
enhance the ES waves converted at reservoir boundaries. For shallow reservoirs, ES
signals should be detectable. However, our calculations show that there are significant
technological challenges to make ES a reliable tool for detecting deep oil reservoirs
because the received signals from depth are likely to be small unless a great amount
of EM energy can be put into the ground. Effective signal processing techniques will
be necessary to separate the signals from noise. Also, desired signals originating from
deep interfaces may be obscured by conversions from shallow interfaces because the
EM field is likely to be large at shallow depths where it has not attenuated much.

In comparison to purely EM prospecting, the EM waves used in ES can be of
lower frequency to give the same wavelength of the returned (i.e., seismic) signal.
Also, in ES prospecting the EM waves only go one way, i.e., down to the reservoir,
as opposed to the round-trip taken by the EM waves in an EM survey. Since EM
waves attenuate with propagation distance, and with shortened wavelength, these two
effects favor ES. However, these effects are counterbalanced by the fact that in ES
only a small fraction of the EM energy is converted to seismic at an interface, giving
a corresponding reduction in the amplitude of the ES signal.

The ES conversions at interfaces are generally consistent with the asymptotic
theory of [24], which gives three-dimensional effects not included in layered earth
modeling. However, the layer code predicts a surprising result that is not computable
with the asymptotic theory: the possibility that layers very much smaller than a
seismic wavelength can have a large effect on the amplitude of the received ES signal.
This was demonstrated by the model of a thin gas sand overlying an oil reservoir, by
the model of a thin but highly resistive layer, and by a cyclical model of reservoir
fine structure. The possibility of signal enhancement through this mechanism must
be considered in analyzing the amplitudes of electroseismograms.

Another challenge is the interpretation of the many different types of events seen
in electroseismograms. For example, we have shown that ES conversions where the
electrode contacts the ground produce a multitude of signals; these signals are a sort
of source-generated noise, which can obscure the returns from EM waves converted to
seismic at reservoir boundaries. Modeling of the type we have shown here is essential
for proper interpretation and classification of all these signals.
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Appendix A. Eigenvectors for System 1. See also [17, 7]. The four modes
for system 1 are

• m = 1: fast compressional wave (P-wave);
• m = 2: Biot slow wave;
• m = 3: vertical shear wave (SV-wave);
• m = 4: transverse magnetic wave (TM-wave).

m = 1, 2 are longitudinal waves. For these modes

(A.1)

q2
m = −γ2 + β1

(
Cρf − 1

2
Mρ− i

2
(λ + 2G)

(
η

κω

)
β2

±1

2

√(
i(λ + 2G)

(
η

κω

)
β2 −Mρ

)2

− 4

(
Mρf − i

(
η

ωκ

)
Cβ2

)
(Cρ− (λ + 2G)ρf )

)
,

m = 1, 2.

In (A.1) the plus sign is for m = 1 (P-waves) and the minus sign is for m = 2
(Biot slow waves). Then for m = 1, 2

am = ām

⎡
⎢⎢⎣

−1
2γG
ξm
0

⎤
⎥⎥⎦ , bm =

ām
qm

⎡
⎢⎢⎢⎣

2γ2G− ρ− ρfξm
γ

ρf + i
(

η
ωκ

)
β2ξm

−γ
(
ηL
κσ̄

)
β2ξm

⎤
⎥⎥⎥⎦ , m = 1, 2,(A.2)

where

ξm =

(
Cρf −Mρ− (q2

m+γ2)
β1

)
(
Mρf − i

(
η
ωκ

)
Cβ2

) =
(Cρ− (λ + 2G)ρf )(

(q2
m+γ2)
β1

− Cρf + i(λ + 2G)
(

η
ωκ

)
β2

) , m = 1, 2,

(A.3)

and

ām =

√
qm

ρ + 2ρfξm + i
(

η
ωκ

)
β2ξ2

m

, m = 1, 2.(A.4)

m = 3, 4 are transverse waves. For these modes

q2
m = −γ2 +

1

2G

(
ρ + iρ2

f

(
ωκ

η

)
+ i

σ̄μG

ω

)

∓ 1

2G

√(
i
σ̄μG

ω
− ρ− iρ2

f

(
ωκ

η

))2

− 4L2ρ2
fμG, m = 3, 4.(A.5)

In (A.5) the minus sign is for m = 3 (SV-waves) and the plus sign is for m = 4
(TM-waves). Then

am = − b̄m
qm

⎡
⎢⎢⎢⎣

−γ
G(γ2 − q2)

iγρf
(
ωκ
η

)
+ γLξm

−Lρf + i σ̄ω ξm

⎤
⎥⎥⎥⎦ , bm = b̄m

⎡
⎢⎢⎣

2γG
1
0
ξm

⎤
⎥⎥⎦ , m = 3, 4,(A.6)
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where

ξm =
ρfLμ(

iσ̄μ
ω

)
− q2

m − γ2
=

G

ρfL

(
q2
m + γ2 − ρ

G
− i

(
ρ2
f

G

)(
ωκ

η

))
, m = 3, 4,(A.7)

and

b̄m =

√
qm

G (q2
m + γ2) + ρfLξm − i

(
σ̄
ω

)
ξ2
m

, m = 3, 4.(A.8)

Appendix B. Eigenvectors for System 2. See also [17, 7]. The two modes
for system 1 are

• m = 1: horizontal shear wave (SH-wave);
• m = 2: transverse electric wave (TE-wave).

The eigenvalues are the same as for the transverse modes of System 1, i.e.,

q2
m = −γ2 +

1

2G

(
ρ + iρ2

f

(
ωκ

η

)
+ i

σ̄μG

ω

)

∓ 1

2G

√(
i
σ̄μG

ω
− ρ− iρ2

f

(
ωκ

η

))2

− 4L2ρ2
fμG, m = 1, 2.(B.1)

In (B.1) the minus sign is for m = 1 (SH-waves) and the plus sign is for m = 2
(TE-waves). The eigenvectors are of the form

am = ām

[
1
ξm

]
, bm =

ām
qm

[
Gq2

m

ρfL + ξm

(
γ2

μ − iσ̄
ω

)]
, m = 1, 2,(B.2)

where

ξm =
G

2ρfL

[(
iσ̄μ

ω

)
−
(
ρ

G
+ iω

ρ2
fκ

Gη

)]

∓ G

2ρfL

√√√√[(
iσ̄μ

ω

)
−
(
ρ

G
+ iω

ρ2
fκ

Gη

)]2

− 4
μρ2

fL
2

G
, m = 1, 2,(B.3)

and

ām =

√
qm

Gq2
m + ρfLξm + ξ2

m

(
γ2

μ − i σ̄ω
) .(B.4)

Again, in (B.3) the minus sign is for m = 1 (SH-waves) and the plus sign is for m = 2
(TE-waves).
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A QUEUE-LENGTH CUTOFF MODEL FOR A PREEMPTIVE
TWO-PRIORITY M/M/1 SYSTEM∗

QIANG GONG† AND RAJAN BATTA‡

Abstract. We consider a two-priority, preemptive, single-server queueing model. Each customer
is classified into either a high-priority class or a low-priority class. The arrivals of the two-priority
classes follow independent Poisson processes, and service time is assumed to be exponentially dis-
tributed. A queue-length cutoff method is considered. Under this discipline the server responds only
to high-priority customers until the queue length of the other class exceeds a threshold L. After
that the server switches to handle only the low-priority queue. Steady-state balance equations are
established for this system. Then we introduce two-dimensional generating functions to obtain the
average number of customers for each priority class. We then focus on the preemptive resume case
while allowing for weights associated with both priority class queues. We develop methodologies to
obtain the optimal cutoffs for the situation when the weights of both queues are constant (i.e., not a
function of queue length) and the situation when the weights change linearly with the queue lengths.
It is important to point out that our method does not lead to a closed-form exact solution, but rather
to a numerical approximation, from which cutoff policies are analyzed.

Key words. priority queue, queue-length cutoff, generating function

AMS subject classifications. 90-08, 60G99, 60-02

DOI. 10.1137/050648146

1. Introduction and literature review. Our research is primarily motivated
by a disaster-relief project which deals with how to rescue casualties after a disaster
occurs. We consider a dynamic disaster environment (e.g., earthquake), in which
thousands of casualties need to be treated. The casualties in such a disaster setting are
usually placed into four levels (see the description of HAZUS, a GIS-enabled software
used by the Federal Emergency Management Agency (FEMA) for the purpose of
earthquake loss estimation, in the paper by Al-Momani and Harrald [1]):

1. Severity level 1: injuries will require medical attention, but hospitalization is
not needed.

2. Severity level 2: injuries will require hospitalization but are not considered
life threatening.

3. Severity level 3: injuries will require hospitalization and can become life
threatening if not promptly treated.

4. Severity level 4: victims are killed by the earthquake.
In an earthquake disaster-relief setting (e.g., the one that occurred in Northridge, CA,
in 1994) severity level 1 and 4 calls are initially not responded to. Thus the system
operates as a two-priority queue, with severity level 3 being priority 1 and severity
level 2 being priority 2. Since injuries can rapidly deteriorate when unattended, it is
possible that severity level 2 injuries that are left unattended for a long period of time
can become even more critical than a typical severity level 3 injury. Thus operating in
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Fig. 1. Server cutoff model.

a strict priority queue model in a heavy-traffic situation would be detrimental. This
provides the motivation to study a two-priority queueing system with a queue-length
cutoff. This cutoff model is being implemented in the software for disaster relief being
developed at the Center for Multisource Information Fusion at the University at Buf-
falo (SUNY). Details of its effectiveness via case studies developed for an earthquake
scenario in Northridge, CA, will be presented in a later paper.

There are other applications of this queue-length cutoff model. For example,
telecommunication in ATM (asynchronous transfer mode) networks also has this fla-
vor. Voice data must flow through the network without noticeable distortion or delay.
Losing a chunk of voice data isn’t a problem, but a delay or receiving data out of
order is. So voice is “delay sensitive, loss insensitive.” On the contrary, computer
data are “delay insensitive, loss sensitive,” since individual chunks are not of much
use until they are all received, but in many cases data delay in transmission is often
acceptable. Based on the characteristics of both types of data, voice is classified as
a high-priority class, computer data as a low-priority class. Again, computer data
cannot be indefinitely delayed, so it makes sense to have a queue-length cutoff model
in such a situation.

Previous research in the area of priority queueing models may be categorized as
either server cutoff or queue-length cutoff. Figures 1 and 2 illustrate two straightfor-
ward examples for both types of models, respectively.

Depending upon the number of available servers, server cutoff discipline deter-
mines which classes of patients are qualified for service. The example shown in Figure
1 has two cutoffs, Nhigh and Nlow. Obviously, Nhigh is equal to the total number
of servers. Low-priority customers enter service only if fewer than Nlow(≤ Nhigh)
servers are busy. The purpose of this method is to reserve servers for high priorities.
Taylor and Templeton [2] studied two variants of a simple two-priority server cutoff
model: one assumes high-priority customers backlogged in the queue, while the other
assumes they are lost if all servers are busy. Schaack and Larson [3] extended the
two-priority case to the T -priority problem (T ≥ 3). In a subsequent paper, Schaack
and Larson [4] derived waiting time distribution of each class for an extension of this
model, which assumes that customers require a random number of servers for service.

The queue-length cutoff priority queueing model can be regarded as the dual
problem of the server cutoff model. Instead of considering the number of available
servers, it manipulates the system based on the queue lengths. In the example shown
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Fig. 2. Queue-length cutoff model.

in Figure 2, a cutoff number L is set on the low-priority queue. The servers process
the high-priority queue only if the low-priority queue length is less than or equal to
L. Once the threshold L is exceeded, part of or all of the servers go to serve the
low-priority queue. Gross and Harris [5] published solutions of expected queue length
and expected waiting time for a special two-priority model, which assumes the head-
of-the-line discipline (i.e., L = ∞). Miller [6] obtained the steady-state probabilities
by a matrix-geometric method for the same model. Recently, Knessl, Choi, and Tier
[7] derived the joint queue-length distribution as an integral for their dynamic two-
priority queue-length cutoff model. Our work builds upon their research by developing
methodologies to obtain the desired queue-length cutoff L in the preemptive resume
case for the situation when the weights associated with customers in both queues are
constant and the situation when these weights change linearly with the queue lengths.
In a disaster setting the weight signifies the importance associated with timely medical
treatment of the patient.

2. Model formulation. Customers are designated one of two priority classes
which are numbered as class-1 and class-2 so that the smaller the number, the higher
the priority. The arrivals follow independent Poisson processes with rates λ1 and λ2,
respectively. A single server processes both types of the customers with a mean rate μ.
In order to make the system stable, we assume the stability condition as ρ1 + ρ2 < 1,
where ρ1 = λ1

μ and ρ2 = λ2

μ .

Let X(t) and Y (t) be the number of class-1 and class-2 customers in the system
at time t, respectively. We consider the bivariate process {(X(t), Y (t)), t ≥ 0} with
state space S = {(i, j) : i, j = 0, 1, 2, . . . }. The steady-state probabilities are defined
as pij = Pr{in steady-state i class-1 customers and j class-2 customers in the system}.

The service discipline is controlled by the queue-length cutoff policy. A cutoff
number L is set on the lower priority class. If the number of customers in the lower
priority queue is less than or equal to L, only class-1 customers are served. Once
the threshold L is exceeded, the server preempts the customer of class-1 currently in
service. The server keeps serving class-2 customers until the queue length of class-
2 is shortened to L. Then the server preempts the class-2 customer who is being
processed and switches back to service class-1 customers. The sequence within each
class is ordered on a first come, first served basis. When there is an empty queue, the
server only processes the other queue regardless of the threshold L.
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Fig. 3. Rate transition diagram.

This problem, in summary, is a Poisson-arrival, exponential-service, single-server,
two-priority queue with the preemptive queue-length cutoff discipline.

3. Balance equations and generating functions. Our model is the same as
that in [7]. The rate transition diagram is shown in Figure 3. The system is separated
into two main parts by the threshold L. The first one gives class-1 customers higher
priority, while class-2 customers receive higher priority in the second one.

Equating flow in to flow out, we get the balance equations for all sets of states in
the dashed boxes in Figure 3 as follows:
i = 0 and j = 0:

(λ1 + λ2)p0 = μp01 + μp10 .(3.1)

i = 0 and 1 ≤ j ≤ L− 1:

(λ1 + λ2 + μ)p0j = λ2p0,j−1 + μp0,j+1 + μp1j .(3.2)

i = 0 and j = L:

(λ1 + λ2 + μ)p
0L

= λ2p0,L−1
+ μp

0,L+1
+ μp

1L
.(3.3)

i = 0 and j ≥ L + 1:

(λ1 + λ2 + μ)p0j = λ2p0,j−1 + μp0,j+1 .(3.4)

i ≥ 1 and j = 0:

(λ1 + λ2 + μ)pi0 = μpi+1,0 + λ1pi−1,0 .(3.5)

i ≥ 1 and 1 ≤ j ≤ L− 1:

(λ1 + λ2 + μ)pij = λ1pi−1,j + λ2pi,j−1 + μpi+1,j .(3.6)
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i ≥ 1 and j = L:

(λ1 + λ2 + μ)p
iL

= λ1pi−1,L
+ λ2pi,L−1

+ μp
i+1,L

+ μp
i,L+1

.(3.7)

i ≥ 1 and j ≥ L + 1:

(λ1 + λ2 + μ)p
ij

= λ1pi−1,j
+ λ2pi,j−1

+ μp
i,j+1

.(3.8)

In view of the difficulty in obtaining the solutions from the recursive method,
Knessl, Choi, and Tier [7] first derived the generating functions from the balance
equations, then got the probabilities by inverting the generating function. Of interest
in most applications are the measured system performances such as the expected
number of class-1 customers N1 and the expected number of class-2 customers N2 in
the system. However, their joint queue length is given by an integral which makes it
difficult to calculate or even estimate N1 and N2.

We calculate N1 and N2 by computing the first moment of the generating function.
To facilitate this we introduce the two-dimensional generating functions as follows:

Hj(w) =

∞∑
i=0

p
ij
wi, 0 ≤ j ≤ L− 1,(3.9)

H(w, z) =

∞∑
i=0

L−1∑
j=0

pijw
izj =

L−1∑
j=0

zjHj(w),(3.10)

G(w, z) =

∞∑
i=0

∞∑
j=L

pijw
izj ,(3.11)

F (w, z) = H(w, z) + G(w, z).(3.12)

4. Expressions for generating functions. Since the threshold L divides the
system into two parts, we need to calculate H(w, z) and L(w, z) separately to obtain
the generating function F (w, z) for the whole system.

We first consider H(w, z). From (3.1), (3.2), (3.5), and (3.6), it is found that

H(w, z) =

( μ

w
− μ

)
p

0 + λ2z
LHL−1(w) +

( μ

w
− μ

z

)∑L−1
j=1 p0jz

j − μzL−1p
0L

λ1w + λ2z − (λ1 + λ2 + μ) +
μ

w

.(4.1)

Details of this derivation are shown in Appendix A.
Similarly, (3.3), (3.4), (3.7), and (3.8) yield[

λ1w + λ2z − (λ1 + λ2 + μ) +
μ

z

]
G(w, z)

= zL
[
−λ2HL−1(w) + μ

(
1

z
− 1

w

)
HL(w) +

μ

w
p

0L

]
.

(4.2)

Details of this derivation are shown in Appendix B. By the method presented by
Knessl, Choi, and Tier [7], the left-hand side of (4.2) can be rewritten as

λ2

z
[(z − z−(w))(z − z+(w))]G(w, z),(4.3)
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where

z−(w) =
μ + λ1 + λ2 − λ1w −

√
(μ + λ1 + λ2 − λ1w)2 − 4λ2μ

2λ2
,(4.4)

z+(w) =
μ + λ1 + λ2 − λ1w +

√
(μ + λ1 + λ2 − λ1w)2 − 4λ2μ

2λ2
.(4.5)

By setting z = z−(w), we can get HL(w) in terms of HL−1(w) and p
0L

as

HL(w) =
z−(w) [ρ2wHL−1(w) − p

0L
]

w − z−(w)
.(4.6)

Substituting (4.6) into (4.2) gives

G(w, z) =

(
p

0L
− ρ2wHL−1(w)

ρ2 (w − z−(w))

)(
zL

z − z+(w)

)
.(4.7)

It follows that

F (w, z) =

( μ

w
− μ

)
p

0 + λ2z
LHL−1(w) +

( μ

w
− μ

z

)∑L−1
j=1 p0jz

j − μzL−1p
0L

λ1w + λ2z − (λ1 + λ2 + μ) +
μ

w

(4.8)

+

[
p

0L
− ρ2wHL−1(w)

ρ2 (w − z−(w))

] [
zL

z − z+(w)

]
.

In order to evaluate the expression for F (w, z) given in (4.8) p
0 , p0j (j = 1, . . . ,

L− 1), HL−1(w), and p
0L

have to be determined.
We first focus on finding the initial state probability p

0 . Intuitively, for our
problem p

0 is solely determined by μ, λ1, and λ2 and is not affected by the ordering of
service. Thus, the probability of idleness should be the same as the one in the M/M/1
model with two input streams. We formally establish this result in Proposition 4.1.

Proposition 4.1. The idle probability is given by p
0

= 1 − ρ1 − ρ2.
Proof. Setting z = 1 in (4.1) and (4.7), we have

H(w, 1) =

λ2HL−1(w) + μ

(
1

w
− 1

)∑L−1
j=1 p

0j
+ μ

(
1

w
− 1

)
p

0
+ μp

0L

λ1w − (λ1 + μ) +
μ

w

and

G(w, 1) =

(
p

0L
− ρ2wHL−1(w)

ρ2 (w − z−(w))

)(
1

1 − z+(w)

)
.

Then we set w = 1 in the equations above and use l’Hôpital’s rule to get

H(1, 1) =
μ

λ2

(
L−1∑
j=1

p0j + p
0L

)

and

G(1, 1) = − μ

λ2

(
L−1∑
j=1

p0j + p
0L

)
+

(
μ

μ− λ1 − λ2

)
p

0 .

By employing the condition that F (1, 1) = 1, we find that p
0 = 1 − ρ1 − ρ2.
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Now we are going to describe how to calculate p0j
(j = 1, . . . , L − 1). Define

p′
ij

(i, j = 1, 2, . . . ) to be the state probabilities in the head-of-the-line case. Miller
[6] presented a series of recursive formulas for calculating p′

ij
. Knessl, Choi, and Tier

[7] explained that p
ij in our model are the same as the corresponding p′

ij
for all i and

0 ≤ j ≤ L− 1. Therefore, Miller’s method [6] can be directly used for our problem to
obtain p

0j
(j = 1, . . . , L− 1).

Our next focus is on deriving the expression for HL−1(w). Equations (3.1) and
(3.5) yield [

λ1w − (λ1 + λ2 + μ) +
μ

w

]
H0(w) = −μp01 + μ

(
1 − w

w

)
p

0
.(4.9)

From (3.2) and (3.6), the relationship between Hj(w) and Hj−1(w) is found as[
λ1w − (λ1 + λ2 + μ) +

μ

w

]
Hj(w) + λ2Hj−1(w)

= −μp0,j+1 +
μ

w
p

0j , 1 ≤ j ≤ L− 1.
(4.10)

By setting A(w) = λ1w − (λ1 + λ2 + μ) + μ
w and solving (4.9) and (4.10) recursively,

we can establish the following result (presented without proof).
Proposition 4.2. The general form of Hj(w) (1 ≤ j ≤ L− 1) is

Hj(w) = μ

[
− 1

A(w)
p

0,j+1
+

(
A(w) + wλ2

w (A(w))
j+1

)(j−1∑
k=0

(A(w))
j−k−1

p
0,j−k

(−λ2)
k

)
(4.11)

+ (−λ2)
j

(
1 − w

w (A(w))
j+1

)
p

0

]
, 1 ≤ j ≤ L− 1.

By setting j = L− 1 and w = 1 in (4.11), we get p
0L

as

p
0L

= ρ2HL−1(1).(4.12)

Knessl, Choi, and Tier [7] presented an exact formula of HL−1(1) as an integral.
However, as they noticed, for L > 30 the calculation becomes intractable. Thus
we use an approximate method to calculate HL−1(1). From (3.9) we know that

HL−1(1) =
∑∞

i=0 pi,L−1
. Thus HL−1(1) is approximated by

∑M
i=0 pi,L−1

, where M
is a sufficiently large number—in particular, we will later see in section 7 that using
M = 5L works well in numerical tests.

5. Derivation of expected numbers in system. Armed with an expression
of the generating function F (w, z), we proceed to calculate L1 and L2. We take the
partial derivatives of F (w, z) in terms of both w and z and evaluate at (1,1) to get
the results:

N1 =
2μλ1

(∑L−1
j=1 p

0j + p0

)
− 2μλ2H

′
L−1(1) − λ2(μ− λ1)H

′′
L−1(1)

2(μ− λ1)2

+
2H ′

L−1(1) + H ′′
L−1(1)

2(z′−(1) − 1)(1 − z+(1))
−

(HL−1(1) + H ′
L−1(1))(z′′−(1))

2(1 − z′−(1))2(1 − z+(1))

−
(HL−1(1) + H ′

L−1(1))(z′+(1))

(1 − z′−(1))(1 − z+(1))2

(5.1)
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and

N2 = (L− 1)HL−1(1) +
1

ρ2

L−1∑
j=1

(j − 1)p
0j

+

[
HL−1(1) + H ′

L−1(1)

z′−(1) − 1

] [
L(1 − z+(1)) − 1

(1 − z+(1))2

]
.

(5.2)

To evaluate N1 and N2, we observe that we further need to know the values of
z′−(1), z′′−(1), z+(1), z′+(1), H ′

L−1(1), and H ′′
L−1(1). These are as follows:

z′−(1) =
λ1

μ− λ2
, z′′−(1) =

2μλ2
1

(μ− λ2)3
,

z+(1) =
μ

λ2
, z′+(1) = − μλ1

(μ− λ2)λ2
,

H ′
L−1(1) = μ

[(
λ1 − μ

λ2
2

)
p

0L
+

(
λ1 + λ2 − μ

λ2
2

)(
L−1∑
j=1

p0j

)
+

p
0

λ2

]
,

and

H ′′
L−1(1)

= μ

[(
2μλ2 + 2(μ− λ1)

2

λ3
2

)
p

0L
+

(
2μλ2 + 2(μ− λ1 − λ2)(Lμ− Lλ1 + λ2)

λ3
2

)(L−1∑
j=1

p0j

)

+

(
2(μ− λ1 − λ2)(λ1 − μ)

λ3
2

)(
L−1∑
j=2

(j − 1)p
0j

)
−
(

2(Lμ− Lλ1 + λ2)

λ2
2

)
p

0

]
.

6. Properties. Having studied the generating functions and derived the formu-
las for N1 and N2, we are ready to discuss some important properties of this queueing
system.

As mentioned previously in section 1, our queueing model is a generalization of
the head-of-the-line model. The first two properties are straightforward to establish.
The reader is referred to [8] for detailed proofs.

Property 6.1. When L = ∞, the queue-length cutoff model is reduced to the
head-of-the-line model.

The next property has been discovered through intuitive observation. The point
here is to investigate the mean number of customers (including both class-1 and class-
2) in the system. If we consider the two classes as a whole, it is instructive to point out
that changing the value of L only changes the order of the service and never changes
the mean number of customers in the system. Clearly, the mean number of customers
in our problem is the same as the one in the head-of-the-line model, or even the same
as the one in the nonpriority M/M/1 model. It needs to be noted that the service
rates of the two classes have been assumed to be equal and the classes have the same
weight—hence the class-1 and class-2 jobs are indistinguishable.

Property 6.2. Independent of the queue-length cutoff L, the mean number of
customers N1 + N2 is a constant, which is given by

N1 + N2 =
λ1 + λ2

μ− λ1 − λ2
.(6.1)



PREEMPTIVE PRIORITY CUTOFF 107

Although the mean total number of customers in the system is a constant, it is
quite natural to see that N1 and N2 do change as L changes. Consider the example of
increasing the value of L. It is intuitively clear that the server spends more time on
the high-priority queue than before. Thus N1 decreases as L increases. Conversely,
N2 is an increasing function in terms of L.

Basically, there are two different preemptive priority disciplines: preemptive re-
sume and preemptive repeat. Preemptive resume allows preempted customers to
continue their service where they left off when they reenter service, while preemptive
repeat requires preemptive customers to pick up a new value of service time from
the service-time distribution whenever they reenter service. The following property is
presented and proved under the first case only, i.e., preemptive resume.

Property 6.3. Under the preemptive resume priority discipline, suppose there
are two queue-length cutoffs L and L′, where L < L′. Then the following statements
are true:

N1(L) ≥ N1(L
′)(6.2)

and

N2(L) ≤ N2(L
′).(6.3)

Proof. Since it is not even clear how HL−1(1) and
∑L−1

j=1 p
0j

behave as L changes,
it seems impossible to prove this property directly by (5.1) and (5.2). The remarkable
difficulty makes us resort to the following method.

We consider an arbitrary busy period. Obviously, when the priority discipline is
preemptive resume, the total service time of a class-1 or class-2 customer is in no way
affected by the number of times he/she is preempted. That is, changing the value of
L only changes the order of service, while the duration of any busy period is always
equivalent to the total service time of the customers in that period.

A typical example is shown in Figure 4, where the queue-length cutoff L = 4. It
is instructive to see that N1 and N2 in a busy period can be calculated as

Ni =
Area(N

L

i )

D
, i = 1, 2,(6.4)

where

Area(N
L

i ) = area covered by class-i customers given that the queue-length

cutoff is L, and

D = duration of that busy period.

In this proof, we only focus on (6.2). The assertion of (6.3) can be derived in a similar
manner. Suppose the current queue-length cutoff is L. If there is no preemption for
class-1 customers in this period, it is easy to see that the number of preemptions for
class-1 customers is still zero if L is increased to L′.

Consider now that there is at least one preemption for the high-priority queue.
We pick up an arbitrary preemption to study. An example is shown in Figure 5. We
can see that the preempted time point and the resume time point have been shifted
from PL and RL to PL′

and RL′
, respectively. Clearly, this shifting does not affect

the area before time point PL. Changes only occur after that time point. Since the
interarrival time between two customers and the service time of a customer cannot
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Fig. 4. An example of a busy period.
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Fig. 5. An example of a preemption.

be zero, the preemption time RL′ − PL′
is strictly less than the one RL − PL. This

result leads to another conclusion: at any time t (≥ PL), X(t) in the second case is
less than or equal to the corresponding quantity in the first case. Thus, when L is
increased to L′, the area after time point PL is strictly decreased. Combining the two
areas together, we can conclude that Area(N1) is a decreasing function of L. This
yields the final result that N1(L) ≥ N1(L

′) when L < L′. The property follows.
Property 6.2 tells us that the total number of customers in the system is constant.

However, let us consider an example. Suppose that there are 8 priority-1 customers
and 2 priority-2 customers in case 1 and that there are 2 priority-1 customers and
8 priority-2 customers in case 2. Although the total number of customers is 10 for
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both cases, it is obvious that case 1 is much worse than case 2. The reason is that
we usually assign a higher weight, π1, to priority-1 customers and a lower weight,
π2, to priority-2 customers. In consideration of the weighted number of customers in
the system, Properties 6.2 and 6.3 lead us to the following result for minimizing the
function π1N1 + π2N2 for certain choices of weights.

Property 6.4. In the preemptive resume model, suppose that π1 and π2 are
constant, where π1 > π2 > 0 and π1 + π2 = 1. The optimal queue-length cutoff is
given by L∗ = ∞.

Proof. We consider two queue-length cutoffs L and L′ with L < L′. Suppose that
the average number of priority-1 customers is N1 and that the average number of
priority-2 customers is N2 if the cutoff is L. Thus the weighted number of customers
for this case is calculated as

π1N1 + π2N2.(6.5)

When L is increased to L′, Property 6.3 tells us that N1 decreases. Suppose the
number of priority-1 customers changes to N1 − ε, where ε > 0. Then Property 6.2
shows that the number of priority-2 customers changes to N2 + ε. The weighted
number of customers is given by

π1N1 + π2N2 + (π2 − π1)ε.(6.6)

It is easy to see that the value of (6.6) is smaller than the value of (6.5). Thus we
conclude that the optimal cutoff is given by L∗ = ∞.

We now address the more interesting case—which is particularly relevant to the
disaster-relief application—where the weight of a priority class may vary as the queue
length changes. Generally speaking, the weight increases (decreases) as the queue
length increases (decreases). Since π1 and π2 correlate each other (π1 = 1 − π2),
we only need to specify one of them, e.g., π2. We consider the case when the weight
is a linear function of the queue length, i.e., the function can be expressed as π2 =
KN2 +C. The function is shown in Figure 6, where N2Lmin and N2Lmax stand for the
numbers of priority-2 customers under the minimal cutoff (L = 3) and the maximal
cutoff (L = ∞) cases, respectively. The weights, π2Lmin and π2Lmax , for these two
extreme cases are assumed to be given. The parameters K and C are then determined
uniquely by the two points (N2Lmin , π2Lmin

) and (N2Lmax , π2Lmax) as follows:

K =
π2Lmax − π2Lmin

N2Lmax −N2Lmin

(6.7)

and

C = π2Lmax − (π2Lmax − π2Lmin)N2Lmax

N2Lmax −N2Lmin

.(6.8)

The weighted number of customers for the minimal cutoff case is given by

π1LminN1Lmin + π2LminN2Lmin .(6.9)

Assume that L′ is an arbitrary cutoff that is larger than Lmin. Define δ and Δ to
be the values increased from π2Lmin

to π2L′ and from N2Lmin
to N2L′ , respectively.

We can verify that δ = KΔ. Then the weighted number of customers for this case is
calculated as

(π1Lmin − δ)(N1Lmin − Δ) + (π2Lmin + δ)(N2Lmin + Δ),(6.10)
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Fig. 6. A linear weight function.

which is equivalent to

(π1LminN1Lmin + π2LminN2Lmin)

+ {2KΔ2 + [(π2Lmin − π1Lmin
) + (N2Lmin −N1Lmin)]Δ}.

(6.11)

Comparing (6.11) with (6.9), we see that the optimal cutoff is determined by the
discrete function

f(Δ) = 2KΔ2 + [(π2Lmin
− π1Lmin

) + (N2Lmin
−N1Lmin

)]Δ.(6.12)

Since K > 0, the value Δ∗, which minimizes the continuous equation (6.12), is

(6.13)

Δ∗ =
(1 − 2π2Lmin

)(N2Lmax
−N2Lmin

) + (π2Lmax
− π2Lmin

)(N1Lmin
−N2Lmin

)

4(π2Lmax − π2Lmin)
.

However, considering that 0 ≤ Δ ≤ N2Lmax − N2Lmin , we can identify the following
three cases:

Case 1: Δ∗ ≤ 0. In this case, L∗ = Lmin.
Case 2: Δ∗ ≥ N2Lmax −N2Lmin . In this case, L∗ = Lmax.
Case 3: 0 < Δ∗ < N2Lmax

− N2Lmin
. The function f(Δ) in our research is

discrete. Usually the optimal Δ∗ does not correspond to points in this discrete set.
In this case, we only need to identify two points as follows:

Δ1 = min{Δ : f(Δ) ≤ f(Δ∗)}

and

Δ2 = min{Δ : f(Δ) > f(Δ∗)}.
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Table 1

An example of the experiments with λ1 = 0.3, λ2 = 0.2, and μ = 1.

L Exact method Approximate method Error
3 0.078103088 0.0781031 1.49418E-07
4 0.031085012 0.031085 3.89899E-07
5 0.012962869 0.0129629 2.39916E-06
6 0.005570972 0.00557097 3.50747E-07
7 0.002444427 0.00244443 1.22033E-06
8 0.001088903 0.0010889 2.50803E-06
9 0.000490679 0.000490678 1.47469E-06

10 0.000223131 0.000223118 5.81318E-05

Fig. 7. Computational results of N1, N2, and N1 + N2.

The optimal value of Δ, denoted as Δ∗∗, is given by

Δ∗∗ = argmin{f(Δ1), f(Δ2)}.

The cutoff L∗ which corresponds to Δ∗∗ is the optimal solution.

7. Computational results. Before proceeding with the numerical results, we
first investigate the approximate method of calculating H

L−1
(1). As discussed in sec-

tion 4, for L > 30 an appropriate value of M needs to be used in order to make∑M
i=0 pi,L−1

as a good estimation of H
L−1

(1). We conduct a series of numerical ex-
periments using various combinations of λ1 and λ2. We employ eight different values
of L (from 3 to 10) in each experiment. The exact results calculated by the method

in [7] are used as benchmarks. After some trial runs, we find that
∑M

i=0 pi,L−1
can

provide a good approximation of H
L−1

(1) if M = 5L. In most of the cases, the errors
are within 0.1%. Table 1 shows a sample of results from these experiments.

Next we focus on calculating N1 and N2. The results are shown in Figure 7.
We can see that for all cases our model approaches the head-of-the-line case as L
increases. The total number of customers in the system is a constant, while N1 and
N2 decrease and increase, respectively.
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Table 2

Optimal cutoffs.

L∗ Weighted no. of customers
λ1 = 0.1, λ2 = 0.1 3 0.118114
λ1 = 0.1, λ2 = 0.8 5 3.9845
λ1 = 0.45, λ2 = 0.45 9 4.39441
λ1 = 0.8, λ2 = 0.1 13 4.47104
λ1 = 0.1, λ2 = 0.88 37 24.0178
λ1 = 0.49, λ2 = 0.49 42 24.2835
λ1 = 0.88, λ2 = 0.1 46 24.4654

Fig. 8. Computational results of weighted number of customers.

We now present an example which calculates the weighted number of customers
under the case of a linear weight function. We set π2Lmin

= 0.45 and π2Lmax = 0.65.
The results are shown in Table 2. We consider seven different combinations of λ1

and λ2. In the case of λ1 = λ2 = 0.1, since Δ∗(= −0.006849) is less than zero,
we have L∗ = Lmin. The values of Δ∗ in all the other cases satisfy the condition
0 < Δ∗ < N2Lmax −N2Lmin , and thus different finite optimal cutoffs are obtained as
shown in Table 2.

Figure 8 also illustrates the detailed results. When both λ1 and λ2 are small
(λ1 = λ2 = 0.1), the change of the average weighted number of customers is negligible
with a change in the value of L. This is because the system is in an unsaturated
status, which leads to very little change of N1 and N2 values. When either λ1 or
λ2 (or both) increases, the average number of customers becomes much larger than
in the unsaturated case. We focus on the three cases (λ1 = 0.1, λ2 = 0.8; λ1 =
0.45, λ2 = 0.45; λ1 = 0.8, λ2 = 0.1) in which the total arrival rates are the same.
We can see that the optimal cutoff increases as λ1 increases. Given the condition
that λ1 + λ2 is a constant, Property 6.2 shows that N1 + N2 is a constant no matter
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what the specific values of λ1 and λ2 are. Thus the increase of λ1 causes an increase
in N1 and a decrease in N2. More priority-1 customers lead to an increase in the
optimal cutoff value. As the system approaches the saturated status, both N1 and N2

increase dramatically. Consequently, the average number of customers also increases
significantly. This causes a sharp increase in the optimal cutoff value.

8. Summary and future work. A two-priority, preemptive, single-server sys-
tem with a queue-length cutoff queueing discipline has been studied in this paper.
This is a generic problem for various applications such as disaster relief and telecom-
munication. Expressions for calculating the number of class-1 customers and the
number of class-2 customers are developed based on a generating function approach.
The method we present does not lead to a closed-form solution, but rather to an
effective numerical approximation.

We have shown that our model reduces to the head-of-the-line model if L = ∞.
The total number of customers in the system is shown to be constant with respect to L.
Then we focus on the preemptive resume case, in which N1 and N2 are decreasing and
increasing functions of L, respectively. The weighted average number of customers is
first analyzed for the case where the weights for both queues are constant. We prove
that the optimal policy is to set L∗ = ∞. Then the case where the weights change
linearly with the queue lengths is analyzed and a procedure is developed to find the
optimal cutoff. Numerical results illustrate the properties and other results.

There are several possible directions for future work:
(1) In our model, the moment that the number of low-priority jobs hits threshold

L, the server stops working on high-priority jobs entirely. An alternative
threshold policy in which the server is shared when the threshold is reached
should be studied.

(2) For analytical tractability we assumed that the service rate for the high- and
low-priority jobs is the same. The more realistic case where the service rates
are class dependent should be studied.

(3) Another direction of future work is to consider the use of an alternate solution
method, namely, dimensionality reduction for Markov chains. The work of
Osogami, Harchol-Balter, and Scheller-Wolf [9] serves as a useful starting
point.

(4) A further opportunity is in analyzing the multiserver version of our model,
which is closer to reality for a disaster-relief application.

(5) By applying the memoryless property of the exponential distribution it may
be possible to establish Property 6.3 for the preemptive repeat case.

Appendix A. Derivation of (4.1). From (3.10), we get

(λ1 + λ2 + μ)H(w, z)

= (λ1 + λ2 + μ)

(
p0 +

L−1∑
j=1

p0jz
j +

∞∑
i=1

pi0w
i +

∞∑
i=1

L−1∑
j=1

pijw
izj

)
.

(A.1)

From (3.1), (3.2), (3.5), and (3.6), the right-hand side of (A.1) can be written as

(λ1 + λ2 + μ)p0 +

L−1∑
j=1

(λ2p0,j−1 + μp0,j+1 + μp1j )z
j +

∞∑
i=1

(μpi+1,0 + λ1pi−1,0)w
i

+

∞∑
i=1

L−1∑
j=1

(λ1pi−1,j + λ2pi,j−1 + μpi+1,j )w
izj .

(A.2)
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Regrouping the terms in (A.2) according to λ1, λ2, and μ, we have

(λ1 + λ2 + μ)H(w, z)

= λ1

(
p

0 +

∞∑
i=1

pi−1,0w
i +

∞∑
i=1

L−1∑
j=1

p
i−1,j

wizj

)

+λ2

(
p

0
+

L−1∑
j=1

p
0,j−1

zj +

∞∑
i=1

L−1∑
j=1

p
i,j−1

wizj

)

+μ

[
p0

+

L−1∑
j=1

(p
0,j+1

+ p
1j

)zj +

∞∑
i=1

p
i+1,0

wi +

∞∑
i=1

L−1∑
j=1

p
i+1,j

wizj

]
.

(A.3)

Then we arrange the terms on the right-hand side in (A.3) and obtain

(λ1 + λ2 + μ)H(w, z)

= λ1wH(w, z) + λ2(zH(w, z) − zLHL−1(w))

+
μ

w
H(w, z) +

(
μ

z
− μ

w

) L−1∑
j=1

p0jz
j + μp0 −

μ

w
p0 + μzL−1p

0L
.

(A.4)

Equation (A.4) immediately yields

H(w, z) =

( μ

w
− μ

)
p

0
+ λ2z

LHL−1(w) +
( μ

w
− μ

z

)∑L−1
j=1 p

0j
zj − μzL−1p

0L

λ1w + λ2z − (λ1 + λ2 + μ) +
μ

w

.

(A.5)

Appendix B. Derivation of (4.2). From (3.11), we get

(λ1 + λ2 + μ)G(w, z)

= (λ1 + λ2 + μ)

(
p

0L
zL +

∞∑
i=1

p
iL
wizL +

∞∑
j=L+1

p0jz
j +

∞∑
i=1

∞∑
j=L+1

pijw
izj

)
.

(B.6)

From (3.3), (3.4), (3.7), and (3.8), the right-hand side of (B.6) can be written as

zL(λ2p0,L−1
+μp

0,L+1
+μp

1L
)+ zLs

∞∑
i=1

(λ1pi−1,L
+λ2pi,L−1

+μp
i+1,L

+μp
i,L+1

)wi

(B.7)

+

∞∑
j=L+1

(λ2p0,j−1 + μp0,j+1)z
j +

∞∑
i=1

∞∑
j=L+1

(λ1pi−1,j + λ2pi,j−1 + μpi,j+1)w
izj .
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Regrouping the terms in (B.7) according to λ1, λ2, and μ, we have

(λ1 + λ2 + μ)G(w, z)

= λ1w

(
zL

∞∑
i=1

p
i−1,L

wi−1 +

∞∑
i=1

∞∑
j=L+1

pi−1,jw
i−1zj

)

+λ2z

(
zL−1p

0,L−1
+

∞∑
j=L+1

p0,j−1z
j−1 + zL−1

∞∑
i=1

p
i,L−1

wi

+

∞∑
i=1

∞∑
j=L+1

pi,j−1w
izj−1

)
+

μ

z

[
zL+1(p

0,L+1
+ p

1L
) +

∞∑
j=L+1

p
0,j+1

zj+1

+ zL+1
∞∑
i=1

(p
i+1,L

+ p
i,L+1

)wi +

∞∑
i=1

∞∑
j=L+1

pi,j+1w
izj+1

]
.

(B.8)

Then we arrange the terms on the right-hand side in (B.8) and obtain

(λ1 + λ2 + μ)G(w, z)

= λ1wG(w, z) + λ2zG(w, z) + λ2z
LHL−1(w)

+
μ

z
G(w, z) + zL

[
μ

(
−1

z
HL(w) +

1

w
HL(w)

)
− μ

w
p

0L

]
.

(B.9)

Equation (B.9) immediately yields[
λ1w + λ2z − (λ1 + λ2 + μ) +

μ

z

]
G(w, z)

= zL
[
−λ2HL−1(w) + μ

(
1

z
− 1

w

)
HL(w) +

μ

w
p

0L

]
.

(B.10)
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FLAME BALLS FOR A FREE BOUNDARY COMBUSTION MODEL
WITH RADIATIVE TRANSFER∗
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Abstract. We study radial flame ball solutions of a three-dimensional free boundary problem
(FBP), which models combustion of a gaseous mixture with dust in a microgravity environment.
The model combines diffusion of mass and temperature with reaction at the flame front, the reaction
rate being temperature dependent. The radiative flux due to the presence of dust enters the equation
for the temperature in the form of a divergence term. This flux is modeled by Eddington’s radiative
transfer equation. The main parameters are the dimensionless opacity and the ratio of radiative
and thermal fluxes. We prove existence of spherical flame ball solutions for the FBP. Bifurcation
diagrams are obtained, exhibiting the multiplicity of solutions. Singular limit cases of the parameter
values are also discussed.

Key words. flame balls, radiative transfer, free boundary problem, existence
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1. Introduction. Combustion processes in gaseous mixtures exhibit a variety of
phenomena, such as propagating flame fronts, and, in zero- or microgravity situations,
flame balls. The latter are perhaps harder to observe, but the advantage is that they
are stationary. From a mathematical point of view they are easier to understand,
namely as equilibria rather than traveling wave solutions of the mathematical models
used to describe the combustion processes. From a physical point of view, because
of the force and speed of the reaction, it is hard to do controlled experiments on
flame fronts, whereas the combustion is much less violent in flame balls, which can
be observed for prolonged periods of time at the cost of having to transfer the exper-
iment to a microgravity environment. In any case, the high costs and experimental
difficulties in combustion research highlight the need for a thorough understanding of
the mathematical models.

Since the work of Zeldovich et al. [1], flame balls are known to exist for models
of combustion with simple chemistry, such as a one step reaction in which a gaseous
reactant is converted into a gaseous product. Figure 1 is a sketch of a flame ball in
the nonradiative case. Note that, in this particular situation, the temperature θb in
the burnt region is constant inside the ball. In this model, commonly referred to as
the adiabatic case, flame balls are linearly unstable, in apparent agreement with the
absence of experimentally observed flame balls. That was, until 1984, when Ronney
discovered, by surprise, the existence during drop tower experiments of physical flame
balls, later confirmed by experiments in the space shuttle [2, 3]. Since then, several
effects have been taken into account in combustion models to explain stabilization of
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fuel mass
fraction

temperature

Interior filled with combustion 

products

Reaction zone

Fuel and oxygen diffuse inward

Heat and products diffuse outward

R radius r

Fig. 1. Profile of the temperature and the mass fraction variables in the adiabatic case. The
radius of the flame ball is denoted by R, corresponding to the flame front.

flame balls, particularly (radiative) heat losses from the combustion products inside
the flame ball. We refer to [3] and references therein; see also the SOFBALL (structure
of flame balls at low lewis number) home page [4].

In fact, the radiative transfer of heat in combustion processes taking place in inert
not fully transparent media (e.g., dust, porous media, . . . ) involves both emission and
absorption of radiation and may significantly influence the flame temperature (see
Figure 2), its propagation speed, and the flammability of the medium itself. This
occurs, for instance, in forest fires and fires in confined spaces such as tunnels, and
the importance of radiative transfer has been noted and stressed in [5, 6, 7]. In this
paper, we concentrate on the effects of radiative transfer on flame balls.

There are two common formulations for modeling combustion processes: the
reaction-diffusion and the free boundary formulation. Although both formulations
are widely used in the combustion literature, the relation between the two approaches
has so far largely been based on numerical simulation and heuristic arguments.

The basic thermo-diffusive model of combustion with simple chemistry is a reaction-
diffusion system (RDS) that is written as

Yt =
1

Le
ΔY − Y F (θ),(1a)

θt = Δθ + Y F (θ),(1b)

where Y denotes the mass fraction of the reactant, θ the temperature, and Le the
Lewis number (ratio between conductivity and diffusivity). The function F is an
Arrhenius-type reaction rate involving a small parameter ε which is the inverse of the
activation energy. The Arrhenius law is often modified by the choice of an ignition
temperature, below which the reaction rate is taken to be zero. In this framework,
(linearly) unstable flame balls are known to exist. For Lewis number close to unity,
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radius r
RZeld Rrad

adiabatic profile

radiative profile

Fig. 2. Difference of temperature profiles in the adiabatic and in the radiative case.

the growth of the radius has been described using an integro-differential equation
derived formally by Buckmaster, Joulin, and Ronney [8] and rigorously validated by
Lederman, Roquejoffre, and Wolansky [9].

When one assumes that the flame occurs in a very thin region, it is quite natural
to define a free boundary problem (FBP). Its derivation from the RDS formulation
has been justified formally in [10] under the assumption of high activation energy.
Its validity is also confirmed by numerical simulations on the RDS, and its great
advantage is that several analytical aspects are simpler to treat. The FBP reads as
follows:

Yt =
1

Le
ΔY for x �∈ R(t),(2a)

θt = Δθ for x �∈ R(t),(2b)

with

[θ] = Y = 0, −[θn] =
1

Le
[Yn] = F (θ), for x ∈ R(t),(2c)

where R(t) represents the location of the free boundary (the flame front) and brack-
ets denote jumps across the free boundary (in the direction of the normal n). The
mass flux into the flame is balanced by (reaction) heat flux coming out of the flame,
with a (predominantly) temperature dependent reaction rate. Note that at the flame
front we impose the condition that Y = 0. Usually, one imposes only that the jump
[Y ] = 0, silently assuming that Y ≡ 0 on the burnt side of the flame front. Without
such an assumption, the FBP formulation with [Y ] = 0 instead of Y = 0 is underde-
termined. As an FBP this model should not be confused with the well-studied model
for nearly equidiffusional flames (NEF), which was derived by Sivashinsky by means
of an asymptotic analysis, in which he coupled the deviation of the Lewis number
from unity to ε, the inverse of the activation energy (see [11, 12]), and derived what
is now known as the Kuramoto–Sivashinsky equation.
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The remaining step is to incorporate a model for the radiative effects. The first
models developed by Buckmaster, Joulin, and Ronney [8, 13] and Shah, Thachter, and
Dold [10], for example, are based on rather ad hoc heat loss assumptions (whereas
in the present paper we will consider a more thorough radiative transfer model). We
would like to recall at this point some results obtained in this context. In [8], heat
losses are assumed to occur in the volume enclosed by the flame sheet only. In this
framework two stationary solution branches exist, corresponding to small and large ra-
dius. Concerning the ensuing stability issues, the authors showed that, provided that
the Lewis number is less than unity, all small flames are unstable to one-dimensional
(radial) perturbations. Large flames are unstable to three-dimensional perturbations,
but only if they have a radius greater than some critical value. Thus there is a band
of large flames, lying between the quenching point and unstable flames, that are sta-
ble. In [13], the authors extend this result by including the effects of heat loss in
the far field (unburned gas), and they conclude that far field losses do not qualita-
tively change the (stability) properties of the solutions. Finally, in [10], flame balls
are studied in a porous medium that serves to exchange heat with the gas, and two
heat loss models are considered. One of these treats the heat loss as being constant
in the burnt region and linear in the unburned region. The other does not distinguish
between burnt and unburnt gas and is based on a (nonlinear) Stefan’s law. For both
heat loss models, the authors find, again, two branches of solutions of small and large
flame balls, respectively. For Lewis number greater than unity the solutions are un-
stable, while at Lewis number less than unity part of the branch of large flame balls
becomes stable, solutions with the nonlinear radiative law being stable over a smaller
range of parameters. The stable parameter region increases when the heat capacity
of the porous medium is increased. It is clear from the considerations in [8, 10, 13]
that the stability properties depend strongly on the Lewis number. More details and
a comparison with our model can be found in section 4.

In this paper, we would like to go one step further in the description of the
radiative effects and introduce a physically more realistic radiative transfer model.
Let us start with a microscopic description of the radiative transfer, which is given
by the equation

∂tI + Ω · ∇I = σ(B(ν, θ) − I),

where I = I(x, t,Ω, ν) is a total radiative intensity, x the position, t the time, Ω
the direction of emission vector, ν the frequency, σ the opacity of the medium, and

B(ν, θ) the Planck distribution: B(ν, θ) = 2hν3

c2 (exp(hνkθ ) − 1)−1. Since numerical
simulations of this model are very cumbersome, radiation is most commonly described
by simplified models, such as the (Milne–)Eddington diffusion equations, valid in the
limit of isotropic radiation; the Rosseland model, valid for high opacity media; or the
optically thin model, valid for nonabsorbent media [14, 15].

In this paper we adopt the Eddington diffusion model [14, 15, 16, 17, 18, 19],
namely,

−∇(∇ · q) + 3α2q = −α∇θ4,(3)

where q is the radiative flux. Thus, the radiative effects are a direct consequence
of temperature variations. Following Joulin and Buckmaster and coworkers [5, 6, 7],
these radiative effects couple back to the temperature equation, in which the diver-
gence of the radiative flux appears with coupling constant β, the Boltzmann constant.
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Thus β is a measure of the ratio between the radiative and the diffusive flux. For
flame fronts, this extended model was proposed and studied in [5, 6, 7], and in [20, 21].

In this paper we study equilibria of the resulting FBP in the radially symmetric
case, i.e., steady spherically symmetric flame balls. If we set r = |x|, we may thus
write the Laplacian operator as Δ = ∂rr + 2

r∂r, so that the problem can be viewed as
a system of ordinary differential equations. Hence, throughout the paper all functions
depend on the radial coordinate r only, and they all have zero derivative at r = 0.
To make the mathematical analysis easier, we do not use the vector equation (3) but
work with the scalar equation

−Δu + 3α2u− αΔθ4 = 0,

where −u = ∇ · q, the divergence of the radiation flux as it appears in the modified
temperature equation. This equation is nonlinear and therefore does not allow us to
compute explicit solutions for the full problem defined below. On the other hand, if
one considers θ instead of θ4, i.e., the “linear” problem, one can write down explicitly
the solution, and in section 4 we compare the solutions of the linear and nonlinear
equations. The FBP reads

1

Le
ΔY = 0 for r �= R,(4a)

−Δθ − βu = 0 for r �= R,(4b)

−Δu + 3α2u− αΔθ4 = 0.(4c)

Equation (4c) is satisfied in the whole space in the sense of the distributions (and
classically for r �= R). The jump conditions at r = R are

[θ] = Y = 0, −[θr] =
1

Le
[Yr] = F (θ(R)),(4d)

with u being continuous, while the size of the jump in ur follows automatically
from (4c) and (4d). The asymptotic boundary conditions are

Y → Yf , θ → θf , u → 0 as r → ∞.(4e)

The parameters θf and Yf denote the temperature and the mass fraction far away
in the fresh region. We recall that R is the free boundary variable corresponding to
the flame front, and that F (θ(R)) is the reaction rate evaluated at r = R. Note that
we will not specify the reaction rate and work only with general reaction rates F .
The reason is that, to prove existence properties, we need to know only that F is a
positive function of the temperature at the flame front. The main result of this paper
is the following.

Theorem 1 (existence). Let α ≥ 0, β ≥ 0, let F be continuous and positive, and
let θf > 0, Yf > 0. Then there exists a radial solution (θ(r), Y (r), u(r), R) to (4).
Moreover, for generic choices of the parameters the number of solutions is odd.

Let us briefly outline the method of the proof. We first observe that the FBP
formulation, with the Arrhenius law acting only on the flame front, allows us to
decouple (4a) for Y from the two others, (4b) and (4c). The only bounded function
Y which solves (4a) and satisfies Y = 0 at r = R and Y → Yf as r → ∞ is given by

Y (r) =

{
0 for r ≤ R,
Yf

(
1 − R

r

)
for r > R.

(5)
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Here R is still unknown. We now drop one of the free boundary conditions, namely
the last equality in (4d), and solve the problem with R as a parameter. In other words,
we drop the reaction rate and fix R. The next theorem provides us with a unique
solution of the resulting reduced problem, parameterized by the now prescribed flame
ball radius R.

Theorem 2 (uniqueness and existence for R fixed). Fix R > 0 and let α ≥ 0,
β ≥ 0, θf > 0, Yf > 0. Then there exists a unique solution (θR(r), YR(r), uR(r)) to
(4), with θ > 0.

To prove this theorem, we will first decompose the temperature as θ = θh + w,
where θh is an adiabatic profile with an arbitrary fixed radius R. Because we seek
radial solutions, we can explicitly compute θh, namely,

θh = θf +
Yf

Le
min

(
1,

R

r

)
.(6)

Then we show that w satisfies a nonlinear elliptic equation defined on all R. Thus
θh is the temperature component of the solution of the reduced problem with given
R, in the case that β = 0. The subscript h stands for “homogeneous,” because θh
is the solution of the homogeneous part of (4b) which satisfies the jump condition.
The other part w in the splitting will then be the solution of the full inhomogeneous
equation (4b), which is smooth (i.e., [w] = [wr] = 0) across r = R. Hence w satisfies
the equation −Δw = u globally, just as u solves (4c) globally, in the sense of the
distributions. To solve this equation, we consider the problem on a bounded domain,
more precisely on a ball Bρ = B(0, ρ) ⊂ R

3, with ρ > R large. Using sub- and
supersolution arguments, one obtains a solution on the bounded domain. Then we
let ρ → ∞, and, by a diagonal process, this leads to a solution on R

3. Uniqueness is
proved using classical arguments (see section 2 for details).

Remark 1. We consider only positive θ; the solution θR(r) depends continuously

on R, and θR is bounded between θf and θf +
Yf

Le .
Going back to the proof of Theorem 1, we need to find a value of R for which

θR(r) satisfies the final free boundary condition in (4d). As we know Y explicitly, we
are left with one “algebraic” equation,

Yf

Le

1

R
= F (θR(R)).(7)

Thus the reaction rate F plays a role in the analysis only at this final stage. From
Figure 3 we can easily see that (7) has at least one solution (see section 2 for more
details). This ends the proof of Theorem 1.

Remark 2. When solving (7), one can easily see from Remark 1 and Figure 3 that
the radiative radius Rrad is bounded between two values. If the reaction rate F is an
increasing function of the temperature, as is usually the case, the lower bound on the
flame radius is given by the adiabatic or Zeldovich radius RZeld =

Yf

Le
1

F (θf+Yf/Le) (i.e.,

the radius in the absence of radiative effects; see section 2 for more details), whereas

the upper bound is
Yf

Le
1

F (θf ) .

In section 3 we examine limit cases of problem (4). The cases α → ∞ with β fixed,
and α → 0 (or transparent limit) lead to the adiabatic case and are the easiest to
justify. A more subtle analysis is needed to treat the cases β → ∞ (large Boltzmann
limit) and α → 0 supposing αβ = χ fixed (transparent limit combined with large
Boltzmann numbers). In the large Boltzmann limit, we prove that the temperature
profile converges to a constant profile, namely to the fresh temperature θf . On the
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R

Yf

Le
1
R

F (θf )

F (θf +
Yf

Le )

Possible shapes for F (θR(R))

Rmin Rmax

Fig. 3. Sketch of the graphs occurring in (7). The dashed lines are the bounds on F (θR(R));
they are depicted here for the case of increasing F .
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Fig. 4. Bifurcation curves exhibiting turning points: (a) with β used as bifurcation parameter;
(b) with Yf as the parameter.

other hand, in the transparent limit combined with large Boltzmann numbers, the
temperature profile does not converge to a constant profile, but to a radiative one (cf.
Figure 2).

Finally, in section 4 we compare the analytic expressions in the asymptotic limits
to numerical computations for the full problem. We also make a comparison with
analytic calculations for a “linearized” system; see section 4.1 for details. As an
example, in Figure 4(a) we depict a typical bifurcation diagram, where β is used as
the bifurcation parameter. For a range of parameter values there are three distinct
flame ball solutions (for the adiabatic (nonradiative) problem there is always only one
solution). Examining the corresponding solution profiles, the upper branch turns out
to be physically irrelevant, since the temperature profile is almost identically equal to
θf . In Figure 4(b) the fuel mass fraction Yf in the fresh region is used as a bifurcation
parameter. Again, multiple solutions are obtained, on two disconnected branches.
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2. Existence of solutions. In this section we sketch the arguments that lead
to Theorem 2 and subsequently to Theorem 1. All remaining details of the proofs are
provided in the appendix. We recall that in order to fix R, we consider problem (4),
and we drop the equation involving the reaction rate F in (4d). The expression for Y
is of course given by (5). Theorem 1 follows immediately from Theorem 2 when we
combine it with the fact that the algebraic equation (7) has a solution.

To begin with, we reduce (4b) and (4c) to one elliptic equation. To do this, we
first need to introduce a splitting of the solution θ that we are looking for, writing

θ = θRh + w.(8)

Here θRh is the solution of

−ΔθRh = 0 for r �= R,(9a)

with jump conditions

[θRh ] = 0, −
[
∂θRh
∂r

]
=

1

Le

[
∂Y

∂r

]
at r = R,(9b)

and the asymptotic boundary condition

θRh → θf as r → ∞.(9c)

We note that (9) can be solved explicitly, where θRh is given by (6). The advantage of
the splitting (8) is that w must have zero jumps,

[w] = [wr] = 0,

and w → 0 as r → ∞. Hence it must be a solution of

−Δw = βu(10)

on the whole space in the sense of the distributions.
Next we observe that (4c) implies that

u = α(3α2 − Δ)−1Δθ4,

which expresses u in terms of θ4 by means of the bounded operator

α(3α2 − Δ)−1Δ = αΔ(3α2 − Δ)−1,

which operates from L∞ → L∞. Note that the Laplacian and its resolvent commute
because 3α2 > 0. Combining this with (10), it follows that

Δ(w + αβ(3α2 − Δ)−1θ4) = 0,

whence, since both w and θ4 are bounded, w+αβ(3α2 −Δ)−1θ4 must be a constant:

w + αβ(3α2 − Δ)−1θ4 = C.

Subtracting θ4
f from θ4 only changes the constant. Moreover, θ4 − θ4

f has zero limit

at infinity (r → ∞), a property which is preserved by the resolvent (3α2 −Δ)−1, and
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also w → 0 as r → ∞. Thus w+αβ(3α2 −Δ)−1(θ4 − θ4
f ) = 0. Applying (3α2 −Δ)−1

to both sides, we arrive at

(3α2 − Δ)w + αβ
(
(w + θRh )4 − θ4

f

)
= 0,(11a)

which again should hold globally, with asymptotic boundary condition

w → 0 as r → ∞.(11b)

We note that w(r) is a solution of a second order ordinary differential equation
(globally). Thus it has zero jumps [w] and [wr] at r = R. We have split the problem
for θ, which was inhomogeneous because of the jump in r = R and the nonzero limit
as r → ∞, on the one hand, and the presence of βu in (4b), on the other, into two
parts. The first part, θRh , takes care of the jumps and limits, while the second, w,
corresponds to the inhomogeneous term βu in (4b).

The crucial idea in the existence proof is the above reduction of the system of
two equations (4b) and (4c) to one elliptic equation (11a). Therefore, existence of a
solution pair (θ, u) for (4b) and (4c) is equivalent to the existence of a solution w for
problem (11). In order to solve this problem, we first consider (11a) on a ball Bρ ⊂ R

3,
with the boundary condition (11b) being replaced by w = 0 on ∂Bρ. Then, using
classical monotone iteration methods, we can prove existence on this finite domain.
Finally, we take the limit ρ → ∞ and arrive at the following result.

Lemma 3. For R fixed, there exists a unique solution wR of problem (11) satis-
fying the bound

−Yf

Le
min

(
1,

R

|x|

)
≤ w ≤ 0.(12)

The solution wR is C2(R), radially symmetric, monotonically increasing in |x|, and
depends continuously on R.

Thus, this proves Theorem 2 and shows that, omitting the reaction rate from the
problem formulation, there exists for every R > 0 a unique solution triple (θ, Y, u)
with θ > 0. It remains, in order to prove Theorem 1, to solve (7) with θR(R) given
by Theorem 2. Lemma 3 shows that θR(R) depends continuously on R. Moreover, in

view of estimate (12), θf ≤ θR(R) ≤ θf+
Yf

Le . Hence, Theorem 1 is an easy consequence
of the intermediate value theorem applied to (7). All details of the proof, as well as
additional estimates, can be found in the appendix.

3. Limit cases of the radiative parameters. In this section we examine some
singular limit cases. We recall that we introduced the splitting θ = θRh +w. Through-
out this section, we consider a pair (θpar, Rpar) depending on some parameters, and
we seek a limit. Let us start by noting the following.

Remark 3. As Rpar lies in a compact set (see Remark 9), one can extract a

subsequence converging to a limit, called R. Along the subsequence, θ
Rpar

h converges
to θRh (uniformly).

3.1. The limit case α → ∞ with β fixed. The limit α → ∞, β fixed is
usually called the optically thick limit for an opaque medium. In this limit the effect
of the radiation is lost. Indeed, we have the following claim.

Lemma 4. The solution w of problem (11) converges to zero uniformly as
α/β → ∞.
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As a consequence of this lemma, and in view of (19), the flame ball solution has a
temperature profile that converges to the Zeldovich solution, and also the flame ball
radius converges to the Zeldovich radius as α/β → ∞.

Proof. We simply modify the subsolution in the proof of Lemma 9 in such a way
that it pushes the solution obtained in Lemma 3, and thereby w itself, to zero. A
negative constant w is a subsolution, provided

3α2w + βα((θRh + w)4 − θ4
f ) ≤ 0.

This is certainly the case if(
θf +

Yf

Le
+ w

)4

− θ4
f = −3α

β
w,

which has a unique solution w ∈ (−Yf

Le , 0), which is easily seen to converge to zero as
α/β → ∞. This completes the proof.

Remark 4. Note that the limit is the same as the one for α fixed and β → 0, i.e.,
radiative flux negligible with respect to convective flux.

3.2. The transparent limit α → 0 with β fixed. Surprisingly, as opposed to
the traveling wave case (see [20]), this limit also reproduces the adiabatic (Zeldovich)
flames. As in the previous section we have the next claim.

Lemma 5. The solution w of problem (11) converges to zero uniformly if α → 0
with β fixed.

Proof. We have, in view of (12),

−Δw = −3α2w − αβ
(
(θRh + w)4 − θ4

f

)
→ 0

uniformly, as α → 0 and αβ → 0. Also, again because of (12), w is uniformly small
for large r. By the maximum principle for the Laplacian, this implies that w → 0
uniformly as α → 0 and αβ → 0.

3.3. Large Boltzmann numbers β → ∞ with α fixed. With large Boltz-
mann numbers the solution loses its physical meaning because the temperature profile
becomes flat. We have the following result.

Lemma 6. For α fixed and β → ∞ the temperature profile θ converges to θf
uniformly.

Proof. Let us set wn = wβn , with βn → ∞ as n → ∞. We are looking for a limit
of the problem

−Δwn = −3α2wn − αβ((θRn

h + wn)4 − θ4
f ),(13)

with asymptotic boundary condition wn → 0 as |x| → ∞.
Writing the weak formulation of (13) and dividing by βn, we find that, for any

test function ϕ ∈ C∞
c ([0,∞)), in view of (12),∫ (

(θRn

h + wn)4 − θ4
f

)
ϕ = − 1

βn

∫
3α2wnϕ +

1

αβn

∫
wnΔϕ → 0 as n → ∞.

By the bound (12), the functions

(θRn

h + wn)4 − θ4
f(14)
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are nonnegative. Thus we may conclude that they converge to the zero function in
L1

loc strongly. Next, we rewrite (14) as

G(ZRn + wn),

where G(ξ) = (θf + ξ)4 − θ4
f and ZR(r) =

Yf

Le min
(
1, R

r

)
.

Again in view of (12), the variable ξ = ZR + w ranges between 0 and ZR. In
this range G′ is positive and bounded away from zero and infinity. Consequently, the
functions ZRn +wn also converge strongly to zero in L1

loc. However, ZRn converges if
we restrict to a further subsequence, along which Rn converges, not only in L1

loc but
also in L∞.

We claim that for any sequence Rn bounded away from zero and infinity, and
for any sequence βn → ∞, the corresponding solutions wn of (11) have the property
that θn = θRn

h + wn → θf uniformly on [0,∞). To prove this, we apply the following
simple lemma.

Lemma 7. Let fn and gn be functions on R+ such that
• fn + gn ≥ 0,
• fn + gn → 0 in L1(0, ρ) for all ρ > 0,
• f ′

n ≥ −C in a weak sense,
• g′n ≥ 0;

then fn + gn → 0 in L∞(0, ρ) for all ρ > 0.
Proof. The proof is immediate from the estimate

fn(r) + gn(r) ≥ fn(r0) + gn(r0) − C(r − r0)

if r > r0 > 0.
This lemma applies to fn = ZRn and gn = wn, which is monotone by Lemma 3.

As before, we conclude that θn − θf → 0 in L∞(R).

3.4. The transparent limit combined with large Boltzmann numbers:
α → 0 with αβ = χ fixed. Finally, we consider the limit α → 0, αβ = χ > 0
fixed, which was also treated in the traveling wave context; see [20, 21]. We show
that in this limit solutions of the radiative transfer problem converge to solutions of
a radiative heat loss problem, where θ solves

Δθ − χ(θ4 − θ4
f ) = 0, r �= R,

and R is the flame radius of the limit solution. This will follow along the same lines
as in the previous sections from the following.

Lemma 8. In the limit α → 0 with αβ = χ > 0 fixed, the solution w of (11)
converges along subsequences to a solution of

−Δw + χ((θRh + w)4 − θ4
f ) = 0,(15)

with w → 0 as r → ∞.
Proof. In view of the a priori bounds on w and on R, and in view of Remark 7,

we know that w, w′, and w′′ are (uniformly) equicontinuous on bounded balls. This
suffices again to conclude that, as α → 0, a subsequence converges in C2(Bρ), for any
ρ > 0, to a solution of (15). As before, a diagonal process finishes the proof.

Remark 5. In this limit w remains nontrivial in the sense that it does not coincide
with one of the bounds in (12). Thus, in the limit we will have a bifurcation diagram
given by

Yf

LeR
= F

(
θf +

Yf

Le
+ w(R)

)
,

and the right-hand side truly depends on R.
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4. Numerical calculations. In this section we examine the flame balls numer-
ically. We will compare the outcome of the computations with analytic formulas for
the “linearized” problem, which we present below.

4.1. Analytic solutions for the linear case. In this first part, we derive a
bifurcation diagram equation for the linear case. Namely, we still consider problem (4),
except that (4c) is replaced by the linear equation

−Δu + 3α2u− αΔθ = 0.(16)

We can compute explicit formulas for the temperature θ and the variable u. To
simplify the notation we introduce

μ = μαβ =
√

3α2 + αβ.

Then

θ(r) =

⎧⎪⎪⎨
⎪⎪⎩

B1

r
sinh(μr) + B3 + θf for r ≤ R,

B2

r
exp(−μr) +

B3R

r
+ θf for r > R,

where the constants are given by

B1 =
αβYf

Leμ3
exp(−μR), B2 =

αβYf

Leμ3
sinh(μR), B3 =

3α2Yf

Leμ2
.

The expression for u is

u(r) =

⎧⎪⎪⎨
⎪⎪⎩

−B1μ
2

βr
sinh(μr) for r ≤ R,

−B2μ
2

βr
exp(−μr) for r > R.

Finally, the equation that fixes the flame radius R, and that determines the bifurcation
diagrams, reads

F

(
αβYf

2μ3LeR

[
1 − 2μR− e−2μR

]
+

Yf

Le
+ θf

)
=

Yf

LeR
.(17)

4.2. Bifurcation diagrams. Let us turn to the numerical investigation of the
problem. Since we know from Theorem 1 that a solution is uniquely determined by
its flame radius R, we exhibit diagrams in which the flame ball is represented by R
along the vertical axis, and the horizontal axis is reserved for a control parameter
such as Yf or one of the radiative parameters α or β.

We can do numerical simulations only on bounded domains, so we choose a large
ball Bρ on which we impose Dirichlet boundary conditions, as used in the existence
proof. From the proof of Lemma 3 we know that the solution on the bounded ball Bρ

approaches the solution on R
3 as ρ → ∞, and in the numerical calculations we always

make sure that ρ � R. Since the flame balls are radially symmetric, the problem is
thus reduced to a boundary value problem for an ordinary differential equation, and
we use the continuation software [22] to compute the bifurcation diagrams.
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Fig. 5. Bifurcation diagrams with β as the bifurcation parameter for (a) A = 0.1, (b) A = 0.3,
(c) A = 0.5, (d) A = 40.

We need an explicit expression for the reaction rate. Following the literature,
e.g., [23, 24], we choose a simple Arrhenius law

F (θ(R)) = A exp

(
− 1

εθ(R)

)
,(18)

where ε is a normalized inverse activation energy and A > 0 is the pre-exponential
factor. Next we must choose values for the parameters. Unless mentioned otherwise,
in all computations we take

θf = 1, Yf = 1, Le = 1, ε = 0.1, A = 40, α = 10−4, β = 2.

In fact, the parameters Yf and Le appear in the stationary problem only in the
combination Yf/Le, so we will use this ratio as a parameter in what follows.

In Figure 5 bifurcation diagrams are shown with β as the bifurcation parameter,
for various values of the pre-exponential constant A. We see that a turning point
appears in the bifurcation diagram as we increase A. Hence, for A sufficiently large
there is a range of values of the Boltzmann number β for which there exist multiple
stationary flame balls. Increasing A corresponds to making the function in the Arrhe-
nius law (18) steeper. In the context of traveling wave solutions (moving flame fronts)
it was already observed (and extensively analyzed) that a steeper Arrhenius law may
lead to turning points in bifurcation diagrams; see [21]. We note that the presence of
turning points is due to the radiative effects being incorporated in the model, since
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Fig. 6. Comparison between the nonlinear problem (solid line) and the linearized one (dashed
line) with (a) β and (b) α as the bifurcation parameter.

uniqueness of the adiabatic flame ball implies the absence of turning points in the
adiabatic problem.

Figure 5 also corroborates the study of the limit cases in section 3. In the limit
β → 0 the flame radius R converges to the Zeldovich radius (the minimal possible
radius); see Remarks 2 and 4. On the other hand, as proved in Lemma 6, in the limit
β → ∞ the temperature profile converges to θf , which corresponds to the maximal
radius (see again Remark 2).

To make a useful comparison between the full, nonlinear problem and the “lin-
earized” equation (16) from section 4.1, we need to linearize the term θ4 around some
characteristic temperature θc: θ

4 ≈ θ4
c +4θ3

c (θ−θc). Introducing the rescaled variable
ũ = βu, we then arrive at the system{

Δθ + ũ = 0,
Δũ− 3α2ũ + 4αβθ3

cΔθ = 0.

Therefore, solutions of the full problem should be compared to solutions of the lin-
earized problem for β̃ = 4βθ3

c . Hence, in all figures, for the (dashed) curves repre-
senting the analytic expression (17) for the linearized problem, the scaling factor 4θ3

c

is taken into account. As the characteristic temperature we simply adopt θc = θf
throughout.

In Figure 6 we compare the outcome of the numerical computations on the non-
linear problem with the analytic expression for the linearized one, using both α and
β as bifurcation parameters. In Figure 6(a) we see that the nonlinear and linear
problems are qualitatively very similar. In the limit β → ∞ we know from Lemma 6
that θ → θf uniformly, so our choice of θc = θf leads to quantitative agreement for
large β. In the adiabatic limit, i.e., β → 0, the solution becomes independent of the
radiative effect, irrespective of the equations being linear or not.

Figure 6(b) is, up to a scaling in the horizontal direction, the same as Figure 6(a).
The reason is that α is so small that α2 is negligible compared to αβ, so that to good
approximation the solution in this parameter regime depends only on the combina-
tion αβ.

From Lemma 4 we know that for large α the solution converges to the adiabatic
one, and the radius decreases towards the Zeldovich radius. Indeed, when we continue
the bifurcation curve of Figure 6(b) for larger values of α we obtain Figure 7, where
we need three different scales to be able to see the full picture. In accordance with
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Fig. 7. The complete (α,R) bifurcation diagram, on three different scales.

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

R

Yf/Le

(a)

0 20 40 60 80 100
0

1

2

3

4

5

R

Yf/Le

(b)

Fig. 8. Comparison between the nonlinear problem (solid line) and the linearized one (dashed
line) with Yf/Le as bifurcation parameter, depicted at two different scales.

Lemmas 4 and 5, the flame radius R tends to the
Yf

Le
1

F (θf+Yf/Le) in both limits α → 0

and α → ∞, while it makes an excursion near
Yf

Le
1

F (θf ) in between.

In Figure 8 we employ Yf/Le as the bifurcation parameter. For Yf/Le sufficiently
large there are again three solutions, and we need to examine two different scales
to see them. The linearized problem does not mimic the nonlinear one too closely,
since for large values of Yf/Le the temperature varies too much to be adequately
represented by the characteristic temperature θc.

The linear behavior of the curves in Figure 8 can be understood from the fact that
α is chosen very small. In this asymptotic regime it is not hard to calculate the slopes
for the linearized problem. In fact R ∼ Ci

Yf

Le , where the two slopes C1,2 in Figure 8(a)
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Fig. 9. The global picture of the (Yf/Le, R) bifurcation diagram. Note that there is a branch
of solutions (almost) coinciding with the horizontal axis.

are approximately given by the two largest solutions of F ( 1
2
√
αβ

C−1+θf ) = C−1, while

the slope C3 in Figure 8(b) is approximately equal to A−1. Of course, the reason
we can determine these slopes is that we have the explicit expression (17) for the
bifurcation curve in the linearized problem. For the nonlinear problem, determining
the slopes is an exercise in asymptotic analysis that falls outside the scope of this
paper. Note that near the origin the slope is given by F (θf )−1 for both the linearized
and the nonlinear problem.

Finally, while Figure 8(a) suggests that there are two disconnected solution bran-
ches, the global bifurcation diagram depicted in Figure 9 shows that these branches
are in fact connected to each other for large values of R and Yf/Le.

The multiplicity of flame ball solutions, also found in heat loss models [8, 10, 13],
leads to questions about stability, which we intend to study in future work. As in
the heat loss case, it is in these stability issues that the Lewis number, which plays a
somewhat subdued role in the analysis of the stationary problem, will be crucial.

Multiplicity of solutions and stability in the heat loss case are discussed in the
introduction. At this point we would like to make some comparisons with our results
using the Eddington equation for radiative transfer. One may notice that for some
range of parameter values there are three branches of stationary solutions, compared
to two in the heat loss models; see, for example, Figure 5. Here one needs to keep in
mind that for large R (i.e., the extreme part of the upper branch) the temperature
profile is almost flat and therefore does not correspond to a physical flame ball. On
the other hand, near the turning point, there are truly three stationary flame balls,
of which we expect the middle one (see also Figure 6) to be stable, at least in some
range of the parameters. In the bifurcation diagram in Figure 8 we may also expect
stability of the middle branch. Detailed analysis of stability is the subject of current
research. Some preliminary instability results have been obtained in [25].

5. Conclusion. Radiation can significantly influence combustion processes. In
this paper we investigate a free boundary model for combustion in a gaseous mixture,
where we couple the usual diffusion equations to the radiation field. The radiation
itself is described by the Eddington equation, which models radiative transfer in a
dusty medium under (near) isotropic conditions. This model thus incorporates both
emission and absorption of radiation, in contrast to the usual simplified heat loss
models; cf. [5, 10]. Mathematically, this leads to the addition of an elliptic equation
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describing the radiation field, which is coupled to the (parabolic) diffusion equations.
In this context we prove the existence of radially symmetric stationary solutions,

or flame balls, which are physically observed in microgravity environments [3]. We
find that a solution exists for any combination of the parameters in the model. Since
we consider a free boundary model, determining the radius of the flame is part of the
problem. Our strategy is to split the analysis into two parts. First we fix the free
boundary and solve an elliptic problem on a fixed domain. Subsequently, we solve the
remaining algebraic equation to select the correct flame radius.

Having proved the existence of stationary flame balls, we then turn our atten-
tion to asymptotic regimes of the radiative parameters, namely the opacity α of the
medium and the Boltzmann number β. In both the limits α → 0 and α → ∞ we re-
cover the adiabatic (nonradiative or “Zeldovich”) flames. The same limit is obtained
in the limit β → 0, whereas when β → ∞ the temperature profile becomes flat. The
limit α → 0, β → ∞ with fixed αβ, leads to a nontrivial limit problem with a truly
radiative asymptotic profile.

Finally, by using numerical computations and by examining analytically a “lin-
earized” problem, we investigate the multiplicity of solutions (for fixed parameter
values). We find large parameter regimes where multiple stationary flame balls exist.
This of course raises interesting stability questions, which we plan to address in a
forthcoming paper (extending the work of Buckmaster, Joulin, and Ronney [8] on the
heat loss case). We expect the Lewis number Le, which is of minor importance for
the stationary problem, to play a crucial role in the stability issues for radiative flame
balls.

Appendix. Existence proof. In this appendix we collect the details of the
proofs of the statements in section 2, particularly Lemma 3. We also provide addi-
tional uniform estimates on the function w.

A.1. Existence on a bounded domain. Let us consider (11) on a ball Bρ =
B(0, ρ) ⊂ R

3, the boundary condition (11b) being replaced by w = 0 on ∂Bρ. We
assume ρ > R.

Lemma 9. For fixed 0 < R < ρ, there is a unique solution w of (11a) with
θ = θRh + w ≥ 0 on Bρ and w = 0 on ∂Bρ. The solution is radial, and as such it
belongs to C2([0, ρ]) as well as to C2(Bρ). It satisfies the bounds

−Yf

Le
min

(
1,

R

|x|

)
≤ w ≤ 0.

Remark 6. The estimate (12) is independent of the parameters α and β. It
provides us with a uniform estimate on the decay rate of w towards zero as r → ∞.

Proof. We first establish the existence of w. The function w ≡ 0 is a supersolution
of (11a) with zero Dirichlet boundary data, because substituting w = w ≡ 0 into
(11a), we end up with αβ((θRh )4 − θ4

f ) > 0. On the other hand, the function w =

−Yf

Le min(1, R
r ) is a subsolution: it is negative in r = ρ, and substituting w = w, we

obtain 3α2w − Δw. The first term is negative, the latter too, but in the sense of
the distributions. More precisely, −Δw is a negative “Dirac” measure supported on
r = R. It is straightforward to mollify w into a family of smooth subsolutions wε

with wε → w uniformly as ε → 0, and wε ≡ w outside the interval (R− ε,R+ ε). By
standard arguments, e.g., [26], it follows that there is a solution of (11a) with w = 0
in r = ρ which lies between w and w. This solution is obtained using an iteration
argument starting from either the sub- or the supersolution, both of which are radial.
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As a consequence, the constructed solution is also radial. The regularity of w, i.e.,
w ∈ C2(Bρ), follows directly from ODE arguments. In fact the bounded solutions w
of (11a) with w = 0 on ∂Bρ are in C2(Bρ); see again [26].

If w1 and w2 are two such solutions, then we set

f(x,w) = αβ
(
(w + θRh (x))4 − θ4

f

)
and

c(x) =

∫ 1

0

∂f

∂w
(x, tw1(x) + (1 − t)w2(x))dt.

The function v = w1 − w2 is a solution of{
−Δv + (3α2 + c(x))v = 0 in Bρ,
v = 0 on ∂Bρ,

where c ∈ C(Bρ). By the maximum principle (see [26]), v ≡ 0 if c is nonnegative.
Thus we have uniqueness in the class of functions w which satisfy w(x) + θRh (x) ≥ 0,
i.e., the functions w for which the corresponding temperature profile θ is positive, and
it is natural to restrict to this class. This completes the proof.

Remark 7. Writing (11a) as an ODE, i.e.,

w′′ = −2

r
w′ + 3α2w + αβ

((
w + θRh (r)

)4 − θ4
f

)
,

with initial conditions w(0) = w0 and w′(0) = 0, this initial value problem is well-
posed and behaves nicely in terms of continuous dependence on parameters. In par-
ticular, w, w′, w′′, and w′′′ are uniformly bounded on bounded intervals (for bounded
ranges of α2 and αβ). Alternatively, to examine regularity, one could proceed from
the PDE (11a) directly using bootstrap arguments and Hölder estimates for elliptic
equations; see, e.g., [26].

Remark 8. We emphasize that w is defined for 0 ≤ r ≤ ρ and that ρ as well as R
are parameters with 0 < R < ρ. Thus we write w = wR

ρ .

A.2. Solutions on the whole space. In this section we take the limit ρ → ∞
to prove existence of a solution w of problem (11).

Lemma 10. For R fixed, there exists a solution w of problem (11) which satisfies
the bound (12). The solution belongs to C2(R) and is unique in the class of radial and
nonradial functions.

Proof. Take a sequence ρn →∞ as n→∞, and set wn =wR
ρn

, so wn is a solution of{
−Δwn + 3α2wn = −αβ

(
(wn + θRh )4 − θ4

f

)
in Bρn ,

wn = 0 on ∂Bρn ,

as constructed in section A.1. We extend wn to the whole of R
3 by setting wn ≡ 0

for r ≥ ρn. Clearly estimate (12) continues to hold for wn.
Now fix some ρ = ρ̄ and consider the solutions wn with ρn > ρ̄, and in particular

their restrictions to Bρ̄. It follows directly from Remark 7 that wn and its first and
second order derivatives are bounded and equicontinuous. Note that the nonlinear
term in (11) is Lipschitz continuous if w is. Thus, we may extract a subsequence
along which wn converges in C2(Bρ̄). Choosing ρ̄ = 1, 2, 3, . . . , a standard diagonal
argument now produces a subsequence along which wn converges in C2(Bρ̄) for every
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ρ̄ > 0. It follows that the limit w exists on the whole space, and that it satisfies
(11a) as well as the bound (12). Clearly w corresponds to a temperature profile
θ = θRh + w > 0 on R

3.
Now suppose we have two such profiles. Reasoning as in the uniqueness proof in

Lemma 9, we find that v = w1 − w2 is bounded and satisfies

−Δv + (3α2 + c(x))v = 0 in R
3.

When v → 0 as |x| → ∞ (uniformly) the maximum principle implies that v ≡ 0,
provided that the coefficient 3α2 + c(x) of v is nonnegative. Thus we have uniqueness
in the class of solutions w which have w(x) → 0 as |x| → ∞ uniformly.

A.3. Proof of Theorem 1. In the previous section we proved Theorem 2 and
showed that, omitting the reaction rate from the problem formulation, there exists
for every R > 0 a unique solution triple (θ, Y, u) with θ > 0. It remains to solve (7)
with θR(R) given by Theorem 2.

Remark 9. In view of the estimate (12) the flame temperature θ(R) is bounded

between θf and θf +
Yf

Le . As F is a continuous positive function, let us define the
positive numbers

m = min
θ∈[θf , θf+Yf/Le]

F (θ) and M = max
θ∈[θf , θf+Yf/Le]

F (θ).

Then any solution of the full flame ball problem must satisfy

Yf

Le

1

M
≤ R ≤ Yf

Le

1

m
.(19)

Equation (7) has a left-hand side which goes from +∞ to 0 as R goes from 0
to ∞. Its right-hand side is bounded between m and M . Thus the existence of the
solution in Theorem 1 is immediate once we know that Remark 1 (about continuity
of θR(R)) is true. More precisely, we have the following claim.

Lemma 11. If Rn → R > 0, then the corresponding functions θRn
converge

uniformly to θR on [0,∞).
Proof. Clearly this will follow from the same statement for wR, where wR is the

solution of (11) obtained in Lemma 3. In view of the bound (12), uniform convergence
on bounded subsets implies uniform convergence on [0,∞). By exactly the same ar-
guments as in the proof of Lemma 3 in section A.2, it follows that along a subsequence
of n → ∞, wRn

(as well as its first and second order derivatives) converges uniformly
on any bounded interval to a solution of (11) satisfying (12). Since this solution is
unique, it follows that wRn → wR along this subsequence. In fact, every sequence
of n → ∞ has a subsequence for which this is the case. But then there cannot be a
sequence of n for which ||wRn − wR||∞ is bounded away from zero. This completes
the proof of Lemma 11 and thereby of Theorem 1.

Remark 10. Instead of using this sequence argument, one could also invoke an
implicit function argument to conclude that R → θR(R) (or R → wR(R)) is smooth.
Furthermore, assuming the derivatives of the left- and right-hand sides of (7) to be
different at solutions, it follows immediately that the number of solutions is odd. This
is the statement that in general situations the number of solutions is odd.

A.4. Uniform estimates. As we have seen, solutions of the flame ball problem
are given by θ = θRh + wR, where R is such that (7) holds, and where wR is a C2-
function (of course, θRh is not). Moreover, wR satisfies (11). In this section we show
that w is monotone in r.
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Lemma 12. The solution w = wR of (11) has w′ ≥ 0.
Proof. w solves

−w′′ − 2

r
w′ = g(r, w) = −3α2w − αβ

(
(w + θRh (r))4 − θ4

f

)
,(20)

where g satisfies

∂g

∂w
< 0 and

∂g

∂r
≥ 0,

the latter being discontinuous in r = R, of course, but with limits existing from both
sides. Moreover, w′(0) = 0 by symmetry.

If w′ is negative somewhere, then there must be points r1 and r2 such that
w′(r1) = w′(r2) = 0, while w′ < 0 on (r1, r2). This follows from w′(0) = 0 and
0 > w(r) → 0 as r → ∞.

Clearly then g(r1, w1(r1)) = −w′′(r1) ≥ 0 and g(r2, w1(r2)) = −w′′(r2) ≤ 0,
contradicting

d

dr
g(r, w(r)) =

∂g

∂r
+

∂g

∂w

∂w

∂r
> 0 on (r1, r2).

Lemma 13. There exists a constant C depending on α2 and αβ such that∫ ∞

0

w′(r)2dr < C.

Proof. Multiplying (20) by w and integrating from r1 to r2 (0 < r1 < r2 < ∞),
we obtain

−
∫ r2

r1

w′′wdr =

∫ r2

r1

2

r
w′wdr +

∫ r2

r1

g(r, w)wdr,

so that∫ r2

r1

|w′|2dr + w′(r1)w(r1) = w′(r2)w(r2) +

∫ r2

r1

2

r
w′wdr +

∫ r2

r1

g(r, w)wdr.

Letting r1 → 0 and using w′ ≥ 0, w < 0, it follows that, also using (12),∫ r2

0

|w′|2dr ≤
∫ r2

0

g(r, w(r))w(r)dr ≤ C,

where C is a constant depending linearly on α2 and αβ, but not on r2. This proves
the claim.

Going one step further, we get the following.
Lemma 14. w belongs to H2(0,∞).
Proof. Multiplying (20) by −w′′ and integrating from r1 to r2, we find∫ r2

r1

|w′′|2dr +

∫ r2

r1

2

r
w′w′′dr +

∫ r2

r1

g(r, w)w′′dr = 0.

Hence, with, e.g., r1 = 2,∫ r2

2

|w′′|2dr ≤
(∫ r2

2

|w′|2dr
) 1

2
(∫ r2

2

|w′′|2dr
) 1

2

+

(∫ r2

2

|g(r, w(r))|2dr
) 1

2
(∫ r2

2

|w′′|2dr
) 1

2

.
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In view of (12), (20), and Lemma 13, we conclude that∫ ∞

2

|w′′|2dr ≤ C,

where C depends on α2 and αβ. The fact that w is C2 implies that also
∫∞
0

|w′′|2 is
bounded. Lemma 13 and inequality (12) finish the proof.

Remark 11. If we consider the problem in R
3, one can easily check that w belongs

to W 2,p(R3) if p > 3.
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SPATIAL SPREAD OF RABIES REVISITED: INFLUENCE OF
AGE-DEPENDENT DIFFUSION ON NONLINEAR DYNAMICS∗

CHUNHUA OU† AND JIANHONG WU‡

Abstract. We consider the spatio-temporal patterns of disease spread involving structured
populations. We start with a general model framework in population biology and spatial ecology
where the individual’s spatial movement behaviors depend on its maturation status, and we show
how delayed reaction diffusion equations with nonlocal interactions arise naturally. We then con-
sider the impact of this delayed nonlocal interaction on the disease spread by revisiting the spatial
spread of rabies in continental Europe during the period between 1945 and 1985. We show how the
distinction of territorial patterns between juvenile and adult foxes, the main carriers of the rabies
under consideration, yields a class of partial differential equations involving delayed and nonlocal
terms that are implicitly defined by a hyperbolic-parabolic equation, and we show how incorporating
this distinction into the model leads to a formula describing the relation of the minimal wave speed
and the maturation time of foxes. We show how the homotopy argument developed by Chow, Lin,
and Mallet-Paret can be applied to obtain the existence of a heteroclinic orbit between a disease-free
equilibrium and an endemic state for the spatially averaged system of delay differential equations,
and we illustrate how the technique developed by Faria, Huang, and Wu can be used to establish
the existence of a family of traveling wavefronts in the neighborhood of the heteroclinic orbit for the
corresponding spatial model.

Key words. time delay, nonlocal, reaction, reaction diffusion, traveling waves, fronts, stability,
structured model, disease modeling, minimal wave speed

AMS subject classifications. 34C25, 34K15, 34K18, 35K55
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1. Introduction. Spatial movement and reaction time lag are certainly two in-
trinsic features in biological systems; their interaction seems to be one of the many
factors for possible complicated spatio-temporal patterns in a single species popula-
tion without an external time-dependent forcing term. Modeling this interaction is
nevertheless a highly nontrivial task, and recent progress indicates diffusive (partial
or lattice) systems with nonlocal and delayed reaction nonlinearities arise very natu-
rally. Such systems were investigated in the earlier work of Yamada [34], Pozio [24, 25],
Redlinger [26, 27], and the modeling and analysis effort in the ground-breaking work
by Britton [3], Gourley and Britton [9], Smith and Thieme [28] marked the begin-
ning of the systematic study of a new class of nonlinear dynamical systems directly
motivated by consideration of biological realities [10, 11].

This new class of nonlinear dynamical systems can be derived from the classical
structured population model involving maturation-dependent spatial diffusion rates
and nonlinear birth and natural maturation processes. More specifically, if we use
u(t, x) to denote the total number of matured individuals in a single species population
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and if we assume the maturation time is a fixed constant τ , then we have

∂

∂t
u(t, x) = D

∂2

∂x2
u(t, x) − du(t, x) + j(t, τ, x),(1.1)

where D and d are the diffusion and death rates of the adult population (that are
assumed to be age-independent), and j(t, τ, x) is the maturation rate that is given by
the rate where an individual was born exactly time t − τ ago in all possible spatial
locations but moved to the current position x upon maturation. This maturation
rate is thus regulated by the birth process and the dynamics of the individual during
the maturation phase. In the work of So, Wu, and Zou [29], this is derived from the
structured population model( ∂

∂t
+

∂

∂a

)
j(t, a, x) = DI

∂2

∂x2
j(t, a, x) − dIj(t, a, x)(1.2)

for the density j(t, a, x) of the immature individual with a ∈ (0, τ ] as the variable for
age, subject to some (spatial) boundary conditions (if the space is bounded) and the
following (age) boundary condition:

j(t, 0, x) = b(u(t, x)),(1.3)

where b is the birth rate function that is assumed to be dependent on the matured
population, and DI and dI are the diffusion and death rates of the immature individual
(these rates are allowed to depend on the age a in [29]). The maturation rate j(t, τ, x)
can be obtained by solving the linear hyperbolic-parabolic equation (1.2) subject to
the boundary condition (1.3). In the case of unbounded one-dimensional space, we
have

j(t, τ, x) = e−dIτ

∫
R

b(u(t− τ, y))f(x− y)dy.(1.4)

In other words, the maturation rate at time t and spatial location x is the sum of the
birth rate at time t − τ at the spatial location y, times the probability f(x − y) of
the individual moved from y to the current position x, and then times the survival
rate e−dIτ during the entire maturation phase. Incorporating (1.4) into (1.1), we
then obtain a closed system of reaction diffusion equations with nonlocal delayed
nonlinearity as follows:

∂

∂t
u(t, x) = D

∂2

∂x2
u(t, x) − du(t, x) + e−dIτ

∫
R

b(u(t− τ, y))f(x− y)dy,(1.5)

where

f(x) =
1√

4πDIτ
e

−x2

4DIτ .

For the existence of positive solutions to (1.5) with various initial and boundary con-
ditions, we refer to [19, 33]. Recently, there has been some rapid development towards
a qualitative theory for the asymptotic behaviors of solutions to the above equation
with various types of assumptions on the birth functions. Notably, in comparison
with the ordinary reaction diffusion analogue, we will have more prototypes than the
so-called monostable and bistable cases. See [11].

The analytic form above for f was derived in [29]. It is possible to obtain such
an analytic form here since the dynamical process during the maturation phase is
governed by a linear hyperbolic-parabolic equation with time-independent constant
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coefficients. Such a possibility disappears in an ecological system consisting of multiple
species with age- or stage-dependent diffusion rates when these species interact during
their maturation phases. This is also the case for the spread of a disease even if its main
carrier involves only a single species, since the model describing the infection process
must involve the transfers of individuals from one compartment to another, and some
of these transfers such as the force of infection from the susceptible compartment to
the infective compartment are nonlinear.

We will illustrate the above difficulty and usefulness of modeling the spread of
diseases involving stage-dependent spatial diffusion by considering the spatial spread
of rabies in continental Europe during the period 1945–1985. Our focus is on the front
of the epizootic wave of rabies, starting on the edge of the German/Polish border
and moved westward at an average speed of about 30–60 km a year. This traveling
wavefront has been investigated quite successfully (see [15, 22]), where the minimal
wave speed was calculated from basic epidemiological and ecological parameters, and
compared well with field observation data. It was also noted that juvenile foxes leave
their home territory in the autumn traveling distances that typically may be 10 times
a territory size in search of a new territory. If a fox happened to have contracted
rabies around the time of such long-distance movement, it could certainly increase
the spreading of the disease into uninfected areas. This observation has not been
considered in the existing models. It turns out that incorporating the differential
spatial movement behaviors of adult and juvenile foxes into a deterministic model
yields a much more complicated system of reaction diffusion equations with delayed
nonlinear nonlocal interactions.

More precisely, the celebrated work [15, 22] used a system of a reaction diffusion
equation for the infective, coupled with an ODE for the susceptible foxes—the main
carrier of the disease—under the assumption that the infective compartment consists
of both rabid foxes and those in the incubation stage, and that susceptible foxes are
territorial and thus their spatial movement can be ignored. It was already pointed
out, in both papers mentioned above and their later extensions and further detailed
studies, that the spatial movement behaviors of susceptible juvenile foxes are different
since they prefer to leave their home territories in search of new territories of their
own. How to describe this stage-dependent diffusion pattern of susceptible foxes and
how stage-dependent diffusion affects the spatial spread of rabies are the main focus
of the current paper.

It turns out, as will be shown in section 2, that such a stage-dependent diffusion
of susceptible foxes and the random movement of rabid foxes due to the loss of the
sense of direction and territorial behaviors yield a coupled system of reaction diffusion
equations with nonlocal delayed nonlinearity for the juvenile susceptible foxes M(t, x)
and total rabies foxes J(t, x). Unlike system (1.5) for a single species population
with simple dynamics during the maturation phase, the coupled system for (M,J)
involves the density of the juvenile foxes S(t, a, y) for all y ∈ R and the maturation
rate S(t, τ, x) (again, τ is assumed to be a constant maturation time of the foxes)
and the force of infection that is proportional to the product of J(t, x)

∫ τ

0
S(t, a, x)da.

This density of the juvenile foxes cannot be solved explicitly in terms of M(s, ·) with
s ≤ t although it is given implicitly by solving a hyperbolic-parabolic equation with
a nonlinear term.

Some of the key issues related to the spatial spread can nevertheless be ad-
dressed, despite the aforementioned difficulty in obtaining an explicit analytic formula
of S(t, a, x) in terms of the historical values of M at all spatial locations. As shall
be shown in section 3, the linear stability of two spatially homogeneous equilibria
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can be fully investigated and the minimal wave speed can be calculated. One of the
results we obtain from this calculation is that the minimal wave speed is a function
of the average maturation time. More precisely, knowing the carrying capacities for
the adult and juvenile foxes, the minimal wave speed is a decreasing function of the
maturation period. This results coincide in principle with the speculation in [15, 22],
and give a more precise qualitative description of the influence of maturation time on
the propagation of the disease in space.

Establishing the existence of traveling waves turns out to be a very difficult task
due to the loss of monotonicity of the nonlocal delayed nonlinearity. In section 4, we
utilize a general result of Faria, Huang, and Wu [8] that claims the existence of trav-
eling waves in the neighborhood of a heteroclinic orbit between the two equilibria of
a corresponding ordinary delay differential system obtained from the delayed reaction
diffusion system for (J,M) through a spatial average, and we obtain the existence of
this heteroclinic orbit by an approach based on a combination of perturbation anal-
ysis [23], the Fredholm theory, and some fixed point theorems [5, 13]. This will be
developed in detail in section 4, along with some numerical simulations to show how
the maturation time affects the calculation of the minimal wave speed, and how the
diffusion of the juvenile foxes impacts the amplitudes and frequencies of the oscillatory
long tails of the traveling wavefronts.

2. Derivation of the model. Here we use a deterministic approach to describe
the spatial spread of rabies. Following [15, 22], we divide the fox population into two
groups: the infective and the susceptible. The former consists of both rabid foxes and
those in the incubation stage. The basic facts and assumptions of our model are as
follows:

(H1) The rabies virus is contained in the saliva of the rabid fox and is normally
transmitted by bite. Therefore, contact between a rabid and a susceptible
fox is necessary for the transmission of the disease.

(H2) Rabies is invariably fatal in foxes.
(H3) Adult susceptible foxes are territorial and seem to divide the countryside into

nonoverlapping home ranges which are marked out by scent. They do oc-
casionally travel considerable distances but always return to their home ter-
ritory. However, for young susceptible juvenile foxes, their behaviors are
different, because they prefer to leave their home territories in search of new
territories of their own.

(H4) The rabies virus enters the central nervous system and induces behavioral
changes of foxes. If the spinal cord is involved, it often takes the form of
paralysis. However, if the virus enters the limbic system, the foxes become
aggressive, lose their sense of direction and territorial behavior, and wander
about in a more or less random way.

Modeling the distinction of diffusion patterns of young and adult susceptible foxes,
already observed in [15, 22], is the main focus of this paper. Because of this distinction,
we shall incorporate age structure into our model and consider the fox population with
two age classes: the immature and the mature. Let I(t, a, x) and S(t, a, x) denote the
population density at time t, age a ≥ 0, and spatial location x ∈ R = (−∞,∞) for
the infective and the susceptible foxes, respectively, and let τ be the maturation time
which is assumed to be a constant. Then the integral

J(t, x) =

∫ ∞

0

I(t, a, x)da(2.1)
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is the total population of the infective foxes and

M(t, x) =

∫ ∞

τ

S(t, a, x)da(2.2)

is the total population of the adult susceptible foxes. Using Fick’s diffusive law and
the mass active incidence, we have(

∂

∂t
+

∂

∂a

)
I(t, a, x) = DI

∂2

∂x2
I(t, a, x) + βS(t, a, x)J(t, x) − dII(t, a, x),(2.3)

where DI is the diffusive coefficient, dI is the death rate for the infective foxes, and β
is the transmission rate. Using I(t,∞, x) = 0 and I(t, 0, x) = 0, we obtain from (2.1)
and (2.3) that

∂J(t, x)

∂t
=

∫ ∞

0

∂I(t, a, x)

∂t
da

= DI
∂2J(t, x)

∂x2
+ βM(t, x)J(t, x) − dIJ(t, x)(2.4)

+ βJ(t, x)

∫ τ

0

S(t, a, x)da.

For S(t, a, x) with a ≥ τ , we have the structured population model (see [20]
or [32]) (

∂

∂t
+

∂

∂a

)
S(t, a, x) = −βS(t, a, x)J − dSS(t, a, x),(2.5)

where the constant dS is the death rate for the susceptible foxes. Using S(t,∞, x) = 0,
we get from (2.2) and (2.5) that

∂M(t, x)

∂t
= −βM(t, x)J(t, x) − dSM(t, x) + S(t, τ, x).(2.6)

To obtain a closed system for (J,M), we need to formulate S(t, a, x) with 0 ≤ a ≤ τ
in terms of (J,M). This is achieved by using the following structured hyperbolic-
parabolic equation with the initial condition given by the birth process:{ (

∂
∂t + ∂

∂a

)
S(t, a, x) = DY

∂2

∂x2S(t, a, x) − βS(t, a, x)J(t, x) − dY S(t, a, x),

S(t, 0, x) = b(M(t, x)),
(2.7)

where DY is the diffusive coefficient for the immature susceptible foxes and b(·) is the
birth function of the susceptible foxes.

Combining (2.4) and (2.6) together gives

⎧⎨
⎩

∂J(t,x)
∂t = DI

∂2J(t,x)
∂x2 + βM(t, x)J(t, x) − dIJ(t, x) + βJ(t, x)

∫ τ

0
S(t, a, x)da,

∂M(t,x)
∂t = −βM(t, x)J(t, x) − dSM(t, x) + S(t, τ, x),

(2.8)

where S(t, a, x), 0 ≤ a ≤ τ , is determined by solving the hyperbolic-parabolic system
(2.7).
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Remark 2.1. S(t, a, x) in (2.7) depends on t, a, M(t, y), and J(s, y) for all
0 ≤ s ≤ t and y ∈ R, but an explicit formula for S(t, a, x) cannot be found. We shall
write F (t, a, x) = F (a,M, J)(t, a, x) to indicate this functional relation. It is easy to
show that

F (a,M, J1)(t, a, x) ≥ F (a,M, J2)(t, a, x) if 0 ≤ J1(s, y) ≤ J2(s, y)(2.9)

for 0 ≤ s ≤ t and y ∈ R, and for t ≥ a,

F (a,M, J1)(t, a, x) = b(M(t− a, x))e−
∫ t
t−a

(dY +βJ(u,x))du when DY = 0.(2.10)

Remark 2.2. When τ = 0, system (2.8) reduces to⎧⎨
⎩

∂J(t,x)
∂t = DI

∂2J(t,x)
∂x2 + βJ(t, x)S(t, x) − dIJ(t, x),

∂M(t,x)
∂t = −βJ(t, x)M(t, x) − dSM(t, x) + b(M(t, x)).

(2.11)

This model was studied in [7] and [15] by assuming that the birth function obeys
the well-known logistic growth, that is, the (gross) birth function b(M) := dSM +
b0M(1 − M/S0), where S0 is the carrying capacity of the susceptible fox population
and b0 is the net birth rate for the susceptible foxes when the population density is
close to zero. After rescaling by

u(t, x) = J(t, x)/S0, v(t, x) = M(t, x)/S0, x
∗ = (βS0/DI)

1/2x, t∗ = βS0t, r =
dI
βS0

and dropping the asterisk, we can transform (2.11) into{
∂u
∂t = ∂2u

∂x2 + u(v − r),

∂v
∂t = −uv + kv(1 − v),

(2.12)

where k = b0/βS0. In [7], it was proved that if r = dI

βS0
< 1, then the infective

and the susceptible foxes coexist, and there exists a family of traveling wavefronts
(J = S0u(x+ct), M = S0v(x+ct)) for (2.11) which connect (0, S0) to (kS0(1−r), S0r)
with the wave speed c satisfying

c ≥ cmin = 2
√
βS0DI

√
1 − dI

βS0
= 2

√
DI(βS0 − dI).

In addition, it was shown that there is a constant k∗ > 0 so that (a) if k = b0/βS0 >
k∗, then the wavefront (u, v) approaches (k(1 − r)S0, rS0) monotonically; (b) if k =
b0/βS0 ≤ k∗, then the wavefront (u, v) approaches (k(1 − r)S0, rS0) with oscillatory
damping.

In [14] and [15], instead of the logistic growth, a static population of the susceptible
is assumed in the sense that deaths are equally balanced by births. This yields the
simple model {

∂J
∂t = DI

∂2J
∂x2 + βJM − dIJ,

∂M
∂t = −βJM,

(2.13)

where M and J are the total numbers of susceptible and infective foxes, respectively.
It was shown that with initial (maximum) susceptible population S0, if r = dI

βS0
> 1
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(that is, the mortality rate of the infective foxes is greater than the rate of recruitment
of new infective), the infection dies out quickly. If r = dI

βS0
< 1, there is a family of

traveling wavefronts to the system (2.13) with the minimal speed

cmin = 2[DI(βS0 − dI)]
1/2.

See [1, 6] for related work.
Remark 2.3. When DY = 0, system (2.7)–(2.8) reduces to the following model:{

dJ
dt = DI

∂2J
∂x2 + βMJ − dIJ + βJ

∫ τ

0
b(M(t− a))e

∫ a
0

−(dY +βJ(t−s))dsda,
dM
dt = −βMJ − dSM + b(M(t− τ))e

∫ t
t−τ

−(dY +βJ(s))ds.
(2.14)

This is a delayed reaction diffusion system with distributed delay but without spatial
averaging. We will numerically compare the behavior of solutions to (2.14) with that
of (2.7)–(2.8) in section 4.3.

In the remaining part of this paper, we consider the dynamics of (2.7)–(2.8) using
the birth function

b(M) = b0Me−āM ,

where ā > 0 is a positive parameter, and b0 = b′(0) is the birth rate when the
population size is small. This birth function exhibits the logistic growth nature of
the fox population in the absence of the disease. Such a function has been used in
the well-studied Nicholson blowfly model [12] and is common in models of fish. The
specific form of such a function is not so important for the method developed below,
though the specific form facilitates and simplifies our qualitative analysis since, as will
be shown, constant equilibria can be explicitly described.

3. Structure of equilibria. In this section, we describe the structure of equi-
libria of biological interest. At an equilibrium, (J,M) takes on a constant value,
namely,

J ≡ J0, M ≡ M0,

for constants J0 and M0. Then from (2.7) we have{
( ∂
∂t + ∂

∂a )S = DY
∂2

∂x2S − dY S − βSJ0,

S(t, 0, x) = b(M0).
(3.1)

To solve (3.1), we define V s(t, x) = S(t, t− s, x) and obtain, for t ≥ s, that

∂

∂t
V s(t, x) =

∂S

∂t
(t, a, x)|a=t−s +

∂S(t, a, x)

∂a
|a=t−s

= DY
∂2

∂x2
V s(t, x) − dY V

s(t, x) − βJ0V
s(t, x).(3.2)

Note that (3.2) is a linear reaction diffusion equation with constant coefficients. The
associated initial condition is

V s(s, x) = b(M0), x ∈ R.(3.3)
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To ensure uniqueness of solutions, we also impose biologically realistic boundary con-
ditions as follows:

|V s(t,±∞)| < ∞.(3.4)

The solution of (3.2)–(3.4) is given by

V s(t, x) = b(M0)e
−(dY +βJ0)(t−s).(3.5)

That is,

S(t, t− s, x) = b(M0)e
−(dY +βJ0)(t−s)(3.6)

and

S(t, a, x) =: F (a,M0, J0) =: b(M0)e
−(dY +βJ0)a, 0 ≤ a ≤ τ ,

from which, with (2.8), it follows that equilibrium (M0, J0) is given by the following
algebraic equations:⎧⎨

⎩ βM0J0 − dIJ0 + βJ0
b(M0)

(dY +βJ0)
(1 − e−(dY +βJ0)τ ) = 0,

−βM0J0 − dSM0 + b(M0)e
−(dY +βJ0)τ = 0.

(3.7)

We now solve (3.7) for equilibria.
When J0 = 0, the second equation in (3.7) gives

−dSM0 + b(M0)e
−dY τ = 0.(3.8)

Thus M0 can take on two different values: M0 = 0 or M0 = Mτ
max = 1

ā ln(b0/dSe
dY τ )).

Biological consideration requires that

b0
dSedY τ

> 1

or, equivalently,

τ < τmax =
1

dY
ln

b0
dS

,(3.9)

so that Mτ
max > 0.

When J0 �= 0, obviously from the second equation of (3.7) we can simplify the
relation between J0 and M0 to yield

M0 =
1

ā

(
ln

b0
βJ0 + dS

− (dY + βJ0)τ

)
.

Viewing M0 as a function of J0, that is, M0 = h0(J0) with h0 being given by

h0(J0) =
1

ā

(
ln

b0
βJ0 + dS

− (dY + βJ0)τ

)
,(3.10)

we find that h0(J0) is decreasing for J0 ≥ 0 with

h0(0) = Mτ
max > 0 and h0(+∞) < 0.
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From the first equation of (3.7) we have

βb(M0)

dI − βM0
=

dY + βJ0

1 − e−(dY +βJ0)τ
.(3.11)

The monotonic increasing property of the function on the right-hand side of (3.11)
is obvious for J0 ∈ [0,∞). We now check the monotonicity of the function on the
left-hand side. Using the definition of b(·) and defining f(x) := βb(x)/(dI − βx), we
have

f ′(x) = β
b′(x)(dI − βx) + βb(x)

(dI − βx)2

= β
b0e

−āx(āβx2 − ādIx + dI)

(dI − βx)2
.

It is easy to know that the function f(x) = βb(x)/(dI −βx) is increasing with respect
to x provided that

ādI < 4β.

Therefore, under the above condition, a careful examination of the left-hand side of
(3.11) shows that (3.11) gives a unique function M0 = h1(J0) (M0 < dI/β, J0 ≥ 0)
which is increasing for J0 ∈ (0,∞) and satisfies

h1(∞) =
dI
β
.

It is easy to see that the intersection point of the two curves M0 = h0(J0) and
M0 = h1(J0) corresponds to the third equilibrium (Jτ

∗ ,M
τ
∗ ) of our system. As to the

existence and positivity of this particular point, we have the following.
Theorem 3.1. Assume τ < τmax and adI < 4β. Then system (2.7)–(2.8) has a

unique positive equilibrium (Jτ
∗ ,M

τ
∗ ) if and only if

C0(τ) :=
dI

βMτ
max

− b(Mτ
max)(1 − e−dY τ )

Mτ
maxdY

< 1,(3.12)

where

Mτ
max =

1

ā
ln

b0
dSedY τ

.

Proof. The condition τ < τmax implies that Mτ
max is positive and the condi-

tion adI < 4β guarantees that h1 is increasing. Note that h0(0) = Mτ
max. By the

monotonicity properties of functions h0 and h1 and the fact that h0(∞) < 0 and
h1(∞) = β

dI
> 0, it follows that the functions h0 and h1 have a positive intersection

point if and only if h1(0) < h0(0) = Mτ
max. Now we show that h1(0) < h0(0) = Mτ

max

if and only if C0(τ) < 1. We consider two cases:
(i) Mτ

max ≥ β/dI ;
(ii) Mτ

max < β/dI .
In the first case, the proof is obvious and will be omitted here. For the second case,
the inequality C0(τ) < 1 is actually equivalent to

dI
βMτ

max

− b(Mτ
max)(1 − e−dY τ )

Mτ
maxdY

< 1,
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or to

dY
(1 − e−dY τ )

<
βb(Mτ

max)

dI − βMτ
max

.(3.13)

From (3.11) we note that h1(0) (< dI

β ) is determined by

βb(h1(0))

dI − βh1(0)
=

dY
1 − e−dY τ

.(3.14)

This means by (3.13) that C0(τ) < 1 is equivalent to

βb(h1(0))

dI − βh1(0)
=

dY
1 − e−dY τ

<
βb(Mτ

max)

dI − βMτ
max

.(3.15)

Since the function f(y) = βb(y)/(dI − βy) is strictly increasing for y ∈ (−∞, dI/β),
from (3.15) we have the desired result that h1(0) < Mτ

max ⇐⇒ C0(τ) < 1, and the
proof is complete.

Remark 3.2. Inequality (3.12) can be rewritten as

dI
β

< Mτ
max + b(Mτ

max)
(1 − e−dY τ )

dY
.(3.16)

The right side of (3.16) is the sum of the population of the mature and the immature
foxes when they reach equilibria in the disease-free case. This sum is the carrying
capacity of the environment. The left-hand side dI/β is the critical minimum threshold
fox density; see [14]. Theorem 3.1 means that when the carrying capacity of the
environment is greater than the critical threshold-value dI/β, the rabid foxes and the
susceptible foxes can coexist and a positive equilibrium exists.

4. Traveling wave solutions. In this section, we consider the behavior of so-
lutions to system (2.7)–(2.8) in unbounded domain (−∞,∞) under the conditions in
Theorems 3.1. In section 4.1, we use the standard stability analysis to investigate
possible patterns of traveling waves. An explicit formula for the minimal wave speed
is given and this wave solution is confirmed by numerical simulations in section 4.3.
In section 4.2, we prove that traveling wavefronts with large wave speeds indeed exist
by using perturbation analysis developed in [8].

4.1. Local analysis of the traveling wavefronts. Standard stability analy-
sis is employed here to discuss the existence of traveling wavefronts. As usual, we
linearize the wave equation of (2.7)–(2.8) near their equilibria and find the associ-
ated eigenvalues and eigenvectors. Sketching this information in the system’s phase
plane yields a useful suggestion about a possible heteroclinic connection between these
equilibria. We show the details as follows.

First of all, we linearize (2.7)–(2.8) around its equilibrium (J0,M0). Recall that
when J ≡ J0, M ≡ M0, we have S(t, t− s, x) = F (t− s,M0, J0). Assume that

J = J0 + ΔJ, M = M0 + ΔM, S(t, t− s, x) = F (t− s,M0, J0) + ΔS.

We first obtain the following linearized system for ΔS:{
∂ΔS
∂t = DY

∂2

∂x2 ΔS − dY ΔS − βJ0ΔS − βF (t− s,M0, J0)ΔJ,

ΔS|t=s = b′(M0)ΔM.
(4.1)
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We then use Fourier transforms to solve this equation. Let

ΔS̃ =

∫ ∞

−∞
ΔS eiωydy,

and let f be the Fourier transform of the term −βF (t− s,M0, J0)ΔJ , that is,

f = −βF (t− s,M0, J0)

∫ ∞

−∞
ΔJ eiωydy.

Then, after taking Fourier transforms to both sides of (4.1), we arrive at a new linear
equation for ΔS̃ that can be solved easily to yield

ΔS̃ = e−(DY ω2+dY +βJ0)(t−s)

∫ ∞

−∞
b′(M0)ΔM(s, y)eiωydy

+

∫ t

s

f e−
∫ t−s
u−s

(DY ω2+dY +βJ0)dvdu

= e−(DY ω2+dY +βJ0)(t−s)

∫ ∞

−∞
b′(M0)ΔM(s, y)eiωydy

− β

∫ t

s

F (u− s,M0, J0)

∫ ∞

−∞
ΔJ(u, y) eiωydy e−(DY ω2+dY +βJ0)(t−u)du.

We now take inverse Fourier transforms to obtain

ΔS(t, s, x) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
b′(M0)ΔM(s, y)eiωydy e−(DY ω2+dY +βJ0)(t−s)e−iωxdω

− β

2π

∫ ∞

−∞

∫ t

s

F (u− s,M0, J0)

×
∫ ∞

−∞
ΔJ(u, y) e−(DY ω2+dY +βJ0)(t−u)+iω(y−x)dy dudω

=
b′(M0)√

4πDY (t− s)
e−(dY +βJ0)(t−s)

∫ ∞

−∞
ΔM(s, y)e−(x−y)2/(4DY (t−s))dy

− β

2π

∫ ∞

−∞
dy

∫ t

s

F (u− s,M0, J0)ΔJ(u, y)e−(dY +βJ0)(t−u)

×
∫ ∞

−∞
e−ω2DY (t−u)+iω(y−x)dudω

=
b′(M0)√

4πDY (t− s)
e−(dY +βJ0)(t−s)

∫ ∞

−∞
ΔM(t− a, y)e−(x−y)2/(4DY (t−s))dy

− β

∫ ∞

−∞
dy

∫ t−s

0

F (t− v − s,M0, J0)ΔJ(t− v, y)

× e−(dY +βJ0)v
e−(x−y)2/(4DY v)

√
4πDY v

dv

and
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ΔS(t, a, x) =
b′(M0)√
4πDY a

e−(dY +βJ0)a

∫ ∞

−∞
ΔM(t− a, y)e−(x−y)2/(4DY a)dy

− β

∫ ∞

−∞
dy

∫ a

0

F (a− v,M0, J0)ΔJ(t− v, y)

× e−(dY +βJ0)v
e−(x−y)2/(4DY v)

√
4πDY v

dv.

Thus we obtain from (2.4) and (2.6) the following linearized system:⎧⎪⎪⎨
⎪⎪⎩

∂ΔJ
∂t = DI

∂2ΔJ
∂x2 + βM0ΔJ + βJ0ΔM − dIΔJ + βΔJ

∫ τ

0
F (a,M0, J0)da

+ βJ0

∫ τ

0
ΔS(t, a, x)da,

∂ΔM
∂t = −βM0ΔJ − βJ0ΔM − dSΔM + ΔS(t, τ, x).

(4.2)

Near the equilibrium (J,M) = (0,Mτ
max), it gives{

∂ΔJ
∂t = DI

∂2ΔJ
∂x2 + βMτ

maxΔJ − dIΔJ + βb(Mτ
max)

1−edY τ

dY
ΔJ,

∂ΔM
∂t = −βMτ

maxΔJ − dSΔM + ΔS(t, τ, x),
(4.3)

where

ΔS(t, τ, x) =
b′(Mτ

max)√
4πDY τ

e−dY τ

∫ ∞

−∞
ΔM(t− τ, y)e−(x−y)2/(4DY τ)dy

− β

∫ ∞

−∞
dy

∫ τ

0

F (τ − v,M0, J0)ΔJ(t− v, y)e−dY v e
−(x−y)2/(4DY v)

√
4πDY v

dv.

Looking for a traveling wavefront ΔJ = f1(x + ct), ΔM = g(x + ct), we have from
(4.3) that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cf ′
1 = DIf

′′
1 + f1(βM

τ
max − dI +

βb(Mτ
max)

dY
(1 − e−dY τ )),

cg′ = −βMτ
maxf1 − dSg +

b′(Mτ
max)√

4πDY τ
e−dY τ

∫∞
−∞ g(y − cτ)e−(ξ−y)2/(4DY τ)dy

− β
∫∞
−∞ dy

∫ τ

0
F (τ − v,M0, J0)f1(y − cv)e−dY v

√
1

4πDY v e
−(ξ−y)2/(4DY v)dv.

(4.4)

This is a linear system of functional differential equations with mixed arguments. The
corresponding eigenvalues are determined by either

λ2 − c

DI
λ +

k1

DI
= 0(4.5)

or

−dS + e−dY τ b′(Mτ
max)e

αλ2−λcτ = c λ,

where

k1 = βMτ
max − dI +

βb(Mτ
max)

dY
(1 − e−τdY ).

Solving (4.5) yields

λ1,2 =
c±

√
c2 − 4k1DI

2DI
.
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The corresponding eigenvectors to the following system, which is equivalent to (4.4)
by letting f2 = f ′

1,⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f ′
1 = f2,

DIf
′
2 = cf2 − f1(βM

τ
max − dI +

βb(Mτ
max)

dy
(1 − e−dyτ )),

cg′ = −βMτ
maxf1 − dSg +

b′(Mτ
max)√

4πDY τ
e−dY τ

∫∞
−∞ g(y − cτ)e−(ξ−y)2/(4DY τ)dy

− β
∫∞
−∞ dy

∫ τ

0
S0(τ − v)f1(y − cv)e−dY v

√
1

4πDY v e
−(ξ−y)2/(4DY v)dv

are

�v1 =

⎛
⎝ 1

λ1

0

⎞
⎠ , �v2 =

⎛
⎝ 1

λ2

0

⎞
⎠ .

When

0 < c < 2
√
k1DI ,

the eigenvalues λ1,2 are complex and the eigensolutions are oscillatory and can be
negative. This is not biologically meaningful. Therefore, a natural condition for the
existence of traveling wavefronts starting from (0,Mτ

max) is

c ≥ cmin(τ) := 2
√
βMτ

maxDI

√
1 − dI

βMτ
max

+
b(Mτ

max)

Mτ
maxdY

(1 − e−dY τ )(4.6)

= 2
√
βMτ

maxDI

√
1 − C0(τ).

We should mention that the minimal speed can also be expressed as

cmin(τ) = 2
√
βDI

√
Mτ

max + b(Mτ
max)

1 − e−dY τ

dY
− dI

β
,

from which we find the speed cmin depends not only on the diffusive coefficient DI

and the transmission rate β, but also on the difference between the carrying capacity

Mτ
max + b(Mτ

max)
1−e−dY τ

dY
and the critical threshold value dI/β.

We now argue that it is impossible for a positive trajectory to go from (0,Mτ
max)

to (0, 0). To see this, linearizing around (0, 0), we obtain⎧⎨
⎩

∂ΔJ
∂t = DI

∂2ΔJ
∂x2 − dIΔJ,

∂ΔM
∂t = −dSΔM + b′(0)√

4πDY τ
e−dY τ

∫∞
−∞ ΔM(t− τ, y)e−(x−y)2/(4DY τ)dy.

This gives, by substituting ΔJ = f1(x + ct), ΔM = g(x + ct), the following:{
cf ′

1 = DIf
′′
1 − dIf1,

cg′ = −dSg + b′(0)√
4πDY τ

e−dY τ
∫∞
−∞ g(y − cτ)e−(ξ−y)2/(4DY τ)dy.

(4.7)

Thus at (0, 0), the eigenvalues satisfy[
λ

(
λ− c

DI

)
− dI

DI

] [
1

c

(
−dS + e−dY τ b′(0)eαλ

2−λcτ
)
− λ

]
= 0.(4.8)
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The second factor corresponds to the second equation of (4.7) that is in fact decoupled
from the first equation of (4.7).

By (3.9) it is easy to see that every eigenvalue to equation

1

c

(
−dS + e−dY τ b′(0)eαλ

2−λcτ
)
− λ = 0

cannot be negative and real, and hence there is no positive solution g such that
limt→∞ g(t) = 0. This means that there’s no positive orbit of (2.7)–(2.8) starting
from (0,Mτ

max) and approaching (0, 0).
So the solution starting from (0,Mτ

max) could arrive at (Jτ
∗ ,M

τ
∗ ) under the con-

dition (4.6). The asymptotic behavior of traveling wavefronts approaching (Jτ
∗ ,M

τ
∗ )

depends on eigenvalues of system (4.2) near the equilibrium (Jτ
∗ ,M

τ
∗ ). If all the

eigenvalues with negative real parts are complex, then the traveling wave will tend to
(Jτ

∗ ,M
τ
∗ ) with oscillatory damping. Otherwise it will approach (Jτ

∗ ,M
τ
∗ ) monotoni-

cally. We will see numerical evidence for oscillatory damping of wave patterns in later
sections.

4.2. A rigorous proof of traveling wavefronts with large wave speeds.
In this section, the existence of traveling wavefronts is rigorously established for sys-
tem (2.7)–(2.8). To present our result, we first show the existence of a heteroclinic
connection for a nondiffusive delayed system and then show that this is perturbed to
a traveling wavefront with large wave speed for (2.7)–(2.8).

4.2.1. Heteroclinic connection for a nondiffusion delay system. We now
study the heteroclinic connection of the delayed system⎧⎨

⎩
dJ
dt = βMJ − dIJ + βJ

∫ τ

0
b(M(t− a))e

∫ a
0

−(dY +βJ(t−s))dsda,

dM
dt = −βMJ − dSM + b(M(t− τ))e

∫ t
t−τ

−(dY +βJ(s))ds,
(4.9)

which is a reduced version of (2.7)–(2.8) when DI = DY = 0. It is easy to see that
(4.9) has three equilibria: E1 := (0, 0), E2 := (0,Mτ

max), and E3 := (Jτ
∗ ,M

τ
∗ ).

For initial continuous data (J,M) = (j0(s),m0(s)) ≥ 0 for s ∈ [−τ, 0] with
(j0(0),m0(0)) > 0, we claim that

(J(t),M(t)) > 0

for all t > 0. Indeed, dividing the first equation in (4.9) by J and integrating it from
0 to t, we have

J(t) = J(0) exp

(
βM − dI + β

∫ τ

0

b(M(t− a)e
∫ a
0

−(dY +βJ(t−s))ds

)
> 0.

We then use the variation-of-constants formula in consecutive interval [0, τ ], [τ, 2τ ], . . .
to obtain

M(t) > 0

for t ≥ 0.
When τ = 0, the above system reduces to the ODE system{

dJ
dt = βMJ − dIJ,

dM
dt = −βMJ − dSM + b(M).

(4.10)
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Obviously, the three equilibria reduces to E1 = (0, 0), E2 = (0,M0
max), and E3 =

(J0
∗ ,M

0
∗ ) = ( 1

β (−dS + b0e
−ādI/β), dI

β ), and we have J0
∗ > 0 if and only if C0(0) =

dI

βM0
max

< 1.

Theorem 4.1. When τ = 0 and C0(0) = dI

βM0
max

< 1, system (4.9) has a hetero-

clinic orbit (J0(t),M0(t)) connecting E2 and E3.
Proof. First, we prove that the third equilibrium E3 is a global attractor in the

sense that it attracts every positive solution of (4.9) when τ = 0. To see this, define
a Lyapunov function as

V =

[
M −M0

∗ −M0
∗ log

M

M0
∗

]
+

[
J − J0

∗ − J0
∗ log

J

J0
∗

]
.

Differentiating the function V along the solution (4.10) yields

dV

dt
= b0(e

−āM − e−ādI/β)

(
M − dI

β

)
< 0

provided that M �= dI/β. This means that the equilibrium E3 is a global attractor
by LaSalle’s well-known invariance principle. Linearizing (4.10) around E2 gives(

βM0
max(1 − C0(0)) − λ 0

−βM0
max −dS + b′(M0

max) − λ

)
and the following characteristic equation:

(βM0
max − dI − λ)(−dS + b′(M0

max) − λ) = 0.(4.11)

For λ1 = βM0
max(1−C0(0)) > 0, we find an eigenvector �v1 which points into the first

quadrant of the J −M plane. Therefore, the solution starting from the local unstable
manifold of E2 along the �v1 direction will permanently stay in the first quadrant and
tends to (J0

∗ ,M
0
∗ )T as t → ∞ due to the global attractivity of E3. This completes

the proof.
When τ �= 0, deriving the global stability of the equilibrium E3 is nontrivial. Even

for the local stability, providing an explicit criterion is not easy. To demonstrate this,
we linearize (4.9) around E3 to obtain

dJ

dt
=

(
βMτ

∗ − dI + βb(Mτ
∗ )

1 − e−(dY +βJτ
∗ )τ

(dY + βJτ
∗ )

)
J(4.12)

− β2Jτ
∗ b(M

τ
∗ )

∫ τ

0

e−(dY +βJτ
∗ )a

∫ a

0

J(t− s)dsda + βJτ
∗M

+ βJτ
∗ b

′(Mτ
∗ )

∫ τ

0

M(t− a)e−(dY +βJτ
∗ )ada

and

dM

dt
= −βMτ

∗ J − βb(Mτ
∗ )e−(dY +βJτ

∗ )τ

∫ τ

0

J(t− s)ds(4.13)

+ βJτ
∗M − dSM + b′(Mτ

∗ )e−(dY +βJτ
∗ )τM(t− τ).

In order to understand the linear system (4.12) and (4.13), we first consider the special
case when τ = 0. In this case the characteristic equation is given by

λ2 + (βJ0
∗ + dS − b′(M0

∗ ))λ + β2M0
∗J

0
∗ = 0.
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Since (4.10) yields βJ0
∗ + dS = b(M0

∗ )/M0
∗ , the above equation becomes

λ2 + āb0e
−āM0

∗λ + β2M0
∗J

0
∗ = 0.

Hence, the eigenvalues are given by

λ1,2 =
−āb0e

−āM0
∗ ±

√
(āb0)2e−2āM0

∗ − 4β2M0
∗J

0
∗

2
,(4.14)

the real parts of which are negative as long as J0
∗ > 0 (or, equivalently, C0(0) < 1).

Because λ depends continuously on the parameter τ , we conclude that there exists a
number τ1 > 0 so that when τ < τ1, all the eigenvalues of the linearization at E3 have
a negative real part.

At the equilibrium E2 when τ �= 0, we have the following characteristic equation:

(1 − C0(τ) − λ) (−dS + b′(Mτ
max)e

−dY τe−λτ − βMτ
maxλ) = 0.(4.15)

It can be shown easily that there exists a constant τ2 so that equilibrium E2 is
hyperbolic for C(τ) < 1 and τ ∈ [0, τ2), where τ2 is the first positive number satisfying

|b′(Mτ2
max)e

−dyτ2 | > |dS |, and τ2 =
π − arccos ds

|b′(Mτ2
max)e−dyτ2 |√

(b′(Mτ2
max)e−dyτ2)2 − d2

s

.(4.16)

We should mention that formula (4.16) can be obtained by the well-known Hopf
bifurcation theory, and that if there is no τ2 satisfying (4.16), then we assume that
τ2 = ∞.

With the above preparation, we are now ready to prove a theorem concerning the
heteroclinic connection for (4.9) when τ �= 0. To present our result, we first introduce
some notation.

• For a vector x ∈ R2, we denote ||x|| = ||x||R2 .
• Let X(R,R2) be the space of continuous and bounded functions from R to
R2 equipped with the standard norm ||φ|| = sup{||φ(t)||, t ∈ R}.

• Let X1 = X1(R,R2) = {φ ∈ X : φ′ ∈ X}.
• Let X0 = {φ ∈ X : limt→±∞ φ = 0} and X1

0 = {φ ∈ X0 : φ′ ∈ X0}.
Under the conditions in Theorem 3.1, we have the following result.
Theorem 4.2. Assume that C0(τ) < 1. Then there exists a positive constant

δ so that for 0 ≤ τ ≤ δ, equation (4.9) has a heteroclinic orbit (J(t),M(t)) which
connects E2 and E3.

Proof. We first introduce the transformation

U =
J(t)

Jτ
∗

, V =
Mτ

max −M

Mτ
max −Mτ

∗

to get rid of the τ -dependence of E2 and E3. Substituting this into (4.9), we have the
following system for U and V :⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dU
dt = β(Mτ

max − V (Mτ
max −Mτ

∗ ))U − dIU

+ βU
∫ τ

0
b̄(V (t− a)e

∫ a
0

−(dY +βJτ
∗U(t−s))dsda,

dV
dt =

βJτ
∗ (Mτ

max−V (Mτ
max−Mτ

∗ ))U
Mτ

max−Mτ
∗

+
dS(Mτ

max−V (Mτ
max−Mτ

∗ ))
Mτ

max−Mτ
∗

− b̄(V (t−τ)
Mτ

max−Mτ
∗
e
∫ t
t−τ

−(dY +βJτ
∗U(s))ds,

(4.17)
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where b̄(V (t − τ)) = b(Mτ
max − V (Mτ

max −Mτ
∗ )). Equation (4.17) has two equilibria

E2 := (0, 0) and E3 := (1, 1). In particular when τ = 0, we know from Theorem 4.1
that there exists a heteroclinic solution (U0(t), V0(t)) that connects two points E2 and
E3 and satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dU0

dt = F1(u, v)|u=U0,v=V0
= β(M0

max − V0(M
0
max −M0

∗ ))U0 − dIU0,

dV0

dt = F2(u, v)|u=U0,v=V0
=

βJ0
∗(M0

max−V0(M
0
max−M0

∗ ))V0

M0
max−M0

∗
+

dS(M0
max−V (M0

max−M0
∗ ))

M0
max−M0

∗

− b̄(V0(t))
M0

max−M0
∗
.

(4.18)

Note that the relation between Mτ
max and M0

max, M
τ
∗ and M0

∗ , and Jτ
∗ and J0

∗
can be described as

Mτ
max = M0

max + O(τ), Mτ
∗ = M0

∗ + O(τ), Jτ
∗ = J0

∗ + O(τ).(4.19)

We now show that there exists a constant δ such that (4.17) has a heteroclinic orbit
(U(t), V (t)) connecting two points E2 and E3 provided τ < δ.

First of all, we let W1 = U − U0 and W2 = V − V0 and obtain the following
equation for the remainder (W1,W2):⎧⎨

⎩
dW1

dt = ∂F1(U0,V0)
∂u W1 + ∂F1(U0,V0)

∂v W2 + Γ1(t, τ,W1,W2),

dW2

dt = ∂F2(U0,V0)
∂u W1 + ∂F2(U0,V0)

∂v W2 + Γ2(t, τ,W1,W2),
(4.20)

where

Γ1(t, τ,W1,W2)

= β(Mmax − (V0 + W2)(M
τ
max −Mτ

∗ ))(U0 + W1) − dI(U0 + W1)

+ β(U0 + W1)

∫ τ

0

b̄(V0(t− a) + W1(t− a))e
∫ a
0

−(dY +βJτ
∗ (U0(t−s)+W (t−s)))dsda

− F1(U0, V0) −
(
∂F1(U0, V0)

∂u
W1 +

∂F1(U0, V0)

∂v
W2

)
(4.21)

and

Γ2(t, τ,W1,W2) =
βJτ

∗ (Mτ
max − (V0 + W2)(M

τ
max −Mτ

∗ ))(U0 + W1)

Mτ
max −Mτ

∗

+
dS(Mτ

max − (V0 + W2)(M
τ
max −Mτ

∗ ))

Mτ
max −Mτ

∗
(4.22)

− b̄(V0(t− τ) + W2(t− τ))

Mτ
max −Mτ

∗
e
∫ t
t−τ

−(dY +βJτ
∗ (U0(s)+W1(s)))ds

− F2(U0, V0) −
(
∂F2(U0, V0)

∂u
W1 +

∂F2(U0, V0)

∂v
W2

)
.

Define an operator T : Ψ ∈ X1 → X from the homogeneous part of (4.20) as
follows:

TΨ = Ψ′ −A(t)Ψ, t ∈ R,(4.23)
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where

A(t) =

⎛
⎝ ∂F1(U0(t),V0(t))

∂u
∂F1(U0(t),V0(t))

∂v

∂F2(U0(t),V0(t))
∂u

∂F2(U0(t),V0(t))
∂v

⎞
⎠ .

We remark that (U0(t), V0(t)) tends, respectively, to E2 and E3 when t → −∞ and
t → ∞. This means that the linear operator T is asymptotically hyperbolic as t → ±∞
in the sense that

Ψ′ −A(−∞)Ψ = 0 and Ψ′ −A(∞)Ψ = 0

are hyperbolic due to (4.11) and (4.14). Furthermore, we know that every eigenvalue
for the linear equation Ψ′ − A(∞)Ψ = 0 has a negative real part. Define the formal
adjoint equation of TΨ = Ψ′ −A(t)Ψ = 0 as

Φ′ + AT (t)Φ = 0, t ∈ R.(4.24)

We now divide our proof into five steps.
Step 1. We claim that if Φ ∈ X is a solution of (4.24) and Φ is C1-smooth, then

Φ = 0. Moreover, we have R(T ) = X, where R(T ) is the range of T .
Indeed, assuming to the contrary that Φ is not zero at some point t0, then we can

solve (4.24) to obtain

Φ(t) = Φ(t0)e
−

∫ t
t0

AT (t)dt
.

Since when t → ∞, AT (t) tends to AT (∞) whose eigenvalues are negative, we deduce
that

lim
t→∞

Φ(t) = ∞,

which contradicts the fact that Φ is bounded.
By the classical Fredholm theory, this claim means further that R(T ) = X in the

sense that for any Θ ∈ X, there exists Ψ ∈ X1 so that

TΨ = Θ.

Step 2. Let Θ ∈ X0 be given. If Ψ is a bounded solution of TΨ = Θ, then
Ψ ∈ X1

0 . In fact, we need to show only that

lim
t→±∞

Ψ(t) = 0.

Actually when t → ∞, equation

Ψ′ −A(t)Ψ = Θ(4.25)

asymptotically tends to

Ψ′ −A(∞)Ψ = 0.(4.26)

Note that for (4.26), the ω-limit set of every bounded solution is just the critical
point Ψ = 0. Using the result from [21] or [18], every bounded solution of (4.25) also
satisfies

lim
t→∞

Ψ(t) = 0.
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When inverting the time from −t to t, we can similarly prove that

lim
t→−∞

Ψ(t) = 0.

Step 3. We rewrite (4.20) as

W ′(t) + W = W + A(t)W + Γ(t),(4.27)

where

W = (W1,W2)
T , Γ(t) = (Γ1(s, τ,W1,W2),Γ2(s, τ,W1,W2))

T .

Changing (4.27) into an integral equation gives

W (t) =

∫ t

−∞
e−(t−s)I(W (s) + A(s)W (s) + Γ(s))ds,(4.28)

where I is the 2 × 2 identity matrix and W (t) = (W1(t),W2(t))
T .

Define a linear operator L : X0 → X0 as follows:

L(W )(t) = W (t) −
∫ t

−∞
e−(t−s)I(W (s) + A(s)W (s))ds, W ∈ X0.

Obviously L(W ) ∈ X0 if W ∈ X0. Now we prove that R(L) = X0, that is, for each
Z ∈ X0, we can have a W ∈ X0 so that

W (t) −
∫ t

−∞
e−(t−s)I(W (s) + A(s)W (s))ds = Z(t).

To see this, assuming that ξ = W − Z, we obtain an equation for ξ as follows:

ξ(t) =

∫ t

−∞
e−(t−s)I(ξ(s) + A(s)ξ(s))ds +

∫ t

−∞
e−(t−s)I(Z(s) + A(s)Z(s))ds.

Differentiating both sides yields

T (ξ)(t) = ξ′(t) −A(t)ξ(t) = Z(t) + A(t)Z(t).(4.29)

Using the results that R(T ) = X in Step 2, one can obtain that there exists a solution
ξ for (4.29) and ξ ∈ X1

0 . Returning to the variable W , we have W = ξ + Z ∈ X0.
Step 4. Let N(L) be the null space of the operator L. Define N⊥(L) = X0/N(L).

It is clear that N⊥(L) is a Banach space. If we let S = L|N⊥(L) be the restriction

of L on N⊥(L), then S : N⊥(L) → X0 is one-to-one and onto. By the well-known
Banach inverse operator theorem, we have that S−1 : X0 → X0/N(L) is a linear
bound operator.

Step 5. When L is restricted on N⊥(L), equation (4.28) can be written as

S(W )(t) =

∫ t

−∞
e−(t−s)IΓ(s,W, τ)ds

or

W (t) = S−1

(∫ t

−∞
e−(t−s)IΓ(s,W, τ)ds

)
.(4.30)
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The term
∫ t

−∞ e−(t−s)IΓ(s)ds on the right-hand side can be estimated. Actually

when τ is small and W ∈ X1
0 , from (4.19), (4.21), and (4.22), we have the following

estimations: ∣∣∣∣
∫ t

−∞
e−(t−s)Γ1(s)ds

∣∣∣∣ = O(τ) + O(τ ||W ||X0
) + O(||W ||2X0

)(4.31)

and ∣∣∣∣
∫ t

−∞
e−(t−s)Γ2(s)ds

∣∣∣∣ = O(τ) + O(τ ||W ||X0) + O(||W ||2X0
)(4.32)

as τ → 0 and ||W || → 0. To derive (4.31) and (4.32), we have made use of the
following result:∫ t

−∞
e−(t−s) (Wi(s− τ)) −Wi(s)) ds = O(τ ||W ||), i = 1, 2.(4.33)

Actually, if W ∈ X1
0 , by exchanging the order integration and by integration by parts,

we have ∣∣∣∣
∫ t

−∞
e−(t−s)

(
Wi(s− τ) −Wi(s)

)
ds

∣∣∣∣
=

∣∣∣∣τ
∫ t

−∞
e−(t−s)

∫ 1

0

W ′
i (s− τu)duds

∣∣∣∣
=

∣∣∣∣τ
∫ 1

0

∫ t

−∞
e−(t−s)W ′

i (s− τu)dsdu

∣∣∣∣
=

∣∣∣∣τ
∫ 1

0

(
Wi(t− τu) −

∫ t

−∞
e−(t−s)Wi(s− τu)ds

)
du

∣∣∣∣
= O(τ ||W ||), i = 1, 2,

leading to (4.33). Using the fact that X1
0 is dense in X0, we conclude that (4.31) and

(4.32) hold for any W ∈ X0.
Let B(σ) denote the closed ball in X0 with radius σ and center at the origin. Since

the norm ||S−1|| is independent of τ , it follows from (4.31) and (4.32) that there exist
σ > 0, δ > 0, and 0 < ρ < 1 such that for all τ ∈ (0, δ] and ϕ,ψ,W ∈ B(σ) ⊂ X0,∣∣∣∣

∣∣∣∣S−1

(∫ t

−∞
e−(t−s)IΓ(s,W, τ)ds

)∣∣∣∣
∣∣∣∣ ≤ 1

3
(||W || + σ)

and∣∣∣∣
∣∣∣∣S−1

(∫ t

−∞
e−(t−s)IΓ(s, ϕ, τ)ds

)
− S−1

(∫ t

−∞
e−(t−s)IΓ(s, ψ, τ)ds

)∣∣∣∣
∣∣∣∣ ≤ ρ||ϕ− ψ||.

Hence, S−1
(∫ t

−∞ e−(t−s)IΓ(s,W, τ)ds
)

is a uniform contractive mapping of W ∈ X0∩
B(σ). By using the classical fixed point theorem, it follows that for τ ∈ [0, δ], (4.30)
has a unique solution W ∈ X0/N(L). Returning to the original variable, we get that
(W1 + U0, W2 + V0) is a heteroclinic connection between E2 and E3. This completes
our proof.
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Remark 4.3. When τ ≥ δ, we can rescale the time variable t → tτ to obtain{
dJ
dt = τβMJ − τdIJ + τβJ

∫ 1

0
b(M(t− a)e

∫ a
0

−(dY +βJ(t−s))dsda,
dM
dt = −τβMJ − τdsM + τb(M(t− 1))e

∫ t
t−1

−(dY +βJ(s))ds.
(4.34)

At τ = δ, by Theorem 4.2, equation (4.34) has a heteroclinic connection. We can as
well show that if C0(τ) < 1, there exists a constant δ1, δ < δ1 < min{τ1, τ2}, such that
if δ ≤ τ ≤ δ1, equation (4.9) has a heteroclinic orbit (J(t),M(t)) which connects E2

and E3. The proof is the same as that of Theorem 4.2. The method is referred as to a
homotopy approach (see [5]); namely, we view τ as a varying parameter and start with
(4.34), and extend the result from δ to δ1 ∈ (δ,min{τ1, τ2}) by replacing the arguments
in Step 1 to Step 5 by those of the parallel theory in linear delay differential equations.
It would be interesting to see how far this homotopy argument can be applied to push
the upper bound τ .

4.2.2. Traveling wavefronts with large wave speeds. We now consider the
reaction diffusion system (2.7)–(2.8) for which we will use Theorem 1.1 in [8] to give
traveling wavefronts in the case when the wave speed c is large. The main idea of this
result is simple: if the nondiffusive equation has a heteroclinic connection between E2

and E3, then the diffusive system has a family of traveling wavefronts from E2 to E3

with large wave speeds.
Theorem 4.4. Assume that τ ≤ δ. Then there exists a c∗ > 0 such that for any

c ≥ c∗, system (2.7)–(2.8) has a traveling wavefront (J(t, x),W (t, x)) = (u(ct + x),
v(ct + x)) which connects E2 and E3.

Proof. First we observe that if there is no diffusion, that is, if DI = 0 and DY = 0,
our equations (2.7)–(2.8) reduce to (4.9). When τ ≤ δ, the equilibria E2 and E3 are
hyperbolic, and, in particular, all the eigenvalues to E3 have negative real parts. From
Theorem 4.2, we know that when τ ≤ δ, equation (4.9) has a heteroclinic connection.
So conditions (H1), (H2), and (H3) in [8, Theorem 1.1] are satisfied. Last, for our

kernel function f(x) = 1√
4π

exp(−y2

4 ), it is easy to see that

1√
4π

∫ ∞

−∞
exp

(
−y2

4

)
|y|dy < ∞.

So all conditions in [8, Theorem 1.1] are satisfied. Hence by [8, Theorem 1.1], we
conclude that there exists a c∗ > 0 so that for any c > c∗, system (2.7)–(2.8) has
a traveling wavefront (J(t, x),W (t, x)) = (u(ct + x), v(ct + x)) which connects E2

and E3.

4.3. Numerical simulations. In this subsection, we will numerically study the
traveling wavefronts of our model (2.7)–(2.8).

We first describe our numerical methods. We give initial data

J(s, x) = j0(s, x), M(s, x) = m0(s, x), −τ ≤ s ≤ 0, x ∈ [−L,L],

and solve (2.7) and (2.8) to obtain (J(t, x),M(t, x)) in a sufficiently large interval
[−L,L] for t ≥ 0 and some L > 0. As usual, in the process of finding numerical
solutions, we take the homogeneous Neumann boundary conditions at the end points
x = ±L. Depending on other parameters in our model and the solution patterns, we
may adjust the parameter L from 100 to 1000 so as to present a clear view of our
graphs. We take a constant h satisfying

Mτ
∗ < h < Mτ

max.
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For any fixed t, we find the first position x = z(t, h) > −L so that

M(t, z(t, h)) = h.

Choose a sequence {tj}∞j=1, and consider

(J(tj , x + z(tj,h)),M(tj , x + z(tj,h))).(4.35)

If the numerical solutions (J(tj , x + z(tj,h)), M(tj , x + z(tj,h))), j = 1, 2, 3, . . . , con-
verge uniformly to a nonconstant function (J(·),M(·)) which satisfies the boundary
conditions

lim
ξ→−∞

(J(ξ),M(ξ)) = E2 and lim
ξ→+∞

(J(ξ),M(ξ)) = E3,

then the limit (J(·),M(·)) is viewed as a traveling wavefront. Theoretically, this
process has also been used to prove the existence of traveling wavefronts for certain
monotone dynamics; see [4]. The limit

lim
j→∞

z(tj+1,h) − z(tj,h)

tj+1 − tj
(4.36)

is correspondingly thought of as the asymptotic wave speed of the traveling wavefront.
We now discuss the parameter values from relevant references [2, 15, 16]. First of

all, we note that [16, p. 126] suggests 9 to 12 months for the maturation time, and we
will therefore restrict our attention to the range of τ to [0.5, 0.8] (year). The diffusion
coefficient DI = 60 km2/year will be used, based on the value in [15].

For red foxes, the average per capita intrinsic death rate is 0.5 year−1 [2], so we
take dS = 0.5 year−1. Since it is known that the death rate of juvenile foxes is greater
than that of adult foxes, we take dY = 0.8 year−1 [16, p. 127].

An infective fox first goes through an incubation period that can vary from 12
to 110 days. A life expectancy of about 35 days gives dI as approximately 10 year−1.
For the transmission coefficient, we derive β = 10 km2/year by using formula (5)
in [15]. The number of cubs in a litter ranges from 1 to 10, with a mean of 4.7 in
Europe [2, 17, 16, 30, 31]. Sex ratios are in general close to unity at birth, and the
pregnancy rate is in the region of 90% [17, 16], with a further 10% of vixens failing to
produce offspring [2]. In view of this information, the average per capita birth rate
b0 is taken to be 1.9 year−1.

We now calculate the minimal wave speed cmin. The carrying capacity S0 is
assumed to be 2 foxes per km2, as in Figure 4 of [2], and it is the sum of the population
of the immature and the adult foxes when they reach the stable equilibria in the
disease-free case, that is,

S0 = Mτ
max + b(Mτ

max)
1 − e−dY τ

dY
.

We need further information in order to estimate the maturation time, which is
related to the parameter ā in the birth function. By Table 26 in [16], the number of
adult foxes per km2 varies from 0.5 to 1.8, and the number of litters found per km2

varies from 0.16 to 0.6. Thus we take the mean value of the ratio of the adult foxes
to the litter foxes as 1.15 : 0.38. Using the facts S0 = Mτ

max + b(Mτ
max)

1−e−dY τ

dY
= 2

and

Mτ
max : b(Mτ

max)
1 − e−dY τ

dY
= 1.15 : 0.38,
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Fig. 1. Graph of cmin(τ) as a decreasing function of τ .

we calculate that the carrying capacity is 2 when the parameters τ = 0.5305 and

ā =
1

S0

(
1 +

dS
dY

(edY τ − 1)

)
ln

b0
dSedY τ

= 0.6057.

The result calculated in [15] gives the minimal speed cold = 48.9898 km/year.
In our calculation, cmin is a decreasing function of τ , with cmin = 53.757 km/year if
τ = 0; and

cmin = 2
√
βMτ

maxDI

√
1 − dI

βMτ
max

+
b(Mτ

max)

Mτ
maxdY

(1 − e−dY τ )

= 2
√
βDI

√
Mτ

max + b(Mτ
max)

(1 − e−dY τ )

dY
− dI

β

= 43.549 km/year

if τ = 0.8. The graph of cmin as a function of τ is given in Figure 1.
To describe numerically the solution patterns, we first scale the variable x by√

DIx so that the diffusion rate for rabid foxes in our simulations becomes constant 1.
The length L of the half interval is taken to be 300. We use the the Neumann boundary
condition and the initial values

M(t, x) =

{
Mτ

max, −300 ≤ x ≤ 150, τ ≤ t ≤ 0,
0.6, 150 < x ≤ 300, τ ≤ t ≤ 0,

and

J(t, x) =

{
0, −300 ≤ x ≤ 150, τ ≤ t ≤ 0,

0.05, 150 < x ≤ 300, τ ≤ t ≤ 0.

A finite difference method coupled with iterative techniques is used in our numerical
approximation via the software MATLAB, and the numerical result when DY = 0
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Fig. 2. Graph of solutions M (upper) and J (lower) at t = 40 years, here τ = 0.8, dI = 10,
dS = 0.5, dY = 0.8, S0 = 2, b0 = 2, and β = 10. There exist long wave tails for both J and M .

and τ = 0.8 shows that the solution stabilizes to a traveling wavefront with minimal
speed 43.549 km/year. The numerical result when t = 40 years is shown in Figure 2.

Fixing other parameters, we carry out simulations in the cases when DY = 0.25DI

and DY = DI . It is found that in both cases, the spreading speeds stabilize to the
same minimal wave speed 43.549 km/year and the change of the diffusion rate DY

has impact only on the amplitudes and frequencies of oscillation for the long tail
in the traveling wave, and its impact on the shape of the solution is less apparent
if we confine the value DY /DI to the interval [0, 1]. This result is what we should
expect because the maturation time τ is relatively small that the contribution of DY

to the pattern of solutions is limited. See Figure 3 for the comparison of M up to
t = 40 years between the case DY /DI = 0 and the case DY /DI = 1.

Our simulations agree with the theoretical analysis in the above sections that the
minimal wave speed of rabies depends on the maturation time τ , while the amplitude
and frequencies of oscillations of the long tail are influenced also by the diffusion rate
of juvenile foxes.

We conclude with a remark about the limitation of this work. We assumed two
age classes and homogeneity within each age class. Namely, many parameters in the
model such as death and diffusion rates and force of infection are all assumed to be
constants that depend on the age class but are independent of the precise age. This is
certainly only an approximation to the biological reality, and parameter values should
be thought of as some sort of averages during the whole juvenile or adult period. For
example, newborn susceptible juveniles would not be moving at all and the search for
new territories by juveniles must happen only during a particular phase of childhood.
In [16], it was noted that breeding season varies from region to region but usually
begins early in the year, then in the autumn following birth the pups of the litter will
disperse to their own territories. Ideally, we should use age-dependent coefficients and
parameters, and hence the model would become an age-structured reaction diffusion
equation that cannot be reduced to a system of reaction diffusion equations with
delayed nonlocal nonlinearities.
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MODELING VISCOELASTIC BEHAVIOR OF ARTERIAL WALLS
AND THEIR INTERACTION WITH PULSATILE BLOOD FLOW∗

SUNČICA ČANIĆ† , JOSIP TAMBAČA‡ , GIOVANNA GUIDOBONI† , ANDRO MIKELIĆ§ ,

CRAIG J. HARTLEY¶, AND DOREEN ROSENSTRAUCH‖

Abstract. Fluid-structure interaction describing wave propagation in arteries driven by the
pulsatile blood flow is a complex problem. Whenever possible, simplified models are called for.
One-dimensional models are typically used in arterial sections that can be approximated by the
cylindrical geometry allowing axially symmetric flows. Although a good first approximation to
the underlying problem, the one-dimensional model suffers from several drawbacks: the model is
not closed (an ad hoc velocity profile needs to be prescribed to obtain a closed system) and the
model equations are quasi-linear hyperbolic (oversimplifying the viscous fluid dissipation), typically
producing shock wave solutions not observed in healthy humans. In this manuscript we derived a
simple, closed reduced model that accounts for the viscous fluid dissipation to the leading order.
The resulting fluid-structure interaction system is of hyperbolic-parabolic type. Arterial walls were
modeled by a novel, linearly viscoelastic cylindrical Koiter shell model and the flow of blood by
the incompressible, viscous Navier–Stokes equations. Kelvin–Voigt-type viscoelasticity was used to
capture the hysteresis behavior observed in the measurements of the arterial stress-strain response.
Using the a priori estimates obtained from an energy inequality, together with the asymptotic analysis
and ideas from homogenization theory for porous media flows, we derived an effective model which
is an ε2-approximation to the three-dimensional axially symmetric problem, where ε is the aspect
ratio of the cylindrical arterial section. Our model shows two interesting features of the underlying
problem: bending rigidity, often times neglected in the arterial wall models, plays a nonnegligible role
in the ε2-approximation of the original problem, and the viscous fluid dissipation imparts long-term
viscoelastic memory effects on the motion of the arterial walls. This does not, to the leading order,
influence the hysteresis behavior of arterial walls. The resulting model, although two-dimensional,
is in the form that allows the use of one-dimensional finite element method techniques producing
fast numerical solutions. We devised a version of the Douglas–Rachford time-splitting algorithm to
solve the underlying hyperbolic-parabolic problem. The results of the numerical simulations were
compared with the experimental flow measurements performed at the Texas Heart Institute, and
with the data corresponding to the hysteresis of the human femoral artery and the canine abdominal
aorta. Excellent agreement was observed.
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1. Introduction. The study of flow of a viscous incompressible fluid through
a compliant tube is of interest to many applications. A major application is blood
flow through human arteries. Understanding wave propagation in arterial walls, local
hemodynamics, and temporal wall shear stress gradient is important in understanding
the mechanisms leading to various complications in the cardiovascular function. Many
clinical treatments can be studied in detail only if a reliable model describing the
response of arterial walls to the pulsatile blood flow is considered.

It has been well accepted that in medium-to-large arteries blood can be modeled
as a viscous, incompressible Newtonian fluid. Although blood is a suspension of red
blood cells, white blood cells, and platelets in plasma, its non-Newtonian nature due
to the particular rheology is relevant in small arteries (arterioles) and capillaries where
the diameter of the arteries becomes comparable to the size of the cells. In medium-to-
large arteries, such as the coronary arteries (medium) and the abdominal aorta (large),
the Navier–Stokes equations for an incompressible viscous fluid are considered to be
a good model for blood flow.

Devising an accurate model for the mechanical behavior of arterial walls is more
complicated. Arterial walls are anisotropic and heterogeneous, composed of layers
with different biomechanical characteristics [21, 22, 29, 44]. A variety of different
models has been suggested in the literature to model the mechanical behavior of
arteries [1, 2, 3, 21, 22, 23, 29, 27, 33, 44, 51]. They range from the detailed description
of each of the layers to the average description of the total mechanical response of the
vessel wall assuming homogeneous, linearly elastic behavior.

To study the coupling between the motion of the vessel wall and pulsatile blood
flow, a detailed description of the vessel wall biomechanical properties may lead to a
mathematical and numerical problem whose complexity is beyond today’s computa-
tional capabilities. The nonlinearity of the underlying fluid-structure interaction is so
severe that even simplified description of the vessel wall mechanics assuming homo-
geneous, linearly elastic behavior leads to the complicated numerical algorithms with
challenging stability and convergence properties. To devise a mathematical model
that will lead to a problem which is amenable to numerical methods producing com-
putational solutions in a reasonable time-frame, various simplifications need to be
introduced. They can be based on the simplifying model assumptions capturing only
the most important physics of the problem and/or on the simplifications utilizing
special problem features such as, for example, special geometry, symmetry, and peri-
odicity.

A common set of simplifying assumptions that captures only the most impor-
tant physics in the description of the mechanical properties of arterial walls includes
homogeneity of the material with “small” displacements and “small” deformation gra-
dients leading to the hypothesis of linear elasticity. A common set of special problem
features that leads to simplifying models includes “small” vessel wall thickness allow-
ing a reduction from three-dimensional models to two-dimensional shell models, and
cylindrical geometry of a section of an artery where no branching is present allowing
the use of cylindrical shell models. Neglecting bending rigidity of arteries, studied in
[18, 21], reduces the shell model to a membrane model. Further simplifications include
axial symmetry of the loading exerted by the blood flow to the vessel walls in the ap-
proximately straight cylindrical sections, leading to axially symmetric models with a
potential of further reduction to one-dimensional models. One-dimensional models,
although a good first approximation to the underlying problem, suffer from several
drawbacks: they are not closed (an ad hoc velocity profile needs to be prescribed to
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obtain a closed system), and the model equations are quasi-linear hyperbolic, typically
producing shock wave solutions, not observed in healthy humans [5]. In particular,
the wall shear stress calculated using one-dimensional models is a consequence of the
form of the prescribed velocity profile.

Two-dimensional and three-dimensional models of the fluid-structure interaction
between the incompressible viscous fluid flow and the motion of a linearly elastic
cylindrical membrane are rather complex. Often times additional ad hoc terms of
viscoelastic nature are added to the vessel wall model to provide stability and conver-
gence of the underlying numerical algorithm [40, 44], or to provide enough regularity
in the proof of the existence of a solution [10, 16, 24, 49], thereby showing well-
posedness of the underlying problem. To this day there is no analytical result proving
well-posedness of the fluid-structure interaction problem without assuming that the
structure model includes the higher-order derivative terms capturing some kind of
viscoelastic behavior [10, 16, 24, 49], or with the terms describing bending (flexion)
rigidity in elastic shells or plates [10, 15]. In fact, current literature on well-posedness
of the fluid-structure interaction between a viscous incompressible Newtonian fluid
and a viscoelastic structure includes many additional simplifying assumptions such
as the smallness of the data [49], periodic boundary conditions [24, 49], or flow in
a closed cavity [10, 15, 16], not appropriate for the blood-flow application. Thus,
the well-posedness of the fluid-structure interaction problem describing blood flow in
compliant (elastic or viscoelastic) arteries remains an open problem. However, even
in those simplifying problems when the data is infinitesimally small the higher-order
regularizing terms in the structure model play a crucial role in providing the stabi-
lizing mechanism. Thus, ignoring the terms that account for bending rigidity of the
vessel walls and/or viscous dissipation might mean oversimplifying the physics, giving
rise to a problem which might not have a solution.

Keeping this in mind we turn to the theory of elastic/viscoelastic shells to model
the mechanical properties of arterial walls. Thus, we will be assuming that the ves-
sel walls are homogeneous, that the thickness of the wall is small in comparison to
the vessel radius, and that the state of stress is approximately plane, allowing us
to consider shell theory. See section 2. The equations of shell theory have been
derived by many authors; see [19] and the references therein. Due to variations in
approach and rigor the variety of equations occurring in the literature is overwhelm-
ing. Among all the equations of shell theory the Koiter shell equations appear to
be the simplest consistent first approximation in the general theory of thin elastic
shells [32, 31]. In addition, they have been mathematically justified using asymptotic
methods to be consistent with three-dimensional elasticity [12, 13]. Ciarlet and Lods
showed in [12] that the Koiter shell model has the same asymptotic behavior as the
three-dimensional membrane model, the bending model, and the generalized mem-
brane model in the respective regimes in which each of them holds. Motivated by
these remarkable properties of the Koiter shell model, in this manuscript we derived
the Koiter shell equations for the cylindrical geometry and extended the linearly elas-
tic Koiter model to include the viscous effects observed in the measurements of the
mechanical properties of vessel walls [1, 2, 3]. We utilized the Kelvin–Voigt viscoelas-
tic model, which has been shown in [1, 2, 3] to approximate well the experimentally
measured viscoelastic properties of the canine aorta and of the human femoral and
carotid arteries. In [43] a version of the Kelvin–Voigt model was used to model the
vessel walls as a linearly viscoelastic membrane. In the Kelvin–Voigt model the total
stress is linearly proportional to the strain and the time-derivative of strain. More
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precisely, for a three-dimensional isotropic and homogeneous body, the Kelvin–Voigt
model relates the total stress tensor, whose components we denote by tkl, to the in-
finitesimal strains ekl and the time-derivative of the strains ∂tekl through the following
relationship [20]:

tkl = (λe + λv∂t)Ieδkl + 2(μe + μv∂t)ekl, k, l = 1, 2, 3,(1.1)

where λe and μe are the Lamé constants of elasticity, λv and μv are their corre-
sponding viscoelastic counterparts, δkl is the Kronecker delta, and Ie :=

∑3
i=1 eii.

In section 8 we show that the fluid-structure interaction algorithm based on the vis-
coelastic Koiter shell equations coupled with the Navier–Stokes equations for a viscous
incompressible fluid captures the experimentally measured viscoelastic properties of
arterial walls in the human femoral artery and in the canine aorta. This is, in a
nutshell, the main result of this manuscript; using the a priori estimates based on an
energy inequality, coupled with the asymptotic analysis and homogenization theory,
we derived an effective, closed fluid-structure interaction model and a fast numeri-
cal solver whose solutions capture the viscoelastic properties of major arteries. We
show that our effective model approximates the original three-dimensional axially
symmetric problem to the ε2-accuracy, where ε is the aspect ratio of the cylindrical
domain (vessel). Our reduced, effective model reveals several interesting features of
the coupled fluid-structure interaction problem:

(1) Our model explicitly shows how the leading-order viscous fluid dissipation
imparts long-term viscoelastic memory effects on the motion of the vessel wall. This
is studied in section 5; see (5.11). We show that this does not influence, to the leading
order, the viscoelastic hysteresis loop observed in the stress-strain (or the pressure-
diameter) measurements of the arterial viscoelastic properties.

(2) Our model shows that bending rigidity of vessel walls plays a nonnegligible
role in the asymptotic behavior of the underlying fluid-structure interaction problem.
See the equation for p0 in (4.17). We found that for the parameters describing blood
flow through medium-to-large arteries the leading-order terms in the coupling of the
stresses at the vessel wall include not only the membrane terms but also a correction
accounting for the bending rigidity of the wall, often times neglected in the description
of the mechanical properties of vessel walls.

We developed a fast numerical solver based on the one-dimensional finite element
approach and compared the computational solution with the experimental measure-
ments. First, the reduced elastic model was tested experimentally using a mock
circulatory flow loop with latex tubing, assembled at the Research Laboratory at the
Texas Heart Institute. Then the viscoelastic model was compared to the hystere-
sis measurements of the viscoelastic properties of the human femoral artery and the
canine aorta. In both cases, excellent agreement between the experiment and the
numerical solution was obtained.

2. The viscoelastic cylindrical Koiter shell model. In this section we focus
on the derivation of the viscoelastic cylindrical Koiter shell model. We begin with
the linearly elastic Koiter shell model as it was derived in [31, 32] and specialize
it to the cylindrical shell geometry. Following standard texts in conventional plate
and shell theories (see, for example, [20, 41, 45, 50, 52]), we then derive the stress-
strain relationship for the Koiter shell model and extend it to include the Kelvin–
Voigt viscoelasticity, which has been experimentally observed to approximate well
the viscoelastic mechanical properties of arterial walls [1, 2, 3]. We summarize the
main steps next.
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2.1. The linearly elastic Koiter shell model. Consider a clamped cylindrical
shell with the reference radius of the middle surface equal to r = R, with the shell
thickness h and the cylinder length L, z ∈ (0, L). The basic assumptions under which
the Koiter shell model holds are [31, 32] that

• the shell is thin (h/R � 1);
• the strains are small everywhere, although large deflections are admitted, and

the strain energy per unit volume of the undeformed body is represented by
the quadratic function of the strain components for an isotropic solid (Hooke’s
law);

• the state of stress is approximately plane.

z

r

L

R

h

middle
surface

displacement

undeformed shell

deformed shell

Fig. 2.1. Left: Cylindrical shell (reference configuration) with middle surface radius R and
shell thickness h. Right: Deformed shell.

The weak formulation, describing the variation of the strain energy density func-
tion, depends on the change of metric and the change of curvature tensors of the
surface. The change of metric tensor captures the stretching of the surface and the
change of curvature tensor captures the bending effects. The weak formulation of the
Koiter shell describes variation of the energy that is due to stretching and bending of
the shell.

Denote by ξ(z) = (ξz(z), ξr(z)) the displacement of the middle surface at z (see
Figure 2.1), where ξz(z) and ξr(z) denote the longitudinal and the radial component
of the displacement, respectively. Here the axial symmetry of the problem has already
been taken into account assuming that the displacement in the θ-direction is zero, and
that nothing in the problem depends on θ. The change of metric and the change of
curvature tensors for a cylindrical shell are given, respectively, by [11]

γ(ξ) =

[
ξ′z 0
0 Rξr

]
, �(ξ) =

[
−ξ′′r 0
0 ξr

]
.

Here ′ denotes the derivative with respect to the longitudinal variable z. Introduce
the following function space:

Vc = H1
0 (0, L) ×H2

0 (0, L)

=
{
(ξz, ξr) ∈ H1(0, L) ×H2(0, L) : ξz(0) = ξz(L) = ξr(0) = ξr(L) = 0,

ξ′r(0) = ξ′r(L) = 0} .

Then the weak formulation of the linearly elastic cylindrical Koiter shell is given by
the following: find η = (ηz, ηr) ∈ Vc such that

h

2

∫ L

0

Aγ(η) · γ(ξ)Rdz +
h3

24

∫ L

0

A�(η) · �(ξ)Rdz =

∫ L

0

f · ξRdz, ξ ∈ Vc,(2.1)
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where · denotes the scalar product

A ·B := Tr
(
ABT

)
, A,B ∈ M2(R) ∼= R

4.(2.2)

Here f is the surface density of the force applied to the shell, and A is the elasticity
tensor given by [11]

AE =
4λμ

λ + 2μ
(Ac · E)Ac + 4μAcEAc, E ∈ Sym (R2), with

Ac =

[
1 0
0 R2

]
, Ac =

[
1 0
0 1

R2

]
,

where λ and μ are the Lamé constants. Written in terms of the displacement, the
weak formulation reads

h

2

∫ L

0

(
4μλ

λ + 2μ

(
η′z +

1

R
ηr

)
·
(
ξ′z +

1

R
ξr

)
+ 4μ

(
η′zξ

′
z +

1

R2
ηrξr

))
dz

+
h3

24

∫ L

0

(
4μλ

λ + 2μ

(
−η′′r +

1

R2
ηr

)
·
(
−ξ′′r +

1

R2
ξr

)
+ 4μ

(
η′′r ξ

′′
r +

1

R4
ηrξr

))
dz

=

∫ L

0

(fzξz + frξr)dz ∀(ξz, ξr) ∈ Vc.

Using the following relationships between the Lamé constants and Young’s modulus
of elasticity E and the Poisson ratio σ

2μλ

λ + 2μ
+ 2μ = 4μ

λ + μ

λ + 2μ
=

E

1 − σ2
,

2μλ

λ + 2μ
= 4μ

λ + μ

λ + 2μ

1

2

λ

λ + μ
=

E

1 − σ2
σ,

the elasticity tensor A reads

AE =
2Eσ

1 − σ2
(Ac · E)Ac +

2E

1 + σ
AcEAc, E ∈ Sym (R2).

From here we get the weak formulation (2.1) as

h

∫ L

0

(
Eσ

1 − σ2

(
η′z +

1

R
ηr

)(
ξ′z +

1

R
ξr

)
+

E

1 + σ

(
η′zξ

′
z +

1

R2
ηrξr

))
dz

+
h3

12

∫ L

0

(
Eσ

1 − σ2

(
−η′′r +

1

R2
ηr

)(
−ξ′′r +

1

R2
ξr

)
+

E

1 + σ

(
η′′r ξ

′′
r +

1

R4
ηrξr

))
dz

=

∫ L

0

(fzξz + frξr)dz, (ξz, ξr) ∈ Vc.

(2.3)

The terms multiplying h/2 account for the stored energy density due to stretching
(membrane effects) and the terms multiplying h3/12 account for the stored energy
density due to bending (flexural shell effects). Integration by parts gives rise to the
static equilibrium equations. Written in differential form they read

− hE

1 − σ2

(
η′′z + σ

1

R
η′r

)
= fz,

hE

R(1 − σ2)

(
ση′z +

ηr
R

)
+

h3E

12(1 − σ2)

(
η′′′′r − 2σ

1

R2
η′′r +

1

R4
ηr

)
= fr.

(2.4)

The Linearly Elastic Cylindrical Koiter Shell Model
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We employ these equations to study the response of arteries to pulsatile blood
flow. For this purpose, we assume that the in vivo arteries are prestretched under
internal pressure load, that the arterial walls are longitudinally tethered, and that the
longitudinal displacement is negligible [38, 42].

The assumption that the longitudinal displacement is negligible has been justified
in [38]. More precisely, in [38] we considered the equations of three-dimensional linear
elasticity to model the vessel wall, coupled with the Navier–Stokes equations for a
viscous, incompressible fluid to model the flow of blood in cylindrical geometry. In
addition, we assumed that the “thickness” h of the structure (the radial dimension
of the three-dimensional elastic body) is less than or comparable to the radius of
the domain occupied by the fluid, i.e., h/R ≤ 1 (this includes the scenario h/R � 1
considered in this manuscript). Starting from the assumption that both the radial and
longitudinal displacement of the three-dimensional structure are nonzero, we showed
that the effective model obtained by considering small aspect ratio ε = R/L embodies
negligible longitudinal displacement of the structure.

Taking this into account we emply here the equations of a linearly elastic cylin-
drical Koiter shell model with negligible longitudinal displacement:(

hE

R(1 − σ2)
+ pref

)
ηr
R

+
h3E

12(1 − σ2)

(
η′′′′r − 2σ

1

R2
η′′r +

1

R4
ηr

)
= fr.(2.5)

This is obtained from the weak formulation (2.3), assuming ηz = 0, and the test space

V 0
c := Vc ∩ {ξz = 0}.

In order to include the fact that the reference configuration is prestressed at
reference pressure pref , and that the arterial walls are viscoelastic, we study the stress-
strain relationship corresponding to the Koiter shell model and modify it to include
these two effects. This is presented next.

2.2. The linearly viscoelastic Koiter shell model. The stress-strain rela-
tionship is given by the “stress resultant,” which relates the internal force with the
change of metric tensor, and the “stress couples,” which describe the bending moments
in terms of the change of curvature tensor [20]. As noted by Koiter in his original
paper [31], the stress resultant and the stress couples can be obtained from (2.1) as
gradients of the stored energy function, given by the integrand on the left-hand side of
(2.1), with respect to the middle surface strains and changes of curvature. Following
this approach one obtains

• stress resultant (or the internal force) for the elastic Koiter shell

N :=
h

2
Aγ(η) =

h

2

[ 2Eσ
1−σ2

ηr

R 0

0 2E
1−σ2

ηr

R3

]
,(2.6)

• stress couples (bending moment) for the elastic Koiter shell

M :=
h3

24
A�(η) =

h3

24

[
− 2E

1−σ2 η
′′
r + 2Eσ

1−σ2
ηr

R2 0

0 2E
1−σ2

ur

R4 − 2Eσ
1−σ2

1
R2 η

′′
r

]
.

(2.7)

At this point we also introduce the effects of prestress by defining the stress resultant
Nref that relates the reference pressure pref with the circumferential strain [17, 34, 35]

h

2
Nref = hRAc

[
0 0
0 pref

R
h ηr

]
Ac(2.8)
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so that the total stress resultant, including the effects of prestress, reads
• stress resultant for the prestressed elastic Koiter shell

N =
h

2
Aγ(η) +

h

2
Nref .(2.9)

We focus now on introducing the viscous effects to the linearly elastic, prestressed
cylindrical Koiter shell model. For this purpose assume that the displacement is not
only a function of position z but also a function of time: η = η(z, t) and that the
velocity of the displacement is linearly proportional to the stress as described in (1.1).
Employing the Kelvin–Voigt model (1.1) to describe this viscoelastic behavior one
writes the constitutive relations in which the stress is linearly proportional to the
strain plus the time-derivative of strain [20]. For the linearly viscoelastic Koiter shell
model we define

• stress resultant for the viscoelastic prestressed Koiter shell

N :=
h

2
Aγ(η) +

h

2
Bγ(η̇) +

h

2
Nref ,(2.10)

• stress couples for the viscoelastic Koiter shell

M :=
h3

24
A�(η) +

h3

24
B�(η̇),(2.11)

where B is given by

BE =
4λvμv

λv + 2μv
(Ac · E)Ac + 4μvA

cEAc, E ∈ Sym (R2),

with μv and λv corresponding to the viscous counterpart of the Lamé constants μ
and λ. With these constitutive relations we now define the weak formulation of the
linearly viscoelastic prestressed Koiter shell model by the following: for each t > 0
find η(t) ∈ Vc such that ∀ξ(t) ∈ Vc

h

2

∫ L

0

(Nref + Aγ(η) + Bγ(η̇)) · γ(ξ)Rdz +
h3

24

∫ L

0

(A�(η) + B�(η̇)) · �(ξ)Rdz

+ ρwh

∫ L

0

∂2η

∂t2
· ξ =

∫ L

0

f · ξRdz,(2.12)

where η̇ denotes the time-derivative. Written in terms of the displacement, after
employing the notation

Cv :=
2λvμv

λv + 2μv
+ 2μv, Dv :=

2λvμv

λv + 2μv
,(2.13)

the weak formulation of the linearly viscoelastic prestressed Koiter shell model reads∫ L

0

frξrdz = ρwh

∫ L

0

∂2ηr
∂t2

ξr + h

∫ L

0

((
E

1 − σ2
+ pref

R

h

)
1

R
ηr + Cv

1

R

∂ηr
∂t

)
ξr
R
dz

+
h3

12

∫ L

0

((
Eσ

1 − σ2

(
−∂2ηr

∂z2
+

ηr
R2

)
+ Dv

(
− ∂3ηr
∂t∂z2

+
1

R2

∂ηr
∂t

))(
−∂2ξr

∂z2
+

ξr
R2

)

+

(
E

1 + σ

∂2ηr
∂z2

+ (Cv −Dv)
∂3ηr
∂t∂z2

)
∂ξr
∂z2

+

(
E

1 + σ

1

R2
ηr + (Cv −Dv)

1

R2

∂ηr
∂t

)
ξr
R2

)
dz
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∀ξ(t) ∈ V 0
c . Integration by parts gives rise to the equilibrium equation

fr = ρwh
∂2ηr
∂t2

+ C0ηr − C1
∂2ηr
∂z2

+ C2
∂4ηr
∂z4

+ D0
∂ηr
∂t

−D1
∂3ηr
∂t∂z2

+ D2
∂5ηr
∂t∂z4

,

(2.14)

The Linearly Viscoelastic Cylindrical Prestressed Koiter Shell Model

with Zero Longitudinal Displacement

where ρw denotes the shell density (see Table 4.1) and

C0 =
h

R2

E

1 − σ2

(
1 +

h2

12R2

)
+

pref

R
, C1 = 2

h3

12R2

Eσ

1 − σ2
, C2 =

h3

12

E

1 − σ2
,

D0 =
h

R2
Cv

(
1 +

h2

12R2

)
, D1 = 2

h3

12R2
Dv, D2 =

h3

12
Cv.

(2.15)

We use this equation to model the motion of compliant arterial walls interacting with
the time-dependent fluid flow driven by the pulsatile inlet and outlet pressure data.
To simplify notation, from this point on in this manuscript we will be using η to
denote the radial displacement ηr.

3. Fluid-structure interaction: The three-dimensional model. In me-
dium to large arteries blood can be modeled as an incompressible, Newtonian vis-
cous fluid. We will be assuming that the viscosity of blood is constant, utilizing the
data from biomedical literature (see, e.g., [21, 39, 44]), providing the viscosity coef-
ficient μF = 3500 kg/ms. The Navier–Stokes equations for a viscous, incompressible
fluid have been well accepted as a model for blood flow in medium-to-large arter-
ies. Assuming cylindrical geometry and axially symmetric flow, the fluid velocity
v(r, z, t) = (vr(r, z, t), vz(r, z, t)) and pressure p(r, z, t) satisfy

ρF

{
∂vr
∂t

+ vr
∂vr
∂r

+ vz
∂vr
∂z

}
− μF

(
∂2vr
∂r2

+
∂2vr
∂z2

+
1

r

∂vr
∂r

− vr
r2

)
+

∂p

∂r
= 0,(3.1)

ρF

{
∂vz
∂t

+ vr
∂vz
∂r

+ vz
∂vz
∂z

}
− μF

(
∂2vz
∂r2

+
∂2vz
∂z2

+
1

r

∂vz
∂r

)
+

∂p

∂z
= 0,(3.2)

∂vr
∂r

+
∂vz
∂z

+
vr
r

= 0.(3.3)

Here ρF is the fluid density and μF is the fluid dynamic viscosity coefficient, where
the subscript F stands for the fluid quantities. The Navier–Stokes equations hold in
the cylindrical domain

Ω(t) =
{
x ∈ R

3;x = (r cosϑ, r sinϑ, z), r < R + η(z, t), 0 < z < L
}

(3.4)

bounded by the viscoelastic lateral boundary

Σ(t) =
{
((R(z) + η(t, z)) cos θ, (R(z) + η(t, z)) sin θ, z) ∈ R

3 : θ ∈ (0, 2π), z ∈ (0, L)
}
.

See Figure 3.1. The reference configuration corresponds to that of a straight cylinder
with radius R and length L. (The same results can be obtained for a cylinder with a
slowly varying radius R(z) under the assumption that R′(z) < ε [47].) The following
inlet (z = 0) and outlet (z = L) boundary data lead to a well-defined problem:
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x

y

Ω (t)

Σ(t)

L

η

Fig. 3.1. Deformed domain Ω(t).

1. The dynamic pressure is prescribed at both ends:

p + ρ(vz)
2/2 = P0,L(t) + pref at z = 0, L.(3.5)

2. The fluid enters and leaves the tube parallel to the axis of symmetry, with
zero displacement:

vr = 0, η = 0 at z = 0, L.(3.6)

3. The tube is clamped so that

∂η

∂z
= 0 at z = 0, L.(3.7)

In the reduced model (see section 4), the zero displacement condition is relaxed. This
is typical for reduced models where the boundary layer phenomena near the edges
with high stress concentrations are lost [8].

Initially, the fluid and the wall are assumed to be at rest, with zero displacement
from the reference configuration:

v = 0, η = 0,
∂η

∂t
= 0.(3.8)

These initial and boundary conditions describe well our experimental set up, described
in section 7.

The coupling between the fluid flow and vessel wall dynamics is performed via
the following kinematic and dynamic lateral boundary conditions [9]:

• The kinematic condition requiring continuity of velocity:

vr(R + η(z, t), z, t) =
∂η(z, t)

∂t
, vz(R + η(z, t), z, t) = 0.(3.9)

• The dynamic condition requiring balance of forces (the contact force of the
fluid is counterbalanced by the contact force of the wall):

fr = [(p− pref)I − 2μFD(v)] n · er

(
1 +

η

R

)√
1 + (∂zη)

2
,(3.10)

where fr is given by the viscoelastic shell model (2.14). The right-hand side of
(3.10) describes the contact force of the fluid, where D(v) is the symmetrized
gradient of velocity, defined in (3.12), n is the vector normal to the deformed
boundary Σ(t), and er is the radial unit vector.

See [9] for more details.
Thus, the complete fluid-structure interaction problem consists of solving the fluid

equations (3.1)–(3.3) on the domain Ω(t) defined by (3.4) with a moving boundary
Σ(t), satisfying the initial and boundary data given by (3.5)–(3.10) where the contact
force of the structure fr is given by (2.14).
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3.1. Weak formulation. To derive a weak formulation of the fluid-structure
interaction problem we take the standard approach: multiply the fluid equations by
a test function, integrate by parts, and take into account the initial and boundary
conditions to obtain the integral form of the problem. For that purpose, introduce
the following test spaces.

Definition 3.1 (the test spaces). Let

V (Ω(t)) = {ϕ = ϕrer + ϕzez ∈ H2(Ω(t))2 | ϕr(r, z) = ∂zϕr(r, z) = 0 at z = 0, L,

(3.11)

ϕz(R + γ(z, t), z) = 0, and div ϕ = 0 in Ω(t) a.e.}.
For each t ∈ [0, T ], the test space is the space H1(0, T ;V (Ω(t)).

To specify the weak solution we introduce the spaces containing the candidates
for the radial displacement and the velocity. They are deduced from the a priori
solution estimates, presented in section 3.2.

Definition 3.2 (the solution spaces).
• The space Γ consists of all the functions

η ∈ L∞(0, T ;H2(0, L)) ∩ C1([0, T ];L2(0, L)) ∩ C([0, T ];H2(0, L))

such that η(t, 0) = η(t, L) = 0, ∂zη(t, 0) = ∂zη(t, L) = 0, and η(0, z) =
∂tη(0, z) = 0.

• The space V consists of all the functions

v = (vr, vz) ∈ L2(0, T ;H1(Ω(t))2) ∩ C([0, T ];L2(Ω(t))2)

such that divv = 0 in Ω(t) × R+, vr = 0 for z = 0, L, and v = 0 at t = 0.
To define the weak form recall that the symmetrized gradient of velocity D(ϕ),

defined for an axially symmetric vector valued function ϕ = ϕrer +ϕzez, is given by

D(ϕ) =

⎛
⎜⎜⎜⎜⎝

∂ϕr

∂r
0

1

2

(∂ϕr

∂z
+

∂ϕz

∂r

)
0

ϕr

r
0

1

2

(∂ϕr

∂z
+

∂ϕz

∂r

)
0

∂ϕz

∂z

⎞
⎟⎟⎟⎟⎠ .(3.12)

Define the matrix norm | · | through the scalar product

A ·B := Tr
(
ABT

)
, A,B ∈ R

9.(3.13)

Definition 3.3. A weak solution of problem (3.1)–(3.10) is a function (η,v) ∈
Γ × V such that ∀ϕ ∈ H1(0, T ;V (Ω(t))) the following integral equation holds:

2μF

∫
Ω(t)

D(v) ·D(ϕ) rdrdz + ρ

∫
Ω(t)

{
∂v

∂t
+ (v(t)∇)v

}
ϕ rdrdz

+R

∫ L

0

{
C0η ϕr|R+η + C1

∂η

∂z

∂ϕr

∂z

∣∣∣∣
R+η

+ C2
∂2η

∂z2

∂2ϕr

∂z2

∣∣∣∣
R+η

+D0
∂η

∂t
ϕr|R+η + D1

∂2η

∂t∂z

∂ϕr

∂z

∣∣∣∣
R+η

+ D2
∂3η

∂t∂z2

∂2ϕr

∂z2

∣∣∣∣
R+η

}
dz(3.14)

+Rρwh

∫ L

0

∂2η

∂t2
ϕr(R + η(t, z), z, t) dz = −

∫ R

0

{
P2(t) −

ρ

2
(v2

z)|z=L

}
ϕz|z=Lrdr

+

∫ R

0

{
P1(t) −

ρ

2
(v2

z)|z=0

}
ϕz|z=0rdr,
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where Ω(t) is given by (3.4) and η and vr are linked on Σ(t) through (3.9).

Notice that the domain as well as the solution and test spaces depend on time. To
get a global weak formulation one can use the a priori solution estimates, presented
below, and define a global weak solution via a fixed point mapping, defined on a fixed,
“fictitious” domain. This approach is used in [9] to define a global weak solution
for a related fluid-structure interaction problem using the linearly elastic membrane
equations to model the vessel walls. We do not pursue this approach here but continue
with the derivation of the energy and a priori estimates.

3.2. The energy and a priori estimates. By replacing the test function with
the fluid velocity and using the kinematic lateral boundary condition (3.9) one obtains
the following proposition.

Proposition 3.4 (energy equality). Solution (η,v) of problem (3.1)–(3.10) sat-
isfies the following energy equality:

ρ

2

d

dt

∫
Ω(t)

|v|2 dV +
πR

2

d

dt

∫ L

0

{
C0|η|2 + C1

∣∣∣∣∂η∂z
∣∣∣∣2 + C2

∣∣∣∣∂2η

∂z2

∣∣∣∣2
}
dz

+
πR

2
ρwh

d

dt

∫ L

0

∣∣∣∣∂η∂t
∣∣∣∣2 dz + πR

∫ L

0

{
D0

∣∣∣∣∂η∂t
∣∣∣∣2 + D1

∣∣∣∣ ∂2η

∂t∂z

∣∣∣∣2 + D2

∣∣∣∣ ∂3η

∂t∂z2

∣∣∣∣2
}
dz

+ 2μF ‖D(v)‖2
L2(Ω(t)) = −

∫ R

0

P2(t)vz(t, r, L) rdr +

∫ R

0

P1(t)vz(t, r, 0) rdr,(3.15)

with vr(t, R + η, z) = ∂η
∂t (t, z) and vz(t, R + η, z) = 0 on (0, L) × (0, T ).

To obtain the a priori estimates and the correct scales for the problem, we intro-
duce the nondimensional time

t̂ := ωt.(3.16)

The characteristic frequency ω will be specified later in (3.21). The choice of ω
determines the time-scale for the natural oscillations of the structure in terms of the
inlet and outlet pressure data. As it will be seen later, the quantity Lω corresponds to
the “sound speed” of the natural oscillations of the structure, and the choice of ω given
in (3.21) gives rise to the structure sound speed reported in Fung [21]. From now on
we will be working with the nondimensional time t̂ but will drop the “hat” notation
for simplicity. Whenever physical time t is used, this will be explicitly specified.

Take the rescaled time into account and integrate the energy equality with respect
to time to obtain

ρω

2

∫
Ω(t)

|v|2 dV +
πRω

2

∫ L

0

{
C0|η|2 + C1

∣∣∣∣∂η∂z
∣∣∣∣2 + C2

∣∣∣∣∂2η

∂z2

∣∣∣∣2
}
dz(3.17)

+
πRω3

2
ρwh

∫ L

0

∣∣∣∣∂η∂t
∣∣∣∣2 dz + πRω2

∫ t

0

∫ L

0

{
D0

∣∣∣∣∂η∂t
∣∣∣∣2 + D1

∣∣∣∣ ∂2η

∂t∂z

∣∣∣∣2 + D2

∣∣∣∣ ∂3η

∂t∂z2

∣∣∣∣2
}
dzdτ

+ 2μF

∫ t

0

‖D(v)‖2
L2(Ω(τ))dτ = −

∫ t

0

∫ R

0

(P2(τ)vz(τ, r, L) − P1(τ)vz(τ, r, 0)) rdrτ.

By estimating the right-hand side in a manner similar to the estimates in [9] and [6]
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one obtains

ρω

2
‖v‖2

L2(Ω(t)) + πω3ρwhR ‖∂tη‖2
+

πωRC0

2
‖η‖2(3.18)

≤ 16πLRω

C0

(
sup
z,t

|p̂|2 +

(
sup
z

∫ t

0

|∂tp̂|dτ
)2
)

+
8TπR2

ρωL

∫ t

0

|A(τ)|2dτ,

where

A(t) = PL(t) − P0(t), p̂(t) =
A(t)

L
z + P0(t),(3.19)

and T > 0 denote the physical time such that

T ≤ 1

4

R
√
ρwhC0

‖p‖∞
.(3.20)

For example, for pref = 0, this inequality reads T ≤ 1/[4(1 − σ2)]h
√
Eρw/‖p‖∞.

This is the point were we define the frequency ω. Choose ω so that the contri-
bution of all the terms involving the pressure data have the same weight. Namely,
choose ω so that the time-scale of the captured oscillations is determined by the pres-
sure drop A(t), the inlet and outlet maximum pressure, and by the time-average of
the steepness of the pressure front ∂tp̂ to obtain

ω =
1

L

√
RC0

2ρ
.(3.21)

This choice of ω gives rise to the sound speed of the waves in the “structure” ωL
which is exactly the sound speed reported by Fung in [21]. After taking this form of ω
into account, and after dividing (3.18) by ω, we obtain the following energy inequality
from which the a priori estimates will follow.

Proposition 3.5. Weak solution (η,v) satisfies

ρ

2
‖v‖2

L2(Ω(t)) + πω2ρwhR ‖∂tη‖2
+

πR

2
C0‖η‖2 ≤ 16πLR

C0
P2, where

P2 := sup
z,t

|p̂|2 +

(
sup
z

∫ t

0

|p̂t|dτ
)2

+ T

∫ t

0

|A(τ)|2.(3.22)

Using this result we obtain the a priori estimates for the L2-norms of the fluid
velocity, the displacement, and the time-derivative of the displacement.

Lemma 3.6. Weak solution (η,v) satisfies the following a priori estimates:

1

L
‖η(t)‖2

L2(0,L) ≤
32

C2
0

P2,
1

L
‖∂tη(t)‖2

L2(0,L) ≤
16

ρWω2hC0
P2,

1

LR2π
‖v‖2

L2(Ω(t)) ≤
32

ρFRC0
P2,∫ t

0

{
‖∂rvr‖2

L2(Ω(τ)) +
∥∥∥vr
r

∥∥∥2
L2(Ω(τ))

+ ‖∂zvz‖2
L2(Ω(τ))

}
dτ ≤ 4πR2

μF

√
2

ρFRC0
P2,∫ t

0

{
‖∂rvz‖2

L2(Ω(τ)) + ‖∂zvr‖2
L2(Ω(τ))

}
dτ ≤ 4R2

μF

√
2

ρRC0
P2.
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Furthermore, we obtain the following estimates for the functions describing the
viscoelastic behavior of the structure.

Corollary 3.7. The following estimates hold for the viscoelastic thin shell
model:

ω

L

∫ t

0

∥∥∥∥∂η∂t
∥∥∥∥2
L2

dτ ≤ 32

C0D0
P2,

ω

L

∫ t

0

∥∥∥∥ ∂2η

∂t∂z

∥∥∥∥2
L2

dτ ≤ 32

C0D1
P2,

ω

L

∫ t

0

∥∥∥∥ ∂3η

∂t∂2z

∥∥∥∥2
L2

dτ ≤ 32

C0D0
P2,

where P is given by (3.22), and ω by (3.21).
The a priori estimates obtained in this section will be used to derive the reduced

model presented below.

4. Fluid-structure interaction: A reduced model. We proceed by deriving
a closed, effective, reduced model, approximating the full, original axially symmetric
problem to the ε2-accuracy.

We begin by considering (3.1)–(3.3) written in nondimensional form. The scalings
for the dependent variables v and η are obtained from the a priori estimates presented
in Lemma 3.6

v = V ṽ, where 2V =
P

√
ρF

(
hE

R(1 − σ2)
+ pref

)− 1
2

,(4.1)

η = Ξη̃, where 2Ξ = PR

(
hE

R(1 − σ2)
+ pref

)−1

.(4.2)

Consider p = Cpp̃, where Cp will be determined later; see (4.11). The nondimensional
independent variables r̃, z̃, and t̃ are introduced via

r = Rr̃, z = Lz̃, t =
1

ω
t̃, where ω =

1

L

√
1

ρF

(
hE

R(1 − σ2)
+ pref

)
.(4.3)

At this point we could continue by performing singular perturbation analysis of the
rescaled system (3.1)–(3.10), (2.14). As in [9], we would find a two-dimensional re-
duced free-boundary problem approximating the initial problem to the ε2-accuracy.
This problem involves a hydrostatic approximation of the pressure, and it is usually
written as an analogue of the shallow water system. Elimination of the radial compo-
nent of the velocity leads to a nonlocal degenerate term. The resulting equations are
too complex to be used in the calculation of the solution, and simplifications involving
an ad hoc axial velocity profile are typically considered in the literature. Typically
considered vz-profiles are in the form of a product of an unknown function of z and t
and a generalized Poiseuille profile in r (see, e.g., [44]). The resulting variant of the
shallow water equations is then closed, but the closure hypothesis could introduce an
error of order 1.

In order to find a closure that results from the problem itself and gives rise to an ε2-
approximation of the full three-dimensional axially symmetric problem, we are going
to use homogenization theory [4]. Homogenization theory is used to find effective
equations for nonhomogeneous flows. For porous media problems homogenization
theory can be applied when (a) the pore size (characteristic size of the fluid region
free of another phase) is smaller than the characteristic length of the macroscopic
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problem (here, vessel diameter) or (b) the pore includes a large number of molecules
to be considered as continuum [28].

At a first glance using this approach in our setting is pointless. A simple averaging
of the equations for the fluid phase over the cross-section of the vessel should provide
a good approximation. Unfortunately, as remarked above, this approach leads to a
problem that is not closed and might ultimately give rise to the errors of order 1. On
the other hand, we know how to obtain closed models related to nonlinear filtration
laws in rigid periodic porous media by homogenization [36, 37]. In rigid periodic
porous media the expansions are of lower order of precision, but the resulting models
are closed. It was shown in [36, 37] that in this case it is possible to link the homoge-
nized equations with the nonlinear algebraic relations between the pressure gradient
and the velocity (Forchheimer’s filtration law), found in experiments. In a similar
way, Robertson and Sequeira [46] obtained a closed model for blood flow in rigid wall
tubes by replacing the averaged momentum equation with a variant of Forchheimer’s
law, and no closure assumption was needed to derive a closed system.

In our case we are concerned with viscoelastic walls. How do we link the flow
of blood through viscoelastic arteries with the filtration through porous media? Due
to the uniform bound on the maximal value of the radial displacement, obtained in
section 3.2, our artery can be placed into a rectangle with the length of order 1 and of
small width ε. By repeating periodically this geometry in the radial direction, we get
a network of parallel, long, and narrow tubes, with no cross-flow from one horizontal
tube to another. This is one of the simplest porous media which one can imagine.
It is not a rigid but a deformable porous medium, just as are the domains in Biot’s
theories of deformable porous media. All results that are valid for deformable porous
media are also valid in our situation. Motivated by the results from [36] and [37],
where closed effective porous medium equations were obtained using homogenization
techniques, we set up a problem that mimics a similar scenario.

Introduce y = 1
ε z̃ and assume periodicity in y of the domain and of the veloc-

ity and the pressure. Furthermore, recalling that we have a narrow long tube with
r̃ = 1

Rr = 1
ε
r
L , assume periodicity in the radial direction thereby forming a network

of a large number of strictly separated, parallel tubes. Follow the approach first pre-
sented in [9]. In [9] a closed, reduced model was derived in the case when the vessel
walls were approximated by a linearly elastic membrane equations. In the present
manuscript, the introduction of a linearly viscoelastic Koiter shell model introduces
minor differences in the derivation of the reduced model. Thus, we present only the
main steps in the derivation and omit the details which can be found in [9].

Following standard approach in homogenization theory [28, 4], we look for the
unknown functions that explicitly depend on the “slow variables” r and z̃ as well as
on the “fast variables” r/ε and z̃/ε =: y. In our problem the slow and fast variables
are related through z = Lz̃ := Lεy = Ry, r = Rr̃. Thus, we look for the functions

ṽ = ṽ(t̃, r, r/ε, z̃, z̃/ε), η̃ = η̃(t̃, r, r/ε, z̃, z̃/ε), and p̃ = p̃(t̃, r, r/ε, z̃, z̃/ε)(4.4)

that are 1-periodic in y = z̃/ε and r/ε and satisfy the Navier–Stokes equations (3.1)–
(3.3). Keeping both the fast and the slow variables in the derivation of the equations,
namely keeping r, r/ε, z̃, and y in the problem, will help us determine the proper
scaling for the pressure and lead us to a closed, reduced effective model.

Expand the functions in (4.4) in terms of the small parameter ε

v = V
{
ṽ0 + εṽ1 + · · ·

}
, η = Ξ

{
η̃0 + εη̃1 + · · ·

}
, p = Cp

{
p̃0 + εp̃1 + · · ·

}(4.5)
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Table 4.1

Table with parameter values.

Parameters Aorta/iliacs Latex Tube

Char. radius R(m) 0.006-0.012 [44] 0.011
Char. length L(m) 0.065-0.2 [14] 0.34

Dyn. viscosity μF ( kg
ms

) 3.5 × 10−3 [44] 3.5 × 10−3

Young’s modulus E(Pa) 105 − 106 [44, 1, 3] 1.0587 × 106

Wall thickness h(m) 1 − 2 × 10−3 [44] 0.0009
Wall density ρW (kg/m3) 1.1 × 103 [44] 1.1 × 103

Fluid density ρF (kg/m3) 1050 [44] 1000
Wall viscosity coef. hCv/R(Pa · s) 103 − 8 × 103 [1, 2, 3] 0

and plug this into the Navier–Stokes equations (3.1)–(3.3). We look for a solution to
the zeroth-order approximation of the problem plus its ε-correction. The zeroth-order
approximation corresponds to the leading-order approximation of the flow in the limit
in which the wavelength of the disturbance and the length scale of tube variation are
large compared with the tube radius.

4.1. The zeroth-order approximation. The leading-order Navier–Stokes equa-
tions read

Sh0
∂ṽ0

z

∂t̃
+ (ṽ0∇r̃,y)ṽ

0
z +

∂p̃0

∂z̃
+

∂p̃1

∂y
− 1

Re0

{
1

r̃

∂

∂r̃

(
r̃
∂ṽ0

z

∂r̃

)
+

∂2ṽ0
z

∂y2

}
= 0,(4.6)

Sh0
∂ṽ0

r

∂t̃
+ (ṽ0∇r̃,y)ṽ

0
r +

∂p̃0

∂r
+

∂p̃1

∂r̃
− 1

Re0

{
1

r̃

∂

∂r̃

(
r̃
∂ṽ0

r

∂r̃

)
+

∂2ṽ0
r

∂y2

}
= 0,(4.7)

∇r̃,y p̃
0 = 0,(4.8)

∂

∂r̃

(
r̃ṽ0

r

)
+

∂

∂y

(
r̃ṽ0

z

)
= 0,(4.9)

with ṽ0
r , ṽ

0
z , and p̃1 1-periodic in y and ṽ0

r = ṽ0
z = 0 at r̃ = 1 +

Ξ

R
η̃,(4.10)

where Sh0 := εLωε

V and Re0 := ρFRV
μF

. Here the following scaling for the pressure is
used:

p =
ρFV

2

ε
p̃, thus Cp =

ρFV
2

ε
.(4.11)

Notice Sh0 = εSh and Re0 = Re/ε. For the average values from Table 4.1 Sh0 is of
order 1 and Re0 is around 1000. We remark that (4.8) corresponds to the ε−1-term
and the others to the ε0-term.

The leading-order behavior for the boundary conditions evaluated at the lateral
boundary r̃ = 1 + Ξ

R η̃0 is the following:
• The kinematic boundary condition:

ṽ1
r =

∂η̃0

∂t̃
+ O(ε2).(4.12)

• The dynamic boundary condition:

p̃0 − p̃ref =
ε

ρFV 2

Ξ

R

hE

R(1 − σ2)

(
1 +

h2

12R2

)
η̃0 + p̃ref

Ξ

R
η̃0

+
ε

ρFV 2

Ξ

R

hCV ω

R

(
1 +

h2

12R2

)
∂η̃0

∂t̃
+ O(ε2).

(4.13)
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Notice that for the parameter values in Table 4.1, ω ≈ 100 and the values of the

leading-order coefficients are both of order one: ε
ρFV 2

Ξ
R

hE
R(1−σ2) (1 + h2

12R2 ) = O(1),
ε

ρFV 2
Ξ
R

hCV ω
R (1 + h2

12R2 ) = O(1). This is the ε2-approximation of the pressure-
displacement relationship describing the linearly viscoelastic cylindrical Koiter shell
model. The terms multiplying h3 account for the bending rigidity of the Koiter shell.
These terms are not present in the pressure-displacement relationship describing a
viscoelastic membrane.

To obtain a closed system of reduced equations notice that system (4.6)–(4.10)
admits a unique strong (nonstationary) unidirectional solution independent of y [48]
for every given smooth pressure p̃0:

ṽ0
r = 0, ṽ0

z = ṽ0
z(r̃, z̃, t̃),(4.14)

where ṽ0
z satisfies⎧⎪⎨
⎪⎩

Sh0
∂ṽ0

z

∂t̃
− 1

Re0

1

r̃

∂

∂r̃

(
r̃
∂ṽ0

z

∂r̃

)
= −∂p̃0

∂z̃
(z̃, t̃),

ṽ0
z(0, z̃, t̃) bounded, ṽ0

z(1 + Ξη̃0(z̃, t̃)/R, z̃, t̃) = 0, and ṽ0
z(r̃, z̃, 0) = 0,

(4.15)

and p̃1 is a linear function of y, independent of r̃. Since p̃1 is 1-periodic p̃1 cannot
depend on y. Thus, the derivatives of p̃1 with respect to r̃ and y are both zero.

To complement (4.15) in the calculation of ṽ0
z and p̃0 we use the conservation

of mass equation (3.3) averaged with respect to the cross-section. The leading-order
terms in (3.3) read

∂

∂r̃

(
r̃ṽ1

r

)
+

∂

∂z̃

(
r̃ṽ0

z

)
= 0.

Integrated with respect to r̃ from 0 to 1 + Ξ
R η̃0 one obtains

∂
(
1 + Ξ

R η̃0
)2

∂t̃
+

Ξ

R

∂

∂z̃

∫ 1+ Ξ
R η̃0

0

2ṽ0
z r̃dr̃ = 0,(4.16)

where we have used the kinematic boundary condition (4.12) to couple the flow ve-
locity and lateral boundary motion.

Equations (4.16), (4.15), and (4.13) give rise to a nonlinear free-boundary problem
for the zeroth-order approximation of the flow. In dimensional variables, the nonlinear
free-boundary problem for (v0, η0, p0) = (v0

z , 0, η
0, p0) reads

∂(R + η0)2

∂t
+

∂

∂z

∫ R+η0

0

2rv0
zdr = 0,

�F
∂v0

z

∂t
− μF

1

r

∂

∂r

(
r
∂v0

z

∂r

)
= −∂p0

∂z
,(4.17)

p0 − pref =
hE

R2(1 − σ2)

(
1 +

h2

12R2

)
η0 + pref

η0

R
+

hCV

R2

(
1 +

h2

12R2

)
∂η0

∂t
,

v0
z |r=0 − bounded, v0

z |r=R+η0 = 0, v0
z |t=0 = 0,

η0|t=0 = 0, p0|z=0 = P0, p0|z=L = PL.
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4.2. The first-order correction. The first-order correction to the solution de-
fined by (4.17) is obtained by solving the equations that result from the coefficients
at the ε1-terms in the expanded Navier–Stokes equations (3.1)–(3.3)

Sh0
∂ṽ1

z

∂t̃
+ ṽ0

z

{
∂ṽ1

z

∂y
+

∂ṽ0
z

∂z̃

}
+ ṽ1

r

∂ṽ0
z

∂r̃
+

∂p̃1

∂z̃
+

∂p̃2

∂y
=

1

Re0

{
1

r̃

∂

∂r̃

(
r̃
∂ṽ1

z

∂r̃

)
+

∂2ṽ1
z

∂y2

}
,

(4.18)

Sh0
∂ṽ1

r

∂t̃
+ ṽ0

z

∂ṽ1
r

∂y
+

∂p̃2

∂r̃
=

1

Re0

{
1

r̃

∂

∂r̃

(
r̃
∂ṽ1

r

∂r̃

)
+

∂2ṽ1
r

∂y2

}
,(4.19)

∂

∂r̃

(
r̃ṽ1

r

)
+

∂

∂y

(
r̃ṽ1

z

)
+ r̃

∂ṽ0
z

∂z̃
= 0,(4.20)

ṽ1
r , ṽ

1
z , p̃

2 1-periodic in y; ṽ1
r =

∂η̃0

∂t̃
, ṽ0

z = 0 at r̃ = 1 +
Ξ

R
η̃0.(4.21)

Using the same arguments as in [9] one can show that p̃1 = p̃2 = 0 and we have
a closed linear system, known as a nonstationary Oseen system, defined on a fixed
domain (0, L) × (0, 1 + Ξ/Rη0).

To calculate the ε-correction to the velocity we look for a solution ṽ1
z that is

independent of the “artificial” fast variable y. In this case the conservation of mass
equation (4.20) can be integrated with respect to r̃ to obtain an explicit formula for
ṽ1
r in terms of the already calculated ṽ0

z :

r̃ṽ1
r(r̃, z̃, t̃) =

(
1 +

Ξη̃0

R

)
∂η̃0

∂t̃
+

∫ 1+Ξη̃0/R

r̃

∂ṽ0
z

∂z̃
(ξ, z̃, t̃) ξ dξ.(4.22)

The axial momentum equation (4.18) defines a linear problem for ṽ1
z :

Sh0
∂ṽ1

z

∂t̃
− 1

Re0

1

r̃

∂

∂r̃

(
r̃
∂ṽ1

z

∂r̃

)
= −ṽ1

r

∂ṽ0
z

∂r̃
− ∂

∂z̃

(
(ṽ0

z)
2

2

)
,(4.23)

ṽ1
z(0, z̃, t̃) bounded, ṽ1

z(1 + Ξη̃0(z̃, t̃)/R, z̃, t̃) = 0,(4.24)

ṽ1
z(r̃, z̃, 0) = 0, ṽ1

z(r̃, 0, t) = ṽ1
z(r̃, L, t) = 0.(4.25)

Notice that the quadratic transport terms appear in this higher-order approxima-
tioni. They are linearized around the zeroth-order approximation of the solution.

Equations (4.22)–(4.25) define the ε-correction of the solution. In dimensional
form the system reads

v1
r(r, z, t) =

1

r

(
R
∂η0

∂t
+

∫ R

r

ξ
∂v0

z

∂z
(ξ, z, t)dξ

)
,

ρF
∂v1

z

∂t
− μF

1

r

∂

∂r

(
r
∂v1

z

∂r

)
= −ρF

(
v1
r

∂v0
z

∂r
+ v0

z

∂v0
z

∂z

)
,(4.26)

v1
z |r=0 − bounded, v1

z |r=R = 0, v1
z |t=0 = 0.

Proposition 4.1. The velocity field v = (v0
z + v1

z , v
1
r), the radial displacement

η = η0, and the pressure p = p0, defined by (4.17) and (4.26), satisfy the original
problem (3.1)–(3.10) to O(ε2).

The proof is the same as that of Proposition 7.1 in [9].
We end this section by summarizing the main assumptions under which the sim-

plified, effective problem (4.17), (4.26) holds and the parameter values assumed.
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Assumptions.

(1) The domain is cylindrical with small aspect ratio ε = Rmax/L.
(2) The problem is axially symmetric.
(3) Longitudinal displacement is negligible.
(4) Radial displacement is not too large, i.e., δ := Ξ/R ≤ ε.
(5) The reference tube radius varies slowly: R′(z) < ε.
(6) The Reynolds number Re is small to medium (Re ≈ 1000).
(7) The z-derivatives of the nondimensional quantities are O(1) (not too large).

5. Viscoelasticity of the fluid-structure interaction. We emphasize in this
section that the viscoelastic behavior of the coupled fluid-structure interaction prob-
lem comes from two distinct effects. One is the viscoelasticity of the structure itself,
and the other is the viscoelasticity due to the interaction between the structure (not
necessarily viscoelastic) with a viscous fluid. To explicitly capture the leading-order
effects that the viscous fluid imparts on the motion of the structure we proceed as fol-
lows. First, we simplify the free-boundary problem (4.17) by expanding the underlying
problem (4.17), (4.26), with respect to the radial displacement. The free-boundary
problem will be approximated by two fixed boundary problems of similar form. Each
of the two fixed boundary problems consists of solving a system of two equations
(see (5.1), (5.3)) that are of hyperbolic-parabolic type. In each of the two problems,
we can “explicitly solve” the parabolic equation for the velocity, plug the velocity
into the resulting equation for the structure, and obtain a single equation describing
the motion of the structure. The resulting equation incorporates the viscous fluid
effects in terms of a convolution integral. If we will assume, for the moment, that
the structure is purely elastic, the resulting equation describes the dynamics of an
elastic structure under a viscous fluid load; see (5.11). It corresponds to a model of
a viscoelastic string with viscous long-term memory effects. Thus, the fluid viscosity
influences the dynamics of an elastic structure through a long-term memory effect.

We begin by expanding the free-boundary problem (4.17) and the ε-correction
(4.26) with respect to the radial displacement whose magnitude is measured, in non-
dimensional variables, by Ξ/R. Thus, assume that

δ :=
Ξ

R
≤ ε

and introduce the following expansions with respect to δ:

η̃0 = η̃0,0 + δη̃0,1 + · · · , p̃0 = p̃0,0 + δp̃0,1 + · · · ,
v0
z = v0,0

z + δv0,1
z + · · · , ṽ1

z = ṽ1,0
z + · · · , ṽ1

r = ṽ1,0
r + · · · .

The first superscript denotes the expansion with respect to ε and the second with
respect to δ. Then using the same approach as in [9] one obtains a set of equations
approximating the original problem to the ε2-accuracy. The resulting problem, in
dimensional variables, consists of finding the functions

vz = v0,0
z + v0,1

z + v1,0 + O(ε2), vr = v1,0
r + O(ε2), η = η0,0 + O(ε2) p = p0,0 + O(ε2)

satisfying the following set of closed, well-defined problems.
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The zeroth-order approximation. Find (η0,0, v0,0
z ) such that

∂η0,0

∂t
+

1

R

∂

∂z

∫ R

0

rv0,0
z dr = 0,

�F
∂v0,0

z

∂t
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1

r

∂

∂r

(
r
∂v0,0

z

∂r

)
= −∂p0,0

∂z
,(5.1)

v0,0
z |r=0 − bounded, v0,0

z |t=R = 0, v0,0
z |t=0 = 0,

η0,0|t=0 = 0, p0,0|z=0 = P0, p0,0|z=L = PL,

where

p0,0 =
Eh

(1 − σ2)R

(
1 +

h2

12R2

)
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R
+ pref

η0,0

R
+
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R2
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1 +
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12R2

)
∂η0,0

∂t
.(5.2)

The δ correction. Find (η0,1, v0,1
z ) such that

∂η0,1

∂t
+

1

R

∂

∂z

∫ R
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z
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r
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r
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z
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)
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∂z
,(5.3)
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z |r=0 − bounded, v0,1

z |r=R = −η0,0 ∂v
0,0
z

∂r
|r=R, v0,1

z |t=0 = 0,

η0,1|t=0 = 0, η0,1|z=0 = 0, η0,1|z=L = 0,

where
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(
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(1 − σ2)R

(
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12R2

)
+ pref
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η0,1
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−
(
η0,0
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)

+
hCv

R2

(
1 +

h2

12R2

)(
∂η0,1

∂t
− η0,0

R

∂η0,1

∂t

)
.

(5.4)

The ε-correction. Find (v1,0
r , v1,0

z ) such that

v1,0
r (r, z, t) =

1

r

(
R
∂η0,0

∂t
+

∫ R

r

ξ
∂v0,0

z

∂z
(ξ, z, t)dξ

)
,(5.5)

ρF
∂v1,0

z

∂t
− μF

1

r

∂

∂r

(
r
∂v1,0

z

∂r

)
= −ρF

(
v1,0
r

∂v0,0
z

∂r
+ v0,0

z

∂v0,0
z

∂z

)
,(5.6)

v1,0
z |r=0 − bounded, v1,0

z |r=R = 0, v1,0
z |t=0 = 0.

Systems (5.1) and (5.3) can be solved by considering the auxiliary problem⎧⎨
⎩

∂ζ

∂t
− 1

r

∂

∂r

(
r
∂ζ

∂r

)
= 0 in (0, R) × (0,∞),

ζ(0, t) is bounded , ζ(R, t) = 0 and ζ(r, 0) = 1.
(5.7)

For example, the solution of the parabolic equation for the velocity v0,0
z can be written

as the convolution

v0,0
z = − 1

ρF

∫ t

0

ζ

(
r,
μF (t− τ)

ρF

)
∂p0,0

∂z
(z, τ)dτ.
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Plugging this expression for the velocity into the first equation one obtains

∂η0,0

∂t
− 1

ρFR

∂

∂z

∫ R

0

r

∫ t

0

ζ

(
r,
μF (t− τ)

ρF

)
∂p0,0

∂z
(z, τ)dτdr = 0.(5.8)

Denote the mean of ζ in the radial direction by

K(t) = 2

∫ R

0

ζ(r, t) rdr,(5.9)

and assume, for the moment, that the Koiter shell is purely elastic so that

p0,0 = C0η
0,0, where C0 =

h

R2

E

1 − σ2

(
1 +

h2

12R2

)
+

pref

R
.

Then (5.8) becomes

∂η0,0

∂t
− C0

2ρFR

∫ t

0

K
(
μF (t− τ)

ρF

)
∂2η0,0

∂z2
dτ = 0.(5.10)

Differentiate with respect to t to obtain

∂2η0,0

∂t2
=

C0R

2ρF

∂2η0,0

∂z2
+ μF

C0

2ρ2
FR

∫ t

0

K′
(
μF (t− τ)

ρF

)
∂2η0,0

∂z2
.(5.11)
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Fig. 5.1. A comparison between the solutions of (5.11) with μF = 0 (thin solid line) and
μF = 3.5 × 10−3 (thick solid line). The radius, shown in these graphs, is taken at the midpoint of
the tube during two cardiac cycles.

This is a model describing the motion of a linearly viscoelastic string with the viscous
effects described by the convolution integral on the right-hand side of (5.11). The
kernel in the convolution corresponds to the derivative of K which decays in time
exponentially fast, with the decay rate equal to the first zero of the Bessel function
J0. This is the only term that incorporates the viscosity of the fluid μF . Thus, the fluid
impacts the motion of the structure through this long-term memory effect. Numerical
simulations presented in Figure 5.1 show the motion of the structure (displacement
η0,0) with μF = 0 and with μF = 3.5 × 10−3. The smoothing by the viscous fluid
dissipation is obvious.



FLUID-STRUCTURE INTERACTION IN BLOOD FLOW 185

0 0.02 0.04 0.06 0.08 0.1 0.12
−6

−4

−2

0

2

4

6
x 10

−3

ra
di

us
(m

)

length (m)

velocity (axial component)

−5 0 5

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

v
z
 a

t 
m

id
p

o
in

t 
(m

/s
)

radius (m)

0 0.02 0.04 0.06 0.08 0.1 0.12
−6

−4

−2

0

2

4

6
x 10

−3

ra
di

us
(m

)

length (m)

velocity (radial component)

−5 0 5

x 10
−3

0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

vr
 a

t 
m

id
p

o
in

t 
(m

/s
)

radius (m)

Fig. 6.1. The axial (top) and radial (bottom) components of the velocity obtained at a first half
of the systole (1/6 of the cardiac cycle). The magnitude of the axial component of the velocity is
between 0 and 0.52 m/s. The magnitude of the radial component of the velocity is between 0 and
0.0014 m/s. The pictures on the right show the velocity profiles calculated at the midpoint of the
tube.

6. Numerical algorithm. To solve problems (5.1) and (5.3) numerically it is
convenient to rewrite each of the systems of equations as a second-order hyperbolic-
parabolic problem. Namely, after differentiating the first equation in (5.1) with respect
to time, and plugging the second equation into the first, problem (5.1) can be rewritten
as

∂2η0,0

∂t2
− R

2ρF

∂2p0,0

∂z2
= −μF

ρF

∂

∂z

(
∂v0,0

z

∂r

∣∣∣∣
r=R

)
,(6.1)

ρF
∂v0,0

z

∂t
− μF

1

r

∂

∂r

(
r
∂v0,0

z

∂r

)
= −∂p0,0

∂z
,(6.2)

with the initial and boundary conditions specified in (5.1) and p0,0 substituted by
(5.2). Similarly, problem (5.3) can be written as

∂2η0,1

∂t2
− R

2ρF

∂2p0,1

∂z2
= −μF

ρF

∂

∂z

(
∂v0,0

z

∂r

∣∣∣∣
r=R

)
− 1

2R

∂2

∂t2
(
η0,0
)2

,(6.3)

ρF
∂v0,1

z

∂t
− μF

1

r

∂

∂r

(
r
∂v0,1

z

∂r

)
= −∂p0,1

∂z
,(6.4)

with initial and boundary conditions given in (5.3) and p0,1 substituted by (5.4).
The first equation in both subproblems can be thought off as a one-dimensional wave
equation in z and t, and the second as the one-dimensional heat equation in r and
t. The systems for the 0, 0 and 0, 1 approximations have the same form. They are
solved using a one-dimensional finite element method. Since the mass and stiffness
matrices are the same for both problems, up to the boundary conditions, they are
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generated only once. Both systems are solved simultaneously using a time-iteration
procedure. First, the parabolic equation is solved for v0,0

z at the time step ti+1 by
explicitly evaluating the right-hand side at the time-step ti. Then the wave equation is
solved for η0,0 with the evaluation of the right-hand side at the time-step ti+1. Using
these results for v0,0

z and η0,0, computed at ti+1, a correction at ti+1 is calculated by
repeating the process with the updated values of the right-hand sides. This method
is a version of the Douglas–Rachford time-splitting algorithm which is known to be
of first-order accuracy.

Calculating approximation 1, 0 is straightforward once the approximations 0, 0
and 0, 1 are obtained. In this algorithm a sequence of one-dimensional problems
is solved, so the numerical complexity is that of one-dimensional solvers. However,
leading-order two-dimensional effects are captured to the ε2-accuracy. Figure 6.1
presents the axial and radial components of the velocity, showing two-dimensional
effects that cannot be captured using one-dimensional models.

7. Experimental validation. A mock circulatory loop was used to validate our
simplified, effective mathematical flow model (5.1)–(5.6). The circulatory loop was
assembled at the Research Laboratory at the Texas Heart Institute. Figure 7.1 shows
the experimental setup and a sketch of the main components of the mock circula-
tory loop. The main components of the flow loop include the left ventricular assist
device (LVAD Heart Mate, Thoratex Corp., Woburn, MA), which is a pulsatile flow
pump used in patients with failing hearts to aid the function of the left ventricle,
the inlet and outlet LVAD valves, two compliance chambers (wash bottles; 250 ml in
volume), a reservoir (Nalgene canister), and pressure transducers (TruEave, Edwards
Lifesciences, Irvine, CA) placed at the inlet and outlet of the test segment. Latex
tubing (Kent Elastomer Products Inc.) was used to simulate compliant vessels. See
Figure 7.1. The straight latex tube segment was attached to the hard plastic con-
nectors placed at the inlet and at the outlet of the segment, keeping the inlet and
outlet displacement together with its derivative equal to zero, i.e., η = ∂η/∂z = 0 at
z = 0, L, as well as the inlet and outlet velocity approximately such that vr = 0.

LVAD

Inlet Valve

Outlet Valve
Pressure Meterers

Compliance Chamber

Compliance Chamber
Reservoir

Clamp (Resistance)

Fig. 7.1. Flow loop at the Research Laboratory at the Texas Heart Institute (left), a sketch of
the flow loop (right).

One of the goals of this experiment was to recreate the pressure waves and fluid
velocity at the middle section of the straight test segment similar to those typical
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for the human abdominal aorta. To achieve this goal a clamp located downstream
from the test segment was added to mimic downstream resistance by the capillary
bed. Figure 7.2(left) shows the measured (filtered) pressure data at the inlet and at
the outlet of the test segment. This compares well with the typical inlet and outlet
pressure data of the human abdominal aorta, shown in Figure 7.2(right). Ultrasonic
imaging and Doppler methods were used to measure the axial velocity of the flow.
Nondairy coffee creamer was dispersed in water to enable reflection for ultrasound
measurements. A high-frequency (20 MHz) single crystal probe was inserted through
a catheter at several locations of the tube. This method has been validated in vivo by
measuring the velocity and wall motion in mice to a precision of 0.1 um; see [25, 26].
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Fig. 7.2. Inlet and outlet pressure data used in the numerical simulations. Left: Circulatory
flow loop data (filtered). Right: aortic data [14].
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To determine Young’s modulus of the tube wall we measured the tube diameter
d at the reference pressure of 84 mmHg (d = 2.22 cm) and at the maximal systolic
pressure of 148 mmHg (d = 2.38 cm), utilizing the linear pressure-displacement re-
lationship described by the equations of p0 in (4.17) with CV = 0 and the data for
the tube wall thickness provided by the manufacturer of the latex tube, Kent Elas-
tomer Products Inc. The value of E = 1.0587 × 106 Pa was obtained. Using the
numerical solver described in section 6 system of equations (5.1)–(5.6) was solved.
The results were compared with the experimental measurements. At the top of Fig-
ure 7.3(left) is a comparison between the numerically calculated displacement and the
experimentally measured maximal displacement of 0.0008 m. Figure 7.3(right) shows
a comparison between the numerically calculated (solid line) and experimentally mea-
sured (asterisks) axial velocity. Excellent agreement was obtained indicating that this
model captures well the fluid-structure interaction between a linearly elastic structure
such as a latex tube, and the flow of a viscous incompressible fluid such as water, in
the flow regime corresponding to the abdominal aorta.

8. Hysteresis behavior of viscoelastic arteries. In this section we compare
the results of our viscoelastic model with the measurement of the viscoelastic prop-
erties of the human and canine arteries presented in [1, 2, 3]. In [1] Armentano
et al. studied the viscoelastic aortic properties in dogs. In particular, they measured
the magnitude of the viscous modulus corresponding to our coefficient hCv/R. The
values corresponding to dogs aortas, reported in [1], belong to the interval

hCv

R
|(dog aorta) ∈ (3.8 ± 1.3 × 104, 7.8 ± 1.1 × 104) dyn · s/cm2

= (3.8 ± 1.3 × 103, 7.8 ± 1.1 × 103) Pa · s.

Taking into account the radius of the studied aortas (≈ 0.008 m) and the average wall
thickness (≈ 0.0014 m), one obtains

Cv|(dog aorta) ∈ (2.17 × 104, 4.45 × 104) Pa · s.

In [1] the measurements of the viscoelastic properties of the canine aorta were ob-
tained, showing a hysteresis in the stress-strain diagram, where the stress (τ) and
strain (e) were defined using

τ =
2p(reri)

2

r2
e − r2

i

1

R2
, e =

R + η

R
.(8.1)

Here re and ri are the external and internal vessel radii calculated using re,i = R ±
0.5 h. The results of the measurements are shown in Figure 8.1(left). We used the
data presented in [1] as a guide in the numerical simulation of the dynamics of the
canine aorta utilizing the effective viscoelastic model (4.17), (4.26). Unfortunately,
[1] does not include the pressure data at the inlet and outlet of the canine aorta.
Thus, it was impossible to recreate the simulation that would correspond exactly to
the scenario studied in [1]. However, using the data available to us, in particular the
viscous modulus CV , we were able to approximate the scenario studied in [1] and
capture the main viscoelastic properties of the canine aorta. The results are shown in
Figure 8.1. The top figures show the pressure and the scaled diameter in one cardiac
cycle. Both waves exhibit the same morphology, but the diameter shows a time delay
with respect to the pressure, which is due to the viscosity of the vessel wall. The
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Fig. 8.1. Left: Measured viscoelastic behavior of the canine aorta reported in [1] (top: aortic
diameter and pressure wave forms, bottom: stress-strain relationship). Right: Numerical simulation
of the reduced one-and-a-half-dimensional model showing viscoelastic behavior of vessel walls (top:
aortic diameter and pressure wave forms, bottom: stress-strain relationship).

bottom figures show the hysteresis behavior in the stress-strain relationship. The
upper “half” of the hysteresis corresponds to the loading and the lower “half” to
the unloading portion of the cardiac cycle. The hysteresis curves and the time-lag
between the pressure and scaled diameter show similar qualitative behavior.

An even better approximation of the hysteresis behavior in the dynamics of major
arteries was obtained for the data corresponding to a healthy human femoral artery.
One reason for this is that the inlet and outlet pressure data that were used in all
of our numerical simulations correspond to the human data. We compared our nu-
merical simulations to the measurements data presented in [2]. In [2] Armentano
et al. estimated the magnitude of the coefficient multiplying the term ∂D/∂t, where
D is the vessel diameter of a human femoral artery. The value of the coefficient was
estimated to be 266 × Pa · s/m. Using the values for the measured femoral artery
diameter (0.00625m) and the wall thickness (0.001 m), one obtains

Cv|(human femoral) ≈ 5.2 × 103 Pa · s.(8.2)

Thus, the corresponding viscous modulus hCv/R is

hCv

R

∣∣∣∣
(human femoral)

≈ 1.6 × 103 Pa · s,(8.3)
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Fig. 8.2. Left: Measurements of the diameter-pressure hysteresis loop in human femoral artery
reported in [2]. Right: Numerical simulation of the diameter-pressure hysteresis loop with parameters
from Table 4.1 (E = 1.3 × 106 Pa, h = 0.001 m, R = 0.008 m, L = 0.13 m, hCv/R = 103 Pa · s).

which is of the same order of magnitude as the viscous modulus corresponding to the
dogs aortas. Figure 8.2 shows a comparison between our numerical simulations and
measurements. There, a pressure-diameter relationship is plotted, showing hysteresis
behavior. The graph in Figure 8.2(left) corresponds to the measurements of the
human femoral artery reported in [2], and the graph in Figure 8.2(right) shows the
pressure-diameter relationship in the simulations obtained using the reduced model
(5.1), (5.6). Again, similar viscoelastic behavior is detected.
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diameter coincide). The figure on the right shows the pressure-diameter plot for the viscoelastic
model (hysteresis) and the elastic model (straight line).

9. Elastic vs. viscoelastic model. We conclude this manuscript by presenting
a comparison between the results of the fluid-structure interaction models assuming
elastic vs. viscoelastic wall model with a relatively large viscoelastic constant hCv/R =



FLUID-STRUCTURE INTERACTION IN BLOOD FLOW 191

104 Pa · s. Figure 9.1(left) shows the pressure and the scaled diameter values for the
two models plotted over one cardiac cycle. One can easily detect the time-shift in
the diameter of the viscoelastic model compared with the diameter of the elastic wall
model which coincides (the scaled diameter) with the pressure wave. Figure 9.1(right)
shows the pressure-diameter plot emphasizing the hysteresis in the viscoelastic model
superimposed over the straight line pressure-diameter plot corresponding to the elastic
model.

10. Conclusions. In this manuscript we derived a simple, effective closed model
that describes blood flow through viscoelastic arteries in cylindrical geometry assum-
ing axially symmetric flows. Using homogenization theory and asymptotic analy-
sis, this fluid-structure interaction problem was reduced to a free-boundary problem
of hyperbolic-parabolic type in two space dimensions. Although the model is two-
dimensional, its simple form allows the use of one-dimensional solvers giving rise to a
numerical algorithm of one-dimensional complexity. In contrast with the “classical”
one-dimensional models where an ad hoc assumption on the axial velocity profile needs
to be used to close the model, the system we obtained in this manuscript is closed,
producing the axial as well as radial velocity as a solution of the problem. We showed
that the reduced model approximates the original three-dimensional axially symmet-
ric model to the ε2-accuracy, where ε is the aspect ratio of the tube approximating
straight arterial sections. The main novelty in this manuscript is the derivation of a
viscoelastic cylindrical Koiter shell model to describe the behavior of arterial walls.
Viscoelasticity of Kelvin–Voigt type was utilized to derive the model which appox-
imates well the hysteresis behavior observed in the vessel wall measurements. We
showed that in this fluid-structure interaction model bending rigidity of arterial walls
plays a nonnegligible role in the leading-order approximation of the problem. This
effect, together with the viscosity of vessel walls, explicitly derived in this manuscript,
provides the regularizing mechanisms for the stability of the solutions.
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pp. 661–666.
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INVERSE BOUNDS AND BULK PROPERTIES OF
COMPLEX-VALUED TWO-COMPONENT COMPOSITES∗

CHRISTIAN ENGSTRÖM†

Abstract. The bulk properties of composites are known to depend strongly on the microstruc-
ture. This dependence can be quantified in terms of a representation introduced by D. Bergman,
which factorizes the geometry dependence from the contrast. Based on this analytic representation
of the effective permittivity, we present a general scheme to estimate the microstructural parameters
such as the volume fraction and the anisotropy of two-component composites. The estimates are
given as bounds, that is, the largest parameter region which is compatible with the available infor-
mation. Thus, more information produces better estimates on the microstructural parameters. The
method, which uses complex-valued measurements of bulk properties of the composite, is illustrated
by numerical examples.
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1. Introduction. In many cases of interest when considering the interaction
of electromagnetic waves with composites the wavelength is much longer than the
characteristic length of the microstructure. The composite then reacts to the slowly
varying field in much the same way as a homogeneous material, with some effective
material parameters.

The determination of the effective properties of composite materials, with known
periodic geometry or from simulations of random materials, constitutes a classical
problem in physics. In the case of a two-component mixture, a representation formula
that separate the dependence on the phases and the dependence on the microstructure
was developed by Bergman [6] and Golden and Papanicolaou [22].

The structural information is associated with a spectral measure, and much effort
has been focused on the reconstruction of this measure from a known geometry [24, 19,
29]. When the measure is calculated, a single integral gives the effective property for
any value of the phases. One drawback is that a complete knowledge of the geometry
rarely is available.

A direct approach to characterize the microstructure is in terms of an infinite
set of correlation functions [4, 37]. Except for some special cases, the infinite set of
correlation functions is not known, and hence an exact solution is not possible. Us-
ing images of cross sections, some correlation functions can be estimated. When the
material is finely scaled, the computation of the volume fraction is a large compu-
tational problem, and calculations of higher-order correlation functions is in general
very demanding.

Instead of using correlation functions, information from measurements of one
effective property can be used to improve bounds on a related property. Prager [35]
used measurements of the effective magnetic permeability to improve the bounds on
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the thermal conductivity. These bounds are called cross-property bounds or coupled
bounds. The pioneering work of Prager was followed by the papers of Bergman [5, 6]
and Milton [33], among others. The problem of bounding the structural parameters
that characterize the microstructure from known values of an effective property is
by some authors called inverse homogenization, and the bounds are called inverse
bounds.

Inverse bounds for the volume fraction were first derived in [31]. In recent years
the representation formula introduced by Bergman [6] has been used to study the
inverse problem. Explicit formulas for bounds on the volume fraction can in the case
of measurements of lossy materials be found in [14]. If the measurements are on a
real-valued effective property, the formulas for the volume fraction in [14] cannot be
used. In the case of real-valued measurements the author in [21] provides a schedule
to derive inverse bounds and give explicit formulas for bounds on the three lowest
moments of the measure, where the first moment corresponds to the volume fraction.

Various inverse algorithms for recovering the structural parameters (the spectral
measure) of composites from experimental data have been developed [15, 17, 13].
In [18] the algorithm developed in [17] was successfully used to recover the measure
from 4000 reflectance data points.

The numerical algorithms are useful, but one disadvantage with this approach is
that we lose the concept of bounds. If we have limited information from measurements
(few or inaccurate measurements), the numerical methods cannot recover the measure.
Using the numerical approximations of the measure can then result in bounds on an
effective property that are not valid.

In this paper inverse bounds using information from measurements of lossy mate-
rials are derived. These bounds are used to derive cross-property bounds, which are
exemplified by a frequency-dependent permittivity. We use and improve the geometry-
independent bounds on the structural parameters that were derived in [21]. In other
words, restrictions on the moments of the measure are derived.

The asymptotic behavior of the formulas in this paper is superior to the formulas
in [21], but the formulas presented here cannot be used if the effective property is
real-valued. The two papers complement each other, and the formulas in the two
papers can be combined.

2. Bounds on the effective permittivity. Assume that inside the composite
the electric field E and the electric flux density D satisfy the constitutive relation

D(x) = ε(x)E(x).(2.1)

The permittivity matrix ε is the description of the material on the fine scale, where
ε and thereby the fields oscillate rapidly. On a much larger scale the averaged fields
have no oscillations on the length scale of the microstructure, since they are smoothed
out, but they retain slow macroscopic variations.

We seek an effective permittivity matrix εeff which relates the average of the
electric displacement field 〈D〉 to the average of the electric field 〈E〉. The average is
over a volume having large size compared with the microstructure.

In general the D-field satisfies ∇·D = ρ, where ρ is the charge density. Using for
example a two-scale expansion [2, p. 138] of Maxwell’s equations, we have ∇×E = 0.

From the constitutive relation (2.1) it follows that, for a charge-free region, the
E-field satisfies

∇× E = 0, ∇ · (εE) = 0.(2.2)
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This system represents, besides dielectrics, several other physical phenomena such as
electrical and thermal conductivity, magnetism, diffusion, and flow in porous media.

Let 〈Ψ〉 denote the average of the vector field Ψ over the unit cell U = [0, 1[d in d
dimensions. If the E-field is Lebesgue integrable and the equations (2.2) are satisfied
in a weak sense, the homogenization rule

〈εE〉 = εeff〈E〉(2.3)

can be proven [25, p. 15].
The materials in this paper are assumed to be d-dimensional and to consist of

two homogeneous, isotropic phases. The two-component material is locally modelled
by the scalar relative permittivity

ε(ε1, ε2) = ε1χ1(x) + ε2χ2(x),(2.4)

where the components are isotropic with constant permittivity ε1 and ε2. We use
complex-valued permittivities and assume that the imaginary parts are greater than
or equal to zero.

The volume fraction of phase χi is denoted fi, and the characteristic function χi

is defined as

χi(x) =

{
1, x in phase i,

0 otherwise

and f1 + f2 = 1. When the composite is periodic and the characteristic function χ1 is
known, we can calculate εeff from (2.2), (2.3) using a standard finite element program,
but in many cases the geometry is unknown. Another drawback with this approach
is that the problem (2.2), (2.3) depends not only on the microstructure but also on
the contrast. If we change the contrast, all calculations need to be repeated.

2.1. Analytic representation of the effective matrix. Due to the homo-
geneity property εeff(cε1, cε2) = cεeff(ε1, ε2), the effective permittivity depends on the
ratio ε1/ε2. The main property of the solution to the problem in (2.2) and (2.3) is
that the function

εeff(ε1, ε2)

ε2
= εeff

(
ε1
ε2
, 1

)
(2.5)

is analytic in ε1/ε2 ∈ C\]−∞, 0] and that it maps the upper half-plane to the upper
half-plane; i.e., the function εeff/ε2 is a Herglotz function [1]. The function εeff/ε2 has
the Stieltjes-integral representation

εeff(ε1, ε2) = ε2I − ε2G(s),(2.6)

where

G(s) =

∫ 1

0

dm(y)

s− y
, s =

ε2
ε2 − ε1

.(2.7)

The matrix-valued measure m on [0, 1] is derived from the spectral measure of the
operator Γ = Pχ1, where P = ∇(−Δ)−1(∇·). The operator Γ is bounded ||Γ|| ≤ 1 and
self-adjoint in L2(U)d equipped with the scalar product (Ψ1,Ψ2) = 〈χ1Ψ1 ·Ψ2〉 [22].
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The representation formula (2.6), valid for s /∈ [0, 1], was derived for the periodic case
in [6] and in the general case in [22].

The measure m is a purely geometric quantity. It depends on the microstruc-
ture but not on the value of the two phases. If the microstructure is the same, the
single integral (2.7) gives the effective permittivity, independent of the value of the
phases. This is particularly useful when the permittivity is frequency- or temperature-
dependent.

2.2. Bounds on εeff using Padé approximations. If the microstructure is
only partly known, we can get bounds on the effective permittivities. When the
permittivities of the two materials, together with the volume fraction f1, are known,
the effective permittivity is bounded by the harmonic and arithmetic means. If more
structural information is known, we get tighter bounds such as the Hashin–Shtrikman
bounds and the Beran bounds.

We focus on the diagonal elements in the effective permittivity matrix and use
the power series expansion

εeff = ε2F(z), F(z) =

∞∑
n=0

cnz
n,(2.8)

where z = −1/s = (ε1−ε2)/ε2 is the contrast. The series (2.8) is convergent in |z| < 1.
The integral (2.7) vanishes in the limit s → ∞, implying c0 = I. This is a

consequence of (2.8), because z = 0 when ε1 = ε2, which means that we have only
one material.

For |s| > 1 the function (s − y)−1 has a power expansion in y/s. The integral
G(s) then has the power expansion

G(s) =

∞∑
n=0

1

sn+1

∫ 1

0

yn dm(y).(2.9)

The integral in this expression is, for n = 0, 1, . . . , the (Hausdorff) moments of the
measure m. The coefficients cn in the power series expansion (2.8) and the measure
m are connected by the moments

cn+1 = (−1)n
∫ 1

0

yn dm(y).(2.10)

Since the measure m is defined on the compact set [0, 1] it follows that m is bounded
and uniquely determined by the moments [1]. If all the moments are known, the
effective matrix is obtained from the series (2.8). Thus, the local information about
ε1 = ε2 gives the effective permittivity independent of the contrast.

The volume fraction f1 is given by the total weight [6, 22]

c1 =

∫ 1

0

dm(y) = f1I.(2.11)

Higher-order moments depend on the geometrical structure. Bergman [6] derived the
general constraint Tr c2 = −c1(1− c1) and that, in the case of a statistically isotropic
composite, the second moment is

c2 = −
∫ 1

0

y dm(y) = −c1(1 − c1)

d
I.(2.12)
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Higher-order moments can be calculated exactly in a few special cases; see, for
instance, [16] or [19].

The power series (2.8) with coefficients given by the moments (2.10) defines a
series of Stieltjes. Series of Stieltjes have known upper and lower bounds in the form
of continued fractions or Padé approximations [1]. We use Padé approximations of
the power series (2.8).

Let εeff be one of the diagonal elements in the matrix εeff = ε2F(z). The εp,q
Padé approximant to εeff is defined by the equation

εeff(z)Q(z) − P (z) = O(zp+q+1),(2.13)

where P and Q are polynomials of degree at most p and q, respectively [1]. This equa-
tion gives us an approximation of the effective permittivity by the rational function

εp,q =
P (z)

Q(z)
=

a0 + · · · + apz
p

1 + b1z + · · · + bqzq
.(2.14)

When ε2 > ε1 and N ≥ 1, the N -point upper bounds εU
N are obtained by forming

the approximations

εU
2M+1 = ε2εM+1,M (F), εU

2M = ε2εM,M (F).(2.15)

The inverse of the matrix εeff(ε1/ε2, 1) is analytic in ε1/ε2 ∈ C\]−∞, 0]. The
analyticity implies that it has a power series expansion in z. Lower bounds on εeff

are given from Padé approximations of the series(
εeff

ε1

)−1

= F̃(z), where F̃(z) =

∞∑
n=0

c̃nz
n.(2.16)

The coefficients cn and c̃n in the two series are related according to

c̃0 = I, c̃1 = (1 − c1)I, c̃n = −
n−1∑
k=0

c̃kcn−k.(2.17)

The coefficient c1 is the volume fraction of phase one (2.11) and c̃1 is the volume
fraction of phase two. The N -point lower bounds εL

N , when ε2 > ε1 and N ≥ 1, are
obtained from

εL
2M+1 = ε1[εM+1,M (F̃)]−1, εL

2M = ε1[εM,M (F̃)]−1.(2.18)

For example the ε1,0 Padé approximant of the expansion (2.16) is the harmonic
mean

εL
1 =

ε1
1 + c̃1z

I =

(
f1

ε1
+

f2

ε2

)−1

I(2.19)

and the ε1,0 Padé approximant of (2.8) gives the arithmetic mean

εU
1 = (ε2 + c1ε2z)I = (f1ε1 + f2ε2)I.(2.20)

Wiener [41] first derived these bounds on an effective material parameter. In the same
way the ε1,1 Padé approximant of the expansion (2.16) is the lower bound

εL
2 = ε1[c̃1I − c̃2z][c̃1I − c̃2z + c̃21zI]

−1,(2.21)
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where c̃2 = −c2 − c1c̃1I. The ε1,1 Padé approximant of (2.8) gives the upper bound

εU
2 = ε2[c1I − c2z + c21zI][c1I − c2z]

−1.(2.22)

These bounds were first derived in [33]; see also [28, 39].

In the isotropic case, c2 = −(c1c̃1/d)I, the two-point bounds (2.21) and (2.22)
are equivalent to the Hashin–Shtrikman bounds [23], and the bounds εL

3 , ε
U
3 reduce to

the Beran bounds [3, 38]. The Padé approximations give a hierarchy of bounds that
become progressively narrower as more structural information is used [34, 1, 40, 11].
The bounds (2.21) and (2.22) are optimal, since they are attained for a variety of
geometries [7, 32]. In general, the bounds on the effective permittivity (2.15) and
(2.18) can be improved by incorporating phase exchange relations. Milton [32] first
exploited the phase exchange equality in two dimensions [26] for derivation of bounds,
and Bergman [9, 10] first used the phase exchange inequality in three dimensions [36]
to improve bounds on the effective permittivity.

2.3. Complex bounds on the permittivity. Let cn be one of the diagonal
elements in cn. In the general case when the values of the phases are complex, the
real segment l = {cn; cmin

n ≤ cn ≤ cmax
n } is for fixed values on c1, c2, . . . , cn−1 mapped

by εLn(cn) and εUn (cn) on a circle or a line segment.

The minimum cmin
n and the maximum cmax

n are functions of the lower-order pa-
rameters c1, c2, . . . , cn−1. The extreme values can be determined by varying the cn
parameter in the n-point bounds and using that the n-point bounds are forbidden to
violate the (n− 1)-point bounds. This procedure was used in [21].

For example, we get complex bounds from the lens-shaped region bounded by

εL2 (c̃2; ε1, ε2, c̃1), εU2 (c2; ε1, ε2, c1)(2.23)

with the structural parameter c̃2 and c2 varying between

cmin
2 = −c1(1 − c1), cmax

2 = 0.(2.24)

Alternatively, we can describe the bounds εLn(cn) and εUn (cn) in terms of the points
through which the circle passes [8, 33]. Let Arc(z0, z1, z2) denote the arc of a circle
joining the points z0 and z1 that when extended passes through z2. For example, the
effective permittivity εeff is in the complex case bounded by the intersection of the
circles

Arc(ε1, ε
L
1 , ε

U
1 ), Arc(ε2, ε

L
1 , ε

U
1 ).(2.25)

We have εL2 → ε1 and εU2 → ε2 when c2 → −∞. It follows that in terms of the
structural parameters c2, the circles are described by

Arc(εL2 (−∞), εL2 (cmin
2 ), εL2 (cmax

2 )), Arc(εU2 (−∞), εU2 (cmin
2 ), εU2 (cmax

2 )).(2.26)

The arcs (2.25) or (2.26), defining the points through which the circles pass,
provide a geometrical characterization of the bounds. The alternative representation
of the arcs (2.23) gives, in terms of c2, directly a parameterization of the lens-shaped
boundary.
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3. Inverse bounds and bulk properties. The task in inverse homogeniza-
tion is to calculate the structural parameters cn, or equally, the measure m, given
information from experiments.

When only measured values of the effective permittivity are known, the moments
cannot be determined. Given a finite number of measurements, there exist in general
several geometries that give the same εeff . Moreover, any measurement contains noise,
which limits the accuracy.

The measurements can be on one effective property of the material at different
temperatures or in a range of frequencies. It is also possible to get information from
measurements of several related parameters such as the permittivity, the permeability,
and the thermal conductivity. The important thing is that the microstructure is the
same.

Bounds on the volume fraction c1, using information from measurements, were
derived in [31, 14, 21]. In [14], the authors derived bounds on the volume fraction that
are valid in the general anisotropic case and tighter bounds on the volume fraction
when the material is statistically isotropic.

We focus on the diagonal elements in cn and provide a method to derive bounds
on any diagonal element cn. Moreover, we give examples where c1, c2, and c3 are
bounded, using information from measurements. We assume that the measurements
are on the effective permittivity εeff at different frequencies ω0, ω1, . . . , ωn, although
the measurements could very well pertain to several other physical parameters asso-
ciated with the same microstructure [34].

The bounds on the structural parameters cn give geometrical information about
the composite, but in many cases the composite’s effective bulk properties as a func-
tion of frequency or temperature is what is desired. The bounds on the structural pa-
rameters imply cross-property bounds on the effective properties, which gives bounds
on the effective permittivity at all frequencies where the homogenization theory is
valid.

3.1. Geometry-independent inverse bounds. The volume fraction f1 = c1
is bounded between zero and one. The higher-order parameters depend on the geom-
etry, and bounds on cn are not known a priori. In the general anisotropic case, the
parameter c2 is bounded by

−c1c̃1 ≤ c2 ≤ 0,(3.1)

where c̃1 = 1 − c1. This geometry-independent bound on c2 was proven in [12]. The
author uses properties of the scalar measure m(y) to derive the moment constraint

0 ≤
∫ 1

0

y dm(y) ≤ f1f2,(3.2)

which is equivalent to (3.1); see also [6, 27, 37, 21].
In [21] the author provides a general scheme to derive bounds on the structural

parameter cn, using lower-order parameters; see section 2.3 for the connection to com-
plex bounds. The bounds on the cn-parameters depend on the lower-order parameters
c1, . . . , cn−1.

Here, we use that c3 is bounded by cmin
3 ≤ c3 ≤ cmax

3 with [21]

cmin
3 =

c22
c1

, cmax
3 = −c2

(
1 +

c2
c̃1

)
(3.3)
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Fig. 1. Left: The effective permittivity εeff is bounded by εL1 (c1) and εU1 (c1). Right: For some
value c1 = cL1 , the effective permittivity εeff is on the boundary of εL2 (c2; cL1 , ω0), εU2 (c2; cL1 , ω0) and
for some value c1 = cU1 , the effective permittivity is on the boundary of εL2 (c2; cU1 , ω0), εU2 (c2; cU1 , ω0).

and that the structural parameter c4 is bounded by cmin
4 ≤ c4 ≤ cmax

4 , where [21]

cmin
4 =

c32 + c̃1c
2
2 + c2c3(c̃1 − c1) + c3(c3 − c1c̃1)

c2 + c1c̃1
, cmax

4 ≤ c23
c2

.(3.4)

3.2. Bounds using one measurement. Assume that the complex value of one
effective parameter εeff(ω0) is measured for some frequency ω0. We derive bounds on
c1, together with bounds on the effective parameter εeff(ω1), when ε1(ω0), ε2(ω0),
ε1(ω1), and ε2(ω1) are known constants. If the volume fraction c1 is known, the
parameter c2 is bounded, and so on.

We assume that at least one of the phases has a positive imaginary part. That
is, we assume that there are losses somewhere in the composite material. In the case
of real values of both the phases, the method developed in [21] can be used to obtain
bounds on c1 and on εeff . In the lossless case, a direct calculation of the inverse of
εL1 (c1) and εU1 (c1) is possible. When the measurements are complex-valued, a different
approach is needed.

The measured value εeff(ω0) is inside the lens-shaped region bounded by

εL1 (c1;ω0) =
1

1 + c̃1z(ω0)
, εU1 (c1;ω0) = ε1(ω0) + c1ε2(ω0)z(ω0),(3.5)

with z(ω0) = (ε1(ω0)− ε2(ω0))/ε2(ω0), c̃1 = 1− c1, and 0 ≤ c̃1 ≤ 1. The boundary of
the region is depicted in Figure 1.

For some values of c1 and c2, the effective parameter εeff(ω0) is on the curve
εU2 (c2, c1;ω0); see Figure 1. The parameters c1 and c2 then solve the equation

εeff(ω0) = ε2(ω0)
c1 − c2z(ω0) + c21z(ω0)

c1 − c2z(ω0)
,(3.6)

with 0 ≤ c1 ≤ 1 and −c1c̃1 ≤ c2 ≤ 0. We show below that (3.6) has one solution
(c1, c2), except for trivial cases.
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At the minimum volume fraction c1 = 0 and at the maximum volume fraction
c1 = 1, the εU2 -bound reduces to

εU2 (0, c2) = εU2 (0, 0) = εU1 (0) = ε2, εU2 (1, c2) = εU2 (1, 0) = εU1 (1) = ε1,(3.7)

which implies that (3.6) has the solutions

ε2 = εU2 (0, 0) = εeff , ε1 = εU2 (1, 0) = εeff .(3.8)

By multiplying (3.6) with the denominator in εU2 we obtain

(c1 − c2z)ε
eff = ε2(c1 − c2z + c21z

2).(3.9)

We assume that εeff 
= ε1 and look for solutions to (3.9) when 0 ≤ c1 ≤ 1 and −c1c̃1 ≤
c2 ≤ 0. Taking the real and imaginary part of (3.9), which is quadratic in c1 and
linear in c2, gives one solution (c1, c2), except for the trivial solution (c1, c2) = (0, 0).

The calculated value on c1 is a lower bound cL1 (ω0) on the volume fraction c1.
Explicitly, the volume fraction is bounded from below by

cL1 = �(z)
(�(εeff) −�(ε2))

2 + (�(εeff) −�(ε2))
2

|z|2(�(εeff)�(ε2) −�(εeff)�(ε2))
.(3.10)

In the same way, for some values of c̃1 and c̃2, the effective parameter εeff(ω0) is
on the curve εL2 (c̃2, c̃1;ω0). That is, we solve the equation

εeff(ω0) = ε1(ω0)
c̃1 − c̃2z(ω0)

c̃1 − c̃2z(ω0) + c̃21z(ω0)
(3.11)

when 0 ≤ c̃1 ≤ 1 and −c̃1(1 − c̃1) ≤ c̃2 ≤ 0. Equation (3.11) has one solution (c1, c2),
except for the trivial cases below.

At the endpoints (c1, c2) = (0, 0) and (c1, c2) = (1, 0), (3.11) has the solutions

ε1 = εL2 (0, 0) = εeff , ε2 = εL2 (1, 0) = εeff .(3.12)

Assume that εeff 
= ε2, and multiply (3.11) with the denominator in εL2 . The
resulting equation has one solution, except for the trivial solution (c̃1, c̃2) = (0, 0).

The solution to the equation εeff(ω0) = εL2 (c̃1, c̃2) and the relation c1 = 1− c̃1 give
an upper bound cU1 (ω0) on the volume fraction c1. Explicitly, the volume fraction is
bounded from above by

cU1 = 1 −�(z)
(�(εeff) −�(ε1))

2 + (�(εeff) −�(ε1))
2

|z|2(�(εeff)�(ε1) −�(εeff)�(ε1))
.(3.13)

The derived bounds (3.10) and (3.13) on the volume fraction are equivalent to the
bounds in [14]. Here we use a different method, which seems to be easier to generalize.

If c1 = cL1 , the measured value εeff(ω0) is equal to εU2 for some value of c2. If
c1 = cU1 , the effective permittivity εeff(ω0) is equal to εL2 for some value on c2. The
effective permittivity is bounded by the one-point bounds εL1 (c1) and εU1 (c1). From
the calculations above and Figure 1, it follows that the effective permittivity also is
bounded by the two-point bounds

εL2 (c2, c
L
1 ), with −cL1 (1 − cL1 ) ≤ c2 ≤ 0(3.14)
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ε1

ε1

ε2

ε2

Fig. 2. Left: The checkerboard structure, a two-dimensional and periodic problem. Right:
The Hashin structure. Coated spheres that are composed of a spherical core of permittivity ε2 are
surrounded by a concentric shell of permittivity ε1.

and

εU2 (c2, c
U
1 ), with −cU1 (1 − cU1 ) ≤ c2 ≤ 0.(3.15)

These bounds can, for example, be used to check the volume fraction in experi-
ments when it is difficult to determine the volume fraction from direct measurements.
If we measure the lossy permittivity for more than one frequency, the minimum of
the calculated bounds on c1 is the optimal.

3.2.1. Asymptotic behavior. Write c2 on the form c2 = −αc1c̃1, 0 ≤ α ≤ 1,
and let ε1 = 1 and ε2 = 1+δw, where w is a complex number with nonzero imaginary
part and modulus one. Using the expansion (2.8), the asymptotic behavior when
δ → 0 is

cU1 − cL1 = c1ĉ1α(1 − α)δ2 + O(δ3).(3.16)

For a fixed δ, the difference is small when the c2 parameter is close to the endpoints
(3.1) and when the volume fraction c1 = f1 is close to its endpoints.

In the case of real-valued phases, the parameter c1 is bounded by [21]

cL1 =
1/εeff − 1/ε2
1/ε1 − 1/ε2

, cU1 =
ε2 − εeff

ε2 − ε1
.(3.17)

To proceed, let ε1 = 1 and ε2 = 1 + δ. Using the expansion (2.8), the asymptotic
behavior when δ → 0 is in the lossless case given by

cU1 − cL1 = c1ĉ1δ + O(δ2).(3.18)

The convergence is faster in the complex-valued case, which in many cases of interest
implies much tighter bounds on the volume fraction. One interpretation of the result
is that a measurement of a complex value contains more information compared to a
measurement of a real value.

3.2.2. Examples. As a first illustration of the theory presented above, assume
that one of the phases is a frequency-independent material ε1(ω) = 3 in the chosen
range of frequencies. Moreover, phase two is lossy and measured at the frequencies
ω0, ω1, and ω2. We use the checkerboard structure and the Hashin structure; see
Figure 2 to exemplify the method.
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Fig. 3. The star to the left is the effective permittivity in the checkerboard case and the star to

the right corresponds to εeff for the Hashin structure. In both figures, the dashed lines εL1 (c1) and
εU1 (c1) bound εeff(ω1) and the solid lines are the tighter bounds εL2 (c2; cL1 ) and εU2 (c2; cU1 ).

Phase two has the value ε2(ω0) = 4.1 + 4.5i at frequency ω0. The checkerboard
structure has the exact effective permittivity [34]

εeffC (ω) =
√

ε1(ω)ε2(ω).(3.19)

It is interesting to notice that the checkerboard structure corresponds exactly to
Bruggemans formula [34] at the percolation threshold c1 = 0.5.

As described above, the solutions of the equations εeffC = εL2 and εeffC = εU2 bound
the volume fraction c1. Figure 3 shows the bounds on εeffC (ω1) when ε2(ω1) = 4.6+0.06i
is known and the bounds on c1 are calculated to cL1 (ω0) = 0.46 and cU1 (ω0) = 0.54.
The exact value on the volume fraction is c1 = 0.5.

The Hashin structure [34] (see Figure 2) in d dimensions has the effective permit-
tivity

εeffH (ω) = ε1(ω)
(d− 1)c1(ε1(ω) − ε2(ω)) + dε2(ω)

dε1(ω) + c1(ε2(ω) − ε1(ω))
.(3.20)

We consider the three-dimensional case, d = 3, with the volume fraction c1 = 0.5.
Using the values of ε1, ε2, and εeffH at ω = ω0 the bounds on c1 are calculated to
cL1 (ω0) = 0.42 and cU1 (ω0) = 0.50. Figure 3 shows the bounds on εeffH (ω1) when ε2(ω1)
is known.

3.2.3. Bounds when the volume fraction is known. If the volume fraction
c1 is known, we obtain in the same way bounds on c2. The measured value εeff(ω0) is
bounded by the lens-shaped region εL2 (c2;ω0) and εU2 (c2;ω0), with −c1c̃1 ≤ c2 ≤ 0.

For some values of c2 and c3, the effective parameter εeff(ω0) is on the boundary
of εU3 (c2, c3;ω0), which is given by the Padé approximation ε1,1 of the series (2.8). On
the curve, the parameters c2 and c3 satisfy the equation

εeff(ω0) = ε2
c2 + c1c2z + c22z

2 − c3z(1 + c1z)

c2 − c3z
,(3.21)

with −c1c̃1 ≤ c2 ≤ 0 and c22/c1 ≤ c3 ≤ −c2(1 + c2/c̃1).
At the minimum, c2 = −c1c̃1, (3.21) has the solution

εL1 (c1) = εU2 (cmin
2 ) = εU3 (cmin

2 , cmin
3 (cmin

2 )) = εeff ,(3.22)
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where cmin
3 (cmin

2 ) = c1(1 − c1)
2, and at the maximum c2 = 0, the solution to the

equation is

εU1 (c1) = εU2 (cmax
2 ) = εU3 (cmax

2 , cmax
3 (cmax

2 )) = εeff ,(3.23)

where cmax
3 (cmax

2 ) = 0. By multipling (3.21) with the denominator in εU3 an equation
quadratic in c2 and linear in c3 is obtained. Assume that εeff 
= εL1 (c1). Taking
the real and imaginary part gives one solution (c2, c3), except for the trivial solution
when (c2, c3) = (0, 0). The calculated value on c2 is an upper bound cU2 (ω0) on the
structural parameter c2.

Analogously, for some values of c̃2 and c̃3, the effective parameter εeff(ω0) is
located on the boundary of εL3 (c̃2, c̃3;ω0), which is given by the Padé approximation
ε1,1 of the series (2.16). That is, the equation

εeff(ω0) = ε1
c̃2 − c̃3z

c̃2 + c̃1c̃2z + c̃22z
2 − c̃3z(1 + c̃1z)

(3.24)

is solved with respect to c̃2 and c̃3. Using that the coefficients cn and c̃n are related
by (2.17), and solving the equation εeff(ω0) = εL3 (c2, c3), gives a lower bound cL2 (ω0)
on the structural parameter c2. As before, the equation has one solution, except for
the cases when εeff = εL1 (c1) and when εeff = εU1 (c1).

It is possible to derive explicit formulas for cL2 and cU2 , but they contain many
terms and will for this reason not be presented.

The effective permittivity is bounded by the two-point bounds εL2 (c2) and εU1 (c2).
We have shown that the effective permittivity also is bounded by the three-point
bounds

εL3 (c3, c
U
2 ), with

cU2
c1

≤ c3 ≤ −cU2

(
1 +

cU2
1 − c1

)
(3.25)

and

εU3 (c3, c
L
2 ), with

cL2
c1

≤ c3 ≤ −cL2

(
1 +

cL2
1 − c1

)
,(3.26)

where cU2 is calculated from (3.21) and cL2 is the solution to (3.24). The bounds on c3
are given by (3.3).

In many cases of interest, the composite is known to be isotropic, c2 = −c1ĉ1/d.
The bounds on c2 can then be used to check experimental data. If the volume fraction
c1 is known and −c1ĉ1/d does not belong to the interval [cL2 , c

U
2 ], the experimental

value on εeff is inconsistent with the bounds.

3.2.4. Examples. The checkerboard structure and the Hashin structure, with
the same values on the phases as before, are used to illustrate the method.

The checkerboard has volume fraction c1 = 0.5, which is assumed to be known.
Figure 4 shows bounds on εeff(ω1) when the bounds on c2 are calculated to cL2 (ω0) =
−0.135 and cU2 (ω0) = −0.115. The checkerboard problem is two-dimensional and
isotropic. The second moment, (2.12), with c1 = 0.5 is then exactly c2 = −1/8 =
−0.125.

The Hashin structure is three-dimensional and isotropic. Using c1 = 0.5, the
second moment is c2 = −1/12 ≈ −0.0833. In this case the solution of the equations
(3.21) and (3.24), when c1 = 0.5 is known, determines c2 numerically. The lower
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Fig. 4. The star to the left is the effective permittivity in the checkerboard case and the star to

the right corresponds to εeff for the Hashin structure. In both figures, the dashed lines εL2 (c2) and
εU2 (c2) bound εeff(ω1) and the solid lines are the tighter bounds εL3 (c3; cU2 ) and εU2 (c3; cL2 ).

bound and the upper bound on c2 have 15 digits in common when the equations are
solved with Mathematica (www.wolfram.com). In the following section, we use the
approximative value c2 = cU2 (ω0) = cL2 (ω0) = −0.0833. Figure 4 shows bounds on
εeff(ω1) when ε2(ω1) = 4.6 + 0.06i is known.

3.2.5. Bounds on isotropic materials. If the volume fraction c1, together
with the c2 parameter, is known (for example, if the material is isotropic, c2 =
−(c1c̃1/d)I), the equations

εeff(ω0) = εU4 (c3, c4;ω0), εeff(ω0) = εL4 (c̃3, c̃4;ω0)(3.27)

give us bounds on c3. In general, if the structural parameters c1, c2, . . . , cn are known,
we obtain bounds on cn+1 from the equations

εeff(ω0) = εUn+1(cn+1, cn+2;ω0), εeff(ω0) = εLn+1(c̃n+1, c̃n+2;ω0).(3.28)

We can also get bounds on one structural parameter cn if c1, c2, . . . , cn−1 and cn+1

are known. For example, if the material is known to be isotropic, c2 = −c1(1− c1)/d,
the Hashin–Shtrikman bounds give us tighter bounds on the volume fraction than the
solution to (3.6).

3.2.6. Examples. The bounds on c1(ω0) for the checkerboard structure above
were calculated to cL1 (ω0) = 0.46 and cU1 (ω0) = 0.54. We now use that c2 = −0.125
and solve εeff(ω0) = εL3 and εeff(ω0) = εU3 with respect to c1 and c3. Excluding trivial
solutions, we get the bounds

cL1 (ω0) = 0.492, cU1 (ω0) = 0.508.(3.29)

When the composite is known to be isotropic and the volume fraction is known,
the effective permittivity is bounded by the three-point bounds εL3 (c3) and εU3 (c3).
The effective value is also bounded by the four-point bounds

εL4 (c4, c
L
3 ), with cmin

4 (cL3 ) ≤ c4 ≤ cmax
4 (cL3 )(3.30)

and

εU4 (c4, c
U
3 ), with cmin

4 (cU3 ) ≤ c4 ≤ cmax
4 (cU3 ),(3.31)
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Fig. 5. The star is the effective permittivity εeff(ω1) in the checkerboard case. The dashed lines
εL3 (c3) and εU3 (c3) bound εeff(ω1) and the solid lines are the tighter bounds εL4 (c4; cL3 ) and εU4 (c4; cU3 ).

where the bounds on c4 are given by (3.4). We use that the checkerboard is isotropic
and that the volume fraction is c1 = 0.5. Using the same values on the phases as
above, the bounds on c3 are calculated to cL3 (ω0) = 0.0601 and cU3 (ω0) = 0.0649,
respectively. The geometry-independent bounds (3.3) are in this case cmin

3 = 0.0315
and cmax

3 = 0.09375.
The exact value on c3 can be identified from a Taylor expansion of εeff =

√
ε1ε2

when ε1 = 1 and ε2 = 1 + η, η < 1. The effective permittivity εeff is then

εeff(1, 1 + η) = 1 +
1

2
η − 1

8
η2 +

1

16
η3 − 5

128
η4 + · · · .(3.32)

The bounds on c3 are tight, and the arithmetic mean (cL3 (ω0)+cU3 (ω0))/2 provides
an accurate approximation of c3 = 1/16 = 0.0625. Figure 5 shows the bounds on
εeff(ω1) when the volume fraction is c1 = 0.5 and the composite is known to be
isotropic, c2 = −0.125.

The Hashin structure is three-dimensional and isotropic. Using the same values
as above, the solution of εU4 = εLH gives the lower bound cL3 = cmax

3 . This solution
determines c3 numerically. The lower bound cL3 and the maximum cmax

3 have 16 digits
in common when the equations are solved with Mathematica.

The properties εU3 (cmax
3 ) = εL2 (c2, c1) and εL3 (cmax

3 ) = εL2 (c2, c1) imply that εeff =
εL2 (c2, c1).

When the composite is isotropic, the lower bound εL2 is equivalent to the Maxwell–
Garnett formula [30, 34]. This formula, commonly used by experimentalists, is a good
approximation formula if c3 is close to cmax

3 .

3.3. Bounds using two measurements. We cannot determine bounds on
more than one structural parameter with information from one measurement. If
we have two measurements, which give us different bounds on c1, it is also possible
to get bounds on c2 without any assumptions on the microstructure. Geometrically,
we fail to get bounds on c2 from one measurement, because the effective permittivity
is (by construction) on the boundary of the εL2/ε

U
2 -bounds, when c1 = cL1 or c1 = cU1 .

Assume that the measurement of εeff(ω0) gives us tighter bounds cL1 (ω0) ≤ c1 ≤
cU1 (ω0) than the measurement of εeff(ω1). If we use the tighter bounds cL1 (ω0) ≤
c1 ≤ cU1 (ω0), together with the measurement εeff(ω1), we avoid the boundary and can
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c1

c1

c1

c1

eff
1

max

min

U

L
0

0)

)
L

C

C2

2

U

C2
L

C2
U

Fig. 6. Left: The union of the regions εL2 (c2; cL1 ), εU2 (c2; cL1 ) and εL2 (c2; cU1 ), εU2 (c2; cU1 ) bound
εeff(ω1). Right: For some values on c2 = c2(c1), the effective permittivity εeff(ω1) is on the bound-
ary of εL3 (c3; c2(c1), c1, ω1), εU2 (c3; c2(c1), c1, ω1). The two lens-shaped regions correspond to two
different values on the volume fraction c1.

continue to bound c2. This simple observation is the key to the construction of the
bounds on any structural parameter.

To bound the c1-dependent parameter c2 with a fixed value on c1 the equations

εeff(ω1) = εU3 (c3, c2; c1(ω0)), εeff(ω1) = εL3 (c3, c2; c1(ω0))(3.33)

are solved in the range cL1 (ω0) ≤ c1 ≤ cU1 (ω0). By construction, the two lens-shaped
regions εL2 (c2; c

L
1 , ω0), ε

U
2 (c2; c

L
1 , ω0) and εL2 (c2; c

U
1 , ω0), ε

U
2 (c2; c

U
1 , ω0) intersect; see Fig-

ure 6. From the bound εU3 , we get an upper bound cU2 (c1) on c2, and the lower bound
εL3 provides a lower bound cU2 (c1) on c2.

We can now construct three-point bounds on εeff by forming

εL3 (c3, c
U
2 (c1), c1), εU3 (c3, c

L
2 (c1), c1),(3.34)

with c1 ∈ [cL1 (ω0), c
U
1 (ω0)] and c3 ∈ [cmin

3 , cmax
3 ]. The c1-dependent maximum cmax

3

and the minimum cmax
3 are taken from the expression (3.3).

From the derivation of the maximum cmax
3 and the minimum cmin

3 in [21] we have
the equalities εL3 = εL2 when c3 = cmax

3 and εL3 = εU2 when c3 = cmin
3 . In the same way

the upper bound εU3 can be used to limit the c3-parameter. We obtain the equalities
εU3 = εL2 when c3 = cmax

3 and εU3 = εU2 when c3 = cmin
3 . Using these properties, the

bounding region in (3.34) that depends on two variables c1 and c3 can be expressed
as a set of bounds, depending on one single variable. The new bounds are

εU3 (c3; c
L
2 (cU1 ), cU1 ), εU3 (c3; c

L
2 (cL1 ), cL1 ), εU2 (c1, c

L
2 (c1)), εL2 (c1, c

L
2 (c1))(3.35)

and

εL3 (c3; c
U
2 (cU1 ), cU1 ), εL3 (c3; c

U
2 (cL1 ), cL1 ), εU2 (c1, c

U
2 (c1)), εL2 (c1, c

U
2 (c1)),(3.36)

where the two-point bounds depend on c1 ∈ [cL1 (ω0), c
U
1 (ω0)] and the three-point

bounds depend on c3 ∈ [cmin
3 , cmax

3 ]. If some of the structural parameters are known,
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for example, if the volume fraction is known and the material is isotropic, the two
measurements give bounds on the higher-order moments c3 and c4.

The upper bound cU2 (c1) and the lower bound cL2 (c1) are both second-degree poly-
nomials in c1, which are easily maximized and minimized. Global, c1-independent,
bounds on c2 are defined as

cL2 (ω1) = min
c1∈[cL1 ,c

U
1 ]
{cL2 (c1)}, cU2 (ω1) = max

c1∈[cL1 ,c
U
1 ]
{cU2 (c1)}.(3.37)

The global bounds on c2 can be used to simplify the above formulas at the expense
of less tight bounds.

3.4. The checkerboard. We give an example of the method when no structural
information is known using the checkerboard structure. Assume, as before, that
ε2(ω0) = 4.1 + 4.5i and ε2(ω1) = 4.6 + 0.06i are known and that ε1 = 3 independent
of the frequency ω. Moreover, we assume that εeff(ω0) and εeff(ω1) are measured and
seek bounds on εeff(ω2) when ε2(ω2) = 3.7 + 0.04i is known.

The second measurement on frequency ω1 gives the tightest bounds on c1 = 0.5,

cL1 (ω1) = 0.494, cU1 (ω1) = 0.506.(3.38)

We use the measurement of the effective permittivity on the frequency ω0 to bound
c2. The solutions to the equations εeff(ω0) = εL3 and εeff(ω0) = εU3 when c1 ∈
[cL1 (ω1), c

U
1 (ω1)] are

cL2 (c1) = 1.09296 − 6.0343c1 + 7.15922c21(3.39)

and

cU2 (c1) = −2.21787 + 7.28412c1 − 6.15921c21.(3.40)

These functions have no stationary point when c1 ∈ [0.494, 0.506]. The endpoints give
the global bounds on c2 = −0.125,

cL2 (ω0) = −0.141, cU2 (ω0) = −0.108.(3.41)

The bounds (3.35) and (3.36) that bound εeff(ω1) are depicted in Figure 7.

3.5. An anisotropic example. Using the same material parameters as above,
we also give an example in the anisotropic and periodic case; see Figure 8.

We use FEMLAB (www.comsol.com) to numerically calculate the solution to the
local problem (2.2), (2.3). At the frequencies ω0 and ω1, the results are

εeff(ω0) = 3.9426 + 0.9852i, εeff(ω1) = 3.5147 + 0.01554i.(3.42)

The second measurement at the frequency ω1 gives the tightest bounds on c1,

cL1 (ω1) = 0.5941, cU1 (ω1) = 0.6007.(3.43)

We use the measurement of the effective permittivity on frequency ω0 to bound
c2. The solutions to the equations εeff(ω0) = εL3 and εeff(ω0) = εU3 when c1 ∈
[cL1 (ω1), c

U
1 (ω1)] are

cL2 (c1) = 7.07395 − 26.20256c1 + 23.50343c21(3.44)
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Fig. 7. Left: The star is the location of the effective permittivity εeff(ω1) in the checkerboard
case. The solid lines (3.35) and (3.36) bound εeff(ω1). Right: The star corresponds to εeff for the
rods. The dash-dotted lines εL2 (c2; cL1 ) and εU2 (c2; cU1 ) bound εeff(ω1) and the solid lines give the
tighter bounds (3.35) and (3.36).

ε1ε2 ε2

Fig. 8. The geometry used to generate the result shown in Figures 7 and 9. Two rods with
length 0.8 and width 0.25 are located, a distant 0.3 apart, in a unit square. The volume fraction is
then c1 = 0.6. The applied field is oriented perpendicularly to the rods.

and

cU2 (c1) = −2.46585 + 6.37039c1 − 4.27488c21.(3.45)

These functions have no stationary point when c1 ∈ [0.5941, 0.6007]. The endpoints
give the global bounds

cL2 (ω0) = −0.1974, cU2 (ω0) = −0.1817.(3.46)

The bounds on εeff(ω2) when ε2(ω2) = 3.7+0.04i are known are depicted in Figure 7.
The effective permittivity is numerically calculated to εeff(ω2) = 3.253 + 0.01306i.

In practice, the effective permittivity (3.42) is the result of measurements and
cannot in general be given with this accuracy. A computer program that takes into
account that measurements have errors has been written. If we assume that the
error in the measurements of εeff(ω) is 1%, the bounds on the volume fraction are
numerically computed to

0.57 ≤ c1 ≤ 0.62.(3.47)

In a separate paper [20], the method derived here will be used to analyze data from
real measurements.

3.5.1. Bounds when the volume fraction is known. Assume that we have
one measurement at ω0 and one measurement at ω2 (that here is numerically calcu-
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lated in FEMLAB). The effective permittivity at ω2 is

εeff(ω2) = 3.253 + 0.01306i.(3.48)

The measurement at frequency ω2 gives the tightest bounds on c1,

cL1 (ω2) = 0.5984, cU1 (ω2) = 0.6002.(3.49)

The bounds on c1 are in this case very tight. The arithmetic mean of cL1 (ω2) and
cU1 (ω2) is then approximately capp

1 (ω2) = 0.6, which is the exact value on the volume
fraction.

If c1 = 0.6 is used, the same schedule as above can be used to bound the param-
eters c2 and c3. The solution to the equations εeff(ω2) = εL3 and εeff(ω2) = εU3 , with
c1 = 0.6, gives the tightest bounds on c2,

cL2 (ω2) = −0.18413, cU1 (ω2) = −0.18403.(3.50)

The solutions to the equations εeff(ω0) = εL4 and εeff(ω0) = εU4 , with c2 ∈ [cL2 (ω1), c
U
2 (ω1)],

are

cL3 (c2) = 1.37544 + 12.75996c2 + 31.54795c22(3.51)

and

cU3 (c2) = −7.60752 − 84.64558c2 − 232.47525c22.(3.52)

These functions have no stationary point when c2 ∈ [cL2 (ω1), c
U
2 (ω1)]. The endpoints

give the global bounds

cL3 (ω0) = 0.0955, cU3 (ω0) = 0.0966.(3.53)

The bounds on εeff(ω2) were tight when the volume fraction was unknown, and
they are now even tighter. We use a composite with larger contrast to illustrate the
bounds. Assume that ε1(ω3) = 3 + 0.1i and ε2(ω3) = 2 + 20i are known. The bounds
εL4 (c4, c

L
3 (c2)) and εU4 (c4, c

L
3 (c2)) on the effective permittivity εeff(ω3) are depicted in

Figure 9. The effective permittivity is numerically calculated to εeff(ω3) = 5.409 +
1.038i.

The geometry and the values on the phases were previously used in [21], where the
value on the volume fraction c1 and the anisotropy c2 were assumed to be known. Here
we obtain almost as tight bounds as in [21] by using the values of two measurements
of a bulk property.

The bounds on c2 from the measurement on ω2 are close. If we use the arithmetic
mean of cL2 (ω2) and cU2 (ω2) as an approximation, the same schedule can be used to
bound the parameters c3 and c4.

4. Discussion and conclusions. We have developed a method to calculate in-
verse bounds on the structural parameters from measurements of lossy two-component
composites. For example, measurements can be used to determine the frequency-
dependent effective permittivity.

If no structural information is known, data from two measurements determine
bounds on the volume fraction and on the isotropy parameter. The bounds on the
structural parameters are used to bound the permittivity at some frequency of in-
terest or a related effective property such as the electrical and thermal conductivity,
magnetism, diffusion, and flow in porous media.
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Fig. 9. The star is the effective permittivity εeff(ω3) bounded by the dashed lines εL3 (c3; cU2 ) and
εU3 (c3; cL2 ). The solid lines are the tighter bounds εL4 (c4, cL3 (c2)) and εU4 (c4, cL3 (c2)).

In the case when some of the structural parameters are known, for example,
if the composite is known to be isotropic and the volume fraction is known, the
same schedule can be used to bound higher-order moments. The method can be
extended to bound higher-order moments, provided that we have information from
more measurements of the bulk parameters.

Numerical experiments, with reasonable values for the permittivity, were used to
illustrate the method.
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tensson for many helpful discussions and comments on different parts of this paper.
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COMPUTATIONAL MODELING OF TEXTURE FORMATION AND
OPTICAL PERFORMANCE OF LIQUID CRYSTAL FILMS ON

PATTERNED SURFACES∗
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Abstract. An integrated microstructural-optical model based on the tensorial Landau–de
Gennes liquid crystal theory, the Matrix–Berreman optical model, and the finite-difference time-
domain (FDTD) optical method is used to investigate texture formation and polarized light propaga-
tion in thin nematic liquid crystal (NLC) films for various anchoring boundary conditions mimicking
surface conditions of an existing liquid crystal (LC)-based biosensor device used to detect biological
binding events. The integrated mathematical model of the optical device describes the signal genera-
tion process of the biosensor based on LC vision. The FDTD optical method predicts two important
optical signatures of the transmitted polarized light: oscillations and nonsymmetric optical signals.
However, the approximate Matrix–Berreman optical method cannot predict these important optical
responses when strong lateral orientation gradients are present. The model predictions are found
to be in good agreement with actual experimental results, and can be used to detect interfacial LC
orientation due to bound biomolecules.

Key words. texture formation, FDTD
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1. Introduction. Liquid crystals (LCs) are anisotropic electroptical materials
[1] widely used in displays, light valves, and more recently in biosensor applications [1,
2, 3, 4]. This paper presents a mathematical and computational study of uniaxial rod-
like low-molar mass nematic liquid crystal (NLC) [5] films for biosensor applications
[3, 4, 6, 7].

Liquid crystal films are soft materials where weak substrate forces can alter
orientation states and generate topological defects [1, 2]. Furthermore, LC films
are thermodynamically stable and possess long-range orientational order and opti-
cal anisotropy [5, 8]. Thus LC films exhibit unique optical textures when observed
under cross-polars due to spatial heterogeneities of macroscopic orientation [5, 8];
in this paper, orientation refers to the average molecular orientation of the rod-like
molecules composing the NLC phase, and it is described by the unit vector or director
n; the director n is the optic axis [5]. The unique combination of soft material, sen-
sitivity to substrate chemistry and geometry, and optical anisotropy provides unique
opportunities in the development of LC-based biosensors [3, 4, 6, 7].

Surface treatments that affect physicochemical surface conditions of substrates
such as surface topology and chemical compositions lead to defect-free LC structures
needed for display applications [9]. One popular method of substrate preparation for
obtaining defect-free LC structures is mechanical rubbing of glass plate substrates
in one direction to create a sinusoidal topology; the rubbing direction creates an
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easy-axis E or preferred orientation [9], and the director n aligns along E; strong
anchoring denotes the state at the surface n = E. Since desirable LC structures on
various substrates have been obtained using many different procedures and physio-
chemical surface treatments, LCs have been successfully used in display applications.
In addition to display applications, Skaife and Abbott have demonstrated another
successful application of LCs biosensors in order to detect biological binding events
on nano-structured surfaces supporting LC films [3, 6]. The basis of the sensor is the
presence of uniform orientation in the absence of biomolecular surface-covering. On
the other hand, the presence of surface-bound proteins or viruses modifies the align-
ing properties of the surface, creating textures or spatial heterogeneities in the optic
axis that are easily detectable and quantifiable using light transmission under cross-
polars [3, 6]. Thus, surface-bound biomolecules can be detected and their surface
density quantified through measurement of the optical output [3, 6]. Denoting by k
the unit surface normal, substrates in contact with NLCs can induce homeotropic (or

normal, E = k), oblique (or tilted, 0 < (E · k)
2
< 1), degenerate planar (tangential,

(E · k) = 0), and uniform planar surface orientation (E · k = 0,E = to, and to a tan-
gential unit vector) [5, 9]. Recent work by Abbott and coworkers [4, 7], demonstrates
that a uniform planar orientation of LCs can be obtained by a special protein deposi-
tion on functionalized nano-structured surfaces. The preferred tangential orientation
of the surface director (n = to) was then determined by measuring the modulation of
transmitted optical intensity upon rotating the LC films with respect to fixed cross-
polars [7]. Sample rotation under fixed cross-polars provides a simple and useful way
to detect specific planar orientations on protein-covered substrates. The optical prin-
ciple operating here is based on the fact that maximum light transmittance through
cross-polars in a NLC film is obtained when n is at 45◦ from the cross-polars. Hence,
to find to in a substrate, the sample is rotated under fixed cross-polars until the maxi-
mum optical transmittance is found. This paper uses computational optical modeling
to predict a uniform planar surface orientation on partially covered substrates, as
observed in experiments [4, 7].

Despite the great advantages of the LC-based biosensors [3, 4, 6, 7] and their po-
tential uses, the sensor functionalities and fundamental relationships between optical
responses and complex surface-driven LC texture formation processes are not fully
understood. The integration of surface-induced texture formation of LCs with its op-
tical responses has not been fully explored. Optical computations of light propagation
and texture formation modeling studies considering multiscale phenomena provide a
better understanding of the LC-based biosensor functionalities and eventually may
lead to simulation-based biosensor design and optimization.

In this paper we simulate texture formation in NLC films using the tensor Landau–
de Gennes liquid crystal theory [5] and compute light transmittance through cross-
polars using the Matrix–Berreman method and the FDTD method, as described be-
low. The geometry and surface conditions replicate the experiments [4, 7]. We study
texture formation of low-molar NLCs in a thin film between two patterned surfaces
containing two distinct vertical regions: (i) a nonprinted protein region, with strong
planar anchoring (i.e., n · k = 0) on its lower surface and strong homeotropic an-
choring (i.e., n · k = 1) on its upper surface, and (ii) a printed protein region, with
homeotropic anchoring on its upper surface (i.e., n · k = 1) and one preferred tangen-
tial easy-axis (i.e., n = to) on its lower surface where printed protein is present.

Two popular computational optical methods for solving the Maxwell equations
have been applied in order to describe light propagation through NLC films: (i) the
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Berreman method [10, 11, 12, 13, 14, 15, 16] and (ii) the finite-difference time-domain
(FDTD) method [17, 18, 19, 20]. The Berreman method is an approximate matrix-
type method based on the stratified approach, and the FDTD method is a direct
numerical simulation of the Maxwell equations. Despite the wide use of the Berreman
method in computational optical studies for LC displays, this method has one major
limitation due to the assumption that variation of the dielectric tensor occurs only in
the direction of light propagation. Thus the Berreman method is best suited to one
dimensional problems [10, 11, 12, 13, 14, 15, 16]. Thus, the Berreman method may
not be appropriate for studying optical responses in the LC-based biosensor, where
the dielectric tensor varies over small length scales in multiple directions.

Application of the FDTD method in LC films, especially for LC displays, is rela-
tively recent compared with the Berreman method [17, 18, 19, 20, 21, 22]. In contrast
to the Berreman method, detailed optical responses and important optical features
of LC structures observed in advanced LC displays are successfully predicted by the
FDTD method [19, 20, 21, 22]. However, the performance of the FDTD method in
optical studies of textured NLCs with multiscale heterogeneities remains to be ex-
plored and quantified. Our previous studies [23, 24, 25] on computational optics on
textured NLC films containing wedge, twist, and twist loop defects show that the
FDTD method has excellent abilities to accurately compute light transmittance in
heterogeneous films. In this paper we extend our previous work [23, 24, 25] and simu-
late the light transmittance of an NLC thin film with surface and bulk heterogeneities
of relevance to biosensors.

The objectives of this paper are the following:
(a) to simulate transient texture formation in NLC thin films with a substrate

containing a sequence of nonprinted-protein and printed-protein regions;
(b) to characterize the computational optical responses of the predicted orienta-

tion structures using the Berreman and FDTD methods;
(c) to evaluate the FDTD and Berreman methods;
(d) to determine the preferred alignment of NLCs on a printed-protein region in

NLC films
The organization of this paper is as follows. Section 2 presents the Landau–de

Gennes LC theory and governing equations for describing orientation structures in
NLCs in thin films. Section 3 presents the main features of the Berreman and FDTD
optical methods. Section 4 presents and discusses the predicted results. Section 5
presents the conclusions.

2. Theory and governing equations.

2.1. Description of orientation and alignment of NLCs. The multiscale
description of the microstructure of NLCs is characterized by the second moment of
the orientation distribution function, referred to as a second-order symmetric traceless
tensor Q [5], defined as

Q = S

(
nn − 1

3
δ

)
+

1

3P
(mm − ll),(2.1)

with the following restrictions:

Q = QT,(2.2)

tr(Q) = 0,(2.3)
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−1

2
≤ S ≤ 1,(2.4)

−3

2
≤ P ≤ 3

2
,(2.5)

n · n = m · m = l · l = 1,(2.6)

nn + mm + ll = δ =

⎧⎨
⎩

1 0 0
0 1 0
0 0 1

⎫⎬
⎭ ,(2.7)

where n, m, l are referred as the uniaxial director and the first and second biaxial
directors forming the orthogonal director triad, which defines the macroscopic orien-
tation of NLCs. The scalar order parameters S and P are measures of the molecular
alignment; the magnitude of the uniaxial scalar order parameter S is a degree of the
molecular alignment along the uniaxial director n, and the magnitude of the biaxial
scalar order parameter P is a degree of the molecular alignment along the first biaxial
director. On the principal axis, the tensor order parameter Q is

Q =

⎛
⎝ −1

3 (S − P ) 0 0
0 − 1

3 (S + P ) 0
0 0 2

3S

⎞
⎠ ,(2.8)

where S = 3
2 (n · Q · n) and P = 3

2 (m · Q · m − l · Q · l). Depending on the values
of the parameters S and P , the tensor Q is able to describe three states: isotropic
(S = 0, P = 0), uniaxial (S �= 0, P = 0), and biaxial (S �= 0, P �= 0).

2.2. Landau–de Gennes model for NLCs. According to the Landau–de
Gennes model [2, 5, 26, 27], the total free energy density f of NLCs in the ab-
sence of external fields is expressed as the sum of three contributions, isotropic (fi),
homogeneous (fh), and gradient (fg) contributions:

f = fi (T, P ) + fh (T,Q) + fg (T,Q,∇Q) ,(2.9)

where fi represents the free energy of the isotropic state and is a function of conven-
tional thermodynamic parameters such as temperature and pressure while indepen-
dent of Q; fh (T,Q) is the homogeneous contribution and captures the isotropic↔
nematic phase transition, given by [2, 5, 26, 27]

fs =
1

2
a(T − T ∗)QαβQβα − 1

3
bQαβQβγQγα +

1

4
c(QαβQβα)2,(2.10)

where {α, β, γ, δ} = 1, 2, 3 denote the components along the three orthogonal axes in
a Cartesian coordinate system; a, b, and c are constants, and T∗ is the isotropic↔
nematic transition temperature.

The gradient fg term is due to long-range elastic effects and expressed in terms
of the gradient of Q [2, 5, 26, 27]:

fg =
1

2
L1∇αQβγ∇αQβγ +

1

2
L2∇αQαγ∇βQβγ

(2.11)

+
1

2
L3Qαβ∇αQγδ∇βQγδ,
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Fig. 2.1. Schematics of the three elastic deformations of rod-like uniaxial nematics: (a) splay
mode, (b) twist mode, and (c) bend mode, corresponding to elastic constants K11, K22, and K33,
respectively.

where L1, L2, and L3 are phenomenological parameters of LCs. To ensure stability,
the Landau coefficients L1, L2, and L3 are restricted (under uniaxiality) as follows
[2, 5, 26, 27]:

2L1 + L2 −
2

3
SL3 > 0, 2L1 −

2

3
SL3 > 0, 2L1 + L2 +

4

3
SL3 > 0.(2.12)

Under elastic isotropy (one constant approximation), L2 = L3 = 0; under the
constant uniaxial scalar order parameter condition, (2.11) yields the Frank–Oseen
gradient energy density [5, 8], based on the director model. The relation between the
Landau elastic constants of the tensor model and the Frank elastic constants of the
vector model is [28, 29]

L1 =
3K22 −K11 + K33

6S2
, L2 =

K11 −K22

S2
, L3 =

K33 −K11

2S3
,(2.13)

where K11, K22, K33 are the splay, twist, and bend elastic constants, respectively.
These elastic modes are shown in Figure 2.1. Planar distortions contain no twist.
Nonplanar distortions are trimodal.

Using the Doi model of LCs in conjunction with the Landau–de Gennes model,
the dimensionless free energy density equations (2.10) and (2.11) are [26, 30]

f̃h =
1

2

(
1 − U

3

)
QαβQβα − U

3
QαβQβγQγα +

U

4
(QαβQβα)2,(2.14)

f̃g =

(
ξ

X

)2 (
1

2
∇̃αQβγ∇̃αQβγ +

1

2
L̃1∇̃αQαγ∇̃βQβγ

(2.15)

+
1

2
L̃2Qαβ∇̃αQγδ∇̃βQγδ

)

f̃ =
f

ϕkT
, U = 3

T ∗

T
, a = ϕk, b = c = ϕkTU, ξ =

√
L1

ϕkT
,(2.16)

L̃2 =
L2

L1
, L̃3 =

L3

L1
, ∇̃ = X∇,(2.17)

where ϕ and k are the concentration and Boltzman’s constant, respectively. The
nematic potential U controls the stability such that: U < 8/3 corresponds to the
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isotropic phase, 8/3 ≤ U ≤ 3 to the biphasic isotropic-nematic equilibrium, and
U > 3 to the uniaxial nematic phase. The internal length scale ξ is the characteristic
scale for changes in S and is of the order of a defect core [5]. X indicates the external
length scale of the system, which in this paper is the half length of SPR region (see
Figure 4.1).

The microstructure evolution, in the absence of flow, is given by a standard
gradient flow dynamic equation [26, 30]:

−γ(Q)
∂Q

∂t
==

(
δf

δQ

)[s]

=

(
∂f

∂Q
−∇ · ∂f

∂∇Q

)[s]

,(2.18)

where γ is the rotational viscosity and the superscript [s] denotes a symmetric and
traceless tensor. Substituting (2.14) and (2.15) into (2.18) yields the dynamical equa-
tion for Q:

−
∂Qij

∂t̃
=

(
1 − U

3

)
Qij − U

(
QiαQαj −

1

3QβαQαβδij

)
+ UQαβQβαQij

−R∇̃k∇̃kQij −RL̃2

(
1

2
(∇̃i∇̃αQαj + ∇̃j∇̃αQαi) −

1

3
∇̃β∇̃αQαβδij

)
(2.19) −RL̃3(∇̃kQαk∇̃αQij + Qαk∇̃k∇̃αQij)

+RL̃3

(
∇̃iQγδ∇̃jQγδ −

1

3∇̃αQγδ∇̃αQγδδij

)
,

where t̃ = ϕkT ∗t/γ is the dimensionless time and

R =

(
ξ

X

)2

(2.20)

is the square of the internal/external length scale ratio. The dimensionless numbers
℘ that control the dynamics of Q are

℘ :
{
U,R, L̃2, L̃3

}
.(2.21)

As mentioned above, U controls the stability, and for a stable homogenous uniaxial
nematic phase the relation between U and the equilibrium scalar order parameter Seq

is

Seq =
1

4
+

3

4

√
1 − 8

3U
.(2.22)

For low molar mass NLCs, we estimate ξ = 10–20nm [5, 31], and for films in
the micron range this gives X/ξ ≈ 100. Hence using this model to simulate realistic
materials and realistic geometries gives rise to a PDE system with a small parameter.
This small parameter is responsible for the ability of the model to capture topological
defects and changes in the scalar order parameter close to bounding surfaces [32, 33].
The R = 0 limit of tensor equation (2.20), with S = Seq and P = 0, yields the

dynamic version of the Frank–Oseen director model [5]. Lastly, L̃2 and L̃3 denote
elastic anisotropy in the system. For low molar mass nematics, such as 5CB (4-
pentyl-4’-cyanobiphenly) the values for these dimensionless elastic constants are L̃2 =
0.85, L̃3 = 0.87 [34, 35]. In the material system under study here, elastic anisotropy
is not a significant effect.
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Fig. 3.1. Schematic diagram of the optical component of the dielectric tensor ε, ordinary
dielectric constant ε⊥ and the extraordinary dielectric constant ε‖, with respect to the optic axis
n described by the two Euler angles, azimuthal φ and polar θ, for a uniaxial rod-like NLCs in a
rectangular (x,y,z) coordinate system. The unit vector n also represents the local director.

3. Optical modeling of LCs. NLCs are optically transparent and anisotropic
materials. These properties provide unique and interesting optical features of light
propagation through NLC films. The Matrix–Berreman and FDTD method have
been successfully applied to describe classical defects observed in NLCs such as wedge,
twist, and loop defects [23, 24, 25]. In this section, we discuss the main features of the
two optical methods of direct relevance to the objectives of the paper; other details
are found in various references and texts [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 36].

The Maxwell curl equations and constitutive equations in the absence of current
and for nonmagnetic materials are given by

∂D

∂t
= ∇× H,

∂B

∂t
= ∇× E, D = εE, B = μoH,(3.1)

where D is the electric flux, E and H are the electric and magnetic fields, and μo is the
magnetic permeability in a vacuum. Figure 3.1 shows the optic axis, two dielectric
constants, and Euler angles of rod-like uniaxial NLCs. The optically anisotropic
properties of NLCs are included in the dielectric tensor ε. The Euler azimuthal φ and
polar angle θ describe the direction of the optic axis n for rod-like uniaxial NLCs in
a rectangular coordinate system. The optic axis coincides with the local director n of
uniaxial NLCs. The six components of the symmetric dielectric tensor ε for uniaxial
NLCs in two dimensions are given by

ε(x, z) =

⎛
⎝ε⊥ + Δε cos2 θ cos2 φ Δε cos2 θ sinφ cosφ Δε sin θ cos θ cosφ

Δε cos2 θ sinφ cosφ ε⊥ + Δε cos2 θ sin2 φ Δε sin θ cos θ sinφ
Δε sin θ cos θ cosφ Δε sin θ cos θ sinφ ε⊥ + Δε sin2 θ

⎞
⎠ ,(3.2)

where Δε = ε⊥ − ε‖, ε⊥ is the ordinary and ε‖ the extraordinary dielectric constant.
The Maxwell equations (3.1) in two dimensions can be decoupled into two separated
waves, ordinary (transverse magnetic) and extraordinary (transverse electric), known
as TM and TE mode fields, under the condition that the dielectric tensor is dependent
only on one of Euler angles. For example, LCs exhibit only planar structures, θ = 0;
otherwise, the decoupling of the Maxwell equations into TM and TE fields is not
feasible [20].
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3.1. Berreman method [10, 11, 12, 13, 14, 15]. Reformulation of the Max-
well equations (3.1) into four linear differential equations is possible under the as-
sumption that variation of the dielectric tensor occurs only in the light propagation
direction and is negligible in the transverse directions, where the Euler angles are only
functions of z or the spatial gradient of the Euler angles with respect to x is moderate
in a long range. The four linear differential equations are given by [10]

dψ

dz
= −i

ω

c
Δ(z)ψ, ψ = (Ex, Hy, Ey,−Hx)T ,(3.3)

where c is the light propagation velocity in vacuum, ω is the angular frequency, and Ex,
Ey, Hx, and Hy are electric and magnetic components. Optical properties of NLCs,
polarizations due to local molecular orientation of NLCs, and multiple reflections due
to the presence of different media are imposed in the 4×4 matrix Δ(z). Thus, the
space-dependent Δ(z) are mainly functions of ε(z).

The global computational domain of the NLC film including substrates is divided
into local cubic lattices. Each local lattice is assumed to be a homogenous medium
whose dielectric tensor is uniform εi; the subscript i indicates the local cubic lattice.
Solution vectors for transmitted waves ψt and reflected waves ψr after the incident
waves ψi travel through the global computational domain from z0 to zn are obtained
by solving the linear equation (3.3). The solution vectors are obtained as follows:

ψt(zn) = F(i, n)(ψi(zo) + ψr(zo)),(3.4)

F(i, n) = pi+n(εi+n(h))pi+n−1(εi+n(h)) . . .pi+1(εi+1(h))pi(εi(h)),(3.5)

pi(h) = exp
[
−i

(ω
c

)
Δh

]
,(3.6)

where F is the global transfer matrix, pi is the local transfer matrix for each local
cubic lattice i, and h is the thickness of each local lattice. F is just the multiplication
of each local transfer matrix pi. Thus, the main computational cost and challenge
of the Berreman method is to obtain solutions of the local transfer matrices. The
exponent matrix pi can be expressed using a Taylor series as follows:

pi(h) = exp
(
−i

ω

c
Δh

)
(3.7)

= I +

(
−i

ωh

c
Δ

)
+

1

2!

(
−i

ωh

c

)2

Δ2 +
1

3!

(
−i

ωh

c

)3

Δ3 + · · · ,

where I is the unit matrix. The higher term of (3.7) can be neglected in the case
when the thickness h of each local lattice is sufficiently small and thus each lattice
is a uniform medium with εi+n(h). In addition, analytical expressions of the local
matrix pi can be obtained in case the optic axis has a planar structure where the
dielectric tensor is dependent only on a single Euler angle. The detailed expression of
analytical solutions of the local matrix P can be found in the literature [14, 15, 16].
In this study, the dielectric tensor is a function of both Euler angles, azimuthal φ and
polar angle θ. The local transfer matrix is obtained using (3.7) with the assistance of
the built-in function called “expm” in Matlab 7 [37].

In this paper we consider a monochromatic incident wave, and the solution vec-
tors are obtained using (3.5) after considering transmission through ideal crossed
polarizers.
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Fig. 3.2. Schematic of the computational domain used in the FDTD method. H indicates the
thickness of an NLC film, and the arrows indicate the normal propagation direction of polarized
light. The polarizer and analyzer are placed along the x and y directions. PMLs are placed in the z
direction, and periodic conditions are used in the x direction. Oval shapes indicate the average LC
molecules’ orientation, known as director n.

3.2. FDTD method [17, 18, 19, 20, 21, 22, 36]. The Maxwell equations

(3.1), rewritten in a rescaled form using D̃ = 1√
εoμo

D and Ẽ =
√

εo
μo

E , are given by

[38]

∂D̃

∂t
=

1
√
εoμo

∇× H, D̃ = ε∗Ẽ,
∂H

∂t
= − 1

√
εoμo

∇× Ẽ.(3.8)

One of the main challenges and important issues of the FDTD method in solving
the Maxwell equations is to implement boundary layer conditions in order to trun-
cate the computational space. Any artificial and nonphysical reflections of outgoing
waves, which arise from truncation of the computational space, back into the do-
main of interest causes contamination of solutions. Thus, it is highly desirable to
prevent outgoing waves leaving the domain of interest from reflecting back into the
domain. Berenger [39] first introduced a perfectly matched layer (PML) as boundary
layers in order to truncate the computational space and to absorb waves leaving the
computational domain of interest and entering into the PML without any reflections.
However, some difficulties arise in implementing the PML in the case of dielectric
anisotropic media and high dimensions. Simpler and more effective formulations of
material-independent PML have been developed and successfully implemented in LC
application with high performance [38, 40, 41, 42]. Among the formulations, a simpli-
fied formulation of the PML called unsplit PML is used in this study [38]. One of the
benefits of rescaling the Maxwell equations as shown in (3.8) is that it provides a sim-
pler implementation of the unsplit PML method, regardless of level of the complexity
in the optical properties of the medium [38]. Figure 3.2 shows a schematic of the
computation domain and the three main components of the optical system: (1) the
thin NLC film, (2) two supporting glass substrates, and (3) two PML layers used in
the FDTD method. The PML layers are used in order to truncate the computational
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Fig. 3.3. Schematic of a cubic unit lattice of the Yee cell.

domain in the z direction. Lateral periodic boundary conditions are used in order
to truncate the computational domain in the x direction. The periodic boundary
conditions in the x direction are justified when assuming repetition of the system in
the x direction. The entire computational domain is subdivided into staggered cubic
lattices, and the lattices follow a Yee cell configuration [43]. The Yee cell shown in
Figure 3.3 consists of electrical and magnetic components in a staggered lattice in
which the electric and magnetic components are located by the half space, so that
each E and H component is surrounded by the four circulating H and E components.
A second-order central finite difference is used to discretize the normalized (3.8) in
both space and time on the basis of the Yee algorithm and a fully explicit leap frog
scheme, respectively [36]. One example of the finite-difference expression of Dy and
Hy components in the rectangular (x, z) coordinate system is given by

Dy|n+1
x,z =Dx|nx,z +

Δt
√
εoμo

(
Hx|n+1/2

x,z+1/2 − Hx|n+1/2
x,z−1/2

Δz
(3.9)

−
Hz|n+1/2

x+1/2,z − Hz|n+1/2
x−1/2,z

Δx

)
,

E|n+1
x,z = ε∗(x, z)−1 D|n+1

x,z ,(3.10)

Hy|n+3/2
x+1/2,z+1/2 =Hy|n+1/2

x+1/2,z+1/2 +
Δt

√
εoμo

(
Ez|n+1

x+1,z+1/2 − Ez|n+1
x,z+1/2

Δx
(3.11)

−
Ex|n+1

x+1/2,z+1 − Ex|n+1
x+1/2,z

Δz

)
,

where Δx, Δz and Δt indicate space and time increments, respectively, and n indicates
the time step. The D field is advanced in time by the half time increment based on
the previous advanced H field according to (3.9). Then, the E field is obtained with
the inverse of the dielectric tensor and the previously obtained D field. The updated
E field is used to obtain a new H field according to (3.11). This procedure continues
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until an initial transient period vanishes and the steady-solution vectors E and H are
obtained, after considering transmission through the ideal crossed polarizers.

In the initial time step, a known monochromatic incident wave is introduced into
the computation domain using the total field and scattered field (TF/SF) formulation
at the lower interface between the TF/SF regions, as shown in Figure 3.2. The TF/SF
formulation at the lower interface is expressed by [36]

Etotal = Einc + Escat, Htotal = Hinc + Hscat for total field region,(3.12)

Escat = Etotal − Einc, Hscat = Htotal − Hinc for scattered field region,(3.13)

where Einc indicates the incident electric components and Escat indicates the electric
component due to reflection, scattering, and retardation of incident waves induced by
the presence of different media and spatial variations in the NLC orientation. The
electric and magnetic fields are advanced in time and space according to (3.9) and
(3.11). Only scattered electric and magnetic components are allowed to leave from the
total region and enter into the scattered region. Then the scattered waves enter into
PML layers, which have fictitious exponential conductivities σ(z). In the PML layers,
all of the Escat and Hscat are absorbed exponentially, regardless of any propagation
directions of the entering scattered waves. Therefore, no reflections of the waves into
the computational domain of interest occur.

4. Results and discussion. In this section, we present details of computational
issues and numerical results of texture formation in a NLC thin film on a patterned
surface based on the Landau–de Gennes theory and its optical responses using the
FDTD and Berreman methods. The optical results are validated using the experi-
mental data of [7].

4.1. Texture formation. In the present paper, we are interested in computing
texture formation in a low-molar mass NLC film such as 5CB, used in biosensor
applications [3, 4, 6, 7], where the elastic anisotropy effects on the director field
conformation are moderate. Hence a one-elastic-constant approximation (L2 = L3 =
0) is used.

Figure 4.1 shows a schematic of the computational geometry of a thin NLC film
used for computing texture formation. The two dimensional computational domain

Fig. 4.1. Schematic of the computational geometry of LC film. H̃and D̃ indicate dimensionless
thickness and length of the film, respectively. The NSPR includes the region −1.5 ≤ x ≤ −1 and
1 ≤ x ≤ 1.5 for both z = −0.2 and z = 0.2, and the SPR covers −1 < x < 1, z = −0.2. Oval shapes
on the surface represent fixed anchoring boundary conditions. The check-patterned box indicates
stamped proteins where various boundary conditions are used.
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of the thin NLC film shown in Figure 4.1 consists of the area enclosed by the external
boundaries, of dimensionless thickness H̃ = 0.4 and dimensionless length D̃ = 3. The
computational domain also consists of three distinct regions: two nonstamped protein
regions (NSPR) (−D̃/2 ≤ x ≤ −D̃/3, D̃/2 ≤ x ≤ D̃/3) and one stamped protein

region (SPR) (−D̃/3 < x < D̃/3) in Figure 4.1. The two dimensional computational
domain replicates the experimental geometry used in [4, 7], so as to keep the same
thickness-to-length ratio, the same NSPR-to-SPR length ratio, and same boundary
conditions as in the experiments of [4, 7].

Periodic boundary conditions are employed in the x direction, which are consistent
with the lateral boundary conditions used for optical modeling. The tensor order
parameter Q(x, z, t) on the boundary (x = −D̃/2, D̃/2) is given by

Q|
x=−D̃/2

= Q|
x=D̃/2

,
∂Q

∂x

∣∣∣∣
x=−D̃/2

=
∂Q

∂x

∣∣∣∣
x=D̃/2

,
(4.1)

∂Q

∂y

∣∣∣∣
x=−D̃/2

=
∂Q

∂y

∣∣∣∣
x=D̃/2

.

For the remaining boundaries in the z direction, the Dirichlet boundary conditions
are implemented, as shown in Figure 4.1. The upper surface (z = H̃/2) provides a
strong homeotropic boundary condition in both SPR and NPR regions; the lower
surface (z = −H̃/2) in the NSPR region provides a strong planar boundary condition
parallel to the x direction. Hence, the tensor order parameter Q on these boundaries
is given by

Qb = Seq

(
nbnb −

1

3
δ

)
,(4.2)

nb = (0, 0, 1), z =
H̃

2
, −D̃

2
< x <

D̃

2
,(4.3)

nb = (1, 0, 0), z = −H̃

2
, −D̃

2
≤ x ≤ D̃

3
,

D̃

3
≤ x ≤ D̃

2
,(4.4)

where nb is the prescribed uniaxial director or optic axis at z̃ = ±H̃/2. Since NLCs on
the SPR lower surface exhibit a preferred orientation, which we are interested in cap-
turing, we vary boundary conditions on the surface with a strong planar assumption
as follows:

(1, 0, 0) ≤ nb ≤ (0, 1, 0), z = −H̃

2
, −D̃

3
≤ x ≤ −D̃

3
.(4.5)

The surface director Euler angles are

θ = 0, 0 ≤ φ ≤ π

2
, z = −H̃

2
, −D̃

3
≤ x ≤ −D̃

3
.(4.6)

The system is initially quenched from isotropic state, and the initial conditions
are

Qin(x, z, t̃ = 0) = Sin

(
nn − 1

3
δ

)
, Sin ≈ 0,

(4.7)

−H̃

2
< z <

H̃

2
, −D̃

2
< x <

D̃

2
.
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Fig. 4.2. Computed director profiles of the liquid crystal films for the anchoring boundary
conditions on the lower surface of the SPR: (a) φ = 0, (b) φ = π/12, (c) φ = π/6, and (d) φ = π/4.
The values of the axes of the x-z plane are equal to the dimensionless length and thickness.

The nematic potential U = 3T∗

T is set to be 3.5, which corresponds to Seq=0.615.
The spatio-temporal behavior of n is predicted by solving (2.18), subject to (4.5)–(4.7)
for various different anchoring conditions on the lower surface of the SPR, according
to (4.5), (4.6).

Figure 4.2 shows computed visualizations of the steady-state director profiles
corresponding to the following director boundary conditions on the SPR lower surface
region: (a) φ = 0, (b) φ = π/12, (c) φ = π/6, and (d) φ = π/4, respectively, for
ξ
H =0.01. The NLC structure in Figure 4.2(a) exhibits hybrid alignment and a planar
director field with splay and bend distortions. Figures 4.2(b–d) show a nonplanar
director field with splay-twist-bend modes. The twist mode occurs in a stripe around
the center region (x ≈ 0). The splay-bend-twist distortions are concentrated close to
the interface between the adjacent NSPR and SPR regions.

Figure 4.3 shows computed director profiles corresponding to increasingly larger
values of the anchoring boundary conditions: (a) φ = π/3, (b) φ = π/2.57, (c)
φ = π/2.25, and (d) φ = π/2. As expected, in the vicinity of the interface between two
adjacent NSPR and SPR regions, deformation of the NLCs increases with increases
in the twist angle φ.

In partial summary, as the twist angle φ in the SPR increases, the steady-state
texture evolves from a diffuse planar splay-bend mode to a sharp nonplanar splay-
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Fig. 4.3. Computed director profiles of the LC films for the anchoring boundary conditions on
the lower surface of the SPR: (a) φ = π/3, (b) φ = π/2.57, (c) φ = π/2.25, and (d) φ = π/2. The
values of the axes of the x-z plane are equal to the dimensionless length and thickness.

twist-bend mode, exhibiting a box-like region over the SPR with uniform escape into
the third dimension (“y” axis). The NLC director profiles shown in Figures 4.2 and
4.3, as well as results from other anchoring conditions (not shown for brevity), are
used for optical texture modeling, shown next.

4.2. Optical texture formation. The FDTD and Berreman methods for opti-
cal computation are applied to predict optical response of the obtained NLC textures.
The computational domain for the NLC structure consists of 577×77 rectangular cu-
bic lattices for the Berreman method, and rectangular Yee cells for the FDTD method.
A grid size of each cell is set to λ/30, which is selected in order to prevent numer-
ical dispersion for a mean refractive index close to 1.6. The selected grid size is
Δz = Δx = 20nm, and the dimensionless time step is equal to Δt = 3.3356 × 10−17,
which is selected for numerical stability. Extra cubic lattices for the supporting glass
layers in the Berreman method and extra Yee cells are added for the glass layers and
the PML layers in the FDTD along the light propagation direction. A linearly polar-
ized monochromatic plane wave along the x direction with free wavelength λ = 600 is
introduced into the computational domain. Only normal incidence is considered. The
refractive indices of 5CB are equal to 1.71 for the extraordinary index, no, and 1.53
for the ordinary index, ne [44]. These values correspond to the selected wavelength
λ = 600. The supporting refractive index is equal to 1.52.
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Fig. 4.4. Normalized optical intensities of transmitted polarized light using the FDTD and
Berreman method in the case of (a) φ = 0, (b) φ = π/12, (c) φ = π/6, and (d) φ = π/4 anchoring
boundary conditions corresponding to NLS structures in the corresponding panels of Figure 4.2. The
normalized intensities are a function of distance along the x direction.

Figure 4.4 shows the normalized optical intensity of transmitted light through
the NLC textures (see Figure 4.2 for the following anchoring conditions in the SPR:
(a) φ = 0, (b) φ = π/12, (c) φ = π/6, and (d) φ = π/4, computed using the FDTD
and Berreman methods). The optical intensities are plotted as a function of distance
in the x direction after considering the presence of the ideal analyzer parallel to the
y direction. For φ = π, 0, as shown in Figure 4.4(a), the transmitted light from the
NLC film is completely extinguished by the analyzer placed along the y direction,
so that zero magnitude of the transmitted light is predicted in this case, and the
NLC film appears completely dark. This is expected because there is no deviation of
the azimuthal angle with respect to the polarizer placed parallel to x-axis; when the
optic axis of NLCs uniformly aligns parallel or perpendicular to either polarizer or
analyzer (here we consider cross-polars), the NLC film appears dark. Hence, as the
surface azimuthal angle deviates from the polarizer in the SPR region (which means
the deviation of NLC orientation with respect to the polarizer increases), the intensity
of the transmitted light increases in the SPR, but in the NSPR region the intensity
vanishes, as shown in Figure 4.2(b–c). Consequently, the maximum optical intensity
is predicted by both optical methods when φ = π/4 (Figure 4.4(d)).

In weakly heterogeneous textures, the FDTD and Berreman methods predict simi-
lar transmitted light intensity magnitudes under cross-polars. However, disagreement
between the two methods for sharply textured LC films is significant, as shown in
Figure 4.2. This disagreement originates from the optical intensity oscillations pre-
dicted by the FDTD method, due to scattering effects from lateral optic axis gradients
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Fig. 4.5. Normalized optical intensities of transmitted polarized light using the FDTD and
Berreman method in the case of (a) φ = π/3, (b) φ = π/2.57, (c) φ = π/2.25, and (d) φ =
π/2 anchoring boundary conditions corresponding to NLS structures in the corresponding panels of
Figure 4.3. The normalized intensities are a function of distance along the x direction.

(∂n/∂x) in the adjacent two interfaces regions between the NSPR and SPR. On the
other hand, the Berreman method fails to capture this effect because lateral gradients
in the optic axis are not taken into account [20, 21, 22, 23, 24, 25]. From this result,
it is to be expected that the magnitude of deviation between the two optical methods
will increase as lateral gradients (∂n/∂x) increase.

Figure 4.5 shows the normalized optical intensity of transmitted light through the
NLC textures (see Figure 4.3), computed using the FDTD and Berreman methods,
for the following anchoring conditions in the SPR; (a) φ = π/3, (b) φ = π/2.57, (c)
φ = π/2.25, and (d) φ = π/2. Once again, the intensities of the transmitted light
in the SPR region continually decay as the azimuthal angle increases aboveφ = π/4,
as shown in Figure 4.5. On the other hand, the degree of the disagreement in the
optical intensities between both methods continually increases, due to an increase in
the lateral gradient of the optic axis near the interface between the NSPR and SPR.
The results show that the maximum level of the disagreement corresponds to φ = π/2
(Figure 4.5(d)), where two surface defects are present on the two interfaces between
the NSPR and SPR. An additional difference between the two predicted outputs
is found by considering the symmetry properties of optical signals. FDTD always
predicts asymmetric optical signals, while Berreman’s method predicts a symmetric
optical signal:

Berreman method: B(x) = B(−x),
FDTD method: F (x) �= F (−x),

where B(x) is the Berreman optical signal and F (x) is the FDTD signal, shown by
Figures 4.5(a–d).
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Fig. 4.6. Error norm ‖E(φ)‖ based on the difference of the optical response between the two
optical methods, FDTD and Berreman, as a function of φ azimuthal anchoring conditions.

The norm of the asymmetry function |F (x) − F (−x)| increases with increases in
the lateral gradient orientation, and for φ = π/2, when two surface defects are present,
the two peaks of the optical signal differ by 0.1, as shown in Figure 4.5(d). This
asymmetric optical feature is due to nonsymmetric orientation gradients along the x
direction. The asymmetric optical feature due to nonsymmetric orientation gradients
has been reported in the literature [20, 21, 22]. Next we assess the difference between
optical signals predicted by the two methods as a function of the azimuthal angle φ
on the lower surface containing the SPR, by introducing the error norm ‖E(φ)‖:

‖E(φ)‖ =

√√√√ m∑
i=1

|F(i) − B(i)|2,(4.8)

where F and B are the optical vector solutions of the FDTD and Berreman, respec-
tively; i is the discretized location along the x dimension; and m is equal to 577.

Figure 4.6 shows the error norm ‖E(φ)‖ as a function of the azimuthal angle. The
error norm ‖E(φ)‖ initially increases exponentially with φ and eventually reaches a
maximum at φ = π/2, where there is maximum in the lateral gradient

∣∣∂n
∂x

∣∣. The
major contribution of the deviations between the two optical methods arises from
the interfaces between the NSPR and SPR, where strong variations of the lateral
gradients are present. Next we consider the practical problem of how to use optical
transmission to find surface orientation; this is an inverse problem that arises in the
actual use of the LC biosensor. Modulation of transmitted optical intensity under fixed
cross-polar upon gradual rotation of an NLC film is one of methods used to determine
the degree of alignment and texture type in NLC films [45, 46]. In this work using the
accurate FDTD method we have simulated the effect of sample rotation under fixed
cross-polars on the optical output in order to determine the preferred orientation in
the SPR region; the simulation results are validated with experiments [4, 7]. The
simulation steps are as follows:

1. specify the anchoring condition on the SPR by selecting φ;
2. solve the texture equation and obtain the director field;
3. with fixed cross-polars, rotate the computational domain by a small angle ψ;
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Fig. 4.7. Modulation of the transmitted intensities of polarized light during rotation with respect
to polarizer for the NSPR and SPR regions of the NLC structures corresponding to anchoring
boundary conditions for the SPR: (a) φ = π/36, (b) φ = π/4, (c) φ = π/2.57, and (d) φ = π/2.
Dashed lines indicate the sum of normalized intensities of transmitted light in the NSPR from
−1.5 ≤ x ≤ −1 and 1 ≤ x ≤ 1.5 at each rotation angle from 0 to 90◦. Solid lines indicate the sum
of normalized intensities of transmitted light in the SPR from −1 < x < 1, at each rotation angle
from 0 to 90◦.

4. compute F(i),B(i) and ‖E(φ, ψ)‖;
5. increase rotation angle and repeat step 4 until total rotation is π/2;
6. repeat steps 1–5 for 0 ≤ φ ≤ π/2.

The key point in this technique is that the cross-polars are fixed and the sample
is rotated.

Figure 4.7 shows optical modulation of the NLS structures for (a) φ = π/36, (b)
φ = π/4, (c) φ = π/2.57, and (d) φ = π/2 under sample rotation (0 ≤ ψ ≤ π/2)
between fixed cross-polars using the FDTD. Comparing the dashed profiles in Figures
4.7(a–d), it is seen that the maximum optical intensity of polarized light appears near
ψ = π/4 and that the profiles are nearly independent of φ. The magnitude of φ on the
SPR region has no effect on F in the NSPR. Comparing the full-line profiles in Figures
4.7(a–d), it is seen that the extremum in optical intensity is a strong function of φ.
The profiles shown in Figure 4.7, their specific features, and their response to changes
in the azimuthal angle are in good agreement with experimental results [4, 7, 45, 46].

Figure 4.8 shows the extrema in the optical output in the SPR region in terms of
ψ as a function of φ. Each dot is found from the maximum in optical transmission;
for example, in Figure 4.7(a), the maximum corresponds to ψ =0.74, φ = 0. The
maximum optical intensities are predicted near ψ = π/4, for both φ = 0 and φ = π/2.
Comparing the predicted results of the modulation pattern of the transmitted optical
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Fig. 4.8. Extrema in the optical output in the SPR region in terms of ψ as a function of φ. ψ
and φ represent the rotational angle (0 to 90◦) and anchoring conditions, respectively, in the SPR
region −1 ≤ x ≤ 1.

intensity with the extrema shown in Figures 4.7 and 4.8 by the FDTD method with
the experimental results [4, 7], a preferred orientation of NLCs on the SPR lower
surface is confirmed to be near 50 to 55◦ with the respect to the polarizer.

5. Conclusions. A computational model based on the classical Landau–de
Gennes tensor theory for LCs has been developed and implemented in order to de-
scribe orientation and surface defects in an NLC film exhibiting two distinct regions
due to surface condition changes arising from protein deposition. Optical models using
the FDTD and Berreman methods are evaluated in order to predict optical behavior
of the heterogeneous films and to determine possible surface anchoring conditions.

Texture formation for complex surface conditions was predicted and characterized
as a function of azimuthal anchoring conditions on a lower surface. These predicted
textures were then used for optical modeling. Two significant optical features, oscilla-
tions and nonsymmetric optical signals, are predicted by the FDTD method but are
absent in the Matrix–Berreman method due to its inability to capture effects arising
from gradients of the optic axis in the lateral direction. The oscillation’s amplitude
and magnitude of the nonsymmetric optical response increase with increasing mag-
nitude in the lateral orientation gradients. The optical simulations indicate that the
magnitude of the lateral orientation gradient and its symmetry are important factors
in the optical behavior of textured NLC films, and hence the FDTD method is more
appropriate than the Berreman method for textured samples.
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The optical responses of textured LC films in contact with partially covered sub-
strates containing adsorbed proteins were simulated in order to determine the pre-
ferred orientation of the optic axis on the protein-covered section of the substrate.
Prediction of modulation of transmitted polarized light under fixed cross-polars dur-
ing sample rotation was used to define a possible preferred orientation on the lower
surface where the printed proteins are present. The optical simulations were in good
agreement with experimental results [4, 7], indicating that the preferred orientation
of the optic axis on the protein patch is approximately 50 to 55◦ with the respect to
the polarizer.

The integrated microstructure-optical simulation model based on the Landau–
de Gennes-FDTD method provides for firm foundations on which to further develop
biosensors based on LC vision.
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Abstract. Several semianalytical approaches are now available for describing diffraction of a
plane wave by the 2D (two-dimensional) traction free isotropic elastic wedge. In this paper we follow
Budaev and Bogy, who reformulated the original diffraction problem as a singular integral one. This
comprises two algebraic and two singular integral equations. Each integral equation involves two
unknowns, a function and a constant. We discuss the underlying integral operators and develop a
new semianalytical scheme for solving the integral equations. We investigate the properties of the
solution obtained and argue that it is the solution of the original diffraction problem. We describe a
comprehensive code verification and validation program.
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1. Introduction. Evaluation of the wave fields diffracted by an isotropic elastic
wedge is a challenging problem. A review of various attempts to solve it over the past
fifty years is given, e.g., in [5]. It appears that a purely analytical solution is impos-
sible, and instead there have been two major semianalytical approaches developed so
far. These are based on

1. a representation of the displacement in the form of a single layer potential—
the superposition of the fields radiated by imaginary point sources situated
on the faces of the wedge. Their Fourier transforms satisfy integral equations,
which can be solved numerically (see, e.g., [12, 11, 10, 13, 14] and references
therein), or

2. a representation of the elastodynamic potentials in the form of the Sommer-
feld integral—the superposition of plane waves propagating in all (including
complex) directions. The amplitudes of the plane waves belong to a certain
class of analytical functions and satisfy a system of functional equations. Bu-
daev [4] has reformulated this problem as a singular integral one, involving a
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combination of algebraic and singular integral equations. Budaev and Bogy
[5, 6, 9] have offered a numerical schedule for solving the problem, and for the
incident Rayleigh wave they calculated the Rayleigh reflection and transmis-
sion coefficients. However, the schedule has never been given a transparent
description.

In sections 2 and 3 we outline our own semianalytical recipe for solution of the
singular integral problem, and in section 4 we verify and validate the resulting code.
In Appendix A we describe the nomenclature, and in other appendices, we offer the
necessary theoretical considerations, formulas, and numerical options.

2. Statement of the problem and the Sommerfeld amplitudes. Let us
briefly present the full statement of the original diffraction problem. We seek the
elastodynamic potentials ψi = ψi(kr, θ) that satisfy the Helmholtz equations in the
two-dimensional (2D) wedge of angle 2α with traction-free faces; that is, we address
the boundary value problem

Δψ0 + γ2k2ψ0 = 0, Δψ1 + k2ψ1 = 0, |θ| < α,(2.1) [
2

r

∂2ψ0

∂θ∂r
+

1

r2

∂2ψ1

∂θ2
− ∂2ψ1

∂r2
+

1

r

∂ψ1

∂r
− 2

r2

∂ψ0

∂θ

]
= 0, |θ| = α,(2.2)
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[
1
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∂r2
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− 2

[
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∂r2
+
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r

∂2ψ1

∂θ∂r
− 1

r2

∂ψ1

∂θ

]
= 0, |θ| = α.

(2.3)

Above and everywhere below, the parameter k is the shear wave number; γ = cS/cP
is the ratio of the shear and compressional speeds cS and cP, and the subscript i takes
values 0 or 1. The geometry of the problem is shown in Figure 2.1. Given an incident
wave, we seek the scattered potentials satisfying the radiation conditions at infinity
(analogous to the ones in [17, Theorem 4.1]]; also see [15, Appendix C]) and bounded
elastic energy condition at the wedge tip.

Note that the potentials are related to displacement u = u(x) via u = ∇ψ0 +
∇⊥ψ1, where the nabla operators are ∇ = (∂x, ∂y), ∇⊥ = (∂y,−∂x). Note too that

Fig. 2.1. Geometry of the traction-free elastic wedge.
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Fig. 2.2. The Sommerfeld contours in the complex ω-plane.

in view of this representation the Helmholtz equations imply

(2.4) ψ0(x) = −(γk)−2∇ · u(x), ψ1(x) = −k−2∇⊥ · u(x).

It follows that ψi(kr, θ) are uniquely defined by u(x), and since for the corresponding
Lamé problem in u(x) the existence and uniqueness results have been proven [16]. [17,
Theorem 3.1], the above diffraction problem as formulated in terms of the potentials
has a unique solution too. Moreover, due to (2.4) all the analytical properties of u(x)
established in [17] imply the corresponding properties of ψi(kr, θ).

The solutions ψi(kr, θ) of the Helmholtz equations can be represented in the form
of the Sommerfeld integrals

ψi(kr, θ) =

∫
C

⋃
C̃

Ψi(ω + θ)eiγkrcos ωdω,(2.5)

which can be rewritten as

ψi(kr, θ) =

∫
C

[
Ψi(ω + θ) − Ψi(−ω + θ)

]
eiγkrcos ωdω.(2.6)

Here the Π-shaped contour C runs from −π/2 + i∞ to 3π/2 + i∞. The contour C̃ is

the reflection of C with respect to the origin, and the full integration contour C
⋃
C̃ is

shown in Figure 2.2. One can justify (2.6) by applying the Laplace transform in kr to
ψi(kr, θ), changing the Laplace variable s to ω, such that s = icos ω, and exploiting the
behavior of ψi(kr, θ) both in the vicinity of the wedge tip and at infinity (for details
see [15, Appendix A]). It follows that the analytic functions Ψi(ω) possess a finite
number of singularities in any vertical strip and are regular at the imaginary infinity.
Moreover, in Appendix B we show that the tip behavior of ψi(kr, θ) determines the
asymptotic expansion of Ψi(ω) at the imaginary infinity and provides us with an
asymptotic estimate

(2.7) Ψi(ω) = O(e−Re p | Im ω|), Re p > −1, | Im ω| → ∞,

which assures the convergence of integrals (2.6). Note that these integrals are invariant
under the transformation Ψi(ω) → Ψi(ω)+const. In Appendix B we also show that as
Im ω → ∞, the asymptotic expansion of the preexponential factor in (2.6) contains
a constant term. Below, we choose Ψi(ω), i = 0, 1 so that the constant terms in their
asymptotic expansions valid as Im ω → ∞ and Im ω → −∞ differ only by sign. We
call those Ψi(ω) the Sommerfeld amplitudes.

Introducing the closed contour C
⋃

(−C2)
⋃
C̃
⋃

(−C1), the Sommerfeld integrals
(2.5) can be evaluated as the contributions of the poles and branch points inside that
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contour plus the sum of integrals over the steepest descent contours C1 and C2. The
former describe all bulk and surface waves arising in the problem, as well as the head
waves, and the latter can be evaluated using the steepest descent method to provide a
description of the tip diffracted body waves. It follows that all physically meaningful
poles and branch points of Ψi(ω + θ) must be located between the contours C1 and
C2, and in this region the Sommerfeld amplitudes Ψi(ω) should contain no physically
meaningless singularities. Since inside the wedge we have |θ| ≤ α, this means that
all physically meaningful singularities—and only those—must lie at a finite distance
from the horizontal axis between the contours C1 and C2 as shifted horizontally by
−α and α, respectively; that is, within the Malyuzhinets region

(2.8)

{
ω : − π

2
− α− 2 tan−1(e− Im ω) ≤ Re ω ≤ 3π

2
+ α− 2 tan−1(e− Im ω)

}
.

To summarize, the scattered field can be fully described once an efficient algorithm
is produced for calculating the Sommerfeld amplitudes Ψi(ω) in the region (2.8). We
proceed with this task.

3. Problem reformulation. In view of its symmetry with respect to the polar
angle, the original problem naturally splits into “symmetric” and “antisymmetric,”
corresponding respectively to the symmetric and antisymmetric parts of the incident
wave. These involve functions Ψ±

i (ω) such that we have

Ψ±
i (ω) =

1

2
[Ψi(ω) + (−1)i+1Ψi(−ω)].(3.1)

We follow the approach pioneered in elastodynamics by [4] and first substitute (2.6)
into the boundary conditions (2.2) and (2.3) to obtain the system of functional equa-
tions. We then employ the singular integral transforms to reformulate the problem as
a system of algebraic and singular integral equations.

3.1. Functional equations. Let us start with the symmetric problem. The
boundary conditions (2.2) and (2.3) imply∫

C

γ2a1(ω)
[
Ψ+

0 (ω + θ) − Ψ+
0 (ω − θ)

]
eiγkr cos ωdω

−
∫
C

a2(ω)
[
Ψ+

1 (ω + θ) − Ψ+
1 (ω − θ)

]
eikrcos ωdω = 0,(3.2)

∫
C

γ2

[
a3(ω) +

1

γ2

][
Ψ+

0 (ω + θ) + Ψ+
0 (ω − θ)

]
eiγkrcos ωdω

−
∫
C

a1(ω)
[
Ψ+

1 (ω + θ) + Ψ+
1 (ω − θ)

]
eikrcos ωdω = 0,(3.3)

where a1(ω) = sin 2ω, a2(ω) = −cos 2ω, and a3(ω) = −2cos2 ω. Introducing in the
first terms of both (3.2) and (3.3) the new integration variable ω̌ such that cos ω̌ =
γ cos ω, dropping the check, and transforming the contour of integration back to C,
the equations acquire the form

(3.4)

∫
C

f(ω)eikrcos ωdω = 0,

where, due to (2.7), as | Im ω| → ∞, f(ω) = O(exp(Im ω [2 − Re p])), with Re p >
−1. Using the Malyuzhinets theorem [20], f is an odd trigonometric polynomial of
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the second order. It follows that the pair Ψ+
i (ω) satisfies (3.2) and (3.3) if and only

if it satisfies the functional equations

t11

{
Ψ+

0 [g(ω) + α] + Ψ+
0 [g(ω) − α]

}
+ t12

{
Ψ+

1 (ω + α) + Ψ+
1 (ω − α)

}
= Q+

1 ,

t21

{
Ψ+

0 [g(ω) + α] − Ψ+
0 [g(ω) − α]

}
+ t22

{
Ψ+

1 (ω + α) − Ψ+
1 (ω − α)

}
= Q+

2 ,(3.5)

where t11 = cos 2ω sin ω/
√

γ2 − cos2 ω, t12 = t21 = sin 2ω, t22 = −cos 2ω, and we
have

Q+
j = c+j1sin ω + c+j2sin 2ω,(3.6)

with c+jk, j, k = 1, 2, unknown constants. The function g(ω) = cos −1(γ−1cos ω)
relates the shear incidence angles to compressional reflection angles, and its branch
cuts are chosen so that the deformed contour of integration Č = {ω̌ = g(ω) : ω ∈ C}
may be transformed back to C without touching them. They are the segments

(3.7) [−θh + πn, θh + πn], θh = cos−1 γ, n − integer.

The branch of g(ω) is chosen so that it has the properties

g
(π

2

)
=

π

2
,

g(ω + πn) = g(ω) + πn,

g(ω) � ω − i ln γ + O
(
e−2|Imω|) as Im ω → ∞.(3.8)

In order to investigate restrictions on c+ij let us substitute expansions (B.7) of the
Sommerfeld amplitudes into (3.5) and equate the coefficients of the leading asymptotic
terms in the resulting equations. First, we note that in the symmetric case, (B.7)
contains no constant terms, and therefore there are no exp(−2iω) terms in the left-
hand sides of these equations. This implies that c+12 = c+22 = 0. Secondly, since the tip
asymptotics of ψ+

i (kr, θ) contain the terms with the exponent 1, these sides contain
the exp(−iω) terms. Equating the coefficients of the exp(−iω) terms, we obtain

(3.9) (γΨ+
0m + iΨ+

1m) cos α =
i

2
c+11, −(γΨ+

0m + iΨ+
1m) sin α =

i

2
c+21.

Hence we have

(3.10) c+21 = −c+11 tanα.

Note that if γΨ+
0m + iΨ+

1m = 0, then c+21 = −c+11 = 0.
It follows that the right-hand sides in (3.5) might be—and, as we show in sections

4 and 5, are—nonzero, so that we have

(3.11) Q+
1 = c+1 sin ω, Q+

2 = −c+1 tanα sin ω,

where from now on, for simplicity, we use the notation c+1 = c+11.
The antisymmetric problem can be treated similarly, with one minor modifica-

tion: For all wedge angles α, expansion (B.7) might contain a nonzero constant term
Ψ−

00, and therefore the functional equations might contain a second order term. How-
ever, this term can be eliminated by subtracting Ψ−

00 from the Sommerfeld amplitude
Ψ−

0 (ω), redefining it in the process. The corresponding functional equations are

t21

{
Ψ−

0 [g(ω) + α] + Ψ−
0 [g(ω) − α]

}
+ t22

{
Ψ−

1 (ω + α) + Ψ−
1 (ω − α)

}
= Q−

1 ,

t11

{
Ψ−

0 [g(ω) + α] − Ψ−
0 [g(ω) − α]

}
+ t12

{
Ψ−

1 (ω + α) − Ψ−
1 (ω − α)

}
= Q−

2 ,(3.12)
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with

Q−
1 = c−1 sin ω, Q−

1 = c−1 tanα sin ω.(3.13)

We note that the above reasoning involves only the asymptotic terms with p−m = 0
or else with p±m = 1 and N±

m = 1, and therefore applies to all wedge angles under
consideration. We note too that Budaev and Bogy [5] have made several attempts to
establish restrictions on the constants. They first used the arguments of the type out-
lined above in [7]. By excluding from consideration the terms with p±m = 1, it is easy to
reach the erroneous conclusion that all constants c±jk are zero. In the static problems,
such exclusion is justified, because the terms describe body translations. By contrast,
in the dynamic problems, their presence is indicative of nontrivial phenomena.

We proceed by discussing the singularities of the Sommerfeld amplitudes. First,
we assume that the incident wave is plane or Rayleigh, so that it manifests itself in
Ψ±

i (ω) in the form of terms which contain simple poles θi� in the strip |Re ω| ≤ α.
The functional equations (3.5) and (3.12) can be recast as(

Ψ±
0 (g(ω) + α)

Ψ±
1 (ω + α)

)
= ±

(
r11(ω) r12(ω)
r21(ω) r22(ω)

)(
Ψ±

0 (g(ω) − α)
Ψ±

1 (ω − α)

)

+ c±1

√
γ2 − cos2 ω

Δ(ω)

(
e±1 (ω)
e±2 (ω)

)
,(3.14)

where the reflection coefficients for the traction-free elastic half space rjk(ω), j, k =
1, 2, as well as the Rayleigh function Δ(ω), and functions e±j (ω) are given in Appendix
A. The system (3.14) can be used to effect the analytical continuation from the strip
|Re ω| ≤ α and thus find all poles θi� of the Sommerfeld amplitudes, with their
respective residues, which are located in the strip Re ω ε I = [π/2−α, π/2 +α]. The
rationale behind the choice of the latter strip is clarified below. The poles are incidence
and reflection angles of the respective incident, reflected, and multiply reflected waves,
and their residues describe the amplitudes of these waves—see [5, (17) and (18)]. The
first index in θi� refers to the mode of the wave, and the second to its place in a
sequence of all incident and (multiply) reflected waves (see [15, Appendix D]).

Let us now again follow the above authors and introduce the decomposition

Ψ±
i (ω) = Ψ̂±

i (ω) + Ψ̃±
i (ω),(3.15)

where the unknown Ψ̃±
i (ω) is regular in the strip Re ω ε I, and the known Ψ̂±

i is

Ψ̂±
i (ω) =

∑
�

Res (Ψ±
i ; θi�)σ(ω − θi�), Re θi� ε I.(3.16)

Above, an otherwise arbitrary function σ(ω) should be chosen to be analytic every-
where inside the strip Re ω ε I, except for a simple pole at zero, where it has the
residue 1. The weakest restriction we can impose on behavior of σ(ω) at the imagi-
nary infinity is that it grows more slowly than exp(| Im ω|π/2α). Instead, we impose
a stronger restriction—that it behaves as the amplitudes in (2.7). If σ(ω) possesses

singularities which lie outside the strip Re ω ε I, the functions Ψ̂±
i (ω) contain extra

poles which describe waves that are outgoing at physical reflection angles but have
nonphysical amplitudes. This causes no complication, since the corresponding singu-
lar terms in Ψ̂±

i (ω) and Ψ̃±
i (ω) mutually cancel.
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Next we substitute decomposition (3.15) into the functional equations (3.5) and
then (3.12) to obtain the following inhomogeneous systems of equations for the regular
components of the Sommerfeld amplitudes:{

Ψ̃+
0 [g(ω) + α] + Ψ̃+

0 [g(ω) − α]
}

+ B
[
Ψ̃+

1 (ω + α) + Ψ̃+
1 (ω − α)

]
= R+

1 + c+1 S1,

A
{

Ψ̃+
0 [g(ω) + α] − Ψ̃+

0 [g(ω) − α]
}

+
[
Ψ̃+

1 (ω + α) − Ψ̃+
1 (ω − α)

]
= R+

2 + c+1 tanαS2,

(3.17)

and

A
{

Ψ̃−
0 [g(ω) + α] + Ψ̃−

0 [g(ω) − α]
}

+
[
Ψ̃−

1 (ω + α) + Ψ̃−
1 (ω − α)

]
= R−

2 + c−1 S2,{
Ψ̃−

0 [g(ω) + α] − Ψ̃−
0 [g(ω) − α]

}
+ B

[
Ψ̃−

1 (ω + α) − Ψ̃−
1 (ω − α)

]
= R−

1 − c−1 tanαS1,

(3.18)

where we use the notation

A =
t21(ω)

t22(ω)
= − tan 2ω, B =

t12(ω)

t11(ω)
=

2cos ω
√

γ2 − cos2ω

cos 2ω
,

R±
1 = −

{
Ψ̂+

0 [g(ω) ± α] ± Ψ̂±
0 [g(ω) − α]

}
−B

[
Ψ̂±

1 (ω + α) ± Ψ̂±
1 (ω − α)

]
,

R±
2 = −A

{
Ψ̂±

0 [g(ω) + α] ∓ Ψ̂±
0 [g(ω) − α]

}
−
[
Ψ±

1 (ω + α) ∓ Ψ̂±
1 (ω − α)

]
,

S1 =

√
γ2 − cos2 ω

cos 2ω
, S2 =

sin ω

cos 2ω
.(3.19)

To summarize, following Budaev and Bogy, the original problem can be reformu-
lated as the following boundary value problem in the theory of analytic functions:
Seek constants c±1 and functions Ψ̃±

i (ω) such that

1. Ψ̃±
i (ω) are analytic for Re ω ε I and satisfy the asymptotic estimate (2.7);

2. the values that Ψ̃±
i (ω) take on the boundaries of the strip Re ω ε I are linked

by (3.17) and (3.18) (that is, we solve these equations for Re ω = π/2).
The above considerations and the properties of the Sommerfeld transform, which

are outlined in [15, Appendix A], show that such a pair exists if there exists a solution
of the original problem. The uniqueness of Ψ±

i (ω) is a more complicated issue, which
we address in section 5.

3.2. Singular integral equations. Budaev [4] has suggested exploiting the fact
that for all functions F (ω) satisfying the first of the above assumptions, the singular
integral transform

(3.20) (HF )(ω) =
1

2αi
V.P.

∫ π/2+i∞

π/2−i∞

F (ξ)dξ

sin [ π
2α (ξ − ω)]

, Re ω =
π

2
,

has the property

(3.21) H : F (ω + α) + F (ω − α) → F (ω + α) − F (ω − α), Re ω =
π

2
,

with V. P. standing for the Cauchy principal value. This means that on the vertical
line Re ω = π/2, the terms in the square brackets in (3.17) and (3.18) are related by
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H. The terms in the curly brackets are linked by a similar explicit transform,

(3.22) HF (ω) =
1

2αi
V.P.

∫ π/2+i∞

π/2−i∞

F (ξ)g′(ξ)dξ

sin { π
2α [g(ξ) − g(ω)]} , Re ω =

π

2
,

where g′(ξ) = dg/dξ. This suggests introducing new unknown functions

(3.23) X±(ω) = Ψ̃±
0 [g(ω)+α]+Ψ̃±

0 [g(ω)−α], Y ±(ω) = Ψ̃±
1 (ω+α)+Ψ̃±

1 (ω−α).

Note that the line Re ω = π/2 is of special significance, because the function g(ω)
maps it onto itself. We can now use (3.21) to transform (3.17) and (3.18) into the
system comprising algebraic equations and singular integral equations which hold on
the vertical line Re ω = π

2 . This is the crux of Budaev and Bogy’s approach.
Changing to the new independent real variable η, such that ω = π/2 + iη, the

symmetric problem becomes

x+(η) + b(η)y+(η) = r+
1 (η) − c+1

√
γ2 + sinh2 η

cosh 2η
,(3.24)

a(η)Hx+(η) + Hy+(η) = r+
2 (η) − c+1 tanα

cosh η

cosh 2η
,(3.25)

where we have

x±(η) = X±
(π

2
+ iη

)
, y±(η) = Y ±

(π
2

+ iη
)
.(3.26)

Standardizing notations and substituting (3.24) into (3.25), the problem transforms
to a final singular integral equation in two unknowns, a function y+(η) and a constant
c+1 ,

M+y+(η) = q+
0 (η) + c+1 q

+
1 (η), η − real,(3.27)

where M+ = H− aHb. Using the same approach, the antisymmetric problem trans-
forms to

a(η)x−(η) + y−(η) = r−2 (η) + c−1
cosh η

cosh 2η
,(3.28)

M−x−(η) = q−0 (η) + c−1 q
−
1 (η), η − real,(3.29)

where M− = H− bHa. The rest of the nomenclature can be found in Appendix A.

4. A new numerical schedule. Budaev and Bogy [5, 6, 9] have advanced
various implementations of the numerical schedule for computing Ψ±

i (ω), all of which
involve the following three steps:

1. evaluating y+(η) and x−(η) on the line η = 0 (Re ω = π/2) by solving the
singular integral equations (3.27) and (3.29), and then evaluating x+(η) and
y−(η) by solving the algebraic equations (3.24) and (3.28);

2. evaluating Ψ̃±
i (ω) in the strip Re ω ε I, using the convolution type transforms

(4.13) and (4.14) below, with the kernels singular on the boundary of this
strip;

3. continuing the computed Sommerfeld amplitudes Ψ±
i (ω) analytically to the

right of the strip Re ω ε I by using the functional equations (3.14). Recasting
these equations to effect the continuation to the left of Re ω ε I.

We have developed an alternative recipe for carrying out the first two steps.
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4.1. Solving singular integral equations in two unknowns on the line
η = 0 (Re ω = π/2). Let us consider the symmetric case first. Operator M+ is
not analytically invertible, but [5] suggest that (3.27) can be rewritten as

(4.1) (Hd + K)y+(η) = q+
0 (η) + c+1 q

+
1 (η),

where H is the singular operator introduced above, analytically invertible in the space
of bounded functions; K is a regular operator; and d(t) is an exponentially decreasing
function. Importantly, H has the property∫ ∞

−∞
Hf(η)dη = 0,(4.2)

and therefore its range consists of all L2(R) functions, with the zero integral, where
L2(R) is the space of all integrable functions of real variable. Budaev and Bogy [6]
state that they regularize (4.1) by applying H−1 to both its sides. They carry out
numerical evaluation of the resulting singular integral equation by using (4.2) as a
constraint, and calculate c1 and y(η) both at once. By contrast, below we argue
that the right-hand side of (4.1) belongs to the domain of H−1 for only one value of
c1, and we carry out the regularization by finding this value and thus arriving at a
singular integral equation in one unknown, y(η). At present, our schedule works only
for α < π/2.

We start by observing that (4.1) is solvable only if its right-hand side belongs to
the range of Hd + K. We cannot describe this range explicitly. However, it is clear
that (−Ky+ + q+

0 + c+1 q
+
1 )(η) should be in the range of H. It follows that we must

have ∫ ∞

−∞

[
(Ky+)(η) − q+

0 (η) − c+1 q
+
1 (η)

]
dη = 0.(4.3)

All our numerical experiments confirm that neither q+
0 (η) nor q+

1 (η) are in the range
of Hd+K—by producing the nonzero “solution defects” λ+

0 and λ+
1 defined by (4.11)

below. Therefore, (4.1) is solvable only if the right-hand side of (4.1) is in the range.
This gives the following relationship between c+1 and y+(η):

(4.4) c+1 =

∫ ∞

−∞

[
(Ky+)(η) − q+

0 (η)
]
dη

[∫ ∞

−∞
q+
1 (η) dη

]−1

.

By substituting (4.4) into (4.1), c+1 is eliminated and we obtain

(4.5) (Hd + Pq+
1
K)y+(η) = Pq+

1
q+
0 ,

where an unbounded projector

(4.6) (Pq+
1
u)(η) = u(η) − q+

1 (η)

∫ ∞

−∞
u(t) dt

[∫ ∞

−∞
q+
1 (t) dt

]−1

maps any function in L2(R) with a finite integral into the range of H and has the
property

Pqu(η) =

{
u(η) for all u(η) such that

∫∞
−∞u(t) dt = 0,

0 for u(η) = q(η).
(4.7)

We refer to the function q(η) as the projector kernel.



244 KAMOTSKI, FRADKIN, SAMOKISH, BOROVIKOV, AND BABICH

Note that in (4.5), the integrals of both Pq+
1
Ky+(η) and Pq+

1
q+
0 (η) are zero,

and therefore the inverse operator H−1 can now be safely applied to both sides.
Introducing on top of that a new unknown function ỹ+(η) = d1/2(η)y+(η), the final
regularized integral equation is

(4.8) ỹ+(η) + L̃+ỹ+(η) = q̃+(η),

where L̃+ = d−1/2H−1Pq+
1
Kd−1/2, an operator with a smooth kernel, and q̃+(η) =

d−1/2(η)H−1Pq+
1
q+
0 (η). The equation involves one unknown, ỹ+(η), and can be solved

using a standard quadrature method (see, e.g., [1]). Note that normalizing the original
unknown by d1/2(η) rather than d(η) leads to a new operator with a bounded kernel
(cf. [5]). The normalization achieves symmetrization of the kernel, so that whether
η → ∞ or t → ∞, it exhibits the same singular behavior.

Equations (4.4) and (4.5) imply (4.1). This means that the combination of c+1
and a solution of (4.5) gives us the solution of (4.1). However, in our code instead
of solving (4.8), we implement a slightly different approach: Since q+

1 (η) is rather
complex, instead of Pq+

1
we employ the projector Pq2 , with the kernel

(4.9) q2(η) =
1

2α

1

cosh π
2αη

.

Numerical experiments have shown that this kernel leads to a stable evaluation
scheme. We then regularize and solve two equations

(Hd + Pq2K)y+
i (η) = Pq2q

+
i (η), i = 0, 1(4.10)

(see Appendix C). The “solution defects”

λ+
i =

∫ ∞

−∞

[
(Ky+

i )(t) − q+
i (t)

]
dt, i = 0, 1,(4.11)

turn out to be nonzero, indicating that neither q+
0 (η) nor q+

1 (η) is in the range of
Hd + K. It follows that the solution (y+(η), c+1 ) of (3.27) can be obtained using

c+1 = −λ0

λ1
, y+(η) = y+

0 (η) + c+1 y
+
1 (η).(4.12)

The antisymmetric problem can be treated in a similar manner (see Appendix C).

4.2. Evaluating Ψ̃±
i (ω) in the strip Re ω ε I. As already mentioned above,

according to [5], evaluation of Ψ̃±
i (ω) in the strip Re ω ε I can be carried out by using

the singular convolution-type integrals,

Ψ±
0 (ω) =

1

4αi
V.P.

∫ ∞

−∞

f±
0 (η)

cos π
2α (π2 − ω + iχ(η))

dη,(4.13)

with f+
0 (η) = y+(η) tanh 2η − ic+1 cosh η/cosh 2η + ir+

1 (η)χ′(η), f−
0 (η) = ix−(η)χ′(η),

χ′(η) = dχ/dη, and

Ψ̃±
1 (ω) = ± 1

4αi
V.P.

∫ ∞

−∞

f±
1 (η) dη

cos π
2α (π2 − ω + iη)

,(4.14)

with f+
1 (η) = iy+(η) and f−

1 (η) = x−(η) tanh 2η − ic−1 cosh η/cosh 2η − ir−1 (η).
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If—as is the case for the Sommerfeld amplitudes of the solution of the original
problem—as Im ω → ±∞, the leading terms in (B.7) are O(exp(±ipω)), with Re p >
0, then for α < π, −Re p− π/2α < 0, and therefore the above integrals converge.

We start with the integral of the type (4.14). Its generic form is

V.P.

∫ ∞

−∞

f(η)

cos π
2α (ξ + iη)

dη, |Re ξ| ≤ α,(4.15)

where the new complex variable is ξ = π/2 − ω. When |Re ξ| < α, the integral
(4.15) can be approximated using the trapezoidal rule. The approximation error is of
order O [exp (−2πσ/h)], with h—the distance between the nodes of a uniform mesh
and σ(ω)—the half width of the strip that is centered on the real line and inside
which the integrand is regular. In our case, σ ≤ min{α − Re ξ, α + Re ξ}, and as
Re ξ → α, the accuracy of the trapezoidal rule deteriorates. Therefore, a more robust
quadrature formula is required, with accuracy depending on the function f(η) and
not on parameter ξ. One such formula may be obtained with a modified sinc function,

ωh(η) =
h

2α

sin π
hη

sinh π
2αη

.(4.16)

Note that we have

ωh(nh) =

{
1, n = 0,
0, n 	= 0,

(4.17)

and

f(η) ≈
∞∑

n=−∞
f(nh)ωh(η − nh),(4.18)

where the sum on the right-hand side interpolates f(η). Therefore, the integral (4.15)
may be approximated by

V.P.

∫ ∞

−∞

f(η)

cos π
2α (ξ + iη)

dη ≈
∞∑
−∞

An(ξ)f(nh),(4.19)

with the coefficients given by

An(ξ) = V.P.

∫ ∞

−∞

ωh(η − nh)

cos π
2α (ξ + iη)

dη.(4.20)

These can be evaluated approximately by introducing new variables η̌ = η − nh and
ξ̌ = ξ + inh. Then (4.20) can be rewritten as

An(ξ) =
h

2α
V.P.

∫ ∞

−∞

sin π
h η̌

sinh π
2α η̌

dη̌

cos π
2α (ξ̌ + iη̌)

=
h

4αi
V.P.

∫ ∞

−∞

e
π
h η̌i

sinh π
2α η̌

dη̌

cos π
2α (ξ̌ + iη̌)

− h

4αi
V.P.

∫ ∞

−∞

e−
π
h η̌i

sinh π
2α η̌

dη̌

cos π
2α (ξ̌ + iη̌)

.(4.21)

In the upper (lower) half plane, where we can utilize the Jordan lemma to evaluate the
first (second) integral, each of the respective integrands possesses two sets of poles,
zeros of sinhπη̌/2α, η̌ = ±2αmi, m = 0, 1, 2 . . . , with the respective residues

±2α

π

e−
2απ
h m

cos π
2α ξ̌

,(4.22)
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and zeros of cos (π(ξ̌ + iη̌)/(2α)), η̌ = i[ξ̌ ± α(2m + 1)], with the respective residues

∓2α

π

e
π
h [∓ξ̌−α(2m+1)]

cos π
2α ξ̌

.(4.23)

It is clear that a significant contribution to (4.21) is made only by the poles, η̌ = 0
and η̌ = i[ξ̌ ± α] (in the upper and lower half plane, respectively); other residues
contain small exponential factors. Therefore, applying the Cauchy residue theorem
and taking into account that the first pole lies on the contour of integration, we have

h

4αi
V.P.

∫ ∞

−∞

e±
π
h η̌i

sinh π
2α η̌

dη̌

cos π
2α (ξ̌ + iη̌)

≈ ± h

cos π
2α ξ̌

(
1

2
− e−

πα
h ∓π

h ξ̌

)
,(4.24)

which—returning to the original variables ξ and η—gives us a new quadrature formula

V.P.

∫ ∞

−∞

f(η)

cos π
2α (ξ + iη)

dη ≈ h
∞∑

n=−∞

1

cos π
2α (ξ + inh)

[
1 − 2(−1)ne−

π
hα cosh

π

h
ξ

]
f(nh),

|Re ξ| < α.(4.25)

Let us now consider the integrals of the type (4.13). Their generic form is

V.P.

∫ ∞

−∞

f(η)

cos π
2α [ξ + iχ(η)]

dη, |Re ξ| < α,(4.26)

where χ(η) is a smooth monotone function. We could change the integration variable
η to χ(η), reduce (4.26) to the integral of type (4.15), and evaluate the result using a
uniform mesh in χ. However, both integrals (4.15) and (4.26) involve the solution of
(3.27), and therefore it is more reasonable to evaluate both integrals using the same
mesh. Then following the same reasoning as above, (4.26) may be approximated by

V.P.

∫ ∞

−∞

f(η)

cos π
2α [ξ + iχ(η)]

dη ≈
∞∑
−∞

Bn(ξ)f(nh),(4.27)

where the coefficients are given by

Bn(ξ) = V.P.

∫ ∞

−∞

ωh(η − nh)

cos π
2α [ξ + iχ(η)]

dη,(4.28)

and the main contributions to (4.28) are made by the zero η̌ = 0 (η = nh) of the
hyperbolic sine in ωh and the zero η̌ = ia±−nh (η = ia±) of the cosine-function, where
ξ + iχ(ia±) = ∓α. The latter equation implies that iχ(ia±) = −sin−1(γ−1sin a±) =
∓α− ξ, and therefore we have

a± = sin−1
[
γ sin (ξ ± α)

]
,(4.29)

with Re a+ > 0 and Re a− < 0. Applying to (4.28) the Cauchy residue theorem and
noting that the pole η̌ = 0 lies on the contour of integration, we obtain

h

4αi
V.P.

∫ ∞

−∞

e±
π
h η̌i

sinh π
2α η̌

dη̌

cos π
2α [ξ + iχ(η̌ + nh)]

≈ h

{
± 1

2cos π
2α [ξ + iχ(nh)]

∓ e∓
π
h (a±+inh)

χ′(a±)sin π
2α (a± + inh)

}
,(4.30)
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where χ′(a±) = cos a±/
√
γ2 − sin 2a±. Returning to the original variable η, the

resulting quadrature formula is

V.P.

∫ ∞

−∞

f(η)

cos π
2α [ξ + iχ(η)]

dη ≈ h
∞∑

n=−∞

{
1

cos π
2α [ξ + iχ(nh)]

− (−1)n
[

e−
π
ha+

χ′(a+)sin π
2α (a+ + inh)

+
e

π
ha−

χ′(a−)sin π
2α (a− + inh)

]}
f(nh),

|Re ξ| < α.(4.31)

The first terms on the right of both (4.25) and (4.31) effect the trapezoidal rule, and
the second give a correction. When Re ξ ≤ α − 10−6, Ψ±

i (ω) can be approximated
as [Ψ±

i (ω − 0.05) + Ψ±
i (ω + 0.05)]/2.

5. Code testing. Using the above considerations, we have developed a new code
for evaluating the Rayleigh reflection and transmission coefficients for elastic wedges
(see Appendix E). The integral equations we solve have the form of the Fredholm
equations of the second kind, but it can be shown that the operators involved are not
Fredholm (cf. the statements in [5, p. 251]. We possess no analytical proof that these
equations can be solved uniquely. Nevertheless, our code produces a solution, and
below we describe verification tests that allow us to state with confidence that when
transformed back to the physical space this solution satisfies the original diffraction
problem. We also describe successful validation tests, comparing output of our code
with published numerical and experimental data. Of course, the positive outcomes of
these tests do not constitute a theoretical proof that the code is correct. Note that
throughout this section we characterize materials by their Poisson ratios ν, where
γ =

√
(1 − 2ν)/[2(1 − ν)].

5.1. Code verification. We have designed verification tests to establish that
the computed functions Ψi(ω) are the solutions of the original physical problem; in
particular, that they

(i) are bounded at imaginary infinity;
(ii) are analytic at the boundary of the strip Re ω ε I;
(iii) possess only physically meaningful singularities.
The property (i) is confirmed by direct examination of the computed functions

x̃−(η) and ỹ+(η) divided by exp(−|η|). At large |η| the ratios appear to behave as
O(1). It follows that the amplitudes Ψi(ω) obtained by the analytical continuation
must be bounded at the imaginary infinity, η = Im ω → ∞.

Since the last step in the analytical continuation is carried out strip-by-strip, all
2α wide, there is no guarantee that any computed Ψi(ω) should be smooth at the
boundaries of the initial strip Re ω ε I. However, examination of the numerical data
used to plot Figures 5.1–5.3 confirm that our approximations are smooth. It follows
that the property (ii) is satisfied. Interestingly, when attempting to solve an incorrect
problem, with the constants c±1 put to zero, the computed Ψi(ω) themselves jump at
the boundaries by about 10−2.

Similarly to (ii), the property (iii) should be satisfied by the Sommerfeld ampli-
tudes of the solutions of the original wedge diffraction problem, but it is not obvious
that the computed solutions of the corresponding functional equations should satisfy
it as well. Indeed, the way they are constructed assures that the computed amplitudes
Ψi(ω) have physically meaningful poles, and since the functional equations that are
used to effect the analytical continuation involve reflection coefficients rjk(ω), with
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Fig. 5.1. The computed Sommerfeld amplitudes: (a) Re Ψ0(ω)—dashed line and Im Ψ0(ω)—
solid line, (b) Re Ψ1(ω)—dashed line and Im Ψ1(ω)—solid line. Wedge angle 2α = 70◦, I =
[0.96, 2.18], Poisson’s ratio ν = 0.25, incident wave—compressional and θinc = 0◦.
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Fig. 5.2. The computed Sommerfoeld amplitudes: (a) Re Ψ0(ω)—dashed line and Im Ψ0(ω)—
solid line, (b) Re Ψ1(ω)—dashed line and Im Ψ1(ω)—solid line. Wedge angle 2α = 70◦, I =
[0.96, 2.18], Poisson’s ratio ν = 0.25, incident wave—shear and θinc = 0◦.
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Fig. 5.3. The computed Sommerfeld amplitudes: (a) Re Ψ0(ω)—dashed line and Im Ψ0(ω)—
solid line, (b) Re Ψ1(ω)—dashed line and Im Ψ1(ω)—solid line. Wedge angle 2α = 70◦, I =
[0.96, 2.18], Poisson’s ratio ν = 0.25, incident wave—Rayleigh and Re θinc = −α.

the branch point at ω = θh and poles at ω = ±iβR (see (3.14) and Appendix A),
they possess physically meaningful branch points and Rayleigh poles too. However,
by the same token, the analytical continuation scheme might endow these amplitudes
with extra, physically meaningless singularities. Remarkably, when the incident wave
is compressional or shear at ω = −α ± iβR all our computed residues are of order
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10−7, i.e., are numerical zeros. Thus, the computed Sommerfeld amplitudes possess
no Rayleigh poles corresponding to physically meaningless Rayleigh waves incoming
from infinity. Furthermore, Figures 5.1–5.2, which respectively relate to a purely
symmetric and purely asymmetric case, confirm that inside a neighborhood of zero
which includes the strip Re ω ε I, the computed Sommerfeld amplitudes possess the
symmetries described in (3.1); that is, Ψ+

0 (ω) and Ψ−
1 (ω) are odd, while Ψ+

1 (ω) and
Ψ−

0 (ω) are even. (Outside this neighborhood, the symmetries are not apparent in Fig-
ures 5.1– 5.3 due to the accumulation of numerical errors.) As we show in Appendix
D, such symmetries imply the absence of physically meaningless branch points.

The properties (i), (ii), and (iii) of the computed Sommerfeld amplitudes re-
spectively imply that they possess all the properties expected of the Sommerfeld
amplitudes of the solutions ψi(kr, θ) of the original diffraction problem, so that their
corresponding Sommerfeld integrals satisfy (i) the Helmholtz equations and correct tip
condition; (ii) zero stress boundary conditions; and (iii) radiation conditions (which
exclude nonphysical Rayleigh or head waves incoming from infinity).

Figure 5.1 provides one more confirmation that the computed functions Ψi(ω) are
the Sommerfeld amplitudes of solutions ψi(kr, θ) of the original wedge problem: It
shows that for the symmetric compressional wave incidence, both Ψi(ω) are imaginary,
and therefore the corresponding displacements are real. This is consistent with the
physics of the problem, since unlike with the symmetric shear wave incidence, there
is no total internal reflection, that is, no imaginary displacement component.

Finally, a numerical stability of the scheme is ascertained by the fact that different
choices of adjustable function σ(ω) in (3.16) all give similar results (see Appendix F).

5.2. Code validation. Our first validation results are presented in Tables 5.1
and 5.2, where the approximate values of amplitudes and phases of reflection and
transmission coefficients Rref and Rtran as computed with our code are compared
with numerical results of [11]. Each Fujii’s column contains values corresponding to
different choices of an adjustable parameter. The parameter allows one to evaluate
singular integrals on the real axis by moving the poles away from the axis into the
complex plane. This is equivalent to employing the radiation condition at infinity in
the form of the limiting absorption principle. From the physical point of view, the
singularities cannot be moved too far. However, when they are too close the evaluation
algorithm becomes numerically unstable. The top rows in the tables are obtained with

Table 5.1

Rayleigh reflection coefficients computed with our code and Fujii’s (see [11]); ν = 0.25.

Wedge |Rref | arg Rref

Angle Fujii This paper Fujii This paper

0.50552 −169.87◦

50◦ 0.49924 −169.54◦

0.49278 0.47427 −169.07◦ −161.4◦

0.05257 170.53◦

0.05252 170.14◦

150◦ 0.05236 0.05197 169.85◦ 170.5◦

0.05217 169.65◦

0.05196 169.53◦

0.05151 169.43◦
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Table 5.2

Rayleigh transmission coefficients computed with our code and Fujii’s (see [11]); ν = 0.25.

Wedge |Rtran| arg Rtran

Angle Fujii This paper Fujii This paper

0.49123 −32.59◦

50◦ 0.48372 −32.84◦

0.47552 0.55189 −33.00◦ −26.9◦

0.78940 52.79◦

0.78899 52.80◦

150◦ 0.78866 0.78942 52.81◦ 52.9◦

0.78842 52.82◦

0.78825 52.84◦

0.78800 52.86◦

the parameter values that correspond to a more physically meaningful situation, and
the bottom ones, with the values that give better numerical stability. The tables
demonstrate that for the larger wedge angles the agreement with our computations is
quite good, but for the smaller ones our values lie outside Fujii’s range. This is not
surprising, because when the wedge angles are small there are many multiply reflected
waves, and the residues of many resulting poles are large. For this reason, when the
wedge angles are small, the present version of our code loses its numerical stability.

To continue, in Figure 5.4(a) and (b) we present our Rayleigh reflection and
transmission coefficients as functions of the wedge angle, computed for ν = 0.234.
They fit Fujii’s numerical and experimental data extremely well (see our Figure 5.5 or
[11, Figure 7]. Note that on Fujii’s plots the solid lines represent his numerical results,
and discrete points, his experimental data.) Indeed, for the wedge angles between 45◦

and 150◦ we cannot put the results on the same graph—there is no visible difference.
Note that the jumps in the phase of the reflection coefficient that take place at the
wedge angles of about 45◦ and 145◦ are from 180◦ to −180◦ and −180◦ to 180◦,
respectively, and therefore no jumps in physical quantities take place. For the wedge
angles between 150◦ and 180◦ the reflection coefficients are practically zero. This is
understandable, because when the wedge angle is 180◦ there is no reflection. In this
region, the phases of our reflection coefficients differ from Fujii’s, but the limiting
value of 90◦ agrees with the one obtained by [13]. It appears that in this region Fujii’s
scheme loses its stability.

The amplitude curves reported by Budaev and Bogy [8] are the same as ours (see
their Figure 6 and our Figure 5.4(a)), but for the larger wedge angles, the phase of their
reflection coefficient is somewhat different—see Figure 5.4(b). The discrepancy might
not be crucial, because at these angles the amplitudes of the reflection coefficients
are very small, but the problem is indicative of numerical instability. Note that the
results on the wedge angles greater than 180◦ as presented by [6] are incorrect—see
their errata [9]. Note too that even though Poisson’s ratio used by Budaev and Bogy
[8] is ν = 0.294, the above comparison is valid: The coefficients should not be effected
by a small difference in ν (see, e.g., Figure 5.6.)

We finish this section by comparing our computed Rayleigh reflection and trans-
mission coefficients for the quarter space with Gautesen’s [13]. On taking into account
that Gautesen’s coefficients are complex conjugates of ours and thus our phases must
have the opposite sign, the agreement between the calculations is very good (see
Figure 5.6).
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(a) (b)

Fig. 5.4. Rayleigh transmission coefficients (solid line) and reflection coefficients (dashed line)
computed with our code versus the coefficients computed with Budaev and Bogy’s code (squares
and circles, respectively—see Budaev and Bogy [8], Figure 6). Poisson’s ratio ν = 0.234, incident
wave—Rayleigh and Re θinc = −α.

(a) (b)

Fig. 5.5. The Fujii’ computed (solid line) and experimental (dots) transmission and reflection
coefficients: (a) amplitudes, (b) phases. Poisson’s ratio ν = 0.234, incident wave–Rayleigh and
Re θinc = −α. Reproduced from Figure 7 in [11].
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Fig. 5.6. Rayleigh transmission coefficients (solid line and squares) and reflection coefficients
(dashed line and circles) computed respectively with our code and Gautesen’s code (see [13, Figures 3
and 4]): (a) amplitudes, (b) phases. Wedge angle 90◦, incident wave—Rayleigh and Re θinc = −α.

6. Conclusions. We have studied the properties of the underlying integral oper-
ators and developed a new numerical schedule for solving the singular integral problem
that arises in Budaev and Bogy’s approach to diffraction by 2D traction-free isotropic
elastic wedges. We have also developed new quadrature formulas for evaluating the
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singular convolution-type integrals that are utilized in this approach. Although the
analytical justification of the method is not entirely rigorous, the code has under-
gone a series of stringent internal verification tests directed at establishing that it
solves the original physical problem, as well as validation tests against numerical and
experimental results reported by other authors. It appears to be successful when
simulating diffraction by wedges of angles between 40◦ and 178◦ of plane incident
waves, compressional or shear. When the incident wave is a Rayleigh, the lower limit
of applicability goes up to 45◦.

Appendix A. Nomenclature.

a(η) = −i tanh 2η,

b(η) =
2i sinh η

√
γ2 + sinh2 η

cosh 2η
,

d(η) = 1 − tanh2 2η

χ′(η)
,

e+
1 (ω) = − tanα sin 2ω + cos 2ω,

e−1 (ω) = tanα cos 2ω + sin 2ω,

e+
2 (ω) = tanα cos 2ω

sin ω√
γ2 − cos2 ω

+ sin 2ω,

e−2 (ω) = tanα sin 2ω − cos 2ω
sin ω√

γ2 − cos2 ω
,

g(ω) = cos−1(γ−1cos ω),

Hf(η) =
1

2αi
V.P.

∫ ∞

−∞

f(t)dt

sinh[ π
2α (t− η)]

,

(H−1f)(η) =
1

2αi
V.P.

∫ ∞

−∞
coth

π

2α
(t− η)f(t) dt,

Hf(η) =
1

2αi
V.P.

∫ ∞

−∞

f(t)χ′(t)dt

sinh π
2α [χ(t) − χ(η)]

,

Kf(η) =
1

2αi

∫ ∞

−∞

{
tanh2 2t

χ′(t) sinh π
2α (t− η)

− tanh 2t tanh 2η

sinh π
2α [χ(t) − χ(η)]

}
f(t) dt,

q+
0 (η) = r+

2 (η) − a(η)Hr+
1 (η),

q+
1 (η) = − tanα

cosh η

cosh 2η
− tanh 2η

2α
V.P.

∫ ∞

−∞

γ cosh τdτ

(1 + 2γ2 sinh2 τ) sinh π
2α [τ − χ(η)]

,

q−0 (η) = r−1 (η) − b(η)Hr−2 (η),

q−1 (η) = − tanα
cosh η

χ′(η) cosh 2η
− tanh 2η

2αχ′(η)
V.P.

∫ ∞

−∞

cosh τ dτ

cosh 2τ sinh π
2α (τ − η)

,

r±1 (η) = −
[
Ψ̂±

0

(
g
(π

2
+ iη

)
+ α

)
± Ψ̂±

0

(
g
(π

2
+ iη

)
− α

)]
− b(η)

[
Ψ̂±

1

(π
2

+ α + iη
)
± Ψ̂±

1

(π
2
− α + iη

)]
,

r±2 (η) = −a(η)
[
Ψ̂±

0

(
g
(π

2
+ iη

)
+ α

)
∓ Ψ̂±

0

(
g
(π

2
+ iη

)
− α

)]
−

[
Ψ̂±

1

(π
2

+ α + iη
)
∓ Ψ̂±

1

(π
2
− α + iη

)]
,
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r11(ω) = −r22(ω) =
2sin 2ω cos ω

√
γ2 − cos2 ω − cos2 2ω

Δ(ω)
,

r12(ω) = −4cos 2ω cos ω
√

γ2 − cos2 ω

Δ(ω)
,

r21(ω) = −2sin 2ω cos 2ω

Δ(ω)
,

Δ(ω) = cos2 2ω + 2 sin 2ω cos ω
√
γ2 − cos2 ω,

χ(η) = sinh−1(γ−1 sinh(η)),

χ′(η) =
cosh η√

γ2 + sinh2 η
.

Note that the Rayleigh function Δ(ω) has the purely imaginary root iβR, with βR > 0.

Appendix B. The tip asymptotics of the elastic potentials and asymp-
totics of the Sommerfeld amplitudes at infinity. The behavior of solutions of
the elliptic problems in regions with piecewise smooth boundaries has been studied
by many authors (see [21] and references therein). A rigorous theory has been devel-
oped after a breakthrough by Kondrat’ev [13], who constructed and justified the field
asymptotics in the vicinity of conical and edge points. The theory implies that the
solution of the underlying Lamé problem must have the asymptotic expansion

(B.1) u(kr, θ) ∼
∞∑

�,m=0

(kr)qm+2�
Nm−1∑
n=0

u�,m,n(θ) (ln kr)n, kr → 0,

where for one m, qm = 0 and Nm = 1 (otherwise, the tip conditions are violated);
for any other m, Re qm > 0 and qm is a root of a transcendental equation, with a
natural number Nm being its multiplicity.

The asymptotic expansions (B.1) can be differentiated and substituted into the
boundary conditions. Therefore, using (2.4), similar expansions may be written for
the elastodynamic potentials ψ±

i (kr, θ) as

ψ±
i (kr, θ) ∼

∞∑
�,m=0

(kr)p
±
m+2�

N±
m−1∑
n=0

ψ±
i,�,m,n(θ)(ln kr)n, kr → 0.(B.2)

Let us arrange the sets of exponents {p+
m, m = 0, 1, . . . } and {p−m, m = 0, 1, . . . },

each in order of the increasing real part. Following [19], these sets may be described
as follows: Each contains 1, while any other element is a root of the transcendental
equation

(B.3) (p± + 1) sin 2α± sin 2α(p± + 1) = 0

and satisfies condition

(B.4) Re p± > −1

(otherwise, the tip conditions are violated). Note that if in (B.1) a qm 	= 0, then in
(B.2) the corresponding p+

m or p−m equals qm − 1, but applying the nabla operator
to the term with qm = 0 and � = 0 always gives us zero—because the corresponding
Nm = 1. Thus, for qm = 0, only the next, r2, term in (B.1) gives rise to a nonzero term
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in (B.2). The corresponding p±m = 1. Note that while for any wedge angle there exists
an m such that p−m = 0 is a solution of (B.3), in our range of wedge angles 2α ∈ (0, π),
all p+

m differ from zero. The full set of solutions of the transcendental equations (B.3)
is described in [19]. The main facts can be summarized in plots representing roots of
the transcendental equations as functions of the wedge angle 2α (see, e.g., [22]). The
analysis of these plots shows that in our range of wedge angles, the tip conditions
are assured for those nonnegative exponents with minimal real part that are either
1 or else are solutions of the corresponding transcendental equations, with real part
less than or equal to 1. In other words, all leading exponents in (B.1), that is, the
exponents with the minimal real part, lie in the strip

0 ≤ Re p±0 ≤ 1.(B.5)

The root loci in [22] also show that at one wedge angle, 2α∗ ≈ 0.8π, we have a
degeneracy: In the corresponding symmetric problem, the exponent with the minimal
real part, p+

∗ ≈ 0.76, is a multiple root of the corresponding transcendental equation
(B.3). The corresponding multiplicity N+

∗ = 2. There are no multiple roots p−0 which
have the minimal real part and simultaneously satisfy (B.5). It follows that for α∗,
the leading terms in (B.1) are

ψ+
i,0,1,1(kr)

p+
∗ ln kr = O

(
(kr)p

)
, 0 < p < p+

∗ .(B.6)

The behavior of potentials ψ±
i (kr, θ) in the vicinity of the wedge tip dictates the

asymptotic behavior of the Sommerfeld amplitudes Ψ±
i (ω) at infinity: For example,

it is easy to check that for any small ε > 0, as Im ω → ∞, Ψ±
i (ω) have expansions

Ψ±
i (ω) ∼

∑
0≤Re p±

m≤1

Ψ±
imeip±

mω + O(ei(1+ε)ω), α 	= α∗, 0 < α <
π

2
,

Ψ+
i (ω) ∼ Ψi∗ωeip+

∗ ω + Ψi∗e
ip+

∗ ω + Ψi1e
iω + O(ei(2+ε)ω), α = α∗.(B.7)

Note that in the symmetric case, the expansions contain no constant terms (so that the
leading exponents are 1 and possibly a solution of (B.3), with the real part in (0, 1)),
but these may be present in the antisymmetric case (so that the leading exponents
there are 0 and 1).

Appendix C. The integral equations for one unknown.
Symmetric problem. The two final regularized integral equations to solve are

ỹ+
i (η) + L̃+ỹ+

i (η) = q̃+
i (η), i = 0, 1,(C.1)

where L̃+ is an operator with a smooth kernel

(L̃+u)(η)= − 1

4α2

∫ ∞

−∞

l+(η, t) tanh 2t√
d(t)

√
d(η) cosh π

2αη
u(t) dt,(C.2)

with

l+(η, t) = V.P.

∫ ∞

−∞

cosh π
2ατ

sinh π
2α (τ − η)

{
tanh 2t

χ′(t) sinh π
2α (t− τ)

− tanh 2τ

sinh π
2α [χ(t) − χ(τ)]

}
dτ.

The respective right-hand sides of (C.1) are given by

q̃+
i (η) =

1

2αi
√
d(η) cosh π

2αη
V.P.

∫ ∞

−∞

cosh π
2α t

sinh π
2α (t− η)

q+
i (t) dt,(C.3)
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with q+
i (η) given in Appendix A. On solving (C.1), y+(η) is obtained using

(C.4) y+(η) = d−1/2(η)[ỹ+
0 (η) + c+1 ỹ

+
1 (η)],

where c+1 = −λ+
0 /λ

+
1 and we have

λ+
i =

∫ ∞

−∞

[
ỹ+
i (t)d−1/2(t)(B+

I)(t) − q+
i (t)

]
dt, , i = 0, 1,

(B+
I)(t) =

γ2 tanh 2t

2αi

∫ ∞

−∞

sinh 2(χ(t) + τ)

1 + 2γ2 sinh2(τ + χ(t))
· dτ

sinh π
2ατ

.

Antisymmetric problem. Analogously to the symmetric case, the two final regu-
larized integral equations to solve are

x̃−
i (η) + L̃−x̃−

i (η) = q̃−i (η), i = 0, 1,(C.5)

where the integral operator is

(L̃−u)(η)= − 1

4α2

∫ ∞

−∞

l−(η, t) tanh 2t√
d(t)

√
d(η) cosh π

2αχ(η)
u(t) dt,(C.6)

with

l−(η, t) = −V.P.

∫ ∞

−∞

cosh π
2ατ

sinh π
2α [χ(η) − τ ]

{
tanh 2t

sinh π
2α (χ(t) − τ)

+
tanh 2χ−1(τ)(χ−1)′(τ)

sinh π
2α [χ−1(τ) − t]

}
dτ.

The respective right-hand sides of (C.5) are given by

q̃−i (η) =
1

2αi
√
d(η) cosh π

2αχ(η)
V.P.

∫ ∞

−∞

cosh π
2α t

sinh π
2α [t− χ(η)]

q−i (χ−1(t)) dt,(C.7)

with q−i (η) given in Appendix A. As above, x− is obtained on solving (C.5) using

x−(η) = d−1/2(η)[x̃−
0 (η) + c−1 x̃

−
1 (η)],(C.8)

where c−1 = −λ−
0 /λ

−
1 and we have

λ−
i =

∫ ∞

−∞

[
x̃−
i (t)d−1/2(t)(B−χ′)(t) − q−i (t)χ′(t)

]
dt, i = 0, 1,

(B−χ′)(t) =
tanh 2t

2αi

∫ ∞

−∞

tanh 2(t + τ) dτ

sinh π
2ατ

.

Appendix D. The branch points of Ψi(ω). Let us show that the Sommerfeld
amplitudes Ψ+

i (ω) that satisfy the functional equations (3.5) and conditions (3.1) can
have only physically meaningful branch points. For simplicity of presentation, let
us assume that θh < 2α (in the opposite case, a slightly more involved argument
still goes through.) Using the branch points of g(ω), the only branch points that
Ψ+

1 (ω) can have inside (2.8) are ±(π + α − θh). The corresponding branch cuts run
along the segments [−π − α − θh, − π − α + θh] and [π + α − θh, π + α + θh].
Note that the branch points ±(π + α + θh) lie outside the physical region (2.8). The
analogous branch points of Ψ+

0 (ω) can be only ±(π + α ± icosh−1(1/θh)), with the
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cuts along the segments [−π − α + icosh−1(1/θh), − π − α − icosh−1(1/θh)] and
[π + α + icosh−1(1/θh), π + α− icosh−1(1/θh)].

Indeed, all possible branch points of g(ω) are πn ± θh (see (3.7)). In principle,
applying (3.5), they could generate many branch points in Ψ+

1 (ω) which have no
physical interpretation. Let us start by showing that −α + θh is not a branch point:
Let us use the fact that Ψ+

0 (ω) is odd to rewrite the functional equation (3.5) as
(D.1)
t11(ω+α){Ψ+

0 [α+g(ω+α)]−Ψ+
0 [α−g(ω+α)]}+t12(ω+α)[Ψ+

1 (ω+2α)+Ψ+
1 (ω)] = Q+

1 ,

(D.2)
t21(ω+α){Ψ+

0 [α+g(ω+α)]+Ψ+
1 [α−g(ω+α)]}+t22(ω+α)[Ψ+

1 (ω+2α)−Ψ+
1 (ω)] = Q+

1 .

In the vicinity of θh, there exist the constants an such that we have

(D.3) g(ω + α) =

∞∑
n=0

an(ω + α− θh)n+1/2.

Since Ψ+
0 [α+ g(ω + α)]−Ψ+

0 [α− g(ω + α)] is odd in g, there also exist constants An

such that this function has the expansion

(D.4) Ψ+
0 [α + g(ω + α)] − Ψ+

0 [α− g(ω + α)] =

∞∑
n=0

An(ω + α− θh)n+1/2.

On the other hand, there exist constants bn such that we can write

(D.5) t11(ω + α) =

∞∑
n=0

bn(ω + α− θh)n−1/2.

Thus, the first term on the left-hand side of (D.1) contains no branch points. The
coefficient t12 has no branch points either. It follows that there are no branch points
in (D.1) at all.

Let us move on to (D.2). The function Ψ+
0 [α + g(ω + α)] + Ψ+

0 [α − g(ω + α)] is
an even function of g, and therefore there exist constants Bn such that we can write

(D.6) Ψ+
0 [α + g(ω + α)] + Ψ+

0 [α− g(ω + α)] =

∞∑
n=0

Bn(ω + α− θh)n.

Since the coefficients t21(ω) and t22(ω) have no branch points, there are no branch
points in (D.2). It follows that the point −α + θh, which does not have any physical
interpretation, is not a branch point of the function Ψ+

1 (ω). Similarly, it can be
shown that the points −α−θh and α±θh are not branch points of Ψ+

1 (ω). Analogous
considerations apply in the antisymmetric case.

We conclude that the branch points of the Sommerfeld amplitudes of the solution
of the original problem that lie in the physical region (2.8), and therefore give rise to
physical waves, lie outside the strip Re ω ε I. This means that they do not have to
be taken into account in the functional equations for Ψ̃±

i (ω) or, by the same token,
in the resulting singular integral problem. On the other hand, we have no theoretical
proof that the Ψ±

i (ω) that we eventually compute have only physical branch points
in the physical region (2.8). We can confirm this fact only by carrying out numerical
tests.
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Appendix E. The Rayleigh reflection and transmission coefficients.
When evaluating (2.5), a pole θinc

1R = α − iβR of Ψ1(ω), with βR > 0, corresponds
to a plane wave with the phase factor

eikrcos (θ−θinc
1R ) = eikrcos (θ−α) cosh βRe−krsin (α−θ) sinh βR ,(E.1)

so that its amplitude is exponentially small everywhere except for a small neighbor-
hood of the wedge face θ = α. Thus, we describe a Rayleigh wave incident from
infinity along the upper face θ = α by two potentials

ψinc
i (kr, θ) = 4πiψi0e

iγkrcos(θ−θinc
iR ),(E.2)

where ψ00 = 1 and ψ10 = −2iγR

√
γ2
R − γ2/(2γ2

R − 1); γR = cS/cR with cS being the

Rayleigh wave speed and θinc
0R = α− g(iβR). The reflected wave propagates along the

same wedge face as the incident but from the tip to infinity, and the transmitted prop-
agates along the other face, again away from the tip. They are described respectively
by

ψref
i (kr, θ) = 4πiRrefψi0e

−iγkrcos(θ−θsc
iR),

ψtran
i (kr, θ) = 4πiRtranψi0e

−iγkrcos(θ+θsc
iR),(E.3)

with “scattering angles” θsc
iR being the complex conjugates of θinc

iR , so that θsc
0R =

α+ g(iβR) and θsc
1R = α+ iβR. Above, Rref and Rtran are the Rayleigh reflection and

transmission coefficients

Rref =
1

2
[R+ref + R−ref], Rtran =

1

2
[R+ref −R−ref],(E.4)

with the symmetric and antisymmetric parts given respectively by

R±ref = Res[Ψ±
0 ; g(ωR) + α], with ωR = π + iβR,(E.5)

so that, using the additional angles θ0,R = −α+ g(ωR) and θ1,R = −α+ ωR, we have

R±ref = ±
2∑

k=1

r1k(ωR)Ψ±
k−1(θk−1,R) + c±1 e

±
1 (ωR)

g′(ωR)Δ(ωR)

Δ′(ωR)

√
γ2 − cos2ωR.

(E.6)

As before, the dash denotes the derivative with respect to the argument.

Appendix F. Adjustable functions and parameters in singular terms.
As with any other numerical code, ours relies on a choice of certain options which
effect a tradeoff between numerical accuracy and either running time or else numerical
stability. Apart from the relevant grids, these options are the following

(i) The adjustable function σ(ω) in (3.15). In most cases, σ(ω) is chosen to be

(F.1) σ(ω) =
π
2α

sin π
2αω

(cf. [5, (15)]). The choice is convenient, because it simplifies the right-hand
sides of our functional, and therefore integral, equations. Also, σ(ω) in (F.1)
decays at infinity reasonably fast. However, for any wedge angle 2α, there
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exists a critical incident angle θinc
0 such that one of the poles of Ψ±

i (ω) lies
on the boundary of the strip Re ω ε I. For illustration purposes, let it be
Ψ̂±

1 (ω), and let the pole be θ0 = π/2 − α. Then the corresponding term
Res (Ψ±

1 ; θ0)σ(ω − θ0) has one more nonphysical pole, θ0 + 2α. In situations
like these, another choice of σ(ω) is called for, with poles further apart. We
have tested

(F.2) σ(ω) =
β

sin βω
,

with various values β < π/(2α). However, any σ(ω) different from (F.1) leads
to more cumbersome right-hand sides of the integral equations and exhibits
a slower decay. As a result, the function (F.2), while increasing the stability
of the solution, increases the code run time roughly tenfold. For this reason,
we abandon (F.1) only when θinc is near critical angle. In this region we use
(F.2), with β = π/(6α).

(ii) Number of poles. When evaluating the poles of the Sommerfeld amplitudes
we do not have to restrict ourselves to the strip Re ω ε I. The more poles
that are utilized in evaluation, the wider the domain of analyticity of the
corresponding unknowns Ψ̃i(ω), and therefore the higher the accuracy. On
the other hand, some nonphysical poles possess residues with large amplitudes
and cause numerical instability. In the present version of the code, when θ
is away from the critical angle we take into account all poles in the strip
Re ω ε I, and when θ is near the critical angle we take into account all poles
in the wider strip Re ω ε [π/2 − 2α, π/2 + 2α].
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Abstract. In this paper we propose a malaria within-host model with k classes of age for the
parasitized red blood cells and n strains for the parasite. We provide a global analysis for this model.
A competitive exclusion principle holds. If R0, the basic reproduction number, satisfies R0 ≤ 1,
then the disease-free equilibrium is globally asymptotically stable. On the contrary if R0 > 1, then
generically there is a unique endemic equilibrium which corresponds to the endemic stabilization of
the most virulent parasite strain and to the extinction of all the other parasites strains. We prove
that this equilibrium is globally asymptotically stable on the positive orthant if a mild sufficient
condition is satisfied.
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1. Introduction. In this paper we consider intrahost models for malaria. These
models describe the interaction of a parasite, namely a protozoa Plasmodium falci-
parum, with its target cells, the red blood cells (RBC). During the past decade there
has been considerable work on the mathematical modeling of Plasmodium falciparum
infection [2, 14, 21, 22, 24, 23, 25, 28, 30, 52, 55, 56, 58, 64]. A review has been done
by Molineaux and Dietz in [59].

We give a brief review of the features of malaria. Malaria in a human begins
with an inoculum of Plasmodium parasites (sporozoites) from a female Anopheles
mosquito. The sporozoites enter the liver within minutes. After a period of asexual
reproduction in the liver the parasites (merozoites) are released in the bloodstream
where the asexual erythrocyte cycle begins. The merozoites enter RBC, grow, and re-
produce over a period of approximately 48 hours after which the erythrocyte ruptures
releasing 8–32 “merozoites” daughter parasites that quickly invade a fresh erythro-
cyte to renew the cycle. This blood cycle can be repeated many times, in the course
of which some of the merozoites instead develop in the sexual form of the parasites:
gametocytes. Gametocytes are benign for the host and are waiting for the mosquitoes.

The first mathematical model of the erythrocyte cycle was proposed by Anderson,
May, and Gupta [3]. This original model has been extended in different directions
[2, 3, 21, 25, 28, 30, 64].

The original model [3] is given by the following system:

(1.1)

⎧⎨
⎩

ẋ = Λ − μxx− βxm,
ẏ = βxm− μy y,
ṁ = r μy y − μm m− β xm.
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The state variables are denoted by x, y, and m. The variable x denotes the concen-
tration of uninfected RBC, y the concentration of parasitized red blood cells (PRBC),
and m the concentration of the free merozoites in the blood.

We briefly sketch the interpretation of the parameters. Parameters μx, μy, and
μm are the death rates of the RBC, PRBC, and free merozoites, respectively. The
parameter β is the contact rate between RBC and merozoites. Uninfected blood cells
are recruited at a constant rate Λ from the bone marrow and have a natural life-
expectancy of 1

μx
days. Death of a PRBC results in the release of an average number

of r merozoites. Free merozoites die or successfully invade a RBC.
This system is isomorphic to numerous systems considered in the mathematical

modeling of virus dynamics; see [60, 61, 62] and the references therein. Some authors
ignore the loss term −β xm that should appear in the m equation. Indeed without
this loss term, merozoites can infect RBC without themselves being absorbed, and
this allows one merozoite to infect more than one RBC.

The original and the derived malaria models were intended to explain observa-
tions, namely parasitaemia, i.e., the concentration y of PRBC and also the decrease of
the healthy RBC leading to anaemia. An important characteristic of Plasmodium fal-
ciparum, the most virulent malaria parasite, is sequestration. At the halfway point of
parasite development, the infected erythrocyte leaves the circulating peripheral blood
and binds to the endothelium in the microvasculature of various organs where the cy-
cle is completed. A measurement of Plasmodium falciparum parasitaemia taken from
a blood smear therefore samples young parasites only. Physician treating malaria use
the number of parasites in peripheral blood smears as a measure of infection, and
this does not give the total parasite burden of the patient. In some respects this is
a weak point of the model (1.1). Moreover antimalarial drugs are known to act pref-
erentially on different stages of parasite development. These facts lead some authors
to give a general approach to modeling the age structure of Plasmodium parasites
[22, 23, 24, 57]. Their model is a linear catenary compartmental model. This model is
based on a finite number of compartments, each representing a stage of development
of the parasite inside the PRBC. The models describe only the dynamics of the mor-
phological stage evolution of the parasites and make no allowance for the dynamics
of the healthy RBC.

In this paper we propose a model which combines the advantages of the two
approaches. We also consider this model with different strains for the parasites. To
encompass the different models of the literature we allow, in this model, to ignore or
not the loss term in the m equation. To begin we consider the model with one strain:

(1.2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ = f(x) − μxx− βxm,
ẏ1 = βxm− α1 y1,
ẏ2 = γ1 y1 − α2 y2,
. . .
ẏk = γk−1 yk−1 − αk yk,
ṁ = r γk yk − μm m− uβ xm.

In this system f(x) − μx x is the density-dependent growth rate of RBC. The other
parameters are positive. In the model of Gravenor et al. [21] αi = γi + μi, and hence
αi > γi. We do not need this requirement, which implies that our model is not
necessarily a catenary compartmental model. In the literature the parameter u takes
the values u = 0 when the loss of the merozoite when it enters a RBC is ignored or
takes u = 1 when this loss is not ignored. In our analysis u is simply a nonnegative
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parameter. Except for these generalizations this system has already been suggested
by Gravenor and Lloyd [21] in their reply to the criticism of Saul [64]. We provide
a global analysis of this system related to the basic reproduction ratio R0 of the
considered model.

One problem is how to decide upon the number of parasite compartments in
the model. A starting point can be the morphological appearance of the parasite.
But if the objective is to reflect the distribution of cycle lengths, the number of
compartment can be increased to obtain a gamma distribution. Finally the two
approaches can be combined: some compartments are for morphological reasons and
others are for behavioral reasons. Then this model can also be interpreted as the
application of the method of stages (or the linear chain trick) to the life cycle of
PRBC [3, 31, 47, 49, 48, 51]. In other words a chain of compartments is included to
generate a distribution of lags. It is also possible to add a class yk+1 in order to allow
for the production of gametocytes. Different numbers of stages, ranging from 5 to 48,
are used in [20, 22, 23, 24].

It is well grounded that a falciparum infection consists of distinct parasite geno-
types. The model of Anderson, May, and Gupta has been extended in this direction
[25, 66]. With regard to such features we propose a model with k stages for the infected
RBC, production of gametocytes, and n genotypes, in the population of parasites.

One of the important principles of theoretical ecology is the competitive exclusion
principle which states that no two species can indefinitely occupy the same ecological
niche [7, 8, 11, 17, 25, 39, 53, 54]. We provide a global analysis of this model and
obtain a generic competitive exclusion result within one host individual. This confirms
the simulation results obtained in [25]. We compute the basic reproduction ratio R0

of the model. For this model there is always a disease-free equilibrium (DFE). To put
it more precisely this equilibrium corresponds to the extinction of all the parasites,
including the free parasites and the intraerythrocyte parasites. We prove that if
R0 ≤ 1, then the DFE is globally asymptotically stable (GAS); in other words the
parasites are cleared. If R0 > 1, then, generically, a unique endemic equilibrium exists
corresponding to the extinction of all the strains of parasites but one. We prove that
this equilibrium is GAS on the positive orthant under a mild condition. For example
this condition is automatically satisfied when u = 0 and f(x) = Λ−μx x. When u �= 0
the criteria, obtained for deciding the winning strain, differs from other results in the
literature. To each i-strain can be associated a basic reproduction number Ri

0 and a
threshold T i

0 . It turns out, when u �= 0, that this is precisely this threshold T i
0 which

distinguishes the fate of the strain and not Ri
0 at the difference of [7, 11].

The paper is organized as follows. In section 2 we introduce the model with k
stages for the infected RBC and one parasite strain, with and without gametocyte pro-
duction. We compute the basic reproduction number and provide a stability analysis.

In section 3 we consider the model of Anderson, May, and Gupta with n distinct
genotypes and production of gametocytes. This model with a constant recruitment
function for the erythrocytes, two strains, and one class of age has been proposed
in [25]. We have studied this model in [1]. Here using the computation of section
2, we prove for the general n strain k class of age model that if R0 ≤ 1, then the
parasites are cleared and if R0 > 1, then generically the different genotypes cannot
coexist. Namely a unique equilibrium exists, for which only one genotype is positive,
and which is GAS on a dense subset of the nonnegative orthant. This result confirms
the simulations given in [25].

Global results of stability for the DFE as well for the endemic equilibrium for
epidemic models are not so common [26, 27, 33, 43, 65, 67, 68]. Global stability
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results for the endemic equilibrium have often been obtained by using monotone
system techniques [29, 36]. Usually the Poincaré–Bendixson property of monotone
systems in dimension 3 is used [40, 41, 42, 43, 44, 45]. Our results generalize the
results of [13].

2. Stability analysis of a one strain model with k stages. We consider
a general class of systems. The haemopoiesis is a complex system. In the cited
references the recruitment of RBC is given by Λ − μx x. In this paper we will use a
more general function ϕ(x). In a more complex system the haemopoiesis could be an
input coming from another system:

(2.1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ = f(x) − μxx− βxm = ϕ(x) − β xm,
ẏ1 = βxm− α1 y1,
ẏ2 = γ1 y1 − α2 y2,
. . .
ẏk = γk−1 yk−1 − αk yk,
ṁ = r γk yk − μm m− uβ xm.

We denote by y the column vector (y1, . . . , yk)
T . The parameter u is nonnegative.

The reason for this parameter is to encompass some malaria models in which the
term −β xm can appear or not. In [2] Anderson has considered a system without
the −β xm in the ṁ equation. In [60] all the basic models of virus dynamics are also
without this term. One feature of Plasmodium falciparum, responsible for the deadly
case of malaria, is that more than one parasite can invade RBC. In this case u is the
mean number of parasites invading RBC and thus disappearing from the circulating
blood.

Some authors [25, 56] have included in the model production of gametocytes. In
the course of the production of merozoites from bursting erythrocytes, some invad-
ing merozoites develop into the sexual, nonreplicating transmission stages known as
gametocytes. The gametocytes are benign and transmissible to mosquitoes. We can
also, following these authors, include a production of gametocytes in our model. If
we denote by yk+1 the “concentration of gametocytes,” the model becomes

(2.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = f(x) − μxx− βxm = ϕ(x) − β xm,
ẏ1 = βxm− α1 y1,
ẏ2 = γ1 y1 − α2 y2,
. . .
ẏk = γk−1 yk−1 − αk yk,
ẏk+1 = ρ γk yk − αk+1 yk+1,
ṁ = r γk yk − μm m− uβ xm.

We start to analyze the system with minimal hypothesis on f but nevertheless plausi-
ble from the biological point of view. The function f gives the production of erythro-
cytes from the bone marrow. The function ϕ(x) = f(x)−μxx models the population
dynamic of RBC in the absence of parasites. The RBC have a finite lifetime, and
then μx represents the average per capita death rate of RBC. The function f models
in some way homeostasis. In this paper we suppose that f depends only on x. It
could be assumed that the recruitment function depends on x and the total popula-
tion of erythrocytes x+

∑
i yi. In this paper we will analyze the simplified case which

is the model considered in all the referenced literature. The rationale behind this
simplification is that in a malaria primo-infection typically y is in the order of 10−1
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to 10−4 of the concentration of healthy erythrocytes x. This can be confirmed from
the data of malaria therapy. In the last century neurosyphilitic patients were given
malaria therapy, which was routine care at that time. Some of them were infected
with Plasmodium falciparum. Data were collected at the National Institutes of Health
laboratories in Columbia, SC and Milledgeville, GA during the period 1940 to 1963
[12].

We assume that f is a C1. Since homeostasis is maintained we assume that the
dynamic without parasites is asymptotically stable. In other words, for the system

ẋ = f(x) − μx x = ϕ(x)

there exists a unique x∗ > 0 such that

(2.3) ϕ(x∗) = 0, and ϕ(x) > 0 for 0 ≤ x < x∗, and ϕ(x) < 0 for x > x∗.

2.1. Notation. We will rewrite systems (2.1) and (2.2) in a condensed simpler
form.

Before we introduce some classical notation.
We identify vectors of R

n with n × 1 column vectors. 〈 | 〉 denotes the euclidean
inner product. ‖z‖2

2 = 〈 z | z 〉 is the usual euclidean norm.
The family {e1, . . . , en} denotes the canonical basis of the vector space R

n. For
example e1 = (1, 0, . . . , 0)T . We denote by eω the last vector of the canonical basis,
eω = (0, . . . , 0, 1)T .

If z ∈ R
n, we denote by zi the ith component of z. Equivalently zi = 〈 z | ei 〉.

For a matrix A we denote by A(i, j) the entry at the row i, column j. For matrices
A,B we write A ≤ B if A(i, j) ≤ B(i, j) for all i and j, A < B if A ≤ B and A �= B,
and A � B if A(i, j) < B(i, j) for all i and j.

AT denotes the transpose of A. Then 〈 z1 | z2 〉 = zT1 z2. The notation A−T will
denote the transpose of the inverse of A.

For this section we rewrite the systems (2.1) and (2.2) under a unique form:

(2.4)

{
ẋ = ϕ(x) − β x 〈 eω | z 〉,
ż = β x 〈 eω | z 〉 e1 + A0 z − uβ x 〈 eω | z 〉 eω.

In the case of the system (2.1) we have for A0

(2.5) A0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−α1 0 0 · · · 0 0
γ1 −α2 0 · · · 0 0
0 γ2 −α3 · · · 0 0
...

. . .
. . .

. . .
...

...
0 · · · 0 γk−1 −αk 0
0 · · · 0 0 rγk −μm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and an analogous formula for (2.2).
We define the matrix A(x) = A0 − β x eω eTω . This a Metzler stable matrix. (A

Metzler matrix is a matrix with nonnegative off-diagonal entries [5, 32, 50].)
It is not difficult to check that the nonnegative orthant is positively invariant by

(2.4) and that there exists a compact absorbing set K for this system. An absorbing
set D is a neighborhood such that a trajectory of the system starting from any initial
condition enters and remains in D for a sufficiently large time T .
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2.2. Global stability results. We can now give the main result of this section.
Theorem 2.1. We consider the system (2.4) with the hypothesis (2.3) on ϕ

satisfied. We define the basic reproduction ratio of the system (2.1) and (2.2) by

(2.6) R0 =
rβx∗

μm + uβ x∗
γ1 · · · γk
α1 · · ·αk

.

1. The system (2.1) is GAS on R
k+2
+ (respectively, (2.2) on R

k+3
+ ) at the DFE

(x∗, 0, . . . , 0) if and only if R0 ≤ 1.
2. If R0 > 1, then the DFE is unstable and there exists a unique endemic

equilibrium (EE) in the positive orthant, (x̄, z̄) 	 0, given by

(2.7)

⎧⎪⎪⎨
⎪⎪⎩

x̄ =
μm

β

[
r
γ1 · · · γk
α1 · · ·αk

− u

] ,
z̄ = ϕ(x̄) (−A0)

−1
(e1 − u eω).

Denoting α∗ = −maxx∈[0,x∗] (ϕ
′(x) ), if

(2.8) uβ ϕ(x̄) ≤ α∗ μm,

then the EE is GAS on the nonnegative orthant, except for initial conditions on the
x-axis.

Proof of Theorem 2.1. To begin we will consider the system (2.1) without game-
tocytes, i.e., the system (2.4) with A0 as defined in (2.5). The stability analysis for
(2.2) follows easily from the stability analysis of (2.1).

In a first step we will compute R0 ≤ 1. We use our preceding notation and define
A∗ = A(x∗), i.e., the matrix computed at the equilibrium x∗ of ϕ, which is a stable
Metzler matrix. We will use, repeatedly in what follows, the property that if M is a
stable Metzler matrix, then −M−1 ≥ 0 [5]. The expression of R0 is obtained easily
by using the next generation matrix of the system (2.1) [9, 15, 16]. We have for the
basic reproduction number

R0 = β x∗
〈
− (A∗)

−1
e1 | eω

〉
.

If we remark that the matrix A∗ is the matrix A0 modified by a rank-one matrix,
namely A∗ = A0−uβ x∗ eω eTω , we can use the Sherman–Morrison–Woodbury formula

− (A∗)
−1

= −A−1
0 − uβ x∗

1 + uβ x∗ eTω (−A0)
−1

eω
(−A0)

−1
eω eTω (−A0)

−1

or equivalently

− (A∗)
−1

= −A−1
0 − uβ x∗

μm + β x∗ eω eTω (−A0)
−1

.

This shows that − (A∗)
−1

is obtained from −A−1
0 by multiplying the last line of −A−1

0

by μm

μm+uβ x∗ . Then we get

R0 = β x∗ μm

μm + uβ x∗

〈
− (A0)

−1
e1 | eω

〉
,

and then in computing the last entry of the first column of A0 we obtain (2.6).
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We remark that R0 > 1 is equivalent to the following threshold condition:

(2.9)

T0 =
β x∗

μm

[
μm

〈
− (A0)

−1
e1 | eω

〉
− u

]
= β x∗

〈
− (A0)

−1
(e1 − u eω) | eω

〉
> 1.

We are now ready to analyze the stability of the DFE.
It is well known that if R0 > 1, then the DFE is unstable [15], which implies that

the condition R0 ≤ 1 is necessary for stability.
To prove the sufficiency, in a second step, we consider the following function

defined on the nonnegative orthant:

(2.10) VDFE(z) = β x∗ 〈 eω | (−A−1
0 )z 〉.

Its time derivative along the trajectories of system (2.4) is

V̇DFE = β x 〈 eω | z 〉β x∗ 〈 eω | (−A0)
−1 (e1 − u eω) 〉 − β x∗〈 eω | z 〉

or equivalently, using the expression of T0 given in (2.9),

(2.11) V̇DFE = β 〈 eω | z 〉 (T0 x− x∗) .

Now we take as a candidate Liapunov function, defined on the nonnegative orthant
minus the hyperplane face x = 0,

V = (x− x∗ lnx) − x∗(1 − lnx∗) + VDFE(z).

This function is positive definite (relatively to the DFE) on R
k+2
+,x>0 = {(x, y,m) ∈

R
k+2
+ : x > 0}. Its time derivative is given by

V̇ =
x− x∗

x
ϕ(x) − (x− x∗)β 〈 eω | z 〉 + β 〈 eω | z 〉 (T0 x− x∗)

or assuming R0 ≤ 1

V̇ =
x− x∗

x
ϕ(x) + β x 〈 eω | z 〉 (T0 − 1) ≤ 0.

By assumption (2.3) we have (x− x∗)ϕ(x) ≤ 0 for all x ≥ 0. Therefore V̇ ≤ 0 for all
(x, z) ∈ R

k+2
+,x>0, which proves the stability of the DFE. Its attractivity follows from

LaSalle’s invariance principle [6, 37, 38], since the largest invariant set contained in
{(x, z) ∈ R

k+2
+,x>0 : V̇ = 0} is reduced to the DFE. On the other hand the vector field

is strictly entrant on the face x = 0. Hence the whole orthant R
k+2
+ belongs to the

region of attraction of the DFE.
Now we assume that R0 > 1. The equilibria (x̄, z̄) of the system, different from

the DFE, are determined by the relations

z̄ = β x̄〈 z̄ | eω 〉 (−A0)
−1

(e1 − u eω).

Replacing z̄ in 〈 z̄ | eω 〉 we obtain

(2.12) 〈 z̄ | eω 〉 = β x̄ 〈 z̄ | eω 〉 〈 (−A0)
−1

(e1 − u eω) | eω 〉.
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If 〈 z̄ | eω 〉 = 0, then ϕ(x̄) = 0, we obtain x̄ = x∗, and hence z̄ = 0; i.e., the
corresponding equilibrium is the DFE. In the other case, i.e., 〈 z̄ | eω 〉 �= 0, the
relation (2.12) gives

(2.13) β x̄
〈

(−A0)
−1

(e1 − u eω) | eω
〉

= 1.

Using 〈 (−A0)
−1

eω | eω 〉 = 1
μm

we finally have

x̄ =
μm

β
[
μm 〈 (−A0)

−1
e1 | eω 〉 − u

] =
x∗

T0
.

We deduce that if R0 > 1, then 0 < x̄ < x∗, and hence ϕ(x̄) > 0. Therefore

z̄ = ϕ(x̄) (−A0)
−1

(e1 − u eω).

The last component of z̄, 〈 z̄ | eω 〉 = m̄, is given by

m̄ =
ϕ(x̄)

β x̄
> 0.

The k first components of z̄ are given by the k first components of ϕ(x̄) (−A0)
−1

e1. It
is straightforward to check that the first column of (−A0)

−1 namely (−A0)
−1 e1 	 0,

which proves that z̄ 	 0. We have then proved that there is a unique EE in the
positive orthant if and only if R0 > 1.

Finally we will prove a sufficient condition for the global asymptotic stability
of the EE. To this end we define the following candidate Liapunov function on the
positive orthant minus the face corresponding to x = 0:

(2.14) VEE(x, y,m) = a(x− x̄ lnx) +

k∑
i=1

bi (yi − ȳi ln yi) + bk+1 (m− m̄ lnm).

This function has a unique global minimum in (x̄, ȳ, m̄). We will choose the coefficients
a, bi, bk+1 such that in the computation of V̇ , the linear terms in yi and m and the
bilinear terms in xm cancel. Let us show that it is possible with positive coefficients.
To this end we rewrite the function VEE using the notation z = (y,m)T , ln z =
(ln z1, ln z2, . . . , ln zk+1)

T , and b = (b1, . . . , bk, bk+1)
T :

VEE(x, z) = a(x− x̄ lnx) + 〈 b | z − diag(z̄) ln z 〉.

Consider the block matrix

M =

[
−1 (e1 − u eω)T

β x̄ eω AT
0

]
.

Using classical Schur complement techniques and the relation (2.13) on x̄, we have

det(M) = det(A0)[−1 + β x̄(e1 − u eω)T (−A−T
0 ) eω]

= det(A0)[−1 + β x̄ 〈−A−1
0 (e1 − u eω) | eω 〉] = 0.

Since the matrix M is obviously of codimension 1 (A0 is nonsingular) the kernel of
M is of dimension 1. Then there exists a ∈ R and b ∈ R

k+1 such that

(2.15a) a = (e1 − u eω)T b = 〈 b | e1 − u eω 〉
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and

(2.15b) b = a β x̄ (−A−T
0 ) eω.

Since the kernel is one dimensional, a can be chosen arbitrarily. Thanks to the struc-
ture of A0, if a > 0, then b 	 0.

The derivative of V along the trajectories of (2.4) is given by

V̇EE = a
x− x̄

x
ϕ(x) − a βx 〈 eω | z 〉 + a β x̄ 〈 eω | z 〉 + β x 〈 eω | z 〉 〈 b | e1 − u eω 〉

+ 〈 b | A0z 〉 + 〈 b | diag(z̄) diag(z)−1 ż 〉

= a
x− x̄

x
ϕ(x) + 〈 b | diag(z̄) diag(z)−1 ż 〉

+ a β x̄ 〈 eω | z 〉 + 〈 b | A0z 〉 + βx 〈 eω | z 〉
(
〈 b | e1 − u eω 〉 − a

)
.

Using the relation (2.15b) we see that

〈 b | A0 z 〉 = −a β x̄ 〈 (A−T
0 ) eω | A0z 〉 = −a β x̄ 〈 eω | z 〉.

Therefore the linear terms in z cancel. The same is true for the bilinear terms thanks
to the relation (2.15a). Finally we get

V̇EE = a
x− x̄

x
ϕ(x) + 〈 b | diag(z̄) diag(z)−1 ż 〉.

We choose bk+1 = 1 = 〈 b | eω 〉 = a β x̄ 〈−A−T eω | eω 〉 = a β x̄ 1
μm

. In other words

a = μm

β x̄ . With the hypothesis R0 > 1 we have a > 0, and hence b 	 0 as wanted.

With this choice developing V̇ gives

V̇EE = a f(x) − aμx x− af(x)
x̄

x
+ aμx x̄− b1 βȳ1

xm

y1
−

k∑
i=2

biγi−1yi−1
ȳi
yi

+

k∑
i=1

bi αi ȳi − r γk yk
m̄

m
+ uβm̄x + μmm̄.

We collect some useful relations between our coefficients at the EE. We have from the
definitions of a and b, since bk+1 = 1,

(2.16)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a + u = b1,
b1 α1 = γ1 b2,
b2 α2 = γ2 b3,
· · ·
bk−1 αk−1 = γk−1 bk,
bk αk = r γk.

From these relations and the properties of the EE z̄ we have

(2.17) b1 β x̄ m̄ = bi αi ȳi = bi γi−1 ȳi−1 = r γk ȳk

and

(2.18) aα1ȳ1 = μm m̄.
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Replacing, in the expression of V̇ , aμxx̄ by a f(x̄)−aβx̄m̄ = af(x̄)−aα1 ȳ1 we obtain

V̇EE = krγkȳk + af(x̄) + af(x) + (uβx̄m̄− aμxx̄)
x

x̄
− af(x)

x̄

x

− b1 β x̄ m̄
x

x̄

m

m̄

ȳ1

y1
−

k∑
i=2

biγi−1ȳi−1
yi−1

ȳi−1

ȳi
yi

− rγkȳk
yk
ȳk

m̄

m
.

Using again the relations between the coefficients we get

V̇EE = krγkȳk + af(x̄) + af(x) + (rγkȳk − af(x̄))
x

x̄
− af(x)

x̄

x

− r γk yk
x

x̄

m

m̄

ȳ1

y1
−

k∑
i=2

rγkȳk
yi−1

ȳi−1

ȳi
yi

− rγkȳk
yk
ȳk

m̄

m

and finally

V̇EE = a
[
f(x) + f(x̄) − f(x̄)

x

x̄
− f(x)

x̄

x

]

+ r γk ȳk

[
k +

x

x̄
− x

x̄

m

m̄

ȳ1

y1
−

k∑
i=2

yi−1

ȳi−1

ȳi
yi

− yk
ȳk

m̄

m

]
.

Now we will use the fact that there exists ξ in the open interval ξ ∈ ]x, x̄[ such that
f(x) = f(x̄) + (x− x̄) f ′(ξ). Replacing in the preceding expression gives

V̇EE = af(x̄)
[
2 − x

x̄
− x̄

x

]
+ a f ′(ξ)

(x− x̄)2

x

+ r γk ȳk

[
k +

x

x̄
− x

x̄

m

m̄

ȳ1

y1
−

k∑
i=2

yi−1

ȳi−1

ȳi
yi

− yk
ȳk

m̄

m

]
.

Using the relations (2.16)–(2.17) we have

af(x̄) = (b1 − u)f(x̄) = b1(μxx̄ + βx̄m̄) − u f(x̄) = b1 μx x̄ + rγkȳk − u f(x̄).

Replacing in the preceding expression of V̇ gives

V̇EE = (b1 μx x̄− u f(x̄))
[
2 − x

x̄
− x̄

x

]
+ a f ′(ξ)

(x− x̄)2

x

+ r γk ȳk

[
k + 2 − x̄

x
− x

x̄

m

m̄

ȳ1

y1
−

k∑
i=2

yi−1

ȳi−1

ȳi
yi

− yk
ȳk

m̄

m

]
.

This can also be written

(2.19)

V̇EE = Φ(x, y,m) = − [b1 μx x̄− u f(x̄) − a x̄ f ′(ξ)]
(x− x̄)2

xx̄

+ r γk ȳk

[
k + 2 − x̄

x
− x

x̄

m

m̄

ȳ1

y1
−

k∑
i=2

yi−1

ȳi−1

ȳi
yi

− yk
ȳk

m̄

m

]
.
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The term between brackets in the last expression of V̇ is nonpositive by the inequality
between the arithmetical mean and the geometrical mean. Then a sufficient condition
for V̇ ≤ 0 is

b1 μx x̄− u f(x̄) − a x̄ f ′(ξ) ≥ 0.

Moreover with this condition V̇ is negative, except at the EE for the system (2.1).
This proves the global asymptotic stability of the EE on the positive orthant for the
system (2.1).

The vector field associated with the system is strictly entrant on the faces of the
orthant, except the x-axis, where it is tangent. The basin of attraction of the EE is
then the orthant, except the x-axis, which is the stable manifold of the DFE.

Using the function ϕ(x) = f(x) − μx x the preceding condition is equivalent to

uϕ(x̄) ≤ −a x̄ ϕ′(ξ),

or equivalently, replacing a by its value a = μm

β x̄ , the condition becomes

uβ ϕ(x̄) ≤ −μm ϕ′(ξ).

Setting α∗ = −maxx∈[0,x∗] ϕ
′(x) a sufficient condition for global asymptotic stability

of the EE is

R0 > 1 and uβ ϕ(x̄) ≤ μmα∗.

We have proved the theorem for the system without gametocytes. We have seen
that R0 does not depend on the production of gametocytes. If R0 ≤ 1, it is easy,
integrating the linear stable yk+1 equations of (2.2) from the solutions of (2.1), to
see that the DFE is asymptotically stable and that all the trajectories converge to
the equilibrium. The same argument is used when R0 > 1. This ends the proof of
Theorem 2.1.

Remark 1. If this model is a model for a within-host model of malaria, each
coefficient αi is made of the mortality of the i-class and the rate of transmission
in the i + 1-class: αi = μi + γi. This implies that γi ≤ αi. We do not need this
assumption, and our conclusions are valid for our more general model. The only
hypothesis is that the parameters of the system are positive.

Remark 2. In the proof of Theorem 2.1 the quantity

β x∗
〈
− (A0)

−1
(e1 − u eω) | eω

〉
,

which we have called T0 when R0 > 1, plays a prominent role. When R0 ≤ 1 and
u �= 0 three cases occur: 0 < T0 ≤ 1 or T0 < 0 or T0 = 0.

In the two first cases we can define x̄ = x∗

T0
, and we obtain an equilibrium (x̄, z̄)

of the system which is not in the nonnegative orthant (either x̄ < 0 or z̄ < 0).
In the third case, the computations, done in the proof of Theorem 2.1, for the

research of an equilibrium show that 〈 z | eω 〉 = 0, and hence z = 0, and finally the
equilibrium is the DFE (x∗, 0).

We introduce a definition of T0 that will simplify future computations. The case
T0 = 0 is special, since T0 = x∗

x̄ is no longer true. However this case can be thought,
by convention and misuse of language, as x̄ = +∞.
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Definition 2.2. We define for the system (2.1) the threshold

(2.20) T0 =
x∗

μm

β

[
r
γ1 · · · γk
α1 · · ·αk

− u

] = β x∗
〈
− (A0)

−1
(e1 − u eω) | eω

〉
.

When T0 �= 0 we have also T0 = x∗

x̄ .
Remark 3. It should be pointed out that the kind of Liapunov function defined

by (2.14) has a long history of application to Lotka–Volterra models [18, 19] and was
originally discovered by Volterra himself, although he did not use the vocabulary and
the theory of Liapunov functions. Since epidemic models are “Lotka–Volterra” like
models, the pertinence of this function is not surprising. Similar Liapunov functions
have been used in epidemiology [4, 34, 35, 46, 63], although with different parameters.
We have already used this kind of function in a simplified version of this paper in [1].

2.3. Comparison with known results. Our stability result improves the one
of De Leenheer and Smith [13] in two directions:

1. We introduce n stages for latent classes.
2. Our sufficient condition for the global asymptotic stability of the endemic

equilibrium is weaker than the one provided in [13]; for instance the sufficient condi-
tion given in Theorem 2.1 is satisfied for malaria parameters given in [3], while the
condition of [13] is not satisfied.

2.4. Application to the original AMG model [3]. The original Anderson–
May–Guptka model is a three dimensional system (1.1) which has the same form as
system (2.1) with f(x) = Λ. The sufficient condition (2.8) applied to the AMG model
(1.1) can be written

(2.21) βΛ ≤ r

r − 1
μx μm.

For the system (1.1), it is possible to give a weaker sufficient stability condition.
Proposition 2.3. If R0 > 1 and βΛ ≤ (

√
r +

√
r − 1)2 μx μm, then the EE is a

GAS steady state for system (1.1) with respect to initial states not on the x-axis.
Since in general the parameter r is larger than 2 (see, for instance, [28]), we have

(
√
r +

√
r − 1)2 > r

r−1 .
Proof. Thanks to the computations done before, we have for system (1.1)

V̇EE = (r − 1)Λ
[
2 − x

x̄
− x̄

x

]
+ r μy ȳ

[
1 +

x

x̄
− y

ȳ

m̄

m
− x

x̄

m

m̄

ȳ

y

]
.

Define X = x
x̄ and S = y

ȳ
m̄
m . Then one can write

V̇EE = −(r − 1)Λ (X−1)2

X + r μy ȳ
(
1 + X − S − X

S

)
= −(r − 1)Λ (X−1)2

X + r μy ȳ Ψ(X,S).

We have Ψ(X,S) ≥ 0 ⇔ X ≤ S ≤ 1 or X ≥ S ≥ 1. On the other hand Ψ(X,S) ≤
Ψ(X,

√
X) = (

√
X − 1)2. Therefore

(2.22)
V̇EE ≤ (r − 1)Λ(

√
X − 1)2

(
r μy ȳ

(r−1)Λ −
(
1 + 1√

X

)2
)
,

V̇EE ≤ (r − 1)Λ(
√
X − 1)2

(√
r μy ȳ

(r−1)Λ + 1 + 1√
X

)(√
r μy ȳ

(r−1)Λ − 1 − 1√
X

)
.
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We have
μy ȳ
Λ = Λ−μxx̄

Λ < 1. Hence for X ≤ X∗ = x∗

x̄ = (r−1)β
μm

x∗ we have the

following:
√

r μy ȳ
(r−1)Λ − 1 − 1√

X
<

√
r

(r−1) −
√
μm√

(r−1)βx∗
− 1 ≤ 0, since by assumption

βx∗

μm
= βΛ

μxμm
≤ (

√
r+

√
r − 1)2. Therefore, the derivative of VEE along the trajectories

of system (1.1) is negative definite on the set D0 = {(x, y,m) ∈ R
3
+ : 0 < x ≤ x∗, y >

0, m > 0}. By continuity, there exists ε > 0 such that V̇EE is negative definite on
the set Dε = {(x, y,m) ∈ R

3
+ : 0 < x < x∗ + ε, y > 0, m > 0}. The global

asymptotic stability of the EE follows from the fact that Dε is an absorbing set for
system (1.1).

3. The general case: n strains with k classes of parasitized erythro-
cytes. We define the following system with k classes and n parasite strains:

(3.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = f(x) − μxx− x

n∑
i=1

βi mi = ϕ(x) − x

n∑
i=1

βi mi

and for i = 1, . . . , n,
ẏ1,i = βixmi − α1i y1,i,
ẏ2,i = γ1,i y1,i − α2,i y2,i,
. . .
ẏk,i = γk−1,i yk−1,i − αk,i yk,i,
ġi = δi yk,i − μgi gi,
ṁi = ri γk,i yk,i − μmi

mi − uβi xmi.

As in preceding sections we rewrite the system as

(3.2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = ϕ(x) − x

n∑
i=1

βi 〈 zi | ei,ω 〉

and for i = 1, . . . , n,
żi = xβi 〈 zi | ei,ω 〉 ei,1 + Ai zi − uxβi 〈 zi | ei,ω 〉 ei,ω,

where the matrix Ai is the analogous of the matrix A0 defined in section 2.2, but
corresponding to the genotype i, and the vectors ei,1 and ei,ω are defined accordingly.
We drop the index 0 in A for readability.

Theorem 3.1. We consider the system (3.1) with the hypotheses (2.3) satisfied.
We define the basic reproduction ratio R0 of the system (3.1) by

Ri
0 =

riβix
∗

μmi + uβi x∗
γ1,i · · · γk,i
α1,i · · ·αk,i

and

R0 = max
i=1,...,n

Ri
0.

1. The system (3.1) is GAS on R+ at the DFE (x∗, 0, . . . , 0) if and only if
R0 ≤ 1.

2. If R0 > 1, then the DFE is unstable. If Ri
0 > 1, there exists an EE in the

nonnegative orthant corresponding to the genotype i, the value for the other indexes
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j �= i are yj = mj = 0, and

(3.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̄i =
μmi

βi

[
ri

γ1,i · · · γk,i
α1,i · · ·αk,i

− u

] ,
z̄i = ϕ(x̄i) (−Ai)

−1
(ei,1 − u ei,ω),

ḡi =
δi
μgi

z̄i,k,

where we denote by z̄i,k the kth component of z̄i.
3. We assume R0 > 1. We define T i

0 as in Definition 2.2. We assume that the
generic conditions T i

0 �= T j
0 are satisfied for i �= j. We suppose that the genotypes

have been indexed such that

T 1
0 > T 2

0 ≥ · · · ≥ T n
0 .

Then the EE corresponding to x̄1 is asymptotically stable and the EEs corresponding
to x̄j for j �= 1 (for those which are in the nonnegative orthant) are unstable.

4. We assume that the preceding hypothesis T 1
0 > T j

0 is satisfied with R0 > 1.
We denote it by α∗ = −maxx∈[0,x∗] (ϕ

′(x) ). Then if

uβ1 ϕ(x̄1) ≤ μm1
α∗,

the equilibrium (x̄1, ȳ1, m̄1, ḡ1, 0, . . . , 0) is GAS on the orthant minus the x-axis and
the faces of the orthant defined by y1 = m1 = g1 = 0. In other words the most virulent
strain is the winner and the other strains go extinct.

Proof. As in Theorem 2.1 there exists a forward invariant compact absorbing set
in the nonnegative orthant for the system (3.1), and hence all the forward trajectories
are bounded. The variables gi do not affect the dynamical evolution of the variables
x, yi,j , mi, and so we can consider the system without the production of gametocytes.
We use the Liapunov function

VDFE(z) =

n∑
i=1

VDFE(zi) =

n∑
i=1

βi x
∗ 〈 ei,ω | (−A−1

i )zi 〉.

Using the system written as (3.2) and the computation (2.11) we easily obtain

V̇DFE =

n∑
i=1

βi 〈 ei,ω | zi 〉
(
T i

0 x− x∗) .
Now we define the Liapunov function on the nonnegative orthant minus the hyper-
plane face x = 0

V (x, z) = (x− x∗ lnx) − x∗(1 − lnx∗) +

n∑
i=1

VDFE(zi)

which gives

V̇ =
x− x∗

x
ϕ(x) +

n∑
i=1

x∗βi 〈 zi | ei,ω 〉 −
n∑

i=1

xβi 〈 zi | ei,ω 〉

+
n∑

i=1

βi 〈 ei,ω | zi 〉 (T i
0 x− x∗)

=
x− x∗

x
ϕ(x) +

n∑
i=1

βi 〈 ei,ω | zi 〉x
(
T i

0 − 1
)
.
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Since Ri
0 ≤ 1 for all index i, we have T i

0 ≤ 1, and hence V̇ ≤ 0. The conclusion
follows by Lasalle’s invariance principle and consideration of the boundary of the
positive orthant.

Now we assume R0 > 1. The instability of the DFE follows from the properties
of R0 [15]. We assume that the genotypes are indexed such that their corresponding
threshold are in decreasing order T 1

0 > T 2
0 ≥ · · · ≥ T n

0 .
We will define a Liapunov function on the nonnegative orthant minus the manifold

defined by the equations x = y1 = m1 = 0. For this we need to recall the definition
of the function VEE(x, y1,m1) defined in (2.14):

VEE(x, y,m) = a(x− x̄ lnx) +

k∑
i=1

b1,i (y1,i − ȳ1,i ln y1,i) + b1,k+1 (m1 − m̄1 lnm1).

The coefficients (a, b1,i) are positive and defined from A1 as in the proof of Theorem 2.1
from section 2.2. We also use the function VEE defined in (2.10) to consider

V (x, z) = T 1
0 VEE(x, z1) + a

n∑
i=2

VDFE(zi)

or equivalently

V (x, z) = T 1
0 VEE(x, z1) + a

n∑
i=2

βi x
∗ 〈 ei,ω | (−A−1

i ) zi 〉.

Using the relation (2.19) and (2.11), we can compute the derivative of V along the
trajectories of (3.2):

V̇ = T 1
0 Φ(x, z1) + a T 1

0

n∑
i=2

βi x̄1 〈 eiω | zi 〉 − a T 1
0

n∑
i=2

βi x 〈 eiω | zi 〉

+ a
n∑

i=2

βi 〈 zi | ei,ω 〉
(
T i

0 x− x∗) .
Using T 1

0 x̄1 = x∗ from the Definition 2.2 for the threshold we get

V̇ = T 1
0 Φ(x, z1) + a

n∑
i=2

βi 〈 zi | ei,ω 〉x
(
T i

0 − T 1
0

)
≤ 0.

By Liapunov theorem this ends the proof for the stability. The global asymptotic
stability is obtained by a straightforward use of LaSalle’s invariance principle, which
ends the proof of Theorem 3.1.

Remark 4. In the nongeneric case it can be shown, with the help of the Liapunov
functions used in the theorem, that there exists a continuum of stable EE. We omit
the proof.

In the generic case, the dynamics of the system are completely determined. The
nonnegative orthant is stratified in the union of stable manifolds corresponding to the
different equilibria. Only the equilibrium corresponding to the winning strain has a
basin of attraction with a nonempty interior.

Remark 5. We have proved that the most virulent strain, that is, the strain
which maximizes its respective threshold T i

0 , eliminates the other. We obtain the
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same kind of result as in [7], where the authors consider a SIR model with n strains
of parasite. They consider that infection by one parasite strain excludes superinfection
by other strains (this is also our case) and induces permanent immunity against all
strains in case of recovery. They also guarantee limited population by considering a
recruitment depending on the density in a monotone decreasing way. They find that
the strain which maximizes the basic reproduction ratio eliminates the others. In the
case considered by the authors, actually, using our notation, R0 = x∗

x̄ . In fact in this
model T0 and R0 coincide. This is also the case in our model when u = 0. Hence our
result compares with the result of [7]. However in the case u �= 0 this is T i

0 , and not
Ri

0, which distinguishes the fate of the strain. Our result is then different from [7],
where this role is devoted to R0. The same kind of remarks apply to [10] and [11].

Remark 6. In our model the chains are of equal length for each strain. If the
chains are of unequal length, the proof is unchanged. We use equal length for no-
tational convenience. A reason to have unequal length could be to model different
behavior for two different strains of the parasite.

4. Conclusion. In this article we have given a parasitic within-host model and
have provided a stability analysis of this model.

This model incorporates a number k of compartments for the parasitized target
cells and considers n strains for the parasite. The rationale for including multicom-
partments can be multiple. One reason is to take into account biological reasons, e.g.,
consideration of morphological or age classes. The second is for behavioral modeling
reasons, e.g., to model delays described by gamma distribution functions.

This model has been conceived from malaria infection, since it is well grounded
that malaria is a multistrain infection. However other parasitic infections can be
considered by this model.

We prove that if the basic reproduction number satisfies R0 ≤ 1, then the DFE
is GAS; i.e., the parasite is cleared from the host. Our stability result when R0 > 1
can be summarized as a competitive exclusion principle. To each i-strain we associate
an individual threshold condition T i

0 as in Definition 2.2. If R0 > 1, if one strain has
its individual threshold strictly larger than the thresholds of the other strains and if
a mild sufficient condition is satisfied (for a constant recruitment, i.e., f(x) = Λ, this
condition is simply uβΛ ≤ r

r−u μxμm), then there exists a GAS equilibrium on the
positive orthant. This equilibrium corresponds to the extinction of all strains, except
the strain with the largest threshold. This winning strain maximizes the threshold
and not its individual basic reproduction number, which is different from previous
analogous results of the literature.
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A SPHERICAL PARTICLE MOVING SLOWLY IN A FLUID WITH A
RADIALLY VARYING VISCOSITY∗

SHIMON HABER†

Abstract. The Stokesian flow field induced by a spherical particle that undergoes a slow
rotational and translational motion in an unbounded quiescent fluid with radially varying viscosity is
investigated. For a rotating particle, it is demonstrated that only the near viscosity field contributes
effectively to the hydrodynamic torque exerted on the particle. A powerful screening effect exists
in which the contribution of the distant viscosity field is weighted with the inverse of the distance
from the particle to the fourth power. Two specific cases are investigated in which the viscosity field
varies either exponentially or periodically. The latter is of particular interest, since it may serve to
model the torque exerted on a particle rotating in a suspension. It is shown that a small test particle
rotating in a suspension consisting of larger particles is almost unaffected by the large particles and
mainly “senses” the fluid viscosity, whereas a large test particle “senses” the suspension viscosity.
For a translating particle, a general expression is obtained for the induced velocity, pressure, and
drag force exerted on the particle. An approximate result is obtained for the case in which the
viscosity field varies slowly with the distance from the particle. An exact solution is obtained for a
case in which the viscosity field varies algebraically with the distance from the particle center. An
explicit numerical scheme is also suggested, which may assist in obtaining the drag force exerted on
a particle translating in a flow field with an arbitrary radially varying viscosity distribution. Based
on this numerical scheme and on the approximate solution obtained for a slowly varying viscosity,
the drag force exerted on a particle translating inside a fluid with periodically varying viscosity is
calculated. We hypothesize that such a periodic distribution can be viewed as a suspension under low
Péclet number conditions. Based on this assumption, we obtain that if a test particle is much smaller
than the suspended particles, the initial drag force exerted on the test particle is insensitive to the
composition of the suspended particles or droplets, and senses the viscosity of only the continuous
liquid, provided that the test particle is far from the suspended particles. However, up to first order
in suspension concentration, the apparent viscosity of a dilute suspension is indifferent to whether
the test particle is forced to move with a constant velocity or is subjected to a constant external
force, provided that the test particle is arbitrarily located between the suspended particles.
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1. Introduction. The fluid-dynamical problem addressed in this paper is mo-
tivated by the search for insight into the transport of particles in suspensions or in
fluids that may experience strong temperature gradients. Though the backbone of
the paper consists of an analytical investigation of a flow model for a spherical par-
ticle motion in a fluid with variable viscosity, the introduction also provides a brief
elucidation of the foregoing physical problems.

Suspension hydrodynamics was the focus of extensive past investigation. Past
models attempted to explain such effects as hindered settling velocity of a suspension
under gravity (e.g., Batchelor (1972)), increase in the suspension effective viscosity
(e.g., the Einstein viscosity of dilute suspensions), and the effect of shear induced
diffusion (e.g., Leighton and Acrivos (1987a,b) and Gadala-Maria and Acrivos (1980))
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in which particles in a suspension cross streamlines, a phenomenon that a single freely
suspended particle in shear flow does not experience (Happel and Brenner (1983)).

It is well accepted that the fundamental mechanism governing all of the foregoing
results stems from multiparticle hydrodynamic interactions. However, an analyti-
cal solution of a multiparticle system is not tractable, and basically three important
approaches were used to circumvent this difficulty. The first, numerical, approach
termed Stokesian dynamics was applied by Brady (1988) and by others (e.g., Has-
sonjee, Ganatos, and Pfeffer (1988), Brenner et al. (1990), Hassonjee, Pfeffer, and
Ganatos (1992), Chang and Powell (1993), Nott and Brady (1994)), in which many
suspended particles were tracked simultaneously using either collocation or boundary
integral methods.

A second approach was to apply simplified models for the complex microstructure
of suspensions. For instance, the microscopic conformation of a suspension was viewed
as a spatially periodic array. In essence, a unit cell approach was addressed that re-
quires the hydrodynamic solution of a single particle in a bounded field. Yet another
simplified approach was to solve the flow field generated by a generic two/three body
subsystem. In many cases, the foregoing models were sufficiently simple to be han-
dled analytically and to encapsulate the main effects stemming from hydrodynamic
interactions between the particles. For example, Zuzovsky, Adler, and Brenner (1983)
and Adler, Zuzovsky, and Brenner (1985) used a spatially periodic model to obtain
the rheological properties of a suspension. Batchelor (1972) used two-body interac-
tions to calculate the sedimentation velocity of a dilute suspension of rigid spherical
particles under gravity; Batchelor and Green (1972b) used two-body interaction to
calculate the rheology of a dilute suspension; Haber, Brenner, and Shapira (1990)
used two-body interactions to derive the dispersion coefficient of a dilute suspension
containing flexible dumbbells; and Wang, Mauri, and Acrivos (1998) utilized a three-
body interaction to calculate the transverse shear induced gradient diffusion of dilute
suspensions, etc.

A third phenomenological approach was used by Leighton and Acrivos (1987b),
Philips et al. (1992), and others to explain shear induced migration. Thus, for in-
stance, a self diffusion shear induced coefficient was defined that was based on scaling
considerations and the available experimental data, circumventing the microscopic
details of the problem and providing a direct macroscopic view. It proved quite suc-
cessful for the case of a narrow gap Couette device (Acrivos, Mauri, and Fan (1993)).

The mathematical problem addressed in this paper deals with the flow field gen-
erated by a single particle rotating and translating in an unbounded single phase fluid
with variable viscosity. We suggest that the solution of the foregoing problem may
possibly be utilized to explore the mechanisms that govern the motion of a single test
particle immersed in suspensions of various concentrations. Such an interpretation
of the results stems from the observation that a suspension (or an emulsion) of par-
ticles (or droplets) is a two phase fluid with two different viscosities, which may be
approximated by a single phase fluid with a continuous variable viscosity field. One
can further assume that the suspension is at equilibrium where the concentration
distribution φ∞ satisfies the equation (e.g., Brenner (1979))

(1a) ∇ · [De−E∇(eEφ∞)] = 0.

Here E is the energy potential function, and D stands for diffusion coefficient of
the particles comprising the suspension. Henceforth, we assume that E is radially
symmetric (i.e., the external force is centrally symmetric), and thereby the solution
of (1a) yields a radially symmetric function φ∞.
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Introduction of a moving “test particle” into the suspension induces a velocity
disturbance v′, which in turn may cause a concentration disturbance φ′ that destroys
the assumed radial symmetry. A first order approximation for the differential equation
governing this concentration disturbance is

(1b)
∂φ′

∂t
+ v′ · ∇φ∞ = ∇ · [De−E∇(eEφ′)],

where v′ scales with the test particle velocity. Thus, the significance of the symmetry-
destroying convective term vis-à-vis the restoring diffusion term is determined by the
Péclet number based on the test particle velocity and diameter and the diffusion
coefficient of the suspended particles. If this Péclet number is much smaller than unity,
the diffusion mechanism will rapidly restore the concentration to its initial equilibrium
concentration. Consequently, the initial equilibrium concentration distribution will
practically prevail for all times. As shall be shown later, the small Péclet number
assumption is not required for the case of a rotating sphere in a flow field with a
radially symmetric viscosity (the convective term vanishes identically). For the case of
a translating sphere, however, this assumption must be made so that local equilibrium
is restored rapidly and the solution is meaningful for all times.

The paper is divided into the following main sections. In section 2 a simple closed
analytical solution is obtained for the flow field induced by a sphere rotating in an
unbounded fluid with radially varying viscosity. In section 3 the flow field generated
by a sphere translating in an unbounded flow field is addressed.

In section 4 several examples are investigated exploiting the general expressions
obtained in sections 2 and 3. For a rotating sphere, an exact solution is obtained for the
case in which the viscosity field increases or decreases exponentially with the distance
from the test particle. For a translating sphere, three cases are addressed. In case A, a
weak radial variation of the viscosity field is assumed, and an approximate analytical
solution is derived. In case B, the viscosity field increases or decreases algebraically
with the distance from the test particle, and an exact solution is obtained. In case C,
based on a semianalytical approach, an efficient numerical algorithm is suggested, by
which the drag force can be obtained for general viscosity distributions.

In section 5 a solution is obtained for a test particle rotating and translating in a
radially periodic viscosity field. The results are interpreted vis-à-vis particle motion
in a homogeneous suspension. In section 6 a summary of the results is provided.

2. A sphere rotating in a field with radially varying viscosity.

2.1. Statement of problem. A spherical rigid particle of radius a rotates
slowly with angular velocity ω inside an unbounded incompressible flow field with
initial radially varying viscosity

(2) μ = μ0λ(r),

where r is the radial distance measured from the center of the particle and μ0 is a
characteristic viscosity of the fluid. The Reynolds number based on a, ω, μ0 and the
fluid density is assumed to be smaller than unity, so that the quasi-steady creeping
flow equations apply (Gurbebeck and Sprossig (1993)), namely,

(3a) μ∇2v + 2∇μ · S = ∇p, ∇ · v = 0,

where v is the fluid velocity, p is the pressure, and S is the rate of strain dyadic,

(3b) S = 0.5[∇v + (∇v)T ].
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The velocity field satisfies the no-slip condition over the sphere boundary, namely,

(4) v = ω × r at |r| = a,

and decays to zero at infinity. Here, r is the radius vector measured from the sphere
center.

If we assume that the viscosity depends on the volumetric concentration μ = μ(φ),
the viscosity field at equilibrium, μ∞ ≡ μ(φ∞) ≡ μ0λ(r), is also radially symmetric.
However, introduction of the test sphere may introduce a viscosity disturbance μ′

that undergoes convection and diffusion and is governed by the following first order
approximation of the convection-diffusion differential equation:

(5a)
∂μ′

∂t
+ v · ∇μ∞ =

[
dμ

dφ

]
φ∞

∇ ·
[
De−E∇

(
eE

[
dφ

dμ

]
φ∞

μ′

)]

juxtaposed with the initial condition at t = 0,

(5b) μ′ = 0.

2.2. Method of solution. Generally, the velocity, pressure, and viscosity fields
are time-dependent, and (3) to (5) must be solved simultaneously. Equation (5) is
nonlinear and couples the velocity and viscosity fields. However, it will be shown that
the solution for the viscosity is time-independent, and the initial viscosity field remains
unchanged for all times. In such a case, the problem is linear, and the differential
equation (3) and boundary condition (4) imply that the velocity and pressure fields
must linearly depend upon ω. Thus, their general form in Cartesian tensor notation is

(6) vi = Vijωj , p = μ0Pjωj + p∞,

where Vij and Pj are the velocity second rank tensor and the pressure vector, respec-
tively. Substituting (6) into (3), (4) and using (2) yields

(7) λ
∂2Vij

∂xl∂xl
+

∂λ

∂xl

(
∂Vij

∂xl
+

∂Vlj

∂xi

)
=

∂Pj

∂xi
,

∂Vij

∂xi
= 0,

(8) Vij = εijkxk at |r| = a,

where Vij vanishes at infinity and εijk is the third rank permutation pseudotensor.
It is clear from (7) and (8) that Vij and Pj must be pseudotensors that depend

only on the permutation tensor εijk, the particle radius a, the radius vector xi, and its
magnitude r. The latter is due to the isotropy of the sphere and the radial symmetry
of the viscosity field. Equations (7) and (8) also prove that neither Vij nor Pj depends
on the angular velocity ω.

In this case, the velocity tensor must possess the tensorial form,

(9a) Vij = εijkxkf(r),

and the pressure vector field Pi must vanish (the only possible pseudovector that
combines εijk and xj is εijkxjxk, which is zero identically):

(9b) Pi = 0.
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Here, f(r) is a scalar function of r (and a) to be determined.
Introducing the flow field v (see (9a)) into (5) yields that the second term in the

LHS of (5) vanishes identically, and consequently the viscosity disturbance vanishes
identically. Thus, our basic assumption is validated, and the viscosity field remains
unaltered during particle rotation.

Substituting (9) into (7) yields an ordinary differential equation for f ,

(10) λ

(
d2f

dr2
+

4

r

df

dr

)
+

dλ

dr

df

dr
= 0.

From (8) and the condition at infinity we obtain that

(11) f(a) = 1 and f(∞) = 0.

The general solution of (10) subjected to boundary conditions (11) is

(12) f(r) =

∫∞
r

dr
λ(r)r4∫∞

a
dr

λ(r)r4

.

Obviously, for (12) to represent a valid solution, (9a) requires that the rf product van-
ish at infinity. Consequently, a formal solution exists even if the viscosity λ vanishes at
infinity (approaches asymptotically to zero no faster than 1/r3). Clearly, this remark-
able result is quite hypothetical, since in this case the Reynolds number at infinity
would grow without bound, and the creeping flow equations are no longer valid.

If λ is fixed, the well-known creeping flow solution for a rotating sphere in a
field with uniform viscosity is recovered. Equation (12) also manifests that the sphere
“senses” the viscosity field near the sphere boundary, whereas the far field contribution
is insignificant due to the r4 factor in the integrand denominator.

If a suspension of small particles can be perceived as a single phase fluid with
variable viscosity (say, λ is infinite inside the particles and uniform inside the sus-
pending fluid), then (12) offers an approximate solution for a rotating sphere in a
suspension. It clearly manifests the “screening” effect of the adjacent particles and
that the contribution of particles far from the rotating sphere is negligible. A more
detailed analysis of this example will be provided in section 5.

2.3. The torque exerted on the particle. The torque about the sphere center
that the fluid exerts on a rotating particle is

(13) (To)i = εijk

∫
S

xjσklnldS,

where “O” denotes the sphere center, nl is the unit vector normal to the sphere
boundary S, and σkl stands for the symmetric hydrodynamic stress,

(14) σkl = μ0ωm

[
−Pmδkl + λ

(
∂Vkm

∂xl
+

∂Vlm

∂xk

)]
,

where δkl is the second rank idem-tensor. Substitution of (9) and (12) into (14) and
(13) and utilization of the tensorial identities

(15)

∫
S

xixjdS =
4πa4

3
δij ,

∫
S

xixjxkxldS =
4πa6

15
(δijδkl + δikδlj + δilδkj)
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yields the following simple formula:

(16) (To)i = −8πμ0a
3ωiCT ,

where the dimensionless correction factor CT is

(17) CT =
1

3

(
a3

∫ ∞

a

dr

λ(r)r4

)−1

.

Thus, as expected, the torque is colinear with ω and resists the rotation of the particle.
For a fluid with uniform viscosity, the correction factor CT = 1, and the well-known
Kirchoff law for a slowly rotating sphere is recovered. Equation (17) also manifests
that the torque is significantly affected by the viscosity field close to the rotating
sphere and that the effect of the far-field viscosity is normally negligible.

It is also convenient to view μ0CT as the mean viscosity of the flow field affecting
a rotating sphere. One would expect a result that is related to a weighted mean of the
viscosity reciprocal. (E.g., the mean viscosity μ̄ of two phase fluids with viscosities μA

and μB and respective volumetric concentrations φA and φB is commonly calculated
by the formula (μ̄)−1 = φA(μA)−1 + φB(μB)−1.) However, the “screening-factor” of
r4 in (17) is not obvious.

3. A sphere translating in a field with radially varying viscosity (for
Pe � 1).

3.1. Statement of problem. A sphere of radius a translates slowly with veloc-
ity U inside an unbounded incompressible flow field v that possesses an initial radially
varying viscosity μ = μ0λ(r). The Reynolds number based on a, U , μ0, and the fluid
density is assumed to be smaller than unity, so that the quasi-steady creeping flow
equations (3) can be applied. The velocity field satisfies the no-slip condition over the
sphere boundary, namely,

(18) v = U at |r| = a,

and decays to zero at infinity.

3.2. Method of solution. The general quasi-steady solution for the velocity
and pressure fields strongly depends on the time-dependent viscosity field. As time
evolves, the radially symmetric structure of the viscosity field is no longer preserved.
Since (5) is nonlinear and couples the velocity and viscosity fields, a general analytic
time-dependent solution is probably hopeless. Notwithstanding, as we have shown
in the introduction, if the Péclet number Pe = Ua/D is much smaller than unity,
the second convection term in (5) can be neglected, and the system rapidly regains
its initial equilibrium radial distribution. Henceforth, we shall limit our discussion to
Péclet numbers much smaller than unity, so that the initial radial viscosity distribution
μ∞(r) remains practically unaltered.

Boundary condition (18) implies that the velocity and pressure fields must linearly
depend upon U. Thus, the general form of the velocity and pressure field (in Cartesian
tensor notation) is

(19) vi = VijUj , p =
μ0PjUj

a
+ p∞,

where Vij and Pj are the dimensionless velocity second rank tensor and the pres-
sure vector, respectively. It is convenient to scale distances with a and define the
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dimensionless Cartesian coordinates

(20) yi =
xi

a
, y =

r

a
=

(xixi)
1/2

a
.

Substituting (19) and (20) into (3) and using (2) yields the differential equations

(21a) λ
∂2Vij

∂yl∂yl
+

∂λ

∂yl

(
∂Vij

∂yl
+

∂Vlj

∂yi

)
=

∂Pj

∂yi
,

∂Vij

∂yi
= 0,

which are subjected to the boundary conditions

(21b) Vij = δij at |y| = 1,

and the condition that Vij , Pj vanish at infinity.
From (21), Vij and Pj must be tensors that depend only upon the second rank

tensor δij and the dimensionless radius vector y. The latter is due to the isotropy
of the sphere and the radial symmetry of the viscosity field. Equations (21a, b) also
prove that neither Vij nor Pj depends on the particle velocity U .

Consequently, the velocity and pressure tensors must possess the tensorial form

(22) Vij = yiyjg(y) + δijh(y), Pj = yjq(y),

where g(y), h(y), and q(y) are scalar functions of y to be determined.
Substitution of (22) into (21) yields three coupled ordinary differential equations

for g, h, and q,

−q + λ

(
2g +

2hy

y
+ hyy

)
+ λy(yg + hy) = 0,(23a)

−qy
y

+ λ

(
6gy
y

+ gyy

)
+ λy

(
3g

y
+ 2gy +

hy

y2

)
= 0,(23b)

4yg + y2gy + hy = 0,(23c)

and boundary conditions

(24)
g(1) = 0, h(1) = 1,[
y2g

]
y→∞ → 0, [h]y→∞ → 0, [yq]y→∞ → 0,

where the subscript y denotes differentiation with respect to y.
Elimination of h and q from (23) yields a third order equation in g:

(25) gyyy +

(
11

y
+ 2

λy

λ

)
gyy +

(
24

y2
+

14

y

λy

λ
+

λyy

λ

)
gy +

(
12

y2

λy

λ
+

3

y

λyy

λ

)
g = 0.

We define a new independent variable z,

(26) z = ln(y),

to transform (25) into

(27) gzzz +

(
8 + 2

λz

λ

)
gzz +

(
15 + 11

λz

λ
+

λzz

λ

)
gz +

(
9
λz

λ
+ 3

λzz

λ

)
g = 0,
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where the subscript z denotes differentiation with respect to z.
A remarkable, exact first integral of (27) exists (notice that (36) can serve as a

simple clue to its existence):

(28) gzz +

(
5 +

λz

λ

)
gz + 3

λz

λ
g = CD

e−3z

λ
,

where CD is a yet undetermined constant of integration, subsequently shown to relate
closely to the drag force exerted on the translating particle. Utilizing a new dependent
variable G,

(29) G(z) = e3zg(z),

equation (28) is transformed into a simplified second order differential equation:

(30) Gzz −
(

1 − λz

λ

)
Gz − 6G =

CD

λ
.

Notice that the original Stokes equation and (30) possess only first order derivatives
of the viscosity field. Hence, a second order derivative appearing in (27) is redundant
and is not truly required.

The differential equation (23c) in terms of G is

(31) hz = −e−z(G + Gz).

Upon substitution of (26) and (29) into (24), the transformed boundary conditions
are

(32)
G(z = 0) = 0, h(z = 0) = 1,

[e−zG]z→∞ → 0, [h]z→∞ → 0 [ezq]z→∞ → 0.

Thus, a workable solution scheme is as follows: A general solution of (30) for G is
obtained first; subsequently, (31) is solved for h so that boundary conditions (32) can
be applied; a solution for q is then easily obtained upon direct substitution of the
solutions for G and h into (23a).

3.3. The general expression for the drag force exerted on a translating
particle. The drag force that the fluid exerts on a translating particle can be obtained
from either of the following integrals:

(33) Fi =

∫
SB

σilnldS =

∫
S∞

σilnldS,

where SB stands for the sphere boundary and S∞ denotes any surface enclosing
the particle. The second equality in (33) can easily be proven using the divergence
theorem and applying the momentum equation ∂σil/∂xi = 0. Here, σil stands for the
hydrodynamic stress:

(34) σil = μ0Um

[
−Pmδil + λ

(
∂Vim

∂xl
+

∂Vlm

∂xi

)]
.

Substitution of (22) into (33) and (34) and utilizing identities (15) yields

(35) Fi = −4π

3
μ0aUi[y

3q(y) + 10y3λ(y)g(y) + 2y4λ(y)gy(y)],
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where y > 1 is an arbitrary radius of a sphere that encompasses the particle and
whose center coincides with that of the particle. Substitution of (23a) and (26) into
(35) yields

Fi =
4π

3
μ0aUi[λ(gzz + 5gz) + λz(gz + 3g)]e3z

=
4π

3
μ0aUiCD.

(36)

The last equality stems from (28). Thus, as expected, the drag force exerted on the
particle is independent of y (or z) and depends solely upon the single yet undetermined
constant of integration CD.

4. Particular cases for various viscosity distributions. In the following
section we focus on several particular cases exploiting the general formulas derived
in sections 2 and 3 for the torque and drag force exerted on a rotating or translating
sphere in an unbounded flow field with variable viscosity.

4.1. A rotating particle in an exponentially varying viscosity. Assume
that λ varies exponentially from 1−α, near the rotating sphere, to 1 as r approaches
infinity; namely,

(37) λ = 1 − αe−β(r−a)/a.

Here β is a positive known parameter, and α < 1 could be either a positive or a
negative parameter. The correction factor CT is calculated numerically for various
values of α and β and is illustrated in Figure 1. For α and β values smaller than
unity, (17) can be analytically evaluated, and the following result is obtained:

C−1
T = 1 + 3

∞∑
n=1

(αeβ)nE4(nβ)

=
1

1 − α
− βαeβ

2

∞∑
n=1

n(αeβ)n−1
[
e−nβ(1 − nβ) − n2β2Ei(−nβ)

]
,

(38)

where Ei and E4 are the exponential integral functions,

(39) Ei(−x) = −
∫ ∞

1

e−xt

t
dt, E4(x) =

∫ ∞

1

e−xt

t4
dt.

The RHS of (38) proves that, to leading order in α and β, the rotating sphere senses
the viscosity field close to it. This is also verified by numerically calculating CT

(depicted in Figure 1).

4.2. A translating particle. Three different cases are addressed. In case A,
a multiple-scale approximate solution of (30) is described for flow fields with weakly
varying viscosity fields. In case B, an exact solution of (30) is obtained for flow fields
with a rapidly varying viscosity field; namely, the viscosity field grows or decays expo-
nentially in z-space (or algebraically in r-space). In case C we outline an analytical/
numerical method for viscosity fields that increase asymptotically at a smaller than
exponential rate in z-space.
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Fig. 1. The dimensionless torque CT = To/(−8πμ0a3ω) exerted on a spherical particle im-
mersed in an unbounded quiescent fluid with an exponentially varying viscosity μ∞ = μ0[1 −
αe−β(r−a)/a](α < 1).

Case A: A translating particle in a weakly varying viscosity field. In case the
viscosity field varies slowly with position, the viscosity field depends upon the “slow”
variable:

(40) ζ = εz,

where ε < 1 is a smallness parameter. Thus,

(41) λ = λ(ζ), λz = ελζ .

The multiple-scale approximate method (Bender and Orszag (1999)) is applied to
solve (30). Substitution of (40) and (41) into (30) and (31) and treating z and ζ as
independent variables yields the following partial differential equations for G and h:

(42a) Gzz −Gz − 6G + ε[2Gzζ −Gζ + (λζ/λ)Gz] + ε2[Gζζ + (λζ/λ)Gζ ] = CD/λ,

(42b) hz + e−z(G + Gz) + ε[hζ + e−zGζ ] = 0.

The solutions for G, h, and the constant CD can be approximately represented by a
power series in ε:

G = G(0) + εG(1) + ε2G(2) + · · · ,(43a)

h = h(0) + εh(1) + ε2h(2) + · · · ,(43b)

CD = C
(0)
D + εC

(1)
D + ε2C

(2)
D + · · · .(43c)
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Substituting (43) into (42) and collecting terms of zero, first, and second order in ε
yields the following differential equations and boundary conditions for G(i) and h(i)

(i = 0, 1, 2):
For the zeroth order:

(44a) G(0)
zz −G(0)

z − 6G(0) = C
(0)
D /λ(ζ),

(44b) h(0)
z = −e−z(G(0) + G(0)

z ),

(44c) [G(0)]z=0 = 0, [h(0)]z=0 = 1, [e−zG(0)]z→∞ → 0, [h(0)]z→∞ → 0.

For the first order:

(45a) G(1)
zz −G(1)

z − 6G(1) = −2G
(0)
zζ + G

(0)
ζ − (λζ/λ)G(0)

z + C
(1)
D /λ(ζ),

(45b) h(1)
z = −e−z(G(1) + G(1)

z ) − h
(0)
ζ − e−zG

(0)
ζ ,

(45c) [G(1)]z=0 = 0, [h(1)]z=0 = 0, [e−zG(1)]z→∞ → 0, [h(1)]z→∞ → 0.

For the second order:

(46a)
G

(2)
zz −G

(2)
z − 6G(2) = −2G

(1)
zζ + G

(1)
ζ − (λζ/λ)G

(1)
z

−G
(0)
ζζ − (λζ/λ)G

(0)
ζ + C

(2)
D /λ(ζ),

(46b) h(2)
z = −e−z(G(2) + G(2)

z ) − h
(1)
ζ − e−zG

(1)
ζ ,

(46c) [G(2)]z=0 = 0, [h(2)]z=0 = 0, [e−zG(2)]z→∞ → 0, [h(2)]z→∞ → 0.

Further, drag force exerted on the particle is given by

(47) F =
4

3
πμ0aU(C

(0)
D + εC

(1)
D + ε2C

(2)
D + · · · ).

The zeroth order solution. The general solution of (44a) is

(48) G(0)(z, ζ) = A(0)(ζ)e3z + B(0)(ζ)e−2z − C
(0)
D

6λ(ζ)
,

where A(0)(ζ) and B(0)(ζ) are yet undetermined functions of ζ. Application of bound-
ary conditions (44c) results in

(49)

A(0)(ζ) = 0,

B(0)(ζ = 0) − C
(0)
D

6λS
= 0,

where we define

(50) λS = λ(ζ = 0) = λ(r = a).
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From (44b), (48), and (50), the solution for h(0) is

(51) h(0) = −1

3
B(0)(ζ)e−3z − C

(0)
D

6λ(ζ)
e−z,

where from (44c),

(52) −1

3
B(0)(ζ = 0) − C

(0)
D

6λS
= 1.

Thus, from (50) and (52),

(53a,b)
C

(0)
D = −9

2
λS ,

B(0)(ζ = 0) = −3

4
.

Consequently, from (47b) and (53a), the zeroth order approximation for the drag force
exerted on a spherical particle translating in a quiescent fluid with a weakly radially
varying viscosity is

(54) F(0) =
4

3
πμ0aUC

(0)
D = −6πaUμ(r = a).

Equation (54) is the well-known Stokes law; only here, to a leading order, the particle
senses the viscosity field near its surface.

It should be noted that an explicit expression for the function B(0)(ζ) is not
required to determine the zeroth order expression for the drag force. It must, how-
ever, be solved to obtain higher order corrections. Common to multiscale analyses,
B(0)(ζ) can be determined by demanding that secular terms in higher order approxi-
mations vanish. Upon substitution of (48) and (50) into (45a), the following differen-
tial equation for G(1) is obtained:

(55) G(1)
zz −G(1)

z − 6G(1) =

(
5B

(0)
ζ + 2

λζ

λ
B(0)

)
e−2z + C

(0)
D

λζ

6λ2
+

C
(1)
D

λ
.

To eliminate secular terms from the solution of G(1) we need that

(56) 5B
(0)
ζ + 2

λζ

λ
B(0) = 0.

A solution of (56) satisfying boundary condition (53b) is

(57) B(0) = −3

4

(
λS

λ(ζ)

)2/5

.

Consequently, the zeroth order solutions for G(0) and h(0) are

G(0) = −3

4

(
λS

λ(ζ)

)2/5

e−2z +
3

4

λS

λ(ζ)
,(58a)

h(0) =
1

4

(
λS

λ(ζ)

)2/5

e−3z +
3

4

λS

λ(ζ)
e−z.(58b)
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The first order correction. A general solution of (55) subjected to (56) is

(59) G(1) = A(1)(ζ)e3z + B(1)(ζ)e−2z − C
(0)
D

36

λζ

λ2
− C

(1)
D

6λ
,

where A(1) and B(1) are yet undetermined functions of ζ. Application of boundary
conditions (45c) results in

(60a,b)

A(1)(ζ) = 0,

B(1)(ζ = 0) − C
(1)
D

6λS
= − (λζ)S

8λS
,

where

(61) (λζ)S =

[
∂λ

∂ζ

]
ζ=0

=
a

ε

[
∂λ

∂r

]
r=a

.

From (45b), (58), and (59), the solution for h(1) is

(62) h(1) =
1

15

λζ

λ

(
λS

λ

)2/5

e−3z −
(
C

(1)
D

6λ
+

11

8

λζλS

λ2

)
e−z − B(1)(ζ)

3
e−3z.

Hence, from (45c),

(63)
B(1)(ζ = 0)

3
+

C
(1)
D

6λS
= −157

120

(λζ)S
λS

.

Thus, from (60b) and (63),

(64a,b) C
(1)
D = −57

10
(λζ)S , B(1)(ζ = 0) = −43

40

(λζ)S
λS

.

Consequently, from (47b) and (53a), an approximate expression for the drag force
exerted on a spherical particle is

(65)

F =
4

3
πμ0aU(C

(0)
D + εC

(1)
D ) = −6πaUμ(r = a)

{
1 + ε

19

15

(λζ)S
λS

+ O(ε2)

}

= −6πaUμ(r = a)

{
1 +

19

15
a

[
1

μ

∂μ

∂r

]
r=a

+ O(ε2)

}
.

To obtain higher order corrections a solution for B(1)(ζ) must be provided. The
differential equation governing B(1)(ζ) is obtained by demanding that secular terms
in the differential equation for B(2)(ζ) vanish.

The latter is derived upon substitution of (59) and (60a) into (46a):

(66)

G
(2)
zz −G

(2)
z − 6G(2) = e−2z

(
5B

(1)
ζ + 2

λζ

λ
B(1) −B

(0)
ζζ − λζ

λ
B

(0)
ζ

)

+C
(0)
D

(
5

18

λ2
ζ

λ3
− 7

36

λζζ

λ2

)
+ C

(1)
D

λζ

6λ2
+ C

(2)
D

1

λ
.
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Thus, the governing differential equation for B(1)(ζ) is

(67) 5B
(1)
ζ + 2

λζ

λ
B(1) = B

(0)
ζζ +

λζ

λ
B

(0)
ζ .

Subjected to boundary conditions (60b) and (46c), the solutions for B(1) and h(1) are
easily obtained:

B(1) =
3

50

(
λS

λ

)2/5 ∫ ζ

0

λ−3/5 d(λ
−2/5λζ)

dζ
dζ − 43

40

(λζ)S

λ
3/5
S λ2/5

,(68)

h(1) =

(
57

60

(λζ)S
λ

− 11

8

λζλS

λ2

)
e−z(69)

−
[

1

50

(
λS

λ

)2/5 ∫ ζ

0

λ−3/5 d(λ
−2/5λζ)

dζ
dζ

− 43

120

(λζ)S

λ
3/5
S λ2/5

− 1

15

λζ

λ

(
λS

λ

)2/5 ]
e−3z.

From (66) and (67), the general solutions for G(2), h(2) that satisfy the boundary
conditions at an infinite distance from the sphere are

G(2) = B(2)(ζ)e−2z +
5

24

λSλ
2
ζ

λ3
− 7

48

λSλζζ

λ2
+

19

120

(λζ)Sλζ

λ2
− C

(2)
D

1

6λ
,(70)

h(2) = e−3z

{
− 43

900

(
λ

λS

)3/5
(λζ)Sλζ

λ2
− 7

225

(
λS

λ

)2/5 λ2
ζ

λ2

+
1

45

(
λS

λ

)2/5
λζζ

λ
+

1

375

(
λS

λ

)2/5
λζ

λ

∫ ζ

0

λ−3/5 d

dζ
(λ−2/5λζ)dζ(71)

− 1

150

(
λS

λ

)2/5

λ−3/5 d

dζ
(λ−2/5λζ) +

1

3

∂B(1)

∂ζ
− 3B(2)

}

− e−z

{
67

24

λSλ
2
ζ

λ3
+

67

48

λSλζζ

λ2
+

627

360

(λζ)Sλζ

λ2

}
.

Application of boundary conditions (46c) yields

(72) C
(2)
D = −49703

2000

(λ2
ζ)S

λS
− 2011

400
(λζζ)S .

Hence, from (47b), a second order correction for the drag force exerted on a spherical
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particle translating in a fluid with radially symmetric viscosity is

F =
4

3
πμ0aU(C

(0)
D + εC

(1)
D + ε2C

(2)
D )

= −6πaUμ(r = a)

{
1 + ε

19

15

(λζ)S
λS

+ ε2

(
49703

9000

(λ2
ζ)S

λ2
S

+
2011

1800

(λζζ)S
λS

)
+ O(ε3)

}

= −6πaUμ(r = a)

{
1 +

19

15
a

[
1

μ

∂μ

∂r

]
r=a

+
49703

9000
a2

([
1

μ

∂μ

∂r

]
r=a

)2

+
2011

1800
a2

[
1

μ

∂2μ

∂r2

]
r=a

+ O(ε3)

}
.

(73)

Case B: A particle translating in an algebraically varying viscosity fields in r-
space. An analytic solution can easily be obtained in case the viscosity field varies
algebraically in r-space (equivalently, varies exponentially in z-space), namely,

(74) λ(z) = exp(αz) ≡ yα,

where α is an arbitrary constant. Notice that for α positive, the viscosity field in-
creases without bound at infinity or becomes rigid far from the spherical particle. For
α negative, the viscosity field vanishes at infinity, or the fluid becomes ideal far from
the particle.

Introduction of (74) into (30) yields a simple linear nonhomogeneous second order
equation with constant coefficients,

(75) Gzz − (1 − α)Gz − 6G = CD exp(−αz).

The general solution of (75) that satisfies boundary conditions (30c, d, e) at z → ∞
is

(76a) G =
CD

α− 6
exp(−αz) + C ′

1 exp(−sz) for α �= 6 and α > −1

and

(76b) G = (C ′′
1 − zCD/7) exp(−6z) for α = 6,

where CD, C ′
1, and C ′′

1 are constants of integration and

(77) s = 0.5[α− 1 +
√

(α− 1)2 + 24]

is positive for any value of α.
Notice that the condition α > −1 stems from (30e), i.e., that the viscosity field

must decay to zero no faster than 1/r to obtain a velocity and pressure fields that
vanish at an infinite distance from the particle.

Substituting (76) into (31) and integrating yields the respective expressions for h,

(78a) h = CD
1 − α

(1 + α)(α− 6)
exp[−(1 + α)z] + C ′

1

1 − s

1 + s
exp[−(s + 1)z] for α �= 6

and

(78b) h =

[
−5C ′′

1

7
+ CD

(
5z

49
− 2

343

)]
exp(−7z) for α = 6.
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Fig. 2. The dimensionless drag force CD = F/(4πμ0Ua/3) exerted on a spherical particle
immersed in an unbounded quiescent fluid with an algebraically varying viscosity μ∞ = μ0(r/a)α

(α > −1) and normalized with CD0 = −9/2, the corresponding dimensionless drag force exerted on
a particle immersed in a fluid with uniform viscosity (α = 0).

Utilizing boundary conditions (32a, b) makes it possible to determine the un-
known coefficients C ′

1 and C ′′
1 and the drag coefficient CD,

(79a)

C ′
1 = − CD

(α− 6)
, C ′′

1 = 0,

CD = − (6 − α)(1 + α)(1 + s)

2(s− α)
for α �= 6 and α > −1

and

(79b) CD = −343

2
for α = 6.

It is easy to show that CD is negative for all values of α > −1, and for α = 0 (a
uniform viscosity field) CD = CD0 = −9/2 and Stokes law is recovered. Figure 2
illustrates the ratio between the drag coefficients for any viscosity parameter α and
that of α = 0. For α approaching −1 the drag coefficient decreases to zero. Obviously,
for a very small fluid viscosity, the creeping flow approximation is no longer valid.
Notwithstanding, the limit seems to approach the result of zero drag known from
potential flow theory of ideal fluids.

Case C: A numerical algorithm. Equations (30), (31) and boundary conditions
(32) constitute a boundary value problem where conditions must be satisfied simul-
taneously at z = 0 and at infinity. A numerical shooting scheme may encounter great
difficulties despite the fact that the governing equations (30), (31) are linear. When
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the asymptotic behavior of λ satisfies the relation O(1) ≤ λ � ez as z → ∞, the
homogeneous part of (30) possesses a decaying (desired) and fast-growing (undesired)
mode (see the appendix). Consequently, assuming the known values of G and h at
z = 0 (see (32b, d)), an arbitrary value for the derivative of G at z = 0 is most likely
to yield an exponentially divergent result, due to the overwhelming contribution of
the undesired mode.

Nevertheless, a divergent solution (which may be obtained numerically from an
arbitrary set of initial conditions for G and its derivative) can be utilized to construct
convergent homogeneous and particular solutions of (30). Let us assume that GH1(z)
is a positive-definite divergent solution of the homogeneous part of (30). Utilizing
the method of variation of parameters, it is easy to show that a second independent
homogeneous solution is given by

(80) GH2(z) = GH1(z)

∫ ∞

z

ex

λG2
H1

dx

and that the particular solution of (30) with CD = 1 is given by

(81) GP (z) = −GH1(z)

∫ ∞

z

ex

λG2
H1

(∫ x

0

GH1(y)e
−ydy

)
dx.

By a simple application of l’Hopital’s rule and accounting for the asymptotic behavior
of GH1 at infinity (see the appendix), it is easy to show that GH2 vanishes at infinity
and GP approaches −1/(6λ).

A general solution that satisfies (30) is given by

(82) G = AGH1 + BGH2 + CDGP ,

where A, B, and CD are yet undetermined constants. However, A must vanish to
satisfy the vanishing boundary condition at infinity. Thus, substituting (81) into (31)
and integrating yields the general form of h,

h(z) =

∫ ∞

w=z

(GH1 +G′
H1)e

−w

[
B

∫ ∞

w

exdx

λG2
H1

−CD

∫ ∞

w

ex

λG2
H1

(∫ x

0

GH1e
−ydy

)
dx

]
dw

−
∫ ∞

x=z

1

λGH1

[
B − CD

∫ x

0

GH1e
−ydy

]
dx.

(83)

Substituting boundary conditions (32b, d) into (82) and (83) yields two linear equa-
tions for the two unknowns B and CD, which can readily be solved:

(84a) B

∫ ∞

0

exdx

λG2
H1

− CD

∫ ∞

0

ex

λG2
H1

(∫ x

0

GH1e
−ydy

)
dx = 0,

B

{∫ ∞

0

(GH1 + G′
H1)e

−z

(∫ ∞

z

exdx

λG2
H1

)
dz −

∫ ∞

0

dz

λGH1

}

− CD

{∫ ∞

0

(GH1 + G′
H1)e

−z

[∫ ∞

z

ex

λG2
H1

(∫ x

0

GH1e
−ydy

)
dx

]
dz

−
∫ ∞

0

1

λGH1

(∫ z

0

GH1e
−ydy

)
dz

}
= 1.

(84b)
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Notice that we assume that both GH1 and its derivative G′
H1 are known. Normally,

this would not require a cumbersome numerical differentiation of GH1. Indeed, the
second order equation (30) would normally be replaced by a system of two first order
equations for GH1 and G′

H1, so that a numerical solution for these functions would
be obtained simultaneously.

Several terms in (84) include integration over an infinite domain, an operation
that seems to pose some difficulty. However, due to the exponential behavior of GH1,
integration can be carried out over a finite domain without a significant loss of accu-
racy. A difficult case that involves a periodically varying viscosity is attempted in the
next chapter.

5. Homogeneous suspensions. An intriguing example is the case in which the
spherical particle rotates and translates in a spatially periodic viscosity, namely,

(85) λ(r) = 1 − α cos

[
β(r − a)

a

]
,

where α and β are known dimensionless parameters and a is the radius of the “test”
particle that moves in the field.

Equation (85) can be loosely interpreted as the local viscosity of a homogeneous
suspension. Frequently, a suspension is perceived as a single phase fluid with a homo-
geneous uniform effective viscosity that depends upon the viscosities of the constituent
fluids and their volumetric fraction. For instance, the effective viscosity of a dilute

suspension of droplets is μ0 = μ
[
1+

( 1+2.5μi/μ
1+μi/μ

)
φ
]
, where μ and μi are the continuous

fluid and droplet viscosities, respectively, and φ is the volumetric concentration of the
droplets (Taylor (1932)). It is, however, plausible to view a suspension as a nonhomo-
geneous single phase fluid that possesses periodical fluctuations in the viscosity field.
In this case, (85) represents a truncated Fourier series of the nonuniform viscosity
field. If the effective mean viscosity of the suspension is employed as the characteris-
tic viscosity μ0, (e.g., μ0 = μ(1+2.5φ) for a dilute suspension of rigid particles), then
the parameter α stands for the amplitude of the first harmonic in a Fourier series
expansion of the fluctuating viscosity field. We suggest that α is proportional to the
viscosity difference (μ0 − μ)/μ0. Thus, for a dilute suspension of rigid spheres, α is
proportional to

(86) α ∝ 2.5φ

(1 + 2.5φ)
.

Notice that, according to (85), the viscosity field near the rotating sphere is equal to
the viscosity of the suspending fluid.

It is also plausible to assume that the length-scale of viscosity variations is de-
termined by the distance between particles constituting the suspension. Thus, the
parameter β is proportional to the reciprocal of the mean distance between particles,

(87) β ∝ a

bφ−1/3
,

where b is the mean radius of a particle in the suspension. A positive α value pertains
to a dense suspension of rigid particles, while a negative value pertains to a highly
dense emulsion consisting of droplets (or bubbles) with viscosity lower than that of
the surrounding continuous fluid. A large β value pertains to a large test particle
(a/b 
 1) moving inside a dense suspension of smaller particles.
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Fig. 3. The dimensionless torque CT = To/(−8πμ0a3ω) exerted on a spherical particle im-
mersed in an unbounded quiescent fluid with a periodically varying viscosity μ∞ = μ0{1−α cos[β(r−
a)/a]} (|α| < 1).

5.1. A particle rotating inside a suspension. Substitution of (85) into (17)
yields the correction factor CT depicted in Figure 3. For very small β’s, the particles
constituting the suspension are far from the rotating particle and have almost no
effect on the moment exerted on the particle. Thus, the effective viscosity that the
rotating particle senses is that of the fluid (CT ∼ 1 − α). However, for large β’s
(the mean distance between the suspended particles is smaller than the radius of the
rotating test particle) the effective viscosity asymptotically approaches the value of
the effective viscosity μ0, irrespective of the sign of α. The latter fact coincides with
known data. (See, for instance, Almog and Brenner (1998) for a rotating test particle
in a dilute suspension.) In addition, it demonstrates that the results are insensitive to
the exact location of the particle relative to the particles comprising the suspension
(say, you replace the cosine with a sine function in (85)). For dilute suspensions or
emulsions where |α| < 0.2 and β > 16, the effective viscosity is higher than 0.98 μ0.
However, for high α values the solutions do not seem to reach the asymptotic value
of μ0. This is possibly due to the fact that the Fourier series (85) that contains only
a first harmonic term is an insufficient representation of such strongly fluctuating
viscosity fields.

5.2. A particle translating inside a dilute suspension. When α and β in
(85) are small (which pertains to the case in which a small particle is embedded in a
dilute suspension consisting of large particles), substitution of (85) into (73) yields

(88a) F = −6πaUμ0

(
1 − α +

2011

1800
αβ2 + O(β3)

)
.
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Thus, in such a case, a particle senses mainly the fluid viscosity with a second order
correction in β. Notice, however, that if a sine distribution had been assumed in (85),
the drag force would have been different,

(88b) F = −6πaUμ0

(
1 − 19

15
αβ +

49703

9000
α2β2 + O(β3)

)
,

and the particle senses the suspension viscosity to a leading order in β. A possible
explanation is that in the latter case the location of the small test particle is implicitly
closer to the large particles comprising the suspension, increasing the drag force. This
conclusion has also been noted by Almog and Brenner (1997), who showed in their
two-sphere model that a small test particle would be strongly affected by a suspended
particle adjacent to it, and as a result would spend a longer time traveling close to it.

We have shown in the Introduction that when a small particle moves inside a sus-
pension its effect on the suspension configuration is negligible, provided that the Péclet
number is smaller than unity. For a homogeneous suspension we hypothesize that the
viscosity field retains its centrally symmetric configuration for all times, with the test
particle always keeping its central position. Thus, if one desires to obtain the mean
velocity of the test particle under a fixed external force, say gravity, or the mean force
exerted on the test sphere, given that it moves with a fixed velocity, we suggest the
following method: Instead of following the particle as it moves in the suspension, one
may average over all realizations of the particle position with respect to the suspended
particles. The viscosity field is centrally symmetric and is comprised of both sine and
cosine radial distributions, accounting for a general location of the test particle with
respect to the suspended particles, namely,

(89)
μ

μ0
= λ(r) = 1 − α cos

[
β(r − a)

a
+ δ

]
,

where 0 < δ < 2π is an arbitrary phase angle with probability density p(δ). Implicitly,
δ = 0 pertains to the case in which the test particle is far from the suspended particles,
while δ = π relates to a test particle placed near the suspended particles. Substituting
(89) into (73) yields

F = −6πaUμ0

(
1 − α cos δ +

19

15
αβ sin δ +

2011

1800
αβ2 cos δ

+
49703

9000
α2β2 sin2 δ

1 − cos δ
+ O(β3)

)
.

Consequently, a small test particle of density ρp would move with a mean velocity

(90) Ū =

∫ 2π

0

Up(δ)dδ =
2(ρp − ρ)g

9μ0

√
1 − α2

[
1 − 55373

18000

α2β2

1 − α2
+ O(β3)

]
under gravity g in a suspension of density ρ, assuming that all realizations with respect
to δ are equally probable (i.e., p(δ) = 1/2π). Thus, the apparent viscosity is

(91) μapp.(constant force) =
μ0

√
1 − α2[

1 − 55373
18000

α2β2

1−α2 + O(β3)
] .

The result (91) demonstrates that the sedimentation velocity of the test particle un-
der gravity is practically determined by the suspension viscosity μ0, and that first
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order corrections in α and β vanish identically. Obviously, this result is based on the
assumption that all realizations with respect to δ are equally probable. How good is
that assumption? One may write the Fokker–Planck convection-diffusion equation for
p, an approach used previously by Batchelor (1972) and others for a dilute suspension.
However, if the Péclet number based on the diameter of the test particle is smaller
than unity, the diffusion part of the Fokker–Planck equation dominates the proba-
bility density distribution, and the assumption that p(δ) is uniformly distributed is
plausible. Surprisingly, Miliken et al. (1989), who performed experiments with large
falling spheres of different diameters under gravity in a suspension comprised of neu-
trally buoyant spheres, obtained results that concur with our conclusions despite the
fact that in those experiments the Péclet number was not small. They observed that
only for dense concentrations (φ = 0.5, 0.55) is there a noticeable effect of the ratio
between test and suspension sphere diameters.

In the case when U is forced to be constant, one could calculate the mean force
exerted on the particle to obtain the apparent viscosity. Assuming as before that all
realizations with respect to δ are equally probable, we obtain

(92) F̄ = −6πaUμ0

(
1 +

49703

4500
πα2β2 + O(β3)

)
,

and the apparent viscosity is given by

(93) μapp.(constant velocity) = μ0

(
1 +

49703

4500
πα2β2 + O(β3)

)
.

Notice that the apparent viscosities in the foregoing two different cases (91) and (93)
are identical up to first order terms in α and β. Moreover, these leading terms are
independent of the ratio between the radii of suspension particles and test particles
(as long as β is much smaller than unity). Thus, the apparent viscosities up to order φ
are identical, a very gratifying result that implies that the viscosity μ0 can be viewed
as an intrinsic property of the suspension. Only second order terms in (91) and (93)
appear to be different. However, these terms, which are of order α2 ∼ φ2 for a dilute
suspension, might be of limited value, since the expression for the viscosity field was
assumed to retain only first order terms of the Fourier expansion.

Mondy, Graham, and Jensen (1986), who measured the velocity of a test sphere
falling under gravity in a suspension of spherical rigid particles, also reached a similar
conclusion. They used velocity measurements to calculate the apparent viscosity of the
suspension (and wall effects induced by the suspension container). They concluded
that in the absence of wall effects, and for a wide range of test sphere diameters
larger than the suspended spheres, the apparent viscosity of a suspension is practically
independent of the ratio of the diameters of the test sphere and the suspended spheres.
In addition, for dilute suspensions, this apparent viscosity is essentially identical to
the shear viscosity obtained by Couette or parallel-plates rheometers (see Figure 6 in
Mondy, Graham, and Jensen (1986)).

A deviation of order φ in the apparent viscosities for constant velocity and con-
stant force cases was obtained by Almog and Brenner (1997) for a very dilute suspen-
sion. The difference in our results is likely to stem from the different configurations
assumed for the suspension. In our case the suspension is essentially perceived as
a fixed three-dimensional lattice arranged around the test particle, and its position
within the lattice is equally probable, while Almog and Brenner (1997) assumed that
only a single particle in the suspension affects the test particle at any instant, and that
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Fig. 4. The dimensionless drag force CD = F/(4πμ0Ua/3) exerted on a spherical particle im-
mersed in an unbounded quiescent fluid with a periodically varying viscosity μ∞ = μ0{1−α cos[β(r−
a)/a]} (|α| < 1) and normalized with CD0 = −9/2, the corresponding dimensionless drag force ex-
erted on a particle immersed in a fluid with uniform viscosity (α = 0).

the probability density depends on the distance between the test and the suspended
particles.

5.3. Computation of the drag force exerted on a particle translating
inside a suspension. In this section we employ the numerical scheme suggested in
section 4.2, case C, to obtain the drag force exerted on a rigid sphere translating in
a flow field with periodically varying viscosity (89), for α and β not necessarily small
and δ = 0. Thus, only the drag force exerted on a particle positioned as far as possible
from the suspended particles is considered.

Figure 4 depicts the numerical values obtained for the drag coefficient for a va-
riety of α and β values. Evidently, in the case α = 0 the viscosity field is uniform
and the drag coefficient should be CD = CD0 = −4.5, regardless of the value of β.
Indeed, this known theoretical result was utilized to measure the accuracy of our nu-
merical scheme. We observed that, replacing z = ∞ with z = 8 in (84), the error
in CD0 was about 0.1%. For very small β’s, the particles making up the suspension
are far from the translating particle and have almost no effect on the force exerted
on the particle. Thus, the effective viscosity that the translating particle senses is
that of the fluid, and CD/CD0 ∼ 1 − α. However, for larger β’s (when the mean
distance between the suspended particles is smaller than the radius of the translating
test particle) the effective viscosity reaches asymptotically the value of the effective
viscosity μ0, irrespective of the sign of α. Comparison with known data can be done
only qualitatively, since only one realization of the viscosity distribution according
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to (89) was addressed. Miliken et al. (1989) examined experimentally the effect of
falling test sphere diameter on the apparent viscosity of a dense suspension composed
of spherical rigid particles. They observed (Figure 5 in their article) that for dense
suspensions φ = (0.5, 0.55) the apparent viscosity deviates from its macroscopic aver-
age viscosity for test particles smaller than the suspended particles, while for larger
test particles the apparent viscosity is practically independent of the ratio between
the test and suspended particle radii. The value of β for a/b = 1 and φ = 0.5 is 1.26.
For this value of β, Figure 4 demonstrates that for α = 0.2 the value of apparent
viscosity deviates from the suspension viscosity by about 5%. For higher α values
this deviation increases, possibly because the Fourier expansion of the viscosity field
was limited to the first cosine term only. Nonetheless, for all α values the apparent
viscosity asymptotically reaches the suspension viscosity for increasing values of β, a
trend that was also observed by Miliken et al. (1989).

6. Summary. General solutions for the velocity and pressure fields were ob-
tained for a rotating (section 2) and translating (section 3) spherical particle moving
in an unbounded quiescent field with radially varying viscosity. An explicit formula,
(17) was obtained for the torque exerted on a rotating particle. It manifests that only
the near viscosity field affects the torque, whereas the far field is strongly screened.
General analytical expressions (22) were obtained for the velocity and pressure fields,
and a simplified expression (36) was obtained for the drag force exerted on a particle
translating in an unbounded quiescent fluid. Three particular cases were addressed:
In case A, weak radial variation of the viscosity field was assumed, and a second order
approximate analytical solution (73) was derived for the drag force. In case B, the vis-
cosity field increased or decreased algebraically, and an exact solution was obtained.
It manifests that for a vanishing viscosity at infinity the drag force vanishes, a known
result for the drag force exerted on a translating particle in ideal fluids. The latter
result is quite surprising, in light of the fact that the Stokes equation for creeping
flows is no longer a valid governing equation of the flow field. In case C, an effective
numerical algorithm was suggested, by which the drag force can also be obtained for
viscosity distributions that vary at a smaller than algebraic rate. In section 5 we ad-
dressed the difficult problem of a particle moving in a field with periodically varying
viscosity. We hypothesized that such a viscosity field can be viewed as a continuous
manifestation of a bimodal viscosity field of a suspension. For a rotating particle a
screening effect of the near viscosity field was observed, a well-known fact for a parti-
cle rotating in a suspension. For a translating particle, the results demonstrate again
that for large β’s (i.e., the mean distance between the suspended particles is smaller
than the radius of the rotating test particle) the effective viscosity asymptotically
reaches the value of the shear suspension viscosity μ0. For small values of β, namely
when the test particle is much smaller than the suspended particles, the initial drag
force exerted on the test particle is insensitive to the composition of the particles or
droplets and “senses” the viscosity of the continuous liquid only, provided that it is
positioned far from the suspended particles. However, if the particle is positioned with
equal probability at an arbitrary distance from the suspended particles, the apparent
viscosities of a dilute suspension, in case a constant external force is exerted on the
test particle or in case it is forced to move with a constant velocity, are both equal to
the shear viscosity up to first order in particle concentration.

Appendix. The asymptotic behavior of G at infinity under the asymptotic con-
dition that λz/λ � 1 as z → ∞ follows the general methods presented by Bender
and Orszag (1999). We shall first investigate the asymptotic behavior of the homo-
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geneous solution of (30). To this end, it is convenient to apply the transformation
w = 1/z, rewrite (30) in terms of w, and investigate the asymptotic behavior of (30)
near w → 0.

Thus, (30) possesses the following form:

(A1) Gww +

(
1

w2
+

2

w
+

λw

λ

)
Gw − 6G

w4
= 0.

Since w = 0 is an irregular singular point, the controlling factor of G as w → 0 is of
the form of an exponential,

(A2) G ∼ eS(w).

Substitution of (A2) into the homogeneous part (A1) yields

(A3) S′′ + S′2 = −
(

1

w2
+

2

w
+

λw

λ

)
S′ +

6

w4
.

However, since λw/λ � 1/w2 and S′′ � S′2 as w → 0, the asymptotic differential
equation that determines the controlling factor is

S′2 ∼ − S′

w2
+

6

w4
.

Thus, S′
1,2 = 2/w2,−3/w2 or S1 = −2/w and S2 = 3/w. Thus, the homogeneous

equation possesses convergent and divergent controlling factors near z → ∞,

(A4) G ∼ e3z and G ∼ e−2z.

A better leading behavior can be obtained by assuming that

(A5) S1 = − 2

w
+ C(w),

given that C � −2/w as w → 0. Substituting (A5) into (A3) and collecting leading
order terms yields

(A6) C ′ ∼ −2

5

λw

λ
or C ∼ lnλ−2/5.

Hence

(A7) G1 ∼ λ−2/5e−2z as z → ∞,

and similarly,

(A8) G2 ∼ λ−3/5e3z as z → ∞.

Not surprisingly, this local behavior was also revealed in case A, which addressed the
global behavior of G for all values of z.

The general homogeneous solution is given by

GH = C1G1 + C2G2,

where C1 and C2 are arbitrary constants. Obviously, unless C2 is identically zero, the
homogeneous solution diverges for large values of z.
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The asymptotic local behavior of the particular solution at z → ∞ is easily derived
by the method of dominant balance. The dominant term that balances the forcing
term in (30) is the last term on the LHS of the equation. Thus,

(A9) G ∼ −CD

6λ

and G′ � CD/λ and G′′ � CD/λ, since λz/λ � 1 as z → ∞. Equation (A9) is also
the leading term in (62) of case A.
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RESCUE OF THE QUASI-STEADY-STATE APPROXIMATION IN A
MODEL FOR OSCILLATIONS IN AN ENZYMATIC CASCADE∗
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aspects of mathematical biology and for whom the quasi-steady-state hypothesis was a
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Abstract. A three-variable model describing the oscillatory activity of a cascade of enzyme
reactions is analyzed. A quasi-steady-state approximation reduces the three equations to a system
of two equations which admits only a stable steady state. This apparent failure of the quasi-steady-
state approximation to describe the limit-cycle oscillations observed in the full, three-variable system
is analyzed in detail. We first show that the oscillations occur in the full system provided the
Michaelis constants are sufficiently small. We then develop a method for determining the correct
limit for application of the quasi-steady-state approximation. The leading problem consists of two
equations for a conservative oscillator, and a higher order analysis is required in order to determine
the amplitude of the limit-cycle oscillations. Finally, we observe a good agreement when comparing
exact numerical and approximate bifurcation diagrams.

Key words. enzyme reactions, limit-cycle oscillations, quasi-steady-state approximation, sin-
gular perturbation
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1. Introduction. The quasi-steady-state approximation (QSSA) of chemical ki-
netics is a mathematical way of simplifying the differential equations describing some
chemical kinetic systems. This approximation is a powerful tool for analyzing the
dynamics of enzymatic reactions [1, 2, 3] exhibiting a wide range of time scales. The
QSSA often yields revealing analytic formulas, and it frequently circumvents problems
of stiffness in the numerical integration of systems of differential equations. Origi-
nally devised by biochemists on the basis that enzymes as catalysts act with small
concentrations compared to the concentrations of their substrates, the QSSA is now
recognized as belonging to singular perturbation theory. Ideally, this theory provides
a method for the correct use of the QSSA, but it is too complicated for general use.
Various investigations of special cases, such as the Michaelis–Menten reaction [4, 5, 6],
give some indications of the applicability of the QSSA. But further clarification is
called for, especially since the QSSA is virtually unavoidable in introductory texts on
chemical or biochemical kinetics [1, 2, 3, 7, 8]. Biological oscillations often exhibit
different time or amplitude scales, and the QSSA is widely used to analyze excitability
and limit-cycle oscillations in the phase plane (see [9, 10, 11] for biochemical exam-
ples). In this paper, we concentrate on a three-variable model for the oscillations in
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Fig. 1. Bicyclic cascade model for the mitotic oscillator underlying the early cell cycle in am-
phibian embryos [16, 17]. Cyclin (C) is synthesized at a constant rate (vi) and activates cdc25
phosphatase. The activated cdc25 phosphatase in turn activates cdc2 kinase (M) by dephosphory-
lating the inactive form (M+). The activated cdc2 kinase is inactivated by the kinase wee1. In
addition, a cyclin protease X is activated by cdc2 kinase and inactivated by an additional phos-
phatase (E4). Vj (j = 1 − 4) denotes the effective maximum rate of each of the four converter
enzymes; vd denotes the maximum rate of cyclin degradation by protease X.

the embryonic cell cycle and discover that the immediate application of the QSSA
fails to describe these oscillations. Our main objective is to determine why the QSSA
failed and how we may correctly use it in our problem.

Models for biochemical oscillations often contain one or more sigmoidal
functions. Combined with positive and/or negative feedback loops, these functions
allow the emergence of simple or complex oscillatory behavior. The sigmoidal de-
pendence originates at the molecular level either from cooperative interactions in
allosteric enzymes or from the phenomenon of zero-order ultrasensitivity in which two
enzymes catalyzing opposite covalent modification reactions (e.g., phosphorylation-
dephosphorylation) are saturated by their protein substrate [12]. While allosteric
enzymes are abundant in metabolic regulation, covalent modification also plays an
important role in biological signaling and cell regulation. Models for the oscillatory
activity of allosteric enzymes have been studied analytically by taking advantage of
the relatively large values of the allosteric constants [13, 14, 15]. However, the case of
several enzymes working in a covalent modification cascade and exhibiting oscillatory
activities has never been examined from an analytical point of view. In this paper, we
consider a minimal model for biochemical oscillations underlying the embryonic cell
cycle [16, 17]. See Figure 1. This model pertains to the situation encountered in early
amphibian embryos, where the accumulation of cyclin suffices to trigger the onset of
mitosis. In yeast and somatic cells, the mechanism involves additional checkpoints;
see [2, 3, 18] and references therein. But what remains common to the various types
of cell cycle mechanisms is the fact that they rely on the periodic activation of kinase
cdc2 (also known as the cyclin-dependent kinase 1, cdk1). Cyclin activates the kinase
cdc2, which promotes the degradation of cyclin. To produce oscillations, however,



RESCUE OF THE QUASI-STEADY-STATE APPROXIMATION 307

activation and degradation cannot occur simultaneously and the negative feedback
loop must be coupled to thresholds and time delays, which are naturally associated
with phosphorylation-dephosphorylation cascades [16, 17].

The model is formulated in terms of the following three ordinary differential equa-
tions for the cyclin concentration C, the fraction of active cdc2 kinase M , and the
fraction of active cyclin protease X [16, 17]:

dC

dt
= vi − vdX

C

Kd + C
− kdC,(1)

dM

dt
= VM1

C

Kc + C

1 −M

K1 + 1 −M
− V2

M

K2 + M
,(2)

dX

dt
= VM3M

1 −X

K3 + 1 −X
− V4

X

K4 + X
.(3)

In these equations, 1−M and 1−X represent the fractions of inactive cdc2 kinase and
cyclin protease, respectively. vi and vd are the constant rate of cyclin synthesis and the
maximum rate of cyclin degradation by protease X (X = 1), respectively. Kd and Kc

denote the Michaelis constants for cyclin degradation and for cyclin activation of the
cdc25 phosphatase acting on the phosphorylated form of the cdc2 kinase, respectively.
kd represents an apparent first-order rate constant related to nonspecific degradation
of cyclin. The remaining parameters Vi and Ki (i = 1 to 4) denote the effective
maximum rates and the Michaelis constants, respectively, for each of the enzymes
Ei involved in the two cycles of phosphorylation-dephosphorylation. Moreover, the
effective maximum rates V1(C) and V3(M) are given by V1 = VM1C/(Kc + C) and
V3 = VM3M .

The parameter Kd has been introduced to avoid the possibility that C becomes
negative [16, 17]. For all our numerical solutions, however, we used Kd = 0 and
found that C is always positive. Equation (1) with Kd = 0 is linear, and the non-
linearities necessary for the limit-cycle oscillations are given by the right-hand sides
of (2) and (3). At steady state, the functions M = M(C) and X = X(M) ob-
tained by setting the right-hand sides of (2) and (3) equal to zero are sigmoidal
functions of M and X. The role of these functions for the oscillations is discussed
in [16, 17]. Examples of limit-cycle oscillations for moderate and high values of VM1

and V2 (V2/VM1 = 1/2 fixed) are shown in Figure 2. They have been obtained by
numerically solving (1)–(3). In Figure 2, top, the maximum rates VM1 and V2 are
moderate. The kinase M is activated as soon as C reaches a value close to 0.5. In
Figure 2, bottom, the maximum rates VM1 and V2 are large. In contrast to Figure 2,
top, C remains close to 0.5. Time t, concentration C, and all parameters except the
Michaelis constants have units as in [16, 17], where simulations are compared to ex-
periments. We keep these equations in this form because they appear in all previous
studies [16, 17, 30, 31].

We wish to describe the limit-cycle oscillations by using phase plane techniques.
To this end, we propose to eliminate either M or X by using a QSSA. But, as we shall
demonstrate, the reduced two-variable equations do no more than exhibit limit-cycle
oscillations. By using a singular perturbation method, we then determine the correct
two-variable limit that allows us to recover sustained oscillatory behavior. This analy-
sis involves two steps. We first show that the leading approximation of the limit-cycle
solution satisfies a two-variable conservative system of equations such as the Lotka–
Volterra equations of chemical kinetics [1]. This system gives the correct relation
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Fig. 2. Limit-cycle oscillations in the enzymatic cascade model. M is dimensionless, C is
measured in μM , and time t is measured in minutes. The values of the parameters are Kj =
K = 10−3 (j = 1 − 4) and (in min−1), VM3 = 1, V4 = 0.7, kd = 0.25; (in μM min−1), vi =
vd = 0.25; (in μM), Kc = 0.5, Kd = 0. Top: VM1 = 3 min−1 and V2 = 1.5 min−1; bottom:
VM1 = 3000 min−1 and V2 = 1500 min−1.

between the period and the amplitude of the oscillations. But in order to find how
the amplitude changes with a given control parameter, a higher order analysis leading
to a condition for bounded periodic solutions is needed. Similar singular perturbation
techniques for particular Hopf bifurcation problems have been studied for chemical
and biochemical relaxation oscillations [20], pulsating solidification fronts [21], and
pulsating laser oscillations [24, 25].

The plan of the paper is as follows. In section 2, we show the failure of the
standard QSSA and identify the source of the problem. Section 3 summarizes the
results of our analysis, leading to the correct limit. The bifurcation diagram of the
reduced two-variable equations is compared to the bifurcation diagram of the original
three-variable equations. The main results are summarized in section 4. Mathematical
details are given in appendices.

2. Failure of the QSSA. Equations (1)–(3) are too complicated for phase space
analysis. A popular technique for simplifying the problem is to apply a QSSA for one
of the dependent variables. This approximation (also called a pseudo-steady-state
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hypothesis [26], steady-state assumption [27], or adiabatic elimination [28, 29]) is
based on the assumption that the enzyme reacts so fast with the substrate that it
can be taken as being in equilibrium, that is to say, dM/dt ≈ 0 or dX/dt ≈ 0.
This approximation has been highly documented for the Michaelis–Menten reaction
[1, 2, 3, 4, 5, 6] but has been used successfully for more complex systems exhibiting
several enzymatic intermediates [2, 11]. The approximation is justified mathematically
if a small parameter multiplies the time derivative of one of the dependent variables.
This occurs in our problem if we consider the case of large values of both VM1 and V2

(or, similarly, if we consider large values of VM3 and V4). The proper way to apply
the QSSA is to introduce the large parameter V defined as

V ≡ VM1(4)

and scale V2 as

V2 = V v2,(5)

where the coefficient v2 is assumed to be an order one quantity. We may then factorize
V in the right-hand side of (2) and rewrite this equation as

V −1 dM

dt
=

C

Kc + C

1 −M

K1 + 1 −M
− v2

M

K2 + M
.(6)

The coefficient of dM/dt is small because V is large. Thus, unless dM/dt is large, we
may neglect this term and formulate the following algebraic equation for M and C:

C

Kc + C

1 −M

K1 + 1 −M
− v2

M

K2 + M
= 0.(7)

The QSSA is the assumption V −1dM/dt = 0. Solving (7) for M and introducing
M = M(C) into (1) and (3) leads to two equations for only C and X. The two-variable
problem represents a major simplification of our original three-variable equations, and
we wonder if this reduced problem still admits limit-cycle oscillations. To this end,
we examine the linear stability of the unique steady state (C,X) = (Cs, Xs). We find
that the coefficients of the characteristic equation for the growth rate σ are always
positive. This means that Re(σ) is negative, implying stability of the steady state. A
similar conclusion is obtained if we consider the case when VM3 and V4 are large and
eliminate the variable X.

We have thus found that a naive QSSA which allowed us to eliminate either M or
X fails to describe the limit-cycle oscillations. But this approximation is nothing else
than the leading term of an asymptotic solution and, like any asymptotic solution,
it may admit different limits depending on the values of the other parameters in the
problem. Returning to the original three-variable equations (1)–(3), we numerically
investigate the behavior of the limit-cycle oscillations for progressively larger values
of V = VM1 and V2 (v2 = V2/VM1 fixed). We find that these oscillations persist
only if we decrease the Michaelis constants Kj . The importance of these constants
can be substantiated analytically by analyzing the Hopf bifurcation conditions in the
double limits V → ∞ and Kj = K → 0 (j = 1, 4). The detailed analysis is given in
Appendix A, where we show that the Hopf bifurcation point K = KH(V ) scales like

KH ∼ V −1/2(8)
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Fig. 3. Hopf bifurcation line in the (K,V ) parameter space. V ≡ VM1 and V2 = VM1/2. The
values of the other parameters are the same as in Figure 2. For progressively larger values of the
maximum rate V, it is necessary to decrease the Michaelis constants (all equal to K) in order to
keep the limit-cycle oscillations.

as V → ∞. Figure 3 shows the exact numerical Hopf bifurcation line for large values
of V . It is in very good agreement with the approximation (47) derived in Appen-
dix A. At a fixed value of V , the unique steady state undergoes a Hopf bifurcation at
K = KH , and the steady-state solution is unstable if K < KH . From the Hopf condi-
tions, we also learn that the frequency ωH of the oscillations at the Hopf bifurcation
point scales like

ωH ∼ V 1/4(9)

as V → ∞, suggesting a short period oscillation for V large. We conclude that the
QSSA based on the sole limit V → ∞ cannot describe the oscillations unless we scale
K as a V −1/2 quantity and introduce a new time proportional to V 1/4t. In [16, 17],
the value of V was much lower, allowing a larger K, for the observation of sustained
oscillations.

3. Rescue of the QSSA. Phosphorylation-dephosphorylation cascades were
already analyzed in the limit of small values of the Michaelis constants [19]. The
difficulty here is that we need to scale both the maximum velocities and the Michaelis
constants in order to describe the oscillations. Using the definitions (4) and (5), and
motivated by the scaling laws (8) and (9), we introduce a small parameter ε, defined
by

ε ≡ V −1/4,(10)

and scale the parameters V2 and Kj (j = 1 − 4) with respect to ε as

V2 = ε−4v2 and Kj = ε2kj (j = 1 − 4).(11)
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In (11), v2 and kj are assumed to be order one coefficients. We also take into ac-
count (9) by introducing a new basic time T defined by

T ≡ ε−1t.(12)

Inserting (10)–(12) into (1)–(3) gives

ε−1 dC

dT
= vi − vdX

C

Kd + C
− kdC,(13)

dM

dT
= ε−3

[
C

Kc + C

1 −M

ε2k1 + 1 −M
− v2

M

ε2k2 + M

]
,(14)

ε−1 dX

dT
= VM3M

1 −X

ε2k3 + 1 −X
− V4

X

ε2k4 + X
.(15)

Our QSSA now means the solution of these equations in the limit ε small. The analysis
is long and tedious and is relegated to Appendix B. The results of our analysis are,
however, simple and are summarized as follows for the case Kd = 0.

The leading approximation of the solution of (13)–(15) is described in terms of
the variables M , U , and W , where U and W are defined as the deviations of C and
X from their steady-state values

U ≡ ε−2(C − C0) and W ≡ ε−1(X −X0).(16)

In (16), C0 and X0 represent the steady-state values of C and X evaluated at Kj = 0
(j = 1 − 4). They are defined as

C0 ≡ Kcv2

1 − v2
and X0 ≡ (vi − kdC0)

vd
.(17)

The leading order equations for M and W are then given by

F ′(M)
dM

dT
= −vdW,(18)

dW

dT
= VM3M − V4,(19)

where

F (M) ≡ Kcv2

(1 − v2)2

[
k1

1 −M
− k2

M

]
(20)

and

U = F (M).(21)

Equations (18) and (19) form a conservative system of equations which admits a
one-parameter family of periodic solutions. See Figure 4. For each point in the
phase plane (W,M), there exists a closed orbit surrounding the center located at
(W,M) = (0, V4/VM3). As the amplitude of the orbit increases, the period increases.
The orbit becomes more and more rectangular and spends most of its time near M = 1
and M = 0.
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Fig. 4. Orbits in the phase plane (W,M) obtained numerically from (18)–(20). The values of
the parameters are v2 = 0.5, VM3 = 1, VM4 = 0.7, vd = 0.25, k1 = k2 = 1, Kc = 0.5. Each orbit
corresponds to a periodic solution starting from a different initial point. M(0) = V4/VM3 = 0.7 and
W (0) = −0.1,−1,−5,−10 from the smallest to the largest orbit. The arrows indicate the direction
of the time evolution.

We now select the orbit of period P in the family of periodic solutions of (18)
and (19). It is denoted by U = UP (T ), W = WP (T ), and M = MP (T ). In order to
determine how the period P (or equivalently, UP (T ), WP (T ), or MP (T )) changes as
we change a parameter, a higher order analysis is needed. This analysis is detailed in
Appendix B. It leads to a solvability condition for bounded periodic solutions given
by

vdVM3
Kc

(1 − v2)2

∫ P

0

(
dMP

dT

)2

dT − kd

∫ P

0

(
dUP

dT

)2

dT = 0.(22)

The two integrals must be computed numerically. This condition is the bifurcation
equation since it relates the period of the oscillations and the physical parameters. In
the limit of small amplitude solutions, dU/dT = F ′(M0)dM/dT , where M0 = V4/VM3,
and with k1 = k2 = k, (22) reduces to[

vdVM3
Kc

(1 − v2)2
− kdF

′2(M0)

] ∫ P

0

(
dMP

dT

)2

dT = 0(23)

which implies, using (20), that

k = kH ≡
√

vdVM3

kdKc

(1 − v2)

v2

[
1

(1 −M0)2
+

1

M2
0

]−1

.(24)

Using now K = V
−1/2
M1 k and v2 = V2/VM1, expression (24) exactly matches the

expression of the Hopf bifurcation point (47) obtained from the linearized theory
in Appendix A. The expression (47) also is in excellent agreement with the exact
numerical Hopf bifurcation line shown in Figure 3. We have thus verified that the
bifurcation equation (22) correctly leads to the Hopf bifurcation point in the limit of
small amplitude periodic solutions.
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We next wish to find from (18)–(22) how the amplitude of the oscillations changes
as we change the deviation k − kH . To this end, we introduce

W =
√
kw and T =

√
ks(25)

into (18), (19) and obtain two equations for M and w that do not depend on k. They
are of the form

f ′(M)
dM

ds
= −vdw,(26)

dw

ds
= VM3M − V4,(27)

where

f(M) ≡ Kcv2

(1 − v2)2

[
1

(1 −M)
− 1

M

]
.(28)

Furthermore, substituting (25) into the bifurcation equation (22) leads to an expres-
sion for k2 given by

k2 =
vdVM3Kc

kd(1 − v2)2

∫ P

0

(
dMP

ds

)2
ds∫ P

0
f ′2(M)

(
dMP

ds

)2
ds

.(29)

The bifurcation equation (29) is now ready to be solved numerically: k appears only
in the left-hand side, and the right-hand side is a function of the amplitude of the
solution. Practically, we determine a P -periodic solution of (26) and (27) using the
initial conditions

M(0) = V4/V3M and w(0) = E,(30)

where E is the parameter (in Figure 4, the orbits of different solutions are shown for
E = −0.1, −1, −5, and −10). We then compute the two integrals in (29) and evaluate
k2. From an analysis of (26) and (27) in the phase plane, we note that w = ±E are the
two extrema of w(s). By gradually changing E from zero, we determine the function
E = E(k2). Knowing E, we determine the extrema of W and X using first (25) and
then (16). The bifurcation diagram of the extrema of X is shown in Figure 5 by the
solid lines. As the amplitude of the periodic solutions increases, the Hopf bifurcation
branch is first subcritical (K > KH) and then folds back.

4. Discussion. The QSSA is widely used in the study of oscillations in biolog-
ical and physical systems as a means to analyze limit-cycle behavior in the phase
plane. Focusing on a biochemical model for limit-cycle oscillations in the embryonic
cell cycle, we showed that a routine application of the QSSA leads to a two-variable
system of equations that does not exhibit sustained oscillations. This apparent failure
of the QSSA is, however, not a limitation of the method. We need to remember that
the QSSA originates from an asymptotic method that considers a specific limit of a
parameter (here the limit VM1 = V large assuming V2/V1M fixed). From the Hopf
bifurcation conditions, we showed that periodic solutions can be found only in the
full system if we consider small values of the Michaelis constants. The correct scaling
between these parameters and the other parameters in the model is provided by a
careful analysis of the Hopf bifurcation conditions. A nonlinear analysis motivated by
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Fig. 5. Maximum and minimum of the oscillations in X as a function of K. The approxima-
tion of the bifurcation diagram (solid lines) is compared to the bifurcation diagram of the original
evolution equations (1)–(3) (dots). Parameter values are the same as in Figure 4. We represent the
extrema of X as a function of K. The horizontal line is the steady state X = 0.5 which is unstable
if K < KH � 1.963 × 10−3. The value of ε = 0.135. The agreement becomes better if we consider
smaller values of ε (i.e., higher values of VM1 and V2).

these scalings then leads to a two-variable problem as the leading approximation. This
problem admits conservative oscillations and therefore does not provide the bifurca-
tion diagram of the amplitude of limit-cycle oscillations as a function of the control
parameter. A higher order analysis was necessary in order to derive the bifurcation di-
agram. In other words, the limit-cycle solution is captured by a two-variable problem
as one particular orbit in a family of periodic solutions, but the relation of this orbit
to a specific value of the control parameter requires an extra solvability condition. In
the strict spirit of the QSSA, the technique, even corrected by taking into account
the scaling between parameters, is unable to provide a two-variable system exhibiting
limit-cycle oscillations. However, it is not a limitation of the singular perturbation
method, which tell us how to rescue the QSSA by supplementing it with a solvability
condition.

Our results came from investigating two orders of a perturbation analysis after
scaling parameters and variables with respect to a small parameter ε. It is not a
local analysis near a Hopf bifurcation point because M is arbitrary even if C and X
are assumed close to their steady-state values. This is why we obtained the global
bifurcation diagram in Figure 5. An alternative to the perturbation theory is possible
if we directly introduce the new variables T , U , and W into the original equations
(1)–(3). Inserting (16) into (13)–(15) and simplying, we obtain the following equations
for U , M , and W :

dU

dT
= −vdW − εkdU,(31)
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dM

dT
= ε−1

⎡
⎣ U(1−v2)

2(1−M)−v2(Kc+ε2U(1−v2))k1

(Kc+ε2U(1−v2))(1−M+ε2k1)

+ v2k2

M+ε2k2

⎤
⎦ ,(32)

dW

dT
= VM3

M(1 −X0 − εW )

1 −X0 − εW + ε2k3
− V4

X0 + εW

X0 + εW + ε2k4
,(33)

where X0 is defined as in (17). The ε−1 term multiplying the right-hand side of (32)
suggests that M will quickly approach a two-dimensional slow manifold. In this paper,
we concentrated on the limit-cycle solution and did not investigate the evolution
towards this slow manifold.

The standard QSSA failed in our three-variable model because the small parame-
ter that motivated the elimination of one of the dependent variables also controlled the
time scale of the remaining variables. This problem is known for two-variable models
exhibiting relaxation oscillations [20] and for the standard laser rate equations [22].
A change of variables allows us to eliminate the singular perturbation difficulty. For
three-variable systems, the problem has been analyzed for laser dynamical systems
[23, 24, 25].

Appendix A. Linear theory. The Hopf bifurcation boundaries were inves-
tigated only numerically [30, 31]. In this appendix, we determine analytically the
steady-state solution of (1)–(3) and its Hopf bifurcation point for the particular case
when

Kd = 0 and Kj = K (j = 1 − 4).(34)

The steady-state solution (C,M,X) = (Cs,Ms, Xs) satisfies the following three con-
ditions:

vi − vdX − kdC = 0,(35)

VM1C

Kc + C

1 −M

K + 1 −M
− V2M

K + M
= 0,(36)

VM3M
1 −X

K + 1 −X
− V4

X

K + X
= 0.(37)

If K → 0, the steady state (Cs,Ms, Xs) approaches the limit (C0,M0, X0). From
(35)–(36) with K = 0, we find

C0 =
KcV2

VM1 − V2
> 0, M0 =

V4

VM3
, and X0 =

vi − kdC0

νd
> 0.(38)

Introducing the deviations u = C−Cs, v = M −Ms, and w = X −Xs, the linearized
problem is given by⎛

⎝ u′

v′

w′

⎞
⎠ =

⎛
⎝ −kd 0 −vd

VM1Kc

(Kc+C)2
1−M

K+1−M −F1 0

0 VM3
1−X

K+1−X −F2

⎞
⎠

⎛
⎝ u

v
w

⎞
⎠ ,(39)

where we have omitted the subscript s for the steady state. F1 and F2 are positive
coefficients defined by

F1 ≡ K

[
C

Kc + C

VM1

(K + 1 −M)2
+

V2

(K + M)2

]
,

F2 ≡ K

[
VM3M

(K + 1 −X)2
+

V4

(K + X)2

]
.(40)
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From (39), we formulate the characteristic equation for the growth rate σ as

σ3 − T1σ
2 + T2σ − T3 = 0,(41)

where

T1 = −kd − F1 − F2,

T2 = kd(F1 + F2) + F1F2,

T3 = −kdF1F2 − VM3VM1vd
1 −X

K + 1 −X

Kc

(Kc + C)2
1 −M

K + 1 −M
.(42)

The conditions for a Hopf bifurcation are obtained by substituting σ = iω into (41)
and by separating the real and imaginary parts. We find

T1T2 − T3 = 0 and σ2 = T2 > 0.(43)

The second condition is always verified. In order to satisfy the first condition, we
determine T1T2 − T3 and obtain

T1T2 − T3 = −k2
d(F1 + F2) − kd(F1 + F2)

2 − (F1 + F2)F1F2

+ VM3VM1vdKc
1 −X

K + 1 −X

1

(Kc + C)2
1 −M

K + 1 −M
.(44)

We wish to determine an approximation of (44) in the double limit K small and V
large (VM1/V2 fixed). To this end, we need the leading expressions of F1 and F2 for
K small. From (40) and using (38), we obtain

F1 � V2K

(
1

(1 −M0)2
+

1

M2
0

)
and F2 � V4K

(
1

(1 −X0)2
+

V4

X2
0

)
.(45)

We next consider the limit V2 large (VM1/V2 fixed). In this limit, F1 	 F2 and
(44) simplifies as

T1T2 − T3 � −kdF
2
1 + VM3VM1vd

Kc

(Kc + C0)2

=

⎡
⎣ −kdV

2
2 K

2
(

1
(1−M0)2

+ 1
M2

0

)2

+ VM3vd
(VM1−V2)

2

KcVM1

⎤
⎦ ,(46)

where we eliminate C0 using (38). The Hopf bifurcation point satisfies the condition
T1T2−T3 = 0. Using (46) we find an expression of the Hopf bifurcation point K = KH

given by

KH =
(VM1 − V2)

V2

√
VM1

√
VM3vd
kdKc

[
1

(1 −M0)2
+

1

M2
0

]−1

.(47)

We have verified that this approximation compares well with the exact numerical
solution shown in Figure 3. From (47), KH scales like V −1/2 as V → ∞ (V ≡ VM1,
V2/VM1 fixed). We also note from (43) that the frequency of the oscillations scales
like

ω =
√
T2 �

√
kdF1 = O(

√
V2K) = O(V 1/4).(48)
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We conclude that a Hopf bifurcation is possible in the quasi-steady-state limit V =
VM1 → ∞ (V2/VM1 fixed) provided that K is sufficiently small. The steady-state
solution is unstable if T1T2 − T3 < 0, which implies the inequality K < KH .

Appendix B. Nonlinear bifurcation theory. Our starting point is (13)–(15),
which we rewrite as

dC

dT
= ε

[
vi − vdX

C

Kd + C
− kdC

]
,(49)

ε3 dM

dT
=

C

Kc + C

1 −M

ε2k1 + 1 −M
− v2

M

ε2k2 + M
,(50)

dX

dT
= ε

[
VM3M

1 −X

ε2k3 + 1 −X
− V4

X

ε2k4 + X

]
(51)

so that all powers of ε are positive. We next seek a periodic solution of the form

C = C0 + εC1 + ε2C2 + · · · , M = M0 + εM1 + ε2M2 + · · · ,
and X = X0 + εX1 + ε2X2 + · · · .

(52)

After introducing (52) into (49)–(51), we equate to zero the coefficients of each power
of ε. This leads to a sequence of problems for the coefficients in (52). The leading
order equations are

dC0

dT
= 0,

C0

Kc + C0
− v2 = 0,

dX0

dT
= 0.(53)

Equation (53) admits the solution

C0 =
Kcv2

1 − v2
and X0 = cst,(54)

where X0 is an unknown constant. The fact that X0 and M0 are unknown motivates
the higher order analysis. The next problem is O(ε) and is given by the following
three equations:

dC1

dT
= vi − vdX0

C0

Kd + C0
− kdC0,(55)

KcC1

(Kc + C0)2
= 0,(56)

dX1

dT
= VM3M0 − V4.(57)

From (56) and then from (55), we find C1 and X0 as

C1 = 0 and X0 =
(vi − kdC0)(Kd + C0)

vdC0
.(58)

We have determined X0 but M0 is still unknown. Thus, we consider the next problem,
which is O(ε2):

dC2

dT
= −vd

C0

Kd + C0
X1,(59)

KcC2

(Kc + C0)2
− C0

Kc + C0

k1

1 −M0
+ v2

k2

M0
= 0,(60)

dX2

dT
− VM3M1 = 0.(61)
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From (60), we may determine M0 as a function of C2. Specifically, we define M0 =
G(C2) as the implicit solution of

C2 = F (M0) =
Kcv2

(1 − v2)2

[
k1

1 −M0
− k2

M0

]
.(62)

From (57) and (59), we eliminate X1 and formulate a second-order differential equa-
tion for C2:

d2C2

dT 2
+

vdC0

Kd + C0
[VM3G(C2) − V4] = 0.(63)

This equation is conservative and admits a one-parameter family of periodic solutions.
This can be demonstrated in the phase plane by determining a first integral. The
conservative nature of the oscillations means that the amplitude is arbitrary, and we
still need to examine the higher order problem.

An equation for X2 is already given by (61). From the O(ε3) equations, we obtain
equations for C3 and M1 given by

dC3

dT
= −vdX2

C0

Kd + C0
− vdX0

Kd

(Kd + C0)2
C2 − kdC2(64)

and

dM0

dT
=

KcC3

(Kc + C0)2
− C0

Kc + C0

k1M1

(1 −M0)2
− v2

k2M1

M2
0

.(65)

Using (65), we determine M1 as

M1 = G′(C2)C3 −
Kc

(1 − v2)2
G′(C2)

2 dC2

dT
.(66)

Then, using (61), (64), and (66), we obtain

d2C3

dT 2
+ vd

C0

Kd + C0
VM3G

′(C2)C3 = vd
C0

Kd + C0
VM3

Kc

(1 − v2)2
G′(C2)

2 dC2

dT

−
[
vdX0

Kd

(Kd + C0)2
+ kd

]
dC2

dT
.

(67)

By differentiating (63) with respect to T , we note that the homogeneous linear problem
for C3 admits the solution C3H = dC2/dT . The condition for a bounded periodic
solution then implies that the right-hand side of (67) satisfies a solvability condition
(Fredholm alternative [32]). Because the homogeneous problem is self-adjoint, this
condition requires that the right-hand side is orthogonal to C3H . This leads to the
integral

∫ P

0

⎡
⎣ vd

C0

Kd+C0
VM3

Kc

(1−v2)2
G′(C2)

2

−
(
vdX0

Kd

(Kd+C0)2
+ kd

)
⎤
⎦(

dC2

dT

)2

dT = 0(68)

and is the bifurcation equation. This equation can be further simplified, noting that

G′(C2)
2

(
dC2

dT

)2

=

(
dM0

dT

)2

.(69)
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Equation (68) is then reformulated as

∫ P

0

⎡
⎣ vd

C0

Kd+C0
VM3

Kc

(1−v2)2

(
dM0

dT

)2
−
(
vdX0

Kd

(Kd+C0)2
+ kd

) (
dC2

dT

)2
⎤
⎦ dT = 0.(70)

This condition determines the amplitude of the oscillations as a function of the phys-
ical parameters. If Kd = 0, it reduces to condition (22), which is analytically and
numerically investigated.
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THE TRIPLE POINT PARADOX FOR THE NONLINEAR WAVE
SYSTEM∗
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Abstract. We present numerical solutions of a two-dimensional Riemann problem for the non-
linear wave system which is used to describe the Mach reflection of weak shock waves. Robust low
order as well as high resolution finite volume schemes are employed to solve this equation formulated
in self-similar variables. These, together with extreme local grid refinement, are used to resolve the
solution in the neighborhood of an apparent but mathematically inadmissible shock triple point.
Rather than observing three shocks meeting in a single standard triple point, we are able to detect
a primary triple point containing an additional wave, a centered expansion fan, together with a se-
quence of secondary triple points and tiny supersonic patches embedded within the subsonic region
directly behind the Mach stem. An expansion fan originates at each triple point. It is our opinion
that the structure observed here resolves the von Neumann triple point paradox for the nonlinear
wave system. These solutions closely resemble the solutions obtained in [A. M. Tesdall and J. K.
Hunter, SIAM J. Appl. Math., 63 (2002), pp. 42–61] for the unsteady transonic small disturbance
equation.
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1. Introduction. Experiments in which a weak shock wave reflects off a thin
wedge appear to show a pattern of reflection in which three shocks meet at a triple
point. However, the von Neumann theory of shock reflection [11] shows that Mach
reflection, in which three shocks and a contact discontinuity meet at a triple point, is
impossible for weak shocks. This apparent disagreement between theory and experi-
ment was pointed out by von Neumann in 1943 and is referred to as the von Neumann,
or triple point, paradox [8, 13].

In [13] numerical solutions were obtained of a problem for the unsteady tran-
sonic small disturbance equations that describes the reflection of weak shocks off thin
wedges. The solutions were obtained in a parameter range where regular reflection is
impossible, and contain a sequence of triple points in a tiny region behind the leading
triple point, with a centered expansion fan originating at each triple point. It was
shown that the triple points with expansion fans observed numerically are in fact con-
sistent with theory, and that the presence of the expansion fans at the triple points
resolves the paradox. A solution containing a supersonic patch and an expansion fan
was first proposed by Guderley [5, 6]. Although Guderley did not offer evidence that
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this is what really occurs nor suggest that there is actually a sequence of expansion
fans and triple points to resolve the triple point paradox, the term Guderley Mach
reflection was chosen in [14] to name this new reflection pattern.

The nonlinear wave system is a simplification of the isentropic Euler equations
obtained by dropping the momentum transport terms from the momentum equations
[4]. Compared to the unsteady transonic small disturbance equations, the nonlinear
wave system is closer in structure to the Euler equations: it is linearly well-posed
in space and time, it has a characteristic structure similar to the Euler equations,
and change of type takes the equations from a hyperbolic to a mixed-type system.
These features make the nonlinear wave system a useful prototype for studying two-
dimensional Riemann problems for the full Euler equations.

A problem for the nonlinear wave system that is the analogue of the reflection of
weak shocks off thin wedges was studied in [3]. In a parameter range where regular
reflection is not possible, the authors showed existence of the subsonic solution behind
the Mach shock and reflected wave by solving a free boundary problem for the Mach
shock. They did not find the actual reflected shock, but instead based their solution
on modeling it as a continuous function with a singularity in the derivative at the
sonic boundary. They showed that the composite solution they obtained is not a
weak solution near the sonic line. The actual solution, therefore, is different from
the construction they present, and they suggest two alternatives. Since triple point
solutions do not exist for the nonlinear wave system, one possibility is that the reflected
shock is a weak shock that has zero strength at the reflection point. Another possibility
is Guderley Mach reflection, as obtained in [13].

Several numerical solutions of the weak shock reflection problem for the nonlinear
wave system have been computed. In separate work, R. Sanders, A. Kurganov, and
M. Lukacova-Medvidova (all unpublished; see [9]) computed numerical solutions of
the problem studied in [3] over a wide range of parameter space where regular re-
flection is impossible. None of these solutions, however, are sufficiently well resolved
to determine the nature of the solution near the apparent triple point. For example,
it cannot be determined from any of these solutions whether the reflected shock has
zero strength at the triple point, or if some other reflection pattern, such as Guderley
Mach reflection, occurs. In fact, in the best resolved of these solutions, three shocks
do appear to meet at a triple point—the triple point paradox.

In this paper we present high resolution numerical solutions of the shock reflection
problem for the nonlinear wave system. Our most highly resolved solution shows that
Guderley Mach reflection occurs at a set of parameter values where regular reflection
is impossible: there is a sequence of supersonic patches behind the leading triple
point, formed by a sequence of expansion fans and shocks that reflect between the
sonic line and the Mach shock. This numerical solution is remarkably similar to those
obtained for the unsteady transonic small disturbance equations in [13], and as in [13]
the numerical results suggest that the sequence of triple points in an inviscid weak
shock Mach reflection may be infinite.

Recent experimental evidence appears to confirm that the resolution of the triple
point paradox obtained in [13] and again in the present paper is correct. Skews
and Ashworth in [12] obtained schlieren photographs of shock reflection experiments
which show a sequence of shocks and expansion waves behind the triple point in a
weak shock Mach reflection. The supersonic region is extremely small, as discussed
in [13], which is why it had never been observed before. Skews and Ashworth over-
came this difficulty by using a specially designed shock tube and flow visualization
enhancement techniques.
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The numerical solutions of Sanders, Kurganov, and Lukacova-Medvidova were
obtained by solving an initial-value problem for the unsteady nonlinear wave system.
The problem of inviscid shock reflection off a wedge is self-similar, and there are
advantages to solving the problem in self-similar, rather than unsteady, variables.
In the unsteady formulation any waves which are present initially move through the
numerical domain, making local grid refinement strategies difficult. By contrast, a
solution of the self-similar equations is stationary, and local grid refinement near the
triple point is much easier to implement. Moreover, in self-similar variables a global
grid continuation procedure can be used in which a partially converged solution on
a coarse grid is interpolated onto a fine grid, and then driven to convergence on the
fine grid. In this paper we present numerical solutions of the shock reflection problem
for the nonlinear wave system computed in self-similar coordinates. Procedures for
solving the unsteady transonic small disturbance equations in self-similar variables
were developed in [13], and are extended here to apply to the nonlinear wave system.

This paper is organized as follows. In section 2 we describe the shock reflection
problem for the nonlinear wave system. In section 3 we discuss our approach to solving
this problem numerically. The numerical results obtained are presented in section 4.
In section 5 we discuss questions raised by our results. Finally, we summarize our
findings in section 6.

2. The shock reflection problem for the nonlinear wave system. We
consider a problem for the nonlinear wave system that is analogous to the reflection
of weak shocks off thin wedges [3]. The shock reflection problem consists of the
nonlinear wave system

ρt + (ρu)x + (ρv)y = 0,(2.1)

(ρu)t + p(ρ)x = 0,

(ρv)t + p(ρ)y = 0

in the half space x > 0 with piecewise constant Riemann data consisting of two
states separated by a discontinuity located at x = κy. Here, ρ(x, y, t) is the density,
u(x, y, t) and v(x, y, t) are the x and y components of velocity, respectively, and p(ρ)
is the pressure. For convenience, we assume a polytropic gas law

p(ρ) = Cργ ,

where C is a constant and γ is the ratio of specific heats. Letting U = (ρ,m, n) denote
the vector of conserved variables, where m = ρu and n = ρv, the Riemann data are

U(x, y, 0) =

{
U1 ≡ (ρ1, 0, 0) if x < κy,
U0 ≡ (ρ0, 0, n0) if x > κy.

(2.2)

We choose ρ0 > ρ1 to obtain an upward moving shock in the far field, and determine
n0 so that the one-dimensional wave between U0 and U1 at angle κ consists of a shock
and a contact discontinuity with a constant middle state between them. The following
expression for n0 was obtained in [3]:

(2.3) n0 =
1

κ

√
(1 + κ2)(p(ρ0) − p(ρ1))(ρ0 − ρ1).

Strictly speaking, data for reflection from a wedge of angle θ radians would explic-
itly include the wedge as a discontinuous change of slope, of angle θ, in the boundary
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at the point (0, 0). In replacing a domain that imitates the physics by a half-plane
(x > 0), we are assuming that the reflection pattern near the apparent triple point
is a local phenomenon. The physical wedge angle θ in this model is related to κ in
(2.2), (2.3) by

(2.4) θ = tan−1(1/κ).

This problem depends on two parameters: the inverse slope κ of the incident
shock, and the incident shock strength ρ0/ρ1 (see Appendix A). For values of κ greater
than a critical value κR which depends on ρ0 and ρ1, a regularly reflected solution
of (2.1)–(2.3) is impossible. In addition, triple point solutions of (2.1), in which
three plane shocks separated by constant states meet at a point, do not exist (see
Appendix B for a proof of this). We note that a self-similar solution in which three
shocks and a linear wave meet at a point can be constructed. However, this is not
consistent with the initial data, since (2.1) implies (my − nx)t = 0, even for weak
solutions, and slip lines are characterized by nonzero values of my − nx. Therefore,
Mach reflection cannot occur when regular reflection becomes impossible, and the
shock reflection problem for the nonlinear wave system embodies the triple point
paradox in an essential form.

The problem (2.1)–(2.3) is self-similar, so the solution depends only on the simi-
larity variables

ξ =
x

t
, η =

y

t
.

We write (2.1) in the form

(2.5) Ut + Fx + Gy = 0,

where

U = (ρ,m, n), F = (m, p, 0), and G = (n, 0, p).

Writing (2.5) in terms of ξ, η, and a pseudo-time variable τ = log t, we obtain

(2.6) Uτ − ξUξ − ηUη + Fξ + Gη = 0.

As τ → +∞, solutions of (2.6) converge to a pseudosteady, self-similar solution that
satisfies

(2.7) −ξUξ − ηUη + Fξ + Gη = 0.

Equation (2.7) is hyperbolic when c2(ρ) < ξ2+η2, corresponding to supersonic flow in
a self-similar coordinate frame, and of mixed type when c2(ρ) > ξ2+η2, corresponding
to subsonic flow. Here, c(ρ) =

√
pρ denotes the local sound speed. The equation

changes type across the sonic line given by

ξ2 + η2 = c2(ρ).(2.8)

3. The numerical method. In order to solve (2.6) numerically, we write it in
conservative form as

(3.1) Uτ + (F − ξU)ξ + (G− ηU)η + 2U = 0.
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Fig. 1. A schematic diagram of the computational domain. AD is the wall and ABCD is
the far field numerical boundary. The incident shock enters the computational domain normal to
BC. The incident (right of T ), reflected (below T ), and Mach (left of T ) shocks meet at the triple
point T .

In self-similar variables, the nonlinear wave system has the form of the unsteady
equations (2.5) with modified flux functions and a lower-order source term.

The essential feature of the numerical method is the capability to locally refine the
grid in the area of the apparent triple point. We designed several nonuniform, logically
rectangular, finite volume grids so that a given incident shock is aligned with the grid
in the far field; see Figure 1. Specifically, each problem with a given incident shock
angle has an associated fitted finite volume C-grid. Grid continuation is employed
whereby partially converged numerical solutions are quadratically interpolated onto a
refined grid. Inside a given box surrounding the triple point, uniform grid spacing is
used. Outside of this box, the grid is exponentially stretched in both grid directions.

The basic finite volume scheme is quite standard. Each grid cell, Ω, is a quadri-
lateral, and using 	ν = (νξ, νη) to denote the normal vector to a typical side of Ω,
numerical fluxes are designed to be consistent with

F̃ (U) = (F (U) − ξU) νξ + (G(U) − ηU) νη =

⎛
⎝νξm + νηn− ξ̄ ρ

νξp− ξ̄ m
νηp− ξ̄ n

⎞
⎠ ,

where ξ̄ = (	ξ · 	ν) and 	ξ = (ξ, η). Since 	ξ varies, our numerical flux formulae evaluate
	ξ frozen at the midpoint of each cell side. We use two distinctly different numerical
fluxes in our results presented below: a first-order Lax–Friedrichs numerical flux and
a high-order variant of the Roe numerical flux. The Lax–Friedrichs flux is

HLF =
1

2

(
F̃ (Ul) + F̃ (Ur) − Λ (Ur − Ul)

)
,

where Λ > 0 is a scalar constant chosen to be larger than the fastest wave speed
found on the computational domain. While the Lax–Friedrichs method yields only
first-order accurate approximations, we regard it to be extremely robust. Our high-
order Roe scheme is obtained from piecewise linear reconstruction with characteristic
variable limiting, together with the Roe flux

HRoe =
1

2

(
F̃ (Ul) + F̃ (Ur) −RΛL (Ur − Ul)

)
,
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where Λ = diag(| − ξ̄− c|, | − ξ̄|, | − ξ̄ + c|), and R and L are the matrices of right and

left eigenvectors to the Jacobian of F̃ evaluated at the midpoint URoe = 1
2 (Ul + Ur).

Below, we use the equation of state p = 1/2ρ2. Therefore, using the midpoint for

evaluation yields an exact Roe average since in this case F̃ is quadratic.
Time integration is accomplished by the forward Euler method for the Lax–

Friedrichs scheme:

Un+1 − Un

Δτ
+

1

|Ω|

∫
∂Ω

Hn
LF ds + 2Un = 0.

For reasons of linear stability, we use the explicit trapezoidal rule to integrate the
high-order Roe scheme, as follows:

Un+1/2 − Un

Δτ
+

1

|Ω|

∫
∂Ω

Hn
Roe ds + 2Un = 0,

2Un+1 − Un+1/2 − Un

Δτ
+

1

|Ω|

∫
∂Ω

H
n+1/2
Roe ds + 2Un+1/2 = 0.

3.1. The grid, initialization, and boundary conditions. We computed so-
lutions of the half-space problem (2.1)–(2.3) in the finite computational domain shown
schematically in Figure 1. We use a nonuniform grid that has a locally refined area of
uniform grid very close to the triple point, and is stretched exponentially away from
the triple point toward the outer numerical boundaries and the wall. (Exponential
stretching of 1% means Δxi+1 = 1.01 Δxi.) In the solutions shown below, the nonuni-
form grids are stretched by amounts between 0.5% and 1%. The total number of grid
points in our largest grid is approximately 11× 106, of which approximately 2.5× 106

cover a very small region surrounding the triple point. (See Figure 3(c) below where
this small region is depicted.)

We impose reflecting boundary conditions, equivalent to the physical no-flow con-
dition, on the wall AD. A standard first-order ghost cell implementation, with ficti-
tious cells located to the left of the boundary AD, is given by

ρ−1 = ρ0,(3.2)

m−1 = −m0,

n−1 = n0,

where the subscripts −1 and 0 indicate values at ghost cells and at the first real
cell adjacent to the boundary, respectively. In our higher-order computations we
used a second-order formulation of this boundary condition. In addition, we require
numerical boundary conditions on the outer computational boundaries.

In [3] expressions were given for the one-dimensional wave between U0 and U1

in the far field. The constant middle state Um = (ρ0,mm, nm) between the contact
discontinuity (the dotted line in Figure 1), located at ξ = κη, and the incident shock,
located at ξ = κη + χ, is given by

mm = −
√

(p(ρ0) − p(ρ1))(ρ0 − ρ1)

1 + κ2
,(3.3)

nm = −κmm,

with χ = −
√

1 + κ2

√
p(ρ0) − p(ρ1)

ρ0 − ρ1
.
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On the outer numerical boundary ABCD, we impose Dirichlet data corresponding to
the incident shock/contact discontinuity solution in (2.2), (2.3), (3.3). We find that

U(ξ, η) =

⎧⎪⎨
⎪⎩
U1, ξ < κη + χ,

Um, κη + χ < ξ < κη,

U0, ξ > κη.

(3.4)

We impose (3.4) as a boundary condition for (3.1) on ABCD.

4. Numerical results. We computed numerical solutions of (2.1)–(2.3) for κ
equal to 1, 2, 4, and 8. In our computations we used ρ0/ρ1 equal to 64, 8, and 2.
In the following figures we present solutions with ρ1 = 1 and ρ0/ρ1 equal to 64. The
solutions for other values of ρ0/ρ1 are similar to the ones presented here. For all
computations, the polytropic gas law p = 1

2ρ
2 was used. Figure 2 shows ρ-contour

plots of the global solutions as a function of (x/t, y/t). From (2.4), increasing κ
corresponds to decreasing the wedge angle that is modeled by our problem. Hence,
the sequence of plots in Figure 2(a)–(d) is a numerical representation of a series of
shock reflection experiments in which the wedge angle is decreased, while holding the
shock strength ρ0/ρ1 constant.

The numerical solutions appear to show a simple Mach reflection, with three
shocks meeting at a triple point. The Mach shock becomes longer and weaker as κ
increases, and the strength of the reflected shock also decreases when κ increases. For
a fixed value of κ, the strength of the Mach shock increases as it moves away from
the triple point, reaching a maximum at the wall x = 0.

For the value κ = 1, we used local grid refinement to obtain a highly resolved
solution in the neighborhood of the triple point. In Figure 3(a)–(c), we show ρ-, m-,
and n-contours and the numerically computed location of the sonic line, equation (2.8),
near the triple point for κ = 1. The solution contains a small region of supersonic
flow behind the triple point. The width Δ(x/t) of the patch is approximately 0.03,
and the height Δ(y/t) is approximately 0.01. Here, the width Δ(x/t) is a numerical
estimate of the difference between the maximum value of x/t on the sonic line and
the minimum value of x/t at the rear sonic point on the Mach shock. The height
Δ(y/t) is an estimate of the difference between the value of y/t at the triple point
and the minimum value of y/t at the rear sonic point on the Mach shock. The width
of the supersonic region is approximately 5% of the length of the Mach shock. The
expansion fan centered at the leading triple point can be clearly seen. Behind the
leading triple point, there is a sequence of shocks and expansion fans. The thickening
of the incident shock as it moves away from the triple point in Figure 3(a)–(c) is
caused by the use of a stretched grid.

The area covered by the most refined uniform grid is indicated by the box con-
tained in Figure 3(c), and the figure caption gives the number of grid points in the
most refined area of the grid. The box appears to be skewed because of the use of a
C-grid. To illustrate the size and location of the refined uniform grid, in Figure 3(d)
we plot ρ-contour lines over the entire numerical domain, for κ = 1. The refined grid
area is too small to be visible in the main plot shown in Figure 3(d). The inset figure
shows an enlargement of the solution contained within the small rectangular box cen-
tered about the reflection point, as indicated. The solution shown in the inset figure
also contains a small box centered at the reflection point, indicating the approximate
size and location of the region shown in Figure 3(a)–(c).

We found that, as in [13], a certain minimum grid resolution was required to
resolve the supersonic region behind the triple point. As we refined the grid beyond
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Fig. 2. Contour plots of ρ for increasing values of κ. The ρ-contour spacing is 1.0. The shock
strength ρ0/ρ1 = 64; ρ1 = 1.

this minimum level, details of the flow field near the triple point became clearer.
Figure 4 shows ρ-contours and the sonic line near the triple point for a sequence
of solutions for κ = 1, using a Lax–Friedrichs numerical flux. The sequence was
computed using successively refined grids, with each grid refined by a factor of two in
x/t and y/t in relation to the previous grid. The resolution of the locally refined areas
is indicated on the plots. In Figure 4(a)–(b), the sonic line appears smooth. At the
next level of refinement, shown in Figure 4(c), there is a steepening of the contours
at the rear of the patch, and an indication of a shock forming there. Further shocks
appear in our highest resolution solution in Figure 3. At resolutions lower than shown
in the figure, the supersonic region disappears entirely.

There is a small discrepancy between the location of the triple point in these fig-
ures and the theoretical location of the incident shock, given in (3.3). The reason for
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Fig. 3. The contour plots in (a)–(c) show the true nature of the solution near the triple point
for κ = 1. The ρ-contour spacing is 0.5 in (a), the m-contour spacing is 1.5 in (b), and the n-
contour spacing is 5.25 in (c). The heavy line is the sonic line. The box in (c) indicates the area of
the refined uniform grid, which has 2048× 1320 grid points. A second-order Roe numerical flux was
used. The plot in (d) is an illustration of the approximate size and location of the region shown in
the plots in (a)–(c), which is contained in the small rectangular box shown in the inset figure; the
plot shows contour lines of ρ.

the discrepancy is that the numerical boundary conditions did not give an incident
shock that was of exactly constant strength and exactly straight in the (x/t, y/t) coor-
dinates. However, the deviation of the numerical solution for the incident shock from
the exact uniform solution was small. For example, in our numerical solution shown
in Figure 3, the numerically computed value of the y/t coordinate of the triple point
differs by 0.1% from the theoretical value obtained from (3.3) using the numerically
computed value of x/t, and the nonuniformity in ρ in the state behind the incident
shock near the triple point is about 0.6%. We tried a number of different implemen-
tations of the numerical boundary conditions and computational mesh, but none of
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Fig. 4. A sequence of contour plots illustrating the effect of increasing grid resolution on the
numerical solution. The solutions plotted here are for κ = 1. The figures show ρ-contours in the
refined grid area near the triple point, with a ρ-contour spacing of 1.0. Each grid is refined by a
factor of two in relation to the previous grid. The region shown includes the refined uniform grid
area. The heavy line is the sonic line. In (a), the refined uniform grid contains 760 × 760 grid
points. A supersonic region is visible as a bump in the sonic line, but it is poorly resolved. In (b),
the refined uniform grid area contains 1280 × 1024 grid points. The supersonic region appears to
be smooth. In (c), the refined uniform grid area contains 2048 × 1320 grid points. There is an
indication of an expansion fan behind the leading triple point.

them gave an incident shock that was of exactly constant strength. Nevertheless, the
presence of a supersonic patch did not depend on the particular implementation.

In the computation for κ = 1, we partially converged a solution on a coarse grid,
resampled the data onto a refined grid, and repeated the process until the necessary
resolution was obtained. Three consecutive intermediate solutions in this computation
are shown in Figure 4. Computations on less refined grids were made using a Lax–
Friedrichs numerical flux, and after partial convergence on the most refined grid we
switched to the more expensive Roe method. Figure 5 shows ρ-contours for a solution
made using a first-order Roe scheme. Further computation using a second-order Roe
scheme yielded the final solution shown in Figure 3. The solution on the final grid
was evolved until no further change was observed in the details of the solution near
the triple point. The solutions shown in Figures 4(c), 5, and 3 were obtained on
the same grid using different methods. All three of the solutions contain a small
supersonic region behind the triple point. The solutions shown in Figures 5 and 3,
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Fig. 5. A contour plot of ρ near the triple point computed using a first-order Roe method.
The number of points in the refined uniform grid is the same as in Figure 4, which shows a Lax–
Friedrichs solution, and in Figure 3(a)–(c), which shows a second-order Roe method solution. The
ρ-contours are plotted at the same levels of ρ as in Figure 3(a).

Fig. 6. A detailed plot of contour lines for ρ illustrating Guderley Mach reflection. The
ρ-contour spacing is 0.1. Three reflected shock/expansion wave pairs are clearly visible, with indica-
tions of a fourth. The region shown contains the refined uniform grid, which has 2048 × 1320 grid
points.

which are more highly resolved, contain a sequence of supersonic patches and triple
points, which is better defined in Figure 3.

In Figure 6 we plot closely spaced ρ-contours to give a detailed picture of the
sequence of shocks and expansion waves in a Guderley Mach reflection for κ = 1. Each
shock-expansion pair in the sequence is smaller and weaker than the one preceding
it. Three reflected shocks appear to be visible in the plot. From the numerical data,
their approximate strengths, beginning with the leading reflected shock, are given in
Table 1. The jump [ρ] in ρ across a reflected shock is measured near the point where
the flow behind the shock is sonic. This point is very close to the corresponding triple
point on the Mach shock, as shown in Figure 3.
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Table 1

Approximate values of the reflected shock strengths for the three reflected shocks visible in Fig-
ure 6, beginning with the leading reflected shock, from the numerical data. For each shock, ρ1 and
ρ0 denote the approximate values of ρ ahead of and behind the shock, respectively.

Shock ρ1 ρ0 [ρ]

1 64 76 12
2 72 75 3
3 74 75 1

5. Discussion. These numerical results are remarkably similar to the computed
solutions of the shock reflection problem for the unsteady transonic small disturbance
equations in [13]. In both cases, a weak shock reflection in a parameter range where
regular reflection is impossible results in a sequence, possibly infinite, of triple points
and supersonic patches embedded in the subsonic flow behind the Mach and reflected
shocks. The unsteady transonic small disturbance equations can be derived from
the full Euler equations by a systematic asymptotic expansion, and are considered
to give an adequate description of the physical flow near the shock interaction point
for weak shocks and small wedge angles. The nonlinear wave system, however, is
not a systematic reduction of the Euler equations, and it does not appear to have
any immediate physical relevance. It is therefore noteworthy that the shock reflection
problem for the nonlinear wave system has a solution that resembles the solutions in
[13], and is consistent with the experimental results in [12].

The nonlinear wave system has a characteristic structure similar to the two-
dimensional Euler equations: nonlinear acoustic waves coupled (weakly) with linearly
degenerate waves. The nonlinear wave system also respects the spatial (Euclidean)
symmetries of gas dynamics, but not the space-time (Galilean) symmetry. In fact (see
[10]), they are essentially the simplest system one can construct with these symme-
tries. The existence of a Guderley Mach reflection solution for a system that is only
loosely related to gas dynamics suggests that the behavior may be typical of equations
with this characteristic structure, and is not restricted to equations that describe gas
dynamic phenomena. We conjecture that a sequence of supersonic patches and triple
points is a generic feature of two-dimensional Riemann problems for some class of hy-
perbolic systems of conservation laws. Possibly this class is characterized by “acoustic
waves,” as defined in [2]. It is possible that numerical solutions of the weak shock
reflection problem for the full Euler equations will contain a sequence of supersonic
patches as well.

An important feature of the numerical solution is the small size of the supersonic
region. In our solution for κ = 1, the width of the supersonic patch is approximately
5% of the length of the Mach shock. This is somewhat larger than the supersonic
regions in the solutions in [13], which were obtained over a range of parameter values
and varied in height from approximately 0.05% to 3% of the length of the Mach shock.
Based on the dependence of patch size on wedge angle observed in [13], we expect
solutions for larger values of κ to contain even larger supersonic regions. However, the
strength of the reflected shock near the triple point decreases as κ increases, making
it very difficult to resolve numerically the details of the solution near the triple point.
We have displayed a solution with κ = 1 because it offers a good compromise between
the size of the supersonic region and the strength of the sequence of reflected shocks
and expansions.

One of the scenarios proposed in [3] for resolving the triple point paradox in the
nonlinear wave system is that the reflected shock have zero strength at the shock
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interaction point. In that case, there would be no triple point, and presumably no
supersonic patch. We have obtained solutions, using different numerical schemes,
which contain a supersonic region behind the triple point in a weak shock reflection.
In these solutions, the reflected shocks have finite strength at the point where they
collide with the Mach shock. Although we have not obtained numerical evidence of
the zero strength reflected shock solution, we note that in the problem studied in [3],
it is assumed that κ is large enough that the incident shock intersects the sonic circle,
equation (2.8), corresponding to the state U0 behind the shock. For shock reflection
data with κ = 1, the incident shock does not intersect the sonic circle, so the partial
solution presented in [3] is not available here. We also note, however, that in [13],
several solutions were obtained in a parameter range for which the incident shock
does intersect the sonic line for the state behind the incident shock. All of these
solutions contained a reflected shock of nonzero strength at the triple point, and a
supersonic region. For the nonlinear wave system, since we have obtained a solution
containing a supersonic region at only one set of parameter values, we do not know
if Guderley Mach reflection occurs over the entire set of parameter values for which
regular reflection is impossible, or if solutions at large enough values of κ contain a
reflected shock with zero strength at the triple point.

6. Conclusion. We have presented numerical evidence of a structure of reflected
shocks and expansion waves, and a sequence of triple points and supersonic patches,
in a small region behind the leading triple point in a shock reflection problem for the
nonlinear wave system. This result is consistent with previous numerical solutions
of a shock reflection problem for the unsteady transonic small disturbance equations,
and with recent experimental results for weak shocks reflecting off thin wedges.

Appendix A. Symmetry. Equation (2.1) admits the usual Euclidean sym-
metries of gas dynamics (translation invariance and equivariance under rotation and
reflection in the plane), but not the Galilean symmetry. For a polytropic gas law
p(ρ) = Cργ , where γ is the ratio of specific heats and C is a constant, it is also
invariant under the scaling

(x, y) �→ ρ
γ−1

2
1 (x, y), ρ �→ ρ1ρ, (m,n) �→ ρ

γ+1
2

1 (m,n).

Based on this, we see that solutions of the nonlinear wave system depend on the
density only through a characteristic density ratio ρ0/ρ1, or equivalently, through the
velocity ratio or the Mach number M = c(ρ0)/c(ρ1) = (ρ0/ρ1)

(γ−1)/2.

Appendix B. Nonexistence of triple points. To examine triple points in
the nonlinear wave system we note, first, that this system does not have the Galilean
invariance of the gas dynamics equations, so we cannot assume that the flow is sta-
tionary at a triple point. However, because of rotational symmetry we can assume
that one of the shocks is horizontal, and we do so to simplify the calculation. We can
also choose one set of momentum components to be zero.

We label the horizontal shock Sa, and proceeding counterclockwise, the other two
are Sb and Sc (Figure 7). The state between Sa and Sb is U1 = (ρ1, 0, 0); the other
two states, also proceeding counterclockwise, are U2 and U0 = (ρ0, 0, n0). The value
of ρ0 can be any number greater than ρ1. Note that the component m0 = 0 because
Sa is horizontal. The equation of Sa is {η = ωa}, where ωa =

√
(p0 − p1)/(ρ0 − ρ1),

and n0 = ωa[ρ] =
√

(p0 − p1)(ρ0 − ρ1), using (2.3). (Note that κa = ∞ here and that
U0 corresponds to Um in (3.3).)
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Fig. 7. Triple point configuration.

We introduce the notation Pab =
√

(pa − pb)(ρa − ρb). We have the following
proposition.

Proposition B.1. For any convex equation of state p(ρ), there is no nontrivial
set of solutions to the Rankine–Hugoniot equations for constant states {U0, U1, U2}
separated by shocks Sa, Sb, Sc, irrespective of whether the three shocks intersect in a
point or not.

Proof. The Rankine–Hugoniot equations at Sb and Sc imply (see [4, Appendix
A])

m2 −m1 =
P21√
1 + κ2

b

, m2 −m0 =
P20√
1 + κ2

c

,

n2 − n1 = − P21√
1 + κ2

b

κb, n2 − n0 = − P20√
1 + κ2

c

κc.

Using the values m1 = m0 = n1 = 0, n0 = P01, we get two equations:

(B.1) m2 =
P21√
1 + κ2

b

=
P20√
1 + κ2

c

, n2 = − P21√
1 + κ2

b

κb = P01 −
P20√
1 + κ2

c

κc.

In principle, we can solve this pair of equations to obtain κb and κc as functions of
the data ρ0 and ρ1. We get a 1-parameter family of solutions parameterized by ρ2.
However, the solutions obtained are not real numbers. For, if we substitute the first
equation in (B.1) into the second, we get

−κb
P20√
1 + κ2

c

= P01 − κc
P20√
1 + κ2

c

,

or

(B.2) κb = κc −
√

1 + κ2
c

P01

P20
.

Now square the first relation in (B.1), write it as

1 + κ2
b = (1 + κ2

c)
P 2

21

P 2
20

,
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and substitute (B.2), to obtain

1 +

(
κc −

√
1 + κ2

c

P01

P20

)2

= (1 + κ2
c)
P 2

21

P 2
20

,

or

(P 2
20 + P 2

01 − P 2
21)

√
1 + κ2

c = 2κcP01P20.

Square this and solve for κ2
c :

κ2
c =

(P 2
20 + P 2

01 − P 2
21)

2

4P 2
01P

2
20 − (P 2

20 + P 2
01 − P 2

21)
2
.

Now, after a calculation,

P 2
20 + P 2

01 − P 2
21 = (ρ2 − ρ0)(p1 − p0) + (ρ1 − ρ0)(p2 − p0).

So

4P 2
01P

2
20 − (P 2

20 + P 2
01 − P 2

21)
2 = −[(ρ2 − ρ0)(p1 − p0) − (ρ1 − ρ0)(p2 − p0)]

2 ≤ 0.

In fact, this quantity is less than zero unless

p2 − p0

ρ2 − ρ0
=

p1 − p0

ρ1 − ρ0
.

For a convex function p, this implies ρ2 = ρ1, a degenerate case with only two distinct
states.

Thus, no solutions exist. Note that the proof did not require the three shocks to
intersect in a point, and that therefore this is a somewhat stronger result than simply
the nonexistence of triple points.

In a similar manner it is possible to show that, as in gas dynamics, a self-similar
solution consisting of three shocks and a linear wave meeting at a point can be con-
structed. However, as mentioned in section 2, because of the invariance in time of
the quantity (my − nx), the linear characteristic coordinate, a linear wave cannot be
present in the solution unless it is present in the data. For the data given in (2.2),
therefore, solutions containing a triple point with a linear wave cannot exist. The
same triple point paradox occurs in gas dynamics, of course, where solutions con-
taining a triple point with a contact discontinuity cannot occur for sufficiently weak
shocks (see [7] for a discussion of this).
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Abstract. Global dynamics of a compartmental model which describes virus propagation in
vivo is studied using the direct Lyapunov method, where the incidence rate of the infection and the
removal rate of the virus are assumed to be nonlinear. In the case where the functional quotient
between the force of infection and the removal rate of the virus is a nonincreasing function of the virus
concentration, the existence of a threshold parameter, i.e., the basic reproduction number or basic
reproductive ratio, is established and the global stability of the equilibria is discussed. Moreover, in
the absence of the above-mentioned monotonicity property, estimations for the sizes of the domains
of attraction are given. Biological significance of the results and possible extensions of the model are
also discussed.
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1. Introduction. We consider a compartmental model for the propagation of a
virus in vivo, in the form

(S)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S′ = n(S) − c(S)f(V ),

E′ = c(S)f(V ) − c1i(E),

I ′ = c2i(E) − c3p(I),

V ′ = c4p(I) − r(V ).

Here, S denotes the concentration of the cells in the susceptible (i.e., uninfected) class,
E denotes the concentration of cells in the exposed (i.e., latent) class, I denotes the
concentration of cells in the infected class, and V denotes the concentration of the
virus itself.

The intrinsic growth rate of the susceptible class, which includes both production
of new cells and natural mortality of cells, is given by n(S) with all the newly produced
cells assumed to be susceptible. The movement of cells from the exposed class into
the infected class and the production of free virus from infected cells are given by
c2i(E) and c4p(I), respectively. By c1i(E) and c3p(I), we denote the removal of the
exposed and infected classes, respectively, which include the mortality of cells in the
above-mentioned classes.

It is assumed that the infection process is characterized by the incidence rate
c(S)f(V ), where c(S) denotes the contact function at concentration S and f(V )
denotes the force of infection by virus at concentration V . We note that our incidence
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rate is sufficiently general to encompass many forms of commonly used incidence rate,
including simple mass action. The removal rate of the virus is denoted by r(V ). All
functions c, f, i, p, r, n are allowed to be nonlinear and all constants c1, c2, c3, c4 are
assumed to be positive.

We thereby assume that the major infection pathway is virus-to-cell, since the
cell-to-cell pathway is sometimes less documented and therefore less considered, par-
ticularly in diseases such as AIDS (see Perelson and Nelson [18]).

While this model has been studied in Bonhoeffer et al. [1], Korobeinikov [7],
Nowak and May [14], and Perelson and Nelson [18], among others, for linear c, f, i, p,
r, n, it is perhaps important to account for a number of nonlinear features of the bio-
logical phenomena which are involved, especially for the nonlinearity of the incidence
rate, which is influenced by the availability of susceptible cells and by the force of
infection of viral cells. As the concentration of viral cells becomes higher, the simple
mass action law βSV may not necessarily suffice. Moreover, the rate at which an
infected cell or virus will die as a function of their concentrations is generally not
known, and hence we make a further generalization by assuming that the removal
rate is also nonlinear. For a detailed discussion on the virus dynamics of HIV, readers
are referred to Perelson and Nelson [18].

We note that in (S), for i(x) = x and p(x) = x, the constant 1/c1 represents
the average time spent by a cell in the latent state, while 1/c3 represents the average
lifetime of an infected cell. Also, c1 ≥ c2 and c1 − c2 represents the mortality rate of
the exposed cells, while c4 relates to the production of virus from infected cells.

As noted by Korobeinikov in [7], if there is no exposed class E and consequently
c(S)f(V ) represents the movement of cells from the susceptible class directly into the
infected class, the (reduced three-dimensional) system (S) is equivalent to a SEIR
model with a constant population assumption. It is therefore expected that the dy-
namics of our model will share some features with the dynamics of a SEIR model.
Some perspectives and results from the global stability theory for SEIR models would
also be relevant for our discussion. See Korobeinikov and Maini [8], Li et al. [11],
Li and Muldowney [12], and Li, Muldowney, and van den Driessche [13] for global
stability results for SEIR models. However, in [11, 12, 13] the approach is essentially
geometrical, using a stability criteria which extends the Poincaré–Bendixson theorem
and ruling out periodic orbits, rather than constructing a Lyapunov functional.

A related investigation pertaining to the dynamics of infectious disease models
which incorporated nonlinear incidence rates of a very general form has recently been
performed by Korobeinikov and Maini in [9] by using the Lyapunov method. In [9],
the local stability of the equilibria for SIRS and SEIRS models has been considered
assuming that the incidence rate is given by an arbitrary function f(S, I,N), while
the global stability of the equilibria for SIR and SEIR models has been considered
assuming that the incidence rate is of the form f(I)g(S). However, apart from the
incidence rate, the other functions which appear in the models considered in [9] are
linear and a constant population assumption is used, while for our model full non-
linearity is assured and a constant population assumption would not be an option.
Moreover, the analysis performed in [9] is done in a somewhat different manner, with
a focus on the role of the concavity of the nonlinear incidence rate in the existence
and stability of the endemic equilibrium.

Substantial results regarding the global dynamics of a three-dimensional HIV
model have been obtained by De Leenheer and Smith [3] using a different approach;
their result distinguishes whether or not the term −kV T , which models the loss of a
free virus particle once it enters the target cell, can be absorbed into the general loss
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term −γV . In [3], V is the concentration of free virus particles in the blood and T is
the concentration of T cells. De Leenheer and Smith start with general assumptions
on the function f which models T cell dynamics in a healthy individual and then
specialize their results for two particular functions: f1(T ) = δ−αT +pT (1−T/Tmax)
as used by Perelson and Nelson in [18] and f2(T ) = δ − αT as used by Nowak and
May in [14]. Certain linearity assumptions on some other functions appearing in the
model are also made.

In the particular case in which the term −kV T is absorbed into the general loss
term (as done in [18] and [14])) and f = f2, the model used in [3] can be thought of as
a reduced version of our model, with no exposed class and extra linearity assumptions.
However, the proof of our global stability result uses in an unavoidable manner the
monotonicity assumption on n, which corresponds to f in [3], and therefore it can
accommodate the case f = f2 only and not the case f = f1. In particular, our model
does not admit orbitally asymptotically stable periodic solutions, which are obtained
in [3] for f = f1; see [3, Theorem 1] for details.

The paper is organized in the following manner. We propose the model to be
studied in section 2 and discuss its well-posedness. In section 3 we give results on the
stability of the disease-free equilibrium and persistence of the system, while sections
4 and 5 contain discussions on the existence, uniqueness, and global stability of the
endemic equilibrium. Finally, in section 6, we give some remarks on the biological
interpretation of our results, as well as some further extensions of the model one can
make.

2. The model and its well-posedness. We assume that c, f, i, p, r are real
locally Lipschitz functions defined at least on [0,∞) which satisfy

c(0) = f(0) = i(0) = p(0) = r(0) = 0,

c(t), f(t), i(t), p(t), r(t) > 0 for t > 0

and that n is a real locally Lipschitz function defined at least on [0,∞) with n(0) > 0
such that the equation n(S) = 0 has a single solution S0. We also assume that

(n(S) − n(S0))(S − S0) < 0 for S �= S0,(2.1)

(c(S) − c(S0))(S − S0) > 0 for S �= S0

together with

(D)

∫ 1

0+

1

ϕ(τ)
dτ = +∞ for all ϕ ∈ {c, f, i, p} .

Note that (2.1) is satisfied if, for instance, n is strictly decreasing and c is strictly
increasing. We also suppose that there are kn, ki, kp, kv, k̃n > 0 such that

n(S) ≤ k̃n − knS for S ≥ 0, i(E) ≥ kiE for E ≥ 0, p(I) ≥ kpI for I ≥ 0,(G)

r(V ) ≥ krV for V ≥ 0.

The set of growth conditions (G) will be used to establish, in our general setting,
the global existence of the solution for the Cauchy problem associated with the system
(S). We note that these conditions may be dropped if the global existence property
is known or the a priori boundedness of the solutions may be established by other
methods. We shall indicate in section 6 how to remove conditions (G) at the expense
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of other conditions on the behavior of c, f, i, p near +∞ if f/r is nonincreasing on
(0,∞).

First, it can be easily shown that a solution of the system (S) which starts in
[0,∞)4 remains there on its whole interval of existence. To this purpose, we note
that the vector (R1, R2, R3, R4) points inside Q = [0,∞)4 at all points of ∂Q, where
R1, R2, R3, and R4 are the right-hand sides appearing in (S), and hence Nagumo’s
tangency conditions are satisfied. See [15] for details.

From our assumptions, it is clear that the system (S) has a unique saturated (i.e.,
nonextendable) solution for any initial data (S(0), E(0), I(0), V (0)). Using (G), it is
possible to prove that all saturated solutions are global. To this aim, note that(

S + E +
c1
2c2

I +
c1c3
4c2c4

V

)′
≤ k̃n − knS − c1ki

2
E − c1c3

4c2
kpI −

c1c3
4c2c4

krV,

it follows that there is δ = δ(kn, ki, kp, kr, c1, c2, c3, c4) > 0 small enough such that(
S + E +

c1
2c2

I +
c1c3
4c2c4

V

)′
+ δ

(
S + E +

c1
2c2

I +
c1c3
4c2c4

V

)
≤ k̃n,

which implies that

S + E +
c1
2c2

I +
c1c3
4c2c4

V − k̃n
δ

≤
(
S(0) + E(0) +

c1
2c2

I(0) +
c1c3
4c2c4

V (0) − k̃n
δ

)
e−δt for t ≥ 0,

and therefore S,E, I, V are bounded on their maximal interval of existence. It follows
that the functions S(t), E(t), I(t), V (t) are defined on [0,∞), and so the Cauchy
problem with nonnegative initial data is well-posed for the system (S). Moreover, if
we denote

F =

{
(S,E, I, V ) ∈ [0,∞)4;S + E +

c1
2c2

I +
c1c3
4c2c4

V ≤ k̃n
δ

}
,

it follows that F is a feasible region for the system (S). Of course, the feasible
region determined above is neither minimal nor unique, and the parameter δ above is
obviously not uniquely determined. We shall simply choose

(2.2) δ = min
(
kn,

c1
2
ki,

c3
2
kp, kr

)
.

If S is small, then S′ = n(S) − c(S)F (V ) > 0 if V stays in a bounded set, since
n(0) > 0 and limS→0 c(S) = 0, and we may infer that for any S(0) > 0 there is
εS(0) > 0 such that S(t) ≥ εS(0) for all t > 0. This means that all solutions which
start with positive S(0) do not reach any point with S = 0 in future time. If S(0) = 0,
then S′ > 0 in a vicinity of 0 and, again, S(t) raises over a certain minimum value (of
course, the case in which S(0) = 0 does not make much biological sense). Also, it can
be seen that the only w-limit point of (S) on the boundary of F is the disease-free
equilibrium (S0, 0, 0, 0) and the only points on the boundary of [0,∞)4 which can be
attained in finite time are situated on [OS, the positive S-semiaxis containing the
origin.
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3. Stability of disease-free equilibrium. Since the equation n(S) = 0 has a
single solution S0 and f(0) = i(0) = p(0) = r(0) = 0, it is easy to see that the system
(S) admits a unique disease-free equilibrium (S0, 0, 0, 0). We now turn our attention
to the study of its stability.

Consider the Lyapunov functional

U1(S,E, I, V ) =

∫ S

S0

c(τ) − c(S0)

c(τ)
dτ + E +

c1
c2

I +
c1c3
c2c4

V.

Since (c(S) − c(S0))(S − S0) > 0 for S �= S0, it is seen that U1 increases whenever
any of |S − S0|, E, I, V increases and U1(S,E, I, V ) ≥ 0 for all S,E, I, V ≥ 0, while
U1(S,E, I, V ) = 0 if and only if (S,E, I, V ) = (S0, 0, 0, 0).

We now compute the time derivative of U1 along the solutions of (S). It is seen
that

·
U1 =

(
1 − c(S0)

c(S)

)
(n(S) − c(S)f(V )) + (c(S)f(V ) − c1i(E))

+
c1
c2

(c2i(E) − c3p(I)) +
c1c3
c2c4

(c4p(I) − r(V )),

and since n(S0) = 0, we can deduce that

(3.1)
·
U1(S,E, I, V ) =

(
1 − c(S0)

c(S)

)
(n(S) − n(S0)) +

[
c(S0)f(V ) − c1c3

c2c4
r(V )

]
.

Due to (2.1), it is easily seen that

(3.2)

(
1 − c(S0)

c(S)

)
(n(S) − n(S0)) < 0 for S �= S0,

and the first term in the right-hand side of (3.1) is negative. It is then seen that the
stability of the disease-free equilibrium is related to the sign of the remaining term in
the right-hand side of (3.1).

Theorem 3.1. Suppose that there is a number VR > 0 such that

(3.3) c(S0)
f(V )

r(V )

c2c4
c1c3

≤ 1 for V ∈ (0, VR),

and let m = U1(S0, 0, 0, VR). Then the disease-free equilibrium (S0, 0, 0, 0) is locally
asymptotically stable and its domain of attraction includes the set

Mm =
{
(S,E, I, V ) ∈ (0,∞) × [0,∞)3;U1(S,E, I, V ) < m

}
.

Proof. From (3.1), (3.2), and (3.3), it is seen that
·
U1(S,E, I, V ) ≤ 0 for 0 ≤ V <

VR, with equality if and only if S = S0 and either V = 0 or the equality in (3.3) holds.
Let us denote M̃ =

{
(S,E, I, V ) ∈ (0,∞) × [0,∞)3, 0 ≤ V < VR

}
and take k < m

arbitrary. Since for all V ≥ VR one has U1(S,E, I, V ) ≥ U1(S0, 0, 0, VR), it is seen

that Mk ⊂ M̃ . Consequently,
·
U1(S,E, I, V ) ≤ 0 on Mk, with equality if and only if

S = S0 and the equality in (3.3) holds.
We now find the invariant subsets P̃ within the set

P =
{
(S,E, I, V ) ∈ Mk;

·
U1(S,E, I, V ) = 0

}
.
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Since S = S0 on P̃ and consequently S′ = −c(S0)f(V ), it is seen that V = 0 and
one similarly deduces that E = I = 0; that is, the only invariant subset of P is the
singleton P̃ = {(S0, 0, 0, 0)}. From LaSalle’s invariance principle (see LaSalle [10])
and the fact that k < m was arbitrary, the conclusion follows.

To complement Theorem 3.1, we further consider the case in which the disease-
free equilibrium is unstable and give some remarks related to the persistence of the
system. The system (S) is said to be uniformly persistent on F if there is a constant

ε0 > 0 such that any solution of (S) which starts in (S(0), E(0), I(0), E(0)) ∈
◦
F

satisfies

lim inf
t→∞

S(t) ≥ ε0, lim inf
t→∞

E(t) ≥ ε0, lim inf
t→∞

I(t) ≥ ε0, lim inf
t→∞

V (t) ≥ ε0.

See also Butler, Freedman, and Waltman [2] or Hofbauer and So [6].
Consider the Lyapunov function

U2(S,E, I, V ) = E +
c1
c2

I +
c1c3
c2c4

V.

Similar to the derivation of (3.1), the time derivative of U2 along the solutions of (S)
is given by

(3.4)
·
U2(S,E, I, V ) = c(S)f(V ) − c1c3

c2c4
r(V ).

Obviously, if (S) is uniformly persistent, then the disease remains endemic and
stability for the disease-free equilibrium is excluded. In this regard, we have already
observed that if (3.3) is satisfied on some interval (0, VR), then the disease-free equi-
librium is locally asymptotically stable. If, on the other hand, the opposite of (3.3) is
satisfied on some interval (0, VR), then the system (S) is uniformly persistent in the
sense mentioned above.

Theorem 3.2. Assume that there is a number VR > 0 such that

(3.5) c(S0)
f(V )

r(V )

c2c4
c1c3

> 1 for V ∈ (0, VR).

Then (S) is uniformly persistent and the disease-free equilibrium (S0, 0, 0, 0) is unsta-
ble, with the positive semiaxis [OS as its stable variety.

Proof. From (3.4), (3.5), and the continuity of the function c at S0, it follows that·
U2 > 0 on a small vicinity of (S0, 0, 0, 0), except for the points with V = 0. It then
follows that any solution which starts in that vicinity remains away from (S0, 0, 0, 0),
except for those starting on the positive semiaxis [OS, which tend to (S0, 0, 0, 0) while
remaining on [OS. It may now be obtained, as in Proposition 3.3 in Li et al. [11], that
the system (S) is uniformly persistent. This amounts to observing that (S0, 0, 0, 0)
is the unique compact invariant set on the boundary of our feasible domain (so it is
isolated) and its stable variety is the positive semiaxis [OS, which is contained in the
boundary of the feasible domain. Then the use of Theorem 4.1 in Hofbauer and So
[6], together with the remark that a flow and its time one map have the same maximal
compact invariant set and the same stable set in a region, concludes the proof.

It now remains to indicate some situations in which (3.3) or (3.5) are satisfied.
Suppose for the moment that f/r is nonincreasing on (0,∞) and define a basic re-
production number R0 of the system (S) by

(3.6) R0 = c(S0)
c2c4
c1c3

lim
V→0

f(V )

r(V )

(note that the limit limV→0
f(V )
r(V ) does indeed exist, since f/r is monotone on (0,∞)).
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If R0 ≤ 1, then (3.3) is satisfied on [0,∞), while if R0 > 1, then (3.5) is satisfied
for V in a vicinity of 0. Also, it may be seen that limVR→∞ U1(S0, 0, 0, VR) = +∞.
One then obtains the following result, which establishes that R0 is the threshold
parameter for the stability of the disease-free equilibrium.

Theorem 3.3. Suppose that f/r is nonincreasing on (0,∞).
1. If R0 ≤ 1, then the disease-free equilibrium (S0, 0, 0, 0) is globally asymptoti-

cally stable.
2. If R0 > 1, then (S) is uniformly persistent and the disease-free equilibrium

(S0, 0, 0, 0) is unstable, with the positive semiaxis [OS as its stable variety.
In fact, if f/r is nonincreasing on (0,∞), more can be said for the case R0 > 1,

and it will be shown in sections 4 and 5 that, in this situation, the system (S) admits
a positive endemic equilibrium, which is globally asymptotically stable.

We also note that if the functions f and r are of class C1 and the limit limV→0
f ′(V )
r′(V )

exists, then by the L’Hôpital theorem

R0 = c(S0)
c2c4
c1c3

lim
V→0

f ′(V )

r′(V )
,

which is in agreement with the definition of the basic reproduction number given by
van den Driessche and Watmough in [19] for a large class of compartmental models,
including the present model. We do not need, however, to assume C1 regularity for
the functional coefficients throughout our proofs. We also note that, since no C1

regularity is assumed, local stability analysis based on Jacobian matrices would fail.

4. Existence of endemic equilibrium. We now try to establish some sufficient
conditions for the existence of the endemic equilibrium (S∗, E∗, I∗, V ∗). Since it would
be somehow unrealistic to attempt to solve the system (EQ) in its greatest generality,
we impose some additional conditions on our functional coefficients. Let us suppose
the following:

f/r is nonincreasing on (0,∞),
(4.1)

c, f, i, p are strictly increasing on [0,∞) and n is strictly decreasing on [0,∞),
(4.2)

lim
x→∞

i(x) = lim
x→∞

p(x) = +∞.
(4.3)

Necessarily, S∗, E∗, I∗, V ∗ > 0, and the following equilibrium relations are satisfied:

n(S∗) = c(S∗)f(V ∗), c(S∗)f(V ∗) = c1i(E
∗), c2i(E

∗) = c3p(I
∗),(EQ)

c4p(I
∗) = r(V ∗).

To solve the equilibrium system (EQ), note first that from the last three equalities in
(EQ) one obtains

c(S∗)f(V ∗) =
c1c3
c2c4

r(V ∗).

Let us define

F1(S, V ) = n(S) − c(S)f(V ), F2(S, V ) = c(S)f(V ) − c1c3
c2c4

r(V ).
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Since S �→ F1(S, V ) is strictly decreasing and F1(0, V ) · F1(S0, V ) < 0 for all V , the
equation F1(S, V ) = 0 can be uniquely solved with respect to S as a function of V
for all V . That is, there is a function S = ψ1(V ) which satisfies

(4.4)
n(ψ1(V ))

c(ψ1(V ))
= f(V ).

Since n/c is strictly decreasing and f is strictly increasing, it follows that ψ1 is
strictly decreasing. Note also that due to (4.4), limV→∞ ψ1(V ) = 0.

Similarly, S �→ F2(S, V ) is strictly increasing and F2(0, V ) < 0 for all V . However,
in this instance it is not necessarily true that F2(S0, V ) > 0, and hence the same
approach we used to solve the equation F2(S, V ) = 0 would not work. However, for our
purpose we do not actually need the global solvability of the equation F2(S, V ) = 0,
since we are searching for a unique endemic equilibrium and consequently for a single
V ∗. In some situations, local solvability may suffice.

To gain insight, suppose for the moment that the equation F2(S, V ) = 0 may also
be uniquely solved with respect to S as a function of V (locally for V ). That is, there
is a function S = ψ2(V ) which satisfies

c(ψ2(V )) =
c1c3
c2c4

r(V )

f(V )
.

Since c is strictly increasing, it follows that ψ2 is strictly increasing.
Since ψ1 is strictly decreasing, ψ2 is strictly increasing and limV→∞ ψ1(V ) = 0,

the curves defined by S = ψ1(V ) and S = ψ2(V ) have a common point (S∗, V ∗) with
S∗ > 0 and V ∗ > 0 if and only if ψ1(0) > ψ2(0), or equivalently, c(ψ1(0)) > c(ψ2(0)).

Since ψ1(0) = S0 and c(ψ2(0)) = c1c3
c2c4

limV→0
r(V )
f(V ) , the existence condition is c(S0) >

c1c3
c2c4

limV→0
r(V )
f(V ) . Using the basic reproduction number of the system (S) as defined

in (3.6) (note again that f/r is monotone), this condition may be rewritten as R0 > 1.
Up to now, we have shown that if the equation F2(S, V ) = 0 is solvable with

respect to S as a function of V , then the necessary and sufficient condition for the
existence of positive (S∗, V ∗) is that R0 > 1. In this case, we have

F2(S, V ) =
c1c3
c2c4

r(V )

[
c(S)

c2c4
c1c3

f(V )

r(V )
− 1

]
;

and F2(S0, V ) is positive for V in a vicinity of 0. Since we have already noted that
F2(0, V ) < 0 for all V , it follows that the equation F2(S, V ) = 0 is solvable with
respect to S as a function of V (locally for V ) if R0 > 1, which is precisely what we
needed. That is, we have shown that the existence of positive (S∗, V ∗) is equivalent
to the validity of condition R0 > 1.

Also, if i, p are strictly increasing on [0,∞) and limx→∞ i(x) = limx→∞ p(x) =
+∞, then the equations i(E) = 1

c1
n(S∗) and p(I) = c2

c3c1
n(S∗) will have unique

positive solutions E∗, I∗, respectively. In view of the above, we can summarize our
discussion with the following result.

Theorem 4.1. Assume that conditions (4.1), (4.2), and (4.3) are satisfied. Then
there is a unique positive endemic equilibrium (S∗, E∗, I∗, V ∗) of (S) if and only if
R0 > 1, where R0 is the basic reproduction number for the system (S), as defined in
(3.6).

We note that conditions (4.1), (4.2), and (4.3) (combined with R0 > 1) are
sufficient for the existence of the endemic equilibrium but not necessary. Actually, if
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one assumes that the removal rate r(V ) of the virus is influenced by treatment which
is administered if an increase of the virus load over a certain value is observed, while
the force of infection f(V ) is not, it is easy to think of a function f/r which is not
monotone, for instance. In this situation, the disease-free equilibrium may coexist
with multiple positive endemic equilibria. It is perhaps also worth noting that the
stability of the equilibria depends essentially on the behavior of the function f/r and
depends on the contact function c only through the basic reproduction number R0.

5. Stability of endemic equilibrium. In this section we assume that the sys-
tem (S) admits a positive endemic equilibrium (S∗, E∗, I∗, V ∗) and study its stability.
However, we do not assume that (4.1), (4.2), and (4.3) are satisfied and establish our
results under somewhat weaker hypotheses. This is consistent with the remark that
conditions (4.1), (4.2), and (4.3) are sufficient for the existence of the endemic equi-
librium but not necessary. For our purpose, apart from the existence of the endemic
equilibrium, we assume that

(c(S) − c(S∗)) (S − S∗) > 0 for S �= S∗, S ≥ 0,(P)

(f(V ) − f(V ∗)) (V − V ∗) > 0 for V �= V ∗, V ≥ 0,

(i(E) − i(E∗)) (E − E∗) > 0 for E �= E∗, E ≥ 0,

(p(I) − p(I∗)) (I − I∗) > 0 for I �= I∗, I ≥ 0

and

(n(S) − n(S∗)) (S − S∗) ≤ 0 for all S ≥ 0.(N)

Note that conditions (P) and (N) are satisfied if (4.2) holds. However, nonmonotone
functions c, f, i, p, n can also satisfy (P) and (N).

We consider the Lyapunov function

U3(S,E, I, V ) =

∫ S

S∗

c(τ) − c(S∗)

c(τ)
dτ +

∫ E

E∗

i(τ) − i(E∗)

i(τ)
dτ

+
c1
c2

∫ I

I∗

p(τ) − p(I∗)

p(τ)
dτ +

c1c3
c2c4

∫ V

V ∗

f(τ) − f(V ∗)

f(τ)
dτ.

Due to the sign conditions (P), it is seen that U3 increases whenever any of |S − S∗|,
|E − E∗|, |I − I∗|, |V − V ∗| increases and U3(S,E, I, V ) ≥ 0 for all S,E, I, V ≥ 0,
while U3(S,E, I, V ) = 0 if and only if (S,E, I, V ) = (S∗, E∗, I∗, V ∗). We note that
if any of S,E, I, V tends to 0, then U3(S,E, I, V ) tends to ∞ due to the divergence
condition (D). It then follows that all level sets of U3 have no limit points on the
boundary of (0,∞)4.

We now compute the time derivative of U3 along the solutions of (S).
Lemma 5.1. The time derivative of U3 with respect to the solutions of (S) is

·
U3(S,E, I, V )

= (n(S) − n(S∗))

(
1 − c(S∗)

c(S)

)
+ c(S∗)r(V )

(
f(V ∗)

f(V )
− 1

)(
f(V ∗)

r(V ∗)
− f(V )

r(V )

)

− c1i(E
∗)

[
c(S∗)

c(S)
+

i(E∗)

i(E)

c(S)

c(S∗)

f(V )

f(V ∗)
+

i(E)

i(E∗)

p(I∗)

p(I)
+

f(V ∗)

f(V )

p(I)

p(I∗)
− 4

]
.
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If the inequality

c(S∗)r(V )

(
f(V ∗)

f(V )
− 1

)(
f(V ∗)

r(V ∗)
− f(V )

r(V )

)
≤ 0(5.1)

holds true for V in some given interval (VL, VR), then
·
U3(S,E, I, V ) ≤ 0 for V ∈

(VL, VR), with equality if and only if

S = S∗ and
i(E)

i(E∗)
=

f(V )

f(V ∗)
=

p(I)

p(I∗)
.

Proof. It is seen that

·
U3 =

(
1 − c(S∗)

c(S)

)
(n(S) − c(S)f(V )) +

(
1 − i(E∗)

i(E)

)
(c(S)f(V ) − c1i(E))

+
c1
c2

(
1 − p(I∗)

p(I)

)
(c2i(E) − c3p(I)) +

c1c3
c2c4

(
1 − f(V ∗)

f(V )

)
(c4p(I) − r(V ))

= n(S)

(
1 − c(S∗)

c(S)

)
+ c(S∗)f(V ) − i(E∗)

i(E)
c(S)f(V ) + c1i(E

∗) − c1
p(I∗)

p(I)
i(E)

+
c1c3
c2

p(I∗) − c1c3
c2c4

r(V ) − c1c3
c2

f(V ∗)

f(V )
p(I) +

c1c3
c2c4

f(V ∗)

f(V )
r(V ).

Using the equilibrium relations (EQ), it follows that

·
U3 = n(S)

(
1 − c(S∗)

c(S)

)
+ c(S∗)f(V ) − c1i(E

∗)
i(E∗)

i(E)

c(S)

c(S∗)

f(V )

f(V ∗)
+ c1i(E

∗)

− c1i(E
∗)

i(E)

i(E∗)

p(I∗)

p(I)
+ c1i(E

∗) − c1i(E
∗)

r(V )

r(V ∗)
− c1i(E

∗)
f(V ∗)

f(V )

p(I)

p(I∗)

+ c1i(E
∗)
f(V ∗)

f(V )

r(V )

r(V ∗)

= n(S)

(
1 − c(S∗)

c(S)

)
+ c(S∗)f(V ) + c1i(E

∗)

(
f(V ∗)

f(V )

r(V )

r(V ∗)
− r(V ∗)

r(V )

)

− c1i(E
∗)

[
i(E∗)

i(E)

c(S)

c(S∗)

f(V )

f(V ∗)
+

i(E)

i(E∗)

p(I∗)

p(I)
+

f(V ∗)

f(V )

p(I)

p(I∗)
− 2

]

= n(S)

(
1 − c(S∗)

c(S)

)
+ c1i(E

∗)
f(V )

f(V ∗)
+ c1i(E

∗)

(
f(V ∗)

f(V )

r(V )

r(V ∗)
− r(V )

r(V ∗)

)

− c1i(E
∗)

[
c(S∗)

c(S)
+

i(E∗)

i(E)

c(S)

c(S∗)

f(V )

f(V ∗)
+

i(E)

i(E∗)

p(I∗)

p(I)
+

f(V ∗)

f(V )

p(I)

p(I∗)
− 4

]

+ c1i(E
∗)
c(S∗)

c(S)
− 2c1i(E

∗).

This implies that

·
U3 = (n(S) − c1i(E

∗))

(
1 − c(S∗)

c(S)

)

+ c1i(E
∗)

(
f(V ∗)

f(V )

r(V )

r(V ∗)
− r(V )

r(V ∗)
+

f(V )

f(V ∗)
− 1

)

− c1i(E
∗)

[
c(S∗)

c(S)
+

i(E∗)

i(E)

c(S)

c(S∗)

f(V )

f(V ∗)
+

i(E)

i(E∗)

p(I∗)

p(I)
+

f(V ∗)

f(V )

p(I)

p(I∗)
− 4

]
,
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and since c1i(E
∗) = n(S∗), it follows that

·
U3(S,E, I, V )

= (n(S) − n(S∗))

(
1 − c(S∗)

c(S)

)
+ c1i(E

∗)

(
f(V ∗)

f(V )
− 1

)(
r(V )

r(V ∗)
− f(V )

f(V ∗)

)

− c1i(E
∗)

[
c(S∗)

c(S)
+

i(E∗)

i(E)

c(S)

c(S∗)

f(V )

f(V ∗)
+

i(E)

i(E∗)

p(I∗)

p(I)
+

f(V ∗)

f(V )

p(I)

p(I∗)
− 4

]
.

Using the relation c1i(E
∗) = c(S∗)f(V ∗), one gets the required conclusion. Now,

from the sign condition (N) it is seen that

(n(S) − n(S∗))

(
1 − c(S∗)

c(S)

)
≤ 0 for S ≥ 0,

with equality if and only if S = S∗, and from the AM -GM inequality (which says
that the algebraic mean is not smaller than the geometric mean) it is seen that

c(S∗)

c(S)
+

i(E∗)

i(E)

c(S)

c(S∗)

f(V )

f(V ∗)
+

i(E)

i(E∗)

p(I∗)

p(I)
+

f(V ∗)

f(V )

p(I)

p(I∗)
≥ 4,

with equality if and only if

c(S∗)

c(S)
=

i(E∗)

i(E)

c(S)

c(S∗)

f(V )

f(V ∗)
=

i(E)

i(E∗)

p(I∗)

p(I)
=

f(V ∗)

f(V )

p(I)

p(I∗)
= 1.(5.2)

It then follows that if the inequality

c(S∗)r(V )

(
f(V ∗)

f(V )
− 1

)(
f(V ∗)

r(V ∗)
− f(V )

r(V )

)
≤ 0

holds true for v ∈ (VL, VR), then
·
U3(S,E, I, V ) ≤ 0. For the equality case, we note

that c(S∗) = c(S) if and only if S = S∗, and substituting this into (5.2) one obtains
that

i(E)

i(E∗)
=

f(V )

f(V ∗)
=

p(I)

p(I∗)
.

It is now obvious that the stability of the endemic equilibrium (S∗, E∗, I∗, V ∗) is
related to the validity of the inequality (5.1). Subsequently, we estimate the size of
the domain of attraction associated with (S∗, E∗, I∗, V ∗).

Theorem 5.2. Assume that the sign conditions (P) and (N) are satisfied and
there are VL and VR such that

f(V )

r(V )
≤ f(V ∗)

r(V ∗)
for V ∗ ≤ V < VR,(5.3)

f(V )

r(V )
≥ f(V ∗)

r(V ∗)
for VL < V ≤ V ∗.

Define m = min (U3(S
∗, E∗, I∗, VL), U3(S

∗, E∗, I∗, VR)). Then (S∗, E∗, I∗, V ∗) is lo-
cally asymptotically stable and its domain of attraction includes the set

Mm =
{
(S,E, I, V ) ∈ (0,∞)4;U3(S,E, I, V ) < m

}
.



348 PAUL GEORGESCU AND YING-HEN HSIEH

Proof. Denote

M̃ =
{
(S,E, I, V ) ∈ (0,∞)4;VL < V < VR

}
.

From (5.3) it follows that (5.1) is satisfied for V ∈ (VL, VR), and using Lemma 5.1

one may infer that
·
U3(S,E, I, V ) ≤ 0 on M̃ , with equality if and only if

S = S∗ and
i(E)

i(E∗)
=

f(V )

f(V ∗)
=

p(I)

p(I∗)
.

Take an arbitrary k < m. Since U3 increases whenever any of |S − S∗|, |E − E∗|,
|I − I∗|, |V − V ∗| increases, it follows easily that, for all V outside (VL, VR), one has
U3(S,E, I, V ) ≥ m for all S,E, I > 0. Consequently Mk ⊂ M̃ . Moreover, as noted
previously, Mk is a bounded set which has no limit points on the boundary of M̃ .

We now find the invariant subsets Ñ within the set

N =
{
(S,E, I, V ) ∈ Mk;

·
U3(S,E, I, V ) ≤ 0

}
.

Since S = S∗ on Ñ and consequently S′ = n(S∗) − c(S∗)f(V ), it follows that S′ =

c(S∗)(f(V ∗) − f(V )), and so S′ = 0 if and only if V = V ∗. From i(E)
i(E∗) = p(I)

p(I∗) = 1

we then deduce that E = E∗ and I = I∗ by using the sign condition (P).
Therefore, using LaSalle’s invariance principle (see LaSalle [10]) one obtains that

any trajectory which starts in Mk tends to (S∗, E∗, I∗, V ∗) as t → ∞. Then the
endemic equilibrium (S∗, E∗, I∗, V ∗) is locally asymptotically stable and the set Mk

belongs to its domain of attraction. Since k was arbitrary and less than m, one obtains
the required conclusion.

We now continue with a few considerations on the inequalities (5.3). Since

lim
VL→0

U3(S
∗, E∗, I∗, VL) = lim

VR→∞
U3(S

∗, E∗, I∗, VR) = +∞,

one obtains that if the following inequalities are satisfied,

f(V )

r(V )
≤ f(V ∗)

r(V ∗)
for V ∗ ≤ V,(5.4)

f(V )

r(V )
≥ f(V ∗)

r(V ∗)
for 0 < V ≤ V ∗,

then (S∗, E∗, I∗, V ∗) is globally asymptotically stable in (0,∞)4.
Regarding the inequalities (5.4) (or (5.3)), it is easy to see that they are ver-

ified if the function f/r is nonincreasing on (0,∞) (or on (VL, VR)); however, this
monotonicity property is only sufficient and not necessary. If r(V ) = kV , for some
k, then the above monotonicity property is satisfied for three common incidence
rates, namely c1(S)f1(V ) = β1SV , c2(S)f2(V ) = β2S

pV q, where 0 < q ≤ 1, and
c3(S)f3(V ) = β3SV/(1 + a1V ).

We also remark that the inequalities (5.4) alone imply the uniqueness of the
endemic equilibrium (S∗, E∗, I∗, V ∗). To show this, suppose that there is another
endemic equilibrium (S∗

1 , E
∗
1 , I

∗
1 , V

∗
1 ). Apart from (EQ), one then has

n(S∗
1 ) = c(S∗

1 )f(V ∗
1 ), c(S∗

1 )f(V ∗
1 ) = c1i(E

∗
1 ), c2i(E

∗
1 ) = c3p(I

∗
1 ),(EQ′)

c4p(I
∗
1 ) = r(V ∗

1 ).
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It follows that

c(S∗) − c(S∗
1 ) =

c1c3
c2c4

(
r(V ∗)

f(V ∗)
− r(V ∗

1 )

f(V ∗
1 )

)
,(5.5)

n(S∗) − n(S∗
1 ) =

c1c3
c2c4

(r(V ∗) − r(V ∗
1 ))(5.6)

and therefore

(c(S∗) − c(S∗
1 )) (V ∗ − V ∗

1 ) ≥ 0.

If V ∗ > V ∗
1 , then, from (5.5), c(S∗) ≥ c(S∗

1 ), S∗ ≥ S∗
1 , which implies n(S∗) ≤ n(S∗

1 )
and consequently from (5.6), r(V ∗) ≤ r(V ∗

1 ), which is a contradiction. The case V ∗ <
V ∗

1 is dismissed in a similar manner, subsequently V ∗ = V ∗
1 and from (5.5), S = S∗

1 .
Substituting these equalities into (EQ) and (EQ′) we obtain that i(E∗) = i(E∗

1 ) and
p(I∗) = p(I∗1 ), and hence E∗ = E∗

1 and I∗ = I∗1 ; that is, the endemic equilibrium is
uniquely determined. However, we should point out that inequalities (5.4) ensure the
uniqueness of the endemic equilibrium only and not necessarily its existence.

6. Discussions and concluding remarks. The earlier analysis clearly indi-
cates the importance of the quantity

c(S0)
f(V )

r(V )

c2c4
c1c3

in the discussion on local stability of the disease-free equilibrium and persistence for
the system. Moreover, under the monotonicity condition on f(V )/r(V ), we obtain
the basic reproduction number

(6.1) R0 = c(S0)
c2c4
c1c3

lim
V→0

f(V )

r(V )
.

We will now give a biological interpretation of this result. From (S), it is obvious that
the terms in the numerator denote the growth in the concentrations of the infected
cells, E and I, and of the virus V . The terms in the denominator, on the other
hand, denote the removal (or decrease in concentration) of these three same classes.
Therefore, the ratio of the two can be considered as a measurement of the combined
“productivity,” perhaps more aptly, the basic reproductive ratio of the infected classes
in the system. The fact that the stability of the disease-free equilibrium and the
persistence of the system depend on whether this quantity is less than one or not
(Theorems 3.1 and 3.2) further confirms our assertion.

The quantity f(V )/r(V ) is also important for our results. It can be interpreted
as the efficiency of the virus, that is, the ratio of its infectivity to its removal, as a
function of the virus concentration. Theorems 3.3, 4.1, and 5.2 require f(V )/r(V )
to be a nonincreasing function of V . Some recent studies (see, e.g., [16, 17]) let
f(V ) = r(V ) = V , an assumption which is supported by some clinical data. We
note that in this case f(V )/r(V ) = 1, and hence our condition of nonincreasing ratio
f(V )/r(V ), which generalizes to the models with nonlinear f(V ) and r(V ), is satisfied.
For HIV, it has been observed that the productivity of the virus, f(V ), increases as
the virus concentration increases. Our analysis is valid if the increase in removal of
the virus r(V ) as virus concentration increases is at least to the same level as the
increase in f(V ). Further studies are needed to verify whether our assertion holds.
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On the other hand, if the function f/r is indeed increasing on (0,∞), then U1

and U3 are not necessarily global Lyapunov functionals and therefore do not create
their own boundedness structure for the solutions of (S). For the global existence
of the solutions, growth conditions (G) (see section 2) need to be imposed. If f/r
is nonincreasing on (0,∞), however, the boundedness structures created by the level
sets of U1 and U3 render the growth conditions unnecessary.

Suppose that f/r is nonincreasing on (0,∞) and R0 > 1. Assume that the
following conditions are satisfied:

(B) lim
y→∞

(
y − ϕ(x)

∫ y

x

1

ϕ(τ)
dτ

)
= +∞ for all x > 0 and ϕ ∈ {c, f, i, p} .

Note that (B) is satisfied for a function ϕ such that limy→∞ ϕ(y) = +∞, since in this
situation

lim
y→∞

∫ y

x
1

ϕ(τ)dτ

y
= lim

y→∞

1

ϕ(y)
= 0 for ϕ ∈ {c, f, i, p} .

However, condition (B) is also satisfied for ϕ(x) = xp/(1+axp), 0 < p ≤ 1 (this is, for
instance, the case when ϕ(V ) = f(V ) = V p/(1+aV p) is a nonlinear force of infection
with saturation), which does not tend to +∞ as x → +∞.

Regarding conditions (D), since the only points on the boundary of [0,∞)4 which
can be reached in finite time are situated on [OS and the only w-limit point of (S) on
the boundary of [0,∞)4 is the disease-free equilibrium (S0, 0, 0, 0), a less restrictive
condition than (D) would suffice to avoid these situations, namely

(D′)

∫ 1

0+

1

ϕ(τ)
dτ = +∞ for some ϕ ∈ {f, i, p} .

Then, by the results in the previous section, there is a unique positive endemic
equilibrium which verifies relations (EQ). Take (S(0), E(0), I(0), V (0)) ∈ (0,∞)4.

Then
·
U3 ≤ 0 for all t, and it follows that (S(t), E(t), I(t), V (t)) stays in a level set of

U3 on its whole interval of existence. Since the level sets of U3 are bounded due to
(B), it follows that the saturated solution which starts in (S(0), E(0), I(0), V (0)) exists
on [0,∞). The growth conditions (G), which were used to obtain global existence,
therefore become unnecessary and the proof proceeds in the same manner. Then, as
in section 3, all solutions which start in [0,∞)4 tend to (S∗, E∗, I∗, V ∗), except for
those which start on [OS and tend to (S0, 0, 0, 0) as t → ∞. The growth conditions
become unnecessary for the proof of the uniform persistence result as well, since the
system (S) admits an endemic equilibrium and it is obviously uniformly persistent.

If R0 ≤ 1, the reasoning is quite similar, with U1 in place of U3, and it is obtained
again that all the saturated solutions are global and the stability result remains valid.
We then summarize our discussion in the following result.

Theorem 6.1. Suppose that f/r is nonincreasing on (0,∞) and conditions (4.2),
(4.3), (B), and (D′) are satisfied.

1. If R0 ≤ 1, then the disease-free equilibrium (S0, 0, 0, 0) is globally asymptoti-
cally stable.

2. If R0 > 1, then the system (S) admits a unique positive endemic equilib-
rium which is globally asymptotically stable. The disease-free equilibrium
(S0, 0, 0, 0) is unstable, with the positive semiaxis [OS as its stable variety.
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Obviously, in statement 2 the stable variety of the endemic equilibrium actually
excludes [OS.

As an example to illustrate the usefulness of our results, it is easy to see that a
system which fits into our framework is

(RS)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

S′ = b−mS − βS
V p

1 + aV p
,

E′ = βS
V p

1 + a1V p
− c1E,

I ′ = c2E − c3I,

V ′ = c4I − kV γ

for b,m, β, k > 0, a ≥ 0, and 0 < p ≤ γ ≤ 1. In this situation, c(S) = βS,
f(V ) = V p/(1 + aV p), i(E) = E, p(I) = I, r(V ) = V γ , n(S) = b−mS.

It follows that f/r = 1/((1 + a1V
p)V γ−p) is nonincreasing on (0,∞),

lim
E→∞

E = lim
I→∞

I = lim
V→∞

kV γ = +∞,

and limV→∞ V p/(1 + aV p) = +∞ if a = 0, while if a > 0, then

lim
V→∞

(
V − xp

1 + axp

∫ V

x

1 + aτp

τp
dτ

)
= +∞ for all x > 0.

Also,
∫ 1

0+
1
E dE = +∞. Note that if a = 0 and p ∈ (0, 1), then f(V ) = V p is not

Lipschitzian on [0,∞) due to its behavior near 0. However, our solutions which start
with V > 0 do not reach points for which V = 0 in finite time. Hence the uniqueness
property is not impaired. The same remark applies to the function r. We can therefore
apply the results in the previous sections and obtain the following result.

Theorem 6.2.

1. If p < γ, the basic reproduction number R0 of the system (RS) is +∞. The
system (RS) admits a positive endemic equilibrium which is globally asymp-
totically stable. The disease-free equilibrium (S0, 0, 0, 0) is unstable, with the
positive semiaxis [OS as its stable variety.

2. If p = γ, the basic reproduction number R0 of the system (RS) is

R0 =
βb

m

c2c4
c1c3

1

k
.

In this case, if R0 ≤ 1, then the disease-free equilibrium (S0, 0, 0, 0) is globally
asymptotically stable, while if R0 > 1, the system (RS) admits a positive
endemic equilibrium which is globally asymptotically stable. The disease-free
equilibrium (S0, 0, 0, 0) is unstable, with the positive semiaxis [OS as its stable
variety.

Again, the “global” stable variety of the endemic equilibrium is understood to
exclude [OS. Note that for p = γ = 1 and a = 0 we obtain the results given in
Korobeinikov [7].
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As a final remark, we note that similar analysis can be extended to a system of
the form

(SE)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

S′ = n(S) − c(S)f(V ),

E′ = c(S)f(V ) − c1i(E),

I ′1 = c2i(E) − k1p1(I1),

I ′j = k̃j−1pj−1(Ij−1) − kjpj(Ij), 2 ≤ j ≤ n,

V ′ = k̃npn(In) − r(V ).

The associated Lyapunov functionals are in this case

U1(S,E, I1, . . . , In) =

∫ S

S0

c(τ) − c(S0)

c(τ)
dτ + E +

c1
c2

n∑
i=1

⎛
⎝i−1∏

j=1

kj

k̃j

⎞
⎠ Ii +

c1
c2

n∏
j=1

kj

k̃j
V,

U2(S,E, I1, . . . , In) = E +
c1
c2

n∑
i=1

⎛
⎝i−1∏

j=1

kj

k̃j

⎞
⎠ Ii +

c1
c2

n∏
j=1

kj

k̃j
V,

and

U3(S,E, I1, . . . , In) =

∫ S

S∗

c(τ) − c(S∗)

c(τ)
dτ +

∫ E

E∗

i(τ) − i(E∗)

i(τ)
dτ

+
c1
c2

n∑
i=1

⎛
⎝i−1∏

j=1

kj

k̃j

⎞
⎠∫ Ii

I∗
i

pi(τ) − pi(I
∗
i )

pi(τ)
dτ

+
c1
c2

⎛
⎝ n∏

j=1

kj

k̃j

⎞
⎠∫ V

V ∗

c(τ) − c(V ∗)

c(τ)
dτ,

with the convention
∏0

j=1
kj

k̃j
= 1.

Again, related asymptotic stability can be obtained as in previous sections, and
the size of the domain of attraction depends essentially on the behavior of the function
f/r. If the function f/r is nonincreasing on (0,∞), the threshold parameter R0 is
given by

R0 = c(S0)
c2
c1

⎛
⎝ n∏

j=1

k̃j
kj

⎞
⎠ lim

V→0

f(V )

r(V )
.

The first Lyapunov functional of type
∑n

i=1 di
(
xi − x∗

i − x∗
i ln xi

x∗
i

)
, to which our

functional U3 reduces when c, f, i, p are linear functions, has been used by Volterra in
[20] to treat a two-dimensional predator-prey model which describes the interaction
between sharks and predated fish in the Mediterranean Sea. (See also Goh [4].) In
[5], Harrison constructed a Lyapunov functional of this type for a two-dimensional
predator-prey model which accounted for very general numerical and functional re-
sponses of the predator. The computation of the derivatives is straightforward and
hence omitted for brevity.
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SUFFICIENT CONDITIONS FOR MONOTONE LINEAR STABILITY
OF STEADY AND OSCILLATORY HAGEN–POISEUILLE FLOW∗

VÍT PRŮŠA†

Abstract. Sufficient conditions for the monotone decay of disturbances to oscillatory and steady
Hagen–Poiseuille flow are rigorously derived within the framework of linear stability theory. The
conditions hold both for axisymmetric and nonaxisymmetric disturbances, whereas the result for
nonaxisymmetric disturbances to the oscillatory flow is of particular importance because in this case
even numerical results are not available in the literature. Furthermore, the conditions provide explicit
bounds on the range of parameters that must be examined in any prospective search for instability
by numerical means. The derivation of the sufficient conditions on monotone decay is based on a
detailed analysis of the spectrum of the Stokes operator.

Key words. linear stability, nonaxisymmetric disturbances, Hagen–Poiseuille flow, oscillatory
Hagen–Poiseuille flow
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1. Introduction. Hagen–Poiseuille flow is a flow of incompressible Newtonian
fluid in a pipe of infinite length that is driven by pressure gradient in the direction of
the pipe’s axis. For steady flow the gradient is given by the formula

∂p

∂z
= −Δs,

where Δs is constant. In the oscillatory case the pressure gradient is a harmonic
function of time

∂p

∂z
= −Δpe

iωt,(1.1)

where Δp denotes the amplitude of the pressure gradient and ω denotes the frequency
of oscillations. The flow generated by the pressure gradient (1.1) can serve as a simple
model for the oscillating component of the blood flow in arteries (see McDonald [6]
and Womersley [14] for details), and therefore a detailed examination of properties of
the flow is important from a mathematical point of view as well as from a physiological
point of view.

Governing equations for the flows are the well-known Navier–Stokes equations,
and for both oscillatory and steady flow it is possible to find an analytical formula for
the base flow. Having analytical formulas for the base flows, the question of stability
of the base flows naturally arises. The present work is focused on the rigorous deriva-
tion of an explicit sufficient condition for monotone linear stability of the oscillatory
flow, whereas special attention is given to stability of nonaxisymmetric disturbances.
The reason for the focus on nonaxisymmetric disturbances is that stability character-
istics of the oscillatory flow are—especially from the analytical point of view—mainly
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unknown (see the discussion below). Nevertheless, the method presented here can also
be used in the steady case, and its outcomes can be compared to previously achieved
results.

Concerning stability of the steady flow, the pioneering works are that of Salwen
and Grosch [9] and Salwen, Grosch, and Cotton [10], where the linear stability of
the base flow was examined by numerical methods, and it was found that the steady
Hagen–Poiseuille flow is stable for a wide range of parameters. The results of Salwen
and Grosch [9] and Salwen, Grosch, and Cotton [10] were reproduced many times,1

and now it is commonly accepted that the steady Hagen–Poiseuille flow is stable to
all possible disturbances (as far as the disturbances can be described by the linear
stability theory).

Important results in the analytical approach to the stability of the steady flow
are the works of Herron [4], who proved that the base flow is linearly stable to ax-
isymmetric disturbances,2 and Joseph and Carmi [5], who proved (by semianalytical
methods) that the base flow is monotonically stable to all possible disturbances if the
Reynolds number is less than 81.49.

In the oscillatory case the situation is more complicated because the numerical
calculations in the framework of the linear stability theory were—from the earliest
one, that of Yang and Yih [15], to the most recent one by Blennerhassett and Bassom
[2]—focused only on axisymmetric disturbances, and behavior of nonaxisymmetric
disturbances remains unknown. Furthermore it seems that the oscillatory flow is in
contrast to the steady flow linearly unstable for high Reynolds numbers.3 The inade-
quacy of restriction of calculations only to axisymmetric disturbances is evident and
was commented on by von Kerczek and Tozzi [12], but even in this work nonaxisym-
metric disturbances to the oscillatory flow were not considered.

Analytical results comparable to Herron [4] and Joseph and Carmi [5] are not
available for the oscillatory flow; therefore, a need to establish some analytical results
is obvious. Furthermore, the lack of numerical results for nonaxisymmetric distur-
bances opens a possibility to extend analytical results to the area that was not yet
examined by numerical means. In this work it is shown that it is indeed possible to
establish a sufficient condition for monotone linear stability of the oscillatory flow and
that this condition holds for both axisymmetric and nonaxisymmetric disturbances.

2. Problem formulation.

2.1. Governing equations for disturbances. In the framework of the linear
stability theory (see, for example, Schmidt and Henningson [11]), the nondimensional

governing equations for the disturbance �v to the base flow �V are

∂�v

∂t
+ [∇�V ]�v + [∇�v]�V = −∇p +

1

RΔ�v,(2.1)

div�v = 0,(2.2)

together with the no-slip boundary condition on the pipe’s wall and the periodic
boundary condition on the ends of the pipe. The monotone stability is defined in the
standard manner.

1See, for example, Meseguer and Trefethen [7] for a precise numerical calculation for high
Reynolds numbers.

2Thus disturbances with n = 0; see (2.4) below.
3See Blennerhassett and Bassom [2] for details. Yang and Yih [15], however, claim that the flow

is linearly stable, but they did not examine extreme parameter values as did Blennerhassett and
Bassom [2].
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Definition 2.1 (monotone stability). The flow is monotonically stable if for all
disturbances �v

1

2

d

dt
‖�v‖2 < 0,(2.3)

where ‖�v‖2 =
∫
Ω
�v • �vdx is kinetic energy of the disturbance in the volume Ω.

The solution to the disturbance equations is sought in the form of waves

�v(r, ϕ, z, t) = �̃v(r, t)eiαz+inϕ,(2.4)

where (α, n) ∈ R × Z is the wave vector of the disturbance and r, ϕ, and z are
the cylindrical coordinates. In the pipe flow case, the scalar product is defined (see
Salwen and Grosch [9] for a discussion) as integration over a section of the pipe that
is bounded by two planes perpendicular to the pipe’s axis and one wavelength apart4:

〈�v, �u〉 =

∫ 1

r=0

∫ 2π

ϕ=0

∫ 2π
α

z=0

�̃v • �̃u�
rdrdϕdz =

4π2

α

∫ 1

r=0

�̃v • �̃u�
rdr.(2.5)

The norm in (2.3) is naturally the norm induced by the scalar product (2.5).

2.2. Base flow velocity. The base flow velocity has in both the oscillatory and
steady cases a nonzero component only in the direction of the pipe’s axis. For the
steady flow the nondimensional base flow velocity is given by the well-known formula

V ẑ(r) = (1 − r2),(2.6)

and the Reynolds number is defined in the standard manner—the characteristic length
is equal to the pipe’s radius R and the characteristic velocity U is equal to the cen-

terline velocity U = ΔsR
2

4ρν , where ρ is the density and ν is the kinematic viscosity.
In the oscillatory case there are several possibilities for introducing dimensionless

variables. The approach of Womersley [14] is followed in this work. The Reynolds
number is thus defined in the standard manner as R = RU

ν , where the characteristic

velocity U is equal to U =
ΔpR

2

4ρν . The characteristic length is again the pipe’s radius
R. The second dimensionless parameter that is necessary in the oscillatory case is the
Womersley number W defined by the formula W =

√
ω
νR.

Expressions for the base flow velocity and other characteristics of the oscilla-
tory base flow were derived in Womersley [14] and McDonald [6]. Using the scaling
introduced above, the dimensionless base flow is given by the formula

V ẑ(r, t) = −i
4

W2

(
1 − J0(i

3
2Wr)

J0(i
3
2W)

)
eiωt,(2.7)

where Jk(x) denotes the Bessel function of the first kind and of order k. Application of
basic identities for the Bessel functions then immediately gives the following formula
for the base flow velocity derivative:

∂V ẑ

∂r
(r, t) = −i

5
2

4

W
J1(i

3
2Wr)

J0(i
3
2W)

eiωt.(2.8)

4In the singular case α = 0 the integration is only with respect to the r and ϕ variables.
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3. Analytical results. The governing equation for the disturbance energy can
be easily obtained by multiplying the governing equation for disturbances (2.1) by
the disturbance itself and using the scalar product (2.5) to give〈

∂�̃v

∂t
, �̃v

〉
+
〈
[∇�V ]�̃v + [∇�̃v]�V , �̃v

〉
=

〈
−∇p̃ +

1

RΔ�̃v, �̃v

〉
.

From the above equation it then follows that

1

2

d

dt
‖�̃v‖2 = �

(〈
−∇p̃ +

1

RΔ�̃v, �̃v

〉
−
〈
[∇�V ]�̃v, �̃v

〉
−
〈
[∇�̃v]�V , �̃v

〉)
,(3.1)

where � denotes real part.
The equation (3.1) is the governing equation for the disturbance energy measured

in the norm induced by the scalar product. To prove monotone stability (monotone
decay of disturbance energy) it is necessary to prove that the right-hand side of (3.1)
is negative. The first term in the bracket is real and has a negative sign and it is
even possible to estimate its magnitude—this can be done using eigenvalues of the
Stokes operator (see section 3.1 for the properties of the Stokes operator). The last
two terms in the bracket are complex and its real part has no definite sign. The real
part must therefore be estimated by the absolute value. The steps described above
are formally summarized in the following lemma.

Lemma 3.1 (estimate of disturbance energy derivative). Let α ∈ R, n ∈ Z. Then
the time derivative of kinetic energy of the disturbance with a wave vector (α, n) can
be estimated as

1

2

d

dt
‖�̃v‖2 ≤

(
−λ1 + |α| sup

r∈[0,1], t∈[0, 2πω ]

∣∣V ẑ
∣∣ + sup

r∈[0,1], t∈[0, 2πω ]

∣∣∣∣∂V ẑ

∂r

∣∣∣∣
)
‖�̃v‖2,(3.2)

where λ1 is the lowest eigenvalue of the Stokes problem (3.6)–(3.7), and V ẑ is the
component of the base flow velocity in the direction of the z-axis.

Proof. Let us consider terms on the right-hand side of (3.1). For the first term it
can be shown that (see section 3.1 for the properties of the Stokes operator)

�
(〈

−∇p̃ +
1

RΔ�̃v, �̃v

〉)
=

〈
−∇p̃ +

1

RΔ�̃v, �̃v

〉
≤ −λ1 〈�v,�v〉 = −λ1‖�v‖2,(3.3)

where λ1 is the lowest positive eigenvalue of the Stokes problem.
The last two terms on the right-hand side of (3.1) can be estimated by absolute

value. The estimate for the first term is∣∣∣〈[∇�V ]�̃v, �̃v
〉∣∣∣ =

∣∣∣∣
∫ 1

r=0

∂V ẑ

∂r
ṽr̂

(
ṽẑ
)∗

rdr

∣∣∣∣ ≤ sup
r∈[0,1], t∈[0, 2πω ]

∣∣∣∣∂V ẑ

∂r

∣∣∣∣ ‖�̃v‖2,(3.4)

and for the second term we find that

∣∣∣〈[∇�̃v]�V , �̃v
〉∣∣∣ =

∣∣∣∣∣∣
∫ 1

r=0

iαV ẑ

⎡
⎣ ṽr̂

ṽϕ̂

ṽẑ

⎤
⎦ •

⎡
⎣ ṽr̂

ṽϕ̂

ṽẑ

⎤
⎦�

rdr

∣∣∣∣∣∣ ≤ |α| sup
r∈[0,1], t∈[0, 2πω ]

∣∣V ẑ
∣∣ ‖�̃v‖2.

(3.5)
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Substituting estimates (3.3)–(3.5) into the equation for the disturbance energy (3.1)
yields the inequality in the lemma.

To determine a sufficient condition for monotone stability it is necessary to in-
vestigate the dependence of the terms in the inequality (3.2) on the free parameters
of the problem—namely on the Reynolds number R, the Womersley number W (for
the oscillatory case only), and the wave vector (α, n) of the disturbance.

The required estimates on the base flow velocity and the base flow velocity deriva-
tive in terms of free parameters are given in section 3.2, and the estimate of the lowest
eigenvalue λ1 of the Stokes problem is derived in section 3.1. In these paragraphs var-
ious inequalities and identities for the Bessel functions are used. The identities can
be found in Abramowitz and Stegun [1] or—including proofs—in Watson [13].

3.1. Stokes problem. The eigenvalue problem for the Stokes operator in a
circular pipe is given by

− 1

RΔ�v + ∇p = λ�v,(3.6)

div�v = 0,(3.7)

together with the no-slip boundary condition on the pipe’s wall and the periodic
boundary condition on the ends of the pipe.

It can be proved (see, for example, Constantin and Foias [3]) that the spectrum
of the Stokes operator consists only of a point spectrum and that the eigenvalues of
the Stokes operator are all positive. Furthermore, the eigenvectors form a complete
orthogonal basis in an appropriate function space.

The Fourier transformed version5 of the eigenvalue problem for the Stokes oper-
ator is considered in Salwen and Grosch [9] and Rummler [8]. In can be shown that
the Fourier transformed eigenvalue problem has the same properties as the eigen-
value problem in real space (the eigenvalues are real, positive, and simple and the
eigenfunctions form a complete orthogonal basis in an appropriate function space),
and furthermore the eigenfunctions and the eigenvalues of the Fourier transformed
problem can be explicitly calculated for all wave vectors (α, n).

The eigenvalues of the Fourier transformed problem are given by a complicated
implicit equation and can be found by numerical means. However the aim of this
work is to obtain an explicit condition for stability, and the mere fact that it is
possible to calculate the eigenvalues by numerical solution of the implicit equation
is clearly not sufficient for this purpose. To obtain wanted explicit conditions it is
therefore necessary to find some explicit estimate of the lowest eigenvalue of the Stokes
operator—this is done in the following lemma.

Lemma 3.2 (estimate of the lowest eigenvalue of the Stokes operator). Let λ1 be
the lowest positive eigenvalue of the Fourier transformed Stokes operator and let jk,l
denote the lth positive root of the Bessel function Jk(x).

If α = 0 and n = 0 then

λ1 =
1

R j20,1.(3.8)

If α = 0 and n 	= 0 then

λ1 =
1

R j2n,1.(3.9)

5The solution is sought in the wavy form (2.4).
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If α 	= 0 and n = 0 then

λ1 =
1

R
(
α2 + j21,1

)
.(3.10)

If α 	= 0 and n 	= 0 then

λ1 ≥ 1

R
(
α2 + j2n−1,1

)
.(3.11)

Proof. In Rummler [8] it is shown that the eigenvalues of the Fourier transformed
Stokes operator are equal to λk = 1

R
(
α2 + β2

k

)
, where the parameters βk are roots of

certain characteristic equations according to the value of the wavevector (α, n).
For α = 0 and n = 0 parameters βk are positive roots6 of equations J1(βk) = 0

and J0(βk) = 0. For the Bessel functions it is known that for m, l ∈ N, m < l there
is jm,1 < jl,1. It is therefore obvious that the lowest eigenvalue is in this case given
by (3.8).

For α = 0 and n 	= 0 parameters βk are positive roots of equations Jn(βk) = 0
and J|n|+1(βk) = 0. The result (3.9) is then obtained by the same argument as in the
previous case.

For α 	= 0 and n = 0 parameters βk are positive roots of equations

J1(βk) = 0(3.12)

and

|α|I0(|α|)J1(βk) − βI1(|α|)J0(βk) = 0,(3.13)

where Ik(x) denotes the modified Bessel function of the first kind and of order k.
Dividing (3.13) by |α|I0(|α|) and taking the limit |α| → +∞ or |α| → 0+ yield

asymptotic equations J1(βk) = 0 and −βk

2 J2(βk) = 0 respectively. It is obvious that
roots of these asymptotic equations cannot be roots of the original (3.13). From the
asymptotic equations, continuity of the left-hand side of (3.13), and the fact that the
eigenvalues of the Stokes problem must be simple for all α and n, it follows that the
first positive root of (3.13) must be for all |α| localized in the interval (j1,1, j2,1). The
first positive βk is therefore the first positive solution to (3.12), and equality (3.10)
indeed holds.

For α 	= 0 and n 	= 0 parameters βk are roots of the following equation:

(3.14) − 2|α|In(|α|)Jn−1(βk)Jn+1(βk) + βkIn+1(|α|)Jn−1(βk)Jn(βk)

− βkIn−1(|α|)Jn(βk)Jn+1(βk) = 0.

In this case it is possible to apply the same approach as above. Dividing the equation
by |α|In(|α|) and taking the limit |α| → +∞ yield

−2Jn−1(βk)Jn+1(βk) = 0,(3.15)

and dividing (3.14) by In−1(|α|) and taking the limit |α| → 0+ lead to the asymptotic
equation

−βkJn(βk)Jn+1(βk) = 0.(3.16)

6Trivial root β = 0 would lead to the trivial solution of the eigenvalue problem for the Stokes
operator.
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The first positive root of (3.15) is jn−1,1 and the first positive root of (3.16) is jn,1.
Again it is obvious that neither jn−1,1 nor jn,1 are roots of the original (3.14) and—as
in the previous case—it follows that the first positive root of the original equation
is localized in the interval (jn−1,1, jn,1), and therefore the inequality (3.11) indeed
holds.

3.2. Estimates on the base flow. The last step necessary to rewrite the right-
hand side of the inequality (3.2) as an explicit function of R, W, α, and n is to find
some estimates of the expressions appearing in the inequalities (3.5) and (3.4). The
appropriate estimates are given below.

Lemma 3.3 (estimate of base flow velocity). Let V ẑ be the base flow velocity
given by the formula (2.7). Then

sup
r∈[0,1], t∈[0, 2πω ]

∣∣V ẑ(r, t)
∣∣ ≤ 8

W2
.(3.17)

Proof. The proof of the lemma is straightforward:

∣∣V ẑ(r, t)
∣∣ ≤ 4

W2

(
1 +

∣∣∣∣∣J0(i
3
2Wr)

J0(i
3
2W)

∣∣∣∣∣
)

≤ 8

W2
.

The last estimate in the inequality is obvious from the identity∣∣∣Jν(i 3
2x)

∣∣∣2 = |berν (x) + ibeiν (x)|2

=
(x

2

)2ν +∞∑
k=0

1

Γ(ν + k + 1)Γ(ν + 2k + 1)

(
x2

4

)2k

k!
.

(3.18)

Lemma 3.4 (estimate of base flow velocity derivative). Let V ẑ be the base flow
velocity given by the formula (2.7). Then

sup
r∈[0,1], t∈[0, 2πω ]

∣∣∣∣∂V ẑ

∂r
(r, t)

∣∣∣∣ ≤ 4

W .(3.19)

Proof. The estimate easily follows from the above-mentioned identity (3.18) and

basic inequality |J0(i
3
2x)| > |J1(i

3
2x)|.

3.3. Sufficient condition for monotone linear stability. Combining esti-
mates from sections 3.1 and 3.2 leads to the sufficient condition for monotone linear
stability of the oscillatory and the steady Hagen–Poiseuille flow.

Theorem 3.5 (sufficient condition for monotone linear stability). Let �̃v be a dis-
turbance to the oscillatory Hagen–Poiseuille flow determined by the Reynolds number
R and the Womersley number W, and let (α, n) be the wave vector of the disturbance.
If α = 0, n = 0, and

− 1

R j20,1 + |α| 8

W2
+

4

W < 0,(3.20)

or if α = 0, n 	= 0, and

− 1

R j2n,1 +
4

W < 0,(3.21)
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or if α 	= 0, n = 0, and

− 1

R
(
α2 + j21,1

)
+ |α| 8

W2
+

4

W < 0,(3.22)

or if α 	= 0, n 	= 0,

− 1

R
(
α2 + j2n−1,1

)
+ |α| 8

W2
+

4

W < 0,(3.23)

then the disturbance energy monotonically decays in time.
Proof. The proposition is a immediate consequence of the energy estimate (Lemma

3.1), the estimate of the lowest eigenvalue of the Stokes operator (Lemma 3.2),
and estimates of base flow velocity and base flow velocity derivative (Lemmas 3.3
and 3.4).

The first condition in the theorem is in fact exceedingly strict. It can be proved
that the disturbance with (α, n) = (0, 0) monotonically decays in time for all values
of the Reynolds number R and the Womersley number W. Indeed, in this case—due
to a special form of the eigenfunctions of the Stokes operator7—the second and third
terms on the right-hand side of (3.2) are equal to zero, and therefore there is no need
to balance positive and negative terms using the estimates (3.5) and (3.4).

A theorem similar to Theorem 3.5 can be also derived in the steady case. Esti-
mates on the base flow velocity analogous to the estimates (3.17) and (3.19) are in
this case trivial. For example, in the most general case α 	= 0 and n 	= 0, the condition
for monotone decay of disturbances to the steady Hagen–Poiseuille flow reads

− 1

R
(
α2 + j2n−1,1

)
+ |α| + 2 < 0.(3.24)

Using Theorem 3.5 it is easy to derive the following condition for monotone decay
of all possible disturbances.

Corollary 3.6 (explicit bound on Reynolds number). If the Reynolds number
R for the oscillatory Hagen–Poiseuille flow satisfies the inequality R < Rcrit, where

Rcrit =
W2

8

⎛
⎝2

√(
W
2

)2

+ j20,1 −W

⎞
⎠ ,(3.25)

then the flow is monotonically linearly stable to all possible disturbances.
If the Reynolds number R for the steady Hagen–Poiseuille satisfies the inequality

R < Rcrit, where

Rcrit = 2
(√

4 + j20,1 − 2
)
,(3.26)

then the flow is monotonically linearly stable to all possible disturbances.
Proof. The inequality jn,1 < jn+1,1 that holds for all n ∈ N, together with the

estimates from Theorem 3.5, leads to the following general sufficient condition that
ensures monotone decay for all n:

− 1

R
(
α2 + j20,1

)
+ |α| 8

W2
+

4

W < 0.(3.27)

7See Rummler [8] for explicit formulas for the eigenfunctions in this special case.
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Fig. 3.1. Sufficient condition for monotone stability of oscillatory Hagen–Poiseuille flow.

The condition can be rewritten as

R <
α2 + j20,1

α 8
W2 + 4

W
,(3.28)

and the corollary is then a straightforward consequence of minimization of the right-
hand side with respect to α. The critical value of α where the function on the right-
hand side attains its minimum is equal to

αcrit =

√(
W
2

)2

+ j20,1 −
W
2
,(3.29)

and substitution of this value back into (3.28) gives the proposition.
In the steady case the proposition is proved by the same arguments; the key

inequality analogous to (3.28) is in this case R <
α2+j20,1
α+2 .

A plot of parameter regions which satisfy condition (3.23) for n = 1 (and thus
also the general condition (3.23) that is uniform with respect to n) is shown in Figure
3.1(a). All pairs (α,R) that for a given Womersley number W lie below the corre-
sponding curve in Figure 3.1(a) lead to monotonically decaying disturbances. The
dependence of the critical Reynolds number Rcrit and the critical wavelength αcrit on
the Womersley number W is shown in Figure 3.1(b).

4. Conclusion. Explicit sufficient conditions for monotone linear stability of the
oscillatory and steady Hagen–Poiseuille flow were found by purely analytical means.

In the case of the steady Hagen–Poiseuille flow a numerical evaluation of the suffi-
cient condition (3.26) leads to the conclusion that if the Reynolds number is less than
approximately 2.26, then the flow is monotonically stable to all possible disturbances.
This bound on monotone stability is low compared to the bound given by Joseph and
Carmi [5], but the value of the present result is that it was achieved by purely analyt-
ical means. Herron [4] proved stability (but not monotone stability) for axisymmetric
disturbances, and his result holds without any further conditions on the magnitude of
the Reynolds number. In light of this result, the present sufficient condition (3.26) is
clearly exceedingly restrictive for axisymmetric disturbances; however, the condition
(3.26) becomes important if it is necessary to describe behavior of nonaxisymmetric
disturbances that are beyond the scope of the Herron result.
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Considering the oscillatory Hagen–Poiseuille flow, the condition (3.25) is more
valuable because of the lack of analytical and numerical results particularly for non-
axisymmetric disturbances. Especially for nonaxisymmetric disturbances, where even
numerical results are not available, the condition provides an important description
of stability properties of the flow. However, the bound on the Reynolds number
given in the condition (3.25) is very strict, and the condition is difficult—but not
impossible—to meet in a practically important situation. For example, if the first
harmonic component of oscillatory flow in the femoral artery of a dog (see Womersley
[14]) is considered, then W = 3.3 and R = 648, while the condition (3.25) ensures
stability for the Reynolds number less than 1.7. Nevertheless, for the sixth harmonic
(sine) component, there are W = 8.2 and R = 12.3, while the Reynolds number
sufficient for monotone stability is equal to 4.7.

Sufficient conditions set in Theorem 3.5 are important not only from the analytical
point of view, but also from the numerical point of view, because they for a given
Reynolds number and Womersley number provide rigorous bounds on the range of
wavevectors (α, n) that must be examined in any future search for instability by
numerical means. Furthermore, the critical wavelength αcrit provides a clue to the
question of which wavelength α could be expected to be the least stable or even
unstable.
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fracture depending on all three processes. Our work focuses on plane strain hydraulic fractures
on long time scales, and this methodology shows promise for related models with additional time
scales, fluid lag, or different geometries, such as radial (penny-shaped) fractures and the classical
Perkins–Kern–Nordgren (PKN) model.

Key words. asymptotic solutions, crack tip, critical scales, hydraulic fractures, integral-
differential equations, leak-off
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1. Introduction. Hydraulic fractures are propagated in an elastic material due
to the pressure exerted by a viscous fluid on the fracture. These fractures occur nat-
urally in volcanic dikes where magma causes fracture propagation below the surface
of the earth [37, 38, 55]. In the oil and gas industry hydraulic fractures are deliber-
ately propagated in reservoirs to increase production. Hydraulic fracture models need
to account for the primary physical mechanisms involved: deformation of the rock,
fracturing of the rock, flow of viscous fluid within the fracture, and leak-off of the
fracturing fluid into the permeable rock. The parameters that characterize these pro-
cesses are, respectively, Young’s modulus E and Poisson’s ratio ν, the rock toughness
KIc, the fluid viscosity μ, and the leak-off coefficient Cl.

The challenges for analysis of these models originate from the nonlinearity of the
equation describing the flow of fluid in the fracture, the nonlocal character of the elas-
tic response of the fracture, and the history-dependence of the equation governing the
exchange of fluid between the fracture and the rock. The singular tip behavior, which
can be difficult to resolve numerically, dominates these solutions and is highly depen-
dent on the relative importance of the contributing physical processes. Therefore, the
objectives of analytic treatment of these models are as follows: to characterize the
structure of the near-tip solution that can be embedded in numerical algorithms, to
provide benchmark solutions to test numerical codes, and to determine the parameter
values and length scales that characterize the transitions between distinct combina-
tions of physical processes. In this paper we use a novel asymptotic framework that
enables us to characterize the different propagation regimes and provide asymptotic
solutions when more than two physical processes are competing simultaneously. This
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is distinct from previous analytic work on such models, which have been restricted to
considering at most two competing physical processes [6, 23, 24, 26].

There has been a significant amount of work in the last half century involving the
mathematical modeling of hydraulic fractures [1, 8, 14, 28, 30, 31, 32, 33, 45, 48, 55].
As discussed in [21] and the references therein, the aim of these models is to calculate
the fluid pressure, opening, and size of the fracture given the properties of the rock,
the injection rate, and the fluid characteristics. More recent work has been concerned
with developing numerical algorithms to simulate three-dimensional propagation of
hydraulic fractures in layered strata [5, 7, 12, 46, 47, 53]; this is in contrast to earlier
work where approximate solutions were found for simple fracture geometries [1, 8,
28, 33, 45, 48, 55]. A substantial difference between hydraulic fracturing and other
studies of fracture (see [22, 49, 52]) is the coupling with the equations for the fluid and
fracture geometry. Most models in hydraulic fracturing only consider planar fractures
rather than kinked or curved cracks [13, 41, 42].

The relevant fracture geometry that we consider in this paper, known as the KGD
(plane strain) model, was developed independently by Khristianovic and Zheltov [33]
and Geertsma and de Klerk [28]. The fracture is assumed to be an infinite vertical
strip so that horizontal cross-sections are in a state of plane strain. This model is
applicable to large aspect ratio rectangular planar fractures and was extended in [54]
to include toughness. A major contribution to this mathematical modeling was made
by Spence and Sharp [54], who initiated the work on self-similar solutions and scaling
for a KGD crack propagating in an elastic, impermeable medium with finite toughness.
This approach has been continued through asymptotic analyses of near-tip processes,
yielding the results from [15] for zero toughness in an impermeable rock, and from
[36] for zero toughness when leak-off is dominant. Several papers [16, 19, 27] have
extended this analysis to include toughness and fluid lag, where regions devoid of
fluid develop close to the crack tip, along with transitional regions. In this paper we
assume that fluid lag is negligible and so these effects can be ignored.

Certain phases of hydraulic fracture propagation are characterized within a di-
mensionless parametric space [21, 20], with boundaries controlled by the dominant
processes, namely, viscosity, toughness, or leak-off. This framework has been the ba-
sis for semianalytical solutions for simple geometries (KGD and penny-shaped) and
benchmarks for numerical simulators. These include the following asymptotic regimes:
impermeable with zero toughness [2, 10, 50], small toughness [24], finite toughness
[3, 54], and large toughness [26, 50]; and permeable with zero toughness [4].

Since much of our analysis is closely related and complementary to these most
recent studies, we outline the context here, with further discussion given in section
1.1 in terms of the specific model. Previous analyses [2, 9, 10, 24, 25, 26, 27] have
been limited to parameter regimes where one or two physical processes dominate
the dynamics, with the remainder of the related nondimensional quantities set to
unity. In each case there is a different set of scaling parameters defined, depending on
the dominant process(es), corresponding to the edges and corners of the parameter
space [6, 21]. These methods lead to asymptotic expansions for the tip behavior,
where the terms in the expansion involve powers of the distance from the tip. In the
case of vanishing leak-off, this method has also been used to describe the transition
in behavior between different power law expansions [2]. Recent preliminary studies
[23, 34, 35] have also used combinations of power law expansions in the context of
a semi-infinite approximation for the fracture, combined with numerical methods to
understand transitions between different scaling regimes.
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In this paper we present a unifying scaling framework based on singular per-
turbation techniques which analyzes how the physical processes, namely, viscosity,
toughness, and leak-off, all influence the KGD crack behavior. Avoiding semi-infinite
approximations, it involves the simultaneous scaling of all three processes relative to
the distance from the fracture tip: this means that the approach is applicable for
different combinations of the dominant physical processes. It has been used in [44]
for the impermeable case in which only the processes of viscous dissipation and en-
ergy release compete. Thus it provides a construction of the solution in the crucial
tip region, identifying the parameter combinations which quantify spatial transitions
in the behavior of the fracture. The scaling exponents of the physical processes are
determined as part of the method, so that it can be applied to construct approximate
solutions in intermediate parameter regimes where several processes are in balance.
The resulting asymptotic approximation provides verification of the conditions under
which self-similar solutions are appropriate, and indicates regimes in which a more
complicated time-dependence is involved, as discussed in section 4. We also briefly
outline how the technique can be generalized to regimes where there is more than one
transition in the behavior near the tip.

The fracture propagation is formulated as a system of coupled integrodifferential
equations, and our method proves to be very beneficial in understanding the nonlocal
and local effects that arise. It can be applied to different geometries, such as the
classical Perkins–Kern–Nordgren (PKN) model [43], and we expect that it can be
extended to model other effects such as stress jumps and fluid lag.

1.1. Problem formulation and dimensional results. The solution of the
KGD hydraulic fracture problem (shown in Figure 1.1) consists of determining the
fracture opening w and the net pressure p (the difference between the fluid pressure
pf and the far-field stress σo) as functions of space and time, as well as the fracture
half-length, l(t). These functions depend on the volumetric fluid injection rate Q0,
assumed constant in this paper, and on the four material parameters E′, μ′, K ′, and

Fig. 1.1. Diagrams showing the KGD crack and its cross-section.
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C ′, respectively, defined as

(1.1) E′ =
E

1 − ν2
, μ′ = 12μ, K ′ = 4

(
2

π

)1/2

KIc, C ′ = 2Cl,

which are combinations of the parameters quantifying the primary physical mecha-
nisms described at the beginning of this section. The rock toughness KIc is assumed
to be equal to the stress intensity factor KI which, for this geometry, can be expressed
as an integral of the pressure

(1.2) KIc = KI = 2

√
l

π

∫ l

0

p√
l2 − x2

dx.

The equations for the KGD fracture are as follows:

(1.3) Reynolds’ (lubrication) equation:
∂w

∂t
+ g =

1

μ′
∂

∂x

[
w3 ∂p

∂x

]
+ Q0δ(x),

which describes the conservation of fluid mass for an incompressible fluid. Note that
g is the leak-off term which describes the fluid infiltration into the surrounding rock.

Elasticity equation: p(x, t) = −E′

4π

∫ l

−l

∂w

∂s

ds

s− x
,(1.4)

which describes the balance of forces and is a nonlocal equation relating the fracture
opening w and net pressure p for a state of plane strain.

(1.5) Propagation condition: w =
K ′

E′

√
l − x + O

[
(l − x)3/2

]
, x −→ ±l,

which accounts for the energy required to break the rock and is the condition that
the fracture is in mobile equilibrium.

(1.6) Boundary conditions: w = 0, w3 ∂p

∂x
= 0, at x = ±l.

(1.7) Global volume balance condition: Q0t =

∫ l

−l

w(s, t) ds +

∫ t

0

∫ l

−l

g(s, τ) dsdτ,

which equates the crack volume to the volume of injected fluid and amount lost to
the surrounding rock mass, obtained by integrating (1.3) and applying (1.6). If t0(x)
is the time at which the crack tip arrived at the point x, and t is the current time,
then the leak-off function g is defined as

Carter’s leak-off model: g(x, t) =
C ′H(t− t0)√

t− t0(x)
.(1.8)

The memory term t0(x) implies that the leak-off function g(x, t) depends on the entire
history of the fracture front locations, which significantly complicates the analysis.

Since its introduction in 1957, Carter’s leak-off model [11] has been widely ac-
cepted and successfully used in the oil and gas industry to design hydraulic fracturing
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treatments and has been referred to as “the standard model of fracturing fluid loss”
(see [36]). We briefly summarize the steps involved in the derivation of the model and
discuss its applicability for high confinement geological situations, which are becoming
more important as deeper reserves are being exploited.

The first assumption made in the derivation of Carter’s leak-off model is that the
hydraulic load Δp = pf − p0 driving the leak-off process is approximately constant,
where p0 is the reservoir pore pressure. This assumption can be justified in high
confinement reservoirs where pf ≈ σ0 � p0. In this case the hydraulic load is much
larger than the net pressure p = pf − σ0 and is approximately constant, i.e., Δp ≈
σ0 − p0. The second assumption made in the derivation of (1.8) is in approximating
the leak-off process by a one-dimensional flow perpendicular to the crack propagation
axis that does not account for any lateral interaction. Modeling this gradient-driven
flow involves incorporating the growth of an impermeable filter cake layer via the
deposition of polymer molecules by the leaking fluid, the growth of an invaded zone of
fluid that penetrates the filter cake, and a pressure diffusion zone within the reservoir.
Combining these three physical processes in series yields (1.8), in which the lumped
coefficient C ′ is known as the Carter leak-off coefficient (see [6, 11, 39, 51] and the
references therein).

Assuming that l(t) = at1/2, Gordeyev and Entov [29] derived a similarity solution
to the two-dimensional pressure diffusion equation, which yields a leak-off velocity
of the same form as (1.8). In this case the fracture is growing sufficiently rapidly
for the leak-off process to be one-dimensional, a situation that is likely to persist
for power laws in which the fracture evolves more rapidly: l(t) = atλ, where λ ≥
1
2 . Carter’s model (1.8), which is based on the pressure diffusion equation, ignores
feedback coupling between the reservoir pressure field and the elastic strain in the
rock. This pure diffusion approximation can be justified using poroelasticity theory
[17, 18] in which the elastic strain feedback due to the hydraulic load Δp is shown
to vanish identically. Moreover, for high confinement reservoirs the mechanical load
effect (due to the net pressure p which forces the crack to open) on the reservoir
pressure is insignificant compared to that of the hydraulic load, since Δp � p.

There may be a question as to the validity of Carter’s model right at the crack tip.
However, the analysis presented in this paper is based on the fact that the dominant
physical process governing the behavior of the fracture at the tip, which we refer to as
the near-tip region, is the energy released in the breaking of the rock as characterized
by the fracture toughness. Since the leak-off process is subdominant to this and only
manifests itself a distance away from the tip in the intermediate-tip region, we make
use of the model only in a region where it is still valid. We could include other higher
order effects to model the leak-off more carefully in the near-tip region, but this is
neglected in our analysis since it is not the dominant process.

The method presented in this paper involves an iterative construction of the
asymptotic solution: the lubrication and elasticity equations (1.3)–(1.4) alternatively
give the form of the solution. The volume balance equation (1.7) is applied to com-
plete the solution: it verifies the balance of physical processes, determines unknown
constants, and provides a consistency check on the temporal behavior of the solution.
The propagation condition (1.5) manifests itself in the asymptotic behavior of the tip
when the influence of the toughness is dominant; this depends on the relative scalings
of the parameters and the distance from the tip.

We give the main results for w in terms of the dimensional variables; the expan-
sions for p can then be determined from (1.4). For Pckm � (�) (1−ξ)1/2, respectively,
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we find that

w ∼ K ′

E′ l
1/2

{(
1 − x

l

)1/2

+

[
8π

3
γ3/2P−1

km + 4
√

2πγP−1
ckm

](
1 − x

l

)}
,(1.9)

w ∼
(
C ′μ′

E′

)1/4
l3/4

t1/8
γ−3/4

{
C̃01

(
1 − x

l

)5/8

+ B1

(
1 − x

l

)1/8

+ B2P−1/4
cm

(
1 − x

l

)3/4

+ B3

(
1 − x

l

)r
}
,(1.10)

where C̃01, B1, B2, B3, and r are constants determined in the solution process, and
γ is an O(1) quantity introduced in the rescaling below. The three key parameter
combinations

(1.11) Pkm :=
K ′3

μ′E′2
γ3/2t

l3/2
, Pcm :=

C ′3E′

μ′
γ3t5/2

l3
, Pckm :=

K ′4

C ′μ′E′3
γt1/2

l

characterize the different behavior regimes, as shown in the analysis. The leading
order term in (1.10) was established by [36] for the stationary solution and then
confirmed in [6] for zero toughness. In a preliminary study [9], which considers the
infinite limit of a nondimensional parameter for the volume of injected fluid (2.2),
the first and last terms in both (1.9) and (1.10) are also determined. However, the
other terms are not found there, since certain parameter combinations are fixed (see
section 3.2 for further discussion.) These additional terms allow us to analytically
construct a uniform solution near the tip, instead of numerically as in [24] for zero
leak-off. Near and far-field solutions for semi-infinite approximations of the fracture
[23, 35, 34] also use expansions in powers of (1− ξ), which include some of the powers
from (1.9)–(1.10) in addition to other terms related to the semi-infinite limit. Power
law expansions similar to (1.9)–(1.10) for the zero leak-off case are derived in [44].
Some of these terms are also determined in [6, 24], but the additional terms found in
[44] allow the uniform tip behavior to be constructed analytically.

The asymptotic expansions (1.9)–(1.10) explicitly identify the critical parameter
combinations (1.11) that dictate transitions between (1.9) and (1.10) in the tip vicin-
ity. These quantities are combinations of the dimensionless parameters that arise in
the rescaling below, which quantify the physical processes viscosity, toughness, and
leak-off. From the construction of expansions (1.9)–(1.10) we can understand the
changes in tip behavior as we scale the quantities (1.11) with a parameter related to
the distance from the tip ξ = 1. Our method does not use a semi-infinite approxima-
tion, and therefore can be extended to study additional time dependencies, transients,
and other types of hydraulic fractures, such as finger-like geometries, known as the
PKN fracture [45, 48].

In section 2 we describe the new approach and in section 3 obtain expansions
when all three processes play a role, in the case that leak-off dictates the leading
order behavior. The construction leads to the identification of the parameter combi-
nations (1.11) which are necessary for describing the transition between the near- and
intermediate-tip solutions (1.9)–(1.10). Section 4 summarizes our results and briefly
outlines extensions of our methodology to situations where time-dependence must be
scaled explicitly, or cases where there is more than one transition in the dominant
shape of the fracture.
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2. Approach of the new method. We introduce the nondimensional quanti-
ties, following [6, 26, 24] and others:

(2.1) ξ = x/l, l = Lγ, w = εLΩ, p = εE′Π.

It is convenient to work with the dimensionless quantities Ω (the opening), Π (the
net pressure), and γ (a fracture length), which are all O(1). The parameter ε is used
in [6, 26, 24] to relate w/l to p/E′, so for comparison purposes we include it in our
analysis; however, it plays no role here and so could be set to unity. Also, L denotes
a length scale and is of the same order as the fracture length l.

We also define four nondimensional quantities,

(2.2) Gv =
Q0t

εL2
, Gm =

μ′

ε3E′t
, Gk =

K ′

εE′L1/2
, Gc =

C ′t1/2

εL
,

and determine different solutions depending on the size of combinations of these pa-
rameters (1.11) without setting any to unity. The governing equations (1.3)–(1.7) are
now

t
(
εL

)
t

εL
Ω + Ω̇t− ξ

t
(
Lγ

)
t

Lγ

∂Ω

∂ξ
+ GcΓl =

1

Gm

1

γ2

∂

∂ξ

[
Ω3 ∂Π

∂ξ

]
,(2.3)

Π = − 1

4πγ

∫ 1

−1

∂Ω

∂χ

dχ

χ− ξ
,(2.4)

Ω = Gkγ
1/2(1 ∓ ξ)1/2, ξ −→ ±1; Ω = 0, Ω3 ∂Π

∂ξ
= 0, at ξ = 1±,(2.5)

Gv = γ

∫ 1

−1

Ω dχ + Gc
1

L

∫ 1

0

l(θt)θ−1/2

∫ 1

−1

Γl dχdθ,(2.6)

where Γl is the dimensionless leak-off function discussed below.
The new approach relies on two main ingredients: (i) a scaling parameter δ � 1

that relates distance from the tip to the key dimensionless quantities in (2.2), and (ii)
a flexible asymptotic expansion which can handle behavior dominated by different
physical quantities. Thus we define

1 − δz = ξ,(2.7)

Gv = δβv Ĝv, Gk = δβk Ĝk, Gm = δβm Ĝm, Gc = δβc Ĝc,(2.8)

where the Ĝ()’s are O(1) quantities. The different regimes are then characterized by
inequalities between the values of the exponents βv, βk, βm, βc. Here δ is introduced
as a bookkeeping parameter that disappears from the expansion in the end. We
assume that z is O(1) and so δ � 1 essentially describes the distance from the tip
ξ = 1. Through this scaling we can explore the dominant behavior of the propagating
fracture in a very general way: we have not yet specified the distance from the tip
and we do not make a semi-infinite approximation, as used in previous studies such
as [6, 26, 24], amongst others.

Because of the symmetry of the solution about ξ = 0 (see Figure 1.1), we can
restrict our attention to the interval 0 < ξ < 1 and write the equations in terms of z.
The integral in (2.4) is then written as

(2.9) Π = − 1

4πγ

∫ 1

−1

dΩ

dχ

dχ

χ− ξ
= − 1

2πγ

∫ 1

0

dΩ

dχ

χdχ

χ2 − ξ2
,
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and similarly for the integrals in (2.6).
Then applying (2.7) and (2.8) in the governing equations (2.3)–(2.6) yields

t
(
εL

)
t

εL
Ω + (1 − δz)

t
(
Lγ

)
t

Lγ
δ−1 dΩ

dz
+ Ĝcδ

βcΓl =
1

Ĝmγ2
δ−βm−2 d

dz

[
Ω3 dΠ

dz

]
,(2.10)

Π = − 1

2πγ
δ−1

∫ 1/δ

0

dΩ

dr

(1 − δr)

r(2 − δr) − z(2 − δz)
dr,(2.11)

Ω = Ĝkγ
1/2δβk+1/2z1/2, z −→ 0; Ω = 0, Ω3 dΠ

dz
= 0, at z = 0,(2.12)

δβv Ĝv = 2γδ

∫ 1/δ

0

Ω dr + 2
Ĝc

L
δβc+1

∫ 1

0

l(θt)θ−1/2

∫ 1/δ

0

Γl dr dθ.(2.13)

Here we look for self-similar solutions Ω = Ω(z) and Π = Π(z). We justify the use
of these types of solutions in section 3.3. In (2.10)–(2.13) the powers of δ appear
explicitly, and they play a central role in understanding the spatial behavior of the
solution relative to the key dimensionless quantities.

For δ � 1, we expand the solution Ω and Π as follows:

Ω = δβk+1/2
(
Ω00 + δα1Ω01 + δα2Ω2 + · · ·

)
,(2.14)

Π = δβkΠ00 + δσ1Π01 + δσ2Π2 + · · · ,(2.15)

where the exponents αi and σi are determined in terms of the exponents β() in (2.8)

as part of the method. The prefactor δβk corresponds to the dimensionless parameter
Gk, and its inclusion in the leading terms is discussed below.

We substitute Ω and Π into the lubrication and elasticity equations (2.10) and
(2.11), so that they become, respectively,

(2.16)
t
(
εL

)
t

εL
δβk+1/2

(
Ω00 + δα1Ω01 + · · ·

)
+ (1 − δz)

t
(
Lγ

)
t

Lγ
δβk−1/2

(
dΩ00

dz
+ δα1

dΩ01

dz
+ · · ·

)
+ Ĝcδ

βcΓl

=
1

Ĝmγ2
δ−βm−1/2+3βk

d

dz

[(
Ω00 + δα1Ω01 +

)3 (
δβk

dΠ00

dz
+ δσ1

dΠ01

dz
+ · · ·

)]
,

δβkΠ00 + δσ1Π01 + · · ·(2.17)

= − 1

2πγ
δβk−1/2

∫ 1/δ

0

(
dΩ00

dr
+ δα1

dΩ01

dr
+ · · ·

)
(1 − δr)

r(2 − δr) − z(2 − δz)
dr.

The nondimensionalized leak-off function Γl is defined as

(2.18) Γl =
1√

1 − t0(ξl)/t
=

1√
1 − ξ1/λ

=
1√

1 − (1 − δz)1/λ
,

where t0(·) is defined following (1.8), and we have written it in the rescaled co-
ordinates (2.7). This follows from the definition of t0(x), the time lapsed between
the current time t and the time at which the crack tip arrived at the point x, so that
x(t0(x)) = l(t0). Using l = γL, L = CLt

λ, and ξ = x/l, we find

(2.19) l(t0) = CLγ

(
t0
t

)λ

tλ and
t0
t

= ξ1/λ.
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To motivate the equations which are solved below to leading order in the different
regions, we briefly consider the lubrication equation in the form of (2.10). The leading
order terms for δ � 1 satisfy

λδ−1 dΩ

dz
+

Ĝcδ
βc−1/2√

1 − (1 − δz)1/λ
=

1

Ĝmγ2
δ−βm−2 d

dz

[
Ω3 dΠ

dz

]
.(2.20)

The form of the expansions (2.14) and (2.15) distinguish where toughness dominates,
with the sign of α1 playing a significant role. We consider three cases:

(i) The right-hand side of (2.20) is dominant and set equal to zero. This gives
Π = constant to leading order (see Appendix A.1). Then Ω is found using the
propagation condition (2.12), giving the leading order square root behavior
for Ω00 and Π00 = constant. This case is described by α1 > 0, where tough-
ness dominates the leading order behavior, and thus justifies the use of the
prefactor δβk in expansions (2.14) and (2.15). The details of this near-tip case
are given in section 3.1 below.

(ii) The first term on the left-hand side balances with the right-hand side, thus
neglecting the term with coefficient Gc to leading order. This case is described
by α1 < 0, where viscosity, not leak-off, dictates the leading order behavior
of z2/3 [6, 15, 24]. When α1 < 0, the ordering of the terms in (2.14) and
(2.15) changes; then Ω01 and Π01 become leading order and so Ω00 and Π00

are zero in regions where the toughness is not dominant.
(iii) The second term on the left-hand side matches the right-hand side. We obtain

the solution z5/8 to leading order, as in [6, 36]. This situation also holds for
α1 < 0, with both leak-off and viscosity dictating the leading order behavior.
Again, Ω00 and Π00 are zero, and Ω01 and Π01 are the leading order terms.
The details of this intermediate-tip case are given in section 3.1 below. In
section 3.3 we show that λ = 1/2 for sufficiently large time, as in [6], and so
we use Γl = 1/

√
δz(2 − δz) in (2.18) for this case.

3. The expansion including toughness, leak-off, and viscosity. We con-
sider the case with nonzero leak-off Gc 
= 0 in addition to nonzero toughness and vis-
cosity (Gk 
= 0 and Gm 
= 0.) The expansions (2.14) and (2.15) are used to determine
exponents by balancing terms, leading to important combinations of the parameters
in (1.11) which characterize the different cases. We focus on scenarios with significant
leak-off, leading to the study of transitions between regimes where toughness and
leak-off dominate the behavior, namely, cases (i) and (iii). The analysis identifies a
critical scaling involving all three processes and gives a parametric characterization for
significant leak-off as G3

c /Gm = O(1) or larger. In contrast, case (ii) occurs in regimes
where leak-off plays a secondary role, G3

c /Gm � 1 and Gc < Gk, and corresponds to
the purely viscosity-dominated case with z2/3 power law to leading order away from
the tip. A straightforward extension of the analysis in [44] of the impermeable case
can be used to include higher order corrections involving leak-off in this parameter
region, so we do not consider it here. The intermediate case where G3

c /Gm � 1 and
Gc < Gk has two transition regions, from the z1/2 to z5/8 to z2/3 behavior. The anal-
yses presented below and in [44] can be extended easily to treat these two transitions,
and we outline this situation in section 4.
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3.1. Local expansions. Near-tip behavior (α1 > 0): The leading order terms
in (2.16) and (2.17) for δ � 1 satisfy

0 = δ−βm−1/2+4βk
d

dz

[
Ω3

00

dΠ00

dz

]
,(3.1)

δβkΠ00 = − 1

2πγ
δβk−1/2

∫ 1/δ

0

dΩ00

dr

(1 − δr)

r(2 − δr) − z(2 − δz)
dr.(3.2)

From these two equations we deduce that the solution of Ω00 is

(3.3) Ω00(z) = C00

√
z(2 − δz),

where C00 = 4πΠ00, and Π00 = constant, as discussed in Appendix A.1. The expres-
sion (3.3) is the eigenfunction solution which, when substituted into (3.2), gives Π00 =
constant exactly; its leading order behavior matches the tip condition (2.12) and it is
symmetric about ξ = 0. We use the tip condition (2.12) to find C00 = Ĝk

√
γ/2. Note

that for α1 > 0, the leading order term in the expansion for Ω involves the rescaled
toughness parameter Gk.

The next order terms for δ � 1 in (2.16) and (2.17) satisfy

λδβk−1/2 dΩ00

dz
+ Ĝc

√
λδβc−1/2z−1/2 =

1

Ĝmγ2
δ−βm+3βk−1/2+σ1

d

dz

[
Ω3

00

dΠ01

dz

]
,(3.4)

δσ1Π01 = − 1

2πγ
δβk−1/2+α1

∫ 1/δ

0

dΩ01

dr

(1 − δr)

r(2 − δr) − z(2 − δz)
dr.(3.5)

For the moment we do not balance exponents of δ, but leave them in the expression.
Solving (3.4) and (3.5) gives Ω01 and Π01: we find Ω01(z) = C01z and Π01 satisfies

(3.6) Π01 = −C01

4πγ
ln

(
1 − 1

2 − δz

)
− C01

4πγ

[
ln (1 − δz) − ln(δz)

]
for z = O(1). The constant of integration in (3.4) is zero; otherwise the solution
for Π01 yields an infinite stress intensity factor, as shown in Appendix A.2. The
details of the calculation of Π01 are similar to the analysis in Appendix B. We now
determine C01 by substituting Π01 into (3.4), and considering the leading order terms
only. Hence

(3.7) δσ1C01 = Ĝmγ2

[
δβm−2βkλ

2πγ

C2
00

+ δβc+βm−3βk
4πγ

√
λĜc√

2C3
00

]
.

Notice that the terms on the right-hand side of (3.7) change order depending on the
relative magnitude of Gk and Gc (i.e., δβk and δβc .) If Gc � Gk, then the first term
on the right-hand side is dominant and we obtain

(3.8) α1 = 1/2 + βm − 3βk, σ1 = βm − 2βk, C01 = 2πλ
Ĝmγ3

C2
00

.

However, if Gc � Gk, then the second term on the right-hand side of (3.7) is
dominant. The exponents α1 and σ1 and coefficient C01 are now

(3.9) α1 = 1/2 + βc + βm − 4βk, σ1 = βc + βm − 3βk, C01 =
4π

√
λĜcĜmγ3

√
2C3

00

.
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Since both of these cases represent particular solutions to the linear equations (3.4)–
(3.5), we can treat them simultaneously. Thus if α1 > 0, the first three terms in the
expansion (2.14) for Ω are

(3.10) Ω ∼ δβk+1/2
[
C00

√
z(2 − δz) + δ1/2+βm−3βkC01z + δ1/2+βc+βm−4βkC02z

]
,

where C02 is the redefined C01 coefficient from (3.9). Then the second term dominates
over the third term when Gc � Gk, and vice versa when Gc � Gk.

Intermediate-tip behavior (α1 < 0): The leading order terms in (2.16) are

(3.11) λδβk−1/2+α1
dΩ01

dz
+

Ĝcδ
βc−1/2√

z(2 − δz)
=

δ−βm+3βk−1/2+3α1+σ1

Ĝmγ2

d

dz

[
Ω3

01

dΠ01

dz

]
,

coupled with the elasticity equation (3.5). Note that we now use the form of Γl with
λ = 1/2, as mentioned in case (iii) above, since we are in the leak-off–dominated
regime. In the case that G3

c /Gm � (1− ξ)1/2, the second term on the left-hand side of
(3.11) is dominant over the term with Ω′

01(z). Then balancing powers of δ in (3.11)
and the elasticity equation (3.5) gives

(3.12) α1 = 1/8 + (βc + βm)/4 − βk, σ1 = −3/8 + (βc + βm)/4.

Note that if the first term in (3.11) is dominant, then the leading order terms for Ω01

are the same as in the case of zero leak-off studied in [6, 15, 24, 44]. This corresponds
to the case δ1/8+(βm+βc)/4 > δβc or, equivalently, G3

c /Gm � (1 − ξ)1/2. Ignoring
this term to leading order is consistent with the fact that leak-off is dominant, i.e.,
G3
c /Gm = O(1) or larger, as discussed in section 3.

The form of Ω01 is written as a combination of powers in z, namely,

(3.13) Ω01 = C̃01z
q + B̂1z

g + B̂2z
p + B̂3z

r.

This is equivalent to a perturbation expansion for the solution of (3.11) when B̂i � 1,
which we verify below. The elasticity equation (3.5) is then solved to give

Π01 = cotπq
C̃01q

4γ
zq−1 + cotπg

B̂1g

4γ
zg−1 + cotπp

B̂2p

4γ
zp−1 + cotπr

B̂3r

4γ
zr−1

+
C̃01qδ

1−q(2 − δz)−1

4πγ
+

B̂1gδ
1−g(2 − δz)−1

4πγ
+

B̂2pδ
1−p(2 − δz)−1

4πγ

+
B̂3rδ

1−r(2 − δz)−1

4πγ
+ O(δ1−q, δ1−g, δ1−p, δ1−r).(3.14)

By using the definitions of α1 and σ1 from (3.12) we integrate (3.11) to obtain

(3.15) λδ1/8+βm/4−3βc/4Ω01 + Ĝc

√
2

(
z1/2 +

1

12
δz3/2

)
+ k =

1

Ĝmγ2
Ω3

01

dΠ01

dz
,

where k is an arbitrary constant. We then have four expressions enabling us to
determine q, g, p, and r. The leading order terms are

(3.16)
√

2Ĝcz
1/2 = cotπq

C̃4
01q(q − 1)

4Ĝmγ3
z4q−2,
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which yields q = 5/8 and gives the coefficient C̃01,

(3.17) C̃01 =

{
4
√

2ĜcĜmγ3

q(q − 1) cotπq

}1/4

.

Then the next order terms satisfy

k =
C̃3

01B̂1

4Ĝmγ3

[
g(g − 1) cotπg + 3q(q − 1) cotπq

]
z3q+g−2,(3.18)

λδ1/8+(βm−3βc)/4C̃01z
q =

C̃3
01B̂2

4Ĝmγ3

[
p(p− 1) cotπp + 3q(q − 1) cotπq

]
z3q+p−2,(3.19)

λδ1/8+(βm−3βc)/4B̂1z
g =

C̃3
01B̂3

4Ĝmγ3

[
r(r − 1) cotπr + 3q(q − 1) cotπq

]
z3q+r−2.(3.20)

For simplicity of presentation we assume δ1/8+(βm−3βc)/4 > δ, which means we can
neglect the z3/2 term in (3.15). This corresponds to the case G3

c /Gm � (1 − ξ)−7/2.
Including this term results in an additional contribution to Ω01 in (3.13) with power
law z13/8. This term can be shown to be higher order in the matching below and
could be included in a straightforward manner if G3

c /Gm = O((1 − ξ)−7/2) or larger.
Matching exponents of z in (3.18)–(3.19) gives g = 1/8 and p = 3/4, respectively.

Since B̂1 is assumed small, the left-hand side of (3.20) is of higher order; r must be
approximated by solving the following nonlinear algebraic equation corresponding to
the right-hand side of (3.20) vanishing:

(3.21) r(r − 1) cotπr + 3q(q − 1) cotπq = 0,

and we find that r ≈ 0.0699928. Then

B̂2 = δ1/8+(βm−3βc)/4B2, B2 = λ
4Ĝmγ3

C̃2
01

[
p(p− 1)cotπp + 3q(q − 1)cotπq

] ,(3.22)

and the coefficients B̂1 and B̂3 are determined by matching with the near-tip expansion
(3.10) in the next section. Since q, g, p, r 
= 1/2, the solution (3.13) cannot satisfy
the

√
z behavior from the propagation condition (2.12) for Ĝk > 0. Observe that for

α1 < 0, toughness does not dominate the leading order behavior in this regime and
the terms Ω00 = Π00 = 0. Then the first term in the expansion (2.14) for Ω is

(3.23) Ω ∼ δ(βc+βm)/4

[
C̃01(δz)

5/8+B1(δz)
1/8+B2δ

(βm−3βc)/4
Ĝ1/4
m

Ĝ3/4
c

(δz)3/4+B3(δz)
r

]

for α1 < 0. Note that we have redefined C̃01 and B2 without the Ĝ() terms, which
allows us to highlight explicitly the dependence of Ω on the key dimensionless quan-
tities G() in (2.2). The coefficients B̂1 and B̂3 are redefined as B1 and B3 and they are
found in the following section.

3.2. Transition in spatial behavior and matching. Now we compare the
two local expansions, (3.10) and (3.23), in terms of the parameter combinations

(3.24) Pkm =
G3
k

Gm
, Pcm =

G3
c

Gm
, Pckm =

G4
k

GcGm
,
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which appear explicitly in both expansions and were introduced in (1.11). We consider
the range of parameters for which either Pcm � (1 − ξ)1/2 or Pkm � (1 − ξ)1/2, i.e.,
parameter values away from the viscosity-dominated regime. For Gc = O(1) this
corresponds to Gm � 1 or βm > 1. Other situations are discussed in the next section.

Then the expansions for Ω in terms of Pkm, Pcm, and Pckm are

Ω ∼ Gk

[
C00

√
1 − ξ2 + C01P−1

km(1 − ξ) + C02P−1
ckm(1 − ξ)

]
for α1 > 0,(3.25)

Ω ∼ (GcGm)1/4
[
C̃01(1 − ξ)5/8 + B1(Pckm)(1 − ξ)1/8

+P−1/4
cm B2(1 − ξ)3/4 + B3(Pckm)(1 − ξ)r

]
for α1 < 0.(3.26)

We have redefined C00, C01, and C02 in (3.25) without the Ĝ() terms which are incor-
porated into the dimensionless G() terms. Also, observe that the δ’s have disappeared
from the expressions. The expansions (3.25)–(3.26) give a transition in behavior of
Ω for 1 − ξ = O(P2

ckm): the unknown coefficients B1(Pckm) and B3(Pckm) are deter-
mined by matching the expansions in this transition region. The leading order term
in (3.26) was given in [36] and later in [6] for vanishing toughness. In a preliminary
study [9] some of the terms in (3.26) are obtained. There, both the global balance
and lubrication equations are scaled by Gv

−1, and they consider the limit of small
toughness, with Gv → ∞, for fixed nondimensional parameters Gc/Gv = GmGv = 1.
Then some of the terms in (3.26) are excluded for large Gv.

The motivation for defining the parameter Pckm follows directly from the expres-
sion for α1 in both cases, i.e., (3.9) and (3.12). Since the Ĝ() quantities are O(1), the

condition α1 > (<) 0 can be rewritten as Pckm � (�) (1 − ξ)1/2. The solution for
α1 > 0 is physically significant in the toughness dominated regime (Gk � Gc), which
is close to the tip and corresponds to Pckm � (1 − ξ)1/2. As (1 − ξ)7/2 approaches
Pckm, the first and third terms in (3.25) and the first term in (3.26) are the same order

of magnitude. A transition occurs in the region (1−ξ) = O(P1/2
ckm) and the solution in

the intermediate-tip region is found by considering α1 < 0 in (3.26). This corresponds
to the leak-off dominated regime, which is away from the tip for Pckm � (1 − ξ)1/2.
Hence the expansion in (3.25) holds for 1 − ξ < P2

ckm and the expansion in (3.26)
holds for 1 − ξ = O(Ps

ckm) (see Figure 3.1), with 0 < s < 2, and Pckm � 1.
To construct a uniform asymptotic approximation by matching (3.25) and (3.26),

we note that they are obtained by solving (2.20) in different asymptotic limits. The
matching is therefore straightforward in the transition region where G4

k/(GcGm) =
O((1 − ξ)1/2); to leading order the solution satisfies (2.20) together with the propa-
gation condition (2.12). While there is no closed form solution in this region, it can
be constructed numerically where 1 − ξ = O(P2

ckm) for 0 < Pckm � 1.
Alternatively, one can give an analytical expression for the matching of (3.25) and

(3.26), obtained from solving for the remaining unknown coefficients B1(Pckm) and
B3(Pckm). Writing these expressions in terms of the critical scaling 1− ξ = P2

ckmζ for
ζ = 0(1), (3.25) and (3.26) are, respectively,

Ω ∼ Gk

[
C00Pckmζ1/2

√
2 − P2

ckmζ +
(
C01P−1

km + C02P−1
ckm

)
P2
ckmζ

]
,(3.27)

Ω ∼ (GcGm)1/4
[
C̃01P5/4

ckmζ5/8 + B1(Pckm)P1/4
ckmζ1/8 + P−1/4

cm B2P3/2
ckmζ3/4

+B3(Pckm)P2r
ckmζr

]
.(3.28)
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Fig. 3.1. The left plot shows log Ω vs. log(1− ξ) with Gc = 1, Gm = 0.2, and Gk = 0.35 (and so
Pckm = 0.075.) The solid lines denote the leading order power law solutions, as indicated above. The
right plot shows a diagram of the solution Ω vs. ξ near the fracture tip for the leak-off–dominated
regime. The transition region is 1 − ξ = O(P2

ckm).

Equating (3.27) and (3.28) and their first derivatives yields B1(Pckm) and B3(Pckm),
which is equivalent to matching the first two terms in a Taylor series expansion about
1− ξ = O(P2

ckm) where Ω is regular. Figure 3.2 shows solution profiles of Ω, matched
at 1 − ξ = P2

ckm. In these parameter regimes all three processes contribute to the
transition between the near- and intermediate-tip behavior, described by (3.25) and
(3.26). There the coefficients B1(Pckm) and B3(Pckm) are

B1(Pckm) =
Pckm

8r − 1

[
(8r − 4)

√
2C00 + (8r − 8)

(
C01P−1

kmPckm + C02

)
− (8r − 5)C̃01

− (8r − 6)B2P−1/4
cm P1/4

ckm

]
,(3.29)

B3(Pckm) =
P−2r+5/4
ckm

8r − 1

[
3
√

2C00 + 7C01P−1
kmPckm + 7C02 − 4C̃01 − 5B2P−1/4

cm P1/4
ckm

]
,

(3.30)

which are small since Pckm � 1. As Pckm increases we observe that the transition
region moves away from the tip. Figure 3.2 also shows two solution profiles when (3.25)
holds to leading order for both near- and intermediate-tip behavior for Pckm < Pkm

and Pckm > Pkm. The shape of Ω depends on whether the second or third term
in (3.25) plays a larger role in the correction to the leading order behavior. Also,
Figure 3.1 shows a log-log plot of Ω for both the leak-off and toughness-dominated
regimes. In the near- and intermediate-tip regions we obtain the asymptotic 1/2
and 5/8 power law solutions, respectively, but in the transition region the correction
terms are important, so that the behavior cannot be described by a purely power law
solution, also observed in [6, 24] for zero leak-off.

For completeness we write down the near- and intermediate-tip expansions for
Π, which are determined using the elasticity equation (2.11). Hence we obtain, for
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Fig. 3.2. Solution profiles of Ω vs. ξ. On the left, Gc = 1, Gm = 0.2, and Gk = 0.45, 0.35, 0.25
(and Pckm = 0.205, 0.075, 0.020, respectively). The transition region is 1− ξ = O(P2

ckm), indicated
by ∗’s at ξ = 1 − P2

ckm on the graphs. On the right, Gm = 0.1; then, for the toughness dominated
regime (solid line), Pckm = 8.192 and Pkm = 5.12, and for the leak-off dominated regime (dashed
line), Pckm = 1.296 and Pkm = 2.16.

Pckm � (�) (1 − ξ)1/2, respectively,

Π ∼ Gk

[
Π00 −

1

4πγ

(
C01P−1

km + C02P−1
ckm

){
ln

∣∣∣∣1 − 1

1 + ξ

∣∣∣∣ + ln

∣∣∣∣ 1

1 − ξ

∣∣∣∣ + ln ξ

}]
,(3.31)

Π ∼ (GcGm)1/4

[
q cotπq

C̃01

4γ
(1 − ξ)−3/8 + g cotπg

B1(Pckm)

4γ
(1 − ξ)−7/8

+ p cotπp
P−1/4
cm B2

4γ
(1 − ξ)−1/4 + r cotπr

B3(Pckm)

4γ
(1 − ξ)r−1

]
.(3.32)

The details of this calculation are given in Appendix B. In Figure 3.3 we graph Π
for different values of Gk � 1 with Gm = 0.2 and Gc = 1. We observe that as Pckm

increases, which in this case corresponds to increasing the toughness parameter Gk

since Gm and Gc are fixed, the transition point between the two regimes moves away
from the tip and Π drops off at a faster rate. This is due to the power law behavior
in (3.32) being matched with the near-tip behavior in (3.31), which becomes more
dominant through the logarithmic correction for increasing Gk.

3.3. The global volume balance condition. The constants (i.e., the coef-
ficients C00, C01, C02, C̃01, and γ) are determined by applying the global volume
balance condition (2.13) and balancing terms according to the size of the parameters.
This condition also checks the consistency of the expansion and shows when we need
to consider additional time-dependencies which we discuss below.

The global volume balance equation in terms of the ξ scaling is given by (2.6).
Since l = γL and L = CLt

λ, where CL is an undetermined constant, we use Γl defined
in (2.18) to simplify the double integral. Hence (2.6) reduces to

(3.33) Gv = 2γ

∫ 1

0

Ω dχ +
2λ

√
πγΓ(λ)Gc

(λ + 1/2)Γ(λ + 1/2)
,

where Γ(·) represents the Gamma function. We must analyze the different situations
that arise for Pckm � 1 and Pckm � 1. The former case corresponds to toughness
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Fig. 3.3. Solution profiles of Π against ξ with fixed Gc = 1, Gm = 0.2, and Gk = 0.45, 0.35, 0.25
(and Pckm = 0.205, 0.075, 0.020, respectively).

dominating the behavior over the whole fracture, with α1 > 0, and is discussed in
detail in [44]. Then the left-hand side balances with the integral on the right-hand side
to leading order; it follows that λ = 2/3, that is, L = CLt

2/3. Substitution of (3.25)
then leads to an expression for γ in terms of Gv and Gk. The integral is evaluated
using the asymptotic expansion near the tip and using numerical evaluation away
from the tip where the behavior is regular [6, 24].

In contrast, for the case of Pckm � 1, the expansion (3.26) with α1 < 0 must
be used for G4

k/(GcGm) < (1 − ξ)1/2. For this range of ξ the leading order terms in
the lubrication equation are those with coefficients Gc and G−1

m . Together with the
elasticity equation, these terms indicate that Ω and Π must scale with (GcGm)1/4, as
in (3.26). Then the global balance condition has the form

(3.34) Gv/Gc = const · P−1/4
cm + const.

As discussed in section 3.1 following (3.11), Pcm � 1 in this case, and so the leading
order terms are the first and third, and the contribution from the integral is higher
order. Then we equate the leading order terms to obtain γ analytically. The global
balance equation verifies that the self-similar solution is appropriate for sufficiently
large Pcm. Writing the t dependence explicitly in (3.34) and using the definitions in
(2.2) with L = CLt

λ gives

(3.35)
Q0

εC2
L

t1−2λ = const ·
(

C ′μ′

ε4CLE′

)1/4

t−(2λ+1)/8 + const · C ′

εCL
t1/2−λ.

Comparing exponents and balancing the first and third terms gives λ = 1/2 and
the expression for γ simplifies to γ = Gv/πGc. Balancing the first and second terms
leads to a contradiction unless t < 1. The second term in (3.35) can be neglected

for t−1/4 � 1, corresponding to P−1/4
cm � 1 as in (3.34). This verifies that it is

appropriate to use λ = 1/2 for the leak-off–dominated intermediate-tip behavior in
section 3.1 for sufficiently large t. If this condition is violated, for example, for short
times, we can no longer conclude that γ is constant, and additional time-dependence
must be included in the expansion.
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4. Discussion and future work. In conclusion, we have introduced a new
approach for studying the system of integrodifferential equations that are found in
hydraulic fracturing problems. Our method enables us to simultaneously consider
the three primary physical mechanisms, namely, viscosity, toughness, and leak-off,
and we have obtained a continuous solution for the fracture opening w when one or
more of these processes are in balance. The technique determines critical relationships
between the nondimensional distance from the tip 1 − ξ and the key nondimensional
quantities Gk, Gc, Gm, and Gv, representing toughness, leak-off, viscosity, and injected
fluid volume, respectively.

For small toughness and O(1) leak-off, the behavior of Ω follows from combining
(3.25) for values of ξ in the near-tip region, and (3.26) for ξ in the intermediate-tip
region. The critical parameter combination in this case is Pckm = G4

k/GcGm, with
the transition layer occurring for values of Pckm = O((1 − ξ)1/2). Additional higher
order corrections depend on the relative magnitude of extra parameter combinations,
Pkm and G3

c /Gm = Pcm. These results are obtained by simultaneously solving the
elasticity and lubrication equations (2.10)–(2.11). The physical process of leak-off
has often been ignored in previous studies, and the new terms in expansions (3.25)
and (3.26) allow us to match expansions in different regions analytically, in contrast
to previous work [24] for zero leak-off. This analysis is new and the flexibility is
invaluable in extending the technique to other fracture geometries, namely, the PKN
fracture [43], and adding different effects, such as stress-jumps and fluid lag. It is
important to determine analytic solutions such as those derived in this paper, which
can be used to test the validity of the model against more complete numerical models
as well as data from laboratory and field experiments.

The application of the global volume balance equation is used to determine the
remaining constants in the solution, and it also provides valuable information related
to time dependence. In the regimes considered in this paper, we find that it provides a
consistency check for the use of a self-similar solution (2.14)–(2.15) with the coefficient
γ constant to leading order. We also determine the time-dependence of L, which gives
the power law scaling in time of the length of the fracture.

The global volume balance equation can also be used to determine regimes where
additional time-dependence must be included in the solution. For example, using this
equation, for finite leak-off we can deduce that for large but finite time the coefficient

γ varies on a slow time scale, T = P−1/4
cm t for Pcm � 1. For small time this analysis

is not sufficient: then a multiple-scale analysis of the resulting equations is necessary
to describe additional time dependence and transient behavior.

As noted in section 1.1 of the introduction, the results presented here rely on the
use of Carter’s leak-off model (1.8). However, our framework does not depend on a
specific form for the leak-off term, so its implementation is not restricted to the use
of (1.8). These results are valid for the balance of physical processes corresponding
to O(1) (or smaller) leak-off, which is typical of many fracturing treatments due to
the cake-building properties of the fracturing fluid [51]. Specifically, we require that
the combined parameter Pcm := G3

c /Gm � 1. In situations where Gc � 1, such as in
waterflood fractures, the leak-off term is not a higher order correction at the tip, and
therefore it would require a different modeling approach in that region.

Typical values of Carter’s leak-off coefficient C ′ range from 4–64×10−5 m/s−1/2,
as discussed in [6] and the references therein. Suppose we consider the case Pckm � 1
and set Gv = Gc = 1. Then the expression for γ, as found in section 3.3, is simply
γ = 1/π. Typical values of the other parameters are found in [6, 19, 27]: Q0 = 4–
40 × 10−4 m2/s, E = 10000–25000 MPa, ν = 0.15, μ = 1 × 10−7 MPa · s, and
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KIc = 1 MPa · m1/2. For example, using Q0 = 4 × 10−4 m2/s, C ′ = 16 × 10−5, and
E = 10000 MPa, the combined parameters can be shown to satisfy Pcm ≈ 0.0022t,
Pckm ≈ 0.20, and Pkm ≈ 0.066t1/4. Then the transition region is at ξ = O(1−P2

ckm) ≈
0.96, which supports the values used in the figures in section 3. This also shows that
our analysis is applicable for large time, since we require Pcm � 1. If we increase E
and Q0, say to 14000 MPa and 7 × 10−4 m2/s, respectively, then Pcm ≈ 0.00058t,
Pckm ≈ 0.042, Pkm ≈ 0.014t1/4, and the transition region is at ξ ≈ 0.998, which is
now much closer to the tip.

For the situation when the rock is impermeable, that is, for zero leak-off with
Gc = 0, we have used the same procedure to obtain an analytically matched asymptotic
solution in the tip region [44]. The expansions for Ω in terms of the key parameter
Pkm := G3

k/Gm are, for Pkm � (�) (1 − ξ)1/2, respectively,

Ω ∼ Gk

[
C00

√
1 − ξ2 + C01P−1

km(1 − ξ)
]
,(4.1)

Ω ∼ G1/3
m

[
C̄01(1 − ξ)2/3 + A1(Pkm)(1 − ξ)h + A2(Pkm)

]
.(4.2)

Hence the expansion (4.1) holds for values of ξ in the near-tip region, the expansion
(4.2) holds for ξ in the intermediate-tip region, and the analysis yields

(4.3) C00 = Ĝk

√
γ

2
, C01 = 2πλ

Ĝmγ3

C2
00

, C̄01 =

{
4Ĝmλγ3

m(m− 1) cotπm

}1/3

,

where m = 2/3. The motivation for defining the parameter Pkm again follows directly
from the dominant behavior expressed by balancing the exponents of δ, which becomes
Pkm � (�) (1 − ξ)1/2. The expansion (4.1) is physically significant in the toughness
dominated regime or valid close to the tip when G3

k/Gm � (1−ξ)1/2, and the expansion
(4.2) corresponds to the viscosity dominated regime in which G3

k/Gm � (1 − ξ)1/2.
Previous work [24] give some of the terms in (4.1)–(4.2), but the matching is done
numerically. The additional terms allow us to give an analytical expression for the
matching of (4.1) and (4.2), obtained by solving for the remaining unknown coefficients
A1(Pkm) and A2(Pkm), as shown in [44].

In other asymptotic limits, for example, for Pcm � (1 − ξ)1/2 and Gc > Gk, one
can obtain solutions which involve more than one transition region, as discussed at
the start of section 3. In particular, for sufficiently large leak-off and viscosity, the
solution for Ω consists of a leading order behavior with power law (1−ξ)1/2 for ξ in the
near-tip region, (1− ξ)5/8 for an intermediate-tip region, and (1− ξ)2/3 for values of ξ
farther from the tip. In the case Gc > Gk, a transition must occur at 1− ξ = O(P2

ckm)
between the near-tip square root behavior and the (1−ξ)5/8 behavior. If, in addition,
Pcm is such that Pcm � (1 − ξ)1/2, then there is another transition farther from the
tip at 1−ξ = O(P2

cm) between the (1−ξ)5/8 and (1−ξ)2/3 behavior. The construction
of the nondimensionalized width Ω proceeds as in the previous sections by identifying
the appropriate balance of (1 − ξ) with combinations of the parameters Gc, Gk, and
Gm. Finally, in the same way as the analysis described here in section 3.2 and in [44],
we can match across the two regions to determine the unknown coefficients which are
now in terms of both Pcm and Pckm.

Appendix A. Results on Π in the toughness-dominated regime.

A.1. Π00 is constant. Consider (3.1). We integrate to obtain

(A.1) Ω3
00

dΠ00

dz
= k1
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for some constant k1 
= 0. Using the propagation condition (2.12) for Ω00 in (A.1)
and integrating with respect to z yields

(A.2) Π00 = − 2k1

Ĝ3
kγ

3/2
z−1/2 + const

for z � 1. Now we compare this with the result from the elasticity equation (3.2),
again using the propagation condition (2.12) for Ω00, to get

δβkΠ00 = const ∗
∫ 1/δ

0

dΩ00

dr

(1 − δr)

r(2 − δr) − z(2 − δz)
dr = const

to leading order. This contradicts (A.2) so that k1 = 0. Thus, from (A.1) it follows
that Π00 is constant.

A.2. Integration constant from the lubrication equation is zero. Inte-
grating (3.4) with respect to z, using the leading order behavior (2z)−1/2 for the
leak-off term, gives

(A.3) λδβk−1/2Ω00 + Ĝcδ
βc−1/2

√
2z1/2 + k2 =

1

Ĝmγ2
Ω3

00

dΠ01

dz

for some constant k2 
= 0. Using the propagation condition (2.12) for Ω00 in (A.3)
and integrating with respect to z yields

(A.4) δσ1Π01 =
Ĝm

Ĝ3
k

δβm−3βk

[
λγĜkδ

βk ln z +
√

2γĜcδ
βc ln z − 2

√
γk2δ

1/2z−1/2
]
+k3.

Without loss of generality, we set the integrating constant k3 = 0, as it can be
incorporated into Π00. We now consider the stress intensity factor KI given in (1.2).
This can be rewritten in the ξ scaling as

(A.5) Gk =
8
√

2

π
γ1/2

∫ 1

0

Π√
1 − ξ2

dξ.

For ξ = 1− δz, we consider the contribution to (A.5) obtained from the term in (A.4)
with coefficient k2, namely,

(A.6) const ∗ 8
√

2

π
γ1/2δ1/2

∫ 1/δ

0

k2

z
√

2 − δz
dz.

For k2 
= 0, this term is infinite at z = 0. So k2 = 0 to maintain a finite energy.

Appendix B. Calculation of the expression for Π. We summarize the cal-
culation of the asymptotic behavior of Π from (2.9) to find the leading order behavior.
We introduce a parameter ξ∗ which is in the transition region 1−ξ = O(P2

ckm). Then
the expansion (3.25) holds near the tip and (3.26) holds away from the tip, i.e.,

(B.1) Ω ∼ Gk

[
C00

√
1 − ξ2 + C01P−1

km(1 − ξ) + C02P−1
ckm(1 − ξ)

]
for ξ∗ < ξ < 1, and

Ω ∼ (GcGm)1/4
[
C̃01(1 − ξ)5/8 + B1(Pckm)(1 − ξ)1/8

+P−1/4
cm B2(1 − ξ)3/4 + B3(Pckm)(1 − ξ)r

]
(B.2)
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for ξ < ξ∗, and (2.9) becomes
(B.3)

Π = −GkC00

4πγ

∫ 1

ξ∗

[√
1 − χ2

]′
2χdχ

χ2 − ξ2
−

Gk

[
C01P−1

km + C02P−1
ckm

]
4πγ

∫ 1

ξ∗

[
(1 − χ)

]′
2χdχ

χ2 − ξ2

− (GcGm)1/4

{
C̃01

4πγ

∫ ξ∗

0

[
(1 − χ)5/8

]′
2χdχ

χ2 − ξ2
+

B1(Pckm)

4πγ

∫ ξ∗

0

[
(1 − χ)1/8

]′
2χdχ

χ2 − ξ2

}

− (GcGm)1/4

{
P−1/4
cm B2

4πγ

∫ ξ∗

0

[
(1 − χ)3/4

]′
2χdχ

χ2 − ξ2
+

B3(Pckm)

4πγ

∫ ξ∗

0

[
(1 − χ)r

]′
2χdχ

χ2 − ξ2

}
=: I1 + I2 + I3 + I4 + I5 + I6.

In the intermediate region 1− ξ = O(Ps
ckm) for 0 < s < 2, the integrals I1 and I2 can

be evaluated to give

I1 =
GkC00

4πγ
(1 + ξ)−1

√
2(1 − ξ∗)1/2

{(
1 + O

(
1 − ξ∗)

)
+ O

(
1 − ξ∗

1 + ξ

)}

+
GkC00

4πγ
(1 − ξ)−1

√
2(1 − ξ∗)1/2

{(
1 + O

(
1 − ξ∗)

)
+ O

(
1 − ξ∗

1 − ξ

)}
,

I2 = −
Gk

[
C01P−1

km + C02P−1
ckm

]
4πγ

{
ln

∣∣∣∣1 − 1 − ξ∗

1 + ξ

∣∣∣∣ + ln

∣∣∣∣1 − 1 − ξ∗

1 − ξ

∣∣∣∣
}
,(B.4)

while in the near-tip region 1 − ξ = O(Ps
ckm) for s > 2 the integrals are of the form

(B.5)

I1 =
GkC00

4πγ
(1 + ξ)−1

√
2(1 − ξ∗)1/2

{(
1 + O

(
1 − ξ∗)

)
+ O

(
1 − ξ∗

1 + ξ

)}

+
GkC00

4πγ

{
π − arctan

(
ξ∗√

1 − ξ∗2

)
+

ξ√
1 − ξ2

ln

∣∣∣∣∣1 − ξ∗ξ +
√

1 − ξ2
√

1 − ξ∗2

ξ − ξ∗

∣∣∣∣∣
}
,

I2 = −
Gk

[
C01P−1

km + C02P−1
ckm

]
4πγ

{
ln

∣∣∣∣1 − 1 − ξ∗

1 + ξ

∣∣∣∣ + ln

∣∣∣∣1 − ξ∗

1 − ξ

∣∣∣∣ + ln

∣∣∣∣1 − 1 − ξ

1 − ξ∗

∣∣∣∣
}
.

We briefly outline the calculation of I3, I4, I5, and I6 for a general integral of
that form with parameter 0 < a < 1: then the results follow from setting a =
5/8, 1/8, 3/4, r, respectively. Thus the integral is

(B.6) J3 =

∫ ξ∗

0

(1 − χ)a−1 2χdχ

χ2 − ξ2
,

which is now split as

(B.7) J3 =

∫ ξ∗

0

(1 − χ)a−1

χ− ξ
dχ−

∫ 0

−ξ∗

(1 + χ′)a−1

χ′ − ξ
dχ′ =: JA

3 + JB
3 .

Note that ξ can vary over the whole interval, i.e., −1 < ξ < 1. Then asymptotic
expansions for the integrals are used, depending on whether ξ is inside or outside the
interval of integration. It is convenient to use a change of variables which captures the
asymptotic behavior of Π near the tip. It is also convenient to use different variables
on different intervals, such as δZ = 1 − ξ, δR = 1 − χ in JA

3 and, δZ = 1 + ξ,
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δR = 1 + χ in JB
3 . We describe the procedure for the integral JA

3 (then JB
3 follows

from an analogous calculation). This is split into three parts as

(B.8) JA
3 = −δa−1

(∫ ∞

0

−
∫ ∞

1/δ

−
∫ (1−ξ∗)/δ

0

)
Ra−1

R− Z
dR.

In the intermediate region 1− ξ = O(Ps
ckm) for 0 < s < 2, the leading order behavior

is determined by the first integral for δ = P2
ckm � 1 (as given in [40]), and so

JA
3 = (δZ)a−1π cotπa + O(1).

Then, for intermediate values of ξ < ξ∗, the integrals I1, I2, and JB
3 all give O(1)

contributions, which are lower order compared to the leading order term in JA
3 . The

integral for J4 is calculated in the same way. Hence the expression for Π in (B.3) is

Π = (GcGm)1/4

{
qC̃01

4πγ
(1 − ξ)q−1π cotπq +

gB1(Pckm)

4πγ
(1 − ξ)g−1π cotπg

}

+(GcGm)1/4

{
pP−1/4

cm B2

4πγ
(1 − ξ)p−1π cotπp

+
rB3(Pckm)

4πγ
(1 − ξ)r−1π cotπr

}
+ O(1),

where q = 5/8, g = 1/8, p = 3/4 and the O(1) terms are higher order with respect to
1 − ξ � 1.

Similarly, for values of ξ in the near-tip region 1 − ξ = O(Ps
ckm) for s > 2, the

integral I3 gives O(1) contributions, and the leading order term is the singularity in
I2 defined in (B.5). Hence the expression for Π is now

Π = Gk

[
C00

4γ
− C01P−1

km + C02P−1
ckm

4πγ

{
ln

∣∣∣∣1 − 1 − ξ∗

1 + ξ

∣∣∣∣ + ln

∣∣∣∣1 − ξ∗

1 − ξ

∣∣∣∣ + ln

∣∣∣∣1 − 1 − ξ

1 − ξ∗

∣∣∣∣
}]

+O(1).

Here we have explicitly included the leading order term from I1 for comparison with
(3.31). Additional error terms not shown here also result from the fact that higher
order derivatives for Ω(ξ) are not matched in the transition region: these can be shown
to be higher order for Pckm � 1.
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STOCHASTIC DIFFERENTIAL DELAY EQUATION, MOMENT
STABILITY, AND APPLICATION TO HEMATOPOIETIC STEM

CELL REGULATION SYSTEM∗
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Abstract. We study the moment stability of the trivial solution of a linear differential delay
equation in the presence of additive and multiplicative white noise. The results established here are
applied to examining the local stability of the hematopoietic stem cell (HSC) regulation system in
the presence of noise. The stability of the first moment for the solutions of a linear differential delay
equation under stochastic perturbation is identical to that of the unperturbed system. However, the
stability of the second moment is altered by the perturbation. We obtain, using Laplace transform
techniques, necessary and sufficient conditions for the second moment to be bounded. In applying
the results to the HSC system, we find that the system stability is sensitive to perturbations in the
stem cell differentiation and death rates, but insensitive to perturbations in the proliferation rate.

Key words. stochastic differential delay equation, moment stability, hematopoietic disease
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1. Introduction. Delays in feedback regulation are ubiquitous in biological con-
trol systems, where the retardation usually originates from maturing processes or finite
signaling velocities [4, 15, 16, 17, 21, 30, 34, 36, 37, 39, 45, 46]. Differential delay equa-
tion model systems with retarded arguments have been extensively developed in the
past several decades (see [3, 10, 11, 18, 19, 20] and the references therein). However,
in applied areas, deterministic systems fail to capture the essence of the fluctuations
in the real situation, and one must instead consider models with stochastic processes
that take into account the perturbations present in the real world. In situations where
delays are important, models with stochastic perturbations are framed by stochastic
differential delay equations.

The current study is motivated by an investigation of the stability of the hema-
topoietic regulatory system and its connection with several hematological diseases
[5, 7, 8, 9, 21, 30, 39]. All blood cells originate from the hematopoietic stem cells
(HSC) in the bone marrow. These stem cells differentiate and proliferate, giving rise
to the three major cell lines: the leukocytes (white blood cells), the platelets, and
the erythrocytes (red blood cells). The three peripheral regulatory loops are all of a
negative feedback nature, and are mediated by a variety of cytokines including ery-
thropoietin (EPO), thrombopoietin (TPO), and granulocyte colony-stimulating factor
(G-CSF) [1, 50, 53, 55, 58]. These cytokines are synthesized and released by cells of
the hematopoietic system. They control the hematopoietic system by regulating the
growth, differentiation, and survival of cells.
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A mathematical model of the hematopoietic regulation system that combines the
delay for cell maturation and negative feedback of the differentiated cells has been
studied in [7, 8]. The numbers of circulating cells in a healthy person usually fluctuate
with small amplitude around their normal levels. However, there are several hema-
tological diseases that display a highly dynamic nature characterized by statistically
significant oscillations in one or more of the circulating progeny of the HSC [21]. These
diseases include, but are not limited to, cyclical neutropenia [8, 21, 22, 23], periodic
chronic myelogenous leukemia [7, 12, 52], cyclical thrombocytopenia [49, 54, 59], and
periodic hemolytic anemia [33, 45]. For example, cyclical neutropenia is a rare ge-
netic blood disease in which the patient’s neutrophil level drops to an extremely low
level for six to eight days every three weeks. Neutrophils are a type of white blood
cell important in the defense of the body against infection. Since stem cell oscilla-
tions are thought to drive oscillations in several periodic hematological diseases [21],
understanding the HSC dynamics is important.

The differential delay equations that model the HSC dynamics have been devel-
oped for a G0 cell cycle model in [13, 31, 32, 33, 39, 51]. The delays in these models
reflect the nonzero time that it takes the cells to complete the proliferative phase of
the cell cycle. For example, the HSC takes about 2.8 days to complete one cell cycle.
Previous studies suggested that the HSC population becomes unstable and develops
oscillations when the steady state corresponding to the healthy state is destabilized,
for example by increasing the apoptosis (death) rate or the differentiation rate in the
stem cells. However, in these studies, the stochastic perturbations that occur in the
real world, and which might lead to instability and oscillation, were not taken into
account. In this paper, we will investigate the effects of random perturbation and
answer the following two questions:

1. If the steady state of the system without noise is unstable, is it possible to
stabilize the steady state by noise perturbation?

2. If the steady state of the system without noise is stable, is it possible to
destabilize the steady state by noise perturbation? If the answer is “YES,” such per-
turbation usually originates from the perturbation in the system parameters. There-
fore, there are thresholds for each of the parameters such that the steady state is
stable when the perturbation is smaller than this threshold and unstable otherwise.
The quantitative estimation of these thresholds will also be considered in this paper.

The answers to these two questions offer insight into the stability of the hemato-
poietic system in the face of stochastic perturbations.

The HSC dynamics with stochastic perturbation is modeled by a nonlinear stochas-
tic differential delay equation. To answer the questions posed above, we linearize the
equation around the steady state and study the stability of the resulting equation.

Consider the process described by the differential delay equation

dz

dt
= f(z, zτ ),(1.1)

where zτ = z(t− τ). It may be the case that the function f(z, zτ ) is subject to some
random effect (noise), so that we have

dz

dt
= f(z, zτ ) + σ(t, z, zτ ) · ξt(ω),(1.2)

where ξt(ω) is a stochastic process that represents the noise term. In our study of
the hematopoietic system, this noise is internal to the system because of random
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fluctuations in the system parameters, e.g., fluctuations in the differentiation rate,
death rate, or proliferation rate of stem cells. However, the precise properties of the
noise are not known. To gain insight into the effect of noise on the system, we assume
the noise to be Gaussian distributed white noise with zero mean and a delta function
autocorrelation 〈ξtξs〉 = δ(t − s). We assume further that the function σ does not
depend on t explicitly. Using the definition of Gaussian white noise ξt as the derivative
of the Wiener process W (t), equation (1.2) can be written as

dz = f(z, zτ )dt + σ(z, zτ )dW (t).(1.3)

From a formal point of view, we can solve (1.3) and write the stochastic process
z(t) = z(t;ω) as

z(t) = z(0) +

∫ t

0

f(z(s), zτ (s))ds + “

∫ t

0

σ(z(s), zτ (s))dW (s).”(1.4)

There are two interpretations for the stochastic integral

“

∫ t

0

σ(z(s), zτ (s))dW (s),”

the Itô interpretation and the Stratonovich interpretation. The Itô interpretation is
usually used when the noise is white, but when the noise is colored (i.e., does not
have a delta function autocorrelation), the Stratonovich interpretation is preferable.
This issue has been discussed by many people (see, for example, [26, pp. 232–237],
[28, pp. 346–351], [29, pp. 152–155], and [48, pp. 35–37]), and it is safe to say that
the debate over the issue is far from settled. In this study we adopt the Itô inter-
pretation for two reasons. First, the Itô approach is mathematically preferable [29],
and second it is relatively straightforward to pass from results obtained using the Itô
interpretation to one appropriate for the Stratonovich interpretation.

Indeed, assuming that the stochastic integral is to be interpreted as an Itô integral,
(1.4) can be written as

z(t) = z(0) +

∫ t

0

f(z(s), zτ (s))ds +

∫ t

0

σ(z(s), zτ (s))dW (s).(1.5)

There is a simple relation between the Itô interpretation and the Stratonovich inter-
pretation [14, 48, 57]. Thus, the solution of (1.3) using the Stratonovich interpretation
of the stochastic integral

z(t) = z(0) +

∫ t

0

f(z(s), zτ (s))ds +

∫ t

0

σ(z(s), zτ (s)) ◦ dW (s)

is equivalent to the solution of the modified Itô equation

z(t) = z(0) +

∫ t

0

f(z(s), zτ (s))ds +
1

2

∫ t

0

σ′
z(z(s), zτ (s))σ(z(s), zτ (s))ds

+

∫ t

0

σ(z(s), zτ (s))dW (s).

Thus, the results in this paper obtained from the Itô approach are also applicable to
a Stratonovich interpretation after replacing f(z, zτ ) in (1.3) by

f(z, zτ ) +
1

2
σ′
z(z, zτ )σ(z, zτ ).(1.6)



390 JINZHI LEI AND MICHAEL C. MACKEY

We will see below that these two different interpretations can lead to significant
changes in the predicted stability of the system.

Assume that z = z∗ is a steady state of (1.1); i.e., f(z∗, z∗) = 0. What we
are interested to know is the effect of the noise perturbation on the steady state.
In general, we do not have σ(z∗, z∗) = 0. Hence, z(t) ≡ z∗ is not a solution of
the perturbed equation (1.3). We will address the question of under what condition
the stochastic process z(t) satisfying the perturbed equation (1.3) remains close to
the steady state z = z∗, i.e., when the solution z = z∗ is “stable” under stochastic
perturbation.

Linearizing (1.3) around the steady state yields the linear stochastic differential
delay equation

dx = (ax + bxτ )dt + (σ0x + σ1xτ + σ2)dW (t),(1.7)

where x(t) = z(t) − z∗ and a, b, σi are constants given by

a = f ′
z(z∗, z∗), b = f ′

zτ (z∗, z∗),

σ0 = σ′
z(z∗, z∗), σ0 = σ′

zτ (z∗, z∗), σ2 = σ(z∗, z∗).

At this point, we will study the moment stability of (1.7) to answer the following
questions:

1. Under what conditions does the ensemble mean of the solutions of (1.7)
approach 0 when t → ∞?

2. Under what condition is the variance of the solutions bounded (or unbounded)
for all t > 0?

3. When the variance is bounded, then the upper limit of the variance, when
t → ∞, provides the estimation of its upper bound when t is large. Therefore, the
estimation of the variance when t → ∞ is interesting and will be studied in this paper.

Despite the apparently simple form of (1.7), the stability problem is not trivial,
because of the combination of delay and stochastic terms.

Stochastic differential delay equations were introduced by Itô and Nisio in the
1960s [24]. Those authors also discussed the existence and uniqueness of the solu-
tion. However, progress in this area has been slow, and most of the results including
stochastic stability, numerical approximation, etc., have been developed in the last
decade [2, 27, 40, 41, 42, 43, 44, 47]; see [25] for a recent survey of these results.
Despite the efforts of many researchers, this field is still in its infancy. For example,
conditions for the stability of (1.7), a linear stochastic differential delay equation with
constant coefficients, are not known. In the case of a stochastic ordinary differen-
tial equation (b = σ1 = 0) and a delay differential equation (σi = 0), the stability
conditions of the equation have been well established [20, 41]. However, when trying
to extend these results to stochastic differential delay equations, one encounters seri-
ous difficulties because of the combination of delay and stochastic processes, and the
explicit solution of (1.7) is not known.

The Lyapunov function method is useful for studying the stability of differential
equations and has been developed for both differential delay equations and stochastic
differential equations. In the 1990s, Mao extended this method to stochastic functional
differential equations [41, Chapter 5]. Because of the results of Mao, we have some
results for the stability of stochastic differential delay equations (see [41, section 5.6]
for details). However, when applying these results to (1.7), we find that they are
applicable only when a < 0. In our study of the hematopoietic system, the case a > 0
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is the most interesting, and we therefore need to develop new results for the moment
stability of (1.7).

In this paper, we will first develop the mathematical theory for the moment stabil-
ity of the linear stochastic differential delay equation (1.7), and then apply the result
to studying the stability of the hematopoietic system under stochastic perturbation.
The paper is organized as follows. In section 2 we briefly present the mathematical
preliminaries for linear differential delay equations needed for the rest of the paper.
Section 3 examines the effect of stochastic perturbation on the behavior of the first and
second moments of (1.7). This section contains the main mathematical results for the
moment stability. The first moment is discussed in section 3.1. Section 3.2 considers
the second moment and is divided into two parts according to the type of stochastic
perturbation, namely, additive white noise and general cases. Section 4 studies the
stability of the hematopoietic regulation system under stochastic perturbations. The
paper concludes with a brief discussion in section 5.

In what follows, we will take τ = 1 by normalizing the time through

(x, t, a, b, σi, τ) → (x, t/τ, a/τ, b/τ, σi/τ, 1).

Thus, we will study the equation

dx = (ax + bx1)dt + (σ0x + σ1x1 + σ2)dW (t).(1.8)

2. Mathematical preliminaries: The system without noise. When the σi

in (1.8) are zero, we have the linear differential delay equation

dx

dt
= ax + bx1.(2.1)

The differential delay equation (2.1) has been studied extensively, and [20] can be
consulted for a detailed exposition.

The characteristic function of (2.1) is

h(λ) = λ− a− be−λ.(2.2)

The fundamental solution of (2.1), denoted by X(t), has a Laplace transform given
by h−1(λ) [20, Chapter 1]. This fundamental solution of (2.1) will be essential in
following study.

Let C([−1, 0],R) be the family of continuous functions φ from [−1, 0] to R with
the norm ‖φ‖ = sup−1≤θ≤0 |φ(θ)|. Using the fundamental solution, the solution of
(2.1) with initial condition x(θ) = φ(θ) ∈ C([−1, 0],R) is given by

xφ(t) = X(t)φ(0) +

∫ 0

−1

X(t− 1 − s)φ(s)ds.(2.3)

From (2.3), the asymptotic behavior of xφ(t) is determined by the fundamental solu-
tion X(t). We have following result.

Theorem 2.1 (see [20, Chapter 1, Theorem 5.2]). If α0 = max{
(λ) : h(λ) = 0},
then, for any α > α0, there is a constant K = K(α) such that the fundamental solution
X satisfies the inequality

|X(t)| ≤ Keαt (t ≥ 0).(2.4)
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From Theorem 2.1, the solutions (2.3) with any φ(θ) ∈ C([−1, 0],R) approach 0
as t → ∞ if and only if α0 < 0. The region in the (a, b)-plane such that α0 < 0 is
given by [20]

S = {(a, b) ∈ R
2 | −a sec ξ < b < a, where ξ = a tan ξ, a < 1, ξ ∈ (0, π)}.(2.5)

Here, the values of α0 and K(α) are significant for understanding the stability of the
system. The estimation of α0 and K(α) are given below.

The number α0 is given by the maximum real solution of the equation

(α0 − a)2 − b2e−2α0 +

[
arccos

α0 − a

be−α0

]2

= 0.(2.6)

When b = 0, for any α > α0 define

K(α) = 1 + ξ(α) +
(|a− α0|eα + |b|) log 2

|b|π ,(2.7)

where

ξ(α) =
1

2π

∣∣∣∣∣
∫ 2|b|e−α

−2|b|e−α

a + be−(α+iz) − α0

(α− α0 + iz)h(α + iz)
dz

∣∣∣∣∣ .
Then (2.4) is satisfied. When b = 0, it is obvious that (2.4) holds with K(α) = 1
whenever α ≥ a.

When |b| < −a, it is not difficult to prove that

|X(t)| ≤ e(a+μ)t (∀t > 0),(2.8)

where |b| < μ < −a is such that μea+μ−|b| = 0. Thus, we can specify K(α) = 1 with
α = a + μ when |b| < −a.

These considerations provide a framework for computing α0 and K(α) with α >
α0 that satisfies (2.4).

3. Moment stability: The system with noise perturbation. We now turn
to a study of the system with noise; i.e., the parameters σi in (1.8) are not all zero.

From the fundamental solution X(t) in the previous section, the solution of (1.8)
with the initial function x(θ) = φ(θ) ∈ C([−1, 0],R) is a stochastic process given by

x(t;φ) = xφ(t) +

∫ t

0

X(t− s)(σ0x(s;φ) + σ1x1(s;φ) + σ2)dW (s),(3.1)

where x1(s;φ) = x(s − 1;φ) and xφ(t), the solution of the deterministic equation
(2.1), is defined by (2.3). The existence and uniqueness theorem for the stochastic
differential delay equation has been established in [24] (see also [41, Chapter 5]). The
solution x(t;φ) is a stochastic process with distribution at any time t determined by
the initial function φ(θ). From the Chebyshev inequality, the possible range of x at
time t is “almost” determined by its mean and variance at time t. Thus, the first and
second moments of the solution are important for investigating the solution behavior
and will be studied in this section. We first define pth moment exponential stability
and pth moment boundedness.
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Definition 3.1. The solution of (1.8) is said to be first moment exponentially
stable if there is a pair of positive constants λ and C such that

|Ex(t;φ)| ≤ C‖φ‖e−λt (∀t > 0)

for all φ ∈ C([−1, 0],R). When p ≥ 2, the solution of (1.8) is said to be pth moment
exponentially stable if there is a pair of positive constants λ and C such that

E (|x(t;φ) − E(x(t;φ))|p) ≤ C‖φ‖pe−λt (∀t ≥ 0)

for all φ ∈ C([−1, 0],R).
Definition 3.2. For p ≥ 2, the solution of (1.8) is said to be pth moment

bounded if there is a constant A such that

E (|x(t;φ) − E(x(t;φ))|p) ≤ A (∀t ≥ 0)

for all φ ∈ C([−1, 0],R). Otherwise, the pth moment is said to be unbounded.
We have used E to denote the mathematical expectation. In this paper, we will

study the exponential stability of the first moment and the boundedness of the second
moment. Hereinafter, we denote x(t;φ) simply by x(t).

3.1. The first moment. Taking the mathematical expectation of both sides of
(1.8), we have, with the Itô interpretation,

dEx(t)

dt
= aEx(t) + bEx(t− 1).(3.2)

Thus, we obtain a differential delay equation for the first moment Ex(t). From the
discussion in the previous section, the first moment Ex(t) approaches 0 as t → ∞ if
and only if the parameter α0 defined in Theorem 2.1 is less than 0. In fact, by (3.1)
and the properties of Itô integral, we have

Ex(t) = X(t)φ(0) +

∫ 0

−1

X(t− 1 − s)φ(s)ds.(3.3)

Theorem 3.3. If α0 = max{
(λ) : h(λ) = 0}, then for any α > α0 there is a
constant K1 = K1(α) such that

|Ex(t)| ≤ K1‖φ‖eαt (t ≥ 0).(3.4)

Therefore, if α0 < 0, then (1.8) is first moment exponentially stable.

3.2. The second moment. We now turn to the behavior of the second moment
of the solution x(t). From Theorem 3.3, the stability condition of the first moment is
identical to that of the unperturbed system and is determined exclusively by a and b.
Thus the stability of the first moment is independent of the parameters σi. However,
the situation of second moment is more complicated and depends on σi. When σ2 = 0,
we cannot expect the second moment to be exponentially stable. Let M(t) be the
second moment of the solution at a time t. Then the Chebyshev inequality yields

P
[
|x(t) − Ex(t)| ≥ k

√
M(t)

]
≤ 1

k2
(3.5)

for any k > 0. Thus, when the second moment is bounded, the solutions of (1.8) are
also bounded in some sense. We will answer in this section when the second moment
is bounded for all t > 0.
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The following notation will be used. Let x(t) be a solution of (1.8), and define

x̃(t) = x(t) − Ex(t),(3.6)

M(t) = E(x̃(t)2), M1(t) = M(t− 1), N(t) = E(x̃(t)x̃(t− 1)),(3.7)

F (t) =

∫ t

0

X2(t− s)(σ0Ex(s) + σ1Ex1(s) + σ2)
2ds.(3.8)

M(t) is the second moment studied below. Applying the Itô isometry to M(t), a
simple computation yields that

M(t) = F (t) +

∫ t

0

X2(t− s)(σ2
0M(s) + σ2

1M1(s) + 2σ0σ1N(s))ds.(3.9)

3.2.1. Additive noise. When σ0 = σ1 = 0, we have the additive noise case,
and the second moment is given explicitly by

M(t) = σ2
2

∫ t

0

X2(t− s)ds.(3.10)

By Theorem 2.1, we have the following result in the case of additive noise.
Theorem 3.4. Let α0 = {
(λ) : h(λ) = 0}. If σ0 = σ1 = 0, the second moment

of (1.8) is bounded if and only if α0 < 0. Furthermore, for any α0 < α < 0, there
exists K = K(α) such that∣∣∣∣M(t) − σ2

2

∫ ∞

0

X2(s)ds

∣∣∣∣ ≤ −σ2
2K

2

2α
e2αt.(3.11)

From Theorem 3.4, the boundedness of the second moment is characterized by
α0, which is in turn determined by a and b of the unperturbed equation. This result
was presented in [38], but the proof in [38] is in error. We reprove this result here and
the estimation of the second moment M(t) when t → ∞ is given by

lim
t→∞

M(t) = σ2
2

∫ ∞

0

X2(s)ds ≤ −σ2
2K

2

2α
.(3.12)

3.2.2. General cases (σ0 �= 0 or σ1 �= 0). When σ0 = 0 or σ1 = 0, the noise
at time t depends on x at time t or time (t − 1). In this general case, there is no
simple form for the second moment. First, we have by (3.9) that

M(t) ≥ F (t).

When α0 ≥ 0, we have X(t) = O(eα0t) as t → ∞. Thus, we can always take an initial
function φ(θ) such that F (t) tends to infinity when t → ∞, for example, the initial
functions φ(θ) such that

Ex(t) =
∑
i

cie
λit,

where h(λi) = 0 and ci are nonzero constants.
Therefore, we have the following necessary condition for the boundedness of the

second moment.
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Lemma 3.5. If the second moment of (1.8) is bounded, then α0 < 0; i.e., the
unperturbed equation is exponentially stable.

From now on, we will always assume that α0 < 0. In this situation, we have

lim
t→∞

F (t) = σ2
2

∫ ∞

0

X2(s)ds.(3.13)

We next study the second moment using the Laplace transform. We denote by
L(p)(s) the Laplace transform of p(t) when

p(t) < Peat (t > 0)

for constants P and a.
Let X1(t) = X(t − 1). It is easy to check that the functions X2(t), X(t)X1(t),

M(t), and N(t) have Laplace transforms.
The following theorem establishes the condition for the second moment of the

solution of (1.8) to be bounded.
Theorem 3.6. Let

f(s) =
L(XX1)(s)

L(X2)(s)
, g(s) =

L(N)(s)

L(M)(s)
,(3.14)

and

H(s) = s− (2a + σ2
0) − (2bf(s) + 2σ0σ1g(s)) − σ2

1e
−s.(3.15)

The second moment of the solution of (1.8) is bounded if and only if all solutions of
the characteristic equation H(s) = 0 have negative real part. Furthermore, when the
second moment is bounded, it approaches a constant exponentially when t → ∞.

Proof. We will divide the proof into several steps.
(1) By (3.9), we have

M(t) = F (t) + X2 ∗ (σ2
0M + σ2

1M1 + 2σ0σ1N),

where ∗ denotes convolution. Taking the Laplace transform of both sides and solving
the resulting equation for L(M)(s), we have

L(M)(s) =
L(F )(s)

1 − L(X2)(s)(σ2
0 + σ2

1e
−s + 2σ0σ1g(s))

,(3.16)

where L(X2)(s) is given by

L(X2)(s) =
1

s− 2a− 2bf(s)
.

Thus, by (3.16), we have

L(M)(s) =
L(F )(s)

L(X2)(s)
H−1(s).

Let

G(t) = L−1

[
L(F )

L(X2)

]
(t) = (σ0Ex(t) + σ1Ex1(t) + σ2)

2
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and Y (t) = L−1(H−1)(t). Then we have

M(t) = G ∗ Y =

∫ t

0

G(t− s)Y (s)ds.(3.17)

(2) Let β0 = max{
(s) : H(s) = 0}. We will prove that for any β > β0 there is a
constant K2 = K2(β) such that

|Y (t)| ≤ K2e
βt.(3.18)

To start, we will show that β0 < ∞ is well defined. To do this, noting that there
exist A1 and A2 such that if 
(s) is large enough,

|f(s)| ≤ A1e
−�(s)/2 and |g(s)| ≤ A2e

−�(s)/2.(3.19)

We omit the proof of (3.19) due to space constraints. Thus, when 
(s) is large enough,
H(s) > 0, and therefore the value β0 < ∞ is well defined.

Now, (3.18) follows from the inverse Laplace transform

Y (t) = lim
T→∞

1

2π

∫ β+iT

β−iT

H−1(s)estds ≤ K2e
βt

for any β ≥ β0 and a constant K2 = K2(β). The details of the proof are exactly the
same as for the proof given in [20, pp. 20–21], and we omit the details here.

(3) Now we have

M(t) =

∫ t

0

G(t− s)Y (s)ds,

with |Y (t)| ≤ K2e
βt for any β > β0. Furthermore, for any α0 < α < 0 there exists

K3 = K3(α, φ) such that

|G(t)| ≤ σ2
2 + K3e

αt.

If β0 < 0, we choose β0 < β < 0 and K2 as above. Then

|M(t)| ≤
∫ t

0

(σ2
2 + K3e

α(t−s))K2e
βsds,

and thus the second moment M(t) is bounded for any initial function φ(θ). In this
situation, let

M∞ = σ2
2

∫ ∞

0

Y (s)ds,

so that

|M(t) −M∞| ≤ K2σ
2
2e

βt +
K2K3

β − α
(eβt − eαt).

Thus, there exists a positive constant K4 = K4(α, β, φ) such that

|M(t) −M∞| ≤ K4e
tmax{α,β};
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i.e., M(t) approaches to M∞ exponentially when t → ∞.
If β0 ≥ 0, by the inverse Laplace transform, we have Y (t) = O(eβ0t) when t is

large enough. We can choose an initial function φ(θ) such that

Ex(t) =
∑
i

cie
λit,

where h(λi) = 0 and ci are nonzero constants. For this particular initial function, we
have either G(t) = O(1) as t → ∞ when σ2 = 0, or G(t) = O(e2αt) as t → ∞ for
some α ≤ α0 < 0 when σ2 = 0. In either case,

M(t) =

∫ t

0

G(t− s)Y (s)ds = O(eβ0t)

when t → ∞, and hence the second moment is unbounded.
Theorem 3.6 establishes a criterion for the second moment of the linear stochastic

delay differential equation to be bounded. However, this criterion is not particularly
useful. The function g(s) in (3.15) involves the Laplace transforms of M(t) and N(t)
that are unknown. In many applications, perturbations for system parameters affect
only the right-hand side of the equation that involves either the current state or the
retarded state, and thus either σ1 = 0 or σ0 = 0. In this situation, the function H(s)
reads

H(s) = s− (2a + σ2
0) − 2bf(s) − σ2

1e
−s

and is determined by the system coefficients and by f(s), which depends on the
Laplace transforms of X2(t) and X(t)X1(t). Nevertheless, it is not trivial to obtain
the explicit form of f(s) for a given system. In the rest of this section, we will develop
some estimates for f(s) and g(s) and present direct criteria for the second moment
stability.

Theorem 3.7. If b < 0, σ0σ1 ≤ 0, and either

(σ0 + σ1)
2 ≥ −2(a + b)(3.20)

or

u =

⎧⎪⎨
⎪⎩

−(b + σ0σ1) −
√

(b + σ0σ1)2 − 4σ2
1

2σ2
1

, σ1 = 0,

−1

b
, σ1 = 0,

such that 0 < u < 1 and

−2 log u− (2a + σ2
0) − (2b + 2σ0σ1)u− σ2

1u
2 ≤ 0,(3.21)

then the second moment is unbounded.
Proof. Let

H0(s) = s− (2a + σ2
0) − (2b + 2σ0σ1)e

−s/2 − σ2
1e

−s.

Then when b < 0 and σ0σ1 ≤ 0, we have H(s) ≤ H0(s) for all s ∈ R. Therefore,
either (3.20) or (3.21) implies that there exists s∗ > 0 such that H(s) ≤ H0(s∗) ≤ 0.
However, H(s) > 0 when s is large enough. Therefore the equation H(s) = 0 has a
nonnegative solution. Thus, the theorem follows from Theorem 3.6.
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Theorem 3.7 tells us when the second moment is unbounded. The following result
will tell us when the second moment is bounded.

Theorem 3.8. If there exists α < 0 and K = K(α) > 0 such that

|X(t)| ≤ Keαt (t ≥ 0)(3.22)

and

(|σ0| + |σ1|)2 < − 2α

K2
,(3.23)

then the second moment M(t) is bounded when t > 0.
Theorem 3.8 will be proved using the following delay-type Gronwall inequality,

the proof of which (which we omit) is similar to that of the Gronwall inequality.
Lemma 3.9. If y(t) is a nonnegative continuous function on [−1,∞) and there

are positive constants p and q such that

y(t) ≤ p

∫ t

0

y(s)ds + q

∫ t

0

y(s− 1)ds + r(t),(3.24)

then for any β > 0 such that

β − p− qe−β > 0

and

sup
t≥0

|r(t)e−βt| < ∞

there exists A = A(β) such that

y(t) ≤ Aeβt (t ≥ 0).(3.25)

We can now turn to the proof of Theorem 3.8.
Proof of Theorem 3.8. Note that

M(t) ≤ (|σ0| + |σ1|)
∫ t

0

X2(t− s)(|σ0|M(s) + |σ1|M1(s))ds + F (t).(3.26)

For α such that (3.22) is satisfied, we have K5 = K5(α, φ) such that

0 ≤ F (t) ≤ K5(1 − e2αt).

Thus from (3.26) it follows that

M(t) ≤ K2 (|σ0| + |σ1|)e2αt

∫ t

0

(|σ0|e−2αsM(s) + |σ1|e−2αsM1(s))ds + K5(1 − e2αt).

Let

y(t) = e−2αtM(t), r(t) = K5(e
−2αt − 1),

and

p = K2|σ0|(|σ0| + |σ1|), q = K2|σ1|(|σ0| + |σ1|)e−2α.
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Then

y(t) ≤ p

∫ t

0

y(s)ds + q

∫ t

0

y1(s)ds + r(t).

The inequality (3.23) implies

−2α− p− qe2α > 0.

Thus, by Lemma 3.9 there is a constant A such that

M(t)e−2αt = y(t) ≤ Ae−2αt,

i.e., M(t) ≤ A for all t > 0.
From Theorem 3.6, if the second moment M(t) is bounded, it exponentially ap-

proaches a constant M∞. Let t → ∞ in (3.26) and apply (3.13) so that we have

M∞ ≤
σ2

2

∫∞
0

X2(s)ds

1 − (|σ0| + |σ1|)2
∫∞
0

X2(s)ds
≤ − σ2

2K
2(α)

2α + (|σ0| + |σ1|)2K2(α)
(3.27)

for any α and K(α) given in Theorem 3.8. It follows from (3.27) that when σ2 = 0,
boundedness of the second moment implies exponential stability.

From Theorems 3.3 and 3.8, for any parameter pair (a, b) in the region S defined
in (2.5), the first moment of the solution of the stochastic differential delay equation
(1.8) approaches 0 as t → ∞. Furthermore, there exists P (a, b) > 0 such that if

(|σ0| + |σ1|)2 < P (a, b),(3.28)

the second moment of the solution is bounded with an upper bound, as t → ∞, given
by (3.27).

From the estimates of α0 and K(α) given in section 2, the function P (a, b) can
be computed, and its graph is shown in Figure 3.1.
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Fig. 3.1. The function P (a, b).
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4. Stability of the hematopoietic regulation system under stochastic
perturbation. In this section, we will study the stability of the HSC in the face of
stochastic perturbation, using the results of the previous sections. The HSC regulation
system is modeled by a classical G0 model [6, 35, 56]. Blood cells differentiate from
HSC in the resting (G0) phase. The HSC has high self-renewal capacity with the
re-entry rate dependent on the number of HSC through a negative feedback loop.
The proliferating phase cells include those cells in S phase (DNA synthesis), M phase
(mitosis), and two segments known as the G1 and G2 phases (the G stands for “gap”).
In addition, there is a loss of proliferating phase cells due to apoptosis (see Figure 4.1).

��
��

� S(t, a) �����
�����

Q(t)

β(QτS )QτS

�
�
��	 �





�

a = 0 a = τS

γS

κ

Fig. 4.1. A cartoon representation of the HSC model.

The HSC dynamics is modeled by a differential delay equation [7, 8, 9, 13, 51]

dQ

dt
= −β(Q)Q− κ(N,R, P )Q + 2e−γSτSβ(QτS )QτS ,(4.1)

where Q, N , R, P are the quiescent stem cells, leukocytes, erythrocytes, and platelets,
respectively, and QτS = Q(t− τS). The model parameters are the apoptosis (death)
rate γS , the maturation delay τS , the HSC self-renewal (proliferation) rate β, and
the differentiation rate κ at which the HSC forms the three peripheral cell lines. The
proliferation rate β and differentiation rate κ involve negative feedback loops that
take the form of a Hill function [5, 7, 8],

β(Q) = k0
θs2

θs2 + Qs
,

κ(N,P,R) = f0
θn1

θn1 + Nn
+

κ̄p

1 + KpP p
+

κ̄r

1 + KrRr
.

Note that the rate κ depends on the state of three cell lines (leukocytes, erythrocytes,
platelets), and thus (4.1) does not constitute a closed system. In this study, since we
are interested only in the situation close to the steady state, we take the total differ-
entiation out of the stem cell compartment to be a single constant. This decouples
the model for the stem cell compartment from the full system.

Let us introduce nondimensional variables as follows:

q =
Q

θ2
, t̂ =

t

τS
,

b1 = τSk0, μ1 = 2e−γSτS , δ = τSκ.
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We have the nondimensional form of (4.1) (see [9]),

dq

dt
= − b1

1 + qs
q + μ1

b1
1 + qs1

q1 − δq,(4.2)

where q1 = q(t − 1) and t̂ has been simply replaced by t. Typical values of the
dimensionless parameters are b1 = 22.4 and μ1 = 1.64. The parameter s, which
denotes the number of cytokine molecules needed to trigger HSC proliferation in
vitro, is chosen as s = 4 (see [9]).

When δ < b1(μ1 − 1), equation (4.2) has a unique positive steady state

q∗ =

(
b1(μ1 − 1)

δ
− 1

)1/4

,

corresponding to the normal level of the stem cells. Linearizing (4.2) around this
steady state, we obtain the variational equation

dx

dt
= ax + bx1,

where x = q − q∗,

a = − δ

b1(μ1 − 1)2
(−3b1(μ1 − 1) + b1(μ1 − 1)2 + 4δ),

and

b =
δμ1

b1(μ1 − 1)2
(−3b1(μ1 − 1) + 4δ).

From the discussion in section 2, there exists a critical value δc (≈ 0.16) such that the
steady state is stable when 0 < δ < δc.

We will now study the stability of the steady state when there are stochastic
perturbations in the system parameters δ, b1, or μ1. We have the following equations
for the perturbed system:

1. perturbation in δ:

dq =

[
− b1q

1 + q4
− δq +

b1μ1q1
1 + q4

1

]
dt− σqdW (t),(4.3)

2. perturbation in b1:

dq =

[
− b1q

1 + q4
− δq +

b1μ1q1
1 + q4

1

]
dt + σ

[
− q

1 + q4
+

μ1q1
1 + q4

1

]
dW (t),(4.4)

3. and perturbation in μ1:

dq =

[
− b1q

1 + q4
− δq +

b1μ1q1
1 + q4

1

]
dt + σ

b1q1
1 + q4

1

dW (t),(4.5)

where W (t) is the standard Wiener process and σ is the noise amplitude. The lin-
earized versions of (4.3)–(4.5) around the steady state q = q∗ are

dx = (ax + bx1)dt− σ(x + q∗)dW (t),(4.6)

dx = (ax + bx1)dt +

(
σ

b1

)
((a + δ)x + bx1 + δq∗)dW (t),(4.7)
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and

dx = (ax + bx1)dt +

(
σ

μ1

)(
bx1 + δq∗ +

b1q
∗

1 + q∗4

)
dW (t),(4.8)

respectively.
Applying the results from the previous section, when 0 < δ < δc, the first moment

of solutions of the perturbed system is locally stable. Furthermore, from Theorem 3.8,
for any 0 < δ < δc (and b1, μ1 held at their typical values), there exists σb(δ) such
that when σ < σb(δ) the second moment is bounded. Further, from Theorem 3.7, for
any 0 < δ < δc, there exists σu(δ) such that when σ > σu(δ) the second moment is
unbounded. When σb < σ < σu, however, the previous results fail to delineate the
stability of the second moment. A more accurate estimation for the characteristic
function H(s) in Theorem 3.6 is required to fill this gap. Graphs of the curves σ =
σb(δ) and σ = σu(δ) are given in Figure 4.2.
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Fig. 4.2. Parameter dependence for the second moment of the solution of the stochastic HSC
system to be bounded.

In Figure 4.2, the thresholds of the three parameter perturbations to ensure the
stability of a steady state under noise perturbation are sorted from low to high as the
threshold for δ, for μ1, and for b1. Thus, the HSC system is more easily destabilized
by noise in the differentiation rate (δ) than in the death rate (μ1), and least likely to
be destabilized by perturbations in the proliferation rate (b1).

Note that the solutions of (4.3)–(4.5) are always bounded because of the negative
feedback. Thus, destabilization of the steady state may lead to fluctuating solutions
characteristic of dynamic hematological disease (see Figure 4.3(b)). When the second
moment is bounded, the range of the solution at time t can be estimated by the
Chebyshev inequality (3.5). However, this cannot exclude the possibility of obtaining
an oscillating solution (see Figure 4.3(c),(d)). In this situation, the amplitude of
the oscillating solution is determined by the second moment, which is estimated by
(3.27) when t is large. The graphs of M∞ as a function of δ and σ are shown in
Figure 4.4 for each of the cases. From Figure 4.4, for given values of b1, μ1, δ, and
the perturbation amplitude σ, the second moment of the solutions of the HSC model
with random perturbation in δ is larger than when there are perturbations in μ1 and
in b1. Thus, small fluctuations in δ are able to produce large amplitude fluctuations
in HSC numbers. Larger perturbations in μ1 are required to produce a fluctuating
HSC solution with the same amplitude (Figure 4.3(c),(d)). The second moment of
solutions of the HSC system with perturbations in b1 is small and not likely to produce
a large amplitude fluctuation in HSC numbers.

These numerical results suggest that the dynamic hematological diseases [16] char-
acterized by oscillations in blood cell numbers could originate from the stochastic
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Fig. 4.3. Sample solutions of the HSC system. In all these solutions, we choose b1 = 22.4,
μ1 = 1.64, δ = 0.15. The perturbation is added to δ with σ = 0.4 and σ = 0.05 (cf. Figure 4.2,
left-hand panel, marked by the “ *” and “+,” respectively), and to μ1 with σ = 0.2 (cf. Figure 4.2,
middle panel, marked with a “+”). The solution of the system without perturbation is also shown.
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Fig. 4.4. The function M∞ as a function of δ and σ.

perturbation of the differentiation rate and/or the death rate of HSCs. On the other
hand, the system is relatively insensitive to perturbations in the proliferation rate.

5. Discussion. We have investigated the effects of white noise on the stability
of the trivial solution of a linear differential delay equation by deriving the solutions
for the first and second order moments and examining the exponential estimation by
the Laplace transform method.

We have shown that the stability domain of the first moment is identical to that of
the unperturbed system (Theorem 3.3). This result is also true for the second moment
when the perturbation is simple additive noise (Theorem 3.4). However, when there
is multiplicative white noise, there are no simple results on the stability (bounded
nature) of the second moment. From our study, when the trivial solution of the
unperturbed equation is unstable, the second moment of solutions of the perturbed
equation is unbounded. The condition for the second moment to be bounded has been
shown to be related to the solutions of a characteristic equation given in Theorem 3.6.
Nevertheless, the explicit expression of the characteristic equation is not available in
terms of the system parameters. We have presented several direct criteria for the
second moment to be bounded (Theorems 3.7 and 3.8).

Significant oscillations in one or more of the circulating progeny of the HSC
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are often characteristic of dynamic hematological diseases like cyclical neutropenia,
cyclical thrombocytopenia, and periodic chronic myelogenous leukemia. The steady
state of the HSC system can be destabilized by increasing the differentiation rate,
and this has been implicated in the genesis of the hematological disorder cyclical
neutropenia [21].

We have applied these results to examining the stability of HSC dynamics in the
presence of stochastic perturbation. Our results indicate that stochastic perturbation
cannot stabilize a large amplitude oscillation solution. When random perturbations
are introduced in parameters characterizing the HSCs when the steady state is locally
stable, we found that as the amplitude of the noise perturbation is increased, the
system can be destabilized in the sense that the second moment becomes unbounded.
In this situation, the system can display a large amplitude fluctuating solution.

When the second moment is large and bounded, however, we cannot exclude the
possibility of an oscillatory solution, since the HSC system may have a large amplitude
oscillatory solution in this circumstance.

We have obtained estimates of the second moment for three different types of
perturbation (see Figure 4.4). These results suggest that small perturbations in the
HSC differentiation or apoptosis (death) rate are able to generate large amplitude
fluctuations in HSC numbers, but a much larger perturbation of the proliferation
rate is needed to generate comparable fluctuations in HSC numbers. These results
suggest that the HSC model system is more sensitive to random perturbations in the
differentiation or death rate than in the proliferation rate.

The results in this paper were obtained under the Itô interpretation of stochastic
integrals. Analogous results can be obtained for the Stratonovich interpretation.
When Stratonovich interpretation is used, the solution of (1.8) can be expressed as

x(t) = x(0) +

∫ t

0

(ãx(s) + b̃x1(s) + c̃)ds +

∫ t

0

(σ0x(s) + σ1x1(s) + σ2)dW (s),(5.1)

in terms of the Itô integral, where

ã = a +
1

2
σ2

0 , b̃ = b +
1

2
σ0σ1, c̃ =

1

2
σ0σ2.(5.2)

Unlike the situation when the Itô interpretation is used, namely that the first moment
stability is determined merely by the unperturbed system, the first moment stability
is changed when we use a Stratonovich interpretation. Let

h̃(λ) = λ− ã− b̃e−λ, x∗ = − c̃

ã + b̃
,

so that we have the following theorem.
Theorem 5.1. If α̃0 = max{
(λ) : h̃(λ) = 0}, then, for any α > α0, there is a

constant K̃ = K̃(α) such that

|Ex(t;φ) − x∗| ≤ K̃‖φ‖eαt(5.3)

for any φ ∈ C([−1, 0],R).
When α̃0 < 0, Theorem 5.1 implies that Ex(t;φ) approaches x∗ exponentially

when t → +∞. Thus, the expectation of the solutions drifts from zero to x∗ due to
the stochastic perturbation. Note that ã ≥ a; it is easy to show that the stochastic
perturbation is able to destabilize the first moment of (1.8). On the other hand, the
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first moment cannot be stabilized by stochastic perturbation when the zero solution
of the system without noise is unstable.

To study the second moment, let y = x− x∗, so that y(t) satisfies

y(t) = y(0) +

∫ t

0

(ãy(s) + b̃y1(s))ds +

∫ t

0

(σ0y(s) + σ1y1(s) + σ̃2)dW (s),(5.4)

where

σ̃2 = σ2 + (σ0 + σ1)x∗.

Applying the results in section 3 to the Itô equation (5.4), we can obtain the cor-
responding results for second moment stability of (1.8) in terms of the Stratonovich
interpretation. The statement of these results is straightforward by replacing a, b,
and σ2 with ã, b̃, and σ̃2, respectively, and we omit them here.
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Abstract. We derive from a structured population model a system of delay differential equa-
tions describing the interaction of five subpopulations, namely susceptible and infected adult and
juvenile reservoirs and infected adult vectors, for a vector borne disease with particular reference to
West Nile virus, and we also incorporate spatial movements by considering the analogue reaction-
diffusion systems with nonlocal delayed terms. Specific conditions for the disease eradication and
sharp conditions for the local stability of the disease-free equilibrium are obtained using comparison
techniques coupled with the spectral theory of monotone linear semiflows. A formal calculation of
the minimal wave speed for the traveling waves is given and compared with field observation data.
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1. Introduction. Vector borne diseases are infectious diseases that are carried
by insects from one host to another. Examples include malaria, West Nile virus,
yellow fever, dengue fever, lyme disease, and plague. In many of these diseases it is
the mosquito that carries the virus, but ticks and fleas can also be responsible. The
diseases can be spread to humans, birds, and other animals.

Much has been done in terms of modeling and analysis of the transmission dy-
namics and spatial spread of vector borne diseases; see Anderson and May [1], Mur-
ray [20], Brauer and Castillo-Chavez [4], Edelstein-Keshet [6], Hethcote [10], Kot [13],
Jones and Sleeman [12], Wonham and coworkers [26, 27], etc. However, one impor-
tant biological aspect of the hosts—the stage structure—seems to have received little
attention, although structured population models have been intensively studied (see
Diekmann and Heesterbeek [5]) in the context of population dynamics and spatial
ecology, and the interaction of stage-structure with spatial dispersal has been re-
ceiving considerable attention in association with the theoretical development of the
so-called reaction-diffusion equations with nonlocal delayed feedback (see the papers
by Gourley, So, and Wu [7] and Gourley and Wu [8] and the references therein).

The developmental stages of hosts have a profound impact on the transmission
dynamics of vector borne diseases. In the case of West Nile virus the transmission cycle
involves both mosquitoes and birds, the crow species being particularly important.
Nestling crows are crows that have hatched but are helpless and stay in the nest,
receiving more-or-less continuous care from the mother for up to two weeks and less
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continuous care thereafter. Fledgling crows are old enough to have left the nest (they
leave it after about five weeks), but they cannot fly very well. After three or four
months these fledglings will be old enough to obtain all of their food by themselves.
As these facts demonstrate, the maturation stages of adult birds, fledglings, and
nestlings are all very different from a biological and an epidemiological perspective,
and a realistic model needs to take these different stages into account. For example, in
comparison with grown birds, the nestlings and fledglings have much higher disease-
induced death rate, much poorer ability to avoid being bitten by mosquitoes, and
much less spatial mobility [18, 2, 22]. In this paper we shall, in fact, assume that
there is only one preadult stage for the host population, which in the West Nile virus
context could be thought of as the fledgling stage of crows.

The aim of this paper is to formulate a model for the evolution of some vec-
tor borne diseases whose transmission dynamics and patterns are similar to those of
West Nile virus. Other recent mathematical models for this disease include the works
of Bowman et al. [3], Lewis, Renclawowicz, and van den Driessche [16], and Won-
ham et al. [26, 27], some of which use a different incidence function normalized by
bird density. We start with the classical McKendrick von-Foerster equations for an
age-structured reservoir population divided into two epidemiological compartments
of susceptible and infected (and infectious), coupled with a scalar delay differential
equation for the adult vector population under the assumption that the total vector
population is maintained at a constant level. We then use the standard technique of
integration along characteristics to reduce the model to a system of five coupled de-
lay differential equations for the susceptible and infected juvenile and adult reservoir
populations and the adult infected vector. If spatial diffusion is allowed, a similar
derivation leads to a reaction-diffusion system with nonlocal and highly nonlinear
delayed interactions. The model derivation is carried out in detail in sections 2 (for
ODE models) and 3 (for PDE models), together with some detailed biological and
epidemiological explanations of all terms involved.

We consider the qualitative behaviors of the reduced ordinary delay differential
system in subsections 2.1–2.4. We establish the positiveness and boundedness of the
reduced system, and we emphasize the need to restrict the initial data to the subset
which is biologically and epidemiologically realistic. We then establish a concrete
criterion, expressed in terms of the model parameters, for disease eradication. This
is achieved using some comparison techniques and differential inequalities. We also
obtain a necessary and sufficient condition for the disease-free equilibrium to be locally
asymptotically stable—this is done using an application of the spectral properties of
a linear delay differential system due to Smith [23]. The sharpness of the disease
eradication condition is then tested using the available data and parameters for West
Nile virus, and our simulations show that sustained oscillation can occur, should this
disease eradication condition be violated.

In section 3, consider the issue of spatial spread of the disease in a one-dimensional
setting. We provide a detailed formal calculation of the so-called minimal wave speed
that is expected to coincide with the propagation speed of the disease, and we compare
the predicted wave speed with data in the literature relating to the observed speed of
spread of West Nile virus across North America. Finally, in section 4, we discuss our
findings together with some of the corresponding results for a modified model with a
different incidence function.

2. Model derivation. We shall think of the disease as mosquito borne, since
mosquitoes are responsible for transmitting many of the vector borne diseases that
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currently constitute significant public health issues in various parts of the world.
We will also refer to the reservoir as the host, and assume that the host popu-

lation is age-structured. We start with a simple division of the host population into
susceptible hosts s(t, a) and infected hosts i(t, a) at time t and age a. These host pop-
ulations are assumed to evolve according to the McKendrick von-Foerster equations
for an age-structured population:

∂s

∂t
+

∂s

∂a
= −ds(a)s(t, a) − β(a)s(t, a)mi(t)(2.1)

and

∂i

∂t
+

∂i

∂a
= −di(a)i(t, a) + β(a)s(t, a)mi(t),(2.2)

where mi(t) is the number of infected adult mosquitoes satisfying another equation
below, and β(a) is the age-dependent transmission coefficient, and it is assumed that
conversion of hosts from susceptible to infected occurs through interaction of suscep-
tible hosts with infected mosquitoes, and at this stage we assume that the rate of
conversion is given by mass action. We shall discuss the limitations of the model
involving mass action and shall indicate how our work can be extended to include a
more standard incidence term that includes dividing by the density of the host popu-
lation. The functions ds(a) and di(a) are the age-dependent death rates of susceptible
and infected hosts.

We shall further split the host population into juveniles and adults, defined re-
spectively as those of age less than some number τ and those of age greater than
τ . We will work with the following choices for the death rates and the transmission
coefficient β(a):

ds(a) =

{
dsj , a < τ,
dsa, a > τ,

di(a) =

{
dij , a < τ,
dia, a > τ,

(2.3)

and

β(a) =

{
βj , a < τ,
βa, a > τ.

(2.4)

The subscripts in these quantities refer to disease and juvenile/adult status; thus, for
example, the per capita death rates for susceptible juveniles and infected adults would
be dsj and dia, respectively. The above choices enable us to formulate a closed system
of delay differential equations involving only the total numbers of hosts classified as
adult susceptibles, adult infected, juvenile susceptibles, and juvenile infected. These
total numbers are given respectively, using self-explanatory notations, by

As(t) =

∫ ∞

τ

s(t, a) da, Ai(t) =

∫ ∞

τ

i(t, a) da, Js(t) =

∫ τ

0

s(t, a) da,

Ji(t) =

∫ τ

0

i(t, a) da.

(2.5)

We assume no vertical transmission in the system (both from host and vector).
On the further assumption that the birth rate is a function of the total number of
susceptible adult hosts, we have the following expressions for the birth rates s(t, 0)
and i(t, 0):

s(t, 0) = b(As(t)), i(t, 0) = 0,(2.6)
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where b(·) is the birth rate function for hosts (we shall later introduce B(·) as the
birth rate function for mosquitoes). Equations (2.1) and (2.2) are solved subject to
(2.6).

Let us now find a differential equation for As(t). Differentiating the expression
for As(t) in (2.5), making use of (2.1), (2.3), and (2.4), and assuming (reasonably)
that s(t,∞) = 0, we quickly find that

dAs

dt
= s(t, τ) − dsaAs(t) − βami(t)As(t).(2.7)

Next we need to find s(t, τ). This will be achieved by solving (2.1) for 0 < a < τ . Set

sξ(a) = s(ξ + a, a).

Then

dsξ
da

=

[
∂s

∂t
+

∂s

∂a

]
t=ξ+a

= −sξ(a)[ds(a) + β(a)mi(ξ + a)],

so that

s(ξ + a, a) = sξ(a) = sξ(0) exp

(
−
∫ a

0

(ds(η) + β(η)mi(ξ + η)) dη

)

= b(As(ξ)) exp

(
−
∫ a

0

(ds(η) + β(η)mi(ξ + η)) dη

)
.(2.8)

Setting a = τ and ξ = t− τ and using (2.3), (2.4) gives

s(t, τ) = b(As(t− τ)) exp

(
−
∫ τ

0

(dsj + βjmi(t− τ + η)) dη

)
.

Substituting this into (2.7) gives, after a change of variables in the integral,

dAs

dt
= b(As(t− τ)) exp

(
−
∫ t

t−τ

(dsj + βjmi(u)) du

)
− dsaAs(t) − βami(t)As(t).

(2.9)

In much the same way, we obtain the following equation for Js(t):

dJs
dt

= b(As(t)) − b(As(t− τ)) exp

(
−
∫ t

t−τ

(dsj + βjmi(u)) du

)
− dsjJs(t) − βjmi(t)Js(t).

(2.10)

The differential equation for Ai(t) turns out to be more complicated. Differenti-
ating the expression for Ai(t) in (2.5), assuming i(t,∞) = 0, and using (2.3) and (2.4)
gives

dAi(t)

dt
= i(t, τ) − diaAi(t) + βami(t)As(t),(2.11)

and we need to find i(t, τ), by solving (2.2) for 0 < a < τ . Setting iξ(a) = i(ξ + a, a)
and differentiating with respect to a, we find from (2.2) that

diξ(a)

da
+ dijiξ(a) = βjmi(ξ + a)s(ξ + a, a).
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Integrating this from 0 to a and recalling that iξ(0) = i(ξ, 0) = 0 by (2.6), we find
that

i(ξ + a, a) = iξ(a) = βj

∫ a

0

e−dij(a−η)mi(ξ + η)s(ξ + η, η) dη.

Therefore,

i(t, τ) = βj

∫ τ

0

e−dij(τ−η)mi(t− τ + η)s(t− τ + η, η) dη

= βj

∫ t

t−τ

e−dij(t−ξ)mi(ξ)s(ξ, ξ + τ − t) dξ.(2.12)

In this integral the second argument of s(ξ, ξ + τ − t) goes from 0 to τ , and therefore
an expression for s(ξ, ξ+ τ − t) can be obtained from the earlier analysis. From (2.8),

s(ξ, ξ + τ − t) = b(As(t− τ)) exp

(
−
∫ ξ

t−τ

[dsj + βjmi(v)] dv

)
.

Insertion of this expression into (2.12) yields an expression for i(t, τ) that involves
only the state variables in (2.5) and mi(t), and insertion of this expression for i(t, τ)
into (2.11) finally gives the differential equation for Ai(t) to be

dAi(t)

dt
= −diaAi(t) + βami(t)As(t)

+ βjb(As(t− τ))

∫ t

t−τ

mi(ξ)e
−dij(t−ξ) exp

(
−
∫ ξ

t−τ

(dsj + βjmi(v)) dv

)
dξ.(2.13)

Similarly, the differential equation for Ji(t) can be shown to be

dJi(t)

dt
= −dijJi(t) + βjmi(t)Js(t)

− βjb(As(t− τ))

∫ t

t−τ

mi(ξ)e
−dij(t−ξ) exp

(
−
∫ ξ

t−τ

(dsj + βjmi(v)) dv

)
dξ.(2.14)

To close the system we still need a differential equation for the variable mi(t),
but first we would like to discuss the ecological interpretation of the complicated
integral term appearing in (2.13) and (2.14). The first two terms in the right-hand
side of (2.13) are easy to interpret. They are, respectively, the death rate of infected
adults and conversion of susceptible adults to infected adults via contact with infected
mosquitoes. The last term in (2.13) tells us the rate at which infected immatures
become infected adults having contracted the disease in childhood. This term is
the rate at which infected individuals pass through age τ . Now, an individual that
is of age τ at time t will have been born at time t − τ . Recall, however, that all
individuals are born as susceptibles. This is why the birth rate b(As(t−τ)) is involved.
The individuals we are presently discussing have each acquired the infection at some
stage during childhood, so assume that a particular individual acquires it at a time
ξ ∈ (t − τ, t). This particular individual remained susceptible from its birth at time
t− τ until time ξ, and the probability of this happening is

exp

(
−
∫ ξ

t−τ

(dsj + βjmi(v)) dv

)
.
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The probability that the individual will survive from becoming infected at time ξ until
becoming an adult at time t is

e−dij(t−ξ).

These two exponentials both feature in the last term in (2.13). The product βjmi(ξ)
is the per capita conversion rate of susceptible juveniles to infected juveniles at time
ξ, and ξ running from t− τ to t totals up the contributions from all possible times at
which infected individuals passing into adulthood might have acquired the infection.

Finally, we need differential equations for the mosquitoes. Let mT (t) be the total
number of (adult) mosquitoes, divided into infected mosquitoes mi(t) and suscepti-
ble mosquitoes mT (t) − mi(t). Death and reproductive activity for mosquitoes are
assumed not to depend on whether they are carrying the disease or not, and so the
total number of adult mosquitoes is assumed to obey

dmT (t)

dt
= e−dlσB(mT (t− σ)) − dmmT (t),(2.15)

where dl and dm denote the death rates of larval and adult mosquitoes, respectively,
and σ is the length of the larval phase from egg to adult. The function B(·) is the birth
rate function for mosquitoes. It is possible but unnecessary to write down a differential
equation for larval mosquitoes. Infected adult mosquitoes mi(t) are assumed to obey

dmi(t)

dt
= −dmmi(t) + βm(mT (t) −mi(t))(Ji(t) + αAi(t)).(2.16)

Thus, the rate at which mosquitoes become infected is given by mass action as the
product of susceptible mosquitoes mT (t) − mi(t) and infected birds which may be
either juvenile or adult. The presence of the factor α is to account for the possibility
that juvenile and adult birds might not be equally vulnerable to being bitten. Again,
we defer the discussion of a more standard incidence term to the final section.

Certain assumptions will be made concerning the birth function B(·) for the
mosquitoes. These assumptions, which are ecologically reasonable, are geared towards
ensuring that the total number mT (t) of mosquitoes stabilizes and does not tend to
zero (otherwise the disease is automatically eradicated and the model is not interest-
ing). These assumptions are

B(0) = 0, B(·) is strictly monotonically increasing, there exists m∗
T > 0

such that e−dlσB(m) > dmm when m < m∗
T and e−dlσB(m) < dmm when

m > m∗
T .

}
(2.17)

The quantity m∗
T > 0 in (2.17) is an equilibrium of (2.15), and mT (t) → m∗

T as t → ∞,
provided mT (θ) ≥ 0 and mT (θ) �≡ 0 on θ ∈ [−σ, 0] (see Kuang [14]). Accordingly,
(2.16) is asymptotically autonomous, and we may replace mT (t) by m∗

T in (2.16),
thereby lowering the order of the system to be studied, which we now note consists
of (2.9), (2.10), (2.13), and (2.14) together with

dmi(t)

dt
= −dmmi(t) + βm(m∗

T −mi(t))(Ji(t) + αAi(t)),(2.18)

which is the asymptotically autonomous limiting form of (2.16). Note that this sys-
tem does not explicitly involve the delay σ, but this delay is still involved via the
quantity m∗

T .
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2.1. Positivity of solutions. We will prove that the system consisting of (2.9),
(2.10), (2.13), (2.14), and (2.18) has a positivity preserving property. It is easy to ap-
preciate that this system cannot have a positivity preserving property for completely
arbitrary nonnegative initial data (a glance at the terms in the right-hand side of
(2.14) makes this clear). However, positivity preservation does hold when some com-
ponents of the initial data satisfy certain relations. These relations are easily seen to
be the only ones that make sense ecologically and therefore are easily admitted. We
therefore now append to the above-mentioned system the following initial data:

As(θ) = A0
s(θ) ≥ 0, θ ∈ [−τ, 0],

mi(θ) = m0
i (θ) ∈ [0,m∗

T ], θ ∈ [−τ, 0],

Ai(0) = A0
i (0) ≥ 0,

Js(0) =

∫ 0

−τ

b(A0
s(ξ)) exp

(
−
∫ 0

ξ

[dsj + βjm
0
i (u)] du

)
dξ,

Ji(0) =

∫ 0

−τ

b(A0
s(ξ))

{∫ 0

ξ

βjm
0
i (η)e

dijηe−
∫ η
ξ

[dsj+βjm
0
i (v)] dvdη

}
dξ,

(2.19)

where A0
s(θ) and m0

i (θ) are prescribed continuous functions of the variable θ ∈ [−τ, 0],
and A0

i (0) is also a given value. Note that Js(0) and Ji(0) have to be calculated from
the initial data for As and mi. This is ecologically reasonable; after all, Js(0) is
the number of juvenile susceptibles at time t = 0. The integral on the right in the
expression for Js(0) is simply accounting for all these juvenile susceptibles at t = 0.
Each one was born at some time ξ ∈ [−τ, 0]—hence the presence of the birth rate
b(A0

s(ξ))—and each has to have survived and remained susceptible until time 0, hence
the exponential term which represents the probability of this actually happening.
The interpretation of the expression for Ji(0) is similar but more complicated. Of
the infected juveniles Ji(0) at time 0, each one was born at some time ξ ∈ [−τ, 0] as
a susceptible, and each of these newborns at time ξ then became infected at some
subsequent time η ∈ [ξ, 0].

We will now prove the following positivity preservation result.
Proposition 2.1. Let (2.17) hold. Then each component of the solution of the

system consisting of (2.9), (2.10), (2.13), (2.14), and (2.18) for t > 0, subject to the
initial conditions (2.19), remains nonnegative for all t > 0. Also, mi(t) ≤ m∗

T for all
t > 0. If, furthermore, the function b is bounded, then each component of the above
solution is also bounded for all t > 0.

Proof. First we will show that mi(t) ≤ m∗
T for all t > 0. Suppose the contrary;

then there must exist a time t1 such that mi(t1) = m∗
T and dmi(t1)/dt ≥ 0. Evaluating

(2.18) at time t1 immediately gives a contradiction.
Next we prove nonnegativity of As(t), for t ∈ (0, τ ] in the first instance. On this

interval,

dAs(t)

dt
≥ −dsaAs(t) − βami(t)As(t).

By comparison, As(t) is bounded below by the solution of the corresponding differ-
ential equation obtained by replacing ≥ by =, and this differential equation contains
a factor of As(t) in its right-hand side. Since As(0) ≥ 0, it follows that As(t) ≥ 0
for all t ∈ (0, τ ]. This argument can be continued using the method of steps, and we
conclude that As(t) ≥ 0 for all t > 0.
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Nonnegativity of Js(t) will be shown next. This can be seen by noting that the
solution of (2.10), subject to the initial value for Js(0) given in (2.19), is

Js(t) =

∫ t

t−τ

b(As(ξ)) exp

(
−
∫ t

ξ

[dsj + βjmi(u)] du

)
dξ,(2.20)

which is nonnegative because As is nonnegative.

We still have to prove the nonnegativity of Ai(t), Ji(t), and mi(t). It will be
helpful to note that the solution of (2.14), subject to the initial value for Ji(0) given
in (2.19), is

Ji(t) =

∫ t

t−τ

b(As(ξ))

{∫ t

ξ

βjmi(η)e
−dij(t−η)e−

∫ η
ξ

[dsj+βjmi(v)] dvdη

}
dξ,(2.21)

which is nonnegative if mi(t) is nonnegative. Therefore, it suffices to prove non-
negativity of Ai(t) and mi(t). These two functions can be viewed as the solution
(Ai(t),mi(t)) of the system of differential equations consisting of (2.13) and

dmi(t)

dt
= −dmmi(t) + βm(m∗

T −mi(t))

×
(∫ t

t−τ

b(As(ξ))

{∫ t

ξ

βjmi(η)e
−dij(t−η)e−

∫ η
ξ

[dsj+βjmi(v)] dvdη

}
dξ + αAi(t)

)
(2.22)

for t > 0, with initial data taken from (2.19), but with As(t) thought of simply as
some prescribed nonnegative function. Recalling that mi(t) ≤ m∗

T , we now note that,
even though this system does not satisfy a quasi monotonicity condition, Theorem 2.1
of Smith [23, p. 81] is applicable and gives us the nonnegativity of Ai(t) and mi(t)
immediately. The proof of the nonnegativity of each component of the solution is
then complete.

The boundedness of As(t) is simple since, by (2.9),

d

dt
As(t) ≤ bsup − dsaAs(t) − βami(t)As(t),

where bsup = supA≥0 b(A) < ∞. The boundedness of Ai(t) follows from (2.13) and
the boundedness of mi(t). The boundedness of Js(t) and Ji(t) follows from (2.20)
and (2.21) directly. This completes the proof.

2.2. Global convergence to disease-free state. In this section we shall prove
a theorem giving sufficient conditions for the system to evolve to the disease-free state
(i.e., conditions that ensure Ai, Ji, and mi go to zero as t → ∞). Since the differential
equations (2.10) and (2.14) can be solved to give (2.20) and (2.21), respectively, it is
sufficient to study the system consisting of (2.9), (2.13), and (2.22), with initial data
taken from (2.19). These equations form a closed system for As(t), Ai(t), and mi(t).
Our aim will be to establish, using these three equations, a differential inequality
for the variable mi(t) only, and to use this to find conditions which ensure that
mi(t) → 0 as t → ∞. Note that if mi(t) → 0, then from (2.21) it follows immediately
that Ji(t) → 0 and, furthermore, (2.13) then becomes an asymptotically autonomous
ODE, from which it is easily seen that Ai(t) tends to zero.
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We will make certain assumptions concerning the birth rate function b(·) for hosts.
These assumptions are

b(0) = 0, b(A) > 0 when A > 0, bsup := supA≥0 b(A) < ∞, there exists

A∗
s > 0 such that e−dsjτ b(A) > dsaA when A < A∗

s and e−dsjτ b(A) <
dsaA when A > A∗

s.

⎫⎬
⎭(2.23)

These assumptions are not the same as those for the birth rate function B(·) for
mosquitoes (assumptions (2.17)); note in particular that we do not require b(·) to be
monotone.

The reader will realize that the quantity A∗
s in (2.23) is, in fact, a nonzero equi-

librium value for As(t) in the case when the disease is absent. Assumptions (2.23)
are geared towards ensuring that the population As(t) of adult susceptible hosts does
not go to zero even without the disease; otherwise the model is not interesting. This
is important because if e−dsjτ b(A) < dsaA for all A > 0 (which means that, in the
absence of the disease, adult recruitment of susceptible hosts is insufficient to offset
natural death of adult susceptible hosts), then it is natural to expect that As(t) → 0
even without the disease, and this can be mathematically shown to be the case, using
(2.9).

We will prove the following theorem. Assumption (2.17) is needed to ensure the
existence of m∗

T . We shall need the functions a1 and a0 defined by

a1(ε) = dmdia + dmdij + diadij

− βmm∗
T bsupβj

dsj
− βmm∗

Tαβa

(
bsupe

−dsjτ

dsa
+ ε

)

− e−dsjτ

(
1 − e−τ(dij−dm−dsj)

dij − dm − dsj

)
βmm∗

Tαβjbsup

(2.24)

and

a0(ε) = dmdiadij −
diaβmm∗

T bsupβj

dsj
− dijβmm∗

Tαβa

(
bsupe

−dsjτ

dsa
+ ε

)

− dije
−dsjτ

(
1 − e−τ(dij−dm−dsj)

dij − dm − dsj

)
βmm∗

Tαβjbsup.

(2.25)

Theorem 2.2. Let (2.17) and (2.23) hold, and let As(t), Ai(t), and mi(t) satisfy
(2.9), (2.13), and (2.22), with initial data taken from (2.19). Assume further that

a1(0) > 0, a0(0) > 0, and (dm + dia + dij)a1(0) > a0(0),(2.26)

where the functions a1, a0 are defined by (2.24) and (2.25). Then (Ai(t),mi(t)) →
(0, 0) as t → ∞.

Remark. It is not hard to check that (2.26) can be satisfied for some parame-
ter values. It is satisfied, for example, when the contact rates βa, βj , and βm are
sufficiently small, or when the mosquito capacity m∗

T is sufficiently small. These are
situations in which we intuitively expect the theorem to hold. As such, an obvious
control measure for achieving disease eradication is to reduce the mosquito capacity.
Reducing βm is an alternative approach.

Proof of Theorem 2.2. For the reasons explained above, we may concentrate on
showing that mi(t) → 0 as t → ∞. From positivity of solutions, we find from (2.9)



SPREAD OF VECTOR BORNE DISEASES 417

that

dAs

dt
≤ b(As(t− τ))e−dsjτ − dsaAs(t)

≤ bsupe
−dsjτ − dsaAs(t).

Hence

lim sup
t→∞

As(t) ≤
bsupe

−dsjτ

dsa
.

By hypothesis (2.26) and by a continuity argument we may choose ε > 0 sufficiently
small that

a1(ε) > 0, a0(ε) > 0, and (dm + dia + dij)a1(ε) > a0(ε).(2.27)

There exists T1 > 0 such that, for t ≥ T1,

As(t) ≤
bsupe

−dsjτ

dsa
+ ε.

Using this estimate in (2.13), we find that, for t ≥ T1,

dAi(t)

dt
≤ −diaAi(t) + βami(t)

(
bsupe

−dsjτ

dsa
+ ε

)

+ βjbsup

∫ t

t−τ

mi(ξ)e
−dij(t−ξ) exp

(
−
∫ ξ

t−τ

(dsj + βjmi(v)) dv

)
dξ.

(2.28)

Solving this differential inequality and ignoring a transient term involving Ai(0), we
find that

Ai(t) ≤ βa

(
bsupe

−dsjτ

dsa
+ ε

)∫ t

0

e−dia(t−ψ)mi(ψ) dψ

+ βjbsup

∫ t

0

e−dia(t−ψ)

∫ ψ

ψ−τ

mi(ξ)e
−dij(ψ−ξ) exp

(
−
∫ ξ

ψ−τ

(dsj + βjmi(v)) dv

)
dξ dψ.

(2.29)

We shall use this estimate for Ai(t) to obtain a differential inequality for mi(t) as
follows. From (2.22), and using positivity of mi(t) and the bound on b(·),

dmi(t)

dt
≤ −dmmi(t) + βmm∗

T

×
(
bsup

∫ t

t−τ

∫ t

ξ

βjmi(η)e
−dij(t−η)e−

∫ η
ξ

[dsj+βjmi(v)] dvdη dξ + αAi(t)

)
,
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so that, from (2.29),

dmi(t)

dt
≤ −dmmi(t)

+ βmm∗
T bsup

∫ t

t−τ

∫ t

ξ

βjmi(η)e
−dij(t−η)e−

∫ η
ξ

[dsj+βjmi(v)] dvdη dξ

+ βmm∗
Tαβa

(
bsupe

−dsjτ

dsa
+ ε

)∫ t

0

e−dia(t−ψ)mi(ψ) dψ

+ βmm∗
Tαβjbsup

∫ t

0

e−dia(t−ψ)

∫ ψ

ψ−τ

mi(ξ)e
−dij(ψ−ξ)

× exp

(
−
∫ ξ

ψ−τ

(dsj + βjmi(v)) dv

)
dξ dψ.

From this it is easy to see, using the positivity of mi(t), that mi(t) also obeys the
following simpler linear differential inequality:

dmi(t)

dt
≤ −dmmi(t)

+ βmm∗
T bsup

∫ t

t−τ

∫ t

ξ

βjmi(η)e
−dij(t−η)e−dsj(η−ξ)dη dξ

+ βmm∗
Tαβa

(
bsupe

−dsjτ

dsa
+ ε

)∫ t

0

e−dia(t−ψ)mi(ψ) dψ

+ βmm∗
Tαβjbsup

∫ t

0

e−dia(t−ψ)

∫ ψ

ψ−τ

mi(ξ)e
−dij(ψ−ξ)e−dsj(ξ−ψ+τ)dξ dψ.

(2.30)

To make progress we need to estimate some of these integrals. If we change the order
of integration in the first double integral of (2.30), we reach the following estimate:

∫ t

t−τ

∫ t

ξ

βjmi(η)e
−dij(t−η)e−dsj(η−ξ)dη dξ

=

∫ t

t−τ

∫ η

t−τ

βjmi(η)e
−dij(t−η)e−dsj(η−ξ)dξ dη

≤ βj

dsj

∫ t

t−τ

mi(η)e
−dij(t−η)dη

≤ βj

dsj

∫ t

0

mi(η)e
−dij(t−η)dη,(2.31)

assuming t > τ .

From (2.18) and Proposition 2.1 we have

dmi(t)

dt
≥ −dmmi(t).

Integrating from ξ to ψ gives

mi(ξ) ≤ mi(ψ)edm(ψ−ξ), ξ ≤ ψ.
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Using this and (2.31), we obtain

dmi(t)

dt
≤ −dmmi(t) +

βmm∗
T bsupβj

dsj

∫ t

0

mi(η)e
−dij(t−η) dη

+ βmm∗
Tαβa

(
bsupe

−dsjτ

dsa
+ ε

)∫ t

0

e−dia(t−ψ)mi(ψ) dψ

+ βmm∗
Tαβjbsupe

−dsjτ

(
1 − e−τ(dij−dm−dsj)

dij − dm − dsj

)∫ t

0

e−dia(t−ψ)mi(ψ) dψ.

(2.32)

By the theory of monotone systems [23], mi(t) ≤ Mi(t), where Mi(t) is the solution
of the differential equation obtained from (2.32) by replacing ≤ by =, subject to the
same initial data as that for mi. Applying to this differential equation the Laplace
transform, letting p be the transform variable and M̄i(p) denote the Laplace transform
of Mi(t), we find after some algebra that

M̄i(p) Λ(p) = mi(0)(p + dia)(p + dij),(2.33)

where

Λ(p) = p3 + (dm + dia + dij)p
2 + a1(ε)p + a0(ε)(2.34)

with a1(ε) and a0(ε) given by (2.24) and (2.25). Recall that the small number ε > 0
has been chosen such that (2.27) holds. This fact, together with the Routh Hurwitz
criteria, implies that all the roots of the cubic equation Λ(p) = 0 satisfy Re p < 0, and
so the same is true of all singularities of M̄i(p). By the inversion formula for Laplace
transforms, Mi(t) → 0 as t → ∞. Since 0 ≤ mi(t) ≤ Mi(t), mi(t) → 0 as t → ∞. By
(2.13), Ai(t) → 0 as t → ∞. The proof of Theorem 2.2 is complete.

2.3. Local stability of disease-free equilibrium. If (2.23) holds, then the
model (2.9), (2.10), (2.13), (2.14), and (2.18) has a disease-free equilibrium (DFE),
obtained by substituting Ji = 0, Ai = 0, and mi = 0 into the right-hand sides of
those equations and setting them to zero, given by

E0 = (A∗
s, J

∗
s , 0, 0, 0),(2.35)

where A∗
s > 0 and J∗

s > 0 are given by⎧⎨
⎩

b(A∗
s)e

−dsjτ − dsaA
∗
s = 0,

J∗
s =

b(A∗
s)

dsj
(1 − e−dsjτ ).

(2.36)

The previous section of this paper presented sufficient conditions for disease eradi-
cation (Theorem 2.2). In this section we investigate the linear stability of the DFE
E0 to gain further insight, and we shall present a condition (namely, condition (2.38)
below) which is both necessary and sufficient for E0 to be linearly stable. Though
we do not establish disease eradication globally under this particular condition, it is
clearly the weakest possible condition for disease eradication.

We first require the following simple preliminary result, which provides a condition
for the linear stability of the DFE E0 to perturbations in which the disease remains
absent.
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Lemma 2.3. Let (2.23) hold. Then (A∗
s, J

∗
s ), given by (2.36), is a locally asymp-

totically stable equilibrium of the subsystem⎧⎪⎪⎨
⎪⎪⎩

dJ̄s(t)

dt
= b(Ās(t)) − b(Ās(t− τ))e−dsjτ − dsj J̄s(t),

dĀs(t)

dt
= b(Ās(t− τ))e−dsjτ − dsaĀs(t)

(2.37)

if dsa > |b′(A∗
s)|e−dsjτ .

Proof. Obviously, (A∗
s, J

∗
s ) is an equilibrium of system (2.37). The linearization

of (2.37) at this equilibrium has solutions of the form exp(λt) whenever λ satisfies∣∣∣∣ −λ− dsj b′(A∗
s)(1 − e−(λ+dsj)τ )

0 −λ− dsa + b′(A∗
s)e

−(λ+dsj)τ

∣∣∣∣ = 0.

Therefore, (A∗
s, J

∗
s ) is a locally stable solution of (2.37) if and only if all the roots λ

of −λ − dsa + b′(A∗
s)e

−(λ+dsj)τ = 0 have negative real part. It is straightforward to
show that this is the case if dsa > |b′(A∗

s)|e−dsjτ . The proof is complete.
Our main result of this section is the following theorem, which gives a necessary

and sufficient condition for the linear stability of the disease-free state.
Theorem 2.4. Let (2.17) and the hypotheses of Lemma 2.3 hold, and assume

additionally that

dm > βmm∗
T

{
b(A∗

s)βj

dij − dsj

[
1 − e−dsjτ

dsj
− (1 − e−dijτ )

dij

]

+
α

dia

[
βaA

∗
s + βjb(A

∗
s)e

−dsjτ
(1 − e−(dij−dsj)τ )

dij − dsj

]}
.

(2.38)

Then the disease-free equilibrium E0 given by (2.35) is linearly asymptotically stable
as a solution of the full model (2.9), (2.10), (2.13), (2.14), (2.18).

Remark. The hypotheses of Theorem 2.4 are the weakest possible hypotheses that
can guarantee the stated result. Recall from earlier remarks that if (2.17) or (2.23) is
violated, then the mosquito or host population is doomed, irrespective of the disease.
If the two sides of (2.38) are equal, then zero is an eigenvalue of the characteristic
equation of the linearization about E0 ((2.40) below), signaling the bifurcation of an
endemic equilibrium. As will be shown numerically at the end of this section, a Hopf
bifurcation of periodic solutions may further bifurcate from this endemic equilibrium.
It remains a challenging problem to determine whether the hypotheses of Theorem 2.4
are sufficient to guarantee the global stability of E0.

Proof. We aim for a linear equation in mi only. Making use of the expression (2.21)
for Ji(t), solving for Ai(t) the differential equation (2.13) on the interval (−∞, t), and
then linearizing about mi = 0, we obtain

dmi(t)

dt
= −dmmi(t)

+ βmm∗
T b(A

∗
s)

∫ t

t−τ

∫ t

ξ

βjmi(η)e
−dij(t−η)e−dsj(η−ξ)dη dξ

+ βmm∗
TαβaA

∗
s

∫ t

−∞
e−dia(t−ψ)mi(ψ) dψ

+ βmm∗
Tαβjb(A

∗
s)

∫ t

−∞
e−dia(t−ψ)

∫ ψ

ψ−τ

mi(ξ)e
−dij(ψ−ξ)e−dsj(ξ−ψ+τ)dξ dψ.

(2.39)
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Solutions of the form mi(t) = eλt exist whenever λ satisfies

λ + dm = βmm∗
T

{
b(A∗

s)βj

λ + dij − dsj

[
1 − e−dsjτ

dsj
− (1 − e−(λ+dij)τ )

λ + dij

]

+
α

λ + dia

[
βaA

∗
s + βjb(A

∗
s)e

−dsjτ
(1 − e−(λ+dij−dsj)τ )

λ + dij − dsj

]}
.

(2.40)

The structure of the linear equation (2.39) is such that the linear stability of its zero
solution can be determined by considering only the real roots of the characteristic
equation (2.40). This follows from Theorem 5.1 of Smith [23, p. 92] and Theorem 3.2
of Wu [28]. Our aim is therefore to show that, under condition (2.38), equation
(2.40) does not have any nonnegative real roots. From simple graphical arguments,
we see that it is sufficient to show that the right-hand side of (2.40) is monotonically
decreasing as a function of λ ∈ R for λ ≥ 0.

Let F (λ) denote the right-hand side of (2.40), excluding the βmm∗
T factor. It is

sufficient to show that F ′(λ) < 0 for all λ ≥ 0. Now

F (λ) =
τb(A∗

s)βj

λ + dij − dsj
[f(dsjτ) − f((λ + dij)τ)]

+
α

λ + dia

[
βaA

∗
s + τβjb(A

∗
s)e

−dsjτf((λ + dij − dsj)τ)
]

=: F1(λ) + αF2(λ),

(2.41)

in which the function f is defined by

f(x) =
1 − e−x

x
.

It is reasonably straightforward to see that f satisfies

f(x) > 0, f ′(x) < 0, f ′′(x) > 0 for all x ∈ R.(2.42)

Indeed, (2.42) follows from the following inequalities:

(x + 1)e−x ≤ 1, x ∈ R,

and

e−x(x2 + 2x + 2) < 2, x > 0,

e−x(x2 + 2x + 2) > 2, x < 0.

It is sufficient to show that F ′
1(λ) < 0 and F ′

2(λ) < 0 for all λ ≥ 0, with the Fi(λ)
defined by (2.41). It is very easily seen, using (2.42), that F ′

2(λ) < 0 for all λ ≥ 0 (in
fact for all λ > −dia). To show that F ′

1(λ) < 0, introduce ξ = λ + dij − dsj and the
function g(ξ) defined by

g(ξ) =
1

ξ
(f(dsjτ) − f((ξ + dsj)τ));

then it is more than sufficient to show that g′(ξ) < 0 for all ξ ∈ R. However,

g′(ξ) =
1

ξ2
[f((ξ + dsj)τ) − f(dsjτ)] − τ

ξ
f ′((ξ + dsj)τ)

=
τ

ξ
[f ′((θξ + dsj)τ) − f ′((ξ + dsj)τ)]

= (θ − 1)τ2f ′′(c)



422 STEPHEN A. GOURLEY, RONGSONG LIU, AND JIANHONG WU

for some numbers θ ∈ (0, 1) and c ∈ R which arise from applications of the mean
value theorem. Since f ′′(c) > 0 by (2.42) it follows that g′(ξ) < 0, as desired. Thus,
(2.40) does not have any nonnegative real roots.

With mi(t) → 0 it follows from (2.21) and (2.13) that Ji(t) → 0 and Ai(t) → 0.
Then the hypotheses of Lemma 2.3, which are embodied within those of Theorem 2.4,
imply that As(t) → A∗

s and Js(t) → J∗
s in the linearized equations. The proof of

Theorem 2.4 is complete.

2.4. Numerical simulations. Let us introduce the new variable W1 defined by

W1(t) =

∫ t

t−τ

mi(ξ)e
−dij(t−ξ) exp

(
−
∫ ξ

t−τ

(dsj + βjmi(v)) dv

)
dξ,

so that we can rewrite the model (2.9), (2.10), (2.13), (2.14), and (2.18) in the form

dJs(t)

dt
= b(As(t)) − b(As(t− τ))e−dsjτe−

∫ t
t−τ

βjmi(v)dv − dsjJs(t) − βjmi(t)Js(t),

dAs(t)

dt
= b(As(t− τ))e−dsjτe−

∫ t
t−τ

βjmi(v)dv − dsaAs(t) − βami(t)As(t),

dJi(t)

dt
= −dijJi(t) + βjmi(t)Js(t) − βjb(As(t− τ))W1(t),

dAi(t)

dt
= −diaAi(t) + βami(t)As(t) + βjb(As(t− τ))W1(t),

dmi(t)

dt
= −dmmi(t) + (mT (t) −mi(t))βm(Ji(t) + αAi(t)),

dW1(t)

dt
= W1(t)(dsj − dij + βjmi(t− τ)) + mi(t)e

−dsjτe−
∫ t
t−τ

βjmi(v)dv

− e−dijτmi(t− τ).

(2.43)

The DFE of model (2.43) is the equilibrium in which

(Js, As, Ji, Ai,mi,W1) ≡ (J∗
s , A

∗
s, 0, 0, 0, 0).

In the simulations reported below, we take the birth function of mosquitoes and that
of birds as

B(mT ) = bmmT e
−ammT , b(As) = bbAse

−abAs ,(2.44)

respectively. These forms for the birth function have been used, for example, in the
well-studied Nicholson blowflies equation [9].

Various parameter values are given in Table 1, taken from [18, 19, 3, 26] with
reference to West Nile virus. We took the initial conditions to be

As(t) = 500, MI(t) = 0

for t ∈ [−τ, 0] and Ai(0) = 2. This, together with the matching condition (2.19), gives
Js(0) = 16700 and Ji(0) = 0.

In Figure 1 the condition (2.38) is satisfied, and the infected populations go
to zero. However, as we increase the contact rates, the condition (2.38) fails, and
the disease sustains in the bird and mosquito population, as shown in Figure 2. If
we continue to increase the contact rates, we eventually find oscillatory behaviors,
as shown in Figure 3, suggesting the possibility of a Hopf bifurcation to periodic
solutions.
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Table 1

Meaning of parameters.

Parameter Meaning of the parameter Value
bb Maximum per capita daily bird production rate 0.5
1/ab Size of bird population at which 1000

the number of newborn birds is maximized
bm Maximum per capita daily mosquito egg production rate 5
1/am Size of mosquito population at which egg laying is maximized 10000
dsj Mortality rate of uninfected juveniles (per day) 0.005
dij Mortality rate of infected juveniles (per day) 0.05
dsa Mortality rate of uninfected adults (per day) 0.0025
dia Mortality rate of infected adults (per day) 0.015
dm Mortality rate of mosquito (per day) 0.05
βj Contact rate between uninfected juvenile and infected mosquito Variable
βa Contact rate between uninfected adult and infected mosquito Variable
βm Contact rate between uninfected mosquito and infected juvenile Variable
αβm Contact rate between uninfected mosquito and infected juvenile Variable
τ Duration of more vulnerable period of bird (day) 160
σ Maturation time of mosquito (day) 10
dl Mortality rate of larva mosquito (per day) 0.1

3. Spatial speed of spread. In this section we will derive a reaction-diffusion
analogue of the system we have studied thus far, and we will use this system to
formally estimate the speed at which the disease epidemic would spread through
space. For simplicity, diffusion will be modeled using Fick’s law. Equations (2.1) and
(2.2) become

∂s

∂t
+

∂s

∂a
= Ds(a)

∂2s

∂x2
− ds(a)s(t, a, x) − β(a)s(t, a, x)mi(t, x)(3.1)

and

∂i

∂t
+

∂i

∂a
= Di(a)

∂2i

∂x2
− di(a)i(t, a, x) + β(a)s(t, a, x)mi(t, x)(3.2)

on a one-dimensional spatial domain x ∈ (−∞,∞), where mi(t, x) is the number of
infected adult mosquitoes at (t, x) satisfying a reaction-diffusion equation mentioned
later. We shall assume that the age-dependent diffusivities Ds(a), Di(a) have the
special form

Ds(a) =

{
Dsj , a < τ,
Dsa, a > τ,

Di(a) =

{
Dij , a < τ,
Dia, a > τ.

(3.3)

With this choice for the diffusivities, our concern for the moment is with deriving a
system of four reaction-diffusion equations for the quantities

As(t, x) =

∫ ∞

τ

s(t, a, x) da, Ai(t, x) =

∫ ∞

τ

i(t, a, x) da,

Js(t, x) =

∫ τ

0

s(t, a, x) da, Ji(t, x) =

∫ τ

0

i(t, a, x) da,

(3.4)

which are analogous to the total numbers in (2.5). Differentiating the expression for
As(t, x) and using (3.1) and (3.3) gives

∂As

∂t
= s(t, τ, x) + Dsa

∂2As

∂x2
− dsaAs − βami(t, x)As,
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Fig. 1. Parameter values are βj = 3.5 × 10−6, βa = 1.5 × 10−6, βm = 3.25 × 10−6, αβm =
7.5 × 10−7, and other parameters have the values shown in Table 1. In this case dm is larger than
the right-hand side of (2.38), which equals 0.0343. The DFE is stable.

and we need to find s(t, τ, x). Set

sξ(a, x) = s(ξ + a, a, x).

Differentiating with respect to a and using (3.1) gives

∂sξ
∂a

= Ds(a)
∂2sξ
∂x2

− ds(a)sξ(a, x) − β(a)sξ(a, x)mi(ξ + a, x).(3.5)

We would like to solve (3.5) exactly for sξ(a, x), but this is impossible because the
equation is nonautonomous. (The variable mi satisfies a separate nonlinear partial
differential equation, which appears below.) Our aim, however, will be to study
the spatial spread of the disease by looking for traveling wave solutions which move
leftwards through the spatial domain x ∈ (−∞,∞), and which constitute a connection
between the disease-free state and an endemic state. The PDEs we derive for the
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Fig. 2. Parameter values are βj = 4.0883 × 10−6, βa = 2.3705 × 10−6, βm = 3.7962 × 10−6,
αβm = 1.1853 × 10−6, and other parameters have the values shown in Table 1. In this case dm is
less than the right-hand side of (2.38), which equals 0.0613. The DFE is unstable, and the solution
evolves to an endemic equilibrium.

variables (3.4), and for mi(t, x), will be studied only in the region far ahead of the
advancing epidemic, i.e., as x → −∞, because we shall be assuming that the linearized
equations in this region determine the speed of the epidemic wave. In the disease-free
region x ≈ −∞, the variables Ai(t, x), Ji(t, x), and mi(t, x) are all close to zero. Thus,
we solve (3.5) in the case when mi is zero to find that in this case the solution subject
to the first condition appearing below,

s(t, 0, x) = b(As(t, x)), i(t, 0, x) = 0(3.6)

(the analogue of (2.6)) is, for a ≤ τ and ξ ≥ 0,

sξ(a, x) = s(ξ + a, a, x) =

∫ ∞

−∞
Γ(Dsja, x− y)b(As(ξ, y))e

−dsjτ dy,(3.7)
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Fig. 3. Parameter values are βj = 9.4030 × 10−6, βa = 2.2388 × 10−6, βm = 8.7313 × 10−6,
αβm = 4.0299 × 10−6, and other parameters have the values shown in Table 1. In this case dm is
less than the right-hand side of (2.38), which equals 0.2475. The DFE is unstable, and the solution
is oscillating.

where

Γ(t, x) =
1√
4πt

e−x2/4t.(3.8)

From (3.7) we find an expression for s(t, τ, x), and we deduce that for t ≥ τ the PDE
for As(t, x) is

∂As

∂t
=

∫ ∞

−∞
Γ(Dsjτ, x− y)b(As(t− τ, y))e−dsjτ dy

+ Dsa
∂2As

∂x2
− dsaAs(t, x) − βami(t, x)As(t, x),

(3.9)
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valid in the far left of the spatial domain x ∈ (−∞,∞). Similarly, we obtain the
following approximate equation for Js(t, x), also valid only in the far field x → −∞:

∂Js
∂t

= b(As(t, x)) −
∫ ∞

−∞
Γ(Dsjτ, x− y)b(As(t− τ, y))e−dsjτ dy

+ Dsj
∂2Js
∂x2

− dsjJs(t, x) − βjmi(t, x)Js(t, x).

(3.10)

Next we shall derive the PDE for Ai(t, x). Differentiating the expression for Ai in
(3.4) and using (3.2) and (3.3) gives

∂Ai

∂t
= i(t, τ, x) + Dia

∂2Ai

∂x2
− diaAi + βami(t, x)As,

and we need to find i(t, τ, x). Set

iξ(a, x) = i(ξ + a, a, x).

Since the calculation of i(t, τ, x) involves immature ages a ∈ [0, τ ] only, from (3.2) we
obtain

∂iξ
∂a

= Dij
∂2iξ
∂x2

− dijiξ(a, x) + βjmi(ξ + a, x)s(ξ + a, a, x).

The solution of this equation satisfying the second condition in (3.6) is

iξ(a, x) = βj

∫ a

0

e−dij(a−ζ)

∫ ∞

−∞
Γ(Dij(a− ζ), x− y)mi(ξ + ζ, y)s(ξ + ζ, ζ, y) dy dζ,

where Γ is again given by (3.8). For s(ξ + ζ, ζ, y) we use expression (3.7). Then,
setting a = τ and ξ = t − τ in the above expression gives us i(t, τ, x), and thus we
conclude that the evolution PDE for the variable Ai(t, x) representing the number of
adult infected hosts is, for t ≥ τ ,

∂Ai

∂t
= Dia

∂2Ai

∂x2
− diaAi(t, x) + βami(t, x)As(t, x)

+ βj

∫ τ

0

e−dij(τ−ζ)

∫ ∞

−∞
Γ(Dij(τ − ζ), x− y)mi(t− τ + ζ, y)

×
∫ ∞

−∞
Γ(Dsjζ, y − η)b(As(t− τ, η))e−dsjζ dη dy dζ.

(3.11)

This is again valid only in the far field x → −∞, since we have used expression
(3.7). The last term in the right-hand side of (3.11) is the rate at which infected
immatures become infected adults and has a similar interpretation to a term in the
right-hand side of (2.13). This time the term involves additional integrals because of
diffusion, but the reader may notice that in certain other respects the term in (3.11)
is a little simpler than we might expect based on comparison with (2.13); this is due
to the approximations we have made to derive (3.11) because of the restriction to the
x ≈ −∞ zone. The interpretation of the term we are discussing is as follows. Each
individual that reaches adulthood at point x at time t as an infected individual was
born as a susceptible at time t − τ at some other point η. For an amount of time ζ
that individual drifted around as a susceptible individual with diffusivity Dsj until
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reaching a point y, where it became infected at time t− τ + ζ. For an amount of time
τ − ζ, constituting the remainder of its childhood, it drifted around as an infected
individual with diffusivity Dij to reach point x at time t, where it becomes an adult.
The two exponential factors represent the probability of surviving the susceptible and
infected portions of childhood.

The PDE for Ji(t, x) is derived similarly and turns out to be

∂Ji
∂t

= Dij
∂2Ji
∂x2

− dijJi(t, x) + βjmi(t, x)Js(t, x)

− βj

∫ τ

0

e−dij(τ−ζ)

∫ ∞

−∞
Γ(Dij(τ − ζ), x− y)mi(t− τ + ζ, y)

×
∫ ∞

−∞
Γ(Dsjζ, y − η)b(As(t− τ, η))e−dsjζ dη dy dζ.

(3.12)

Finally we need a reaction-diffusion equation for the infected adult mosquitoes mi(t, x).
We shall take

∂mi

∂t
= Dm

∂2mi

∂x2
− dmmi(t, x) + βm(m∗

T −mi(t, x))(Ji(t, x) + αAi(t, x)).(3.13)

The system of PDEs to be solved thus consists of (3.9), (3.10), (3.11), (3.12), and
(3.13). As explained previously, we shall look for solutions which constitute a leftward
moving traveling wave-front and which invade what was formerly a disease-free zone;
in other words, as x → −∞ we shall assume that the variables tend to the disease-
free values in which Ai, Ji, and mi are zero while A∗

s > 0 and J∗
s > 0 are given by

(2.36), assuming that (2.23) holds. (If (2.23) does not hold, then the host population
is eradicated even in the absence of the disease.)

We shall, in fact, look for a wave-front that constitutes a transition from the
disease-free state to an endemic steady state, and so we need to be assured of the
existence of an endemic state. The endemic state cannot be found explicitly, but
fortunately we know the condition for its existence. This condition is the opposite
of (2.38). Therefore, we assume in this section that

dm < βmm∗
T

{
b(A∗

s)βj

dij − dsj

[
1 − e−dsjτ

dsj
− (1 − e−dijτ )

dij

]

+
α

dia

[
βaA

∗
s + βjb(A

∗
s)e

−dsjτ
(1 − e−(dij−dsj)τ )

dij − dsj

]}
.

(3.14)

We linearize the equations for Ai, Ji, and mi ((3.11), (3.12), and (3.13)) in the
region x → −∞, where As → A∗

s, Js → J∗
s , and the other variables approach zero.

The linearized equations are then converted to traveling wave form by looking for
solutions that are functions only of the variable z = x + ct with c ≥ 0. Then we
look for nontrivial solutions of the linearized traveling wave equations of the form
(Ai, Ji,mi) = (q1, q2, q3) exp(λz). After a fair amount of algebra we find that the
characteristic equation determining λ is

G1(λ; c) = G2(λ; c)G3(λ; c),(3.15)

where

G1(λ; c) = (Diaλ
2 − dia − cλ)(Dijλ

2 − dij − cλ)(Dmλ2 − dm − cλ)

− βmm∗
T [βjJ

∗
s (Diaλ

2 − dia − cλ) + αβaA
∗
s(Dijλ

2 − dij − cλ)],(3.16)

G2(λ; c) = α(Dijλ
2 − dij − cλ) − (Diaλ

2 − dia − cλ),(3.17)
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and

G3(λ; c) = βmm∗
T

(
βjb(A

∗
s)(e

−dsjτ − e−dijτ−λcτ+λ2Dijτ )

dij − dsj + λc− λ2Dij

)
.(3.18)

Recall that A∗
s and J∗

s are given by (2.36) and that m∗
T is given by (2.17).

An epidemiologically feasible wave-front is one in which all the variables remain
nonnegative as x → −∞ (as z → −∞ in the traveling wave variable formulation). The
decay of Ai, Ji, and mi to zero as z → −∞ must not be oscillatory. It is therefore
necessary that there should exist at least one strictly positive real root λ of the
characteristic equation (3.15) with the property that the corresponding eigenvector
(q1, q2, q3) points into the positive octant in R3. This actually happens only for c
above some minimum value cmin > 0. Define

cmin = inf{c : ∃λ ∈ (0, 1
2Dia

(c +
√
c2 + 4diaDia)] satisfying (3.15)}.(3.19)

The reason why the search for positive real roots λ of (3.15) is confined to the finite
interval in (3.19) is that the eigenvector (q1, q2, q3) corresponding to an eigenvalue
λ exceeding 1

2Dia
(c +

√
c2 + 4diaDia) has q1 and q3 of opposite sign (implying that

one of Ai or mi is negative) so that such an eigenvalue corresponds to an infeasible
solution. Note that the interval of λ in (3.19) is c dependent.

A calculation shows that, because of (3.14),

G1(0; c) −G2(0; c)G3(0; c) > 0.

If for a fixed c one plots the graph of G1(λ; c) − G2(λ; c)G3(λ; c) against λ on the
feasible domain λ ∈ [0, 1

2Dia
(c+

√
c2 + 4diaDia)], one finds that for a very small value

of c the graph is always above the horizontal axis. The effect of increasing c is that a
minimum begins to form within the feasible domain, and this minimum moves down
and touches the horizontal axis at a critical c, the value cmin defined in (3.19) above.
Figure 4 shows the critical situation for a particular set of parameter values shown
in the caption, and for the two birth functions b(·) and B(·) chosen as in section 2.4.
The value cmin can be found by numerically solving the simultaneous equations

G1(λ; c) −G2(λ; c)G3(λ; c) = 0,

d

dλ
[G1(λ; c) −G2(λ; c)G3(λ; c)] = 0,

for c and λ with c > 0 and λ ∈ (0, 1
2Dia

(c +
√
c2 + 4diaDia)].

4. Discussion. The minimum speed of spread computed in the previous section
according to the predictions of the linearized analysis was about 2.62 km/day, i.e.,
about 956 km/year. This is certainly roughly consistent with the speed at which
West Nile virus has spread across the USA. The disease first emerged in New York in
1999 and had reached the West coast five years later. We should point out, however,
that there is some uncertainty regarding the choice of parameter values, especially the
diffusivities. We have availed ourselves of what data there is concerning the diffusivity
of adult crows, but our choice of a value for the fledgling crows, which do not fly so well
and may well spend some time on the ground (where they are, of course, vulnerable
to predators such as cats) is purely our estimate. While the speed of spread does
show a dependence on the diffusivities, we noted a lack of sensitivity to the values of
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Fig. 4. Parameter values are βj = 3.15 × 10−5, βa = 1.5 × 10−5, βm = 2.925 × 10−5, αβm =
0.75×10−5, Dia = 13 km2/day [16, 21] (the diffusion rate of infected adult), Dij = 6 km2/day (the
diffusion rate of infected juvenile), Dm = 0.1 km2/day (the diffusion rate of mosquito), and other
parameters have the values shown in Table 1. For these values, the minimum speed cmin, computed
as described in the text, equals 2.623164094 km/day.

some of them (e.g., the diffusivity of mosquitoes) and a sensitivity to the values of
other parameters, particularly the contact rates.

Ideally it would be desirable to have some information on whether the minimum
speed cmin computed as described in section 3 is really the speed that solutions would
evolve to, from ecologically realistic initial data such as a localized introduction of
infectives. One must remember that in deriving the reaction-diffusion model, we
were restricted to the vicinity of the DFE because the model derivation requires an
explicit solution to a certain linear parabolic PDE that is nonautonomous except
near that equilibrium. The inability to formulate a model that is valid everywhere
in the spatial domain has made it impossible to numerically simulate the spatially
extended model (such a simulation might have confirmed that the spread rate is
indeed the minimal wave speed cmin). The mathematical theory of the speed of
spread in reaction-diffusion equations with functional terms is still far from complete,
especially for coupled systems such as those in this paper. Relating the spread rate of
the disease to the traveling wave with the minimal wave speed relies on the so-called
linear conjecture (see [25, 15]). The fact that the minimal speed coincides with the
spread rate has been theoretically verified only for dynamical systems enjoying certain
order-preserving properties (see the two recent articles [24, 17]), and counterexamples
when these properties do not hold have been reported [11]. Establishing this fact for
our system (3.9)–(3.13) is even more difficult due to the interaction of time delay and
spatial diffusion, in addition to the nonlocality of the nonlinear terms. Therefore,
it has to be emphasized that our calculation of cmin is nothing more than a formal
calculation of the minimum ecologically feasible speed according to the linearized
equations ahead of the front.

Throughout this paper simple mass action terms have been used. In some virus
infections, possibly including mosquito borne disease, one might argue for the inclusion
of a term which represents the fact that a female mosquito takes a fixed number of
blood meals per unit time (Anderson and May [1]). Such a modification involves
dividing by bird density and has recently been utilized by Lewis, Renclawowicz, and
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van den Driessche [16] and by Bowman et al. [3] in some simpler models for West
Nile virus. In the present paper such a modification can be implemented only in the
model without diffusion, which we have studied in section 2, and unfortunately not
for the reaction-diffusion model of section 3, which becomes intractable. The type of
modification we are discussing involves replacing (2.1) by

∂s

∂t
+

∂s

∂a
= −ds(a)s(t, a) −

β(a)s(t, a)mi(t)

N(t)
,(4.1)

with another similar modification to (2.2). The variable N(t) stands for the total bird
population,

N(t) = As(t) + Ai(t) + Js(t) + Ji(t),

in which the variables are defined by (2.5). Equation (2.18) would be replaced by

dmi(t)

dt
= −dmmi(t) +

βm(m∗
T −mi(t))

N(t)
(Ji(t) + αAi(t)).(4.2)

For this modified model it is possible to develop a parallel theory including equa-
tions for the total number variables analogous to (2.9), (2.10), (2.13), (2.14) and to
prove theorems concerning positivity, boundedness, and global convergence. We shall
confine ourselves in this paragraph only to a discussion of the linear stability of the
DFE in the modified model involving division by bird density. The DFE itself is still
given precisely by (2.35). Lemma 2.3, which concerns stability to perturbations in
which the disease remains absent, still holds. For the modified model a necessary and
sufficient condition for the DFE to be linearly asymptotically stable to arbitrary small
perturbations is

dm >
βmm∗

T

N∗

{
b(A∗

s)βj

N∗(dij − dsj)

[
1 − e−dsjτ

dsj
− (1 − e−dijτ )

dij

]

+
α

diaN∗

[
βaA

∗
s + βjb(A

∗
s)e

−dsjτ
(1 − e−(dij−dsj)τ )

dij − dsj

]}
,

(4.3)

which is similar to condition (2.38). Here, N∗ = A∗
s + J∗

s , where A∗
s and J∗

s are given
by (2.36).

There are a number of ways in which one could interpret conditions (2.38) and
(4.3) for the simple mass action model and the modified model, respectively. First
let us note that as far as the stability of the DFE is concerned the two models are
similar: to get from one to the other we simply divide the contact rates by the
total bird population at the equilibrium. Not surprisingly, in reality in the control
of West Nile virus a great deal of emphasis goes into mosquito control. This may
mean larval control, i.e., reducing the number of places mosquito larvae may inhabit
such as old tires, blocked gutters, bird baths, flower pots, swimming pool covers,
etc. Adult mosquito control using adulticides, which are sprayed into the air from a
sprayer truck as very tiny droplets, is also practiced, especially when larval control
measures are clearly inadequate or disease is imminent. The per capita mortality
rate for adult mosquitoes manifests itself in our model as the parameter dm. The
per capita mortality rate for mosquito larvae is dl, which does not feature directly
in (2.38) or (4.3) but features indirectly through the quantity m∗

T . (In fact, m∗
T

depends on both dl and dm.) If the birth function B(·) for mosquitoes is chosen as
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in (2.44), then m∗
T = 1

am
ln(bm/dm)− dlσ/am, and so the right-hand side of (2.38) or

(4.3) decreases linearly with dl so that sufficiently effective larval control eradicates
the disease. On the other hand, as dm increases, the left-hand side increases linearly
while the right-hand side decreases, suggesting that in percentage terms an increase
in dm might be more effective than an increase in larval mortality dl. However, adult
mosquito control is more expensive and more difficult to organize.

There are a number of other factors we have not considered in this paper at all.
It seems that in reality seasonal effects probably play an important role and should
be modeled. It is really only in the breeding season that crows, once paired, seek to
establish individual territories to raise their broods. In the nonbreeding season crow
activities tend to be centered around large communal roosts to which they return in
the evenings after searching for food during the day (some roost locations may have
been gathering points for crows for many decades). Crows also have a strong flocking
instinct, something which Fickian diffusion does not model at all. Northern birds
tend to fly south during the winter. All these considerations indicate possible areas
for further investigation.
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ANALYSIS OF THE DYNAMICS AND TOUCHDOWN IN A
MODEL OF ELECTROSTATIC MEMS∗
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Abstract. We study a reaction-diffusion equation in a bounded domain in the plane, which
is a mathematical model of an idealized electrostatically actuated microelectromechanical system
(MEMS). A relevant feature in these systems is the “pull-in” or “jump-to contact” instability, which
arises when applied voltages are increased beyond a critical value. In this situation, there is no longer
a steady state configuration of the device where mechanical members of the device remain separate.
It may present a limitation on the stable operation regime, as with a micropump, or it may be used
to create contact, as with a microvalve. The applied voltage appears in the equation as a parameter.
We prove that this parameter controls the dynamics in the sense that before a critical value the
solution evolves to a steady state configuration, while for larger values of the parameter, the “pull-
in” instability or “touchdown” appears. We estimate the touchdown time. In one dimension, we
prove that the touchdown is self-similar and determine the asymptotic rate of touchdown. The same
type of results are obtained in a disk. We also present numerical simulations in some two-dimensional
domains which allow an estimate of the critical voltage and of the touchdown time. This information
is relevant in the design of the devices.

Key words. microelectromechanical system, touchdown, quenching
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1. Introduction. Lots of micro- and nanoelectromechanical systems rely upon
electrostatic forces to make things move. Devices such as micropumps, microswitches,
etc., can be modeled as electrostatically deflected elastic membranes.

Typically, the device consists of an elastic membrane suspended above a rigid
ground plate, placed in series with a fixed voltage source and a fixed capacitor. In
the limit of small aspect ratio, that is, small gap size relative to device length, the
model can be reduced to a single scalar equation for the deflection of the membrane.
Denoting this deflection by u, we have, in dimensionless variables,

ε2utt + ut −�u = − λf(x, y, t)

(1 + u)2(1 + χ
∫
Ω

1
1+u )2

in Ω, with u = 0 on ∂Ω. Here

ε2 =
ρE

ν2
=

inertial terms

damping terms
and λ =

V 2L2ε0
2T l2

.
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For a derivation of the equation see [15].
The parameter V is the applied voltage, T the tension in the membrane, L a

characteristic length of the domain, l a characteristic width of the gap between the
membrane and the fixed electrode, and ε0 the permittivity of free space. It is useful to
think of λ as a control parameter proportional to the applied voltage. The function
f(x, y, t) may model varying dielectric properties of the membrane and an applied
alternating current. Physically f is constrained to be positive. The integral in the
equation arises when the device is placed in a circuit with a capacitor of fixed capaci-
tance. The parameter χ is the ratio of this fixed capacitance to a reference capacitance
of the device. The limit where χ = 0 corresponds to removing the fixed capacitor
from the circuit.

We shall study the viscosity dominated limit of the model above, that is, the limit
where ε → 0. Further, we can remove the nonlocal integral term by introducing a
new parameter and establishing a mapping between solutions to the nonlocal and a
local problem. See [15] for details. The local problem corresponds to setting χ = 0.
For simplicity, we take f ≡ 1. The case of devices with dielectric properties which
vary in space is treated in [9]. We also assume that the device starts from rest. So,
we shall study

ut −�u = − λ

(1 + u)2
in Ω, with u = 0 on ∂Ω, u(x, y, 0) = 0.(1)

Electrostatically deflected elastic systems exhibit an instability known as “pull-
in.” For moderate voltages, the system is in a stable operation regime: the membrane
approaches a steady state configuration and remains separate from the ground plate.
When applied voltages are increased beyond a critical value, there is no longer a
steady state configuration of the device, causing the membrane to collapse onto the
ground plate. This phenomenon is what we call “touchdown.”

The “pull-in” instability was observed in 1967 by Nathanson and coworkers in
their investigation of electrostatic actuation as a method for designing a resonant
gate transistor [12]. At around the same time, this instability was also observed by
Taylor in his work on the coalescence of liquid drops held at different electric potentials
[16].

Mathematically, the “pull-in” instability corresponds to u = −1 being achieved
in Ω in finite time, which creates a singularity in (1).

What we call “touchdown” is also known as “pinching” or “quenching” in the
mathematical literature, where it appears in the equation for the motion of a surface
with a normal velocity proportional to its mean curvature. See [2], [8]. The analysis
of parabolic equations with negative power nonlinearities began with the work of
Kawarada in 1975 [10]. Quenching has been studied for semilinear and quasi-linear
equations; see [4] and [11].

Our formulation, based on the fact that gravity acts downwards, leads to (1).
For this reason, our solution takes negative values. To relate this to the study of
quenching for positive solutions, it is enough to substitute u by −u to obtain the
parabolic equation in the standard form as it appears, for instance, in [11].

In this work, we describe the behavior of solutions in terms of the parameter
λ: There exists a critical value λ∗ such that solutions converge to a steady state for
λ ≤ λ∗, while for λ > λ∗ touchdown occurs.

We also characterize the asymptotic self-similar nature of touchdown by analyzing
the one-dimensional equation in self-similar variables. We find a continuum of steady
states, which correspond to self-similar solutions. We show that the nonconstant
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steady states grow at infinity like ey
2

, thereby obtaining the constant solution as the
only possible limiting configuration, as well as the asymptotic rate of touchdown. This
asymptotic rate was also obtained by Guo, Pan, and Ward, using different techniques.
See [9].

Finally, we present some numerical results for two-dimensional domains: ellipses
and annular regions. We obtain bounds for the critical value of λ as well as for the
touchdown time. One interesting feature of annular regions is that the touchdown set
is a circle. Also, a thin annulus sustains a very large stable operation regime.

Some of the results presented here were either announced or proved in [6]. For
the sake of completeness, we include some of the proofs from our previous work.

2. Steady state solutions. Let Ω be a convex, bounded domain in the plane
with smooth boundary. We first prove the existence of stationary solutions for small
values of λ.

Lemma 2.1. There exists λ0 > 0 such that the Dirichlet problem for

Δu =
λ

(1 + u)2
(2)

has a solution for λ ≤ λ0.
Proof. Since u ≡ 0 is an upper solution, it is enough to construct nonpositive

lower solutions. To this end, let u∗ be the solution of Δu∗ = 1 in Ω, u = 0 on ∂Ω. By
the maximum principle, u∗ < 0 in Ω.

Let m∗ := inf {u∗(x) |x ∈ Ω} and α := −1
2m∗ . Now choose λ ≤ α/4; then

Δ(αu∗) − λ

(1 + αu∗)2
≥ α− 4λ ≥ 0.(3)

Hence, u∗ is a nonpositive lower solution for λ ≤ α/4. A standard monotone iteration
scheme yields the existence of a stable stationary solution for λ ≤ λ0. This finishes
the proof.

In the case of a disk we get explicit bounds for λ0.
Corollary 2.1. If Ω is a disk of radius R, there exist stationary solutions for

λ ≤ R−2.
Proof. It follows from the fact that u∗(x) = 1

4 (
∑2

i=1 x
2
i − R2) and that we can

choose α = R−2.
Our next result gives a description of the structure of stationary solutions in terms

of the parameter λ.
Theorem 2.1. There exists λ∗ > 0 such that there is at least one stationary

solution for λ < λ∗ and none for λ > λ∗.
Proof. This is a consequence of the fact that if u1 is a stationary solution for

λ = λ1, then, for λ < λ1,

Δu1 =
λ1

(1 + u1)2
>

λ

(1 + u1)2
(4)

so that u1 is a lower solution for all λ < λ1.
Now let E = {λ > 0 for which there is a stationary solution}. By the paragraph

above, E is a nonempty interval. Let λ∗ := supE.
Our next task is to prove that λ∗ is finite.
To this end, let μ0 be the first eigenvalue of the Dirichlet Laplacian. We claim

that for λ > − 4
27μ0, the steady state problem has no solution.
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This result is slightly more precise than Theorem 4.4 of [15]. The proof is similar:
let u0 be a positive eigenfunction corresponding to μ0; then∫

Ω

u0

[
Δu− λ

(1 + u)2

]
dx = μ0

∫
Ω

u0

(1 + u)2

[
u(1 + u)2 − λ

μ0

]
dx.(5)

If λ > − 4
27μ0, then the right-hand side in the equation above is negative. This

shows that there are no stationary solutions for such values of λ. The theorem is
proved.

In the one-dimensional case, with Ω = (−1/2, 1/2), we give a complete description
of the structure of solutions of

uxx =
λ

(1 + u)2
in Ω(6)

with u(±1/2) = 0. Indeed, with the scaling ξ =
√
λx, the previous equation becomes

u′′ =
1

(1 + u)2
in (−

√
λ/2,

√
λ/2)(7)

and u(±
√
λ/2) = 0.

The following result is a special case of Theorem 2.1 in [11]. However, our method
of proof allows the explicit determination of the critical value of the parameter λ.

Theorem 2.2. There exists a constant C∗ such that the previous equation has
zero, one, or two solutions according as

√
λ/2 > C∗,

√
λ/2 = C∗, or

√
λ/2 < C∗.

Moreover, the exact value is C∗ = .591611, and this determines the critical value
λ∗ = 1.400016469.

Proof. In the phase plane of u, v = u′, the integral curves satisfy

v2

2
+

1

1 + u
= E0,

where E0 is the initial energy.
An integral curve starting at (u, 0) with −1 < u < 0 reaches the v axis in finite

time at (0, v). It follows that

E0 =
v2

2
+ 1.

The equations for the integral curves take the form

v = ±
√
v2 +

2u

1 + u
,(8)

which is defined for u ≥ − v2

2+v2 = u. The travel time from (u, 0) to (0, v) is given by
the map T defined by

T (v2) =

∫ 0

u

du√
v2 + 2u

1+u

.(9)

Note that T → 0 as v → 0 and +∞. We shall show that T has a unique maximum,
from which the structure of stationary solutions is obtained.
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To analyze the travel time map we let α = v2 and β = α
2+α ; then

T (α) =
1√

2 + α

∫ 0

−β

√
1 + u√
u + β

du =

√
α

2 + α

∫ 0

−π/2

√
1 + β sin(θ)

√
1 − sin(θ) dθ

=

∫ 0

−π/2

F (α, θ)dθ.

The critical value C∗ is the maximum value of the travel time. The point where
the maximum is achieved is computed explicitly and used in the integral representation
of the travel time to determine C∗. This critical value is used to determine the critical
parameter λ∗.

One can prove that the function T (α) has a unique maximum, as its second
derivative is negative at critical points.

The proof is finished.
The shape of the stationary solutions can be obtained from the trajectories in the

phase plane. For instance, for small λ, there is one solution of small amplitude and
a second solution with a peak at the center which gets close to −1. Both are even
functions.

For a disk shaped domain we also have a complete picture of solutions. Details
appear in [14]. Note that by Gidas, Ni, and Nirenberg, all stationary solutions are
radially symmetric.

3. Dynamics: The stable operation and touchdown regimes. In this
section we characterize the stable operation and touchdown regimes in terms of the
parameter λ. We begin by establishing some general properties of solutions of the
evolution equation (1).

Theorem 3.1. Assume that u(x, y, t;λ) > −1 for λ > 0, and for all (x, y) ∈ Ω
and t ∈ [0, T ]. Then we have the following:

(i) u(x, y, t;λ) is decreasing in t at each (x, y) ∈ Ω.
(ii) u(x, y, t;λ) is a decreasing function of λ.
(iii) When Ω = (−1/2, 1/2), u(x, t;λ) is an even function of x, it achieves its

minimum at x = 0, and it is increasing for x ∈ [0, 1/2].
Proof.
(i) ut is a solution of a linear parabolic equation with zero boundary values and

initial value equal to −λ. By the maximum principle, ut ≤ 0, and the strict inequality
holds in the interior of the domain.

(ii) It is an easy consequence of the maximum principle.
(iii) The symmetry of the solution is a consequence of the symmetry of the domain,

of the initial, condition, and of the heat operator. It follows that ux(x, t) is an odd
function of x; therefore ux(0, t) = 0. Moreover, ux is a solution of a parabolic equation
for x ∈ [0, 1/2], and t ∈ [0, T ], with ux(0, t) = 0 and, by the maximum principle,
ux(1/2, t) > 0. It follows that ux cannot achieve a negative minimum, and hence
ux ≥ 0. By the strong maximum principle, ux cannot achieve its minimum in the
region x ∈ (0, 1/2), and t ∈ (0, T ]. Therefore, ux(x, t) > 0 for x ∈ (0, 1/2), and
t ∈ (0, T ]. It follows that for a fixed t ∈ (0, T ], u(x, t) achieves its minimum at x = 0
only.

The proof of the theorem is finished.
Amplification. The plots of the profile u as a function of x suggest that it is

a convex function. We have not been able to prove this, yet there is some sort of
convexity in the approximations: if we solve (1) by iterations, starting with u0 ≡ 0,
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then the next approximation u1 is a solution of the corresponding linear heat equation
with forcing term ≡ −λ, and hence

u1(x, t) = −λ

∫ t

0

∫ 1/2

−1/2

K(x, y, τ)dy dτ,

where K(x, y, t) is the Dirichlet Green’s function. It follows that

∂2u1

∂x2
=

∂u1

∂t
+ λ = λ

[
1 −

∫ 1/2

−1/2

K(x, y, τ)

]
dy

and the last expression is positive by the maximum principle.

3.1. The stable operation regime. For λ < λ∗, the solution stabilizes to a
steady state.

Theorem 3.2. For λ < λ∗, the solution u(x, y, t;λ) converges to a stationary
solution as t → ∞.

Proof. The solution u(x, y, t;λ) is bounded below by any stationary solution.
Hence, u(x, y, t;λ) is defined for all t > 0 and, by the previous theorem, is decreasing
in t at each (x, y) ∈ Ω. Therefore, u(x, y, t;λ) converges as t → ∞.

The energy ∫
Ω

[
1

2
|∇u|2 − λ

1 + u

]
dx dy(10)

decreases and is bounded below along such solutions. Therefore, the only points in
the ω-limit set of such trajectories are steady states. The proof is finished.

3.2. The touchdown regime. Our first result is an estimate on the values of
λ for which touchdown occurs.

Theorem 3.3. For λ > − 4
27μ0, u(x, y, t;λ) = −1 in finite time.

Proof. Let μ0 be the smallest eigenvalue of the Dirichlet Laplace operator on Ω
and let u0 be the corresponding eigenfunction. We note that u0 may be chosen strictly
positive in Ω and normalized so that ∫

Ω

u0 = 1.(11)

Now we derive an energy for our system. Multiply (1) by u0 and integrate over
the domain Ω. This yields

d

dt

∫
Ω

uu0 − μ0

∫
Ω

uu0 = −λ

∫
Ω

u0

(1 + u)2
,(12)

where we have used Green’s theorem to integrate by parts. We define

E(t) =

∫
Ω

uu0(13)

and rewrite as

dE

dt
− μ0E = −λ

∫
Ω

u0

(1 + u)2
.(14)
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Then, applying Jensen’s inequality and the initial condition on our problem, we arrive
at

dE

dt
− μ0E ≤ −λ

(1 + E)2
,(15)

E(0) = 0.(16)

Now notice

E(t) =

∫
Ω

uu0 ≥ inf u

∫
Ω

u0 = inf u.(17)

Next, define φ to be the solution of

dφ

dt
= μ0φ− λ

(1 + φ)2
,(18)

φ(0) = 0.(19)

By standard comparison principles we have

E(t) ≤ φ(t)(20)

for all time. Hence

inf u ≤ φ(t)(21)

and the “worst” behavior of u is captured by φ(t). In the ODE for φ we can separate
variables and integrate to time T :

T = −
∫ φ(T )

0

dφ

−μ0φ + λ
(1+φ)2

.(22)

If the integral ∫ 0

−1

dφ

−μ0φ + λ
(1+φ)2

(23)

is finite, we have existence for φ only for a finite interval and touchdown must
occur in finite time. The integral remains finite if the denominator is never zero.
But, we can guarantee that the integral remains finite if λ > − 4

27μ0. The proof is
finished.

As in the case of stationary solutions, the set of parameter values for which
touchdown occurs is an interval.

Theorem 3.4. There exists λ∗ > 0 such that touchdown occurs if λ > λ∗.
Moreover, touchdown does not occur for λ < λ∗.

Proof. It is a consequence of the maximum principle: solutions of the parabolic
equation (1) are strictly decreasing functions of λ in Ω. Therefore B := {λ|touchdown
occurs} is an interval, it is nonempty by the previous theorem, and λ∗ := infimumB
has the required property. The proof is finished.
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Note that λ∗ ≤ λ∗. Fila and Kawohl have proved in [5] that quenching in infinite
time is not possible for convex domains in the plane. It follows that there is no gap
for the type of domains we are considering, that is, λ∗ = λ∗. Another consequence of
the above mentioned result is the fact that u(x, y, t, λ∗) is uniformly bounded away
from −1. The argument in the proof of Theorem 3.2 guarantees that u(x, y, t, λ∗)
converges to a stationary solution as t → ∞. Thus, we have proved the following.

Theorem 3.5. There exists a critical value λ∗ such that the solution u(x, y, t, λ)
of the parabolic equation (1) converges as t → ∞ to a stationary solution if λ ≤ λ∗.
For λ > λ∗, touchdown in finite time occurs.

If we define T ∗ as the touchdown time, we can bound T ∗ from above. Assume λ
is such that touchdown occurs; then

T ∗ ≤
∫ 0

−1

ds

−μ0s + λ
(1+s)2

.(24)

We can also bound T ∗ from below. Suppose v(t) solves

vt = − λ

(1 + v)2
(25)

with

v(0) = 0;(26)

then v is a lower solution for our problem. But, v touches down at time t = 1
3λ , and

hence

1

3λ
≤ T ∗ ≤

∫ 0

−1

ds

−μ0s + λ
(1+s)2

.(27)

3.3. Self-similarity and asymptotics of touchdown. For convenience, we
restrict ourselves to a one-dimensional domain and consider the new dependent vari-
able w = 1 + u, which is a solution of

wt = wxx − λ

w2
.(28)

Following Giga and Kohn [7], we analyze the structure of solutions near touch-
down by means of self-similar variables y = x√

T−t
, τ = ln

(
1

T−t

)
, and

v(y, τ) = (T − t)−1/3w(x, t) = eτ/3w(e−τ/2 y;T − e−τ );(29)

then v(y, τ) is a solution of

vτ = vyy −
y

2
vy +

1

3
v − λ

v2
(30)

in the region |y| ≤ 1
2e

τ/2, τ ≥ τ0 := ln
(

1
T

)
, with boundary conditions v

(
± 1

2e
τ/2, τ

)
=

eτ/3. The initial condition for v is v(y, τ0) = T−1/3.
It follows that v(y, τ) is an even function of y for each τ ≥ τ0.
Generically, v(y, τ) will converge to a stationary solution. However, there is a

continuum of steady states.
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The behavior as y → ∞ of stationary solutions as well as the self-similar nature of
touchdown for (28) has been described by Fila and Hulshof [3], under the assumption
of the existence of nonconstant global solutions. We prove the existence of a continuum
of even stationary global solutions.

We study the problem of existence of even stationary solutions, as our solution
of (30) is an even function of y.

Thus, we consider solutions of

v′′ − y

2
v′ +

1

3
v − λ

v2
= 0(31)

in y ≥ 0 with v(0) = α > 0, v′(0) = 0.
Theorem 3.6. For each α > 0, the solution of the initial value problem above is

defined for all y ∈ [0,∞).
Proof. Assume that v(y) is a solution defined for y ∈ [0, y0] and satisfying v(y) > 0

in that interval.
Consider the energy

E(y) :=
v′2(y)

2
+

v2(y)

6
+

λ

v(y)
;(32)

then dE
dy = y

2v
′2(y) ≤ yE(y). Therefore E(y) ≤ E(0)ey

2/2 with E(0) = α2

6 + λ
α . It

follows that for y ∈ [0, y0],

λ

E(0)
e−y2/2 ≤ v(y) ≤

√
6E(0)ey

2/4.(33)

This estimate proves the theorem.
The next step is to get bounds on our solution v(y, τ).
Lemma 3.1. There exist positive constants cj, for j = 1, 2, 3, such that

c3 ≤ v(y, τ) ≤ c1 + c2|y|(34)

for all y and τ in the domain of (30).
Proof. Choose c3 < T−1/3; then c3 is a lower solution for the parabolic initial-

boundary problem defined by (30) and our solution.
The upper bound for v is obtained as follows: choose c1 in such a way that

c31 < 3λ; then

f(y) :=
c2
6
y − c1

3
+

λ

(c1 + c2y)2

satisfies f(0) > 0, f ′(0) < 0, it is convex, and it achieves a positive minimum, provided
c2 > 4λ. Now it is easy to verify that c1 + c2y satisfies the appropriate differential
inequality for (30) in the part of the domain corresponding to y > 0. The inequality
for the boundary values is achieved as long as c1 > 0 and c2 > e−τ0/6. For the
initial values it is enough to require that c1 ≥ T−1/3, which is consistent with the
estimate (27). It now follows that the upper bound holds in the part of the domain
corresponding to y > 0. The upper bound in the entire domain is obtained from the
symmetry of the functions involved in the comparison.

The results of Fila and Hulshof guarantee that stationary solutions are increasing
and convex for α < (3λ)1/3. If the inequality is reversed, stationary solutions have
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Fig. 1. One dimension, λ = 1.4, t = 2, and λ = 1.45, t = 1.6.

a single positive minimum in (0,∞). After that positive minimum, the solutions are
increasing and convex.

By using variations of constants in (31), it is easy to see that a nonconstant

stationary solution has a derivative that grows like ey
2/4 as y → ∞. This shows

that our solution v(y, τ) converges to the constant stationary solution (3λ)1/3, the
convergence being uniform in bounded intervals of y.

In summary, we have the following.
Theorem 3.7. Let u(x, t) be the solution of (5), (6), and (7); then

u(x, t) = −1 + [3λ(T − t)]1/3(1 + o(1)) as t → T.(35)

The asymptotics is valid in the parabolic regions defined by |y| ≤ C.
Amplification. The asymptotic rate of touchdown obtained in Theorem 3.7 is valid

if Ω is the unit disk. The same method of proof works since the only difference with
respect to (31) is the extra term coming from the radial Laplacian. Thus, Theorem
3.6, Lemma 3.1, and Theorem 3.7 remain valid in a disk.

4. Numerics. We extensively use computing simulations to numerically solve
(1) in the following domains: a strip shaped domain, an ellipse, and annular domains.
In the one-dimensional case, we also show the validity of our analytical results by
comparing numerical and analytical results in several regimes for the value of the
parameter λ. The numerical simulation for the solutions of the initial boundary value
problem is obtained by means of the Crank–Nicolson scheme, which is implicit and
second order in space and time.

To present our numerical results in an accessible manner, we fixed the values
of the parameters γ = 1, q = 2 and ν = 0.01 and ρ = 10. Then we analyzed
different regimes governed by the relative size of the dimensionless parameters λ. In
particular we studied the regimes determined by λ < λ∗ and λ > λ∗, where the value
of λ∗ = 1.400016469 was obtained for a strip shaped domain in section 2.

4.1. One dimension, λ < λ∗ regime. Our numerical simulations confirm
what our analytical results have shown above. As a solution of (1), we observe the
generation of a smooth function on time and space with positive concavity which
approximates the steady state solution as time goes to infinity. This is illustrated in
Figure 1, where the zero initial condition evolves in the way just described. The value
of λ for this particular example is 1.4. Note that we are very close to the critical
value. The calculation ran up to time T = 2.
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4.2. One dimension, λ > λ∗ regime. Here we used λ = 1.45, and the simula-
tion went up to time T = 1.6. In Figure 1 we see clearly that at this time the solution
is approaching the value −1 at x = 0. The solution u(x, t) decreases in time up to
what we have called touchdown time T∗ when the solution ceases to be smooth. Due
to the positive concavity of u, the local minimum also occurs at x = 0 where inf(u) is
found. When the function reaches the value of −1 first at x = 0 the solution ceases to
be continuously smooth and becomes a continuous function with a peak developed at
this point. This occurs at a finite time that we called the “the touchdown time T∗.”
For t ≥ T∗ we observe a smooth spatial profile, suggesting the existence of a weak
solution after touchdown. See Figure 2, where the solution is plotted at time t = 1.611.

4.3. Two-dimensional geometries. We have also performed numerical cal-
culation of the solutions for annular regions and ellipses. In the case of an ellipse,
the solutions touch down at the center of the ellipse. In this case, the ellipse was
transformed into a circle; then the most basic scheme for the heat equation was used,
with first-order forward differences for the time derivative and second-order, centered
differences for the space derivatives.

The graphs in Figure 3 correspond to the slice y = 0 and show the behavior of
solutions for the ellipse with a = 1, b = 1/2. The values of λ are 1.3 and 1.8.

In the case of an annular region with outer radius 1, the solutions touch down at
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Fig. 2. One dimension, λ = 1.45, t = 1.611.
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Fig. 5. Annulus, r = .8, R = 1, λ = 35, t = .05, and λ = 37, t = .048.

a circle, whose radius is an increasing function of the inner radius. In this case, we
use the Crank-Nicolson method, as the problem is really one-dimensional.

It is interesting to observe the variation of the critical value λ∗: if the inner radius
is .1, then 1.4 < λ∗ < 1.8. This is illustrated in Figure 4.

If the inner radius is .8, then 35 < λ∗ < 37, which resembles Corollary 2.1: thin
annular regions have a very large critical value. See Figure 5.
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BOUNDARY-ROUGHNESS EFFECTS IN NEMATIC LIQUID
CRYSTALS∗

PAOLO BISCARI† AND STEFANO TURZI†

Abstract. We study the equilibrium configuration of a nematic liquid crystal bounded by a
rough surface. The wrinkling of the surface induces a partial melting in the degree of orientation.
This softened region penetrates the bulk up to a length scale which turns out to coincide with the
characteristic wavelength of the corrugation. Within the boundary layer where the nematic degree
of orientation decreases, the tilt angle steepens and gives rise to a nontrivial structure, which may
be interpreted in terms of an effective weak anchoring potential. We determine how the effective
surface extrapolation length is related to the microscopic anchoring parameters. We also analyze the
crucial role played by the boundary conditions assumed on the degree of orientation. Quite different
features emerge depending on whether they are Neumann- or Dirichlet-like. These features may be
useful to ascertain experimentally how the degree of orientation interacts with an external boundary.

Key words. nematic liquid crystals, surface roughness, surface melting, weak anchoring

AMS subject classifications. 76A15, 74A50, 82D30
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Introduction. Nematic liquid crystals are fluid aggregates of elongated
molecules. When the nematic rods interact with an external surface, the elastic
strain energy induces them to align parallel to the unit normal, even if the surface
is not perfectly flat [1]. Recent experimental observations confirm that the surface
alignment of the nematic director is completely determined by the roughness-induced
surface anisotropy [2]. Further analytical calculations, performed within the classical
Frank model with unequal elastic constants, have detected the bulk effects induced
by a periodically molded external boundary [3, 4].

A crucial effect, still related to surface roughness, escapes the framework of Frank
theory, where the only order parameter is the director. Indeed, it is physically intuitive
that nematic molecules will disorder if we force them to follow a rapidly varying
boundary condition. This surface melting was first experimentally detected in [5, 6].
Recent experimental observations have also measured a boundary-layer structure in
the degree of orientation [7]. The surface melting has been confirmed by approximated
analytical solutions [8], numerical calculations [9, 10], and molecular Monte Carlo
simulations [11].

The combined effect of a rapidly varying director anchoring and surface melting
gives rise to an effective weak-anchoring effect that was first observed in [12]. The
problem of relating the effective anchoring extrapolation length to the microscopic
roughness parameters has been studied in several theoretical papers, all framed within
the Frank theory [13, 14, 15, 16]. This observation is of basic significance, since weak
anchoring potentials have proven to influence deeply all nematic phenomena, begin-
ning with Freedericksz transitions [17, 18, 19]. Indeed, several theoretical studies have
already determined the influence on anchoring energies of the presence of permanent
surface dipoles [20] or diluted surface potentials [21, 22].
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In this paper we analyze in analytical detail the boundary-layer structure induced
by a rough surface which bounds a nematic liquid crystal. We frame within the
Landau–de Gennes order-tensor theory, to be able to detect the effects on both the
director and the degree of orientation. Our results confirm the surface melting already
obtained in [8] but allow us to detect new phenomena. First, the nematic director
steepens close to the boundary, so giving rise to an effective weak anchoring potential,
which turns out to be deeply related to the surface-melting effect, and thus can be
correctly handled only within the order-tensor theory. Furthermore, the boundary
layers display a strong dependence on the type of boundary conditions imposed on
the degree of orientation. Indeed, the orders of magnitude of all the expected effects
depend on whether the boundary conditions are Neumann- or Dirichlet-like. We
discuss how these effects may help in ascertaining in experiments how the mesoscopic
parameter, which measures the degree of order, interacts with an external surface.

The paper is organized as follows. In section 1 we present the model, we set
the geometry of a roughly bounded sample, and derive the Euler–Lagrange partial
differential equations that determine the equilibrium configurations. In section 2 we
perform the perturbative two-scale analysis that provides all the analytical details of
the boundary-layer structure. In section 3 we solve an effective problem, in which the
rough surface is replaced by a weak-anchoring potential. As a result, we show that a
weak-anchoring potential may be given a microscopic interpretation, and we relate the
surface extrapolation length to the microscopic roughness parameters. In section 4 we
draw our conclusions and discuss the validity of our geometric approximations. Two
appendices collect the technical details of some lengthy calculations.

1. Equilibrium configurations. The degree of order decrease has been rec-
ognized by many authors as a crucial effect of surface roughness [8, 10]. We thus
describe nematic configurations in the framework of the Landau–de Gennes Q-tensor
theory [23]. The order tensor is defined as the trace-free part of the second moment
of the probability distribution of molecular orientations:

Q(r) :=

∫
S2

(m ⊗ m) fr(m) da− 1

3
I ,(1.1)

where I denotes the identity tensor. Q is a second-order traceless symmetric tensor,
with spQ ⊂

[
−1

3 ,
2
3

]
[18].

In order to keep computations simple, we adopt the one-constant approximation
for the elastic part of the free-energy functional

fel[Q] =
1

2
K |∇Q|2 ,(1.2)

where K is an average elastic constant. We stress, however, that it is straightforward
to generalize all what follows to take into account unequal material elastic constants.

The free-energy functional includes the Landau–de Gennes thermodynamic po-
tential as well:

fLdG(Q) = A trQ2 −B trQ3 + C trQ4 .(1.3)

The material parameter A depends on the temperature, and in particular it becomes
negative deep in the nematic phase. By contrast, B,C can be assumed to be positive
and temperature-independent. The potential (1.3) strongly favors uniaxial phases,
in which at least two of the three eigenvalues of Q coincide. In fact, Q is expected
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to abandon uniaxiality mainly close to director singularities [24, 25, 26]. We will not
deal with any defect structure. Thus, though the uniaxiality constraint is not essential
for our purposes, we follow the attitude of avoiding unnecessary complications and
restrict our attention to uniaxial states

Q(r) = s(r)

(
n(r) ⊗ n(r) − 1

3
I

)
.(1.4)

We stress that we are not claiming that biaxiality effects are absent close to an ex-
ternal surface, since indeed the converse holds [27, 28, 29]. However, our results show
that, even in the absence of biaxiality, a surface melting exists and an effective weak
anchoring arises. A detailed treatment of the complete order-tensor theory would
yield more precise quantitative estimates of the effects we will determine anyhow.

The scalar s ∈
[
− 1

2 , 1
]

and the unit vector n in (1.4) are, respectively, the degree
of orientation and the director. With the aid of (1.4), the potentials (1.2), (1.3) can
be written as

fel[s,n] = K
(
s2|∇n|2 + 1

3 |∇s|2
)

and fLdG(s) = 2
3As2 − 2

9B s3 + 2
9C s4 .(1.5)

When A ≤ B2/(12C), the absolute minimum of the function fLdG(s) occurs at the
preferred degree of orientation

spr :=
3B +

√
9B2 − 96AC

8C
> 0 .(1.6)

In order to gain physical interpretation of the results, we also introduce the nematic
coherence length ξ and the dimensionless (positive) parameter ω, defined as

ξ2 :=
9K

C
and ω2 :=

6

C
(sprB − 4A) .(1.7)

The nematic coherence length compares the strength of the elastic and thermodynamic
contributions to the free-energy functional. It characterizes the size of the domains
where the degree of orientation may abandon its preferred value spr. The number ω
depends on the depth of the potential well associated with spr. Indeed, it is defined
in such a way that f ′′

LdG(spr) = Kω2/ξ2.
By using (1.6), (1.7) we write the bulk free-energy density fb := fel + fLdG as

fb[s,n]

K
= s2|∇n|2 +

1

3
|∇s|2 +

1

ξ2

(
s4 − 4

3
s3

(
2spr −

ω2

spr

)
+ 2s2(s2

pr − ω2)

)
.(1.8)

1.1. Modeling a rough surface. We aim at analyzing the effects that a rough
boundary induces in a nematic liquid crystal. Once again, we try to keep our anal-
ysis as simple as possible, while still catching the essential features. We thus follow,
e.g., [13] in modeling roughness by imposing a sinusoidally perturbed homeotropic an-
choring condition on a flat surface (see Figure 1.1). The amplitude and the wavelength
characterizing the perturbation will be the crucial parameters in our results.

There are two nontrivial simplifications in our geometric setting. First, we are
assuming that the boundary is perfectly sinusoidal, while a physical surface will clearly
exhibit a whole roughness spectrum. Second, we are replacing an undulating boundary
by an undulating boundary condition on a flat surface. We postpone until the final
section a more detailed discussion on the validity of these simplifying assumptions. We
anticipate, however, that none of them introduces qualitative errors. More precisely,
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z

xz = 0

η

Δ
B

Fig. 1.1. Geometric modeling of a rough surface. The physical surface oscillates with a charac-
teristic wavelength η. The homeotropic anchoring at the oscillating boundary induces an oscillation
of amplitude Δ in the boundary director. The bulk volume B is the grey region. Besides the mi-
croscopic roughness wavelength η, the two-scale analysis performed below is governed as well by the
microscopic nematic coherence length ξ, introduced in (1.7).

the latter amounts to performing an expansion in the roughness amplitude and keeping
the leading order in the expansion. As for the treatment of the whole roughness
spectrum, it turns out that at the same order of approximation one is allowed to treat
a single wavelength at a time and eventually add up all the contributions.

We focus attention on a thin boundary layer, attached to the external surface.
Consequently, we disregard the detailed structure of the bulk equilibrium configura-
tion, which will enter our results only as asymptotic outer solution for the surface
boundary layer. We introduce a Cartesian frame of reference {ex, ey, ez} and assume
that the nematic spreads in the whole half-space B = {z ≥ 0}. We further simplify the
geometry by assuming that n(r) = sin θ(r) ex + cos θ(r) ez and that the asymptotic
bulk configuration depends only on z:

θ(r) ≈ θb(z) as z → +∞ .(1.9)

A crucial role in the developments below is played by m := θ′b(0), the derivative of
the asymptotic solution at z = 0, which has the physical dimensions of an inverse
length. It represents the effect of any tilted bulk field that competes with the surface
anchoring and may well be an electric or magnetic coherence length. Throughout our
calculations we will assume that m−1 is much greater than both the nematic coherence
length and the roughness wavelength. In the presence of an external field so strong
that m−1 becomes of the order of, or even smaller than, the microscopic lengths
above, the following asymptotic expansions fail. In particular, in this extreme regime
the surface roughness effects may invade the whole bulk and cannot be replaced by
an effective weak-anchoring potential.

In the presence of strong homeotropic anchoring on a flat surface, the boundary
condition to be imposed on the director would be θ(flat)(x, y, 0) = 0. On the contrary,
we will require

θ(x, y, 0) = Δ cos
x

η
.(1.10)

The boundary condition (1.10) mimics the rugosity of the external surface by
introducing two new parameters: the (dimensionless) roughness amplitude Δ and the
roughness wavelength η (see Figure 1.1). We remark that the oscillation rate increases
as η → 0+, while all roughness effects are expected to vanish in the limit Δ → 0+.
The requirements (1.9), (1.10) imply that the free-energy minimizer will not exhibit
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any dependence on the transverse y-coordinate, so that we will henceforth restrict our
attention to the dependence on the coordinates (x, z).

It is more complex to ascertain the correct type of boundary conditions which are
to be imposed on the degree of orientation s. From the mathematical point of view, it
would be natural to imitate the (Dirichlet) strong anchoring imposed on the director
and thus set s(x, y, 0) to be equal to some fixed boundary value s̃. Nevertheless, while
it is well established that we can induce an easy axis for the director on an external
boundary, it is questionable whether we may fix the value of a mesoscopic parameter,
which measures the degree of order in a distribution. From the physical point of
view, stress-free (Neumann) boundary conditions on the degree of orientation deserve
attention as well. In this latter case, we simply leave to the thermodynamic potential
(1.3) the assignment of inducing the preferred value spr in the bulk (z → ∞), while we
perform no boundary action on the degree of orientation. To be safe, both possibilities
(Dirichlet and Neumann) will be analyzed in section 2.

1.2. Euler–Lagrange equations. Once we consider that |∇n|2 = |∇θ|2, it is
easy to derive the Euler–Lagrange partial differential equations associated with the
functional (1.8). They read

s2Δθ + 2 s∇s · ∇θ = 0 and Δs− 3 s |∇θ|2 − 3
σ(s)

ξ2
= 0 ,(1.11)

where

σ(s) := s(s− spr)

(
s− spr +

ω2

spr

)
.(1.12)

Since the boundary conditions (1.10) are x-periodic, with a period of 2πη, we look for
solutions of (1.11) in C2

2πη (the space of C2-functions, 2πη-periodic in the x-direction).
To complete the differential system (1.10), in section 2.1 we will require⎧⎪⎨

⎪⎩
θ(x, 0) = Δ cos

x

η
∂s

∂z
(x, 0) = 0

and

{
θ(x, z) ≈ θb(z)

s(x, z) ≈ spr

as z → ∞ ,(1.13)

while in section 2.2 we will choose⎧⎨
⎩θ(x, 0) = Δ cos

x

η
s(x, 0) = s̃

and

{
θ(x, z) ≈ θb(z)

s(x, z) ≈ spr

as z → ∞ .(1.14)

2. Two-scale analysis. Before proceeding with the perturbation analysis of
the differential equations, we state them in dimensionless form. It will turn out that
the correct scaling is obtained by measuring lengths in η-units, so that we introduce
the new dimensionless coordinates x̄ = x/η, z̄ = z/η and define the dimensionless
parameter ε = ξ/η. Equations (1.11) thus become

s2Δθ + 2s∇s · ∇θ = 0 and ε2Δs− 3ε2s |∇θ|2 − 3σ(s) = 0 ,(2.1)

where both the gradient and the Laplacian are now to be intended with respect to
the scaled variables. The nematic coherence length is usually much smaller than
all other characteristic lengths. Consequently, we will look for uniformly asymptotic
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solutions to (2.1), by treating ε as a small parameter. In this limit, (2.1)2 is singular,
so that a regular asymptotic expansion would not provide a uniform approximation
of the solution. Indeed, the small parameter ε multiplies the highest derivative, so
that we may expect the solution to have a steep behavior in a layer of thickness
δ (to be determined), close to the boundary z = 0. We refer the reader to the
books [30, 31, 32, 33] for the details of the singular perturbation theory we will apply
henceforth and, in particular, for the technique of the two-scale method which directly
yields a uniform approximation of the solution.

A standard dominant balance argument (that requires us to introduce a stretched
variable Z = z̄/δ) allows us to recognize that the boundary layer thickness is δ = ε.
We then introduce the fast variable Z = z̄/ε. The two-scale chain rule requires us to
replace ∂z̄ by

(
∂z̄ + ε−1∂Z

)
, and equations (2.1) take the form (when s �= 0)

s
(
ε2θ,x̄x̄ + ε2θ,z̄z̄ + 2εθ,z̄Z + θ,ZZ

)
+ 2ε2s,x̄θ,x̄ + 2(εs,z̄ + s,Z)(εθ,z̄ + θ,Z) = 0 ,

(2.2)

ε2s,x̄x̄ + ε2s,z̄z̄ + 2εs,z̄Z + s,ZZ − 3s
[
ε2(θ,x̄)2 + (εθ,z̄ + θ,Z)2

]
− 3σ(s) = 0 ,(2.3)

where a comma denotes differentiation with respect to the indicated variable. In
agreement with the two-scale method, θ and s are now to be intended as θ(x̄, z̄, Z)
and s(x̄, z̄, Z). In other words, θ and s are functions of x̄, z̄, and Z, which are to be
regarded as independent variables. It will be only at the very end of our calculations
that we will recast the connection between z̄ and Z: Z = z̄/ε. We seek solutions
which may be given the formal expansions

θ(x̄, z̄, Z) = θ0(x̄, z̄, Z) + εθ1(x̄, z̄, Z) + ε2θ2(x̄, z̄, Z) + O(ε3) ,(2.4)

s(x̄, z̄, Z) = s0(x̄, z̄, Z) + εs1(x̄, z̄, Z) + ε2s2(x̄, z̄, Z) + O(ε3) .(2.5)

If we insert (2.4)–(2.5) into (2.2)–(2.3), we obtain the following differential equations
to O (1), O (ε), and O

(
ε2
)
:{

1
s0

(
s2
0θ0,Z

)
,Z

= 0 ,

s0,ZZ − 3s0(θ0,Z)2 − 3σ(s0) = 0 ,
(2.6)

{
1
s0

(
s2
0θ1,Z

)
,Z

+ 1
s1

(
s2
1θ0,Z

)
,Z

= −2 (s0θ0,Z),z̄ − 2s0,Zθ0,z̄ ,

s1,ZZ − 6s0θ0,Zθ1,Z − 3s1

(
σ′(s0) + (θ0,Z)2

)
= 6s0θ0,Zθ0,z̄ − 2s0,z̄Z ,

(2.7)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
s0

(s2
0θ2,Z),Z + 1

s2
(s2

2θ0,Z),Z = − 1
s1

(s2
1θ1,Z),Z − 1

s0
(s2

0θ0,z̄),z̄ − 1
s0

(s2
0θ0,x̄),x̄

− 2 (s0θ1,Z),z̄ − 2 (s1θ0,Z),z̄ − 2s1,Zθ0,z̄ − 2s0,Zθ1,z̄ ,

s2,ZZ − 3s2

[
σ′(s0) + (θ0,Z)2

]
− 6s0θ0,Zθ2,Z = 3

2s
2
1σ

′′(s0)

+ 3s0

[
(θ0,z̄ + θ1,Z)

2
+ (θ0,x)2

]
+ 6θ0,Z (s1θ1,Z + s1θ0,z̄ + s0θ1,z̄) − 2s1,z̄Z − s0,z̄z̄ − s0,xx .

(2.8)

Analogous equations can be easily derived at any desired order. For any n ≥ 1, the
differential system obtained at O (εn) is linear in the unknowns θn, sn and may be
solved analytically. By virtue of the multiscale method, we find the correct dependence
on z̄, Z by requiring that all sn, θn are uniformly bounded as ε → 0+ for expanding
intervals of the type 0 ≤ Z ≤ Z∗/ε, for a suitable positive constant Z∗. In most
practical cases this requirement is equivalent to asking for the removal of secular
terms (i.e., terms that diverge as Z → +∞).



BOUNDARY-ROUGHNESS EFFECTS IN NEMATICS 453

2.1. Free surface degree of orientation. In terms of the scaled variables, the
boundary conditions (1.13) require{

θ(x̄, 0) = Δ cos x̄

s,z̄(x, 0) = 0
and

{
θ(x̄, z̄) ≈ θb(ηz̄)

s(x̄, z̄) ≈ spr

when z̄  η .(2.9)

The leading solutions in expansions (2.4), (2.5) are

s0(x, z) = spr and θ0(x, z) = m z + Δe−z/η cos
x

η
,(2.10)

where m := θ′b(0). Higher-order asymptotic solutions are gathered by means of labo-
rious but straightforward calculations. After recasting the solutions in terms of the
dimensional variables x = η x̄ and z = η z̄, we find

s(x, z) = spr −
sprξ

2

ω2

(
m2 − 2 m Δ

η
e−z/η cos

x

η
+

Δ2

η2
e−2z/η

)

+
2spr ξ

3

√
3ω3

e−
√

3ωz/ξ

(
Δ2

η3
− m Δ

η2
cos

x

η

)
+ O

(
ε4
)

(2.11)

and

θ(x, z) = m z + Δ e−z/η cos
x

η
+

ξ2

ω2

(
2 m Δ2

η

(
1 − e−2z/η

)
− Δ3

2 η2

(
e−z/η − e−3z/η

)
cos

x

η
− 2 m2 Δ

η
z e−z/η cos

x

η

)
+ O

(
ε4
)
.(2.12)

The above expansions have been carried out up to the first nontrivial correction of
the 0th-order approximation. Indeed, all calculations must be pushed to O

(
ε3
)
, since

an internal ξ-layer is necessary to satisfy the boundary condition (1.13) in z = 0.
This layer is of O

(
ε3
)

because in the Neumann case the boundary condition (1.13)
concerns the first derivative of s, instead of the degree of orientation itself. We remark
that the solutions (2.11)–(2.12) are coherently ordered for every fixed value of η �= 0.
However, they are not uniformly ordered when η ∈ (0, η̄]; namely, we do not have a
uniform solution if η is allowed to become of order ξ or, still worse, tend to zero. In
other words, the above solutions remain valid as η → 0+ if and only if ξ = o (η). The
main properties of the equilibrium configurations in the mathematically appealing
but physically uncommon case in which η is of the order of, or even smaller than, ξ
will be presented elsewhere [34].

2.1.1. Surface melting. We can highlight three different contributions in the
degree of orientation (2.11). First, we notice a uniform decrease in the degree of
order, equal to −sprm

2ξ2/ω2. This disordering effect is triggered by the θ-derivative
m and was certainly to be expected. In fact, a glance to the free-energy functional
(1.8) suffices to show that a reduction in s decreases the free energy whenever the
gradient of the director is not null. We then find two boundary layers. The former,
of thickness η and O

(
ε2
)
, is a further reduction of the degree of orientation due to

the boundary roughness, which induces a director variation in the x-direction. An
internal boundary layer, of thickness ξ and order O

(
ε3
)
, is finally needed in order to

cancel the normal derivative of s at the external surface. If we take into account all
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0 ξ
η

1 2 3
0.6

0.7

spr

z/η

〈s(x, z)〉x

Fig. 2.1. Boundary layers in the mean degree of orientation 〈s(x, z)〉x when ξ = 0.25η, spr =
0.8, ω = 0.6, m = 0.1/η, and Δ = 1.5. The plot exhibits the presence of two boundary layers, the
internal one being required by the free boundary condition applied on s.

the contributions, the mean surface degree of orientation, defined as the x-average of
s(x, 0), turns out to be

〈s(x, 0)〉x = spr

[
1 − m2ξ2

ω2
− Δ2ξ2

ω2η2
+

2Δ2ξ3

√
3ω3η3

]
+ O

(
ε4
)
.(2.13)

Figure 2.1 evidences the reported behavior of the mean degree of orientation as a
function of the distance from the surface.

2.1.2. Effective surface angle. The tilt angle θ exhibits a boundary-layer
structure as well. Equation (2.12) shows that such a layer is of O

(
ε2
)

and thick-
ness η. It gives rise to an interesting effective misalignment of the surface director.
Indeed, if we allow z  η in (2.12) we find that

θ(x, z) ≈ θb(z) =
2 m ξ2Δ2

ηω2
+ m z as z  η .(2.14)

The asymptotic approximation (2.14) shows that an experimental observation, per-
formed sufficiently far from the external plate (with respect to the microscopic scale
η), would detect an effective tilt angle θb, whose value at the plate is different from
zero, since

θb(0) =
2 m ξ2Δ2

ηω2
.(2.15)

Thus, a coarse observation of the nematic configuration measures a surface tilt angle
slightly different from the homeotropic prescription θsurf = 0. Figure 2.2 evidences
this effect. In the next section we will analyze in more detail the result (2.15). Then
we will show how it matches the predictions of an effective weak-anchoring potential.
We remark that the tilt angle does not exhibit any further boundary layer at the
smaller scale ξ.
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0 ξ
η

1 2 3
0◦

10◦

20◦

θb(0)

θb(z)

z/η

〈θ(x, z)〉x

Fig. 2.2. Boundary layer in the mean tilt angle 〈θ(x, z)〉x when ξ = 0.25η, spr = 0.8, ω = 0.6,
m = 0.1/η, and Δ = 1.5. The dashed line corresponds to the asymptotic, linear approximation
θb(z).

2.2. Fixed surface degree of orientation. The perturbative analysis of the
differential equations (1.11), with the Dirichlet boundary conditions (1.14), would be
unnecessarily entangled because of the nonlinearity of the thermodynamic potential
(1.12). In fact, in this case only implicit solutions for s0(x, z, Z) can be gathered. In
order to pursue our analysis, and still catch the essential features of the solutions,
we replace the function σ in (1.11) by its linear approximation σ1(s) = ω2(s − spr).
This is tantamount to replacing the Landau–de Gennes potential in (1.5) by a tangent
quadratic well, still centered in spr. Such an approximation is certainly well justified
deep in the nematic phase, when the isotropic state s = 0 becomes unstable, and the
second well of the Landau–de Gennes potential can be neglected.

The asymptotic properties of the solutions in this case depend critically on the
value s̃ forced on the surface. If s̃ �= spr, the boundary layer induced by the Dirich-
let condition dominates over the roughness effect. Indeed, the leading asymptotic
solutions are given by

s(x, z) = spr − (spr − s̃) e−
√

3ωz/ξ

−
√

3 (spr − s̃)
ξ

ω
e−

√
3ωz/ξ

[
Δ2

4η

(
1 − e−2z/η

)
+

3

2
m2 z

− 3mΔ
(
1 − e−z/η

)
cos

x

η
+

Δ2

2η

(
1 − e−2z/η

)
cos

2x

η

]
+ O

(
ε2
)
,(2.16)

θ(x, z) = m z + Δe−z/η cos
x

η

+
ξ√
3ω

[
h

(
z

ξ

)
− h(0)

](
m − Δ

η
e−z/η cos

x

η

)
+ O

(
ε2
)
,(2.17)

where

h(ζ) = log
[
spr − (spr − s̃) e−

√
3ω ζ

]
− (spr − s̃) e−

√
3ω ζ

spr − (spr − s̃) e−
√

3ω ζ
(2.18)
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determines the tilt angle variation within the boundary layer. The bulk-asymptotic
tilt angle is then given by

θ(x, z) ≈ θb(z) =
m ξ√
3ω

(
log

spr

s̃
+

spr − s̃

s̃

)
+ m z as z  η .(2.19)

We remark that, when s̃ �= spr, the leading contribution to θb(0) is independent of Δ
and thus does not depend on the surface roughness. Furthermore, the effective surface
tilt angle depends linearly on ξ, which makes it significantly larger than the prediction
(2.15), derived with Neumann-like boundary conditions on s, which possesses an extra
ξ/η (small) factor. Finally, we remark the fact that θb(0) shares the sign of m if and
only if s̃ < spr. We will return below to the physical origin and implications of this
result.

When the induced degree of orientation s̃ does exactly coincide with spr, all cal-
culations simplify, since h(ζ) ≡ log spr, and all first-order correction in (2.17) vanish.
We therefore push our perturbation analysis and obtain

s(x, z) = spr −
sprξ

2

ω2

[
m2 +

Δ2

η2
e−2z/η − 2m Δ

η
e−z/η cos

x

η

− e−
√

3ωz/ξ

(
m2 +

Δ2

η2
− 2m Δ

η
cos

x

η

)]
+ O

(
ε3
)

(2.20)

θ(x, z) = m z + Δ e−z/η cos
x

η
+

ξ2

ω2

(
2 m Δ2

η

(
1 − e−2z/η

)
− Δ3

2 η2

(
e−z/η − e−3z/η

)
cos

x

η
− 2 m2 Δ

η
z e−z/η cos

x

η

)
+ O

(
ε3
)
.(2.21)

Equation (2.21) allows us to compute the asymptotic tilt angle θb when s̃ = spr. In
fact, once we drop all exponentially decaying terms in (2.21), we arrive at the interest-
ing result that θb(z) does exactly coincide with (2.14), that is, with the expression we
derived with a Neumann-like boundary condition on the degree of orientation. In fact,
the complete expression (2.21) for the tilt angle θ(x, z) coincides with (2.12) up to
O
(
ε3
)
. Thus, any observation on the tilt angle is not able to distinguish among a free

and a fixed boundary condition on the degree of orientation, as long as the imposed
value s̃ coincides with the preferred value spr. This similarity between the Neumann
and Dirichlet cases can be pursued further. Indeed, we can determine the O

(
ε2
)
-

contributions in (2.16)–(2.17) also when s̃ �= spr. If we then use them to compute
the O

(
ε2
)
-correction to the asymptotic tilt angle (2.19), we arrive at the following

expression, valid at O
(
ε2
)

for any value of s̃:

θ(x, z) ≈ θb(z) =

[
m ξ√
3ω

(
log

spr

s̃
+

spr − s̃

s̃

)
+

2 m ξ2Δ2

ηω2

]
+ m z as z  η,

(2.22)

which yields

θb(0) =
m ξ√
3ω

(
log

spr

s̃
+

spr − s̃

s̃

)
+

2 m ξ2Δ2

ηω2
.(2.23)

The O
(
ε2
)
-contribution to the effective surface angle θb(0) is thus fully a roughness

effect and does not depend at all on the type of boundary conditions imposed on s.
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Fig. 2.3. Boundary layers in the mean degree of orientation 〈s(x, z)〉x, when ξ = 0.25η,
spr = 0.8, ω = 0.6, m = 0.1η, and Δ = 1.5, when Dirichlet-like boundary conditions are applied on
the degree of orientation. The boundary degree of orientation s̃ is, respectively, equal to 1 (top), spr

(middle), and 0.6 (bottom).

On the other hand, (2.23) confirms that the effective surface angle possesses also an
O (ε)-term when Dirichlet conditions are imposed on the degree of orientation, and
s̃ �= spr.

Figure 2.3 shows how the degree of orientation varies within the boundary layer
as s̃ is fixed above, equal to, or below spr. A double boundary-layer structure emerges.
All plots exhibit a decrease of s in a region of characteristic size η: this effect comes
from the O

(
ε2
)
-contribution. A similar surface melting was already presented and

discussed in Figure 2.1. Close to the boundary, the O (1)-term proportional to (s̃ −
spr) e−

√
3ωz/ξ settles the desired boundary value of s in a thin boundary layer of

characteristic size ξ.

3. Effective weak anchoring. Once the boundary layer effects fade away, the
main macroscopic effect of a rough surface on the director orientation is to allow for an
effective surface tilt angle θb(0), which apparently violates the homeotropic prescrip-
tion θ(0) = 0 (see (2.15) and (2.23)). It appears then natural to check whether the
same macroscopic effect may be modeled through a weak anchoring potential, acting
on a smooth surface. In this section we pursue this similarity, and we derive a rela-
tion connecting the microscopic roughness parameters with a macroscopic anchoring
strength.

To solve the weak-anchoring problem, we consider a nematic liquid crystal which
still spreads in the half-space B = {z ≥ 0}. To better compare our results with
classical weak-anchoring models, we settle within Frank’s director theory and thus
look for the equilibrium distribution that minimizes the free-energy functional

F [n] := K

∫
B

∣∣∇n
∣∣2 dv + W

∫
∂B

fw[n] da .(3.1)

The bulk free-energy density in the functional (3.1) can be derived from its order-
tensor theory counterpart by setting s ≡ 1 in (1.8). The anchoring potential fw is
required to attain its minimum at the homeotropic anchoring n

∣∣
∂B = ez, while W is

the anchoring strength.
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We look again for equilibrium distributions of the type n(z) = sin θ(z) ex +
cos θ(z) ez. Thus, the free-energy functional (3.1) per unit transverse area can be
written as

f [θ] := K

∫
θ′2(z) dz + W fw

(
θ(0)

)
,(3.2)

where we assume f ′
w(0) = 0 and f ′′

w(0) > 0, in order to guarantee the homeotropic
preference. The minimizers of (3.2) satisfy the trivial Euler–Lagrange equation θ′′ = 0
and the boundary condition

Kθ′(0) −Wf ′
w

(
θ(0)

)
= 0 .(3.3)

When the anchoring strength W is large enough, the boundary condition (3.3) requires
θ(0) to be small. When this is the case, a Taylor expansion in (3.3) supplies

θ(0) ≈ K m

Wf ′′
w(0)

= ζ m .(3.4)

In (3.4) we have restored the notation m = θ′(0), to better compare this estimate
with our preceding results, and introduced the surface extrapolation length

ζ :=
K

Wf ′′
w(0)

,(3.5)

a quantity that compares the relative strengths of the elastic and anchoring potentials.
The comparison between (3.4) and our results (2.15)–(2.23) relates the surface

extrapolation length to the microscopic roughness parameters and/or the surface value
of the degree of orientation. To further pursue this similarity we need to consider
separately the different anchorings that may be applied to the degree of orientation.

• When s is free to choose its boundary value, (2.15) shows that the surface
extrapolation length is given by

ζ

ξ
=

2Δ2

ω2

ξ

η
+ O

(
ξ2

η2

)
.(3.6)

Thus, the anchoring strength increases when either the roughness ampli-
tude Δ decreases (towards a smooth surface) or the roughness wavelength
increases. An estimate of the order of magnitude of the effective roughness
wavelength can be obtained by assuming typical values for the quantities in-
volved in (3.6). Indeed, if we assume ζ ≈ ξ, Δ ≈ 1, and ω ≈ 1

2 , we arrive at
η ≈ 10ξ, which models a roughness wavelength in the hundredths of molecular
lengths.

• When the boundary conditions fix the value of the degree of orientation at
the surface, (2.23) yields

ζ

ξ
=

1√
3ω

(
log

spr

s̃
+

spr − s̃

s̃

)
+

2Δ2

ω2

ξ

η
+ O

(
ξ2

η2

)
.(3.7)

Equation (3.7) shows that the surface extrapolation length includes two quite
different contributions. The former depends on the difference between the
boundary and the preferred values of the degree of orientation (s̃ and spr,
respectively), while the latter depends on the surface roughness and indeed
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coincides with (3.6). However, (3.7) may lose sense when s̃ > spr. Indeed,
in this case ζ may become negative, so providing an inverse weak-anchoring
effect. The physical origin of this odd result may be easily understood if we
again resort to the s2|∇θ|2-term in the free-energy density. By virtue of that
term, the tilt angle prefers to limit its spatial variations in regions of higher s.
If we force in the surface a higher degree of orientation than the bulk value,
the tilt angle will flatten close to the surface, thus exhibiting the opposite
behavior with respect to that shown in Figure 2.2. Equation (3.7) shows that
this inverse effect may occur whenever

s̃− spr

spr
�

√
3Δ2

ω

ξ

η
+ O

(
ξ2

η2

)
.(3.8)

If we again replace the estimates above for Δ, ω, η, we arrive at the result that
a fixed degree of orientation is able to completely hide the roughness-induced
effective weak anchoring whenever s̃ exceeds spr by the 10% of the preferred
value spr itself.

4. Discussion. We have examined both the boundary layer structure and the
bulk effects of a rough surface bounding a nematic liquid crystal. Our main results
may be summarized as follows.

• The roughness of the surface has been modeled by an oscillating anchoring
condition, characterized by an oscillation amplitude Δ and a wavelength η.
Figures 2.1 and 2.3 show that the rough boundary induces a partial melting
in a neighborhood (of size η) of the external boundary. When Neumann-
like boundary conditions are imposed on the degree of orientation, (2.13)
quantifies the mean degree of order at the boundary. By contrast, were s
to be forced to a prescribed value s̃ on the surface, (2.16) and (2.20) show
that the boundary condition induces a thin boundary layer, determined by
the nematic coherence length ξ.

• Once the degree of orientation decreases, the spatial variations of the tilt angle
become cheaper, and thus θ is keen to steepen close to the external boundary.
Figure 2.2 illustrates this effect. As a consequence, the effective boundary tilt
angle θb(0), extrapolated from the asymptotic outer solution θb(z), becomes
different from the null homeotropic prescription (see (2.15) and (2.23)). In
section 3 we have shown that a similar effective anchoring breaking takes
place when a weak-anchoring potential is assumed on a smooth surface (see
(3.5) for the characteristic surface extrapolation length). The comparison
between (3.4) and (2.15)–(2.23) allows one to relate the surface extrapolation
length to the microscopic roughness parameters and/or the surface value of
the degree of orientation (see (3.7) and (3.8)).

To conclude, we want to discuss the validity of two nontrivial simplifications we
have introduced in our geometric setting. First, we have assumed that the boundary
is perfectly sinusoidal, while a physical surface will exhibit a whole roughness spec-
trum. Second, we have replaced an undulating boundary by an undulating boundary
condition on a flat surface. We collect in the appendices below the technical details
of the calculations that may help in relaxing the above assumptions. Here we discuss
the outcomes of such calculations.

As a first step towards dealing with a real, randomly wrinkled surface we have
considered the case in which the boundary undulation may be described as a super-
position of two sinusoidal undulations. We have thus solved the same equilibrium
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problem by replacing the boundary condition (1.10) with the more general (A.1).
Our main result, summarized in (A.2)–(A.3), is that the quantities that refer to the
bulk outer solution simply add independently the contributions from each oscillation,
without any interference effect. This result allows us to infer that, in the presence of a
whole spectrum of independent roughness wavelengths, the global surface melting and
the effective weak anchoring may be computed by simply adding each independent
contribution in a Fourier integral.

We have then analyzed in detail how a homeotropic anchoring imposed on an un-
dulating surface relaxes when entering the bulk. We have expanded the equilibrium
configuration in power series of the dimensionless parameter δ, which represents the
ratio between the height of the sinusoidal undulations and the roughness wavelength.
A crucial result in the expansion is that the O(δn) contribution to the tilt angle pos-
sesses at most n nonzero Fourier components. Thus, taking into account only the first
Fourier component when we evaluate the solution at a constant height (see (1.10))
amounts to neglecting O(δ2) terms within the thin boundary layer. Equation (B.4)
further supports our approximation. Indeed, it shows that the kth Fourier component
induced by the undulating boundary decays in the bulk with a characteristic pene-
tration length η/k. Thus, higher harmonics are penalized both by a higher-order δn

coefficient and by a shorter penetration depth.

Appendix A. Roughness spectrum. Throughout the paper we have studied
the bulk effects induced by the presence of a perfectly sinusoidal boundary. In real
physical systems, however, the boundary roughness is mostly random, and a whole
spectrum of roughness wavelengths is to be expected. In order to estimate whether
the effects we have determined may be enforced or hidden by the interference between
different wavelengths we briefly report here the results that may be obtained by
replacing the boundary condition (1.10) by the more general

θ(x, y, 0) = Δ1 cos
x

η1
+ Δ2 cos

(
x

η2
+ φ2

)
,(A.1)

with η1/η2 �∈ { 1
2 , 1, 2}, in order to avoid resonance effects.

We refer the reader to [34] for a complete overview and analysis of the results
that follow. We here simply report how the main results are to be modified when
stress-free (Neumann) boundary conditions are applied on the degree of orientation.

The first effect we have studied is the surface melting induced by the boundary
roughness. Once we average along the x-direction and compute the solutions at the
effective boundary z = 0, (2.13) is to be replaced by

〈s(x, 0)〉(2)x = spr

[
1 − m2ξ2

ω2
− ξ2

ω2

(
Δ2

1

η2
1

+
Δ2

2

η2
2

)
+

2ξ3

√
3ω3

(
Δ2

1

η3
1

+
Δ2

2

η3
2

)]
+ O

(
ε4
)
.

(A.2)

Expression (2.15) for the effective surface angle becomes

θ
(2)
b (0) =

2 m ξ2

ω2

(
Δ2

1

η1
+

Δ2
2

η2

)
.(A.3)

Equations (A.2)–(A.3) show that the presence of more than one characteristic wave-
length does not yield any dramatic result in the averaged quantities that interact with
the bulk. In fact, they simply add their contributions, weighted by the roughness am-
plitudes. The situation is clearly more complex if we aim at computing the exact
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solutions within the boundary layers [34]. In particular, the x-periodicity is lost as
soon as the roughness wavelengths are not commensurable.

Appendix B. Modeling an undulating boundary. In section 1.1 we have
modeled a homeotropic boundary condition imposed on an undulating surface through
an oscillating boundary condition imposed on a flat surface. In this appendix we
analyze the validity of such an approximation. In order to avoid unnecessarily lengthy
calculations, we perform the present check within the Frank approximation, that is, by
assuming that the nematic coherence length ξ is much smaller than all other lengths
involved in the problem. When this is the case, the degree of orientation is constrained
to the value spr that minimizes the Landau–de Gennes potential, the Euler–Lagrange
equation (1.11)1 becomes Laplace’s equation, and thus the tilt angle θ is harmonic.

We consider the region A = {(x, z) : z ≥ δη sinx} and look for a x-periodic
harmonic function θ : A → R (with x-period η) that satisfies the boundary conditions

θ(x, δη sin x
η ) = arctan

(
δ cos x

η

)
, θ(x, z) ≈ θ̃(z) as z → +∞(B.1)

for all values of x. The boundary condition (B.1)1 guarantees that the unit vector
n = sin θ ex + cos θ ez is homeotropically anchored to the physical boundary, while
(B.1)2 guarantees that the bulk configuration depends only on the z-coordinate. Let
us expand the tilt angle in power series of the amplitude coefficient δ:

θ(x, z) =

∞∑
n=0

θn(x, z) δn .(B.2)

We next Fourier-expand all functions θn along the periodic direction

θn(x, z) =

∞∑
k=0

an,k(z) cos
kx

η
+

∞∑
k=1

bn,k(z) sin
kx

η
.(B.3)

The Laplace equation implies then

θn(x, z) =

∞∑
k=0

αn,k e−kz/η cos
kx

η
+

∞∑
k=1

βn,ke
−kz/η sin

kx

η
,(B.4)

where the coefficients {αn,k, βn,k} can be determined by requiring (B.1)1 to hold.
Let us now compute the value the tilt angle attains at the (horizontal) height

z = δη, which we aim to consider as effective flat boundary (see Figure 1.1). We
obtain

θ(x, δη) =
(
δ − δ2

)
cos

x

η
+

δ2

2
sin

2x

η
+ O(δ3) .(B.5)

In general, it can be shown that the nth coefficient θn in expansion (B.2) contains only
Fourier components up to k ≤ n. Thus, the boundary condition (1.10) used in the
text is exact up to O(δ2). Furthermore, the roughness amplitude Δ simply coincides
with δ, the (dimensionless) ratio between the height of the sinusoidal undulations and
the roughness wavelength.

Acknowledgment. P. B. thanks Georges E. Durand for useful discussions on
the present topics.
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Abstract. The wavefronts associated with a one-dimensional combustion model with Arrhenius
kinetics and no heat loss are analyzed within the high Lewis number perturbative limit. This situa-
tion, in which fuel diffusivity is small in comparison to that of heat, is appropriate for highly dense
fluids. A formula for the wavespeed is established by a nonstandard application of Melnikov’s method
and slow manifold theory from dynamical systems, and compared to numerical results. A simple
characterization of the wavespeed correction is obtained: it is proportional to the ratio between the
exothermicity parameter and the Lewis number. The perturbation method developed herein is also
applicable to more general coupled reaction-diffusion equations with strongly differing diffusivities.
The stability of the wavefronts is also tested using a numerical Evans function method.

Key words. combustion waves, high Lewis number, Melnikov’s method, slow manifold reduc-
tion, Evans function
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1. Introduction. In this article, we study the wavespeed of a combustion wave-
front along a one-dimensional medium. This is a fundamental idealized problem
towards understanding how flame fronts propagate and therefore has received a con-
siderable amount of attention. There are several (nondimensional) parameters of
importance: the Lewis number Le, the exothermicity parameter β, and the heat loss
parameter �. The first of these, the Lewis number, measures the relative importance
of fuel diffusivity in comparison to that of heat. The exothermicity β is the ratio of
the activation energy to the heat of reaction. The structure of the governing equations
is such that an infinite Lewis number is considerably easier to deal with than allow-
ing for fuel diffusivity. Many studies of this “solid” regime appear in the literature
[5, 7, 28, 36, 37], and also the “gaseous” regime Le ≈ 1 has been frequently studied
because of a symmetry in the equations [7, 20, 24, 37, 39]. Usually, the heat loss is
neglected in these “adiabatic” studies. In several of these articles [28, 36, 37] the con-
dition β � 1 is essential to the wavespeed and stability analysis. The case β � 1 has
also been studied [8], in which a perturbative method is used to model the tempera-
ture. The bifurcation structure with respect to the heat loss parameter � is addressed
in [34], which obtains a stability diagram with respect to � and the wavespeed.
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We note that the limit of small fuel diffusivity (large, but not infinite, Lewis
number) has not received much attention, perhaps because of the singularity of this
limit in the governing equations. Yet this limit may be argued to be particularly
appropriate for very high density fluids burning at high temperatures, such as would
occur, for example, in the burning of toxic wastes at supercritical temperatures [25].
Even for solids, some mass diffusivity is to be expected at very high temperatures,
particularly in the reaction zone in which liquification may occur. In [27], the mass
diffusivity is modeled by an Arrhenius temperature dependence, which would result
in a large effective Lewis number in certain situations (such as when the (scaled)
adiabatic flame temperature is small in comparison to the activation energy for mass
diffusion). It is this very large Lewis number limit which we study in this article,
without restricting β. We do a detailed analysis of the wavespeed of combustion
waves which can be supported. We also verify the linear stability of such wavefronts
using an Evans function technique.

The model we use is for a premixed fuel in one dimension, with no heat loss
and with an Arrhenius law for the reaction rate. These combustion dynamics can be
represented in nondimensional form by [5, 8, 20, 24, 28, 34, 36, 37, 39]⎧⎪⎪⎨

⎪⎪⎩
∂u

∂t
=

∂2u

∂x2
+ y e−1/u,

∂y

∂t
=

1

Le

∂2y

∂x2
− β y e−1/u.

(1.1)

Here, u(x, t) is the temperature, and y(x, t) the fuel concentration, at a point x at
time t. The parameters β and Le are as described earlier. We are neglecting heat loss
(had we included it, an additional term −� (u− ua) for some ambient temperature
ua would be necessary on the right-hand side of the u equation in (1.1)). This one-
dimensional model is also applicable to combustion in cylinders [30], with u and y
being cross-sectionally averaged quantities in this case. See also [6, 7, 19, 26] for closely
related governing equations. The nondimensionalization leading to (1.1) ensures that
the cold boundary problem is circumvented (see [36] for a discussion). Since the Lewis
number will be assumed large, set ε = 1/Le with 0 ≤ ε � 1. This small ε limit clearly
constitutes a singular perturbation in (1.1).

This article analyzes (1.1) as follows. In section 2, we determine the wavespeed
as a function of β and ε. We initially consider the situation where Le = ∞ (sec-
tion 2.1), since this wavespeed is relevant to our subsequent perturbative analysis for
1 � Le < ∞ (sections 2.2, 2.3, and 2.4). While the infinite Lewis number situation is
well studied, we are able to empirically determine a simple exponential formula for the
wavespeed as a function of β. The case 1 � Le < ∞ is initially examined numerically
in section 2.2, in which we obtain a method for computing the wavespeed. In the
subsequent sections, we establish a theoretical estimate for the wavespeed with the
help of two suitably modified tools from dynamical systems theory: a slow manifold
reduction and Melnikov’s method. In section 2.3, we reduce the dimensionality of the
problem using a slow manifold reduction argument. This enables us in section 2.4
to utilize a nonstandard adaptation of Melnikov’s method to find a theoretical es-
timate for the wavespeed. (This new technique is adaptable to other situations in
which the wavespeed correction due to the presence of a small parameter is needed.)
Our asymptotics enable the determination of a remarkably simple formula for the
wavespeed, which is accurate for all β values (and not restricted to the “usual” large
β limit). Essentially, we find that the relative wavespeed correction in going from an
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infinite to a large Lewis number is proportional to (β/Le).
A brief stability analysis of the wavefronts is given in section 3. Having described

the Evans function approach to stability in section 3, we compute the Evans function
for high Lewis number combustion wavefronts using an exterior algebra [2, 16, 23,
40]. We note that in [20], an exterior algebra method has been successfully used to
numerically investigate stability of wavefronts in combustion systems. A detailed
stability analysis in the β-Le−1 plane is given therein for the system (1.1). As with
infinite Lewis number fronts (see [5, 14, 28, 37]), [20] shows that stability occurs
for small β but that, as β is increased, a Hopf bifurcation leads to an oscillatory
instability. The β and Le values we test give results consistent with the stability
boundary determined in [20]. Thus, stability properties remain essentially unaltered
despite the singularity in the limit Le → ∞.

2. Wavespeed analysis. We seek wavefronts which travel in time, and hence
set u(x, t) = u(ξ) and y(x, t) = y(ξ), where ξ = x − c t and c is the traveling wave
speed. Under this ansatz, (1.1) reduces to{

u′′ + c u′ + y e−1/u = 0,
ε y′′ + c y′ − β y e−1/u = 0.

(2.1)

2.1. Wavefront for Le =∞. Set ε = 0 in (2.1). Upon defining the new variable
v = u′, the dynamics can be represented by a three-dimensional first-order system⎧⎪⎪⎨

⎪⎪⎩
u′ = v,

v′ = −c v − y e−1/u,

y′ =
β

c
y e−1/u.

(2.2)

The system (2.2) possesses a conserved quantity

Hc(u, v, y) = β v + β c u + c y,(2.3)

since it is verifiable that dHc/dξ = 0 along trajectories of (2.2). Thus, motion is
confined to planes defined by Hc(u, v, y) = constant. Now, for a wavefront, we require
that (u, v, y) → (0, 0, 1) as ξ → ∞; this corresponds to the region in which fuel is not
yet burnt (and remains at its maximum nondimensional concentration of one) and
the temperature (and its variation) is still zero. This point lies on Hc(u, v, y) = c,
giving a well-known conservation relation [37]. At the other limit ξ → −∞, the fuel is
completely burnt, and has reached a steady temperature, and so (u, v, y) → (uB , 0, 0),
where the temperature uB is to be determined. Utilizing Hc(uB , 0, 0) = c, we find
that uB = 1/β is necessary; see also [8, 20, 37] for alternative ways to obtain this
value.

Thus, we seek a heteroclinic solution of (2.2), which progresses between the fixed
points (1/β, 0, 0) and (0, 0, 1), and is confined to the plane β v + β c u + c y = c; i.e.,
the fuel concentration obeys

y = 1 − β u− β

c
v(2.4)

at all values of ξ. Considering (2.2) under this restriction, we obtain⎧⎨
⎩

u′ = v,

v′ = − c v −
(

1 − β u− β

c
v

)
e−1/u.

(2.5)
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Fig. 2.1. Projection onto the (u, v)-plane of trajectories of (2.2) lying on different planes
Hc = c. Here, β = 1, and the three curves correspond to c = 0.5 (dotted), 0.5707 (solid), and 0.7
(dashed).

This is effectively a projection of the flow onto the particular invariant plane Hc(u, v,
y) = c onto the (u, v)-plane. Any value of c for which a heteroclinic connection exists
between (1/β, 0) and (0, 0) is a permitted speed for the wavefront.

The unstable eigendirection of the point (1/β, 0) is (−c,−βe−β), and we determine
c numerically by shooting along this direction and attempting to match up with a
trajectory approaching the origin. In Figure 2.1 we show several numerically computed
trajectories of this form, for different values of c, where we have chosen β = 1. Note
that this is not a standard (u, v)-phase space for (2.5), since each curve corresponds
to a different value of the parameter c. Rather, it is a projection onto the (u, v)-
plane of specialized trajectories from the invariant planes Hc(u, v, y) = c of the three-
dimensional system (2.2). The one trajectory which makes the required connection
lies in the invariant plane corresponding to c = 0.5707. The determination of this
c value was obtained by making incremental adjustments of c until an appropriate
connection is obtained.

We use this technique to numerically compute the wavespeeds for various val-
ues of the fuel parameter β, and we illustrate this dependence in Figure 2.2. The
wavespeed decays with β. For fuels with larger β (poor fuels), the energy resulting
from the reaction is insufficient to quickly activate combustion in nearby material,
and combustion fronts propagate slowly. The data fits the exponential curve

c(β) = 0.927 e−0.486β(2.6)

with correlation ρ > 0.9999. Equation (2.6) therefore provides an empirically de-
termined formula of excellent accuracy for the speed of a wavefront in perfectly solid
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Fig. 2.2. Variation of the wavespeed c with β: open circles (numerical results); unbroken curve
(empirical curve (2.6)); dotted curve (exp(−0.5β), as obtained in [7, 28, 36]).

adiabatic one-dimensional media. This result is close (and consistent with) a variety of
sources: exp(−0.5β) is quoted in [36] for the small β limit; this same value is given as
an upper bound in [7] and is also implied in eq. (10) in [28] using a large β limit within
a discontinuous front approximation. See Figure 2.2 for a comparison with our results.

The structure of the temperature front is illustrated in Figure 2.3 for β = 1 (solid
curve, left scale) and β = 3 (dashed curve, right scale), demonstrating that larger
β fronts have a broader preheat layer preceding the front. Note that the preheat
zone differs from the reaction zone [24]. The latter shrinks with increasing β [13].
Specifically, the reaction zone as a fraction of the preheat zone is O(1/β) [24, 28].
The reaction zone is well localized near the region of greatest temperature change [24]
and is not immediately identifiable in temperature profiles as in Figure 2.3. Indeed,
the increase in size of the preheat layer with β supports the O(1/β) expectation for
the ratio between the reaction and the preheat zones.

2.2. Wavespeed for 1 � Le < ∞. When the Lewis number is not infinite, but
large, ε is small, and weak fuel diffusion needs to be permitted. This is a singular limit
in (1.1) and (2.1), and as a consequence has been hardly examined in the literature.
By defining v = u′ as before, but now also z = y′, the governing equations (2.1) can
be represented as a four-dimensional system⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u′ = v,

v′ = −c v − y e−1/u,

y′ = z,

z′ =
1

ε

(
−c z + β y e−1/u

)
.

(2.7)
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Fig. 2.3. Temperature front at β = 1 (solid, left scale) and β = 3 (dashed, right scale).

This is reducible to three dimensions: the quantity

Gε
c(u, v, y, z) = β v + β c u + c y + ε z

can be verified to be a conserved quantity of (2.7). Hence, flow is confined to the
invariant three-dimensional surfaces Gε

c = constant. Now, we seek a wavefront solution
which goes from (u, v, y, z) = (uB , 0, 0, 0) to a value (0, 0, 1, 0), and we find that
Gε

c(u, v, y, z) = c, and uB = 1/β as before. The three-dimensional invariant surface
on which both points lie is

z =
1

ε
(c− β v − β c u− c y) .

The dynamics of (2.7) on this surface can be projected onto the three variables (u, v, y),
such that ⎧⎪⎪⎨

⎪⎪⎩
u′ = v,

v′ = −c v − y e−1/u,

y′ =
1

ε
(c− β v − β c u− c y) .

(2.8)

We seek the value of c which permits a heteroclinic connection from (u, v, y) =
(1/β, 0, 0) to (0, 0, 1). The former point (corresponding to ξ = −∞) has only one

positive eigenvalue, given by (−c +
√

c2 + 4εβe−β)/(2ε). For small ε, we “shoot” in
the eigendirection corresponding to this, with an initial guess of the wavespeed given
by (2.6). Thereafter, as in the previous section, we adjust c until we obtain a solution
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Fig. 2.4. Numerically computed wavespeed variation with ε for β = 1 (the crosses). The dashed
line is the theoretical approximation for β = 1 obtained from the methods of section 2.4.

which approaches the point (0, 0, 1) as ξ → ∞. We do this numerically by considering
the conditions c y + εz = c and v + c u = 0, which the front must obey at ξ = +∞,
and using a root-finding algorithm to adjust c. For a fixed value β = 1, we illustrate
how the wavespeed c varies with ε in Figure 2.4, with the crosses. The dashed curve
in Figure 2.4 is a analytical/numerical approximation we obtain for the wavespeed in
terms of an explicit formula (2.17). The next two sections describe how we obtain
this formula.

We notice that c decreases as we increase ε, that is, when we decrease the Lewis
number. Now, in dimensional form Le = κ/(ρ cp D), where ρ, κ, cp, and D are, re-
spectively, the density, thermal conductivity, specific heat capacity, and molecular
diffusivity of the fuel [6, 8, 30, 34, 37]. Increasing ε is equivalent to increasing the
relative importance of D, ρ, and cp in relation to κ. Reducing κ obviously decreases
the ability of heat to move and hence the combustion speed. Higher densities result
in increased fuel mass in each location, which means more heat is needed in a given
area to ignite all of the fuel before the wave moves on. Fuels with increased cp require
more heat to increase the temperature by a specified amount. Finally, increasing D
increases the transport of burnt fuel into the unburnt region and vice versa, interfering
with front propagation.

We computed the changes to the wavefront profile (akin to Figure 2.3) when ε
is changed (not shown). We verified the obvious physical conclusion that the fuel
concentration front becomes less steep when ε is increased from zero.

2.3. Slow manifold reduction. We now show that in the limit of small ε, it
is possible to further reduce the system (2.8) to a two-dimensional flow on a slow
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Fig. 2.5. The hyperbolic invariant manifold (a) S0 for (2.10) and (b) Sε for (2.9).

manifold. We begin with (2.8) and note that there are two “time”-scales in this
singularly perturbed system, where we use “time” loosely to mean the independent
variable ξ. We therefore adopt the standard dynamical systems trick of defining a
new independent variable η = ξ/ε to elucidate motion in the fast “time” η. With a
dot denoting the rate of change with respect to η, (2.8) becomes⎧⎨

⎩
u̇ = ε v,
v̇ = ε

(
−c v − y e−1/u

)
,

ẏ = c− β v − β c u− c y.
(2.9)

In the ε = 0 limit, the system collapses to⎧⎨
⎩

u̇ = 0,
v̇ = 0,
ẏ = c− β v − β c u− c y,

(2.10)

in which it is clear that the plane S0 defined by c−β v−β c u−c y = 0 consists entirely
of fixed points. This is the same plane as defined through Hc(u, v, y) = c for (2.2),
on which the interesting behavior occurred for perfectly solid fuels. Each fixed point
has a one-dimensional stable manifold (in the y-direction), and a two-dimensional
center manifold, which is S0. Thus the plane S0 is invariant and normally hyperbolic
with respect to (2.10); there is exponential contraction towards it as illustrated in
Figure 2.5(a).

Upon switching on ε and considering the dynamics (2.9), S0 perturbs to an invari-
ant curved entity Sε, which is order ε away from S0. This is because of the structural
stability of normally hyperbolic sets [18], which also implies that normal hyperbolicity
is preserved for small ε. Therefore, there is exponential decay of trajectories towards
Sε on time-scales of order η, as shown in Figure 2.5(b). Motion on Sε occurs at a
slower rate (on time-scales of order ξ), and hence it is termed a “slow manifold.”
The heteroclinic connection we seek lies on Sε, from (u, v, y) = (1/β, 0, 0) to (0, 0, 1).
Since Sε is invariant, two-dimensional, and not parallel to the y-axis, it therefore
makes sense to project the motion onto the (u, v)-plane in order to describe behav-
ior. To elucidate this motion, we need to once again return to the original time-scale
ξ—the slow time associated with motion on the slow manifold.
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We return to the relationship Gε
c (u(ξ), v(ξ), y(ξ), z(ξ)) = c, which upon differen-

tiation yields

β v′ + β c u′ + c y′ + ε z′ = 0 ,

and since u′ = v and y′ = z,

z = −β

c
v′ − β v − ε

c
z′ .

Substituting back into Gε
c(u, v, y, z) = c, we obtain

β v + β c u + c y + ε

(
−β

c
v′ − β v + O(ε)

)
= c ,

and thus

y = 1 − β

c
v − β u + ε

β

c2
v′ + ε

β

c
v + O(ε2) .

Substitution into the v′ equation in (2.7) or (2.8) gives

v′
(

1 + ε
β

c2
e−1/u

)
= −c v −

(
1 − β

c
v − β u + ε

β

c
v + O(ε2)

)
e−1/u .

Therefore

v′ =

(
1 − ε

β

c2
e−1/u

)[
−c v −

(
1 − β

c
v − β u + ε

β

c
v

)
e−1/u

]
+ O(ε2)

= −c v −
(

1 − β

c
v − β u

)
e−1/u + ε

β

c2

(
1 − β

c
v − β u

)
e−2/u + O(ε2) .

Retaining only O(ε) terms, we obtain the (u, v)-projected approximate equations on
the slow manifold⎧⎨

⎩
u′ = v,

v′ = −c v −
(

1 − β

c
v − β u

)
e−1/u + ε

β

c2

(
1 − β

c
v − β u

)
e−2/u.

(2.11)

We will now show how to use these approximate dynamics to predict the correction
to the wavespeed resulting from the inclusion of the finiteness of the Lewis number.

2.4. Perturbative formula for wavespeed. Here, we derive and numerically
study a formula for the wavespeed correction in going from Le = ∞ to finite Lewis
number. Let

c (β, ε) = c0 (β) + ε c1 (β) + O
(
ε2
)
,(2.12)

where c0 is the wavespeed associated with the infinite Lewis number (ε = 0) com-
bustion wavefront. In the spirit of perturbation analysis, we obtain a formula for the
correction c1(β) purely in terms of the unperturbed (ε = 0) wave, using a nontradi-
tional application of “Melnikov’s method” [29] from dynamical systems theory.

Melnikov’s method is applied most commonly to area-preserving two-dimensional
systems under time-periodic perturbations [4, 21, 38]. (Here, once again, ξ represents
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Fig. 2.6. Manifold structure for the Melnikov approach: (a) ε = 0, (b) ε �= 0.

“time.”) Our system (2.11) is not area-preserving and has a perturbation which is
independent of the temporal variable. Under these conditions, we describe the method
applied to the system

z′ = f (z) + εg (z) .(2.13)

When ε = 0, suppose this system possesses a heteroclinic connection between the
two saddle fixed points a and b as shown in Figure 2.6(a). A heteroclinic connection
of this sort occurs when a branch of the one-dimensional unstable manifold of a
coincides with a branch of the stable manifold of b. This heteroclinic trajectory can
be represented as a solution z = ẑ(ξ) to (2.13) with ε = 0.

Now, for small ε > 0 in (2.13), the fixed points a and b perturb by O(ε) and retain
their stable and unstable manifolds [18]. However, these need no longer coincide. Fig-
ure 2.6(b) shows how they can split apart, with the dashed curve showing the original
manifold. Let d(ξ, ε) be a distance measure between these manifolds, measured along
a perpendicular to the unperturbed heteroclinic drawn at ẑ(−ξ). The variable ξ can
thus be used to identify the position along the heteroclinic curve (cf. “heteroclinic
coordinates” of Section 4.5 in [38]). Since d(ξ, 0) = 0 for all ξ, this distance is Taylor
expandable in ε in the form

d(ξ, ε) = ε
M(ξ)

|f (ẑ(−ξ))| + O(ε2) ,

where the scaling factor |f (ẑ(−ξ))| in the denominator represents the unperturbed
trajectory’s speed at the location ξ. The quantity M(ξ) is the “Melnikov function,”
for which an expression is

M (ξ) =

∫ ∞

−∞
exp

[
−

∫ μ

−ξ

∇ · f(ẑ(s)) ds

]
f(ẑ(μ)) ∧ g(ẑ(μ)) dμ ,(2.14)

where the wedge product between two vectors is defined by (a1, a2)
T ∧ (b1, b2)

T =
a1b2 − a2b1. Obtaining the version (2.14) requires two adjustments to the standard
Melnikov approaches [4, 21, 38]: incorporating the nonarea-preserving nature of the
unperturbed flow of (2.13), and representing the distance in terms of heteroclinic
coordinates. Details are provided in Appendix A. We need to ensure the persistence
of a heteroclinic trajectory in (2.11) for ε > 0 and thus require d(ξ, ε) = 0 for all ξ.
For this to happen for all small ε, we therefore need to set M(ξ) ≡ 0.
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To apply this technique to our system, we begin by writing (2.11) in the form
(2.13). Using the expansion (2.12), and utilizing binomial expansions for 1/(c0 + εc1),
we get ⎧⎨

⎩
u′ = v,

v′ = −c0 v − e−1/uΥuv + ε

(
−c1v −

βc1e
−1/u

c20
v +

βe−2/u

c20
Υuv

)
,

(2.15)

where higher-order terms in ε have been discarded, and

Υuv = 1 − β u− β

c0
v .

By appropriately identifying f and g from (2.15) through comparison with (2.13), we
see that

(f ∧ g) (u, v) = v

(
−c1v −

βc1e
−1/uv

c20
+

βe−2/u

c20
Υuv

)

and ∇ · f = −c0 + βe−1/u/c0. Substituting into the Melnikov formula (2.14), and
setting it equal to zero, we obtain∫ ∞

−∞
exp

[∫ μ

−ξ

(
c0 −

β

c0
e−1/u(s)

)
ds

]
v

(
−c1v −

βvc1e
−1/u

c20
+

βe−2/u

c20
Υuv

)
dμ = 0 ,

where each of u(μ) and v(μ) is evaluated along the ε = 0 combustion wave. Notice,
however, that for this infinite Lewis number combustion wave, (2.4) tells us that the
fuel concentration y(μ) = Υuv(μ) for all μ. Therefore

c1(β) = β

∫ ∞

−∞
exp

[∫ μ

−ξ

(
c0 −

β

c0
e−1/u(s)

)
ds

]
v y e−2/u dμ∫ ∞

−∞
exp

[∫ μ

−ξ

(
c0 −

β

c0
e−1/u(s)

)
ds

]
v2(c20 + β e−1/u) dμ

,(2.16)

where u(μ), v(μ), and y(μ) in the integrands are obtained from the ε = 0 combustion
wave discussed in section 2.1. The apparent dependence of c1 on the wave coordinate
ξ is spurious: if I is an antiderivative of the inner integrals in (2.16), a multiplicative
term exp [−I(−ξ)] emerges in both the numerator and denominator, which therefore
cancels. Hence, any convenient value for ξ can be chosen in (2.16), for example, 0.

Equation (2.16) is a powerful expression in which the wavespeed correction is
expressed purely in terms of the (unperturbed) infinite Lewis number wavefront and
system parameters. This correction was obtained through an application of the slow
manifold and Melnikov’s method (suitably modified). While developed within the
current specific context, we note that this technique can in fact be used in a variety
of instances which are modeled through coupled reaction-diffusion equations in which
the diffusivities are very different.

We note that v < 0 for the infinite Lewis number wavefront, as is clear from
the phase portrait, Figure 2.1. Alternatively, u is smaller at the front of the wave,
where fuel is yet to be burnt, and is therefore a decreasing function of μ, leading to
v = u′ < 0. Based on this, (2.16) immediately displays that c1 < 0, proving the
property that the wavespeed decreases when fuel diffusivity is included. This is in
agreement with the numerical observations in section 2.2.
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Fig. 2.7. The perturbing wavespeed as a function of β.

Equation (2.16) provides an explicit perturbative formula on how the wavespeed
varies through the inclusion of the finiteness of the Lewis number, expressed entirely
in terms of the infinite Lewis number combustion wave. This result is used to compute
the solid line in Figure 2.4, which is the theoretical wavespeed 0.5707 − 0.1552ε ob-
tained by using (2.16) and (2.12) when β = 1. When ε is small, it forms an excellent
approximation to the numerically obtained wavespeed, as described in section 2.2.
Indeed, Figure 2.4 show that the theoretical line is tangential to the curve formed by
the closed circles.

The perturbation wavespeed c1 as a function of β appears in Figure 2.7. There is
a value of β (around 2) at which the absolute influence of the finiteness of the Lewis
number is greatest. Nevertheless, since c0 is itself a function of β, it makes sense to
investigate the relative influence c1/c0 of the perturbative term. This is presented in
the numerically computed figure, Figure 2.8. The graph is virtually linear and has zero
intercept. In other words, the complicated quotient in (2.16) is in fact proportional
to the unperturbed wavespeed c0(β), with the proportionality factor independent of
β. We therefore arrive at the approximation

c(β, ε) = c0(β) [1 − 0.267 ε β] = c0(β)

[
1 − 0.267

β

Le

]
,(2.17)

for large Lewis numbers, with excellent validity across all β, and with c0(β) also known
through (2.6).

Equation (2.17) shows that the wavespeed, as a fraction of the infinite Lewis
number wavespeed, acquires a correction linear in the ratio β/Le. We are not aware
of any such result being previously reported in the literature of combustion waves.
Moreover, the simplicity of this expression is remarkable. For the specific instance
β = 1, we apply this formula in order to arrive at the dashed line in Figure 2.4. Our
perturbative theory has clearly given us a very accurate and simple approximation,
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Fig. 2.8. Relative size of perturbative wavespeed as a function of β.

and elucidates the straightforward dependence of the wavespeed on the parameters β
and Le.

3. Stability analysis. In this section, we test the stability of the combustion
wavefront (u, y) = (u0(ξ), y0(ξ)) we have found as a solution to (1.1) at large Lewis
numbers. Consider a perturbation of the form

u = u0(ξ) + U(ξ) eλ t, y = y0(ξ) + Y (ξ) eλ t.(3.1)

At first order, U and Y satisfy an eigenvalue problem

⎛
⎜⎜⎝

U
V
Y
Z

⎞
⎟⎟⎠

′

=

⎛
⎜⎜⎜⎝

0 1 0 0
λ− y0

u2
0
e−1/u0 −c −e−1/u0 0

0 0 0 1
β y0

ε u2
0
e−1/u0 0 λ

ε + β
ε e

−1/u0 − c
ε

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

U
V
Y
Z

⎞
⎟⎟⎠ .(3.2)

Linear instability occurs if there are values of λ in the right half plane for which
(3.2) possesses a solution uniformly bounded for all ξ. It turns out that such values of
λ can be investigated by analyzing the Evans function [17], which is a complex analytic
function E(λ) whose zeros correspond to exactly these λ values. If, for example, it
can be shown that E(λ) has no zeros in the right half plane, the indications from the
point spectrum of (3.2) is that the wavefront is stable. If there exist zeros of E(λ) in
the right half plane, the wavefront is unstable. A description of the Evans function
as used in our study is given in Appendix B. This was proposed in [2, 16, 23, 40]
and has been used by [20] for a detailed numerical analysis of (1.1). (It must also be
mentioned that in the linear stability analysis, it is necessary to consider the essential
spectrum associated with (3.2); it turns out that this has no intersection with the
right half plane and therefore need not worry us further.)
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Fig. 3.1. The real part of the Evans function E(λ) for Le=17 and β = 1 as a function of λ.

We begin with a traveling wave solution u0(ξ) and y0(ξ), obtained using standard
shooting methods in section 2, and then compute the Evans function using the proce-
dure outlined in Appendix B. We note that the system is very sensitive due to its stiff-
ness. We found a solution to be accurate enough if we obtain E(λ = 0) ∼ O(10−12).
We are guided in our calculations by the detailed stability analysis of Gubernov et
al. [20]. They show, for example, the lack of any eigenvalues of positive real part for
small β but show that, for β large enough, two eigenvalues pop into the right half
plane exhibiting a Hopf bifurcation. Physically, this corresponds to a pulsating insta-
bility in the wavefront, a well-known phenomenon also occurring for Le = ∞ even in
slightly different models [5, 14, 28, 37]. Gubernov et al. extend these infinite Lewis
number analyses by producing in Figure 5 in [20] the stability boundary in β-ε space
(their τ is our ε). We verify here that our numerically computed wavefronts display
the characteristics outlined by them.

In Figure 3.1 we show the Evans function E(λ) as it varies with increasing λ ∈ R

for Le = 17 and β = 1 (this corresponds to a stable regime in Figure 5 of [20]). We
find that Evans function does not have any positive real roots. To test for complex
roots we vary λ ∈ iR; using Cauchy’s theorem we can calculate the winding number
to detect possible oscillatory instabilities. In the left panel of Figure 3.2 we show
the complex Evans function. Since the system (1.1) is translationally invariant, the
Evans function has at least a simple zero at λ = 0. We checked with a little off-set of
the order O(10−5) whether the (real) value of the Evans function at λ = 0 is shifting
towards larger values or smaller values. The off-set allows us to integrate parallel
to the imaginary axis of λ and therefore excluding the zero of the Evans function
stemming from the root at λ = 0. This enables us to attribute roots of the Evans
function to either the translational mode or to a real instability. For the case depicted
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Fig. 3.2. Left: The real versus the imaginary part of the Evans function E(λ) for Le=17 and
β = 1. The spectral parameter λ varies along the imaginary axis. Right: A sketch of a topologically
equivalent Evans function. The winding number is clearly zero, indicating stability.
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Fig. 3.3. The real versus the imaginary part of the Evans function E(λ) for Le=100 and β = 9.
The spectral parameter λ varies along the imaginary axis.

in Figure 3.2 we find that the Evans function moves to the right. This means that
the Evans function can be cast in the topologically equivalent form depicted in the
right panel of Figure 3.2 and it clearly has a winding number zero. We therefore find
that at these parameter values there are no unstable eigenvalues. (Note that for this
argument to work we need our definition of the Evans function to be analytic, which
excludes standard methods such as Gram–Schmidt orthogonalizations.)

We next choose Le = 100 and β = 9, parameters at which (according to Figure 5
in [20]) an oscillatory instability is to be expected. In Figure 3.3 we show the Evans
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Fig. 3.4. Left: Closeup of the Evans function depicted in Figure 3.3 into the region E(λ) = 0.
Right: A sketch of a topologically equivalent Evans function. The winding number is clearly two,
indicating an oscillatory instability.

function in this situation, with a zoom in displayed in Figure 3.4. To determine the
winding number we need to check whether or not the small circle of the Evans function
in Figure 3.4 includes the zero. We can do so by allowing again for a small off-set of
λ. We find that the circle includes zero. Unfolding the behavior of the Evans function
then allows us to sketch a topologically equivalent Evans function as in the right panel
of Figure 3.4. We verified that the instability is indeed oscillatory by examining the
Evans function for λ ∈ R

+, which reveals no zeros. Hence our wavefront displays
the predicted characteristics of [20]. Stability properties are not affected unduly by
the finiteness of the Lewis number, despite the singularity of this limit.

4. Concluding remarks. In this article, we have studied combustion wavefront
in a one-dimensional medium. Our concentration was on very high Lewis numbers
relevant to high-density supercritical combustion. We determine the wavespeed as
a function of the exothermicity parameter β and the Lewis number Le, by seeking
the wavespeed value which establishes a connection between the fixed points cor-
responding to the fully burnt and the unburnt states. The infinite Lewis number
instance reveals an exponential dependence of the wavespeed on β, for which we
determine an empirical formula. We then use several suitably modified dynamical
systems techniques (slow manifold reduction and Melnikov’s method) to compute an
explicit formula (2.16) for the correction to the wavespeed when including the effect
of a large, but not infinite, Lewis number. We hence obtain a simple formula (2.17)
which shows that the relative change in the wavespeed is proportional to β/Le for
large Lewis numbers. Our theory is shown to have excellent consistency with the
numerically computed wavespeed for large Le, as we show in Figure 2.4.

The stability of the high Lewis number wavefronts is then tested numerically
based on the Evans function technique. Our results are in agreement with the stability
boundaries presented by Gubernov et al. in Figure 5 in [20].

We remark that the modified Melnikov’s method that we have used can in fact be
used in more general situations which are described by two coupled reaction-diffusion
equations with strongly differing diffusivities. Based on a known wavefront or wave-
pulse solution for when the smaller of the diffusivities is zero, our technique can in some
instances be used to determine the wavespeed correction resulting from the inclusion
of the (previously neglected) diffusivity. Alternatively, it can be adapted to situations
in which the wavespeed changes due to some other small parameter. Our analysis of
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high Lewis number wavefronts therefore provides a new perturbative methodology for
analyzing certain classes of reaction-diffusion equations, pattern formation problems,
and combustion waves.

Appendix A. Melnikov function derivation. We briefly outline the modifi-
cations needed to the standard Melnikov approaches [4, 21, 38] relevant to section 2.4.
Our system is ż = f (z)+ε g (z), as given in (2.13). Consider a particular parametriza-
tion of the heteroclinic ẑ(ξ). Imagine the perturbed system as embedded in three-
dimensional (z, s) space. In a “time”-slice s = s0, let T be the normal vector to the
heteroclinic drawn at the point ẑ(0) = z0. The usual approach is to compute the
distance between the perturbed manifolds measured along T , and this is expandable
as

d(s0, ε) = ε
M(s0)

|f (z0)|
+ O(ε2) .(A.1)

Let zu(s) be the trajectory of the perturbed flow which intersects T and which back-
wards asymptotes to the perturbed fixed point a(ε). In other words, zu(s) is a trajec-
tory lying on a(ε)’s unstable manifold. The standard approach [4, 21] is to represent

zσ(s) = ẑ(s− s0) + ε zσ1 (s) + O(ε2),

where σ = u (for “unstable”), valid for −∞ < s ≤ s0 . A similar expansion on
s0 ≤ s < ∞ with σ = s (for “stable”) works for the trajectory zs(s), which intersects T
on the time-slice s0 and which lies on the stable manifold of the perturbed fixed point
b(ε). Then, the standard Melnikov development (see [4, 21]) allows the representation

d(s0, ε) = ε
Δu(s0) − Δs(s0)

|f (z0)|
+ O(ε2) ,(A.2)

where

Δσ(s) = f (ẑ(s− s0)) ∧ zσ1 (s)

for σ = u and σ = s. Now, [4, 21] derive that

Δ̇σ = ∇ · f (ẑ(s− s0)) Δσ + f (ẑ(s− s0)) ∧ g (ẑ(s− s0), s) + O(ε)(A.3)

but, since the unperturbed dynamical system is volume-preserving, have the luxury
of ignoring the first term on the right-hand side. We cannot do so here, but we can
neglect the second argument in g, since our case is autonomous. To deal with the
first term, we multiply (A.3) by the integrating factor

μ(s) = exp

[
−

∫ s

0

∇ · f (ẑ(r − s0)) dr

]

before proceeding. Having done so, we integrate from −∞ to s0 by choosing σ = u,
then integrate from s0 to ∞ by choosing σ = s, and then add the two equations to
get

Δu(s0) − Δs(s0) =

∫ ∞

−∞

μ(s)

μ(s0)
f ∧ g (ẑ(s− s0)) ds .
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(This is an adaptation of the standard process [4, 21].) In conjunction with (A.1)
and (A.2), and also employing the shift s − s0 → s in the integrand, we obtain the
Melnikov function

M(s0) =

∫ ∞

−∞
exp

[
−

∫ s

0

∇ · f (ẑ(r)) dr

]
f ∧ g (ẑ(s)) ds,

which no longer depends on s0. Having dealt with the nonvolume-preserving instance,
the next step is to change our attitude: rather than measuring the distance in a time-
slice s but at a specific point z0, we ignore time-slices (since our perturbed system
is itself autonomous) and allow the point to vary along the heteroclinic. To do so,
choose a different parametrization ŵ(s) = ẑ(s−ξ) of the heteroclinic. Thus, the point
w0 = ŵ(0) = ẑ(−ξ) can be varied along the heteroclinic by choosing different values
of ξ. Therefore, ξ will represent different points along the heteroclinic at which the
distance measurement is to be made (cf. “heteroclinic coordinates” of [38]). Using
the w trajectory, our earlier results can be expressed as

d(s0, ξ) = ε
M(s0, ξ)

|f (w0)|
+ O(ε2) = ε

M(ξ)

|f (z(−ξ))| + O(ε2),(A.4)

where

M(ξ) =

∫ ∞

−∞
exp

[
−

∫ s

0

∇ · f (ŵ(r)) dr

]
f ∧ g (ŵ(s)) ds

=

∫ ∞

−∞
exp

[
−

∫ s

0

∇ · f (ẑ(r − ξ)) dr

]
f ∧ g (ẑ(s− ξ)) ds

=

∫ ∞

−∞
exp

[
−

∫ s+ξ

0

∇ · f (ẑ(r − ξ)) dr

]
f ∧ g (ẑ(s)) ds

=

∫ ∞

−∞
exp

[
−

∫ s

−ξ

∇ · f (ẑ(r)) dr

]
f ∧ g (ẑ(s)) ds .

This, in conjunction with (A.4), is the expression used in section 2.4.

Appendix B. Evans function definition. Here, we describe the Evans func-
tion approach for analyzing linear stability. In general, the linear stability of a lo-
calized traveling wave solution to a system of PDEs is obtained by studying the
eigenvalue problem

Lw = λw,(B.1)

where the matrix differential operator L arises from the linearization of the PDEs.
The traveling solution is said to be linearly stable if the spectrum of L lies in the
closed left half plane.

The system (B.1) can be turned into a linear dynamical system of the form

Uξ = A(ξ, λ)U,(B.2)

where A(ξ, λ) is an n × n square matrix depending on ξ = x − c t and the spectral
parameter λ (in our case, n = 4). It can be shown that the asymptotic behavior of
the solutions to (B.2) is determined by the matrices

A±∞(λ) = lim
ξ→±∞

A(ξ, λ)
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in the following sense (see [11] for details). If μ+ (resp., μ−) is an eigenvalue of A+∞
(resp., A−∞) with eigenvector v+ (resp., v−), then there exists a solution w+ (resp.,
w−) to (B.2) with the property that

lim
ξ→∞

w+e−μ+ ξ = v+

(
resp., lim

ξ→−∞
w−e−μ− ξ = v−

)
.(B.3)

Note that the superscript “+” refers to exponentially decaying behavior at ξ = +∞,
while “−” refers to ξ = −∞.

To study the linear stability, one should consider both the essential and point
spectrum of L. The essential spectrum of L consists of the values of λ for which A∞
or A−∞ has purely imaginary eigenvalues [22]. The point spectrum can be studied by
means of the Evans function, first introduced by Evans [16] and later generalized [2].
Roughly speaking, the zeros of this complex-valued function are arranged to coincide
with the point spectrum of L.

Let Ω denote a domain of the complex λ plane with no intersection with the
essential spectrum and let ns and nu denote, respectively, the number of eigenvalues
of A∞ with negative real part and the number of eigenvalues of A−∞ with positive
real part in Ω. We assume that ns + nu = n. Let w+

i (λ, ξ), i = 1, 2, . . . , ns (resp.,
w−

i (λ, ξ), i = 1, 2, . . . , nu), be linearly independent solutions to (B.2) converging to
zero as ξ → ∞ (resp., ξ → −∞) which are analytic of λ in Ω. Clearly, a particular
value of λ belongs to the point spectrum of L if (B.2) admits a solution that is
converging to zero for both ξ → ±∞, that is, if the space of solutions generated by
the w+

i intersects with the one generated by the w−
i . To detect such values of λ in Ω,

one can use the definition of the Evans function given in [33],

E(λ) = det
(
w+

1 , w
+
2 , . . . , w

+
ns
, w−

1 , w−
2 , . . . , w−

nu

)
,

in which the w±
i are evaluated at ξ = 0. This function is analytic in Ω and is real for

real values of λ, and the locations of the zeros of E(λ) correspond to eigenvalues of
L.

The first numerical computation of the Evans function was by Evans himself
in [17] and followed by [32, 35]. However, in all three papers ns = 1, in which
case a standard shooting argument can be used. In standard shooting algorithms
one follows the stable and/or unstable manifolds at ξ = ±∞. The Evans function
is then given as the intersection of these manifolds. As shown in section 3, our
system has n = 4 and ns = nu = 2. This causes the following practical problem:
although the ns (or nu, respectively) eigenvectors are linear independent solutions
of the eigenvalue problem (B.2) at ξ = ±∞, the numerical integration scheme will
lead to an inevitable alignment with the eigendirection corresponding to the largest
eigenvalue. This collapse of the eigendirections is usually overcome by using Gram–
Schmidt orthogonalization. However, this is not desirable for calculating the Evans
function, as it is a nonanalytic procedure which then subsequently prohibits the use of
Cauchy’s theorem (argument principle) to locate complex zeros of the Evans function.
The Evans function is therefore best calculated using exterior algebra [1, 3, 9, 11, 12,
15, 31, 34].

We briefly review the method here, with specific regard to the situation in which
n = 4 and ns = nu = 2. For more details the reader is referred to [1, 3, 11, 15] and to
the numerical computation in [20]. The main idea behind exterior algebra methods
(or compound matrices methods) is that the linear system (B.2) induces a dynamical

system on the wedge-space
∧2

(C4) for ns = nu = 2. The wedge-space
∧2

(C4) is the
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space of all two forms on C
n. This is a space of dimension

(
4
2

)
= 6. The induced

dynamics on the wedge-space
∧2

(C4) can be written as

Uξ = A(2)(ξ)U, U ∈
∧2

(C4).(B.4)

Here the linear operator (matrix) A(2) is the restriction of A(ξ, λ) = {aij} to the

wedge-space
∧2

(C4). Using the standard basis of
∧2

(C4)

ω1 = e1 ∧ e2, ω2 = e1 ∧ e3, ω3 = e1 ∧ e4,
ω4 = e2 ∧ e3, ω5 = e2 ∧ e4, ω6 = e3 ∧ e4,

(B.5)

where e1,2,3,4 is the standard basis of C
n, we can find the matrix A(2) :

∧2
(C4) →∧2

(C4) as a complex 6 × 6 matrix. With respect to the basis (B.5), A(2) takes the
explicit form

A(2) =

⎡
⎢⎢⎢⎢⎢⎣

a11+a22 a23 a24 −a13 −a14 0
a32 a11+a33 a34 a12 0 −a14

a42 a43 a11+a44 0 a12 a13

−a31 a21 0 a22+a33 a34 −a24

−a41 0 a21 a43 a22+a44 a23

0 −a41 a31 −a42 a32 a33+a44

⎤
⎥⎥⎥⎥⎥⎦ .

General aspects of the numerical implementation of this theory and details for these
constructions in more general systems can be found in [3, 11].

Linearity assures that the induced matrix A(2)(ξ, λ) is also differentiable and
analytic. Hence, the limiting matrices,

A
(2)
±∞(λ) = lim

ξ→±∞
A(2)(ξ, λ) ,

will exist. It can readily be shown that the eigenvalues of the matrix A
(2)
±∞(λ) consist

of all possible sums of two eigenvalues of A±∞(λ). Therefore, for (λ) > 0, the

eigenvalue of A
(2)
+∞(λ) with the most negative real part is given by σ+(λ) = μ+

1 +μ+
2 .

The eigenvalue σ+(λ) has real part strictly less than any other eigenvalue of A
(2)
+∞(λ).

Analogously, the eigenvalue of A
(2)
−∞(λ) with the largest nonnegative real part is given

by σ−(λ) = μ−
1 + μ−

2 . The eigenvalue σ−(λ) has real part strictly greater than any

other eigenvalue of A
(2)
−∞(λ). Note that the eigenvalues σ± are simple and are analytic

functions of λ.
Let ζ±(λ) be the eigenvectors associated with σ±(λ), defined by

A
(2)
+∞(λ)ζ+(λ) = σ+(λ)ζ+(λ) and A

(2)
−∞(λ)ζ−(λ) = σ−(λ)ζ−(λ) .(B.6)

These vectors can always be constructed in an analytic way (see [11]) and are readily
found to be ζ±(λ) = v±1 ∧ v±2 .

Let U±(ξ, λ) ∈
∧2

(C4) be the solution of the linear system (B.4) which satisfies
limξ→±∞ e−σ±(λ)ξU±(ξ, λ) = ζ±(λ). This allows us to define the Evans function as

E(λ) = N U−(ξ, λ) ∧ U+(ξ, λ) , λ ∈ Λ,(B.7)

where

N = e
−
∫ ξ

0
τ(s,λ)ds

and τ(ξ, λ) = Tr(A(ξ, λ)).(B.8)
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Expressing U±(ξ, λ) as a linear combination with respect to the basis (B.5),

U±(ξ, λ) =

6∑
j

U±
j ωj ,

the expression for the Evans function (B.8) can be simplified to

E(λ) = N [[U−(ξ, λ),ΣU+(ξ, λ)]]6 ,(B.9)

where [[·, ·]]6 is the complex inner product in C
4, and the representation of the Hodge-

star operator Σ in the basis (B.5) is

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Using the Hodge-star operator, we can relate the most unstable solution U− of the
linearized system at ξ = −∞ with the most unstable solution of the adjoint system of
(B.4) at ξ = −∞. Details can be found in [3, 10, 11]. This suggests a normalization
of the asymptotic eigenvectors according to

[[ζ−,Σζ+]]6 = 1,(B.10)

which assures that E(λ) → 1 for |λ| → ∞.
Note that the translational invariance of (1.1) guarantees that the Evans function

can be evaluated at any (fixed) spatial location ξ�. However, to avoid unwanted
growing of the solutions U± we will consider the scaled solutions

Ũ±(ξ, λ) = e−σ±(λ)ξU±(ξ, λ).(B.11)

The scaling (B.11) ensures that Ũ+(ξ, λ)
∣∣
ξ=ξ�

is bounded. The corresponding equa-

tion on
∧2

(C4),

d

dξ
Ũ± = [A(2)(ξ, λ) − σ±(λ)I]Ũ± , Ũ±(ξ, λ)

∣∣
ξ=L±∞

= ζ±(λ) ,(B.12)

is integrated from ξ = L±∞ to ξ = ξ� (where ξ� is arbitrary but fixed).
The system (B.12) can be integrated using the second-order implicit midpoint

method. For a system in the form Uξ = B(ξ, λ)U, each step of the implicit midpoint
rule takes the form

Un+1 = [I − 1
2ΔxBn+1/2]

−1[I + 1
2ΔxBn+1/2]U

n,(B.13)

where Bn+1/2 = B(xn+1/2, λ).

Appendix C. The authors wish to thank Harvinder Sidhu, Konstantina Trivisa,
Marshall Slemrod, and Joceline Lega for discussions and pointers. Detailed comments
and suggestions from two anonymous referees, whose efforts revealed a substantial
error in a previous version of this manuscript, are also gratefully acknowledged.



HIGH LEWIS NUMBER COMBUSTION WAVEFRONTS 485

REFERENCES

[1] A. L. Afendikov and T. J. Bridges, Instability of the Hocking-Stewartson pulse and its
implications for the three-dimensional Poiseuille flow, R. Soc. Lond. Proc. Ser. A Math.
Phys. Eng. Sci., 457 (2001), pp. 257–272.

[2] J. Alexander, R. Gardner, and C. Jones, A topological invariant arising in the stability
analysis of travelling waves, J. Reine Angew. Math., 410 (1990), pp. 167–212.

[3] L. Allen and T. J. Bridges, Numerical exterior algebra and the compound matrix method,
Numer. Math., 92 (2002), pp. 197–232.

[4] D. K. Arrowsmith and C. M. Place, An Introduction to Dynamical Systems, Cambridge
University Press, Cambridge, UK, 1990.

[5] A. Bayliss and B. J. Matkowsky, Two routes to chaos in condensed phase combustion, SIAM
J. Appl. Math., 50 (1990), pp. 437–459.

[6] A. Bayliss and B. J. Matkowsky, From traveling waves to chaos in combustion, SIAM J.
Appl. Math., 54 (1994), pp. 147–174.

[7] J. Billingham, Phase plane analysis of one-dimensional reaction diffusion waves with degen-
erate reaction terms, Dyn. Stab. Syst., 15 (2000), pp. 23–33.

[8] J. Billingham and G. N. Mercer, The effect of heat loss on the propagation of strongly
exothermic combustion waves, Combust. Theory Model., 5 (2001), pp. 319–342.

[9] T. J. Bridges, The Orr-Sommerfeld equation on a manifold, R. Soc. Lond. Proc. Ser. A Math.
Phys. Eng. Sci., 455 (1999), pp. 3019–3040.

[10] T. J. Bridges and G. Derks, Hodge duality and the Evans function, Phys. Lett. A, 251 (1999),
pp. 363–372.

[11] T. J. Bridges, G. Derks, and G. Gottwald, Stability and instability of solitary waves of the
fifth-order KdV equation: A numerical framework, Phys. D, 172 (2002), pp. 190–216.

[12] L. Q. Brin, Numerical testing of the stability of viscous shock waves, Math. Comp., 70 (2001),
pp. 1071–1088.

[13] W. Bush and F. Fendell, Asymptotic analysis of laminar flame propagation for general Lewis
numbers, Combust. Sci. Tech., 1 (1970), pp. 421–428.

[14] S. A. Cardarelli, D. Golovaty, L. K. Gross, V. T. Gyrya, and J. Zhu, A numerical study
of one-step models of polymerization: Frontal versus bulk mode, Phys. D, 206 (2005),
pp. 145–165.

[15] G. Derks and G. A. Gottwald, A robust numerical method to study oscillatory instability
of gap solitary waves, SIAM J. Appl. Dyn. Syst., 4 (2005), pp. 140–158.

[16] J. W. Evans, Nerve axon equations. IV. The stable and the unstable impulse, Indiana Univ.
Math. J., 24 (1974/75), pp. 1169–1190.

[17] J. W. Evans and N. Feroe, Local stability theory of the nerve impulse, Math. Biosci., 37
(1977), pp. 23–50.

[18] N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ.
Math. J., 21 (1971), pp. 193–226.

[19] B. Gray, S. Kalliadasis, A. Lazarovich, C. Macaskill, J. Merkin, and S. Scott, The
suppression of exothermic branched-chain flame through endothermic reaction and radical
scavenging, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 458 (2002), pp. 2119–2138.

[20] V. Gubernov, G. N. Mercer, H. S. Sidhu, and R. O. Weber, Evans function stability of
combustion waves, SIAM J. Appl. Math., 63 (2003), pp. 1259–1275.

[21] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurca-
tions of Vector Fields, Springer-Verlag, New York, 1983.

[22] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840,
Springer-Verlag, Berlin, 1981.

[23] C. K. R. T. Jones, Stability of the travelling wave solution of the FitzHugh-Nagumo system,
Trans. Amer. Math. Soc., 286 (1984), pp. 431–469.

[24] A. Kapila, Asymptotic Treatment of Chemically Reacting Systems, Pitman, Boston, 1983.
[25] S. Margolis and S. Johnston, Multiplicity and stability of supercritical combustion in a

nonadiabatic tubular reactor, Combust. Sci. Tech., 65 (1989), pp. 103–136.
[26] S. B. Margolis and F. A. Williams, Diffusion/thermal instability of solid propellant flame,

SIAM J. Appl. Math., 49 (1989), pp. 1390–1420.
[27] S. B. Margolis and F. A. Williams, Flame propagation in solids and high-density fluids with

Arrhenius reactant diffusion, Comb. Flame, 83 (1991), pp. 390–398.
[28] B. J. Matkowsky and G. I. Sivashinsky, Propagation of a pulsating reaction front in solid

fuel combustion, SIAM J. Appl. Math., 35 (1978), pp. 465–478.
[29] V. K. Melnikov, On the stability of the centre for time-periodic perturbations, Trans. Moscow

Math. Soc., 12 (1963), pp. 1–56.



486 BALASURIYA, GOTTWALD, HORNIBROOK, AND LAFORTUNE

[30] G. N. Mercer and R. O. Weber, Combustion waves in two dimensions and their one-
dimensional approximation, Combust. Theory Model., 1 (1997), pp. 157–165.

[31] B. Ng and W. Reid, An initial-value method for eigenvalue problems using compound matrices,
J. Comput. Phys., 30 (1979), pp. 125–136.

[32] R. L. Pego, P. Smeraka, and M. I. Weinstein, Oscillatory instability of solitary waves in a
continuum model of lattice vibrations, Nonlinearity, 8 (1995), pp. 92–941.

[33] B. Sandstede, Stability of travelling waves, in Handbook of Dynamical Systems II: Towards
Applications, Elsevier, Amsterdam, 2002, pp. 983–1055.

[34] P. Simon, S. Kalliadasis, J. Merkin, and S. Scott, Evans function analysis of the stability
of non-adiabatic flames, Combust. Theory Model., 7 (2003), pp. 545–561.

[35] J. Swinton and J. Elgin, Stability of travelling pulse to a laser equation, Phys. Lett. A, 145
(1990), pp. 428–433.

[36] F. Varas and J. M. Vega, Linear stability of a plane front in solid combustion at large heat
of reaction, SIAM J. Appl. Math., 62 (2002), pp. 1810–1822.

[37] R. O. Weber, G. N. Mercer, H. S. Sidhu, and B. F. Gray, Combustion waves for gases (Le
= 1) and solids (Le → ∞), R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 453 (1997),
pp. 1105–1118.

[38] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag,
New York, 1990.

[39] J. Xin, Front propagation in heterogeneous media, SIAM Rev., 42 (2000), pp. 161–230.
[40] E. Yanagida, Stability of fast travelling pulse solutions of the FitzHugh-Nagumo equations, J.

Math. Biol., 22 (1985), pp. 81–104.



SIAM J. APPL. MATH. c© 2007 Society for Industrial and Applied Mathematics
Vol. 67, No. 2, pp. 487–511

ON THE WAVE STRUCTURE OF TWO-PHASE FLOW MODELS∗

STEINAR EVJE† AND TORE FLÅTTEN‡

Abstract. We explore the relationship between two common two-phase flow models, usually
denoted as the two-fluid and drift-flux models. They differ in their mathematical description of
momentum transfer between the phases. In this paper we provide a framework in which these two
model formulations are unified. The drift-flux model employs a mixture momentum equation and
treats interphasic momentum exchange indirectly through the slip relation, which gives the relative
velocity between the phases as a function of the flow parameters. This closure law is in general highly
complex, which makes it difficult to analyze the model algebraically. To facilitate the analysis, we
express the quasi-linear formulation of the drift-flux model as a function of three parameters: the
derivatives of the slip with respect to the vector of unknown variables. The wave structure of this
model is investigated using a perturbation technique. Then we rewrite the drift-flux model with a
general slip relation such that it is expressed in terms of the canonical two-fluid form. That is, we
replace the mixture momentum equation and the slip relation with equivalent evolution equations
for the momentums of each phase. We obtain a mathematically equivalent formulation in terms of
a two-fluid model and by this bridge some of the gap between the drift-flux model and the two-fluid
model. Finally, the effect of the various exchange terms on the wave structure of the two-fluid model
is investigated.

Key words. hyperbolic system of conservation laws, two phase flow, drift-flux model, two-fluid
model, perturbation method, eigenvalues, interface friction
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1. Introduction. In general, multiphase flows exhibit a complex dynamical
behavior, where depending on the physical parameters several different flow regimes
may occur. Flow regimes are commonly divided into separated (stratified, annular)
and mixed (bubbly, dispersed) flows.

There exists no simple model formulation able to describe all these phenomena
adequately. Rather, a variety of different models have been suggested with different
applications in mind; see, for instance, [6, 8, 23, 24].

A classical way to obtain tractable models is to average in space. Of such mod-
els, two particular strategies have attracted considerable interest in the petroleum
industry: the two-fluid [4, 20] and drift-flux [22] models. These models, described in
sections 2 and 3, are the focus of the current paper.

The models contain a significant amount of additional closure laws. These closure
relations typically depend on the flow structure and represent the main difficulty in
the model formulation.

As noted by Bouré [9], the effect of closure relations may be viewed on two different
levels:

1. Their physical magnitude affects the predicted values of the flow parameters.
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2. Their mathematical form affects the propagation properties of the flow model.
That is, differential closure terms affect the velocities and composition of the
predicted waves, whereas nondifferential terms do not.

The drift-flux model and its closure relations are commonly formulated to model
mixed flow regimes. Depending on the closure relations, the two-fluid model has more
general validity. In its most basic form, it is nevertheless best suited for a description of
separated flows. These different domains of applicability manifest themselves through
the different wave structures of the common formulation of the two models.

The purpose of this paper is twofold.

(I) Primary aim. To demonstrate how nondifferential closure relations for the
drift-flux model may be transformed into corresponding differential relations in the
two-fluid framework. By this transformation, we obtain a two-fluid model whose un-
derlying mathematical structure is identical to the original drift-flux model. Hence it
becomes possible to alternate between the two formulations within a unified frame-
work.

(II) Secondary aim. To demonstrate how the wave structure of the drift-flux
model may be investigated by a perturbation technique, first applied to two-phase
flows by Toumi and coworkers [27, 28], who considered the two-fluid model.

The paper is organized as follows: In sections 2 and 3 we describe the two-fluid
and drift-flux models in question. Section 4 is dedicated to the secondary aim of the
paper; here we investigate the wave structure of the drift-flux model.

In section 5 we confront the primary aim of our paper, writing the drift-flux
model in the framework of a two-fluid model. A main result is equation (118), the
explicit form of the interface friction that makes the two-fluid model mathematically
equivalent to a general drift-flux model.

Armed with a thorough understanding of the mathematical structure of both
models, we demonstrate in section 6 how the wave velocities of the two-fluid model
gradually change by addition of the different terms of (118). This illustrates the
physical effects of the different closure terms on the wave phenomena inherent in the
models.

2. Two-fluid model. To be consistent with the dynamical behavior of the
flow physics, the two-phase models we consider must describe the following wave
phenomena:

• Sonic waves, conveying rapid variations in the pressure and the associated
velocity fields. They are a consequence of the compressibility of the flow.

• Material waves, conveying large scale variations in the volumetric phase frac-
tions and mixture density. They are responsible for the dynamics correspond-
ing to mass transport.

• Entropy waves, representing thermodynamic properties transported along the
flow.

As noted, for instance, by [9, 27], the entropy waves are uncoupled from the remaining
wave structure. Phasic entropies are simply advected with the fluid velocities.

Hence the structure of the sonic and material waves may be studied with no loss
of generality by considering only isentropic flow models. Such models are based on
the physical principle of conservation of the mass and momentum variables, neglecting
dynamic energy transfers.

Supplemented by proper closure relations, the models hence consist of mass and
momentum balance equations, expressed in the form of partial differential equations.
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2.1. Model formulation. For a gas (g) and a liquid (�) phase, the isentropic
two-fluid model may be written as follows:

• Conservation of mass

(1)
∂

∂t
(ρgαg) +

∂

∂x
(ρgαgvg) = 0,

(2)
∂

∂t
(ρ�α�) +

∂

∂x
(ρ�α�v�) = 0,

• Momentum balances

(3)
∂

∂t
(ρgαgvg) +

∂

∂x

(
ρgαgv

2
g

)
+

∂

∂x
(αgpg) − pi ∂

∂x
(αg) = Qg + M i

g,

(4)
∂

∂t
(ρ�α�v�) +

∂

∂x

(
ρ�α�v

2
�

)
+

∂

∂x
(α�p�) − pi ∂

∂x
(α�) = Q� + M i

�.

Here αk is the volume fraction of phase k with

(5) αg + α� = 1,

where ρk, pk, and vk denote the density, pressure, and fluid velocity of phase k,
respectively, and pi is the pressure at the gas-liquid interface. M i

k represents inter-
phasic momentum exchange terms with M i

g + M i
� = 0. Momentum sources acting on

each phase separately, such as wall friction or gravitational forces, are represented by
the terms Qk.

2.2. Closure relations. The closure relations needed to complete the model
may be divided into three groups.

2.2.1. Thermodynamic submodels. For each phase k, the thermodynamic
state relation

(6) pk = p(ρk, Sk)

must be specified. Here Sk is the entropy of phase k. Furthermore, the interface
pressure pi must be expressed as a function of the phasic pressures:

(7) pi = pi(pg, p�).

When the flows are separated due to gravitational forces, the relationships between
the pressures pi, pg, and p� are commonly chosen to model the effects of hydrostatics.
In this case, the two-fluid model is able to describe travelling surface waves on the
gas-liquid interface; see, for instance, [2].

2.2.2. Phase-specific source terms. The main momentum sources acting on
each phase separately are the following:

• Gravity.
The effect of gravitational acceleration is expressed by

(8) Qk = −ρkαkg sin θ,

where θ is the angle of the flow direction with respect to the horizontal.
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• Wall friction.
For separated flows, the wall friction for each phase is commonly expressed
in terms of friction factors as follows:

(9) Qk = −fk
ρk |vk| vk

2
.

The Blasius equation is commonly used for calculating fk; see, for instance, [1,
25]. According to [7], most mixed flow regimes may be modeled to acceptable
accuracy by using friction factors corresponding to one-phase liquid flow (fg =
0).

2.2.3. Interphasic momentum exchange terms. The interactions between
the phases are highly complex and different in character for each flow regime. Hence
these terms are notoriously difficult to derive from theoretical considerations. Nor
are they easily determined from experimental data, as their effects are only indirectly
visible. We here briefly describe two of the most common approaches for modeling the
interphasic momentum exchange, applied to separated and mixed flows, respectively.

• Stratified flows.
For stratified flows it is common [1, 25] to express the interphasic momentum
exchange in nondifferential form, as a function of a friction factor fi:

(10) M i
� = −M i

g = fi
ρg |vg − v�| (vg − v�)

2
.

Andritsos and Hanratty [1] noted that waves existing on the gas-liquid inter-
face have a significant effect on the magnitude of fi. They suggested that for
sufficiently small gas flow rates αgvg < Ucrit, such that no waves are generated
at the interface,

(11) fi ≈ fg.

For αgvg > Ucrit they developed a correlation where fi/fg increases linearly
with αgvg.

• Bubbly flows. For a two-phase mixture of gas dispersed within the liquid,
the momentum transfer induced by a gas bubble accelerating with respect to
the surrounding fluid must be taken into account. This effect, denoted as the
virtual mass force, has been analyzed by Drew, Cheng, and Lahey [10]. By
imposing the condition that this interface friction is invariant under a change
of reference frame, they derived the expression

M i
g = αgρ�Cvm

(
∂t (vg − v�) + vg∂x (vg − v�)

+ (vg − v�) ((λ− 2)∂xvg + (1 − λ)∂xv�)
)
,

(12)

where λ and Cvm (the coefficient of virtual mass) are volume fraction depen-
dent parameters. The value of Cvm is expected to be 1/2 for noninteracting
spheres and smaller for bubbles of other shapes.
The wave structure of the two-fluid model with virtual mass force included has
been analyzed in [18, 19, 28]. In particular, Lahey [19] discusses similarities
between such a two-fluid model and the drift-flux model.
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2.3. Canonical formulation. The multitude of possible closure relations gives
rise to a large class of slightly different models, all falling under the heading of two-
fluid models. In the following, we will find it useful to base our analyses on some
common formulation of these models. By neglecting the phasic pressure difference
(p = pg = p�) and writing

(13) τi =
(
p− pi

) ∂αg

∂x
−M i

g = −
(
p− pi

) ∂α�

∂x
+ M i

�,

we arrive at the following canonical two-fluid model:
• Conservation of mass

(14)
∂

∂t
(ρgαg) +

∂

∂x
(ρgαgvg) = 0,

(15)
∂

∂t
(ρ�α�) +

∂

∂x
(ρ�α�v�) = 0,

• Momentum balances

(16)
∂

∂t
(ρgαgvg) +

∂

∂x

(
ρgαgv

2
g

)
+ αg

∂

∂x
(p) + τi = Qg,

(17)
∂

∂t
(ρ�α�v�) +

∂

∂x

(
ρ�α�v

2
�

)
+ α�

∂

∂x
(p) − τi = Q�,

where the interfacial momentum exchange term τi may or may not contain differential
operators.

3. Drift-flux model. A strategy to avoid the modeling difficulties associated
with the momentum exchange terms, as mentioned in the previous section, is to
reformulate the model such that these terms no longer directly appear. This is
precisely the idea of the drift-flux formulation of two-phase flow. By making the
simplifying assumption

(18) p = pg = p�,

and adding the two momentum equations (3) and (4), we obtain the conservation
equation for the mixture momentum:

(19)
∂

∂t
(ρgαgvg + ρ�α�v�) +

∂

∂x

(
ρgαgv

2
g + ρ�α�v

2
� + p

)
= Qg + Q�.

Note that (18) is consistent with the assumption of a mixed flow regime, which is the
situation for which the drift-flux model is commonly applied.

The phasic momentums must satisfy a slip relation in the functional form

(20) vg − v� = Φ(p, αg, vg).

Hence the two momentum evolution equations (16)–(17) of the two-fluid model are
replaced by one evolution equation (19) and one functional relation (20). Bouré [9]
discusses generalized drift-flux models where Φ may also contain differential operators.
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3.1. Model formulation. In summary, using the nomenclature

mg = ρgαg,(21)

m� = ρ�α�,(22)

Ig = mgvg,(23)

I� = m�v�,(24)

I = Ig + I�,(25)

Q = Qg + Q�,(26)

we may express the drift-flux model as

(27)
∂mg

∂t
+

∂Ig
∂x

= 0,

(28)
∂m�

∂t
+

∂I�
∂x

= 0,

(29)
∂I

∂t
+

∂

∂x
(Igvg + I�v� + p) = Q,

supplemented with the following functional relations:
• Thermodynamics: p = p(ρg) = p(ρ�).
• Slip relation: vg − v� = Φ(mg,m�, vg).

3.2. Quasi-linear formulation. The model (27)–(29) may be written in the
following quasi-linear form:

(30)
∂U

∂t
+ A(U)

∂U

∂x
= Q(U),

where

(31) U =

⎡
⎣ mg

m�

I

⎤
⎦

and

(32) Q(U) =

⎡
⎣ 0

0
Q

⎤
⎦ .

In the following, we will derive an expression for the Jacobi matrix A. Towards this
aim, we will follow the common practice of thermodynamics and take

(33)

(
∂X

∂Y

)
a,b

to mean the partial derivative of X with respect to Y under the assumption of constant
a and b.
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3.2.1. Some definitions. We now define the following basic abbreviations:

μg =

(
∂Φ

∂mg

)
m�,vg

,(34)

μ� =

(
∂Φ

∂m�

)
mg,vg

,(35)

μv =

(
∂Φ

∂vg

)
mg,m�

,(36)

ζ =

(
∂v�
∂vg

)
mg,m�

.(37)

We further define the pseudomass ρ̂:

(38) ρ̂ = mg + ζm�.

Remark 1. We observe that by writing (20) as

(39) dΦ = dvg − dv�,

we obtain from (36) and (37) the basic relation

(40) μv = 1 − ζ.

We may now derive the following useful differentials.
Differential 1 (gas velocity). We may expand dI as

(41) dI = mg dvg + vg dmg + v� dm� + m� dv�.

Using (39) and

(42) dΦ = μg dmg + μ� dm� + μv dvg,

we obtain

(43) dvg =
1

ρ̂
(dI + (m�μg − vg) dmg + (m�μ� − v�) dm�) .

Differential 2 (gas momentum). Using

(44) dIg = mg dvg + vg dmg,

we obtain from (43)

(45) dIg =
1

ρ̂
(mg dI + (mgm�μg + ζm�vg) dmg + (mgm�μ� −mgv�) dm�) .

Differential 3 (liquid momentum). Using

(46) dI = dIg + dI�,

we obtain from (45)

(47) dI� =
1

ρ̂
(ζm� dI − (mgm�μg + ζm�vg) dmg − (mgm�μ� −mgv�) dm�) .
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Differential 4 (pressure). Writing αg + α� = 1 as

(48)
mg

ρg(p)
+

m�

ρ�(p)
= 1,

we obtain by differentiation

(49) dp = κ (ρ� dmg + ρg dm�) ,

where

(50) κ =
1

(∂ρg/∂p) ρ�αg + (∂ρ�/∂p) ρgα�
.

Differential 5 (gas momentum convection). We have

(51) d (Igvg) = Ig dvg + vg dIg.

Hence from (43) and (45) we obtain

d (Igvg) =
1

ρ̂

(
2mgvg dI +

(
2mgm�vgμg + (ζm� −mg)v

2
g

)
dmg

+ (2mgm�vgμ� − 2mgvgv�) dm�

)
.(52)

Differential 6 (liquid momentum convection). We have

(53) dv� = dvg − dΦ = ζ dvg − μg dmg − μ� dm�.

From (43) we obtain

(54) dv� =
1

ρ̂
(ζ dI − (mgμg + ζvg) dmg − (mgμ� + ζv�) dm�) .

Hence from

(55) d (I�v�) = I� dv� + v� dI�

we obtain

d (I�v�) =
1

ρ̂

(
2ζm�v� dI − (2mgm�v�μg + 2ζm�vgv�) dmg

−
(
2mgm�v�μ� + (ζm� −mg)v

2
�

)
dm�

)
.(56)

3.2.2. The Jacobi matrix. With the aid of these differentials we can more or
less directly write down the Jacobi matrix

(57) A(U) =
1

ρ̂

⎡
⎣ mgm�μg + ζm�vg mgm�μ� −mgv� mg

−(mgm�μg + ζm�vg) mgv� −mgm�μ� ζm�

A31 A32 2(mgvg + ζm�v�)

⎤
⎦ ,

where

(58) A31 = κρ̂ρ� + 2mgm�μg(vg − v�) + (ζm� −mg)v
2
g − 2ζm�vgv�

and

(59) A32 = κρ̂ρg + 2mgm�μ�(vg − v�) − (ζm� −mg)v
2
� − 2mgvgv�.



ON THE WAVE STRUCTURE OF TWO-PHASE FLOW MODELS 495

4. Wave structure analysis. As is well known from the theory of hyperbolic
conservation laws, the velocities of the inherent wave phenomena of the system (30)
are given by the eigenvalues of A.

These eigenvalues satisfy the characteristic equation

(λ− vg)(λ− v�)(ρ̂λ−mgvg − ζm�v�) + mgm�

(
μ�(λ− vg)

2 − μg(λ− v�)
2
)

+ κρgρ� (αgα�(ρgμg − ρ�μ�) − αg(λ− v�) − ζα�(λ− vg)) = 0.

(60)

Remark 2 (eigenvectors). The eigenvector equation for A is

(61) Aω = λω.

From (57) we obtain

(62) ω =

⎡
⎣ mg (m�μ� + (λ− v�))

ζm�(λ− vg) −mgm�μg

λ (ρ̂λ−mgm�(μg − μ�) −mgv� − ζm�vg)

⎤
⎦ .

The eigenvalue equation (60), being a third-order polynomial, can in principle be
solved exactly to yield algebraic expressions for the eigenvalues λ. However, as tools
for understanding the wave structure of the drift-flux model, these exact solutions
are of limited value due to their high degree of complexity. In practice, one would
often prefer making some simplifying assumptions and study the resulting approximate
eigenvalues.

4.1. The Zuber–Findlay relation. A very important special case is the Zuber–
Findlay slip relation [30], which can be written in the following simple analytical form:

(63) vg = K (αgvg + α�v�) + S

or equivalently

(64) Φ =
(K − 1)vg + S

Kα�
.

This expression was derived from continuity considerations by Zuber and Findlay [30],
where two different effects are taken into account:

1. The effect of nonuniform velocity and concentration profiles. The shape factor
K is defined as

(65) K =
〈(αgvg + α�v�)αg〉
〈αgvg + α�v�〉〈αg〉

,

where

(66) 〈·〉 =
1

A

∫
A

(·)(x, y, z)dA.

Here A is the cross-sectional area in the (y, z)-plane.
2. The effect of local relative velocity. The drift velocity S is defined as the

terminal velocity of a single gas bubble rising through the liquid.
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The Zuber–Findlay relation (63) has been experimentally established for a broad
range of parameters for both bubbly and slug flows [3, 15].

This particular drift-flux model has been extensively studied by Théron [26] and
Benzoni-Gavage [5]. By making some simplifying assumptions (most notably constant
K and S as well as an incompressible liquid phase) they obtained the eigenvalues

• sonic waves

(67) λs = v� ±
√

p

ρ�αg (1 −Kαg)
,

• material wave

(68) λm = vg.

Benzoni-Gavage [5] demonstrated that the sonic characteristic fields are genuinely
nonlinear, whereas the material field is linearly degenerate. Provided the liquid phase
is incompressible, Gavrilyuk and Fabre [16] have demonstrated that under a suitable
variable transformation, the drift-flux model with slip relation (63) is mathematically
similar to the Euler equations of gas dynamics.

In the following sections, we demonstrate how the drift-flux model may be ana-
lyzed more generally using a perturbation technique suggested by Toumi and cowork-
ers [27, 28, 29]. In particular, we allow the liquid to be compressible and recover the
above results of [26, 5] as the low-order limit in the perturbation parameter.

4.2. A simplifying assumption. In the following, we will assume that the
slip relation can be expressed in the Zuber–Findlay form (63). Here we allow the
parameters K and S to be expressed as general functions:

K = K(p, vg),(69)

S = S(p, vg).(70)

Equivalently, this can be expressed as a differential equation:

(71) α�

(
∂Φ

∂α�

)
p

+ Φ = 0.

From (34), (35), and (48) we may derive the following identity:

(72)

(
∂Φ

∂α�

)
p

≡ ρ�μ� − ρgμg.

Hence from (71) we obtain

(73) μ� =
ρg

ρ�
μg +

v� − vg

m�

and the eigenvalue equation (60) simplifies to

(λ− vg)(λ− v�)(ρ̂λ−mgvg − ζm�v�) + mgm�

(
μ�(λ− vg)

2 − μg(λ− v�)
2
)

(74)

− κρgρ� (αg + ζα�) (λ− vg) = 0.
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4.3. Dimensionless formulation. By making the substitution

(75) λ = vg + aσ

we will achieve some simplification, where a now plays the role of the unknown. We
may now write (74) as

aσ(vg − v� + aσ) (ρ̂aσ + ζm�(vg − v�)) + mgm�

(
μ�a

2σ2 − μg(vg − v� + aσ)2
)

− κρgρ� (αg + ζα�) aσ = 0.
(76)

Now defining σ as

(77) σ2 = κρ̂ (αg + ζα�)

and introducing the dimensionless variables

ε =
vg − v�

σ
,(78)

z =
mgα�

σ
μg,(79)

ψ =
ρg

ρ̂
,(80)

ϕ =
ρ�
ρ̂
,(81)

the eigenvalue equation (76) may correspondingly be written in dimensionless form

(82) a(ε + a)(a + ζα�ϕε) + zψa2 − zϕ(ε + a)2 − αgψεa
2 − ϕψa = 0.

Now introducing the pseudoliquid fraction

(83) α̂ = ζα�

and noting that

(84) αgψ + ζα�ϕ = 1,

the eigenvalue equation (82) simplifies to

(85) a3 + (2α̂ϕε− z(ϕ− ψ)) a2 + ϕ
(
α̂ε2 − 2zε− ψ

)
a− zϕε2 = 0.

4.4. A power series approximation. We may now write a as a power series
expansion

(86) a =

∞∑
i=0

βiχ
i

for some perturbation parameter χ. Now several choices for χ are available through
(78)–(81), depending on the values of the physical variables. In the following, we will
use as our starting point the incompressible limit and obtain eigenvalues accurate to
the lowest orders of compressibility.

Towards this aim, we observe that σ given by (77) will have a magnitude in the
order of the phasic sound velocities (which tend to infinity in the incompressible limit).
Hence, for subsonic flows, we expect

(87) ε � 1.
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Consequently we write

(88) a =
∞∑
i=0

βiε
i

and obtain the coefficients βi by repeatedly solving (85) to the corresponding order
in ε.

4.4.1. Material wave. From (85) we obtain

(89)

⎡
⎢⎢⎢⎢⎢⎣

β0

β1

β2

β3

...

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0
0

−z/ψ
2z2/ψ2

...

⎤
⎥⎥⎥⎥⎥⎦ ,

which translates into the eigenvalue

(90) λm = vg −
αgα�

αg + ζα�
μg

(vg − v�)
2

κ
+ O(ε3)

by the relations of section 4.3.

4.4.2. Sonic waves. We will find it convenient to introduce the shorthand

(91) w =
√
z2(ψ − ϕ)2 + 4ϕψ.

From (85) we obtain
• downstream pressure wave

(92)

⎡
⎢⎢⎢⎣

β0

β1

β2

...

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

((ϕ− ψ)z + w) /2
2ϕ (z − α̂β0) /w

β1

(
4ϕψ(1 − α̂ϕ) − z2(ϕ2 − ψ2) − 2ϕwz

)
/(2β0w

2)
...

⎤
⎥⎥⎥⎦ ,

• upstream pressure wave (obtained from (85))

(93)

⎡
⎢⎢⎢⎣

β0

β1

β2

...

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

((ϕ− ψ)z − w) /2
−2ϕ (z − α̂β0) /w

β1

(
4ϕψ(1 − α̂ϕ) − z2(ϕ2 − ψ2) + 2ϕwz

)
/(2β0w

2)
...

⎤
⎥⎥⎥⎦ .

Now by writing the sonic eigenvalues in the form

(94) λp = v̄p ± c,

the coefficients (92)–(93) yield after some manipulation

(95) v̄p =
mgvg + ζm�v�
mg + ζm�

+ mgα�μg
ρ� − ρg

2ρ̂
+

αgα�

αg + ζα�
μg

(vg − v�)
2

2κ
+ O(ε3),

as well as the sonic velocity c:

(96) c =
1

2
wσ +

zϕ

w
(2 − α̂(ϕ− ψ)) (vg − v�) + O(ε2).
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Remark 3. Given that

(97) trace(A) =
∑
i

λi,

the following exact relation between v̄p and λm is satisfied:

(98) 2v̄p + λm =
1

ρ̂

(
mgm�μg

(
1 − ρg

ρ�

))
+ vg + 2

mgvg + ζm�v�
ρ̂

.

Remark 4. Although these eigenvalue expressions have been obtained under the
assumption (71), similar techniques may be applied to solve (60) for other slip rela-
tions not satisfying (71). However, some knowledge of the relationship between the
parameters μg, μ�, and μv will be useful for simplifying the calculations and deter-
mining a good choice of perturbation parameter.

4.5. Zuber–Findlay revisited. We now revisit the special case of the Zuber–
Findlay slip relation (63)

(99) vg = K(αgvg + α�v�) + S,

but we now consider K and S to be constants, which depend on the flow regime. This
further simplification of (71) is often used for practical calculations [11, 15, 30].

4.5.1. Slip derivatives. By differentiation, we obtain the following explicit
expressions for the slip parameters (34)–(37):

(100) μv =
K − 1

Kα�
,

(101) μg = (vg − v�)κ
∂ρ�
∂p

,

(102) μ� = −(vg − v�)κ
αg

α�

∂ρg

∂p
,

and

(103) ζ =
1 −Kαg

Kα�
.

Asymptotic expressions for the eigenvalues could now be obtained by substituting
(100)–(103) into the previously calculated expressions (90) and (95)–(96). Equiva-
lently, we may also substitute (100)–(103) into (76) and repeat the power series anal-
ysis. This will greatly simplify the calculations, a point that will be demonstrated in
the following.

4.5.2. Eigenvalue equation. From (101) we note that z, as defined by (79),
may be written as

(104) z = ηε,

where

(105) η = mgα�κ
∂ρ�
∂p

.

Substituting in (85) we obtain the eigenvalue equation

(106) a3 + ε (2α̂ϕ− η(ϕ− ψ)) a2 + ϕ
(
α̂ε2 − 2ηε2 − ψ

)
a− ηϕε3 = 0.
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4.5.3. Material wave. Solving (106) to powers of ε yields the following coeffi-
cients:

(107)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β0

β1

β2

β3

β4

β5

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−η/ψ
0

η(2η − α̂)/ψ2

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Hence

(108) λm = vg −Kαgα�
∂ρ�
∂p

(vg − v�)
3 + O(ε5).

Changes in the material composition are consequently propagated by the velocity of
the gas bubbles, plus small correction terms representing volumetric changes due to
compression. Note that λm = vg becomes an exact eigenvalue for η = 0, the limit of
incompressible liquid [16].

4.5.4. Sonic waves. For the sonic waves, we obtain the following coefficients:
• Downstream pressure wave

(109)⎡
⎢⎢⎣

β0

β1

β2

...

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

√
ϕψ

η(φ− ψ)/2 − α̂ϕ(
2ϕ(4η + 2α̂ηψ − η2ψ − 4α̂) + (2α̂− η)2ϕ2 + η2ψ2

)
/(8

√
ϕψ)

...

⎤
⎥⎥⎦,

• Upstream pressure wave
(110)⎡
⎢⎢⎣

β0

β1

β2

...

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

−
√
ϕψ

η(φ− ψ)/2 − α̂ϕ

−
(
2ϕ(4η + 2α̂ηψ − η2ψ − 4α̂) + (2α̂− η)2ϕ2 + η2ψ2

)
/(8

√
ϕψ)

...

⎤
⎥⎥⎦.

Hence

(111) v̄p =
mgvg + ζm�v�
mg + ζm�

+ mgα�κ
∂ρ�
∂p

(vg − v�)
ρ� − ρg

2ρ̂
+ O(ε3),

and the sound velocity c may be written as

(112) c =

√
κρgρ�

Kαg(ρg − ρ�) + ρ�
+ O(ε)2.

Remark 5. Note that ρg � ρ� implies c � σ, and the requirement ε � 1 (87)
has a significantly broader range of validity than the assumption of subsonic slip,
|vg − v�| � c.

Remark 6. The sonic eigenvalues may be written as

(113) λs = v� ±
√

(∂p/∂ρg)ρg

(1 −Kαg)ρ�αg
+ O(η) + O(ψ) + O(ε2),

which reduces to the result (67) when p(ρg) satisfies the ideal gas law.
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5. Two-fluid formulation. In this section, we perform the transformation re-
quired to write the general drift-flux model of section 3.1 in canonical two-fluid form
as described in section 2.3. In other words, we replace the conservation equation
(19), together with the slip relation (20), with equivalent evolution equations for the
momentums of each phase.

5.1. Momentum evolution equations. We first derive an explicit gas mo-
mentum evolution equation for the general drift-flux model with slip relation (20).
Our starting point is the previously derived differential (45), which becomes

(114)
∂Ig
∂t

=
1

ρ̂

(
mg

∂I

∂t
+ (mgm�μg + ζm�vg)

∂mg

∂t
+ (mgm�μ� −mgv�)

∂m�

∂t

)
,

when written as a partial derivative with respect to t.

By using the conservation equations (27)–(29), we obtain the gas momentum
evolution equation, written in terms of spatial derivatives

∂Ig
∂t

+
mg

ρ̂

∂

∂x
(Igvg + I�v� + p) +

ζm�

ρ̂
vg

∂Ig
∂x

(115)

− mg

ρ̂
v�
∂I�
∂x

+
mgm�

ρ̂

(
μg

∂Ig
∂x

+ μ�
∂I�
∂x

)
=

mg

ρ̂
Q.

Further manipulation of derivatives yields

∂Ig
∂t

+
∂

∂x
(Igvg) +

mg

ρ̂

∂p

∂x
(116)

+
mgm�

ρ̂

(
v�
∂v�
∂x

− ζvg
∂vg

∂x
+ μg

∂Ig
∂x

+ μ�
∂I�
∂x

)
=

mg

ρ̂
Q.

5.1.1. Canonical form. Writing (116) under the canonical two-fluid form of
section 2.3,

(117)
∂Ig
∂t

+
∂

∂x
(Igvg) + αg

∂p

∂x
+ τi = Qg,

where Q = Qg + Q�, we find that the interface friction τi is given by

τi = αgα�
ρg − ζρ�

ρ̂

∂p

∂x
+

ζm�

ρ̂
Qg −

mg

ρ̂
Q�

+
mgm�

ρ̂

(
v�
∂v�
∂x

− ζvg
∂vg

∂x
+ μg

∂Ig
∂x

+ μ�
∂I�
∂x

)
.

(118)

5.1.2. Liquid momentum evolution. By inserting (118) into the canonical
liquid momentum equation (17), we obtain

∂I�
∂t

+
∂

∂x
(I�v�) +

ζm�

ρ̂

∂p

∂x

−mgm�

ρ̂

(
v�
∂v�
∂x

− ζvg
∂vg

∂x
+ μg

∂Ig
∂x

+ μ�
∂I�
∂x

)
=

ζm�

ρ̂
Q.

(119)
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5.2. Quasi-linear formulation. We may now express this rewritten drift-flux
model in quasi-linear form:

(120)
∂U

∂t
+ A

∂U

∂x
= Q,

similar to section 3.2. However, the matrix A is now 4 × 4 and U is given by

(121) U =

⎡
⎢⎢⎣

ρgαg

ρ�α�

ρgαgvg

ρ�α�v�

⎤
⎥⎥⎦ ,

whereas the vector of sources is

(122) Q =
1

ρ̂

⎡
⎢⎢⎣

0
0

mgQ
ζm�Q

⎤
⎥⎥⎦ .

We now split (118) into four parts:

(123) τi = τp + τv + τα + τQ,

where

(124) τp = αgα�
ρg − ζρ�

ρ̂

∂p

∂x
,

(125) τv =
mgm�

ρ̂

(
v�
∂v�
∂x

− ζvg
∂vg

∂x

)
,

(126) τα =
mgm�

ρ̂

(
μg

∂Ig
∂x

+ μ�
∂I�
∂x

)
,

and

(127) τQ =
ζm�

ρ̂
Qg −

mg

ρ̂
Q�.

This defines a natural decomposition of the Jacobi matrix as follows:

(128) A(U) = A0 + Ap + Av + Aα,

i.e., one additional contribution for each differential term of the interface friction.

5.2.1. A0. The Jacobi matrix for the canonical two-fluid model with τi = 0 is
[12]

(129) A0 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

κρ�αg − v2
g κρgαg 2vg 0

κρ�α� κρgα� − v2
� 0 2v�

⎤
⎥⎥⎦ .
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5.2.2. Ap. From (49) we obtain

(130) Ap(U) =

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 0 0

κρ�αgα�
ρg−ζρ�

ρ̂ κρgαgα�
ρg−ζρ�

ρ̂ 0 0

−κρ�αgα�
ρg−ζρ�

ρ̂ −κρ�αgα�
ρg−ζρ�

ρ̂ 0 0

⎤
⎥⎥⎥⎦ .

5.2.3. Av. From

(131) dvg =
1

mg
dIg −

vg

mg
dmg

and

(132) dv� =
1

m�
dI� −

v�
m�

dm�

we obtain

(133) Av(U) =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0

ζm�

ρ̂ v2
g −mg

ρ̂ v2
� − ζm�

ρ̂ vg
mg

ρ̂ v�

− ζm�

ρ̂ v2
g

mg

ρ̂ v2
�

ζm�

ρ̂ vg −mg

ρ̂ v�

⎤
⎥⎥⎦ .

5.2.4. Aα. We directly obtain

(134) Aα(U) =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0

mgm�

ρ̂ μg
mgm�

ρ̂ μ�

0 0 −mgm�

ρ̂ μg −mgm�

ρ̂ μ�

⎤
⎥⎥⎦ .

5.2.5. End result. Adding all contributions we obtain from (128)

(135)

A(U) =⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

mg

ρ̂

(
κρ� − v2

g

)
mg

ρ̂

(
κρg − v2

�

) (
2 − ζm�

ρ̂

)
vg +

mgm�

ρ̂
μg

mg

ρ̂
v� +

mgm�

ρ̂
μ�

ζm�
ρ̂

(
κρ� − v2

g

)
ζm�
ρ̂

(
κρg − v2

�

)
ζm�
ρ̂

vg − mgm�

ρ̂
μg

(
2 − mg

ρ̂

)
v� − mgm�

ρ̂
μ�

⎤
⎥⎥⎦ .

5.2.6. Eigenvalues. The eigenvalues of the matrix A are the roots of the poly-
nomial equation

λ
[
(λ− vg)(λ− v�)(ρ̂λ−mgvg − ζm�v�)

+ mgm�

(
μ�(λ− vg)

2 − μg(λ− v�)
2
)

+ κρgρ� (αgα�(ρgμg − ρ�μ�) − αg(λ− v�) − ζα�(λ− vg))
]

= 0.

(136)

By direct comparison with (60), we see that this may be written as

(137) λP (λ) = 0,

where P (λ) is the eigenvalue polynomial for the original drift-flux model.
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Remark 7. We have written the drift-flux model as a quasi-linear system of four
equations by deriving two momentum equations which replace the mixed momentum
equation and the slip law. As a consequence, the characteristic speeds of this system
are given by (137) showing that a new characteristic speed λ = 0, representing the slip
relation, has been added to the characteristic speeds already given by the drift-flux
model.

This situation is similar to what is observed for a much simpler problem. Consider
the scalar equation

(138) ut + f(u)x = k′(x)g(u),

where k, f , and g are given functions. A common approach for deriving numerical
schemes for the model (138) is to first write the model as a quasi-linear system of two
equations, by adding the trivial equation kt = 0, which gives

(139) Ut + A(U)Ux = 0, U =

(
u
k

)
, A(U) =

(
f ′(u) −g(u)

0 0

)
.

The characteristic speeds of this system are given by λ1 = f ′(u) and λ2 = 0. If f ′(u) =
0 for some u, then the eigenvalues coincide, and we have so-called resonance; see, for
instance, [17] and the references therein for more on this. Note that this phenomenon
might well also occur for our system (120)–(126), since one of the solutions of P (λ) = 0
corresponding to the slow material wave (see below for more details) can be zero. This
happens when vg = v� = 0.

It is interesting to note that the form (139) often is used as the starting point
for designing numerical schemes for solving (138). In a similar manner we could
imagine to use the above two-fluid form (120)–(126) as a starting point for developing
a numerical scheme for the drift-flux model, e.g., by using the numerical schemes more
recently proposed in [13, 14] for the two-fluid model.

6. Interface friction and wave velocities. In this section, we investigate how
the wave structure of the two-fluid model gradually changes as it is transformed into
a drift-flux model by addition of the various terms of (123). Our starting point is the
canonical model with τi = 0:

(140)
∂

∂t
(ρgαg) +

∂

∂x
(ρgαgvg) = 0,

(141)
∂

∂t
(ρ�α�) +

∂

∂x
(ρ�α�v�) = 0,

(142)
∂

∂t
(ρgαgvg) +

∂

∂x

(
ρgαgv

2
g

)
+ αg

∂

∂x
(p) = Qg,

(143)
∂

∂t
(ρ�α�v�) +

∂

∂x

(
ρ�α�v

2
�

)
+ α�

∂

∂x
(p) = Q�.

6.1. Wave structure of the canonical model. For different choices of τi,
Toumi and coworkers [27, 28, 29] investigated the wave structure of the model with a
perturbation technique. For τi = 0, the wave velocities are precisely the eigenvalues
of the matrix A0 given by (129). Now defining

(144) ε =
vg − v�

ĉ
,



ON THE WAVE STRUCTURE OF TWO-PHASE FLOW MODELS 505

where ĉ is a mixture sonic velocity given by

(145) ĉ =

√
ρ�αg + ρgα�

(∂ρg/∂p)ρ�αg + (∂ρ�/∂p)ρgα�
=

√
(ρ�αg + ρgα�)κ,

approximate eigenvalues for (140)–(143) were presented by Evje and Fl̊atten [12] as
described below.

6.1.1. Material waves. Writing

(146) λm = v̄v ± γ,

we obtain

(147) v̄v =
ρgα�vg + ρ�αgv�
ρgα� + ρ�αg

+ O(ε3)

and

(148) γ = i

√
ρgρ�αgα�(vg − v�)

ρgα� + ρ�αg
+ O(ε3).

Remark 8. Note that unless vg = v�, γ is imaginary and the canonical two-fluid
model with τi = 0 loses hyperbolicity. Hence the inclusion of a differential interface
friction τi is essential for obtaining a well-behaved mathematical solution.

Remark 9. Note that if ρg � ρ�, v̄
v ≈ v� and the material waves travel with the

velocity of the liquid phase. This is quite the opposite of the drift-flux model, where
the velocity of the material wave corresponds to the gas velocity vg (section 4.4).

6.1.2. Sonic waves. Writing

(149) λs = v̄p ± c,

we obtain

(150) v̄p =
ρgα�v� + ρ�αgvg

ρgα� + ρ�αg
+ O(ε3)

and

(151) c = ĉ
(
1 + O(ε2)

)
.

Remark 10. If ρg � ρ�, v̄
p ≈ vg and the part of the sonic wave that is transported

along the flow travels with the velocity of the gas phase. Again this contrasts the drift-
flux model, where the corresponding result of section 4.4 yields v̄p ≈ v�.

6.2. Numerical investigations. In the framework of the canonical two-fluid
model, the eigenvalues of the previous section correspond to τi = 0, whereas the
eigenvalues of section 4.4 correspond to the interface friction (123),

(152) τi = τp + τv + τα + τQ,

which was derived in section 5.1.1. We now study the relation between the interface
friction and the wave velocities more closely, by looking at a specific example. More
precisely, we consider a two-phase flow satisfying the Zuber–Findlay slip relation (63)
with phasic properties roughly representing an air-water mixture.
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Fig. 1. The Zuber–Findlay gas velocity as a function of liquid fraction. Left: Near singularity.
Right: Physical region.

6.2.1. Model parameters. In the following, we assume that the phasic veloc-
ities are related by the Zuber–Findlay slip relation

(153) vg = K (αgvg + α�v�) + S,

where we choose

(154) K = 1.07

and

(155) S = 0.216 m/s.

Furthermore, we assume the flow conditions

v� = 10 m/s,(156)

ρg = 1.0 kg/m
3
,(157)

ρ� = 1000 kg/m
3
,(158)

∂p/∂ρg = 105 m2/s
2
,(159)

∂p/∂ρ� = 106 m2/s
2
.(160)

6.2.2. Gas velocity. By inspecting the slip expression (153) we find there is a
singularity corresponding to

(161) α̂ = ζα� =
1 −Kαg

K
= 0,

which with our choice of parameters occurs at

(162) αcrit
� ≈ 0.0654.

The gas velocity vg changes sign from −∞ to +∞ across the singularity, as shown
in Figure 1. However, α� < αcrit

� implies large gas bubbles corresponding more or less
to the annular flow regime, where the drift-flux model is not applicable [16]. Hence
we discard the corresponding results as unphysical and base our further investigations
on the assumption α� > αcrit

� .



ON THE WAVE STRUCTURE OF TWO-PHASE FLOW MODELS 507

6.2.3. Wave velocities. We now investigate the effect of the different terms of

(163) τi = τp + τv + τα + τQ

on the wave velocities of the canonical two-fluid model. Note that τQ, as given by
(124), is purely nondifferential, and hence has no effect on the wave structure of the
model. In the following plots we use the labels

• two-fluid: τi = 0,
• drift-flux: τi = τp + τv + τα

to denote the special choices of interface friction yielding the basic two-fluid and
drift-flux wave structures, respectively, as described in sections 4 and 6.1.

Remark 11. Note that with our choice of slip relation (153), the expression (126)
may by use of (101) and (102) be rewritten as

(164) τα = (vg − v�)
mgm�

ρ̂α�

∂α�

∂t
.

In the following, wave velocities corresponding to different choices of τi (163) are
calculated as the eigenvalues of the corresponding matrix A(U) as described in section
5.2. A numerical algorithm was used to calculate the eigenvalues, sorted in ascending
order by their real parts as

(165) Re(λ1) < Re(λ2) < Re(λ3) < Re(λ4).

Here λ1 and λ4 are sonic waves, whereas λ2 and λ3 represent slow waves.

6.2.4. Slip wave. As noted in Remark 7, the slip relation manifests itself as a
stationary wave for the drift-flux interface friction (τi = τp+τv+τα). Hence one of the
two material waves described in section 6.1.1, corresponding to τi = 0, will gradually
transform into this stationary “slip wave” as the terms (124)–(126) are added to the
interface friction.

The effect of this is illustrated in Figure 2, where |λ2| is plotted as a function of
liquid fraction. Already for τi = τp + τv, we obtain λ2=0, which is left unchanged by
the addition of τα. Note that τα = 0 corresponds to a special case of the drift-flux
model, where the slip relation satisfies μg = μ� = 0. Hence the “drift-flux” character
of the system (λ2 ≡ 0) is fully manifest in the τp and τv components of the interface
friction.

6.2.5. Material wave. As seen by the analyses of section 4.5 and 6.1, one
material wave is gradually transformed from (146) (λm ≈ v�) into (108) (λm ≈ vg).

This is illustrated in Figure 3, where Re(λ3) is plotted as a function of liquid
fraction. Note that without the inclusion of τα, the wave velocity is constant. This
demonstrates the fact that τα = 0 implies that the slip is independent of volume
fraction.

6.2.6. Sound velocity. Following sections 4.4.2 and 6.1.2, we write the sonic
waves as a combination of two components as follows:

(166) λs = v̄p ± c,

where v̄p represents the part of the sonic wave that is transported with the flow,
whereas c is the sonic velocity with respect to v̄p. Hence we get

(167) c =
λ4 − λ1

2
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and

(168) v̄p =
λ1 + λ4

2
.

In Figure 4, the sound velocity c is plotted as a function of liquid fraction. We
observe that c is transformed from the two-fluid sound velocity (145) into the drift-flux
sound velocity (112) by the action of τp alone; the terms τv and τα have no additional
effect.

Remark 12. This plot illustrates the fact that whereas for the two-fluid model

(169) ctf ≈ cg,

the drift-flux sonic velocity satisfies

(170) cdf � min(cg, c�).

A similar parabolic-like shape for cmix(α�) was also derived by Nguyen, Winther, and
Greiner [21] by considering the interface as an elastic wall. They also pointed out
that this shape is consistent with experimental data for mixed flows.

6.2.7. Sonic transport velocity. The sonic transport velocity v̄p is plotted in
Figure 5. We get more or less the inverse of Figure 3; now v̄p ≈ vg (two-fluid model)
is transformed into v̄p ≈ v� (drift-flux model) by the action of the interface friction
(118).

7. Summary. A quasi-linear form of the drift-flux two-phase flow model has
been derived. The wave structure of this model has been investigated by a perturba-
tion technique, extending previous results of Théron [26] and Benzoni-Gavage [5].
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Fig. 5. Sonic transport velocity v̄p as a function of liquid fraction.

The drift-flux model has further been rewritten within the framework of a more
general two-fluid model, by derivation of the proper form of the interface friction τi.
Here the slip relation is represented as a stationary wave.

The interface friction τi may be split into four parts

(171) τi = τp + τv + τα + τQ,

where the following hold:
• The terms τp and τv make up the drift-flux nature of the system (stationary

slip wave).
• The term τp is almost exclusively associated with the mixture sound velocity
c.

• The term τα is associated with the slow waves, imposing a dependency of
volume fraction on the material wave.

The drift-flux and two-fluid formulations are often considered to be different mod-
eling strategies with different domains of applicability. The unification presented in
this paper may facilitate the implementation of both models within a single computer
code. Furthermore, the link presented between the observable slip velocity and the
underlying interface friction may serve as an aid for developing better physical models
for two-phase flows.
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Abstract. Weak coupling theory is applied to a model for firing waves in the procerebral lobe
of the slug. Inhibitory synapses and electrical synapses have different synchronizing properties. We
show that, in concert, these two types of coupling can cause a bifurcation to a patterned state from
synchrony which ultimately develops into traveling waves. Normal forms for the bifurcation are
computed, and the results are compared to numerical simulations of the phase models.
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1. Introduction. Networks of coupled neural oscillators exhibit a variety of
activity patterns according to the properties of the coupling. There is clear experi-
mental evidence for the existence of electrical and chemical synapses in neocortical
inhibitory networks [11]. The effect of each type of coupling in isolation is well studied
[4, 17, 19]. Depending on the nature of the neural oscillation, inhibition can be either
synchronizing or desynchronizing [19, 12]. Electrical coupling between oscillators is
established via gap junctions. In numerous computational and theoretical studies,
it has been shown that electrical coupling can promote either synchrony or antisyn-
chrony [18, 1, 4, 3], depending on the shape of the action potential and the nature of
the oscillator. Recently, the combined effects of these couplings have been an area of
theoretical interest [16, 13, 2, 17]. In these papers, both the inhibition and the gap
junctions encouraged synchronization. Coupling is between pairs of oscillators or in
all-to-all coupled networks.

In a recent paper [6], Ermentrout et al. explored a biophysical model for the
olfactory lobe of the garden slug. Under resting conditions the slug lobe produces
slow periodic traveling waves of electrical activity. The oscillations are generated
by a class of inhibitory bursting neurons, which are coupled via gap junctions and
chemical inhibitory synapses. Experimentally, the wave of activity is biased to move
in one direction because of an intrinsic gradient in the frequency of the bursting
cells. In the above paper, the authors developed and simulated a biophysical model
for the waves with both inhibition and gap junctions. They found that even in the
absence of a gradient in frequency, it was possible to generate waves in an otherwise
homogeneous network. With large enough gap junction coupling (or small enough
inhibition), the network synchronized. However, with weak electrical coupling the
network becomes desynchronized, breaking into clusters of cells with different phase-
lags. At intermediate coupling strengths, the network produces waves.

Our broad goal in this paper is to explore what happens in spatially distributed
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networks when one form of coupling (here, gap junctions) encourages synchrony but
the other form of coupling (chemical inhibition) encourages (at least pairwise) anti-
phase (half cycle apart) locking. More specifically, we suppose that the synchronous
coupling is local and the desynchronizing coupling is long range. Since electrical
junctions require that membranes of the cells be in direct contact, we expect that
gap junction coupling is spatially localized. In contrast, chemical inhibition might be
expected to have longer range. In the slug brain model, the inhibition is global, in
that each cell inhibited all the other cells in the network, while the gap junctions were
only between nearest neighbors. We show below that inhibition is desynchronizing
for the slug model and that gap junctions synchronize, so the slug model serves as an
example of a spatially distributed network in which the two types of coupling work in
opposition. Ermentrout and Kopell [10] explored the effects of one or two long range
desynchronizing interactions between cells that were coupled with local synchronizing
interactions. Various types of waves were found via direct analytic calculations which
were possible due to the simple form of the coupling.

In this paper, we explore the bifurcation to patterns in a general network of
oscillators in which there is long range desynchronizing coupling and short range
synchronizing coupling. The strength of the former coupling is a parameter which
when increased causes the synchronous state to lose stability. We determine the
critical values for this parameter via linear stability analysis, and the direction of the
bifurcation via a normal form calculation. To make the analysis possible and to avoid
the confound of boundary effects, we forgo the linear chain and work on a circular
domain. Numerical results of the chain produce similar behavior, but the analysis
is considerably more difficult. The normal form calculation is made somewhat more
difficult by the presence of a zero eigenvalue arising from translation invariance. Our
method is to first reduce the biophysical model to a chain of phase-coupled oscillators
on which we can apply the general theory. Thus, in the first section, after introducing
the biophysical model, we compute the interaction functions under the assumption
of weak coupling. We show that for this model, gap junctions are synchronizing,
while chemical inhibition is desynchronizing. Next, we analyze the bifurcation of
patterned states from synchrony in a continuum chain of phase-oscillators. We find a
novel phase-locked state which is patterned but not a traveling wave. We numerically
illustrate the transition to traveling waves as predicted in the reduced system and
provide conditions for the stability of the traveling wave.

2. The model and reduction. Ermentrout et al. introduced a biophysical
model for a network of bursting and nonbursting cells in the procerebral lobe of
Limax [6]. The bursting cells oscillate at about 1 Hz and are responsible for the
electrical wave observed in the lobe. The nonbursting cells fire only in the presence
of extrinsic stimuli. Thus, since we are interested only in the genesis of the wave, we
focus on the bursting cells. Each cell is an intrinsic oscillator, and, in the model, two
types of synapses couple the oscillating neurons: chemical inhibition and electrical
or gap junctions. The membrane potential for each bursting cell obeys the following
equations:

C
dV

dt
= −IL − IK − ICa − Igap − Isyn,

where each term is a current due respectively to the leak, the potassium channels, the
calcium channels, the gap junction coupling, and the synaptic inhibition. We used the
parameters given in Appendix B. The gap junction coupling is over nearest neighbors
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and depends on the voltage difference between the pre- and postsynaptic cells:

Igap = ggap(Vpost − Vpre).

Here, “post” refers to the cell receiving the connection from the “pre” cell. The inhi-
bition, Isyn, is global—every cell inhibits every other cell. Each synaptic interaction
adds a current of the form

Isyn = gsynspre(Vpost − Esyn),

where Esyn = −78 mV, and the synaptic conductance obeys an equation of the form

dspre
dt

=
0.1

(1 + exp(−(Vpre + 45)/5))
− spre

100
.

Networks of coupled oscillators are generally difficult to analyze. However, the method
of averaging has proven to be very useful for studying synchronization between os-
cillators [17]. That is, if we assume that the conductances ggap, gsyn are sufficiently
small, it is possible to reduce a network of coupled oscillators to a system of phase
models where each oscillator is represented by its scalar phase and interactions are
through the differences in the phases [21, 15, 9]. Let Vi be the membrane potential of
the ith cell and si be the synaptic component of the ith cell. If

−Isyn,i = −gsyn
∑
j

wijsj(Vi − Esyn)

is the synaptic current into the ith cell and wij is the weight of the connection between
cell i and j, which is taken to be 1/N , where N is the number of oscillators, then with
the weak coupling assumption, the phase interactions will take the form

−Īsyn,i = gsyn
∑
j

wijHsyn(θj − θi),(2.1)

where

Hsyn(φ) =
1

T

∫ T

0

V ∗(t)s(t + φ)(Esyn − V (t)) dt.

V ∗(t) is the voltage component for the T -periodic solution to the adjoint equation for
the stable limit cycle. V (t), s(t) are the voltage and synaptic components, respectively.
For the gap junction coupling, we find

−Īgap,i = ggap
∑
j

zijHgap(θj − θi),(2.2)

where

Hgap(φ) =
1

T

∫ T

0

V ∗(t)(V (t + φ) − V (t)) dt.

The weights, zij , satisfy zij = f(|i − j|), where f is a decreasing function in its
argument. The phase of each oscillator, θi, obeys the reduced dynamics

θ′i = 1 − Īsyn,i − Īgap,i,
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(a) (b)

Fig. 2.1. Coupling functions are computed using XPPAUT. Approximations are estimated
from the Fourier expansion. (a) shows Hsyn and its approximation, and (b) shows Hgap and its
approximation. The functions are plotted over a period of the oscillations, and the dashed line marks
the half period.

where the two currents are given by (2.1) and (2.2). The phase of each oscillator maps
directly onto the potential (or other variable) of each bursting cell once the zero phase
is chosen. A standard choice of zero phase is the peak of the membrane potential.

Figure 2.1 shows both Hsyn and Hgap for the Limax model evaluated numerically
using XPPAUT [5], along with their approximations using the 0, 1, 2 order terms
of the Fourier expansion. The Fourier approximations of these functions are used
in bifurcation calculations in section 3, the stability arguments in section 4, and the
numerical simulations of the phase model in section 5. Their values are given in
Appendix B. Note that Hsyn(0) �= 0, Hgap = 0, H ′

syn(0) < 0, and H ′
gap(0) > 0.

To interpret the meaning of these inequalities, consider a pair of identical cells:

θ′1 = 1 + gsynHsyn(θ2 − θ1) + ggapHgap(θ2 − θ1),

θ′2 = 1 + gsynHsyn(θ1 − θ2) + ggapHgap(θ1 − θ2).

Let φ = θ2 − θ1. Then

φ′ = gsyn[Hsyn(−φ) −Hsyn(φ)] + ggap[Hgap(−φ) −Hgap(φ)] ≡ F (φ).

Clearly, F (0) = 0, so synchrony, θ2 = θ1, is a solution. Synchrony is stable if F ′(0) < 0
or

gsynH
′
syn(0) + ggapH

′
gap(0) > 0.

Since the conductances, gsyn, ggap are nonnegative and H ′
syn(0) < 0, H ′

gap(0) > 0,
synchrony is stable if the gap junctions dominate. Since F (φ) is an odd T -periodic
function, F (T/2) = 0. This antiphase solution will be stable for the coupled pair if
F ′(T/2) < 0 or, equivalently,

gsynH
′
syn(T/2) + ggapH

′
gap(T/2) > 0.

As seen in Figure 2.1 by the dashed vertical lines at T/2, antiphase is stable for
synaptic and unstable for gap junction coupling. In the models considered by Lewis
and Rinzel, both synaptic and electrical coupling encourage stable synchrony [16].
Thus, the interaction of networks will lead to synchronous behavior. In contrast, for
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the intrinsic dynamics in the Limax model, electrical coupling encourages synchrony,
but synaptic inhibition opposes it. Our goal in the rest of this paper is to explore the
consequences of these differences in a one-dimensional spatially organized array of N
oscillators.

2.1. The spatial equations. We introduce a discrete model where we have
all-to-all synaptic coupling and local gap junction coupling. The equations can be
written down as

dθj
dt

= ω +
gsyn
N

N∑
k=1

Hsyn(θk − θj) + ggap

m∑
l=−m

JlHgap(θj+l − θj), j = 1, . . . , N,

(2.3)

where θj represents the phase of oscillator j, ω is the intrinsic frequency for all the
oscillators, gsyn is the synaptic coupling strength, ggap is the strength of electrical
coupling, and Hsyn, Hgap are the functions describing synaptic and gap junction
coupling, respectively. We note that the key point in the weak coupling assumption is
that the effects of different types of coupling are linear and additive. Thus, only the
ratio of gsyn and ggap in the phase model matter. The oscillators are arranged in a
ring to avoid boundary effects. W.l.o.g., we assume that the ring has length 2π. The
factor 1

N in front of the synaptic coupling contribution guarantees that the model also
works when we allow N → ∞. The weights Jl are taken to be nonnegative, and we
assume that J−l = Jl. m represents the scope of gap junction coupling. We also note
that m � N , since we assume that gap junction coupling is local. Henceforth, we
assume that the period of the oscillators (and thus of the coupling functions) is 2π.
The function Hsyn favors the antiphase state for pairwise interactions so that π is a
stable fixed point for a pair of oscillators coupled with only synaptic coupling. The
function Hgap favors the in-phase state for pairwise interactions so that 0 is a stable
fixed point for a pair of oscillators coupled with only gap junction coupling. This is
equivalent to saying the following:

A1. H ′
syn(0) < 0.

A2. H ′
gap(0) > 0.

For simplicity, we also need the following:

A3. Hsyn(0) = 0.
A4. Hgap(0) = 0.

Note that A4 holds automatically for gap junctions, since a cell cannot be coupled
to itself via gap junctions. If Hsyn(0) = κ �= 0, then let θj = θ̂j + (ω + gsynκ)t. We
write

dθ̂j
dt

=
gsyn
N

N∑
k=1

Ĥsyn(θ̂k − θ̂j) + ggap

m∑
l=−m

JlHgap(θ̂j+l − θ̂j), j = 1, . . . , N,

where Ĥsyn(φ) = Hsyn(φ) − κ. We can see that Ĥsyn(0) = 0, so w.l.o.g., we assume
Hsyn(0) = 0.

We also make a normalization assumption on Jl by taking the following:

A5*.
∑m

l=−m Jl = 1.
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Fig. 2.2. A plot of J(x) where the sum was taken over n = −2,−1, 0, 1, 2.

For the purposes of calculations, it is much easier to work with the continuum
analogue of (2.3), so our analysis will be on a continuum version of the network.
Hence, from now on, we study this model

∂θ

∂t
= ω +

gsyn
2π

∫ 2π

0

Hsyn(θ(y) − θ(x)) dy

+ ggap

∫ 2π

0

J(x− y) Hgap(θ(y) − θ(x)) dy,(2.4)

where analogous assumptions are made as for the discrete model. We remark that
the continuum model can be derived from the discrete model in the limit as N → ∞
with a suitable normalization assumption on the function J�. One difference is that
the discrete model, θj , was a function of time and the discrete index j, whereas it is
now a function of time and space. We assume that J(x) is a nonnegative, symmetric
kernel around 0 and that the normalization condition is

A5.
∫ 2π

0
J(y) dy = 1.

In our numerical simulations, we assumed J(x) =
∑∞

n=−∞ exp(−(x + 2πn)2)/
√
π.

(See Figure 2.2.)

3. Linear stability analysis for synchronous solution. We want to study
the spatial interactions between synchronizing and antisynchronizing influences. We
start with the synchronous state and study its stability. The synchronous state is
where all of the oscillators have the same phase. Note that if we assume heterogeneity
in the intrinsic frequencies, synchrony is not a solution to the system. If we have
homogeneity, θ(x, t) = Ωt is a solution to (2.4), where Ω = ω+gsynHsyn(0) represents
the frequency of the network. To determine the stability of synchrony, we let θ(x, t) =
Ωt + ψ(x, t) and write

∂ψ

∂t
=

gsyn
2π

∫ 2π

0

H ′
syn(0) [ψ(y) − ψ(x)] dy

+ ggap

∫ 2π

0

J(x− y) H ′
gap(0) [ψ(y) − ψ(x)] dy + O

(
|ψ|2

)
.(3.1)
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If we keep only the linear terms above, we can see that ψ(x, t) = einx eλnt solves (3.1)

with the appropriate choice of λn. Let In =
∫ 2π

0
J(s) e−ins ds, and substitute ψ(x, t)

into (3.1) to get

λn = −gsyn H ′
syn(0) + ggap H ′

gap(0) [In − 1](3.2)

for n �= 0. For n = 0, λ0 = 0. We choose J(x) so that we have I1 ≥ 1 and
I1 > I2 > · · · > In > In+1 > · · · . This means that the first Fourier mode dominates.
The Gaussian kernel shown in Figure 2.2 satisfies this criterion, as does, for example,
the periodic version of an exponential kernel, exp(−|x|). With this assumption, it is
easy to see that the first eigenvalue to cross over to positive values would be λ1. We
call n = 1 the most unstable node. To find the critical value of gsyn, we solve for
λ1 = 0, which gives us

g∗syn =
ggap H ′

gap(0) [I1 − 1]

H ′
syn(0)

.(3.3)

Here ∗ is used to denote the value of gsyn at the bifurcation point. To study
the stability of the bifurcating solutions we need to find the normal form for the
bifurcation. We prove the following theorem.

Theorem 3.1. The system (2.4) with the assumptions A1–A5 has a pitchfork
bifurcation at g∗syn, and the corresponding normal form is

0 = ζz2z̄ + ηz.

The coefficients ζ and η are

ζ = 12B1,3 − 3B2,3 − 9B0,3 + 2C B0,2 − 2CB2,2,

η = −g2α1,

where

Bn,j =

∫ 2π

0

Aj(y
′) einy

′
dy′,

Aj(x) =
g∗syn
2π

αj + ggap βj J(x),

C =
2B1,2 −B2,2 −B0,2

B2,1 −B0,1
,

with αj =
Hj

syn(0)

j! and βj =
Hj

gap(0)

j! for j = 1, 2, . . . . Here f j(x0) represents the ith
derivative at x0 for f = Hsyn, Hgap.

Proof. We use a perturbation expansion for the solution ψ and gsyn as

θ(x, t) = Ω(ε) t + ψ̂(x, ε),(3.4)

where

Ω(ε) = ε Ω1 + ε2 Ω2 + ε3 Ω3 + · · · ,

ψ̂(x, ε) = ε ψ1(x) + ε2 ψ2(x) + ε3 ψ3(x) + · · · ,
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and

gsyn = g∗syn + ε g1 + ε2 g2.

We define a linear operator L as follows:

Lψ =
g∗syn
2π

∫ 2π

0

H ′
syn(0)[ψ̂(y, ε) − ψ̂(x, ε)]dy

+ ggap

∫ 2π

0

J(x− y)H ′
gap(0)[ψ̂(y, ε) − ψ̂(x, ε)]dy

=
g∗syn
2π

∫ 2π

0

H ′
syn(0)[ψ̂(x− y′, ε) − ψ̂(x, ε)]dy′

+ ggap

∫ 2π

0

J(y′)H ′
gap(0)[ψ̂(x− y′, ε) − ψ̂(x, ε)]dy′(3.5)

with the substitution y′ = x − y. Note that e±ix, 1 are in the null space of L and
that L is self-adjoint. (Here, we use 1 to denote the constant function which is 1 for
all x.) We need to find the Taylor expansions of Hsyn and Hgap around 0 for the full
system

Hsyn(x) = Hsyn(0) + H ′
syn(0) x +

H ′′
syn(0)

2
x2 +

H ′′′
syn(0)

6
x3 + · · ·

= α1 x + α2 x2 + α3 x3 + · · · ,

Hgap(x) = Hgap(0) + H ′
gap(0) x +

H ′′
gap(0)

2
x2 +

H ′′′
gap(0)

6
x3 + · · ·

= β1 x + β2 x2 + β3 x3 + · · · .

Substituting θ in the form given in (3.4) into (2.4),

Ω(ε) =
(g∗syn + εg1 + ε2g2)

2π

∫ 2π

0

α1 [ψ̂(x− y′, ε) − ψ̂(x, ε)] dy′

+
(g∗syn + εg1 + ε2g2)

2π

∫ 2π

0

α2 [ψ̂(x− y′, ε) − ψ̂(x, ε)]2 dy′

+
(g∗syn + εg1 + ε2g2)

2π

∫ 2π

0

α3 [ψ̂(x− y′, ε) − ψ̂(x, ε)]3 dy′

+ ggap

∫ 2π

0

J(y′) β1 [ψ̂(x− y′, ε) − ψ̂(x, ε)] dy′

+ ggap

∫ 2π

0

J(y′) β2 [ψ̂(x− y′, ε) − ψ̂(x, ε)]2 dy′

+ ggap

∫ 2π

0

J(y′) β3 [ψ̂(x− y′, ε) − ψ̂(x, ε)]3 dy′ + O
(
|ψ̂|4

)
.(3.6)

Let Aj(x) =
g∗
syn

2π αj +ggap βjJ(x) for j = 1, 2, 3 and Q(x) =
∫ 2π

0
[α1(ψ̂(x−y′, ε)−

ψ̂(x, ε)) +α2(ψ̂(x− y′, ε)− ψ̂(x, ε))2 +α3(ψ̂(x− y′, ε)− ψ̂(x, ε))3] dy′, which lets us to
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rewrite (3.6) as

Ω(ε) =

∫ 2π

0

A1(y
′) [ψ̂(x− y′, ε) − ψ̂(x, ε)] dy′

+

∫ 2π

0

A2(y
′) [ψ̂(x− y′, ε) − ψ̂(x, ε)]2 dy′

+

∫ 2π

0

A3(y
′) [ψ̂(x− y′, ε) − ψ̂(x, ε)]3 dy′

+ ε
g1

2π
Q(x) + ε2

g2

2π
Q(x) + O

(
|ψ̂|4

)
.(3.7)

We match the coefficients of powers of ε terms from both sides of (3.7). This allows
us to compute the coefficients for the normal form. The rest of the calculations are
given in the appendix. The normal form for the bifurcation is

0 = ζz2z̄ + ηz,

where ζ = 12B1,3 − 3B2,3 − 9B0,3 + 2CB0,2 − 2CB2,2 − 2CB2,2 and η = −g2α1. Note
that η is positive since α1 < 0 from our assumptions. Thus, depending on the sign of
ζ, we can determine the stability of the new solutions.

In our case, we compute ζ = −210.09 and η = 105g2, which tells us that we have
a supercritical pitchfork bifurcation. The new solution bifurcating from synchrony is
stable.

4. Existence and stability of the traveling wave. Next, we look at the
existence and stability of the traveling wave, θ(x, t) = Ωt + x. Substituting θ back
into (2.4) gives us

Ω = ω +
gsyn
2π

∫ 2π

0

Hsyn(y)dy + ggap

∫ 2π

0

J(y)Hgap(y)dy.(4.1)

W.l.o.g., we can assume that the average of Hsyn(y) is zero and so let I =∫ 2π

0
J(y)Hgap(y)dy; (4.1) reduces to Ω = ω + ggapI. (The value of the frequency is

irrelevant to the stability calculation since the right-hand sides always involve terms
of the form θ(x, t) − θ(y, t) so that adding Ct to θ, where C is any constant, has no
effect.) We prove the following theorem about the stability of the traveling wave.

Theorem 4.1. The traveling wave solution, θ(x, t) = Ωt+ x, is a stable solution
to (2.4) if we have

Re(λn) = −1

2
gsynnbn + 2πggap

−n−1∑
m=−∞

m

4
[(cmfn+m − dmen+m) − (cmfm − dmem)]

− 2πggap

−1∑
m=−n

m

4
[(cmfn+m + dmen+m) + (cmfm − dmem)]

− 2πggap

∞∑
m=1

m

4
[(cmfn+m − dmen+m) − (cmfm − dmem)]

≤ 0
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for n > 0, where

Hsyn(y) =

∞∑
n=0

an cosny + bn sinny,

Hgap(y) =

∞∑
n=0

cn cosny + dn sinny,

J(y) =
∞∑

n=0

en cosny + fn sinny.

Proof. Letting θ(x, t) = Ωt + x + ψ(x, t), we write

∂ψ

∂t
=

gsyn
2π

∫ 2π

0

H ′
syn(y) [ψ(x + y) − ψ(x)] dy

+ ggap

∫ 2π

0

J(−y) H ′
gap(y) [ψ(x + y) − ψ(x)] dy + O

(
|ψ|2

)
.(4.2)

ψ(x, t) = einxeλnt solves (4.2) up to linear order. We solve for λn to get

λn =
gsyn
2π

∫ 2π

0

H ′
syn(y)[einy − 1]dy + ggap

∫ 2π

0

J(−y) H ′
gap(y)[e

iny − 1]dy.(4.3)

We look at the real part of λn, for Hsyn, Hgap, and J real-valued,

Re(λn) =
gsyn
2π

∫ 2π

0

H ′
syn(y)[cosny − 1]dy + ggap

∫ 2π

0

J(−y) H ′
gap(y)[cosny − 1]dy.

When n = 0, Re(λ0) = 0, which corresponds to translation invariance. We need
Re(λn) ≤ 0 for n �= 0. Also, we want to make our analysis as general as possible. For
this reason we use the complex Fourier series expansion for Hsyn, Hgap, and J . Let
J(y) =

∑∞
k=−∞ αke

iky, Hsyn(y) =
∑∞

l=−∞ βle
ily, Hgap(y) =

∑∞
m=−∞ γmeimy, where

α−k = αk, β−l = βl, and γ−m = γm. Substituting these into (4.3) gives

λn = −igsynnβ−n + 2πiggap

∞∑
m=−∞

[mγm(α−(n+m) − α−m)].

If we look at the real part of λn, we see that

Re(λn) = −1

2
gsynnbn + 2πggap

−n−1∑
m=−∞

m

4
[(cmfn+m − dmen+m) − (cmfm − dmem)]

− 2πggap

−1∑
m=−n

m

4
[(cmfn+m + dmen+m) + (cmfm − dmem)]

− 2πggap

∞∑
m=1

m

4
[(cmfn+m − dmen+m) − (cmfm − dmem)],

where Hsyn, Hgap, and J are given with the Fourier expansion with coefficients a0 =
2β0, c0 = 2γ0, e0 = 2α0, an = βn + β−n, bn = i(βn − β−n), cn = γn + γ−n,
dn = i(γn − γ−n), en = αn + α−n, and en = i(αn − α−n).
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In our case, the traveling wave is always stable. Substituting our parameters
into the eigenvalue equation, we see that Re(λn) ≤ −50gsyn − 824.27ggap ≤ 0 for all
positive values of gsyn and ggap.

We close this section with some comments on the existence and stability of trav-
eling waves in the discrete system for local gap junction coupling. Consider a discrete
ring,

dθj
dt

= ω +
m∑

i=−m

aiH(θj+m − θj),

where m � N and N is the number of oscillators. The coupling constants ai are
nonnegative. Suppose that H is 2π-periodic and that H ′(x) > 0 for −r < x < r and
r > 0. Then, it follows from [7] that the synchronous state is asymptotically stable.
Now, consider a traveling wave:

θj = Ωt + 2πj/N.

This satisfies the discrete model if and only if

Ω = ω +
m∑

i=−m

aiH(2πi/N).

If m/N is sufficiently small, then

H ′(±2πm/M) > 0

since H ′(x) is positive in some neighborhood of 0. Thus, again from [7], the traveling
wave is asymptotically stable. Figure 2.1(b) shows that H ′

gap(x) > 0 over more than
half the cycle surrounding the origin. Thus, we can pick m as large as N/4 and still
be assured that the traveling wave is stable. This shows that there is bistability be-
tween traveling waves and synchrony in the discrete model with small enough synaptic
coupling.

5. Numerical results. In this section we (i) show that the bifurcation theory
developed for the continuum model appears to hold for the discrete model by nu-
merically simulating the latter, (ii) numerically extend the local bifurcation analysis
to get the full picture for the discrete phase-model, (iii) numerically simulate the
conductance-based model and show patterns similar to those found via our analysis,
and (iv) compute the bifurcation diagram for a line of 20 oscillators which are not
connected in a ring.

Figure 5.1 depicts the steady-state relative phases for a ring of 20 phase-oscillators
using the interaction functions shown in Figure 2.1. The strength of the gap junction
coupling is fixed at .01, and gsyn is varied along the vertical axis. Simulations are
done by starting the relative phases close to synchrony and then letting them evolve
until a steady state is reached. Figure 5.1(a) shows this steady state (color-coded)
for each value of gsyn examined. (We remark that in the phase model, the absolute
value of the coupling parameters is irrelevant, and only their ratio matters.) Figure
5.1(b) shows vertical cross sections from part (a) to more clearly illustrate different
types of solutions observed for various ρ ≡ gsyn/ggap values. For example, when
ρ = 0.3, there is no difference in phases of the oscillators, indicating that the system
is synchronized. In contrast, between ρ ≈ 0.35 and ρ ≈ 0.87, the solution is the
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Fig. 5.1. Transition from synchrony to intermediate state and then to traveling wave. (a) illus-
trates an array plot of the relative phases of the oscillators as ρ ≡ gsyn/ggap is increased; (b) shows
the phases of some oscillators as ρ is increased.

patterned state which bifurcates from the synchronous state as described in section 3.
As ρ increases beyond 0.87, the patterned state (which qualitatively resembles a cosine
wave) disappears and leaves a traveling wave as the only solution. The traveling wave
is, in fact, stable for all ρ shown in the diagram, so that for ρ < 0.87 there is bistability.
The loss of stability of the synchronous state occurs at ρ ≈ 0.35, which is very close
to the value of 0.3476 predicted in section 2.

To give the reader some intuition for the patterns, we depict the spatio-temporal
patterns in terms of their absolute phase in Figure 5.2. As we increase the relative
coupling strength, we see the transition from synchrony to a stable patterned state
(compare 5.2(a) and (b)). This is the state which arises via the pitchfork bifurcation
calculated in section 2. As we further increase gsyn, the patterned state disappears
and produces traveling waves; the transition from the patterned state to the waves is
shown in Figure 5.2(c). Finally, for larger gsyn, only the traveling wave remains.

The analytic calculations along with the numerical calculations of the phase re-
duced model show that as the inhibition increases, the synchronous state loses stability
to a patterned state in which the relative phases are close to a cosine wave. Further
increases in the inhibition result in a deepening of this pattern, followed by a tran-
sition to a traveling wave. In Figure 5.3, we show the result of a simulation of the
biophysical model as the synaptic inhibition increases. To match the theory, we have
made the connections periodic, so that the last cell is coupled to the first. Figure
5.3(a) shows a clear phase pattern in which the oscillators at the end lag the ones
in the middle. This corresponds to the patterned state shown in Figures 5.2(b) and
5.1(a), when ρ ≈ 0.4. For a larger amount of inhibition, the behavior becomes quite
complicated and, after a long transient, begins a transition to traveling waves, as
shown in Figure 5.3(b). Thus, the phase model provides a very good description of
the full biophysical model and has the advantage of being simple enough to analyze.

We conclude this section with some comments on the simplification to a ring of
oscillators instead of a line as in the original model. The main reason for assuming a
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Fig. 5.2. Evolution of the solution to the discrete phase model is shown as we change gsyn
while ggap is kept at the value 0.03. (a) shows synchronous solution when gsyn = 0.01, (b) shows
the intermediate state when gsyn = 0.02, (c) shows the transition to the traveling wave solution
when gsyn = 0.03, and (d) shows the traveling wave solution when gsyn = 0.04.

ring is that the analytic calculations are then possible. If, instead of a ring, we consider
a line of oscillators and choose the coupling functions so that the synchronous state
exists, we can explore the stability and bifurcations as the antisynchronous (synaptic
inhibition) coupling increases. Rather than attempt these calculations analytically,
we instead display numerical simulations for the phase model with all-to-all synaptic
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Fig. 5.3. Behavior of the conductance-based model for gsyn = 0.03 and gsyn = 0.07. Voltage
is plotted for each oscillator.

(a) (b)

Fig. 5.4. Behavior of 20 phase oscillators in a line as the synaptic coupling increases. (a) The
relative phase of oscillator 10; ggap = 1 and the interaction functions are the same as in the ring
model. (b) Spatial profiles with various solutions from (a). u refers to the solution being unstable,
and s means the solution is stable.

coupling and nearest neighbor gap junction coupling.

Figure 5.4 shows the behavior for a line of 20 oscillators. By considering a linear
array, the symmetry in the ring model was broken, and we are able to use the AUTO
bifurcation package [5]. We depict two pitchfork bifurcations. The first emerges as a
stable supercritical bifurcation. The pattern is like a half of a cosine wave, as opposed
to the full cycle seen in a ring. The ring of oscillators can be imagined as a pair
of lines joined symmetrically through the midline. Thus, we expect that the first
bifurcation would be “half” of that seen in the ring (see curve 1 in Figure 5.4(b)). As
gsyn increases, this branch seems to approach a solution which looks like a traveling
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wave (Figure 5.4(b) curves 2 and 3). There is no true traveling wave in the line due
to the boundary conditions; however, the solutions in the figure look like traveling
waves. A second branch bifurcates supercritically but it inherits the instability of the
synchronous branch, so that it is unstable. The shape of this solution is shown by
curve 4 in Figure 5.4(b). As these solutions were unstable, they were not continued
beyond gsyn = 0.5. Thus, while the details are somewhat different, the ultimate
result is the same for both a ring and a linear array: as gsyn increases, synchrony
loses stability, and for large enough gsyn there is a traveling wave. The traveling wave
exists for all values of gsyn in the ring model but not for the linear array.

6. Discussion. In this paper, we have shown that the combination of long range
inhibitory synaptic coupling with local gap junction coupling was sufficient to induce
a destabilization of the synchronous state. A new state which is not a traveling wave
but rather a spatially organized phase shift stably appears and is lost as the amount of
long range inhibitory coupling increases. Numerical solutions indicate that the only
remaining attracting state is a traveling wave. Our mathematical results concern
a network on a ring; the original motivation for this problem is the slug olfactory
lobe, which is actually a line of oscillators. However, it is known from our earlier
work [14] that boundary effects are enough to induce patterns of phases that depend
very strongly on the choices of boundary conditions at the edges. To avoid this
difficulty, we have considered periodic boundary conditions which eliminate questions
about the behavior at the edges. In spite of this simplifying assumption, we see
that the linear array and the ring behave similarly, at least when the inhibition is
sufficiently large compared to electrical coupling.

A number of studies have investigated interactions between electrical coupling
and synaptic coupling between neural oscillators. This problem is important since
inhibitory interneurons in the mammalian neocortex appear to be coupled with both
types of interactions. These networks may act as the “pacemakers” for 40 Hz oscil-
lations observed in the cortex during various cognitive tasks [20]. Most theoretical
explorations involve either pairs of cells or globally coupled networks. In most in-
stances, both the synaptic and the electrical coupling encourage synchrony, so that
there is not a chance for pattern formation. However, [4] has shown that gap junctions
can either stabilize or destabilize synchrony, depending on the shape of the action po-
tential, while [17] has shown that the intrinsic currents also affect whether or not
electrical coupling is synchronizing. Combining coupling that destabilizes with cou-
pling that stabilizes synchrony can be expected to produce other patterns of activity
besides waves. Such patterns may play some role in cortical processing of information
and may confer certain computational advantages [8].

Appendix A. To calculate the normal form for the bifurcation, we match the
“ε” terms from (3.6):

Ω1 =

∫ 2π

0

A1(y
′) [ψ1(x− y′) − ψ1(x)] dy′ ≡ L ψ1.

We integrate both sides of the equation with respect to x to get Ω1 = 0. If we
solve Lψ1 = 0, we get that ψ1(x) = zeix + z̄e−ix w.l.o.g. Next, we look at ε2 terms:

Ω2 = L ψ2 +

∫ 2π

0

A2(y
′) [ψ1(x− y′) − ψ1(x)]2 dy′

+
g1α1

2π

∫ 2π

0

[ψ1(x− y′) − ψ1(x)] dy′.(A.1)
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Substituting ψ1 into (A.1) and integrating with respect to x,∫ 2π

0

Ω2 dx = 8π z z̄ [B0(A2) −B1(A2)],

Ω2 = 4z z̄ [B0(A2) −B1(A2)],

where Bn(Aj) =
∫ 2π

0
Aj(y

′) e±iny′
dy′, j = 1, 2, 3. Now, we multiply (A.1) by e−ix,

0 = −2π g1 α1 z,

which implies g1 = 0. So, we can write gsyn = g∗syn + ε2g2, and we solve for ψ2:

0 = L ψ2 + (z2e2ix + z̄2e−2ix) [B2(A2) + B0(A2) − 2B1(A2)].(A.2)

We now propose that ψ2 = C z2e2ix + C̄ z̄2e−2ix and substitute back into (A.1)
to get

0 = [B2(A1) −B0(A1)] (C z2e2ix + C̄ z̄2e−2ix)

+ [B(A2) + B0(A2) − 2B1(A2)] (z2e2ix + z̄2e−2ix).

Looking at the coefficients of the z2 term gives

C =
2B1(A2) −B2(A2) −B0(A2)

B2(A1) −B0(A1)
.(A.3)

We have to make sure here that the denominator is nonzero. This is easy to see,

since B2(A1) − B0(A1) = 0 would imply that g∗syn = gSβ1(I2−1)
α2

, which is not true

since g∗syn =
ggapβ1(I1−1)

α2
and I1 > I2.

Next, we look at ε3 terms:

Ω3 = L ψ3 +

∫ 2π

0

A3(y
′) [ψ1(x− y′) − ψ1(x)]3 dy′

+ 2

∫ 2π

0

A2(y
′) [ψ1(x− y′)ψ2(x− y′) + ψ1(x)ψ2(x)] dy′

− 2

∫ 2π

0

A2(y
′) [ψ1(x− y′)ψ2(x) + ψ1(x)ψ2(x− y′)] dy′

+
g2α1

2π

∫ 2π

0

[ψ1(x− y′) − ψ1(x)] dy′.(A.4)

Let us look at the terms in (A.4) closely:

[ψ1(x− y′) − ψ1(x)]3 = [zeixe−iy′
+ z̄e−ixeiy

′ − zeix − z̄e−ix]3

= z3e3ixe−3iy′
+ 3z2z̄eixe−iy′

+ 3zz̄2e−ixeiy
′
+ z̄3e−3ixe3iy′

− 3z3e3ixe−2iy′ − 3z2z̄eixe−2iy′ − 6z2z̄eix

− 6zz̄2e−ix − 3zz̄2e−ixe2iy′ − 3z̄3e−3ixe2iy′

+ 3z3e3ixeiy
′
+ 3z2z̄eixeiy

′
+ 6z2z̄eixe−iy′

+ 6zz̄2e−ixeiy
′
+ 3zz̄2e−ixe−iy′

+ 3z̄3e−3ixeiy
′

− z3e3ix − 3z2z̄eix − 3zz̄2e−ix − z̄3e−3ix.
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Let T = [ψ1(x− y′)ψ2(x− y′)+ψ1(x)ψ2(x)−ψ1(x− y′)ψ2(x)−ψ1(x)ψ2(x− y′)];
then

T = (zeixe−iy′
+ z̄e−ixeiy

′
)(Cz2e2ixe−2iy′

+ C̄z̄2e−2ixe2iy′
)

+ (zeix + z̄e−ix)(Cz2e2ix + C̄z̄2e−2ix)

− (zeixe−iy′
+ z̄e−ixeiy

′
)(Cz2e2ix + C̄z̄2e−2ix)

− (zeix + z̄e−ix)(Cz2e2ixe−2iy′
+ C̄z̄2e−2ixe2iy′

)

= Cz3e3ixe−3iy′
+ C̄zz̄2e−ixeiy

′
+ Cz2z̄eixe−iy′

+ C̄z̄3e−3ixe3iy′
+ Cz3e3ix + C̄zz̄2e−ix

+Cz2z̄eix + C̄z̄3e−3ix − Cz3e3ixe−iy′ − C̄zz̄2e−ixe−iy′

−Cz2z̄eixeiy
′ − C̄z̄3e−3ixeiy

′

−Cz3e3ixe−2iy′ − C̄zz̄2e−ixe2iy′

−Cz2z̄eixe−2iy′ − C̄z̄3e−3ixe2iy′
.

Substituting ψ1 and ψ2 into (A.4) and using the expansions for [ψ1(x−y′)−ψ1(x)]3

and T , we then integrate with respect to x to get Ω3 = 0. Next, multiply both sides
by e−ix and integrate with respect to x to get

0 = z2z̄

∫ 2π

0

A3(y
′) [9e−iy′

+ 3eiy
′ − 3e−2iy′ − 9] dy′

+ 2C z2z̄

∫ 2π

0

A2(y
′) [e−iy′ − eiy

′ − e−2iy′
+ 1] dy′ − g2α1z.

We can simplify this as follows:

0 = z2 z̄[12B1(A3) − 3B2(A3) − 9B0(A3) + 2C B0(A2) − 2CB2(A2)] − g2α1z.

By letting ζ = 12B1(A3) − 3B2(A3) − 9B0(A3) + 2C B0(A2) − 2CB2(A2) and η =
−g2α1, we have the normal form at the bifurcation point as

0 = ζz2z̄ + ηz.

Appendix B. We use the biophysical model given in [6]. Each uncoupled burst-
ing cell in the Limax model has the form

C
dV

dt
= −IL − IK − ICa

= −gL(V − EL) − gKn4(V − EK) − gCam
2h(V − ECa),

where n, h obey the equations

dn

dt
= .075[an(V )(1 − n) − bn(V )n],

dh

dt
=

1.125(h∞(V ) − h)

τh(V )
,

with

an(V ) = .032(−48 − V )/(exp(−(48 + V )/5) − 1),

bn(V ) = .5 exp(−(43 + V )/40),

h∞(V ) = 1/(1 + exp((V + 86)/4)),

τh(V ) =

{
if (V < (−80)), then (exp((V + 470)/66.6)),

else (28 + exp((V + 25)/− 10.5)).



PATTERN FORMATION IN OSCILLATORS 529

The activation gate for the T-type calcium current has the form

m(V ) = 1/(1 + exp(−(V + 60))).

The parameters are C = 2.66, gK = 5, gL = 0.024, gCa = 2, EK = −90, ECa = 140,
EL = −82, and Esyn = −78. Using this model, we compute the approximations of
the coupling functions as follows:

Hsyn(x) = 35 + 200 cos(x) + 32 cos(2x) − 95 sin(x) − 5 sin(2x),

Hgap(x) = 87 − 50 cos(x) − 37 cos(2x) + 295 sin(x) − 65 sin(2x).
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THE EFFECT OF NOISE ON β-CELL BURST PERIOD∗

MORTEN GRAM PEDERSEN† AND MADS PETER SØRENSEN†

Abstract. Bursting electrical behavior is commonly observed in a variety of nerve and endocrine
cells, including that in electrically coupled β-cells located in intact pancreatic islets. However, indi-
vidual β-cells usually display either spiking or very fast bursting behavior, and the difference between
isolated and coupled cells has been suggested to be due to stochastic fluctuations of the plasma mem-
brane ion channels, which are supposed to have a stronger effect on single cells than on cells situated
in clusters (the channel sharing hypothesis). This effect of noise has previously been studied using
numerical simulations. We show here how the application of two recent methods allows an analytic
treatment of the stochastic effects on the location of the saddle-node and homoclinic bifurcations,
which determine the burst period. Thus, the stochastic system can be analyzed similarly to the deter-
ministic system, but with a quantitative description of the effect of noise. This approach supports
previous investigations of the channel sharing hypothesis.

Key words. bursting oscillations, stochastic Melnikov method, stochastic bifurcations
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1. Introduction. The pancreatic β-cells are crucial for maintaining blood sugar
levels in a narrow range. When subjected to glucose the β-cells produce and secrete
insulin, and the amount of secreted insulin correlates with intracellular calcium
levels [10].

In situ the β-cells are electrically coupled in the islets of Langerhans, where they
show bursting electrical activity with burst periods of tens of seconds. Bursting con-
sists of the membrane potential alternating between a silent hyperpolarized phase and
an active phase of spiking rising from a depolarized plateau. During the active phase,
calcium enters the cells, raises the intracellular Ca2+ concentration, and triggers in-
sulin secretion. The plateau fraction, i.e., the ratio of the active phase duration to
the burst period, is decisive for intracellular Ca2+ concentrations and for the amount
of secreted insulin [2].

However, early recordings of single isolated pancreatic β-cells showed that the
membrane potential exhibits noisy spiking activity [19], and although it was later
found that only approximately one third of isolated cells spike, while half of the single
cells are fast bursters with burst period less than 5 seconds [11], there is a fundamental
difference in the behavior of single and electrically coupled cells. Importantly, this
difference is reflected in intracellular calcium levels [24].

It was suggested early that stochastic fluctuations of ion channels in the plasma
membrane were responsible for disrupting the bursting behavior and transforming the
isolated cells to spikers, but that the effective sharing of the channels by electrically
coupled cells averages the noise and lets the bursting phenomena appear [3]. This was
analyzed by Chay and Kang [4] and Sherman, Rinzel, and Keizer [21] using mathe-
matical modeling. The burst period and plateau fraction in the deterministic version

∗Received by the editors March 30, 2006; accepted for publication (in revised form) November 28,
2006; published electronically February 9, 2007. This work was supported by the European Union
through the Network of Excellence BioSim, contract LSHB-CT-2004-005137.

http://www.siam.org/journals/siap/67-2/65566.html
†Department of Mathematics, Technical University of Denmark, Matematiktorvet Building 303,

2800 Kgs. Lyngby, Denmark (m.g.pedersen@mat.dtu.dk, m.p.soerensen@mat.dtu.dk).

530



EFFECT OF NOISE ON β-CELL BURST PERIOD 531

of the Sherman–Rinzel–Keizer model was later analyzed by bifurcation analysis and
Melnikov’s method [16].

De Vries and Sherman [6] studied the electrical behavior of coupled pancreatic
β-cells with focus on the beneficial influence of noise. It had previously been shown
that weak coupling between identical spiking cells can induce bursting [20], and it
is now known that heterogeneous but spiking cells start to burst when coupled with
physiologically realistic coupling strengths [7]. The main result presented in [6] is that
noise dramatically increases the interval of coupling strengths for which bursting is
seen for identical cells, and this observation was supported by analyzing a bifurcation
diagram. It was later shown that the beneficial influence is more likely through
heterogeneity masquerading as noise, and that the explanation of the enhancement of
emergent bursting must be modified accordingly [14].

The investigations of the effect of noise on β-cells have so far been done partly by
numerically solving the stochastic differential equations (SDEs) describing the system
and partly by analyzing deterministic bifurcation diagrams [1, 4, 6, 14, 21]. The
transition from the SDEs to the bifurcation analysis was rather weakly motivated
from a theoretical point of view.

We look for a more natural deterministic description of the stochastic system,
with the aim of characterizing how noise shortens or interrupts bursting. This is
based on the ideas from Pernarowski, Miura, and Kevorkian [16] using a stochastic
version of a polynomial minimal model [15].

For the transition from the silent to the active phase, we consider the distribution
of the solution over time; i.e., we follow the probability that the system is in a certain
area of state space over time. The time evolution of the distribution is described
by the Fokker–Planck equation (FPE), which is a partial differential equation. Since
bifurcation analysis is better performed on a system of ordinary differential equations
(ODEs), and the FPE is computationally expensive to solve, we assume that the
distribution solving the FPE, and hence describing the system, is Gaussian at any
point in time. Doing this, we obtain a set of ODEs describing how the distribution
evolves in time. This approach is based on work on models of noisy spiking neurons
[18, 22], and the ODEs describe the evolution of the mean and lower order moments of
the assumed Gaussian distribution. A similar approach [12, 13] assumed a Gaussian-
like distribution around the deterministic solution, and was used to describe a neural
burster [13]. For the transition out of the active phase we use a stochastic Melnikov
method [9], thus allowing us to use the ideas from [16] in a stochastic setting.

We find that noise makes both the active and the silent phases terminate earlier
than for the deterministic model, but that it has a stronger effect on the exit from the
active phase than from the silent phase. Thus, we explain why simulations show that
noise shortens both phases and consequently the burst period, in this way transforming
normal bursters into fast bursters. This supports the idea that stochastic fluctuations
in membrane ion channels can disrupt normal bursting and that channel sharing can
restore it [3, 4, 21].

2. The β-cell model with noise. Pernarowski [15] introduced a minimal, de-
terministic, polynomial model capable of modeling both the spiking and the bursting
phenomena seen in β-cells. The fact that the involved functions are polynomials will
be of importance when describing the moments of the distribution [22]. The model is

d u

dt
= f(u) − w − z,(2.1a)
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dw

dt
= g(u) − w + σΓt,(2.1b)

d z

dt
= ε(h(u) − z),(2.1c)

where we have added the white noise term Γt to include noise, the strength of which
is given by σ. f and g are third order polynomials, while h is a first order polynomial.
u mimics the membrane potential of the cell, while w is a fast gating variable. We
assume that the ion-channel controlled by w is fluctuating stochastically, and hence
we add the noise term to this equation. z is, on the other hand, a slow gating variable
due to the small number ε. Thus, we have a fast subsystem (u,w) responsible for
the spikes during an active phase of bursting, and a slow z controlling the transition
between the silent and active phases.

Following [15], we differentiate (2.1a) with respect to t and then transform system
(2.1) to

d2u

dt2
+ F (u)

d u

dt
+ G(u) + z = −ε(h(u) − z) − σΓt,(2.2a)

d z

dt
= ε(h(u) − z),(2.2b)

or, equivalently,

d u

dt
= y,(2.3a)

d y

dt
= −F (u)y −G(u) − z − ε(h(u) − z) − σΓt,(2.3b)

d z

dt
= ε(h(u) − z),(2.3c)

where

F (u) = a
(
(u− û)2 − η2

)
,(2.4)

G(u) = u3 − 3(u + 1),(2.5)

h(u) = β(u− uβ).(2.6)

With appropriate parameters, the system shows a bursting pattern, but increasing
the strength of the noise shortens the bursts; see Figure 1, left panels.

This simulation as well as all other simulations and bifurcation diagrams were
done using XPPAUT [8]. The stochastic equations were solved by the backward
Euler method with time step dt = 0.005. For each time step XPPAUT draws a
random number from an appropriately scaled normal distribution to simulate the
Wiener process. Control simulations showed that the use of smaller time steps did
not change the results.

The deterministic system (σ = 0) can be analyzed from a bifurcation diagram of
the fast subsystem with z as the bifurcation parameter [15, 17]. This is done by setting
ε = 0. The fixed points of the fast system fall on the Z-shaped curve z = −G(u); see
Figure 2. The fast system is stable for low z values, but upon increasing z, this stability
is lost in a Hopf-bifurcation (HB in Figure 2). The fixed points on the middle branch
of the Z-shaped curve are saddle-points, while they are stable on the lower branch.
The middle branch meets the upper and lower branch in saddle-node bifurcations (SN
in Figure 2). The Hopf-bifurcation gives rise to stable periodic solutions around the
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Fig. 1. Numerical simulations of bursting with different noise strengths. The left panels show
time series of the membrane potential u, while the right panels show the corresponding projection
on the z-u plane and the deterministic bifurcation diagram from Figure 2. The upper panels show
the deterministic case σ = 0, in the center panels σ = 0.1, and in the lower panels σ = 0.3. Other
parameters are, here and throughout the manuscript, a = 0.25, û = 1.6, β = 4, uβ = −0.954,
ε = 0.0025, and η = 0.7.

unstable fixed points on the upper branch, but these periodic solutions disappear in
a homoclinic bifurcation (HC in Figure 2) for sufficiently large z. The mechanism
underlying bursting is based on the bistability between the stable fixed points on
the lower branch and the stable periodic solutions for a range of z-values. When we
reintroduce the slow variation of z for 0 < ε � 1, we can explain bursting. When the
solution of the system is near the lower branch, trajectories move slowly to the left
since u is low, and thus d z

dt < 0 here. This continues until the stable branch disappears
in the left saddle-node bifurcation. The solution now leaves the lower branch (silent
phase) and goes to the stable periodic solutions (active phase), where u is high and
d z
dt > 0. Hence, the trajectory now moves to the right until it meets the homoclinic
bifurcation and the stable periodic solutions disappear. The solution then leaves the
active phase and settles on the lower branch, and the scenario is repeated.

This explanation gives a hint of how noise shortens the bursts. The random
perturbations to the system can make trajectories leave the silent as well as the active
phase prematurely when the system is randomly kicked across the corresponding
thresholds. When the noise intensity increases, this will happen more often since the
stochastic fluctuations are larger. In Figure 1 (right panels), we see that in general
the noisy system leaves the active phase prematurely, while the early exit from the
silent phase is less pronounced. We now aim at understanding this observation better.
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Fig. 2. Bifurcation diagram of the fast subsystem with z as the bifurcation parameter. Thin
solid curves indicate stable fixed points, thin broken curves correspond to unstable fixed points, and
the thick solid curve shows the extrema of periodic solutions. The dotted curve shows the z-nullcline,
d z
dt

= 0. A simulation of the deterministic system is projected onto the z-u plane for comparison.
See the text for more details.

3. Location of the left saddle-node bifurcation. The exit from the silent
phase happens near the left saddle-node bifurcation; see Figure 2. We expect that
for increasing noise, the bifurcation will effectively happen for larger z-values, since
the noise will tend to push the system across the threshold and into the active phase
prematurely.

To analyze this, we look at the distribution of the system under all possible
realizations of the noise. Since the fluctuations of u and y are rather small during
the silent phase, we expect that for fixed z (ε = 0) the distribution of (u, y) will be
approximately Gaussian. This allows us to use the so-called G-method [22], which is
a development of the method from [18].

The idea is that a Gaussian distribution is described completely by its mean and
covariance matrix. Hence we follow, for fixed z, the means ū = 〈u〉 and ȳ = 〈y〉, the
variances Su = V ar(u), and Sv = V ar(y), and the covariance C = Cov(u, y).

Following [22], we average (2.3a), (2.3b), and the time derivative of the (co)vari-
ances (u − ū)2, (y − ȳ)2, and (u − ū)(y − ȳ) using Itô’s formula and the fact that
the odd moments vanish for a Gaussian distribution. To illustrate the procedure, we
derive the equation for C in greater detail, as follows:

dC

dt
=

d

dt

〈
(u− ū)(y − ȳ)

〉
=

〈
d

dt
[(u− ū)(y − ȳ)]

〉

=

〈
(u− ū)

d (y − ȳ)

dt

〉
+

〈
(y − ȳ)

d (u− ū)

dt

〉
=

〈
(u− ū)(−F (u)y −G(u) − z − σΓt)

〉
+
〈
(y − ȳ)2

〉
= −

〈
(u− ū)F (u)y

〉
−
〈
(u− ū)G(u)

〉
+ Sy.

(3.1)
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The first term is found from the Taylor polynomial of F around ū,〈
(u− ū)F (u)y

〉
=

〈
(u− ū)

(
(y − ȳ) + ȳ

)(
F (ū) + F ′(ū)(u− ū) +

1

2
F ′′(ū)(u− ū)2

)〉
= F (ū)C + F ′(ū)ȳSu + a

〈
(u− ū)3(y − ȳ)

〉
,

(3.2)

where we have again used that the odd moments vanish. Finally, the last term of
(3.2) is equal to 3aSuC by the Gaussian joint variable theorem. The second term of
(3.1) is treated similarly.

In summary, we obtain the equations

d ū

dt
= ȳ,(3.3a)

d ȳ

dt
= −F (ū)ȳ −G(ū) − z −

(
F ′′(ū)ȳ + G′′(ū)

)Su

2
− F ′(ū)C,(3.3b)

dSu

dt
= 2 C,(3.3c)

dSy

dt
= 2

[
−F (ū)Sy −

(
F ′(ū)ȳ + G′(ū)

)
C
]
+ σ2 − 6aS2

u,(3.3d)

dC

dt
= Sy −

(
F ′(ū)ȳ + G′(ū)

)
Su − F (ū)C − 3aSuC.(3.3e)

These are exact equations for the means and (co)variances due to F and G being
polynomials [22]. Since the system (3.3) is deterministic, we can perform bifurcation
analysis on these equations using z as the bifurcation parameter. Starting from the
silent phase ū ≈ −1, ȳ = Su = Sy = C = 0, we find a branch of stable fixed points
similar to the lower branch of Figure 2 (not shown). This branch ends in a saddle-
node bifurcation, as for the deterministic case. However, the rest of the bifurcation
structure breaks down, and the system (3.3) has, e.g., fixed points with negative Sy

values, which are of course impossible solutions, since Sy is a variance. We believe
that this breakdown is because the assumption of a Gaussian distribution holds only
in the silent phase, and hence the system (2.3) is no longer described by system (3.3)
after leaving the lower branch. Nevertheless, the saddle-node where the silent phase
branch of (3.3) ends can be followed in a two-parameter bifurcation diagram with
σ as the other bifurcation parameter; see Figure 3. For increasing noise intensity σ
the saddle-node moves to the right, indicating that the noisy system leaves the silent
phase earlier for greater noise strength. This corresponds well to direct simulations
of the z-value for which the noisy system (2.3) leaves the silent phase (Figure 3).

4. Location of the homoclinic bifurcation. To follow the exit from the active
phase for different noise intensities, we apply a stochastic Melnikov method. The
deterministic Melnikov technique was first applied to β-cell models by Pernarowski,
Miura, and Kevorkian [16] and for the model we use here in [15].

The Melnikov function is used to determine the distance between the stable and
unstable manifolds of a saddle-point for systems, which are small perturbations of a
Hamiltonian system with a homoclinic saddle-point. In the deterministic case of the
β-cell model, the active phase ends in a homoclinic bifurcation, which happens exactly
when the stable and unstable manifolds of the saddle-point coincide, i.e., when the
Melnikov function is zero.
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Fig. 3. Two-parameter bifurcation diagram showing the location of the saddle-node bifurcation
where the silent phase branch for system (3.3) ends (broken curve). This bifurcation corresponds
to the left saddle-node bifurcation in Figure 2. Direct simulations of the noisy system (2.2) show
that the prediction from (3.3) is faithful, since the z-values for which the system (2.2) leaves the
silent phase (measured as u passing through the Poincaré section u = −0.55 from below) agree well.
The bars are mean values of z ± one standard deviation for a simulation until t = 10000. We have
shifted the broken curve 0.03 to the left, since the deterministic version overestimates the z-value
by this amount.

We write (2.3) with ε = 0 as

d u

dt
= y,(4.1)

d y

dt
= −G(u) − z + [−F (u)y − σΓt],(4.2)

from which it is seen that the term in the square brackets is a perturbation of the

Hamiltonian system d2u
dt2 + G(u) + z = 0, which has a saddle-point (as(z), 0) with a

homoclinic orbit (us, ys) [5, 15]. The Hamiltonian is H(p, u) = 1
2p

2 +V (u; as(z)) with
potential

V (u, as) =
1

4
(u− as)

2[u2 + 2asu + 3a3
s − 6].(4.3)

The homoclinic orbit can then be written as

(us, ys) = (us,±
√
−2V (us, as(z)) ).(4.4)

For the deterministic case, σ = 0, the square bracket in (4.2) reduces to −F (u)y.
Pernarowski [15] showed that this term is indeed small for all z values between the
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left saddle-node bifurcation and the homoclinic bifurcation, and Melnikov’s method
is therefore applicable. The Melnikov function is in the deterministic case [5, 15]

Mdet = −a
[
e2(as(z))(û

2 − η2) + e1(as(z))û + e0(as(z))
]
,(4.5)

where

e0(as) = −12

5

√
3(a4

s − 2a2
s − 4)

√
1 − a2

s + 6
√

2as(a
2
s − 3)Δ(as),(4.6)

e1(as) = 6
√

3as(3 − a2
s)
√

1 − a2
s + 3

√
2(a2

s − 3)(a2
s + 1)Δ(as),(4.7)

e2(as) = 4
√

3
√

1 − a2
s + 2

√
2as(a

2
s − 3)Δ(as),(4.8)

Δ(as) = cos−1(2as/
√

6 − 2a2
s).(4.9)

We have changed the sign of Mdet compared to [15] such that Mdet < 0 when the
stable manifold is outside the unstable manifold of the saddle-point [23]. In this case
the fast subsystem has a limit cycle for a given fixed z; see Figure 2. When Mdet = 0
the unstable and stable manifolds coincide and form a homoclinic orbit. This happens
at the z-value when the homoclinic bifurcation occurs and the active phase terminates.

The Melnikov function is related to the phase space flux, which is a measure of the
transport across the pseudoseparatix approximating the separatix of the Hamiltonian
system [23]. For the β-cell model, we are interested in the transport from the inside
to the outside of the pseudoseparatix, since this will terminate the active phase. The
flux is given by the area of the turnstile lobe [23], and to first order it is found as

φdet ≈
∫ t2

t1

M+
detdt = (t2 − t1)M

+
det,(4.10)

since Mdet does not depend on t. Here and in the following, M+ = max{0,M} is the
positive part of M , and t1 and t2 are the time points that define the lobe. Note that as
long as Mdet < 0, i.e., the unstable manifold lies inside the stable manifold, φdet = 0,
indicating that there is no transport (flux) from inside to outside the separatix; i.e.,
the system is trapped. For the β-cell model the trajectories will follow the limit cycle
characterizing the active phase.

Another related variable is the average phase space flux. To first order it is
approximated by the flux factor given by [9]:

Φdet = lim
T→∞

1

2T

∫ T

−T

M+
detdt = M+

det.(4.11)

We now move to the stochastic case with 1 � σ > 0 in (4.2). Frey and Simiu
[9] approximated the noise process by a harmonic sum with random parameters, so-
called Shinozuka noise. Since each realization of the noise—each path—is a harmonic
sum, they argued that Melnikov theory can be applied to such scenarios as the one
treated here when σ is sufficiently small, even for perturbations containing white
noise processes as in (4.2). We note that the deterministic term −F (u)y in the square
bracket in (4.2) is still small for all values of z between the left saddle-node bifurcation
and the homoclinic bifurcation (not shown) as for the deterministic case.

This approach uses, instead of the deterministic Melnikov function, a stochastic
Melnikov process [9], which is given by

Mstoch(t) = Mdet + σΞt,(4.12)
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where Ξt is a stochastic process with Gaussian distribution in the case of white noise
perturbations Γt, which is the case considered here for the β-cell model. Ξt has mean
zero and variance

σ2
Ξ =

∫ ∞

0

|H(k)|2dk,(4.13)

where H(k) =
∫

R
h(t)e−iktdt is the Fourier transform of h(t) = ys(−t). For the

Hamiltonian system (4.2), ys is odd, and hence also h and H are odd. By Parseval’s
equation and (4.4) we then get

σ2
Ξ =

1

2

∫
R

|H(k)|2dk =
1

2
2π

∫
R

|h(t)|2dt

= 2π

∫ ∞

0

|ys(t)|2dt = 2π

∫ bs

as

√
−2V (u, as(z))du,

(4.14)

where bs = −as +
√

6 − 2a2
s is the largest zero of V , corresponding to the point (bs, 0)

on the separatix (us, ys) furthest from the saddle-point [5]. Using standard tables, we
get the following expression from (4.3):

σ2
Ξ =

√
2π

(
2
√

6 − 6a2
s + as(a

2
s − 3)

(
π − 2 sin−1 2as√

6 − 2a2
s

))
.(4.15)

The saddle-point as = as(z) can be determined analytically. Thus, we have a complete
description of the Melnikov process (4.12).

The unstable and stable manifolds of the saddle-point intersect when Mstoch(t0)
changes sign and becomes positive, and then the system can escape from the inside
of the pseudoseparatix. Hence, it is reasonable to assume that the probability of ter-
minating the active phase at t0 is proportional to the probability Pr(Mstoch(t0) > 0).

Having characterized the Melnikov process Mstoch, we now take a closer look at

Pr(Mstoch(t0) > 0). We define X = Mstoch(t0)−Mdet

σσΞ
, so that the probability of ending

the active phase at t0 is proportional to Pr(X > −Mdet

σσΞ
) due to the above assumption.

Note that X ∼ N(0, 1) is a standard Gaussian variable.
It seems plausible that we need at least a certain probability Pr(X > −Mdet

σσΞ
) = α

in order to effectively end the active phase during a spike period, and there seems to be
no a priori reason why this probability should depend on σ. Note that for increasing σ
and Mdet < 0, the probability Pr(X > −Mdet

σσΞ
) increases (for fixed z, and hence Mdet

and σΞ), such that there is a higher probability of ending the active phase prematurely
for higher noise strengths, as expected (see Figure 1). In the deterministic limit σ → 0,
this probability is either 0 (for Mdet < 0) or 1 (for Mdet > 0) in accordance with the
above observations for the deterministic scenario.

Continuing this idea, we look for the z value for which the active phase terminates.
This is a stochastic event, but on average we expect it to be closely related to the
probability discussed above. Since the relation Pr(X > −Mdet

σσΞ
) = α determines a

fixed −Mdet

σσΞ
= μ, we get that for larger σ a larger value of −Mdet/σΞ will be needed

for the system to effectively leave the active phase. −Mdet/σΞ is a decreasing function
of z (Figure 4), so solving −Mdet/σΞ = σμ yields a lower z when σ is large than for
small σ. This corresponds to the fact that the escape from the active phase will
happen earlier for higher noise intensities.
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Fig. 4. Stochastic escape from the active phase is explained by the condition Pr(X > −Mdet
σσΞ

) ≈
0.32 for X ∼ N(0, 1). This corresponds to −Mdet

σσΞ
≈ 0.45 (horizontal black line). The decreasing

curves are −Mdet
σσΞ

calculated for different z-values using (4.5) and (4.15) for different values of σ:

0.3 (dashed black curve), 0.15 (dashed grey curve), 0.1 (solid black curve), 0.075 (solid grey curve),
0.05 (dash-dotted black curve), 0.01 (dash-dotted grey curve). Each of the thin vertical lines indicates
for a value of σ (same σ values and corresponding line types and colors as above) the mean value of
a series of z values for which the system left the active phase, defined as passing from above to below
u = −0.8, in a simulation of system (2.3) until t = 40000. For comparison, the full increasing curve
is the deterministic Mdet. Note that Mdet does not pass through zero at the z value ( ◦) for which
the deterministic system leaves the active phase. This mismatch between the homoclinic bifurcation
and the simulated escape from the active phase is also seen in Figures 1 and 2.

These considerations are supported by numerical simulations, which also confirm
that the end of the active phase on average happens for a fixed value of −Mdet

σσΞ
, which

is found empirically to be ≈ 0.45 (Figure 4), corresponding to Pr(X > −Mdet

σσΞ
) ≈

Pr(X > 0.45) ≈ 0.32. However, for very low or high σ this is not true. For high σ,
the reason is that the system enters the active phase at z > 1, e.g., z ≈ 1.1 for σ = 0.3
(Figure 3). Hence, there is a lower limit on the z value for which the escape can occur,
and thus, the average value will be higher than predicted by the considerations above.
For low σ we are near the case where Mdet = 0, and hence the considerations above
might break down in this deterministic limit, especially considering the probability
considerations. For example, the period of the limit cycle in the fast subsystem,
corresponding to the spike period of the full system, increases when z approaches
the value where the homoclinic bifurcation occurs. This implies that even if the
probability Pr(Mstoch(t0) > 0) = Pr(X > −Mdet

σσΞ
) is smaller at each time point t0,

the probability of leaving the active phase during a spike,
∫ T

0
Pr(Mstoch(t0) > 0)dt0 =

T · Pr(X > −Mdet

σσΞ
), can still be large. Thus, the larger spike period compensates for
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the lower instantaneous probability, such that the active phase terminates earlier than
predicted from Pr(Mstoch(t0) > 0) alone. Moreover, the Melnikov approach predicts
a value of z, for which the system leaves the active phase, that is too large even for the
deterministic case. This imprecision could be more important for low noise strengths.

The instantaneous flux

φstoch ≈ M+
stoch = (Mdet + σΞt)

+(4.16)

is at every time t a truncated normal distribution. It has mean equal to the (nonran-
dom) flux factor Φstoch given by [9]

Φstoch = Mdet + σσΞf(−Mdet/(σσΞ)) −MdetF (−Mdet/(σσΞ)),(4.17)

where f = 1√
2π

e−z2/2 is the standard Gaussian density and F (z) =
∫ z

∞ f(x)dx is

the corresponding distribution function. We remark that Φstoch → M+
det = Φdet for

σ → 0.

However, it is the flux during a finite interval that is relevant for the transition
out of the active phase. This finite time flux varies randomly, and hence the mean
flux Φstoch needs to be held against the variance of φstoch in order to determine when
the system escapes from the active phase, in the same spirit as for Mstoch above. The
variance of φstoch is given by

V ar (φstoch) = (σσΞ)2

[(
1 +

(
Mdet

σσΞ

)2
)(

1 − F

(
−Mdet

σσΞ

))
+

Mdet

σσΞ
f

(
−Mdet

σσΞ

)

−
(
f

(
−Mdet

σσΞ

)
+

Mdet

σσΞ

(
1 − F

(
−Mdet

σσΞ

)))2
]
,(4.18)

and it is readily seen that V ar(φstoch) → 0 for σ → 0.

From simulations, it again appears that the end of the active phase happens for
a roughly constant value of Φstoch/

√
V ar(φstoch) ≈ 0.182 (Figure 5). Thus, as seen

above for the Melnikov process, the related approach using phase space flux predicts
that the exit from the active phase occurs for a fixed value of the standardized variable
φstoch−Φstoch√

V ar(φstoch)
.

5. Discussion. We have shown that the escape from the silent as well as from
the active phase of the noisy β-cell model can be studied analytically. For the silent
phase we used a collective coordinate approach by assuming a Gaussian distribution
and the G-method [18, 22]. We could then follow the saddle-node bifurcation at which
the silent phase terminates as the noise strength σ varies (Figure 3). For the active
phase we used a stochastic Melnikov approach [9], which is new in the context of noisy
bursting. We gave an explanation of why a fixed value of −Mdet

σσΞ
would predict the

z value, for which the system would leave the active phase for different values of σ.
The value of Pr(X > −Mdet

σσΞ
) ≈ 0.32 is not obvious, and it should be interesting to

see whether it holds for other stochastic systems that are nearly Hamiltonian.

Noise has a bigger influence on the exit from the active phase than on the
escape from the silent phase. However, the plateau fraction is roughly unchanged,
since a faster escape from the active phase corresponds to the system entering the
silent phase later, and vice versa. This is in agreement with the fact that although
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Fig. 5. Stochastic escape from the active phase is explained by Φstoch/V ar(φstoch) ≈ 0.182
(horizontal black line). The thick curves show Φstoch/V ar(φstoch), with the same legends and range
of σ values as in Figure 4. They were calculated from (4.15), (4.17), and (4.18). The full curve is
Mdet, and vertical lines are means of simulated z values as in Figure 4.

single cells have shorter burst periods, the plateau fraction is similar to that of intact
islets [11].

We remark that the treatment of the stochastic Melnikov method in [9] was
proved rigorously only for the case of uniformly bounded noise, since the paths are
then uniformly bounded and current Melnikov theory is applicable. For unbounded
processes such as white noise, the results were found and argued to be valid by limit
arguments. Biologically, paths are bounded. For example, if w in (2.1) is a gating
variable, we have 0 ≤ w ≤ 1, which implies that the noise in (2.1) must be bounded.
The white noise process was chosen here for mathematical convenience, but in the
analysis of biologically more realistic stochastic models the Melnikov approach should
be even more reliable.

Assuming that single cells and small clusters of β-cells have shorter burst periods
due to noise, the channel sharing hypothesis can explain why. As seen in both simu-
lations as well as the treatment presented here, the stronger the noise intensity, the
lower the burst period. If we assume that the cells are coupled with infinite coupling
strength (the supercell hypothesis) [4, 21], then in larger groups of cells, the noisy
channels will be shared among several cells, and the individual cell would feel smaller
fluctuations than if it were isolated, leading to longer burst periods. Extending the
methods presented here to groups of coupled cells with finite coupling strength would
be interesting in an attempt to gain deeper insight into previously published results
[1, 6, 14].
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AN OPTIMIZATION APPROACH TO MODELING SEA ICE
DYNAMICS. PART 1: LAGRANGIAN FRAMEWORK∗

HELGA S. HUNTLEY† , ESTEBAN G. TABAK‡ , AND EDWARD H. SUH‡

Abstract. A new model for the dynamics of sea ice is proposed. The pressure field, instead
of being derived from a local rheology as in most existing models, is computed from a global op-
timization problem. Here the pressure is seen as emerging not from an equation of state but as a
Lagrange multiplier that enforces the ice’s resistance to compression while allowing divergence. The
resulting variational problem is solved by minimizing the pressure globally throughout the domain,
constrained by the equations of momentum and mass conservation, as well as the limits on ice con-
centration (which has to stay between 0 and 1). This formulation has an attractive mathematical
elegance while being physically motivated. Moreover, it leads to an analytic formulation that is also
easily implemented in a numerical code, which exhibits marked stability and is suited to capturing
discontinuities. In order to test the theory, the equations for a one-dimensional model are cast in
terms of Lagrangian mass coordinates. The solution to the minimization problem is compared to an
exact analytic solution derived using jump conditions in a simple test case. Another case is examined,
which is somewhat more complicated but still allows our physical intuition to verify the qualitative
results of the model. Good agreement is found. A final validation is performed by a comparison
with a particle-based model, which tracks individual ice floes and their inelastic interaction in a
one-dimensional domain.
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1. Introduction. Unlike the dynamics of the ocean waters, sea ice dynamics is
relatively little understood. Part of the problem is that ice is a somewhat peculiar
substance; it is neither hard as steel, nor elastic like rubber, nor completely fluid
like a liquid. Colliding ice floes do not behave like the familiar billiard balls with
perfectly round shapes and elastic collisions. An additional challenge for the modeler
interested in the large scales of the whole Arctic, or at least an entire strait, is the limit
of resolution. It is impossible to follow individual ice floes. Instead the behavior of a
field of floes on the order of several square kilometers must be summarized by tracking
an average velocity (mass-weighted), a thickness distribution, and the concentration
of ice in the grid box. On this scale, one can no longer rely on first physical principles
for the solid bodies making up the ice. So what are the laws of physics describing the
motion of a half empty box of solid substance that strongly resists compression up to
its breaking point but is easily pulled apart due to a multitude of fractures?

Scientists over the years have suggested various analogies, two of which have
shown enough promise to have stood the test of time: ice as a fluid, and ice as a
granular material. Most models today following the first of these approaches in some
way relate back to the sea ice rheology proposed by Hibler in [3], based on the postulate
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that ice behaves like a nonlinear viscous-plastic compressible fluid. Improvements have
been made on the original model, including an extension with an elastic component to
the constitutive law, but the essential character has been maintained (cf., for example,
[5]). Parts of the “state-of-the-art” formulation of the rheology are based on the
observations that ice resists compression up to a breaking point (plastic); the viscous
character is added to avoid multivalued functions, while the elastic terms are mostly
introduced for greater numerical stability. While the numerical results are generally
good, to some extent this is due to parameter tuning to available (though often scarce)
data.

Models based on a cavitating fluid rheology also fall into this first category. They
do not naturally incorporate shear strength (although this has been partially ad-
dressed), but are computationally somewhat simpler and less expensive, making use
of an iterative correction scheme. These models also have had some success in repro-
ducing realistic ice transport (cf., for example, [2]).

In the second category, a granular rheology has been developed by Tremblay and
Mysak [11], as well as others (e.g., the CRREL1 uses a high-resolution granular sea
ice model, based on [4]). These are better equipped to handle such tasks as tracking
leads in an ice field, although a much higher resolution is required for such problems.

Model intercomparison studies have found that the choice of rheology has a sig-
nificant impact on the model output; see, e.g., [6] and [1]. A somewhat more compre-
hensive study, SIMIP, the Sea Ice Model Intercomparison Project, was carried out in
the late 1990s. It compared viscous-plastic, cavitating fluid, compressible Newtonian
fluid, and free-drift with velocity corrections rheologies. Overall, it was found that
the viscous-plastic rheology produced the best results, while the free-drift simulation
showed large errors in ice drift, thicknesses, and export through the Fram Strait, the
compressible Newtonian model yielded excessive ice thickness build-up in the central
Arctic, and the cavitating fluid rheology resulted in errors in ice drift and the thick-
ness pattern. However, in some respects none of the models gave entirely satisfactory
results. Thus, for example, in an analysis of the summer sea ice extent anomalies,
none of the model results lies consistently within the error band of the observations
(from satellite data). The same is true for anomalies of annual mean ice thickness
in the Beaufort Sea (where the observational data was collected with upward looking
sonars). These results were reported in [7]. The present work on a new approach to
treating the internal stress term for sea ice dynamics was motivated in part by the
realization that existing models not only disagree significantly with each other but
also have remaining difficulties reproducing some observed phenomena, such as the
formation of ice arches in the Canadian Arctic Archipelago.

We have chosen to follow the first approach, an analogy to fluids, but are em-
ploying a novel global formulation of the rheology as the solution to an optimization
problem. We attempt to build a theoretical framework, with supporting numerical
experiments, to reproduce and explain the relevant observations of sea ice dynamics.
We start with the analogy that ice behaves like a fluid with some special properties.
In particular, sea ice exhibits semi-incompressibility: It allows divergence without
much resistance, due to the many cracks and leads within the ice pack, but strongly
resists convergence at high concentration. The goal is to find an expression for the
pressure enforcing this semi-incompressibility, which is mathematically elegant and
computationally efficient, allowing for clean analytic solutions in simple cases and
numerical simulations of more complicated ones. Reliance on parameterization is to

1Cold Regions Research and Engineering Laboratory of the US Army Corps of Engineers.
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be minimized. To this end, we start with the fluid equations and investigate how
they need to be modified to retain validity in the context of sea ice. The central
hypothesis is that the pressure acting within the ice field is the minimum necessary to
prevent the unrealistic situation of multiple floes occupying the same space. In other
words, the pressure term enforces the condition that the area fraction covered by ice
(the concentration) may not exceed 1. Our formulation permits the calculation of the
pressure using linear programming, benefiting from existing schemes, without tuning
to observations.

The goal of the work reported in this article is to demonstrate the feasibility of
having the pressure solve a variational problem. To this end, we concentrate on the
simplest possible scenario, one of unforced one-dimensional flows, with uniform ice
thickness and infinite yield pressure, so that no crushing occurs. A companion paper
(Part 2) discusses the effects of ice yielding. Current work, which will be reported
in later publications, involves extending the flow to two horizontal dimensions and
allowing for nontrivial ice thickness distributions. A more detailed discussion of many
of the results in this paper can be found in [9]. Here we will consider a simplified
Lagrangian system, which allows both analytic solutions to basic test cases and a
straightforward numerical implementation to be tested against a particle-based model
resolving individual ice floes. As will be shown, the minimal pressure hypothesis leads
to very encouraging results in the studied test cases, justifying further investigation
of this particular rheology.

2. Coarse grained ice dynamics as fluid dynamics. We shall use the fol-
lowing variables:

c = concentration of ice (fraction of sea surface area covered by ice),

h = average thickness of the ice,

u = (u, v) = horizontal velocities,

S = sources − sinks of ice (melting and freezing, precipitation),

F x, F y = sum of zonal, meridional forces

(Coriolis, wind, currents, sea surface tilt, pressure).

Note that in the following we are taking the density of ice ρ, which is nearly
constant, to be identically 1. This convention simplifies the notation and has no
influence on the qualitative results we are interested in. Equivalently, one can describe
this as absorbing the density into the thickness parameter, so that h is measured in
kg/m2.

Most of today’s sea ice dynamics models employ a thickness distribution function
to allow for ice of various thicknesses in any one grid cell (cf. [10]). For the simple
model we are building here to verify the minimal pressure hypothesis, we will not
include this level of complexity at this time. Similarly, we are not concerned with
tracking a velocity distribution within a grid cell, but assume the velocities u and v
to be mass-averaged velocities for the entire box.

In Eulerian coordinates, the mass conservation and momentum conservation equa-
tions can be written as

(ch)t + ∇ · (chu) = S,(1)

(chu)t + ∇ · (chuu) = F x,(2)

(chv)t + ∇ · (chvu) = F y,(3)
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where the product ch (really chρ) plays the role of a density in analogy with the
conventional fluid equations.

What differentiates the case of ice from standard fluids is that, in addition to
these two conservation laws, we also have the constraint that c can vary (unlike the
density of incompressible fluids) but may not exceed 1, which is enforced by a pressure
force. In this paper, we want to investigate the nature of this pressure force and a
new way to calculate it. To isolate this issue, we will consider the one-dimensional
case without sources or sinks (S = 0). By defining F = F x/(ch), subtracting u times
(1) from (2), and dividing by ch, the system reduces to

(ch)t + (chu)x = 0,(4)

ut + uux = F.(5)

Notice that, even if F were given (which it is not, since the pressure is one of the
variables to be determined), this system has only two equations but three unknowns.
Mass conservation alone does not provide for a way to evolve the fractional area c
and the mean thickness h separately. Extra physical assumptions are necessary to
complete the system’s description. In the absence of crushing (or sources or sinks), a
natural assumption is that the thickness h is advected with ice floes:

ht + uhx = 0.(6)

In words, when a pack of floes is pulled apart, the floes do not become thinner: It is
the space between them that increases, thus reducing the fractional area coverage c.
(The assumption of advection of h is relaxed in Part 2 of this work.)

3. The Lagrangian formulation. To gain further insight into this system and
to make analytic solutions easier to obtain, we introduce the Lagrangian mass coor-
dinates2 {

ξ =
∫ x

0
ch dx̂,

τ = t.
(7)

The resulting Lagrangian equations in these coordinates for one-dimensional ice
motion without sources or sinks are(

1

ch

)
τ

= uξ,(8)

uτ = F.(9)

(See the appendix for the derivation.)
Introducing the variable k ≡ 1

ch − 1 yields

kτ = uξ,(10)

uτ = F.(11)

While these equations have a beguilingly simple form, we have now lost sight of
the crucial variable c, which we have to constrain. We would like to translate this

2Lagrangian mass coordinates are often used in astronomical papers, as well as in studies of
hydrodynamics; cf., for just one example, [12].
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constraint into a constraint on k. In the case where h ≡ 1, this is easily done: The
constraint c ≤ 1 now becomes k ≥ 0. An extension to varying h is straightforward
(the constraint becomes k ≥ 1−h

h ), but it obscures the pressure effect. Thus, for
easier visualization, we shall focus on the particular case of constant ice thickness
h ≡ 1. (Variations in ice thickness are reintroduced in Part 2.) Note that, in addition
to excluding melting and freezing processes as well as precipitation, fixing h also
eliminates crushing from the problem. While a realistic and versatile ice model will
ultimately require us to bring these components back, the nature of the pressure force
and its role in ice dynamics can more easily be investigated in isolation. For this
purpose we make one more simplification and isolate the pressure term by setting all
other forces equal to zero.

What form this pressure term should take is not immediately obvious. Various
suggestions have been made over the years, which fall into two main categories. On
the one hand, there are the viscous-plastic or viscous-plastic-elastic models, which all
hark back to the original formulation in terms of the stress/strain yield curve in [3].
On the other hand are the cavitating fluid models, which calculate the pressure in a
series of correction steps (cf. [2]). While these are backed up by more or less realistic
model outputs, they are dependent on empirical parameter tuning and exhibit some
numerical shortcomings in the first case and follow an iterative relaxation scheme in
the latter. The goal of our approach is to minimize the reliance on empirical parameter
tuning and iterative schemes to the extent possible. Our physical intuition tells us
that the pressure does not act unless it is necessary to prevent ice concentration
from exceeding 1, i.e., to prevent two ice floes from occupying the same space. In
other words, while c is far from 1, the pressure force F = 0, and the flow follows
uτ = 0. Each parcel’s velocity does not change with time. By adding a pressure
to the system, we would like to deviate as little as possible from this route while
satisfying the constraint. This suggests a mathematical formulation as a constrained
optimization problem, where the pressure is defined as a Lagrange multiplier.

We do not expect the pressure force to push the ice apart, as any elastic rheology
would. Rather, it builds up as the ice converges, solely to prevent multiple floes
from occupying the same space. The goal then is to find a pressure that allows us to
minimize the change in u over time. Lagrange multipliers were invented for just such
constrained optimization problems. Here we have two constraints acting on u, the
equation for the evolution of k and the lower limit on k. Since k is defined at each
point ξ, this in fact amounts to infinitely many constraints, one for each k(ξ).

A note on notation: In the following (except for section 9), we will be discussing
only the Lagrangian formulation of the problem. Thus, we will simplify our notation
by replacing the Greek letters for the independent variables by their Roman cousins
again, i.e., by writing the Lagrangian mass coordinate ξ as x and the Lagrangian time
coordinate τ as t.

4. Pressure as a Lagrange multiplier. The problem is at each time t to

minimize ‖ut‖,(12)

given kt = ux,(13)

subject to the constraint k ≥ 0.(14)

Discretizing this system in time, using an implicit scheme, we can reformulate the
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problem for each n as follows:

minimize ‖un+1 − un‖,(15)

given kn+1 = kn + Δt un+1
x ∀n ≥ 0,(16)

subject to the constraint kn ≥ 0 ∀n ≥ 0.(17)

To simplify the notation, let ũ = un+1, u = un, and k = kn. Choosing to define
the norm used on ut as the 2-norm, our task is then to

minimize

∫
(ũ− u)2 dx,(18)

subject to k + Δt ũx ≥ 0.(19)

The corresponding variational principle states that there exist Lagrange multipli-
ers λ(x) ≤ 0 such that

δ

∫ {
(ũ− u)2 + λ(x)(k + Δt ũx)

}
dx = 0,(20)

from which it follows (as shown in the appendix) that

2 (ũ− u) = Δt λx =⇒ ũ− u

Δt
=

1

2
λx.

The equivalent continuous statement is

ut =
1

2
λx.(21)

We will adopt the convention of writing the pressure as p = −λ/2. Our final sys-
tem for the Lagrangian formulation of one-dimensional sea ice dynamics with constant
thickness and without external forces is thus

kt = ux,(22)

ut = −px,(23)

k ≥ 0,(24)

p ≥ 0.(25)

5. The conundrum is unresolved: Introducing the concept of minimal
pressure. We have just derived a form for the pressure term as the x-derivative of a
Lagrange multiplier. While this gives us the nice result that the pressure looks very
much like the pressure for incompressible fluids, we still have little information about
what the pressure actually is.

If we were able to resolve single floes, a constitutive law for frozen water would
provide us with a way to calculate the pressure within each ice floe (provided that we
know the external forces, including the pressure applied by other ice floes). Since we
do not have resolution at this scale, however, we have to find a different method.

The pressure, constructed as a Lagrange multiplier, serves the purpose of enforcing
the restriction that ice concentration cannot exceed 1 (or, equivalently, k cannot dip
below 0). As long as k is far from 0, one would consequently expect p to equal 0.
On the other hand, when k reaches 0, p needs to take on values to prevent it from
decreasing further. (Note that this means that always one of k and p is zero.) There
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is no reason, however, why it should push the ice apart, i.e., why the arising pressure
should exceed the minimum necessary to satisfy the constraint. It is then a reasonable
suggestion that the pressure should be calculated as the minimum necessary to enforce
the constraint.

One should note at this point that in the more complex cases where h is allowed
to vary, and in particular where crushing of the ice is permitted, this p needs to
be limited by a maximal p. This is standard in other ice models (for two different
formulations, see [3] and [8]). This extension for the minimization formulation for the
pressure as we propose here will be discussed in Part 2.

Beyond the heuristic argument presented above, the formulation for the pressure
as minimal suggested here is also mathematically appealing based on optimization
theory. The first observation above (that k · p = 0, where k and p denote the
vectors of the respective discretized quantities) is nothing but the complementary
slackness requirement of the Karush–Kuhn–Tucker conditions for constrained opti-
mization problems.3 Note also that because of (23), minimizing ‖ut‖2 is equivalent
to minimizing ‖px‖2. Since p ≥ 0 and p = 0 whenever k > 0, minimizing ‖px‖2 is in
turn equivalent to minimizing ‖p‖2 or ‖p‖1, as will be shown below in section 7. It
is thus natural to choose a formulation that aids in the calculations, and we will use
the 1-norm of p to take advantage of available robust linear optimization techniques.

6. An analytic solution to a well understood problem using jump con-
ditions. To build a better understanding of the form that the pressure takes, let us
start by considering a problem whose solution we know from physical considerations.
We take the half-infinite (one-dimensional) domain x ≤ 0, with a wall at x = 0.
Ice is initially distributed according to the given function k(0, x) = ko(x) and moves
according to u(0, x) = uo(x). We will assume that initially there are no patches of
consolidated ice; i.e., ko(x) 	= 0 ∀x. If we assume that pressure arises inside the ice
only when necessary, it follows that p(0, x) = 0 ∀x.

If anywhere in the domain ux < 0, then the ice will accumulate somewhere until
k = 0 (or, equivalently, c = 1). The wall at x = 0 requires that u(t, 0) = 0 ∀ t. Thus,
a positive initial velocity anywhere will ensure ice accumulation.

The first problem we will consider has the first ice build-up occurring at the wall.
(This can, for example, be achieved by setting uo(x) ≡ uo = constant > 0.) At the
edge of the consolidated ice, a discontinuity in both concentration and velocity arises.
We denote the location of this shock, marking the interface between the region with
k = 0 (c = 1) and that with k > 0 (c < 1), by x = xc and the time when this shock
first forms by t = tc; i.e.,

tc = min {t : k(t, x) = 0 for some x < 0},(26)

xc(t) = min {x̃ : k(t, x) = 0 ∀x ≥ x̃}.(27)

For t < tc, p(t, x) = 0 ∀x. The equations we solve for this portion are the very

3Physically, pressure is generally defined only up to a constant, since only its gradient enters into
the dynamics. Similarly, here it is easy to see that adding an arbitrary (positive) constant to a p
which solves the system (22)–(25) yields another solution. Strictly speaking, the KKT conditions do
not necessitate p ≥ 0 and k ·p = 0; they do provide for the existence of a p satisfying these conditions
and solving the system (22)–(25). Hence we will choose the arbitrary constant such that they hold
and min p = 0.
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simple set

kt = ux,(28)

ut = 0,(29)

whose solution is

k(t, x) = ko(x) + tuox(x),(30)

u(t, x) = uo(x),(31)

p(t, x) = 0.(32)

Assuming no consolidation except at the wall, this solution holds on {(t, x) : t <
tc or x < xc}. Once a region of consolidated ice starts to form along the wall, we
know that for x > xc,

k(t, x) = 0,(33)

u(t, x) = 0.(34)

Thus, for t > tc and x > xc,

u = 0 =⇒ ut = 0 =⇒ px = 0 =⇒ p(t, x) = p(t).(35)

In other words, p is constant throughout the region of consolidation at a given point
in time.

The only unknowns are p and xc. While the solutions to the left and to the right
of xc are smooth, there is a discontinuity, both in k and in u, at xc itself. Using the
corresponding jump conditions, we can calculate p and xc.

Equations (22) and (23), respectively, imply that

[[k]]ẋc = −[[u]],(36)

[[u]]ẋc = [[p]],(37)

where [[·]] denotes the jump across the shock and ẋc is the shock speed. It follows from
(36) that

ẋc = − [[u]]

[[k]]
= − uo(xc)

ko(xc) + tuox(xc)
.(38)

Together with the initial condition provided by evaluating (27) at tc, this completely
determines xc. Combining (36) and (37), we find

[[p]] = − [[u]]2

[[k]]
=⇒ p(t, x) =

[uo(xc)]
2

ko(xc) + tuox(xc)
for x > xc.(39)

One should note that this procedure of analyzing jump conditions to determine
the pressure can easily be extended to examples with the consolidated ice not against
a wall or with multiple consolidated regions. However, such an approach quickly
becomes unmanageable, as the number of coupled nonlinear equations increases with
the number of consolidated regions (two for each discontinuity, i.e., four for any region
not against a wall). Besides, the locations of the interfaces between consolidated and
nonconsolidated areas would need to be tracked, a laborious enterprise. Instead we
want to use the minimal pressure hypothesis, which simplifies the calculations by
making them global and, in the language of numerical conservation laws, is capturing
rather than tracking the boundaries of the consolidated regions.
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7. Pressure minimization and norm comparison. The toy problem we con-
sider for a first validation of the minimal pressure hypothesis follows the example
described in the previous section: Ice is moving towards a coast, where it consolidates
and pressure builds up. We discretize (22) and (23) using a staggered grid and a
backward Euler scheme as follows:

kn+1
j = knj +

Δt

Δx

(
un+1
j+ 1

2

− un+1
j− 1

2

)
,(40)

un+1
j+ 1

2

= un
j+ 1

2
− Δt

Δx

(
pn+1
j+1 − pn+1

j

)
.(41)

The constraints are

kn+1
j ≥ 0 ∀ j, n,(42)

pn+1
j ≥ 0 ∀ j, n.(43)

Note that it is necessary to use an implicit scheme for the evolution equation of k, in
order to be able to satisfy the constraint. As p does not have an evolution equation,
it is immaterial whether we use an explicit scheme or an implicit scheme for the
u-equation. We have chosen to write it implicitly for consistency.

We place the wall at j = 5. As boundary conditions, we take that pn+1
−1 = pn+1

0 = 0

(until the shock reaches this boundary) and pn+1
5 = pn+1

4 ∀n. As initial conditions,
we assume that the shock is located at j = 2.75. To the left of the shock, p = 0,
k = 1/2, and u = 1. To the right of the shock, k = 0 and u = 0. Δt is set to 0.5, and
Δx is set to 1. (This allows us to capture the shock, which travels with speed 2. Of
course, this resolution is very coarse. However, it serves to illustrate the point in this
toy example.)

After the first time step,

u1
j+ 1

2
=

{
1 − 1

2

(
pn+1
j+1 − pn+1

j

)
if j < 3,

− 1
2

(
pn+1
j+1 − pn+1

j

)
if j ≥ 3.

(44)

So the constraints (42) take the following form:

k1
0 =

1

2
− 1

4
[p1

1 − 2p1
0 + p1

−1] ≥ 0,(45)

k1
1 =

1

2
− 1

4
[p1

2 − 2p1
1 + p1

0] ≥ 0,(46)

k1
2 =

1

2
− 1

4
[p1

3 − 2p1
2 + p1

1] ≥ 0,(47)

k1
3 = 0 − 1

2
− 1

4
[p1

4 − 2p1
3 + p1

2] ≥ 0,(48)

k1
4 = −1

4
[p1

5 − 2p1
4 + p1

3] ≥ 0.(49)

Now we have a system of five inequalities constraining p1, p2, p3, and p4. (Recall
that p−1 = p0 = 0 and p5 = p4.) Minimizing the 2-norm of px while satisfying these
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constraints gives for T = Δt that

p1
0 = 0, k1

0 =
1

2
, u1

.5 = 1,

p1
1 = 0, k1

1 =
1

2
, u1

1.5 = 1,

p1
2 = 0, k1

2 = 0, u1
2.5 = 0,

p1
3 = 2, k1

3 = 0, u1
3.5 = 0,

p1
4 = 2, k1

4 = 0, u1
4.5 = 0.

From the jump conditions (cf. (39)) it follows that to the right of the shock

p = 2.(50)

The shock speed can be calculated from (36) or (37) to be

ẋc = −2.(51)

Thus the solution obtained by minimizing ‖px‖2 is exactly what the analytic
solution predicts: After time Δt = 0.5, the shock traveled one step to the left, with u
and k retaining the same values on either side of the shock, while p = 2 to the right of
the shock. Similarly satisfying results were obtained for longer runs and for different
initial conditions. In cases where the discretization does not allow for capturing the
location of the shock exactly, a certain amount of numerical smoothing around the
shock occurs, with p, k, and u taking on intermediate values.

The three norms we want to compare are
1. the 2-norm of px, i.e.,

∑
(pi − pi−1)

2,
2. the 2-norm of p, i.e.,

∑
p2
i ,

3. the 1-norm of p, i.e.,
∑

|pi|.
There are, of course, many other possible norms. These are some of the most natural
choices and can be optimized with existing tools.

Solving the same problem above, but minimizing the 1- or 2-norm of p, gives
exactly the same answer. This suggests that the norm chosen (at least from among
these three) does not impact the result. In fact, this can be shown as follows.

First, consider ‖px‖2, with the additional condition that min p = 0 (see foot-
note 3). Recall that the KKT conditions then require p = 0 when k > 0. Minimizing
one of the norms of p itself also calls for p to be 0 whenever possible, in particular
whenever k > 0.

Within regions of consolidated ice, where k = 0, we know that kt ≥ 0, and hence,
by (22), ux ≥ 0.

(i) If ux > 0, then kt > 0 and px = 0 is a solution. (Physically, this is
the situation where the consolidated ice is being pulled apart without the pressure
acting.)

(ii) If ux = 0, then uxt ≥ 0 =⇒ pxx ≤ 0 (by (23)).
The values of p at the endpoints of the consolidated region are determined by the
jump conditions, which have to be satisfied because of the constraining equations.
Minimizing ‖p‖, either as a 2-norm or as a 1-norm, with pxx ≤ 0 requires p to be
linear within the consolidated region. The same is true for ‖px‖2. (Note, however,
that minimizing the 1-norm of px leads to nonunique solutions, where the one found
using the other norms is but one possibility.)

Thus, for any of the three norms:
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(i) p = 0 outside consolidated regions.
(ii) p at the boundaries of consolidated regions is prescribed by the jump con-

ditions imposed by the constraining equations.
(iii) p is linear within consolidated regions.

It follows that the solutions are exactly the same.
As mentioned before, we have decided for our numerical work to rely on the

1-norm of p in order to facilitate the numerical optimization.

8. The numerical model and another test case. Our one-dimensional La-
grangian ice dynamics model for ice with uniform and constant thickness and without
forcing is based on the discretization (40)–(43). For the optimization step, we use
either Matlab’s built-in function linprog or a self-coded simplex method.

The problem described above (ice flowing towards a wall) can be successfully
modeled this way (also with much better resolution and different initial conditions).
We have also modeled, as another example, the case of a periodic domain, with
initially uniformly distributed ice. The initial velocity function is sinusoidal with
average velocity 0. Again, our physical intuition tells us what the solution should be:
We expect the ice to consolidate in the middle of the domain. This is indeed what
happens; see Figure 1. Given the initial conditions, we can also analytically calculate
the first consolidation time, which in this case is 1/4π ≈ 0.0796. Again, the numerical
results agree, predicting the first time for c = 1 to lie in the interval [0.07875, 0.08]
when a temporal step size of 0.00125 was chosen. The comparison of norms was again
carried out in this model, which confirmed the previous conclusion that they yield
the same answer, whereby minimizing the 1-norm of p is calculationally the least
expensive. Various other initial conditions for u, including nonsymmetric cases, were
studied, with the numerical results agreeing with the analytic solution (as far as this
was easily obtained) and/or physical intuition.

9. Another validation: Comparison with a particle-based method. Fur-
ther evidence in favor of the minimal pressure hypothesis comes from a comparison
with a particle-based model. Here the one-dimensional sea ice motion is simulated as
the interaction of individual “particles” (i.e., floes). Each of these is traced through
space and time. Collisions are required to be mass- and momentum-conserving and
inelastic (again following the observation that the pressure arising from collisions and
consolidation does not lead to divergence). This is a rather costly method of modeling
sea ice dynamics. However, for the purposes of validation, it is useful. After making
the appropriate transformations from the respective coordinate system of each model
to Eulerian coordinates, the concentration distributions resulting from the particle-
based model and the continuum model with the minimal pressure hypothesis were
compared, exhibiting remarkable agreement.

For the comparison, all external forces as well as crushing were again ignored. The
initial concentration was taken to be constant co throughout the (periodic) domain.
This is implemented in the collision model by an even spacing of identical particles.
The number of particles corresponds to the resolution; the initial concentration deter-
mines the width of each particle. Later, the concentration is calculated at a particle
point as the average area coverage between neighboring particles, i.e., at the point k

c(k) =
2w

x(k + 1) − x(k − 1)
,(52)

where w is the width of a parcel, c(k) is the concentration, and x(k) is the location
of the kth parcel. The velocities are tracked for each particle. They remain constant
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Fig. 1. The numerical results for ice consolidating in the center of the domain. Initial condi-
tions are given in the plots on the left. The evolution is exhibited in the plots on the right. Note
that the x-coordinate here is the Lagrangian position.

unless a collision occurs, in which case momentum conservation dictates the new
velocity of the consolidated region: For particles j1 through j2 involved in the collision,
each will have new velocity

unew =

∑j2
i=j1

mi ui∑j2
i=j1

mi

,(53)

where ui denotes the velocity of the ith particle and mi its mass. Here, as in the
continuum model, constant thickness is assumed. Hence the concentration c(i) is
proportional to the mass mi and can be substituted for it in the formula (53).

The initial velocity for both model runs was taken to be sinusoidal again, given
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Fig. 2. The velocity evolutions derived by the continuum model using the minimal pressure
hypothesis (top frame) and the particle-based model (bottom frame). Note that the x-coordinates
here are the Lagrangian x-coordinates of each model.

in Eulerian coordinates as uE
i (x) = sin(2πcox). (Note that this is equivalent to the

case presented in the previous section. In the Lagrangian mass coordinates used
there, the same velocity is written as uL

i (ξ) = sin(2π ξ), where we are reverting to
the Greek notation for clarification.) Two comparisons were carried out, one of the
resulting velocity fields, the other of the resulting concentration fields. The Lagrangian
coordinates of the continuum model with the minimal pressure hypothesis can be
converted to Eulerian coordinates by numerically integrating the velocity u in time;
the Eulerian positions of the particles in the collision model are recorded at each
step.

Figure 2 shows the evolution of the velocities from the two models over 125
time steps. They are clearly very similar. A more detailed comparison is given in
Figure 3. Here the Lagrangian coordinates are converted to Eulerian ones, and two
different times are chosen. Note that in both plots, the velocities agree almost exactly.
The one point of the particle model overshooting the continuum model (both in the
positive and negative directions) in each plot is simply not resolved by the continuum
model.
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Fig. 3. The velocities derived with the continuum (solid line, circles) and the particle (dashed
line, squares) models are compared at (a) an intermediate time and (b) the end of the run. The
x-coordinates here are Eulerian x-coordinates.

Figure 4 shows the evolution of the concentrations from the two models over the
125 time steps. Again, a close similarity is apparent. To compare the concentration
fields more exactly, we have chosen two points in time, one at the first collision
(marked in the continuum model as the first time with nonzero pressure), the other
at the end of the run. The results are shown in Figure 5. Up to the first collision, the
concentration fields are identical between the two models. Recall that this time can
be found analytically to be 1

4π ≈ 0.0796. With the resolution used here (Δt = 0.004,
Δξ = 0.02), the continuum model places it in the interval [0.076, 0.080], while the
particle model predicts that the first collision will occur at time 0.0796. In other
words, both models are in good agreement with the exact value. At time T = 0.5,
small differences in the concentration fields are discernible. However, once again much
of this difference can be ascribed to the fact that the two models do not resolve the
same points.

One can conclude then that the model suggested here, using a minimization tech-
nique to calculate internal pressure, which is used in turn to update the velocity field,
produces results entirely consistent with the physical description of sea ice motion as
the interaction of ice floes through inelastic collisions.

10. Conclusions. We propose here a new closure for the equations of motion for
sea ice modeled as a fluid. In addition to the momentum and the mass conservation
equations, an expression for the internal forcing due to pressure has to be found. Based
on the observation that collisions of ice floes at natural speeds tend to be inelastic, it
was hypothesized that the internal pressure should stay at the minimum required to
enforce a concentration of at most 1. This formulation is also consistent with treating
the pressure as a Lagrange multiplier in the optimization problem minimizing the
deviation from the unforced path under the constraints of the mass conservation
equation and the limits on the concentration (0 ≤ c ≤ 1).

To investigate the validity of this closure, a one-dimensional Lagrangian model
was set up. Two classes of test cases were studied, ice moving towards a wall with
initially constant velocity and ice moving in a periodic domain with initially sinusoidal
velocity. Thickness was held constant for easier identification of the effects of the
minimal pressure hypothesis, an assumption that will be relaxed in Part 2. For the
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Fig. 4. The concentration evolutions derived by the continuum model using the minimal pres-
sure hypothesis (top frame) and the particle-based model (bottom frame). Note that the x-coordinates
here are the Lagrangian x-coordinates of each model.

first case, an exact analytic solution was derived—which was reproduced to high
accuracy by the model (except for smoothing of the shock when the resolution was
too coarse). The second case produced results consistent with physical intuition.
A further validation was given by comparison with a particle-resolving model using
inelastic collisions. Within the limits of their respective resolutions, the output of
these two models was in exact agreement.

It is thus possible to conclude that the minimal pressure hypothesis leads to
correct solutions, at least in the cases studied here. This is promising, because the
work presented here forms the basis for more complex versions of the dynamics model
using the minimal pressure hypothesis. The next step—a translation to Eulerian
coordinates, allowing variable ice thickness, and implementing a finite ice strength—is
presented in Part 2. Clearly, further study is required to determine the usefulness
of this approach in large-scale simulations. Thus, for modeling real situations, an
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Fig. 5. The concentrations derived with the continuum (solid line, circles) and the particle
(dashed line, squares) models are compared at (a) the time of first collision and (b) the end of the
run. The x-coordinates here are Eulerian x-coordinates.

extension to two dimensions is necessary. Restoring the other forcing terms will be a
minor task. The good agreement of the model results so far with analytic and particle-
resolving model solutions justifies such further investigations, currently underway.

Appendix. Derivations.

A.1. Lagrangian equations. Recall that (7) defined the Lagrangian coordi-
nates as {

ξ =
∫ x

0
ch dx̂,

τ = t.

The partial derivatives relating them to the Eulerian coordinates (t, x) are as follows:

∂ξ

∂x
= ch,(54)

∂ξ

∂t
= −chu,(55)

∂τ

∂x
= 0,(56)

∂τ

∂t
= 1,(57)

where (4) was used for the partial derivative ∂ξ/∂t. Similarly,

∂x

∂ξ
=

1

ch
,(58)

∂x

∂τ
= u,(59)

∂t

∂ξ
= 0,(60)

∂t

∂τ
= 1,(61)
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Now consider u = u(t(τ, ξ), x(τ, ξ)):

∂u

∂τ
= uttτ + uxxτ

= ut + uxu

= F from (5).

This is (9).
Following the same pattern, we find

∂u

∂ξ
= uttξ + uxxξ

=
ux

ch

= − 1

(ch)2
[−(ch)ux]

= − 1

(ch)2
[(ch)t + (ch)xu] from (4)

= − 1

(ch)2
[(ch)ttτ + (ch)xxτ ]

=

(
1

ch

)
τ

.

This yields (8).

A.2. Solution to the variational problem. The variational problem posed
in section 4 is

δ

∫ {
(ũ− u)2 + λ(x)(k + Δt ũx)

}
dx = 0.

Equivalently,

∀ f ∈ C∞
o , 0 =

d

dε

∣∣∣∣
ε=0

∫ [
(ũ + εf − u)2 + λ

(
k + Δt

∂

∂x
(ũ + εf)

)]
dx

=

∫
[2ũf − 2uf + Δt λfx] dx

=

∫
f [2 (ũ− u) − Δt λx] dx,

which implies that

2 (ũ− u) = Δt λx.
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AN OPTIMIZATION APPROACH TO MODELING SEA ICE
DYNAMICS, PART 2: FINITE ICE STRENGTH EFFECTS∗
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Abstract. The effects of a finite ice strength on a new model for sea ice dynamics, deriving
the internal pressure field from a global optimization problem, rather than a local rheology, are
examined. Building on the promising results from the one-dimensional Lagrangian model described
previously, here we add one of the key properties of sea ice. In order to investigate the behavior
of the model under ice yielding, the equations are cast in an Eulerian framework, now allowing for
variable thickness. The model is first tested under conditions of infinite ice strength, to ensure that
the numerics behave as desired. A finite ice strength is incorporated into the model as a second
optimization step, minimizing the change in ice thickness necessary to satisfy the upper bound on
the pressure, whereby ice strength is taken to be a linear function of thickness, following typical
parameterizations in the literature. The theory is implemented numerically, and several test cases
are discussed, which show good agreement with physically based expectations.
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1. Introduction. Much progress has been made in the field of sea ice dynamics
modeling over the last half a century, as models have evolved from using free drift
to incorporating complex rheologies, derived from various physical considerations.
Nonetheless, some salient features of the polar ice covers (as, for example, sea ice
arches in the straits of the Canadian Arctic Archipelago) are still not being reproduced
satisfactorily. With the ultimate goal of remedying this shortfall, we are developing
a novel method for modeling the dynamics.

In Part 1 of this study [6], we introduced a new way to calculate the internal
stress arising in converging sea ice; here we discuss how a finite ice strength can be
incorporated into the model. The theory was developed in a Lagrangian frame of
reference. This simplified the equations to a degree that it was possible to verify
the numerical model results by comparing them to an analytic solution to a well-
understood toy problem. Beginning with the analogy that coarse grained sea ice can
be described as a semi-incompressible fluid (i.e., a fluid that is always allowed to
diverge, but can converge only if the ice strength is insufficient to stop the motion),
it was argued that the problem of finding the internal stress can be phrased as an
optimization problem, where the pressure plays the role of a Lagrange multiplier.

In order to be able to carry out a relatively straightforward qualitative analysis
of the results, we make (in both Parts 1 and 2) several simplifications to the full ice
dynamics problem. Thus, thermodynamic effects are ignored. We also do not incor-
porate a thickness distribution. Thorndike et al. [11] and subsequent studies argued
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well for the importance of and provided a method for tracking such a distribution. It
is particularly relevant for thermodynamics, as the freezing and melting properties of
thin ice and thick ice differ significantly. However, since ice strength is also a function
of ice thickness, resolving subgridscale variations is desirable even in a purely dynamic
model. Realizing the resulting limitations, we ignore these effects. Similarly, we do
not employ a velocity distribution, but consider all velocities mass-averaged over a
grid cell. As the work reported here is intended as a feasibility study, we also set all
external forces equal to 0. (They are easily added back into the dynamics, as will
be described below, but complicate the analysis of the results.) Finally, we restrict
ourselves to one dimension, where only isotropic stress exists. How to handle shear
stresses will be addressed in subsequent work. The assumption from Part 1 that is
dropped here is that of constant ice thickness throughout the domain, in order to
allow crushing of the ice.

The appealing simplicity of the equations derived in the Lagrangian framework
in Part 1 resulted in part from the assumption of a constant ice thickness. Permitting
the thideness to vary over the domain and especially for individual floes (or their
grid-averaged equivalent) due to yielding negates the advantages of the formulation
we used previously. Thus, following a quick review of the Lagrangian model in section
2, we will here return to an Eulerian point of view. The new theory is presented, and
the corresponding numerical model, with variable ice thickness but still infinite ice
strength, is compared to the Lagrangian one of Part 1 in sections 3 and 4. In section
5, then, ice strength is limited, and ice is allowed to yield. For the parameterization
of ice strength, we rely on suggestions from the literature. (Note that, as we are
not carrying out quantitative studies or direct checks against data, the form of the
parameterization is more important than the exact empirical—or tuned—values used.)
It turns out that employing the limiting ice strength as a truncation value for the
internal pressure directly leads to undesirable effects. Hence, we instead reformulate
the problem in terms of a double optimization, where the ice strength becomes a new
constraint on the pressure. Some numerical results are discussed in section 6, and
conclusions presented in section 7. The appendix provides some of the mathematical
details of the model derivation; for greater detail on some of the other results, the
reader is referred to [10].

2. Lagrangian dynamics. We will use the same notation as in Part 1 [6]. In
particular, the variables are defined as follows:

c = concentration of ice (fraction of sea surface area covered by ice),

h = thickness of the ice, averaged over a grid box,

u = horizontal velocity,

F = sum of all forces under consideration,

p = internal stress.

Recall that we are not modeling any thermodynamic effects, so that all sources
and sinks of ice (melting, freezing, and precipitation) are set to 0. Similarly, no forces
other than the internal stress are considered in this paper, so that F denotes the
force due to the internal stress. The density of ice, which is nearly constant, is taken
to be identically 1. Alternatively, one can consider it as absorbed in h, which then
represents the product of ice thickness and density or, in effect, an areal density. The
authors find it most useful, however, to continue thinking of h as thickness.
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The Eulerian spatial coordinate will be denoted by x, while the Lagrangian mass
coordinate is given by

ξ =

∫ x

0

ch dx̂.(1)

For the Lagrangian formulation, we also define the new variable

k =
1

ch
− 1,

which simplifies the form of the governing equations.

The mass and momentum conservation equations in one dimension are given, in
Eulerian coordinates, by

(ch)t + (chu)x = 0,(2)

(chu)t + (chu2)x = F.(3)

We will return to these in the next section.

Translating the system into the Lagrangian coordinate defined above in (1) and
substituting the new variable k yields

kt = uξ,(4)

ut = F̃ ,(5)

where F̃ = F/(ch) is still unknown.

We argued in Part 1 [6] (where ice strength was taken to be infinite) that the
internal stress arises solely due to the semi-incompressibility of the ice. It serves
the purpose of preventing further convergence when c = 1, or, in other words, of
enforcing the constraint that c ≤ 1, equivalently that k ≥ 0 (for h constant and taken
to be 1). Consequently, it was suggested that the problem of finding F amounts to
a constrained optimization problem, which can be solved using Lagrange multipliers.
The pressure arose naturally as such a multiplier. It was shown that for the case
without ice yielding, minimizing ‖p‖ is equivalent to minimizing ‖pξ‖. So the system
was ultimately phrased as follows:

minimize ‖p‖,(6)

subject to the constraints kt = uξ,(7)

ut = −pξ,(8)

k ≥ 0,(9)

p ≥ 0.(10)

As the numerical model arising from this theory behaved well under the verifica-
tion tests (comparison to an analytic solution, comparison with a particle-resolving
model, and qualitative assessment of other model runs), we concluded that this ap-
proach to sea ice dynamics is promising.

The analysis carried out in Part 1 [6], however, relied on the unrealistic assump-
tions of constant ice thickness and infinite ice strength. This paper is intended to
carry the model one step further by eliminating those simplifications.
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3. Translation to Eulerian coordinates. Allowing variable ice thickness in
the Lagrangian model outlined in the previous section leads to some difficulties. For
one, the constraint on k becomes the rather cumbersome k ≥ 1−h

h , versus the simple
k ≥ 0. In fact, this constraint is not even well defined if we let h = 0. Of course, in
this case, c is also somewhat arbitrarily defined, but it is preferable to work with a
variable that is not occasionally constrained to be greater than or equal to infinity.
It should also be noted that the Lagrangian mass coordinate distorts the resolution
in favor of thick ice. In the discretized optimization, then, minimizing the pressure
in thicker parts weighs heavier than doing so for thinner parts, which distorts the
pressure field as well. These observations argue strongly for proceeding in Eulerian
coordinates. In addition, it is unclear whether the mass coordinates can be extended
into a second dimension while retaining any of the desired simplifications. Thus, we
return to Eulerian coordinates for studying the effects of a finite ice strength.

Translating the system (6)–(10) into Eulerian coordinates results in

minimize ‖p‖,(11)

subject to the constraints (ch)t + (chu)x = 0,(12)

(chu)t + (chu2)x = −px,(13)

0 ≤ c ≤ 1,(14)

0 ≤ p.(15)

As a side note, if one had decided not to ignore external forces, these could easily
be added to the left-hand side of (13). Everything that follows could be carried out
as described here (except, of course, that a discretization would have to be found for
the additional terms).

The reader will notice that even once p is determined by the optimization, there
are but two equations for the three unknowns c, h, and u. Let us continue to assume
infinite ice strength for now, before adding this additional complexity in the next
section. In this case, since ice does not crush, it is reasonable to take ice thickness to
be conserved following ice floes, or, in other words, h to be advected:

ht + uhx = 0.(16)

Using the mass conservation equation (12), we can rewrite this as

ct + (cu)x = 0.(17)

This equation is then added as an additional constraint to the optimization problem
(11)–(15).

For the numerical implementation, we chose to rewrite the momentum conserva-
tion equation as a velocity evolution equation:

ut +

(
u2

2

)
x

= −px
ch

.(18)

Retaining momentum (chu) as a fundamental variable to be updated each time
step is attractive, since it can then be exactly conserved. However, a preliminary
numerical implementation following this approach proved to be far more prone to
numerical instabilities than one updating velocity explicitly. (It may be worth men-
tioning that velocity is updated directly in many of today’s ice dynamics models; see,
e.g., [4] and [5].)
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Note that this derivation is valid only if c �= 0. However, wherever c = 0, the
velocity is intrinsically not well defined as a physical quantity. Defining the ratio on
the right-hand side of (18) to be 0 in this case and evolving u accordingly provides for a
solution for u to fill in the gaps. This particular choice has the advantage that regions
without ice do not have to be treated separately in the numerical implementation. At
first glance, one might expect that defining the ratio on the right-hand side to be 0
when c = 0 might lead to strange discontinuities in the forcing, since limc→0 1/c = ∞.
Yet there is no inconsistency, since the pressure is also zero whenever c is far from
1. The situation with h = 0 can be handled similarly. In this case, both u and c are
arbitrary, so that c can be taken far from 1.

While advancing momentum as a fundamental variable leads to undesirable ef-
fects, we do retain mass (ch) as a fundamental variable, so that it can be conserved
exactly. Thickness h never appears explicitly in the equations. It is tracked as a
derived variable.

A staggered grid is used, defining u at half steps from c, ch, and p. This follows the
setup for the Lagrangian model. Unlike in that case, however, it is here unfortunately
not possible to avoid all need for interpolation of any variables. The placement of
the variables was chosen to allow for a semi-implicit discretization for (17) (necessary
to be able to satisfy the constraint on c) and to keep mass and concentration in the
same locations for deriving thickness.

The discretizations of (17), (12), and (13) take the form

cn+1
j+ 1

2

= cnj+ 1
2
− Δt

Δx

(
cnj+1 u

n+1
j+1 − cnj u

n+1
j

)
,(19)

(ch)n+1
j+ 1

2

= (ch)nj+ 1
2
− Δt

Δx

(
(ch)nj+1 u

n+1
j+1 − (ch)nj u

n+1
j

)
,(20)

un+1
j = un

j − 1

2

Δt

Δx

[(
un
j+ 1

2

)2

−
(
un
j− 1

2

)2
]
− Δt

Δx

1

(ch)nj

[
pn+1
j+ 1

2

− pn+1
j− 1

2

]
.(21)

Observe that (20) serves only to update the variable (ch); it does, in fact, not represent
an additional constraint in the optimization. Thus, the linear constraint for the
minimization of ‖p‖ =

∑
pi is given by (19), where (21) is used to substitute for

un+1. The optimization provides updated values of p and c, which are then used
to find updated values of u and subsequently of (ch). The variables are interpolated
where necessary by a Godunov-type scheme. (See the appendix for more details.) The
results presented here were obtained from an implementation on Matlab, using the
built-in “linprog” function for the minimization, which uses a linear interior point
solver. (Alternatively, a simplex method can be prescribed. The resulting differences
in the output are negligible.) Also, periodic boundary conditions were imposed.

4. Results in Eulerian coordinates without yielding. A series of tests was
carried out on this model to check its behavior under various initial conditions. Here
we will present only two of the results. First, we will compare the behavior of this
Eulerian model to that of the Lagrangian one from Part 1 [6]. The equations and
hence the numerics are more complicated here, requiring the choice of an interpolation
scheme in addition to a discretization. Moreover, it can be shown that, with the
choices made here, in general,∑

j

(ch)n+1
j un+1

j −
∑
j

(ch)nj u
n
j �= 0.
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In other words, momentum is not exactly conserved. It is, thus, desirable to check
that the deviations are acceptably small.

For the comparison, we initialize both models with a sinusoidal initial velocity,
constant ice thickness (ho = 1), and uniform ice concentration. Since spatial and
temporal resolutions are fixed throughout the runs but space is measured in different
coordinates, it is not possible to retain equivalent spatial step sizes in the two models.
In particular, the specifications are as follows:

co = 0.5, ko = 1,

uo = sin(2πx), uo = sin(4πξ),

Δx = 0.0125, Δξ = 0.0125,

Δt

Δx
= 0.1,

Δt

Δξ
= 0.1.

(Recall that k was defined as k = (1 − ch)/ch and ξ =
∫ x

0
ch dx̃.)

For the plots, we have chosen four times:

t = 0.0175 fairly early on, after 15 time steps,

t = 0.0500 shortly before consolidation begins, after 41 time steps,

t = 0.0900 shortly after consolidation begins, after 73 time steps,

t = 0.1500 about 2/3 through this run, after 121 time steps.

At each of these times, we have converted the Lagrangian spatial coordinate to the
Eulerian one for a direct comparison. Figures 1 and 2 display the concentrations
and velocities from the two models corresponding to these times. Figure 3 shows the
momenta.

The two models show good agreement in both concentration and velocity; the
lines coincide almost exactly. The differences are mostly due to resolution, as differ-
ent points are resolved in each model. The same is true for the momentum plots. Here
the Eulerian model produces somewhat greater values for both the positive and the
negative velocities near the consolidated region, which may be related to the interpo-
lation. (The momentum is the product of two quantities that are tracked in different
spatial locations. Thus, even for the Lagrangian results, interpolation is necessary to
calculate it.) Recall that the Lagrangian model was designed to conserve momentum
exactly. The discretization chosen for the Eulerian model, on the other hand, does
not do the same. (Of course, in the limit as the resolution becomes finer, this error
vanishes.) The fact that the momentum profiles from the Eulerian model agree so well
is evidence that momentum is close to being conserved here as well. Further support
comes from the fact that the constant velocity at which the consolidated ice travels
is 0 (up to four decimal places), just as predicted by the theory based on momentum
conservation. (This velocity test, by the way, holds up in other examples as well,
although the accuracy degrades somewhat to only 10−2 when the average velocity is
not 0. Some of this loss in accuracy can be ascribed to numerical diffusion.)

Before the ice begins to consolidate, the numerical solutions can also be compared
to exact analytic solutions. Both the Lagrangian and the Eulerian model produce very
good approximations (not shown). For the latter, the type of interpolation chosen
can make a noticeable difference. (Again, see the appendix for a description of the
scheme we use.) The first accumulation time (when c first reaches 1 and p becomes
nonzero) is theoretically predicted in this example to be 1/4π ≈ 0.079577. The model
here predicts it to be in the interval [0.07875, 0.08000]; i.e., it captures it very well.
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Fig. 1. Comparing ice concentrations at various times from the Lagrangian and the Eulerian
models. The Eulerian output is interpolated with a solid black line, the Lagrangian with a dashed
grey line.

To test how the model handles variable thickness (which, after all, was the primary
purpose for it), we ran an example with a parabolic initial thickness distribution, while
using again the sinusoidal initial velocity and uniform initial concentration. Figure 4
beautifully exhibits the behavior. As the ice is pushed together in the center of the
domain, the thickness profile steepens. Once concentration reaches 1, h no longer
changes. This agrees well with expectations from physical intuition.

5. Incorporating finite ice strength. Now that we have a model allowing
for variable ice thickness, we can introduce the process of ice yielding.1 It is well
known that sea ice has a finite strength, which depends on ice thickness. It may also
depend on other properties, such as the age of the ice or the salinity of the water from
which it was formed. These variables are not being tracked in this model. The litera-
ture, moreover, seems to agree generally that thickness is the most important factor.

1We will use the terms “yielding,” “crushing,” and “ridging” interchangeably, although the actual
processes of crushing and ridging may be quite different. Ridging typically occurs when ice floes
slide under each other, while crushing implies that the ice actually breaks. The net result of both
processes is thicker ice, as a consequence of yielding. It is generally accepted that resistance to
crushing is significantly higher than that to ridging. Hence, most of the yielding accounted for here
will technically be ridging rather than crushing.
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Fig. 2. Comparing ice velocities at various times from the Lagrangian and the Eulerian models.
The Eulerian output is interpolated with a solid black line, the Lagrangian with a dashed grey line.

Ice dynamics models currently in use do not typically include dependence on anything
but ice thickness and concentration.

The importance of a failure criterion for sea ice dynamics has been recognized
at least since the mid-1970s (see [1]). It has been incorporated into plastic (e.g.,
[8]), viscous-plastic (e.g., [4]), elastic-plastic (e.g., [2] and [9]) and elastic-viscous-
plastic (e.g., [5]) rheologies, but it has also appeared in other descriptions of the
constituency law for ice, such as the cavitating fluid (e.g., [3]) and granular flow (e.g.,
[12]) rheologies.

The literature offers essentially two types of ice strength parameterizations. On
the one hand is a formulation relating ice strength P ∗ to the potential energy change
associated with the changes in ice thickness. This was first suggested by [9], was
adopted by [11], and has been used ever since in connection with the thickness distri-
bution theory pioneered by the latter.

For simpler models, using a two-category thickness distribution, distinguishing
within a grid box only between ice and open water (the type employed here), ice
strength has uniformly been taken as a function of ice thickness and concentra-
tion, although the functional dependence is not always the same. The other factors
that may influence ice strength (such as age) are generally not taken into account.
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Fig. 3. Comparing ice momenta at various times from the Lagrangian and the Eulerian models.
The Eulerian output is interpolated with a solid black line, the Lagrangian with a dashed grey line.

Most models follow the formulation presented by [4]:

P ∗ = Poche
−b(1−c),(22)

where P ∗ is the ice strength expressed as a maximal pressure and Po and b are em-
pirical parameters.2 This parameterization exhibits several of the desired properties.
The thicker the ice, the stronger it is. The greater the concentration, the greater is
the total strength. However, it is also apparent that even if c is relatively far from 1
(say 0.6 or so), the ice strength is still significant.

Overland and Pease [8] suggest an alternative. Instead of a linear dependence on
h, a quadratic law is hypothesized, which leads to a better approximation in their
study of observed ridging:

P ∗ = Poρch
2e−b(1−c).(23)

The only other difference is that they include a dependence on ice density, which is
typically (as in this work) taken to be a constant and can hence be absorbed into Po.
The functional form (22) has proven to be the more popular of these two.

2Hibler’s notation in the 1979 paper [4] is actually P = P ∗h exp[−C(1 − A)]. The formulation
here reflects the definition of the variables we are using throughout. Note also that Hibler’s h is an
effective ice thickness, i.e., more akin to ch in our notation.
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Fig. 4. The Eulerian model was run with spatial step size set to 0.0125 and temporal step size
set to 0.00125. Initial conditions were co = 0.5, ho = −4x2 + 4x + 1, and uo = sin(2πx). The
evolution of h, c, and u is illustrated in parallel with snapshots from five different times.

For our purposes, either description would work; we have chosen a linear depen-
dence of ice strength on ice thickness, mirroring (22). However, we do not include the
dependence on ice concentration. One of the underlying assumptions of our model is
that p = 0 whenever c �= 1. Hence ice strength is irrelevant (or could be taken to be
0: the ice does not resist convergence) in this situation. Setting c = 1 in (22), the
parameterization becomes simply

P ∗ = Poh.(24)

Flato and Hibler found empirical values for Po (and the b appearing in the expo-
nential term of (22)) in their 1992 paper [3]. We are not, at present, concerned with
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producing quantitatively correct results and will hence adjust Po to assist in investi-
gating the effect of a limiting pressure value, rather than using their recommendation
or an otherwise physically justified value.

Initially, the limiting ice strength was treated as a truncation value for the pres-
sure. p was calculated as before as the solution to the constrained minimization
problem (11) with constraints (13)–(15) and (17). Then it was truncated by P ∗. The
resulting values for p were used to calculate the updated values for u and (ch) using
(14) and (12). Equation (17) no longer holds where ice begins to yield. Thus, it
is valid only in regions without crushing. However, since ice only yields where it is
consolidated, we know that everywhere else c = 1.

This procedure is not advisable. Since the limiting values of p depend on h, the
truncated p can have undesirable shapes. In particular, a convex thickness can lead
to a convex pressure, which causes the ice to diverge artificially. The error in this
procedure lies in the assumption that ice yielding in one area of a consolidated region
does not change the pressure anywhere else. This, however, is not necessarily true.

The algorithm we would like to suggest here hence rephrases the optimization
problem, instead of attempting to correct the pressure profile after the minimization.
The finite ice strength is, in fact, an additional constraint for the optimization. On
the other hand, we lose the constraint (17), since we can no longer assume advection
of thickness. This poses problems, since we need to be able to say something about
the advanced c, in order to constrain it to stay between 0 and 1.

Observe that as long as the ice is not allowed to yield, Dh
Dt = ht + uhx = 0; ice

thickness does not change following particles. When ice does buckle, it does so only
to the degree necessary to satisfy the upper bound on the internal pressure. One
can argue that h will change as little as possible—suggesting a second constrained
optimization.

The new procedure then is as follows:
(1) Minimize the changes in ice thickness globally:

find min

∥∥∥∥Dh

Dt

∥∥∥∥ ,(25)

given the constraints (ch)t + (chu)x = 0,(26)

(chu)t + (chu2)x = −px,(27)

Dh

Dt
≥ 0,(28)

0 ≤ c ≤ 1,(29)

0 ≤ p ≤ P ∗.(30)

The first inequality constraint (28) arises because crushing can only increase ice thick-
ness. Equation (26) again is used to advance (ch) rather than as a true constraint on
the problem. The norm for (25) is chosen to be the 1-norm, primarily for numerical
considerations: This choice keeps the problem linear.

This minimization will give values for c and p, which determine u and h, at the
new time level that minimize

∥∥Dh
Dt

∥∥. However, the answer is typically not unique.

The only unique quantity is the min
∥∥Dh

Dt

∥∥.
(2) The first step provides the closure for h, so that it is now possible to proceed
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with the pressure minimization:

find min ‖p‖,(31)

given the constraints (ch)t + (chu)x = 0,(32)

(chu)t + (chu2)x = −px,(33) ∥∥∥∥Dh

Dt

∥∥∥∥ = value found in step (1),(34)

Dh

Dt
≥ 0,(35)

0 ≤ c ≤ 1,(36)

0 ≤ p ≤ P ∗.(37)

Note that the first inequality (35) needs to be retained in addition to the last equality
constraint (34), since it is a pointwise, rather than an integral, statement.

This minimization must have a solution for c and p, from which u and h are
derived, satisfying all the constraints, since one was found in the first step.

In the case where no ice yielding occurs, this two-step algorithm simplifies to the
procedure outlined in section 3 above, as desired: The minimum of ‖Dh/Dt‖ is zero.
Since Dh/Dt is constrained to be nonnegative pointwise, this implies that, in fact,
Dh/Dt = 0 everywhere. This is the constraint used in section 3.

The numerical implementation follows the pattern above, for the model without
ice yielding. The same grid and discretizations are used. Recall that the variable h
is not directly updated at each time step. The objective function for the first mini-
mization is hence rewritten in terms of (ch) and c. It follows from mass conservation
(see (26)) that

c [ht + uhx] = −h [ct + (cu)x] .(38)

Since c ≥ 0 and h ≥ 0, the inequality constraint Dh
Dt ≥ 0 is equivalent to ct+(cu)x ≤ 0.

Also, ice only crushes where c = 1. In other words, if c �= 1, then Dh
Dt = 0. Hence

minimizing
∥∥Dh

Dt

∥∥ is equivalent to minimizing
∥∥cDh

Dt

∥∥ or
∥∥− (ch)

c [ct + (cu)x]
∥∥.

6. Results with ice yielding. To illustrate the effects of finite ice strength,
we present here the model results from two different problems. First, we look at a
somewhat degenerate example, where the initial ice thickness is taken to be constant.
(Of course, here it does not remain constant, since Po is chosen so that the ice does
yield.) The initial concentration is also set constant at 0.5, while the velocity is
initialized with a sine-curve.

Figure 5 shows the evolution of h, c, and u during the run up to time t = 0.2.
As expected, the ice begins to consolidate in the center of the domain. Shortly after
the concentration reaches 1, the pressure begins to exceed the ice strength, and the
ice begins to ridge. Initially, this happens right at x = 0.5. Later, the ice yields at
the edges of the consolidated region, where it is still thinner (not having ridged there
yet), leading to a profile with multiple peaks. This can be seen in Figure 6, which
shows several snapshots of the ice thickness from this run.

The attentive reader may have noticed a slight inconsistency in Figure 6: At some
times (e.g., t = 0.08750 or t = 0.10500) the ice thickness actually decreases below its
initial value of h = 1. This should not happen. On the other hand, these deviations
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Fig. 5. The model allowing for crushing was run with spatial step size set to 0.0125 and temporal
step size set to 0.00125. Initial conditions were co = 0.5, ho = 1, and uo = sin(2πx). Po was set to
2. The evolution of h, c, and u is shown up to time t = 0.2.

are on a small scale, i.e., never greater than about 0.003. Moreover, recall that h is a
derived quantity. The locations of the too-small values for h are invariably at the very
edge of the consolidated domain, so that it stands to reason that the errors are due to
a not quite precise enough capturing of the discontinuity in c. Indeed a higher spatial
resolution does improve the situation. Thus, a halving of Δx leads to a reduction of
the dips in h below 1 by a whole order of magnitude.

As a second example, we will examine a case where the ice thickness is not uniform,
so that it is easier to predict where the ice should yield first. The initial conditions
for this run are co = 0.5, ho = cos(2πx) + 1.1, and uo = sin(2πx) + 1.5. As expected,
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Fig. 6. Snapshots from the thickness evolution of the run from Figure 5. The ice yields
initially at the center of the domain, but later at other points within the consolidated region, leading
temporarily to profiles with multiple peaks.

the ice yields first where it is thinnest within the consolidated region. Figures 7
and 8 show the evolution of thickness, concentration, and velocity for this particular
experiment. Note that the second figure is translated to the left, so that the center of
the plot is at x = 1 rather than at x = 0.5. (Recall that periodic boundary conditions
are being used.)

For a more detailed look, Figure 9 shows h, c, and u in one frame at two distinct
times. In the plot on the left, for time t = 0.2, one can clearly see that the ice has
begun to ridge in the consolidated region. It is also apparent that the velocity for this
area is no longer constant; the yielding implies further convergence of the ice despite
c equaling 1. In the plot on the right, for time t = 0.4, the ice is no longer yielding,
and the consolidated ice travels at a uniform velocity of approximately 1.48 (close to
the expected 1.5). By this time, the thickness profile within the region of c = 1 is
again a more or less smooth valley; the thinner parts from the earlier picture have
ridged as well.

7. Conclusions. We are investigating the feasibility of a novel formulation of the
sea ice dynamics. In Part 1 [6], the method for calculating the internal pressure term
as the solution to an optimization problem was derived, and results of a Lagrangian
model with infinite ice strength were discussed. In this part, we set out to show how a
finite ice strength can be handled by a model of this type. The implementation turns
out to be easier in an Eulerian framework. Thus, we translated the formulation,
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Fig. 7. The model allowing for crushing was run with spatial step size set to 0.0125 and
temporal step size set to 0.00125. Initial conditions were co = 0.5, ho = cos(2πx) + 1.1, and
uo = sin(2πx) + 1.5. Po was set to 1. The evolution up to time t = 0.2 is shown. The ice begins to
yield at the weakest point.

allowing now for a variable ice thickness, although initially still working with an
infinite ice strength. This new model was compared to the Lagrangian one, to ensure
that the choices made for the numerics, such as which variables to update explicitly
at each time step and how to discretize the equations, did not lead to unreasonable
results. In particular, we wanted to make sure that momentum, while not exactly
conserved by the discretized equations, does not vary significantly over the course of
a run. The Eulerian model output was also tested against an exact solution before
consolidation, with very good agreement.

To incorporate a finite ice strength, we chose to adopt a parameterization of the
ice strength as a multiple of the ice thickness, based on parameterizations common in
the ice dynamics literature. Limiting the pressure the ice can withstand then requires
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Fig. 8. The continuation of the plot in Figure 7; here the evolution from time t = 0.2 until
t = 0.4 is shown. Thinner ice yields first, leading to a smooth convex profile for h within the
consolidated region at the end of the run.

a second optimization problem, which determines how much the ice has to yield in
order to satisfy this new constraint. While the solution to this minimization tends
not to be unique, the minimum found is; this minimum then becomes an additional
constraint on the second optimization, minimizing the pressure.

Two example runs were shown from this model, one beginning with a constant
ice thickness, the second beginning with a varied one. In both cases, the behavior of
the numerical results was qualitatively correct. Ice yields in the consolidated regions,
whereby thinner ice tends to yield before thicker ice. Some convergence of the ice
occurs during the ridging, but when the ice is thick enough to withstand the pressure
exerted by the surrounding ice, all convergence is stopped—as desired.

It can be concluded, thus, that this procedure for determining internal stress for
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Fig. 9. Detail for the second experiment, as in Figures 7 and 8. The left panel shows thickness
(solid line), concentration (dashed line), and velocity (dot-dashed line) at time t = 0.2. The right
panel shows the same measures at time t = 0.4.

sea ice is indeed able to handle finite ice strength. Further work on a two-dimensional
implementation is underway, where the new challenge of shear stresses and a limited
shear strength arises. The findings presented here indicate that the method being
investigated produces realistic results in one-dimensional cases, which is prerequisite
to creating a working two-dimensional model.

Appendix. Interpolation scheme. As mentioned above, unlike the La-
grangian model, the Eulerian one requires that the variables be interpolated. They
are defined on a staggered grid, but for the flux-form of the discretized equations
we need to know their values at points in between. The strategy adopted here is a
Godunov-type upwinding. See [7] for an extensive discussion of Godunov schemes.

For the concentration c and mass (ch), the upwinding works as follows: u is
defined at the interfaces to which each of these is to be interpolated. The sign of the
velocity determines the side from which the values are taken. In our implementation,
we also perform a linear extrapolation. Thus, since c is defined at half steps of the grid,

cj =

{
3
2cj− 1

2
− 1

2cj− 3
2

if uj ≥ 0,
3
2cj+ 1

2
− 1

2cj+ 3
2

if uj < 0.
(39)

This method generally produces a better estimate of the value at the interface
than a constant approximation (i.e., letting cj equal either cj− 1

2
or cj+ 1

2
). However,

one needs to include a safeguard not to overshoot the desired values. Thus, the
extrapolations are capped by the minimum and the maximum of the adjoining points.
If, for example, the extrapolation predicts a value for cj larger than max{cj− 1

2
, cj+ 1

2
},

then it is reset to the maximum (similarly for the minimum). The variable (ch) is
interpolated according to the same rules.

To find the value of uj+ 1
2

is a somewhat more complex problem. One wants to
solve the local Riemann problem for the system of equations

ct + (ch)x = 0,(40)

(ch)t + (chu)x = 0,(41)

(chu)t + (chu2)x = −px.(42)

(We assume no crushing here in between two time steps.) It turns out, however,



578 HELGA S. HUNTLEY AND ESTEBAN G. TABAK

x

t

s+s−

c c

h_o

c=1 p

h

u+u−h_o

u

Fig. 10. The two-shock setup with c− = c+ and h− = h+ = ho.

that this system of equations has only one set of characteristics and only one Rie-
mann invariant. This is insufficient in general. In the case of divergence or contact
discontinuities, there is no convergence, and hence we can assume that p = 0 is a
solution. This observation allows us to simplify the momentum equation (42), using
mass conservation (41), to Burgers’ equation

ut +

(
u2

2

)
x

= 0.(43)

Classical theory provides a solution to the local Riemann problem here. Thus, if we
denote by u− and u+ the extrapolated values to the left and to the right, respectively,
of the interface, then

uj+ 1
2

=

⎧⎪⎨
⎪⎩
u− if u+ ≥ u− ≥ 0,

u+ if u− ≤ u+ ≤ 0,

0 if u− < 0 < u+.

(44)

The case of convergence and shocks is a little trickier. In fact, it can be shown that
now p cannot be 0. Physical considerations suggest that when ice converges, not one
but two discontinuities in the velocity form, one on each side of the newly consolidated
ice. The general case for a nonstaggered grid, where concentration, thickness, and
velocity all differ from one side of the interface to the other, requires an additional
assumption, such as pressure minimization or thickness advection. (See [10] for a
detailed discussion of this case.) Luckily, on the staggered grid we have chosen, this
is not necessary. The two-shock setup of the local Riemann problem is illustrated in
Figure 10. Ice thickness and concentration on each side of the interface (or the shocks,
once these develop) are denoted by ho and c, respectively. The velocities to the left
and to the right (the extrapolated values) are denoted by u− and u+, as before. In
between the shocks, the ice is consolidated; hence c = 1, the thickness is h, pressure
p, and velocity u.

In the following derivation, we will assume that 0 < c < 1; the other cases will be
treated separately below.3 For each shock, there are three jump conditions derived
from (40)–(42):

s =
[[cu]]

[[c]]
=

[[chu]]

[[ch]]
=

[[chu2 + p]]

[[chu]]
,(45)

where s is the shock speed. Using s− for the shock speed on the left and s+ for that

3This restriction is desirable to ensure that the denominators in the jump conditions are nonzero.
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on the right, these six equations become

s− =
cu− − u

c− 1
,(46)

cu− − u

c− 1
=

chou
− − hu

cho − h
,(47)

chou
− − hu

cho − h
=

cho(u
−)2 − hu2 − p

chou− − hu
,(48)

s+ =
cu+ − u

c− 1
,(49)

cu+ − u

c− 1
=

chou
+ − hu

cho − h
,(50)

chou
+ − hu

cho − h
=

cho(u
+)2 − hu2 − p

chou+ − hu
.(51)

Having six equations to constrain five unknowns (s−, s+, u, p, and h) opens the
possibility for inconsistency. However, as we will see below, (47) and (50) are, in fact,
redundant.

Solving (48) and (51) for p yields

p =
choh(u− − u)2

h− cho
(52)

and

p =
choh(u+ − u)2

h− cho
.(53)

By assumption, c �= 0. One can also assume that h �= 0 and ho �= 0, since this
would mean that there is no ice near this interface and u becomes arbitrarily defined.
Hence,

(u− − u)2 = (u+ − u)2.(54)

Also, u− > u+ in the convergence case considered here, so that

u− − u = u− u+.(55)

It follows that

u =
u− + u+

2
.(56)

Note that one may have predicted this result, namely that the ice masses, once consol-
idated, move at the average velocity (since ice thickness and concentration are equal
on each side).

Using (47), one can solve for h—which, as one might expect, turns out to be equal
to ho. (Since a finite ice strength does not enter this picture, there should not be any
yielding or change in thickness.) Equation (50) yields the same answer (showing that
one of them is unnecessary).

Substituting expression (56) for u into (46) and (49), we can solve for the two
shock speeds:

s− =
u+ + u−(1 − 2c)

2(1 − c)
, s+ =

u− + u+(1 − 2c)

2(1 − c)
.(57)



580 HELGA S. HUNTLEY AND ESTEBAN G. TABAK

In order for the picture in Figure 10 to be accurate, we also need that s− < s+.
This is true.

Proof. Since we are only concerned with convergence, u− > u+. From (56), it
can be concluded that u− > u > u+. Also 0 < c < 1. It follows that

cu− > cu, cu > cu+,(58)

u− cu− < u− cu, u− cu < u− cu+,(59)

u− cu−

1 − c
< u, u <

u− cu+

1 − c
,(60)

s− < u, u < s+,(61)

where (46) and (49) were used for the last step.
The interpolation scheme resulting from this analysis is the following:

uj+ 1
2

=

⎧⎪⎨
⎪⎩
u− if u− ≥ u+, 0 < s− < s+,

u+ if u− ≥ u+, s− < s+ < 0,

u = u−+u+

2 if u− ≥ u+, s− ≤ 0 ≤ s+.

(62)

(We have chosen to group the cases s− = 0 and s+ = 0 into the last category, while
they could as well fit into the two previous scenarios, respectively.)

Finally, we will say a word about the cases c = 0 and c = 1. If c = 0, there
is no ice near the interface, and the velocity of the nonexisting ice is arbitrary. For
consistency and smoothness, we will continue to use the same interpolation scheme
as above (even though the derivation does not necessarily hold, starting with the
observation that the concentration needs to be 1 between the shocks).

If c = 1, the ice is consolidated around the interface in question, which means
that it should all be traveling at the same speed (in the absence of crushing). In other
words, u− = u+. If this is not the case, due to numerical error, we set

uj+ 1
2

=
u− + u+

2
.(63)

This completes the description of the interpolation scheme.
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Abstract. This paper represents a first step toward a moment method for dose calculations in
radiotherapy. Starting from a deterministic transport model for electron radiation and its Fokker–
Planck approximation, a new macroscopic model is presented. We investigate several ways to simplify
the deterministic model having two goals in mind, lower computation times on the one hand and high
accuracy and model inherent incorporation of tissue inhomogeneities on the other hand. While being
fast, the second property is lost in the often used pencil-beam models. We discuss the properties of
well-known macroscopic models and design a new model, which combines their advantages. Several
test cases, including the irradiation of a water phantom, are presented.
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1. Introduction. Treatment with high energy ionizing radiation is one of the
main methods in modern cancer therapy that is in clinical use. Since the early days
of radiation treatment, high energy photons have been the most important type of
radiation. Other types of radiation include high energy electrons and heavy charged
particles like protons and ions. The latter type of radiation is of growing importance
but has not reached the widespread use of photons and electrons, yet.

Before the treatment of the patient can be started, the expected dose distribution,
i.e., the distribution of absorbed radiative energy in the patient, has to be calculated.
During the past decades two main approaches to dose calculation were executed. The
most accurate way to calculate the dose is given by Monte Carlo simulations [2]. Based
on the well-known interactions of radiation in human tissue, a rigorous model of the
energy distribution in the patient’s body can be developed. Monte Carlo models allow
for an exact computation of the dose distribution. Due to their high computational
costs they have not found their way to everyday clinical use yet.

An alternative way to determine the dose was developed during the last 25 years.
The so-called pencil-beam models [1] offer a reliable and fast alternative for most
types of radiation treatment. These models are based on the Fermi–Eyges theory of
radiative transfer [32, 14]. Despite their success in most clinical problems, they fail in
complicated settings like air cavities or other inhomogeneities. This failure is caused
by the underlying Fermi–Eyges theory because this approximation allows only for
cross sections that vary spatially in the one-dimensional direction of the central axis
of the beam. This assumption leads to a depth-dependence of the physical parameters
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that is in general not observed in reality. Therefore pencil-beam models can account
only for layered heterogeneities, and their effect on the dose has to be approximated
by a rescaling of the kernels [18].

A third way to dose calculation has not attracted much attention in the medi-
cal physics community. This access is based on deterministic transport equations of
radiative transfer. Similar to Monte Carlo simulations a rigorous model of the phys-
ical interactions in human tissue is modeled that can in principle be solved exactly.
Recent studies for pure electron radiation can be found in [5, 7, 24, 22]. Electron
and combined photon and electron radiation were studied in [36, 37] in the context
of inverse therapy planning. The focus in these studies was more on rigorous analyt-
ical investigations with emphasis on mathematical aspects rather than a physically
based modeling of the radiation-tissue interactions. A discrete transport model was
proposed in [35, 19, 27, 20]. A consistent model of combined photon and electron
radiation was developed [17] that includes the most important physical interactions.
It allows for the computation of dose distributions for any geometric setting and is not
restricted to layered inhomogeneities as the pencil-beam models are. Similar to Monte
Carlo models, all interactions are modeled in detail which requires long computation
times that are far beyond those needed for a clinical use.

This paper represents a first step toward simplified models for electron beam cal-
culations in radiotherapy. In electron transport, small angle scattering with small
energy loss, thus forward-peaked scattering kernels, is important. In transport calcu-
lations, these are either treated separately (e.g., δ−N method [34]) or the Boltzmann–
Fokker–Planck equation can be used [31, 9]. In the latter approach, the scattering
kernels are split into forward-peaked or more isotropic kernels, representing soft or
hard collisions, respectively. Applying the Fokker–Planck asymptotic to the forward-
peaked kernels, the (numerical) singularities are removed. In this work, we restrict
ourselves to the Fokker–Plank approximation of the deterministic model although it
does not contain all the physics necessary for realistic dose calculation. The reason for
this is that the models we present here have all been successfully applied to radiative
transfer with rather isotropic scattering, but it turns out that several of these models
have problems in the Fokker–Planck limit of strong forward-peaked scattering. Here,
we therefore modify the models to account for this difficulty alone. In future work,
we will apply these new models to the combined Boltzmann–Fokker–Planck equation.

We investigate several ways to simplify the deterministic Fokker–Planck model
having two goals in mind: On one hand the computation times should be lowered by
several magnitudes. Our aim is a solver that can compute a typical dose distribution
within minutes so that the model gets attractive for clinical use. On the other hand
the errors in the dose distribution following the model simplifications should be very
small. Especially the model inherent incorporation of tissue inhomogeneities must not
be lost during the approximation steps. After all simplifications the model should still
be able to fully reflect the heterogeneity of the human body, and the dose distribution
should differ within only a few percent from more accurate benchmark simulations.

The rest of this paper is organized as follows. In section 2, we give an overview
of the Boltzmann-type model, which was developed in [17] and serves as the start-
ing point of our investigations. We also review the Fokker–Planck and Boltzmann–
Fokker–Planck approximations. Well-known macroscopic approximations in the case
of the Boltzmann equation are applied to the Fokker–Planck equation in section 3.
Advantages and drawbacks of the macroscopic models are discussed in section 4.
This discussion leads us to the proposal of a new model which unites some of the
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best properties of the known models. We present numerical comparisons between
several models in section 5 and include a realistic dose calculation using the full phys-
ical model from [17]. We conclude with a discussion of the results and present open
problems for future work in section 6.

2. A deterministic model for dose calculation. A ray of high energy elec-
trons that interacts with human tissue is subject to elastic scattering processes (Mott
scattering) and inelastic ones (Møller scattering). Møller scattering is the electron-
electron scattering process. It increases the number of free electrons when sufficient
energy is transferred to the secondary electrons. It is this latter process that leads to
energy deposition in the tissue, i.e., to the absorbed dose.

To formulate a transport equation for electrons we study their fluence in phase
space. Let ψ(r, ε,Ω) cos ΘdAdΩdεedt be the number of electrons that move in time dt
through area dA into the element of solid angle dΩ around Ω with an energy in the
interval (εe, εe + dεe). The angle between direction Ω and the outer normal of dA is
denoted by Θ. The direction is denoted by

Ω = (μ, η, ξ)T = (μ,
√

1 − μ2 cosϕ,
√

1 − μ2 sinϕ)T

= (cosϑ, sinϑ cosϕ, sinϑ sinϕ)T ,
(2.1)

with ϕ and ϑ being the azimuth and polar angle in a cartesian coordinate system,
respectively. The kinetic energy εe of the electrons is the relativistic kinetic energy.

2.1. Boltzmann transport equation. The transport equation formulated in
[17] for the electrons is

Ω · ∇ψ(r, ε,Ω) = ρe(r)

∫ ∞

ε

∫
S2

1/4

σ̃M(ε′e, εe,Ω
′ · Ω)ψ(r, ε,Ω′)dΩ′

edε
′
e

+ ρe(r)

∫ ∞

ε

∫
S2

2/4

σ̃M,δ(ε
′
e, εe,Ω

′ · Ω)ψ(r, ε,Ω′)dΩ′
edε

′
e

+ ρc(r)

∫
S2

σMott(r, εe,Ω
′ · Ω)ψ(r, ε,Ω′)dΩ′

e

− ρe(r)σM,tot(εe)ψ(r, ε,Ω)

− ρc(r)σMott,tot(r, εe)ψ(r, ε,Ω),

with σ̃M being the differential scattering cross section for Møller scattering of primary
electrons; σ̃M,δ being the differential Møller cross section for secondary electrons and
σMott being the differential cross section for Mott scattering; σtot

M and σtot
Mott are the

total cross sections for Møller and Mott scattering, respectively; and ρe and ρc are the
densities of tissue electrons and tissue atomic cores, respectively. Explicit formulas
for the cross sections can be found in Appendix A, see also [17]. In contrast to the
model in [17] we set the lower energy bound of the transport equation to zero. The
energy integration is performed over (ε,∞) since the electrons lose energy in every
scattering event. Also, we consider only electron radiation. (2.2) could also be used
to model electrons, which are generated by the interactions of photons with matter,
as in [17]. In this case we would have an additional source term on the right-hand
side for the generated electrons.

Due to kinematical reasons of the scattering processes, the range of solid angles
in Møller (electron-electron) scattering is restricted. The electron, which has the
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higher energy after the collision, is called the primary electron; the other electron is
the secondary. Here, an incoming electron with energy ε′ hits an electron at rest.
After the collision, the angle between the directions of the electrons is at most π/2.
Electrons are indistinguishable. For an angle in [0, π/4], the electron with energy ε is
the primary electron; for an angle in [π/4, π/2], it is the secondary electron. Therefore
we write the Møller term in the Boltzmann equation as

∫
S2

1/4

f(ϕ, ϑ)dΩ :=

∫ 2π

0

∫ π/4

0

f(ϕ, ϑ) sinϑdϑdϕ and

∫
S2

2/4

f(ϕ, ϑ)dΩ :=

∫ 2π

0

∫ π/2

π/4

f(ϕ, ϑ) sinϑdϑdϕ,

where the axes of reference are given by Ω in the scattering integrals in (2.2).
Besides the transport equation one needs an equation for the absorbed dose. It

was derived in [17] as an asymptotic limit of a model with a finite lower energy bound
εs > 0. The formula is exact if one chooses the lower energy limit εs = 0, as we do
here.

D(r) =
T

ρ(r)

∫ ∞

0

SM(r, ε′e)ψ
(0)(r, ε′e)dε

′
e,

with

(2.2) ψ(0)(r, εe) :=

∫
S2

ψ(r, εe,Ω
′)dΩ′,

T being the duration of the irradiation of the patient, and ρ being the mass density
of the irradiated tissue. If all quantities are calculated in System Internationale (SI)
units, (2.1) leads to SI units J/kg or Gray (Gy) for the dose.

SM is the stopping power related to the Møller cross section. It is defined as

SM(r, εe) = ρe(r)

∫ (εe−εB)/2

εB

ε′eσM(εe, ε
′
e)dε

′
e.

εB is the binding energy of electrons in tissue atoms or molecules, cf. [17] for details.
The above Boltzmann-type transport equation can be approximated by a

Boltzmann–Fokker–Planck equation taking into account the fact that the great major-
ity of the electron collisions are soft collisions. These collisions can be approximated
by a Fokker–Planck-type term, see the next section. However, some electrons will
also experience hard collisions with large changes in direction and energy losses which
have to be described by Boltzmann integral terms. For reasons given above, we will
consider only the Fokker–Planck part. Approximate methods for the full Boltzmann–
Fokker–Planck equation will be considered in a forthcoming paper.

2.2. Fokker–Planck approximation. Electron transport in tissue has very
distinctive properties. The soft collision differential scattering cross sections have a
pronounced maximum for small scattering angles and small energy loss. This allows
for a simplification of the scattering terms in the Boltzmann equation. The Fokker–
Planck equation is the result of an asymptotic analysis for both small energy loss and
small deflections. It has been rigorously derived in [30] and has been applied to the
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above Boltzmann model in [17]. The Fokker–Planck equation is

(2.3) Ω ·∇ψ(r, ε,Ω) = (TM(r, ε)+TMott(r, ε))ΔΩψ(r, ε,Ω)+∂ε(SM(r, ε)ψ(r, ε,Ω)),

with

TM(r, ε) = πρe(r)

∫ (ε−εB)/2

εB

∫ 1

−1

(1 − μ)σ̃M(ε, ε′, μ)dμdε′,(2.4)

TMott(r, ε) = πρe(r)

∫ 1

−1

(1 − μ)σMott(ε, μ)dμ,(2.5)

and the Laplacian on the unit sphere

(2.6) ΔΩ =
∂

∂μ
(1 − μ2)

∂

∂μ
+

1

1 − μ2

∂

∂ϕ
.

In the following, we will interpret the energy variable ε as time. We assign boundary
values to the Fokker–Planck equation (2.3) and will consider the following initial
boundary value problem. We have the spatial domain r ∈ Z with boundary ∂Z and
outward normal n, energy ε ∈ [0,∞), direction Ω ∈ S2. We prescribe the ingoing
radiation at the spatial boundary,

(2.7) ψ(r, ε,Ω) = ψb(r, ε,Ω) for r ∈ ∂Z, n · Ω < 0.

For the energy, we prescribe the “initial value”

(2.8) ψ(r,∞,Ω) = 0.

In the numerical simulations, we use a large cutoff energy.

2.3. Fermi–Eyges theory. To derive the Fermi–Eyges approximation, which is
the basis of many schemes used in practice, several additional simplifying assumptions
have to be made. As incident radiation, a monoenergetic pencil beam is assumed. We
consider an infinite plate (x, y, z) ∈ (0, 1) × R

2 and prescribe [7]

ψ(0, y, z, ε,Ω) = δ(y)δ(z)δ(ε− ε0)
δ(1 − μ)

2π
for 0 < μ < 1,(2.9)

ψ(1, y, z, ε,Ω) = 0 for − 1 < μ < 0.(2.10)

Energy transfer and change in direction are treated separately. First, if we neglect
angular deflections, we obtain the straight ahead approximation,

(2.11) Ω · ∇ψ(r, ε,Ω) =
∂

∂ε
(SM(r, ε)ψ(r, ε,Ω)).

The method of characteristics for conservation laws relates energy and penetration
depth by the initial value problem

(2.12)
dε(x)

dx
= −SM(x, ε(x)), ε(0) = ε0.

This means that we obtain the energy of the monoenergetic beam as a function of
penetration depth. We have assumed that SM depends only on the depth x.
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On the other hand, we neglect energy loss and assume small angle scattering. The
direction Ω is approximated by

(2.13) Ω = (μ, η, ξ) ≈ (1, η, ξ).

The Fokker–Planck equation becomes the Fermi equation

∂

∂x
ψ(r, ε, η, ξ) + η

∂

∂y
ψ(r, ε, η, ξ) + ξ

∂

∂z
ψ(r, ε, η, ξ)

=
TM(r, ε) + TMott(r, ε)

2
Δη,ξψ(r, ε, η, ξ),

(2.14)

where [5]

(2.15) Δη,ξ =
∂2

∂η2
+

∂2

∂ξ2
=

1

μ

∂

∂μ

(
1 − μ2

μ

∂

∂μ

)
+

1

1 − μ2

∂2

∂ϕ2
.

The Fermi equation permits only directions μ > 0. An asymptotic derivation is given
in [6].

The starting point of Fermi–Eyges theory is to combine the Fermi equation and
the straight ahead approximation, i.e., ε = ε(r) in (2.14). The Fermi equation is
defined for η2 + ξ2 < 1. By artificially extending the range of η and ξ to the real
line (ψ small for η, ξ large), Fermi ([32], pp. 265–268) was able to give an explicit
solution for the pencil-beam problem for constant coefficients. Eyges [14] generalized
this solution to space-dependent coefficients. Using the straight ahead approximation,
it is thus possible to incorporate energy dependence.

In cylindrical coordinates, r = (x, y, z) = (x, ρ cosφ, ρ sinφ), the Fermi equation
reads

(2.16)
∂

∂x
ψ(x, ρ, η) = −η

∂

∂ρ
ψ(x, ρ, η) +

TM(x, ε(x)) + TMott(x, ε(x))

2

∂2

∂η2
ψ(x, ρ, η).

Note that, due to symmetries in the pencil-beam problem, the solution depends nei-
ther on ϕ nor on ξ. Therefore pencil-beam models can account only for layered hetero-
geneities. Moreover, we assumed that the scattering coefficients TM and TMott depend
only on the penetration depth, i.e., the medium is layered. The explicit solution due
to Eyges is

(2.17) ψFE(x, ρ, η) =
1

2π
√
A0A2(x) −A2

1(x)
exp

(
−A2(x)η2 − 2A1(x)ηρ + A0ρ

2

4A0(A0A2(x) −A2
1(x))

)
,

where

(2.18) Ak(x) =

∫ x

0

(x− y)k
TM(y, ε(y)) + TMott(y, ε(y))

2
dy.

The so-called pencil-beam models based on the Fermi–Eyges theory offer a reli-
able and fast alternative for most types of radiation treatment as mentioned in the
introduction. However, they fail in complicated settings, because the Fermi–Eyges ap-
proximation allows only for cross sections that vary spatially in the one-dimensional
direction of the axis of the beam, i.e., for layered heterogeneities. Its generaliza-
tion to nonlayered media is not obvious. Many heuristics have been introduced to
that end [1]. Here, the basic Fermi–Eyges solution will serve as a comparison to the
macroscopic methods.
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3. Macroscopic models. In this section, we give an overview over several well-
known macroscopic models as applied to the Fokker–Planck equation. For the sake
of simplicity, we restrict ourselves to one space dimension. The ideas however are
general and have been applied to two or three space dimensions.

3.1. Spherical harmonics. The spherical harmonics approach was developed
first for radiative transfer [21, 13]. With high orders of the expansion, it has been
proposed for use in photon transport medical physics problems, see, e.g., [4]. The
idea of the spherical harmonics approach is to express the angular dependence of the
distribution function in terms of a truncated Fourier series,

(3.1) ψSH(r, ε, μ) =

N∑
l=0

ψ(l)(r, ε)
2l + 1

2
Pl(μ),

where Pl are the Legendre polynomials. This means that we assume ψ(l) = 0 for l > N .
The Legendre polynomials form an orthogonal basis of the space of polynomials with
respect to the standard scalar product on [−1, 1]. The Fourier coefficients are the
moments

(3.2) ψ(l)(r, ε) =

∫ 1

−1

ψ(r, μ, ε)Pl(μ)dμ.

We test the Fokker–Planck equation with Pl, integrate with respect to μ over [−1, 1],
and use a recursion relation to obtain the PN equations

−SM∂εψ
(l) + ∂x

(
l + 1

2l + 1
ψ(l+1) +

l

2l + 1
ψ(l−1)

)

= −TM + TMott

2
l(l + 1)ψ(l) + (∂εSM)ψ(l)

(3.3)

for l = 0, . . . , N . The P3 equations, which we will use later, read

−SM∂εψ
(0) + ∂xψ

(1) = (∂εSM)ψ(0),(3.4)

−SM∂εψ
(1) + ∂x

(
1

3
ψ(0) +

2

3
ψ(2)

)
= −(TM + TMott)ψ

(1) + (∂εSM)ψ(1),(3.5)

−SM∂εψ
(2) + ∂x

(
2

5
ψ(1) +

3

5
ψ(3)

)
= −(TM + TMott)ψ

(2) + (∂εSM)ψ(2),(3.6)

−SM∂εψ
(3) + ∂x

3

7
ψ(2) = −(TM + TMott)ψ

(3) + (∂εSM)ψ(3).(3.7)

3.2. Diffusion and Fermi age. The diffusion approximation can be derived in
several ways. One way is to start from the first spherical harmonics moment equation,

(3.8) −SM∂εψ
(0) + ∂xψ

(1) = (∂εSM)ψ(0),

and to approximate the second equation by Fick’s law,

(3.9) ∂x
1

3
ψ(0) = −(TM + TMott)ψ

(1).

This gives

(3.10) −∂ε(SM(ε)ψ(0)) =
1

3(TM + TMott)
∂2
xψ

(0).
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Alternatively, the diffusion equation can be derived by scaling arguments. One may
start with the Fokker–Planck equation (2.3). Using the diffusion scaling (spatial scale
of order 1/δ) combined with a rescaling of the term ∂ε(SM(r, ε)) of order δ2, one
obtains with the classical arguments, see, e.g., [25], the above diffusion equation.
However, the relevant physical parameters, see the last section, do not coincide with
such a scaling; i.e., we are not in the range of validity of the diffusion equation. See
also the numerical results in the last section. In Fermi age theory, the name under
which the diffusion approximation is known in nuclear; we introduce the slowing down
density ψ̃ = SMψ(0). Furthermore, we introduce the age τ by

(3.11)
dτ

dε
= − 1

3(TM + TMott)

1

SM
.

Note that the age has dimension length squared. Its square root is a characteristic
length called the fast diffusion length. The diffusion equation attains the simple form

(3.12)
∂

∂τ
ψ̃ = Δψ̃.

3.3. Minimum entropy. The approximations based on the expansion of the
distribution function into a polynomial suffer from several drawbacks [11]. Most
importantly, the distribution function can become negative, and thus the moments
computed from the distribution can become unphysical. One way to overcome this
problem is to use an entropy minimization principle to obtain the constitutive equation
to close the moment equations. This principle has become the main concept of rational
extended thermodynamics [29].

The minimum entropy M1 model [11, 3] for electrons [8] can be derived in the
following way. We start with the first two equations of the spherical harmonics method
above:

−SM∂εψ
(0) + ∂xψ

(1) = (∂εSM)ψ(0),(3.13)

−SM∂εψ
(1) + ∂x

(
1

3
ψ(0) +

2

3
ψ(2)

)
= −(TM + TMott)ψ

(1) + (∂εSM)ψ(1).(3.14)

This system is underdetermined: two equations for three unknowns. To close the
system we determine a distribution function ψME that minimizes the entropy of the
electrons,

(3.15) H∗
R(ψ) = −

∫ 1

−1

ψ logψdμ,

under the constraint that it reproduces the lower order moments,

(3.16)

∫ 1

−1

ψMEdμ = ψ(0) and

∫ 1

−1

μψMEdμ = ψ(1).

The entropy minimizer can be written as [8]

(3.17) ψME(μ) = αeβμ.

This is a Maxwell–Boltzmann-type distribution, and α, β are Lagrange multipliers
enforcing the constraints.
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When dealing with nonlinear closure functions, it is always crucial to ask which
moments can be realized by the concrete distribution. In this case, we have as a
necessary condition that

(3.18) ψ(0) =

∫ 1

−1

ψMEdμ ≥ 0 and |ψ(1)| = |
∫ 1

−1

μψMEdμ| ≤ ψ(0).

This is also sufficient; i.e., for each pair of moments (ψ(0), ψ(1)) that satisfies (3.18)
one can find Lagrange multipliers α and β such that the moments are realized by the
distribution function ψME .

It is not possible to express the highest moment ψ(2) explicitly in terms of ψ(0)

and ψ(1), but we can write for the flux function

(3.19)
1

3
ψ(0) +

2

3
ψ(2) = χ

(
ψ(1)

ψ(0)

)
ψ(0).

The Eddington factor χ is defined for |ψ(1)/ψ(0)| ≤ 1 and can be computed numerically
[8] from the set of equations

ψ(1)

ψ(0)
= β cothβ − 1,(3.20)

χ

(
ψ(1)

ψ(0)

)
=

ψ(2)

ψ(0)
= β2 + 2 − 4β cothβ,(3.21)

where β is the Lagrange multiplier. However, also the models based on the minimum
entropy closure yield unphysical solutions in certain situations, see, e.g., the numerical
results.

3.4. Half-moment approximation. A model which has been successfully ap-
plied to anisotropic radiative transfer, removing some drawbacks of the minimum
entropy model in the last section, is the half-moment approximation [33, 38]. A typ-
ical drawback of the minimum entropy solution is displayed in the simulations in
Figure 5.1. The idea is to average not over all directions but over certain subsets,
e.g., particles moving left or right. In one dimension, this means to integrate over
[−1, 0] and [0, 1]. We denote the half-moments by

(3.22) ψ
(l)
+ (r, ε) =

∫ 1

0

ψ(r, ε, μ)Pl(μ)dμ and ψ
(l)
− (r, ε) =

∫ 0

−1

ψ(r, ε, μ)Pl(μ)dμ.

Applying this approach to the Fokker–Planck equation we obtain

(3.23) −SM∂εψ
(0)
+ + ∂xψ

(1)
+ =

TM + TMott

2

∫ 1

0

∂μ(1 − μ2)∂μψdμ + (∂εS)ψ
(0)
+ .

If we use integration by parts, the integral on the right-hand side becomes

(3.24)

∫ 1

0

∂μ(1 − μ2)∂μψdμ = −∂μψ(0).

We note that, in contrast to the spherical harmonics approach, on the right-hand side
a microscopic term, i.e., the distribution itself instead of its moments, appears. In
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a similar way, we can derive equations for higher moments, as well as the negative
half-space:

−SM∂εψ
(0)
+ + ∂xψ

(1)
+ = −TM + TMott

2
∂μψ(0) + (∂εSM)ψ

(0)
+ ,(3.25)

−SM∂εψ
(1)
+ + ∂x

(
ψ

(2)
+ +

1

3
ψ

(0)
+

)
=

TM + TMott

2
(ψ(0) − 2ψ

(1)
+ ) + (∂εSM)ψ

(1)
+ ,(3.26)

−SM∂εψ
(0)
− + ∂xψ

(1)
− =

TM + TMott

2
∂μψ(0) + (∂εSM)ψ

(0)
− ,(3.27)

−SM∂εψ
(1)
− + ∂x

(
ψ

(2)
− +

1

3
ψ

(0)
+

)
=

TM + TMott

2
(−ψ(0) − 2ψ

(1)
− ) + (∂εSM)ψ

(1)
− .(3.28)

In principle, we can model the boundary terms with the underlying distribution, which
is used to model the higher order moments. Again, we can choose either a polynomial
or minimum entropy closure.

For the half-moment P1 closure, sometimes also called the double P1 closure, we
take

(3.29) ψHP1(μ) =

{
α− + β−μ for μ ∈ [−1, 0],

α+ + β+μ for μ ∈ [0, 1].

If we model the microscopic terms using this function by defining ψ(0) and ∂μψ(0) as
the limit from the right and left, respective of the positive or negative half-space, we
obtain the closed half-moment P1 system:

−SM∂εψ
(0)
+ + ∂xψ

(1)
+ = 3(TM + TMott)(ψ

(0)
+ − 2ψ

(1)
+ ) + (∂εSM)ψ

(0)
+ ,(3.30)

−SM∂εψ
(1)
+ + ∂x

(
χ+

(
ψ

(1)
+

ψ
(0)
+

)
ψ(0)

)
= 2(TM + TMott)(ψ

(0)
+ − 2ψ

(1)
+ ) + (∂εSM)ψ

(1)
+ ,(3.31)

−SM∂εψ
(0)
− + ∂xψ

(1)
− = 3(TM + TMott)(ψ

(0)
− + 2ψ

(1)
− ) + (∂εSM)ψ

(0)
− ,(3.32)

−SM∂εψ
(1)
− + ∂x

(
χ−

(
ψ

(1)
−

ψ
(0)
−

)
ψ(0)

)
= 2(TM + TMott)(ψ

(0)
− + 2ψ

(1)
− ) + (∂εSM)ψ

(1)
− .(3.33)

The half-Eddington factors for the P1 closure are

(3.34) χ±

(
ψ

(1)
±

ψ
(0)
±

)
= −1

6
±

ψ
(1)
±

ψ
(0)
±

.

The half-moment minimum entropy closure is

(3.35) ψHME(μ) =

{
α−e

β−μ for μ ∈ [−1, 0],

α+e
+β+μ for μ ∈ [0, 1].

All physically reasonable half-moments can be realized; i.e., for ψ
(0)
+ ≥ 0 and 0 ≤

ψ
(1)
+ ≤ ψ

(0)
+ there exist Lagrange multipliers α+ and β+ such that the moments

are realized by ψHME (respectively for “−”). The half-Eddington factors and the
additional terms must be computed numerically. They can be obtained from the
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system

ψ
(1)
+

ψ(0)
=

β+β−e
β+ − β−(eβ+ − 1)

β+β−(eβ+ − 1) + β2
+(1 − e−β−)

,(3.36)

ψ
(1)
−

ψ(0)
=

β+β−e
−β− − β+(1 − e−β−)

β2
−(eβ+ − 1) + β+β−(1 − e−β−)

,(3.37)

χ+

(
ψ

(1)
+

ψ
(0)
+

)
=

β−e
β+

β−(eβ+ − 1) + β+(1 − e−β−)
− 2

β+

ψ
(1)
+

ψ(0)
,(3.38)

χ−

(
ψ

(1)
−

ψ
(0)
+

)
=

−β+e
−β−

β+(eβ+ − 1) + β−(1 − e−β−)
− 2

β−

ψ
(1)
−

ψ(0)
,(3.39)

in which the Lagrange multipliers β± have to be eliminated.
The underlying distribution function for the minimum entropy half-moment model

is never negative in contrast to the linear half-moment model. For many situations,
e.g., in the case of Boltzmann-type transport equations, the nonlinear half-moment
closure has, similar to the nonlinear full moment closure, many advantages compared
to the linear closure. However, in the present setting the major problems, as, e.g.,
the appearance of terms in the balance equations, which depend on the distribution
function and not only on the first moments, are present for both closures. This will be
explained below in more detail. Thus we do not get into the details of the nonlinear
numerical closure here.

4. A new approximation extending the method of moments. In this
section we discuss the drawbacks of the above models and suggest a new moment
model adapted to the original Fokker–Planck equations. The behavior of the spherical
harmonics method, the diffusion approximation, and the minimum entropy method
have been studied extensively. The half-moment method is not as well known as the
other approximations. All methods have their individual advantages and drawbacks.
We will sketch some of them.

The diffusion approximation leads to a scalar parabolic PDE, which makes it very
fast and simple to solve. The three other methods give systems of hyperbolic equa-
tions, whose numerical analysis is more difficult. The key drawback of the diffusion
approximation is its diffusivity, i.e., it smears out the solution. Furthermore, infor-
mation is propagated infinitely fast, in contrast to the finite speed of propagation in
hyperbolic equations and in reality.

The main disadvantage of the spherical harmonics approach is that it allows for
negative particle distributions and has fixed characteristic speeds. The minimum
entropy approximation, on the other hand, always has a positive distribution and
adapts to the speed of propagation. However, it allows for discontinuous solutions [8,
12]. The individual drawbacks can be demonstrated in one example, the two beam
case shown in Figure 5.1. The details of the test case are described in section 5.

The half-moment model was designed to remove the drawbacks of minimum en-
tropy and spherical harmonics. This approach was successful in the case of radiative
transfer [33]. The half-moment minimum entropy model guarantees positivity, adapts
its speed of propagation, and eliminates the possibility of unphysical discontinuities.
The half-moment PN model is also an improvement over the PN model but lacks the
correct speed of propagation and does not guarantee positivity.

In the present case, the numerical results show that the half-moment model (both
with polynomial and minimum entropy closure) fails dramatically. One hint at this
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failure is the appearance of the terms ∂μψ(0) in the derivation, which are depending
on the distribution function and not directly on the moments of this function. A
second indication that the half-moment model above is not a good approximation
to the Fokker–Planck equation is that the “+” and “−” equations decouple. Thus
the model cannot be a consistent discretization of the Fokker–Planck equation. The
mathematical reason for the failure is that integration by parts is not allowed if the
integrand is discontinuous. While full moment models (as opposed to half-moment
models) and the diffusion approximation are invariant under the Fokker–Planck limit,

(4.1) σtot → ∞,
σ(1) =

∫ 1

−1
μσ(μ)dμ

σtot
→ 1 with σtot

(
1 − σ(1)

σtot

)
fixed,

the half-moment models diverge in this limit. The reason for this divergence will be
investigated in more detail in future work.

Driven by the success of the half-moment approach for radiative transfer, we seek
to modify the approach in such a way that it is suitable for the Fokker–Planck equa-
tion. We want to use half-moments where possible but avoid ambiguous microscopic
terms. We observe that the lowest order ansatz which satisfies these criteria is to test
with P0 and integrate over [−1, 1] and then to test with P1 and integrate over [−1, 0]
and [0, 1] separately. We get

−SM∂εψ
(0) + ∂x(ψ

(1)
+ + ψ

(1)
− ) = (∂εSM)ψ(0),(4.2)

−SM∂εψ
(1)
+ + ∂x

(
−1

6
ψ

(0)
+ + ψ

(1)
+

)
=

TM + TMott

2
(ψ(0) − 2ψ

(1)
+ ) + (∂εSM)ψ

(1)
+ ,

(4.3)

−SM∂εψ
(1)
− + ∂x

(
−1

6
ψ

(0)
− − ψ

(1)
−

)
=

TM + TMott

2
(−ψ(0) − 2ψ

(1)
− ) + (∂εSM)ψ

(1)
− .

(4.4)

If we close this system with an underlying distribution that is continuous, then the
integration by parts which was performed to obtain the last two equations is justified.
Furthermore, the microscopic term in the last two equations is unambiguously defined.

To close the model, we choose a modified minimum entropy (MME) closure func-
tion which is a mixture between half moment and full moment closure:

(4.5) ψMME =

{
αeβ+μ, μ ∈ [0, 1],

αeβ−μ, μ ∈ [−1, 0].

Here, one could also consider a linear closure, but this has the drawback that it allows
for negative energies and does not adapt to the correct speed of propagation similar
to the radiative transfer case.

Whereas in the above minimum entropy closure functions all physically relevant
moments could be attained, moment realizability is an issue here. Obviously,

(4.6) ψ(0) ≥ 0, 0 ≤ ψ
(1)
+ ≤ ψ(0), and − ψ(0) ≤ ψ

(1)
− ≤ 0

are necessary conditions for the invertibility. Furthermore, we observe that

ψ
(1)
+ − ψ

(1)
− =

∫ 1

0

μeβ+μdμ−
∫ 0

−1

μeβ−μdμ =

∫ 1

0

μeβ+μdμ−
∫ 0

1

μe−β−μdμ(4.7)

=

∫ 1

0

μ(eβ+μ + e−β−μ)dμ ≤
∫ 1

0

μ(eβ+μ + e−β−μ)dμ = ψ(0).
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Fig. 4.1. Minimum entropy Eddington factor χ+ as a function of φ+ = ψ
(1)
+ /ψ(0) and φ− =

ψ
(1)
− /ψ(0).

The numerical inversion of the system shows that conditions (4.6) and (4.7) are suffi-

cient for realizability. This means that not all choices of the moments (ψ(0), ψ
(1)
+ , ψ

(1)
− )

in (4.6) are allowed here. In the test cases presented below, for realizable initial val-
ues, the moments always remained realizable during the evolution. A proof of this
fact is crucial in the proof of the well-posedness of the system.

Again, the system cannot be closed analytically, but it can be written in the form

−SM∂εψ
(0) + ∂x(ψ

(1)
+ + ψ

(1)
− ) = (∂εSM)ψ(0),

−SM∂εψ
(1)
+ + ∂x

(
χ+

(
ψ

(1)
+

ψ(0)
,
ψ

(1)
−

ψ(0)

)
ψ(0)

)

=
TM + TMott

2
(2ψ(0) − 5ψ

(1)
+ + 3ψ

(1)
− ) + (∂εSM)ψ

(1)
+ ,

−SM∂εψ
(1)
− + ∂x

(
χ−

(
ψ

(1)
−

ψ(0)
,
ψ

(1)
+

ψ(0)

)
ψ(0)

)

=
TM + TMott

2
(−2ψ(0) + 3ψ

(1)
+ − 5ψ

(1)
− ) + (∂εSM)ψ

(1)
− .

The Eddington factors satisfy the symmetry relation χ+(φ, ψ) = χ−(−ψ,−φ). Fig-
ure 4.1 shows χ+.

5. Numerical results. In this section we consider several test problems in slab
geometry. We have a domain between two infinite parallel plates. Thus the problem
becomes one-dimensional in space. We will compare the Fokker–Planck solution with
diffusion, spherical harmonics P3, minimum entropy, half-moment P1, and our new
model, which we will refer to as MME.
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The numerical results for Fokker–Planck and diffusion have been obtained with
standard finite differences. The hyperbolic models were solved with kinetic schemes.
For more details on the numerical methods see [15].

In the one-dimensional setting, the Fermi–Eyges solution becomes particularly
simple. First we can average over the directions parallel to the surfaces of the plate
(perpendicular to the direction of propagation). Second, if we average over the angular
variable, we obtain for the pencil-beam problem

(5.1) ψ(0)(x, ε; ε0) = δ(ε− ε(x; ε0)).

For an arbitrary energy distribution ψb at the left boundary, the solution can be
obtained by convolution:

(5.2) ψ(0)(x, ε) =

∫ ∞

0

∫ 1

−1

δ(ε− ε(x, ε′))ψb(0, ε
′, μ)dμdε′.

Our first (artificial) test case is the two-beam test case mentioned above. We
ignore the complicated physics of the electron-tissue interaction and use the values
SM = 1, TM + TMott = 0.01. The spatial domain is x ∈ [0, 9]; the cutoff energy
(maximum energy) is 19.6. At the left side and at the right side of the domain, we
consider forward-peaked incoming beams, represented by

ψb(x = 0, ε, μ) = ψ0e
−(ε−ε̄)2e−100(1−μ)2 ,(5.3)

ψb(x = 9, ε, μ) = ψ0e
−(ε−ε̄)2e−100(1+μ)2 ,(5.4)

with ψ0 = 105. The models behave qualitatively similar if we take the values of water
for SM and TM + TMott. With the values chosen above, however, their properties can
be visualized in a single figure. The lowest order moment ψ(0) which can be seen
as a measure for the total number of electrons, computed by the different models at
ε = 0.6ε̄, is shown in Figure 5.1.

The drawbacks of the classical macroscopic model are clearly visible. The diffusion
approximation is smeared out, the spherical harmonics solution oscillates into the
negative, and minimum entropy produces an unphysical shock. The half-moment
model oscillates strongly, independently from the choice of the closure. The new
MME model is a good approximation to the Fokker–Planck solution.

In our second example, we test our model in a real physical application. We
consider a water phantom (an infinite plate filled with water) with depth 9 cm. The
effective atomic number is Z = 7.51; the density of electrons is ρe = 3340 · 1020 cm3,
ρc = ρe/Z, ρ = 1g/cm3 (parameters taken from [17]). The phantom is irradiated from
one side by a beam

(5.5) ψb(x = 0, ε, μ) = ψ0e
−1(ε−ε̄)2e−10(1−μ)2

with mean energy ε̄ = 10 MeV and amplitude ψ0 = 105 MeV−1s−1. We compare
the MME, diffusion, and Fermi–Eyges approximations with the Fokker–Planck solu-
tion. Snapshots of the energy spectrum of the beam for several depths are shown
in Figure 5.2. As above, the diffusion approximation strongly smears out and loses
the beam structure. The Fermi–Eyges approximation, on the other hand, retains the
same shape as the incoming radiation. The energy spectrum is just gradually shifted
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Fig. 5.1. Distribution ψ(0) at ε = 0.6ε̄ in two beam test case. Comparison between Fokker–
Planck (FP), spherical harmonics P3 (P3), diffusion, and minimum entropy M1 (M1) solution
(top). Comparison between Fokker–Planck (FP), MME, and half-moment (HM) solution (bottom).
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Fig. 5.2. Snapshots of the energy spectrum. Distribution ψ(0) as a function of energy for
different depths, x = 0.01 cm (top left), x = 1 cm (top right), x = 2 cm (bottom left), and x = 3
cm (bottom right). Comparison between Fokker–Planck solution (FP), MME, diffusion (SP1), and
Fermi–Eyges (FE).

according to the stopping power. The true behavior of the Fokker–Planck solution
is inbetween the two extremes. The behavior is well matched by the MME approx-
imation. The unmodified minimum entropy and the spherical harmonics solution
(both not shown) give results similar to the MME model in the present case. The
half-moment model oscillates strongly into negative energies.

For this test case, we also calculated the dose, using (2.1). The result is shown
in Figure 5.3. As can be expected from the results above, the MME model is a good
approximation to the dose computed using the Fokker–Planck solution. The diffusion
is smeared out. The difference that can be seen, however, is less dramatic than for
ψ(0). The Fermi–Eyges approximation is too simple to capture the absorption in the
medium.

Finally, we should comment on the computation times the different models used.
For the macroscopic models, the effort roughly scales with the number of equations:
1 for diffusion, 2 for minimum entropy, 3 for MME, 4 for spherical harmonics, and
roughly 100 for Fokker–Planck, depending on the angular discretization. We did
not optimize the convolution integrals in the Fermi–Eyges approximation, but it is
expected that this method is faster than the diffusion approximation.



598 MARTIN FRANK, HARTMUT HENSEL, AND AXEL KLAR

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−4

x

D

 

 
MME
SP1
FE
FP

Fig. 5.3. Dose deposited in tissue, computed with Fokker–Planck (FP), MME, diffusion (SP1),
and Fermi–Eyges (FE).

6. Conclusions. We derived and investigated a MME model as a computation-
ally inexpensive but accurate model for dose calculation in electron radiotherapy.
This model was derived from the Fokker–Planck equation and makes no assumption
on the structure of the medium. In contrast to pencil-beam models, the treatment
of inhomogeneities is model-inherent. Furthermore, we have demonstrated that the
model preserves the positivity of the number of electrons and the shape of the energy
spectrum better than several well-known macroscopic methods. We believe that the
model is a first step toward a method which can compete with the techniques that
are currently in clinical use.

Up to now numerical results have been obtained only in one dimension. The
extension to two and three dimensions has been done with very good results in the
case of radiative transfer, see, e.g., [15], using quarter space moments or other partial
moment models. An extension of these methods to the present case is currently under
investigation.

As mentioned in the beginning, the Fokker–Planck model lacks parts of the nec-
essary physics for the description of electron radiotherapy. Some electrons will also
experience hard collisions which have to be described by Boltzmann integral terms.
Thus, the development of approximate methods for the original Boltzmann equation
with forward-peaked scattering is a subject which has to be investigated as well.

Several open questions for further studies remain:
• The analytical properties of the new model, especially mathematical well-

posedness, will be studied. We expect to obtain similar results as for the
standard half-moment model [33, 16].
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• The passage from the Boltzmann transport equation to the Fokker–Planck
equation in the context of moment models should be studied in more detail.
The half-moment model apparently breaks down in this limit. The exact
reason for this breakdown is certainly an interesting subject of further study.

• The model will be generalized to two and three space dimensions. Results in
the case of the radiative transfer equation [15] indicate that the advantage
over diffusion and spherical harmonics methods becomes even more apparent.

• Moment models for the full Boltzmann equation will be developed and com-
pared to the present approach.

• The model contains an accurate model of the microscopic interactions. In
two and three dimensions, it should be validated using well-established codes
for electron radiotherapy, experiments, and benchmark results.

Appendix A. Explicit formulas for the cross sections. This appendix lists
all scattering cross sections that are used in the Boltzmann model. All cross sections
are calculated for the laboratory system where the scattering centers are at rest before
scattering. Except for elastic Mott scattering, all differential scattering cross sections
are differential in energy and in solid angle. They can be decomposed into a product
of a cross section, which is only differential in solid angle or energy, and a Dirac delta
function, which guarantees energy and momentum conservation during the scattering
event. The Mott cross section is only differential in solid angle. Total cross sections are
calculated by integrating the double differential cross sections with respect to energy
and solid angle. Because of the delta functions one integration is always trivial.

For all differential cross sections the following conventions are used: quantities
with a prime belong to incoming particles, quantities without a prime to outgoing
particles in a scattering event. The order of appearence in all differential cross sections
is energy of incoming (ε′), energy of outgoing (ε), direction of incoming (Ω′), and
direction of outgoing particles (Ω). To simplify notation and to keep the standard
notation used in literature we use Ω′ · Ω = cosϑ ≡ μ, ϑ being the scattering angle in
the laboratory system. Additionally we keep sinϑ and tanϑ in formulas to maintain
a handy notation. The relationship to cosϑ is evident. Furthermore it should be kept
in mind that εB = εB(r) which is not explicitly written to keep notation short. In all
formulas the classical electron radius re = 2.8179 · 10−15 m appears.

A.1. Differential cross section for Compton scattering of photons [10].

σ̃C,γ(ε′γ , εγ ,Ω
′
γ · Ωγ) = σC,γ(ε′γ ,Ω

′
γ · Ωγ)δC,γ(ε′γ , εγ)

with

σC,γ(ε′γ ,Ω
′
γ · Ωγ) =

r2
e

2

[
1

1 + ε′γ(1 − cosϑγ)

]2
[
1 + cos2 ϑγ +

ε′2γ (1 − cosϑγ)2

1 + ε′γ(1 − cosϑγ)

]

δC,γ(ε′γ , εγ) := δγ

(
εγ −

ε′γ
1 + ε′γ(1 − cosϑγ)

g

)
.

A.2. Total cross section for Compton scattering of photons [10].

σtot
C,γ(εγ) = 2πr2

e

[
1 + εγ
ε2γ

(
2(1 + εγ)

1 + 2εγ
− 1

εγ
ln(1 + 2εγ)

)

+
1

2εγ
ln(1 + 2εγ) − 1 + 3εγ

(1 + 2εγ)2

]
.
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A.3. Differential cross section for Compton scattering of electrons [10].

σ̃C,e(ε
′
γ , εe,Ω

′
γ · Ωe) = σC,e(ε

′
γ ,Ω

′
γ · Ωe)δC,e(ε

′
γ , εe)

with

σC,e(ε
′
γ ,Ω

′
γ · Ωe) =

4r2
e (1 + ε′γ)2

cos3 ϑe

1

(a(ε′γ , ϑe) + 2ε′γ)2

×
[
1 − 2

a(ε′γ , ϑe)
+

2

a2(ε′γ , ϑe)
+

2ε2γ
a(ε′γϑe)(a(ε′γ , ϑe) + 2ε′γ)

]

δC,e(ε
′
γ , εe) := δγ

(
εe −

2ε′γ
2

2ε′γ + a(ε′γ , ϑe)
g

)
,

where

a(ε′γ , ϑe) := (1 + ε′γ)2 tan2 ϑe + 1.

A.4. Differential cross section for Møller scattering of primary elec-
trons, i.e., εe > (ε′

e − εB)/2 [23].

σ̃M(ε′e, εe,Ω
′
e · Ωe) = σM(ε′e, εe)δM (μe, μp)

1

2π
, μe = Ω′

e · Ωe

with

σM(ε′e, εe) =
2πr2

e (ε
′
e + 1)2

ε′e(ε
′
e + 2)

[
1

ε2e
+

1

(ε′e − εe)2
+

1

(ε′e + 1)2
− 2ε′e + 1

(ε′e + 1)2εe(ε′e − εe)

]

δM (μe, μp) = δ

(
μe −

√
εe
ε′e

ε′e + 2

εe + 2

)
, εe >

(ε′e − εB)

2
.

A.5. Differential cross section for Møller scattering of secondary elec-
trons, i.e., εe < (ε′

e − εB)/2 [23].

σ̃M,δ(ε
′
e, εe,Ω

′
e · Ωe) = σM(ε′e, εe)δM,δ(μe, μδ)

1

2π
, μe = Ω′

e · Ωe

with

σM(ε′e, εe) =
2πr2

e (ε
′
e + 1)2

ε′e(ε
′
e + 2)

[
1

ε2e
+

1

(ε′e − εe)2
+

1

(ε′e + 1)2
− 2ε′e + 1

(ε′e + 1)2εe(ε′e − εe)

]

δM,δ(μe, μδ) = δ

(
μe −

√
εe
ε′e

ε′e + 2

εe + 2

)
, εe <

(ε′e − εB)

2
.

A.6. Total cross section for Møller scattering of electrons [23].

σtot
M (εe) =

∫ (εe−εB)/2

εB

σM(εe, ε
′
e)dε

′
e.

The lower limit of integration is due to the fact that the primary electron can be
scattered only if at least the binding energy εB is transferred to the secondary electron
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(of a tissue molecule). Besides the evident motivation of this choice based on our
model, this is a standard way to avoid singularities in calculating total cross sections
(see, e.g., [39]). The upper limit of integration is due to the fact that the primary
electron has larger energy than the secondary electron and that the binding energy
εB was introduced into the scattering processes (usually the upper limit is ε′e/2). One
gets

σtot
M (εe) =

2πr2
e (εe + 1)2

εe(εe + 2)

×
{

1

εB
− 3

εe − εB
+

2

εe + εB
+

εe − 3εB
2(εe + 1)2

+
2εe + 1

εe(εe + 1)
g

[
ln

εe + εB
εe − εB

− ln
εe − εB

εB
g

]}
.

A.7. Differential cross section for Mott scattering of electrons [28, 26].
α ≈ 1/137 is the fine structure constant, and Z is the atomic number of the irradiated
medium. Z depends on r to account for heterogeneous media.

σMott(r, εe,Ω
′
e · Ωe) =

Z2(r)r2
e (mc2)2

4p2c2β2 sin4 ϑe

2

[
1 − β2 sin2 ϑe

2
+ Zπαβ sin

ϑe

2

(
1 − sin

ϑe

2

)]

≈ Z2(r)r2
e (mc2)2

4p2c2β2 sin4 ϑe

2

[
1 − β2 sin2 ϑe

2

]
,

with β2 = εe(εe+2)
(εe+1)2 . The last approximation is justified, because in the energy range

studied here and for typical low-Z media like water only small errors are made.
To avoid the singularity at ϑe = 0 a screening parameter η can be introduced [40]

that models the screening effect of the electrons of the atomic shell:

σMott(r, εe,Ω
′
e · Ωe) =

Z2(r)r2
e (1 + εe)

2

4[εe(εe + 2)]2(1 + 2η(r, εe) − cosϑe)2

[
1 − εe(εe + 2)

(1 + εe)2
sin2 ϑe

2

]
with

η(r, εe) =
π2α2Z

2
3 (r)

εe(εe + 2)
.

A.8. Total cross section for Mott scattering of electrons.

σtot
Mott(r, εe) =

π(Z(r)re)
2

εe(εe + 2)

×
[

(εe + 1)2

(πα)2Z2/3(r)(1 + η(r, εe))
+

1

1 + η(r, εe)
+ ln η(r, εe) − ln(1 + η(r, εe))

]
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Abstract. In this paper, the Aw–Rascle anticipation (ARA) model is discussed from the per-
spective of the capability to reproduce nonlinear traffic flow behaviors observed in real traffic. For
this purpose, a nonlinear traffic flow stability criterion is derived by using a wavefront expansion
technique. The result of the nonlinear stability analysis can be used not only to judge the stability
evolution of an initial traffic state but also to determine the pressure term in the ARA model. The
KdV equation is derived from the ARA model added by the viscous term with the use of the re-
duction perturbation method. The soliton solution can be analytically obtained from the perturbed
KdV equation only near the neutral stability line. Weighted essentially nonoscillatory schemes are
employed to simulate the KdV soliton. The numerical results confirm the analytical KdV soliton
solution.
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1. Introduction. A macroscopic model of vehicular traffic started with the first-
order fluid approximation of traffic flow dynamics proposed by Lighthill, Whitham [1],
and Richards [2] independently, i.e., the Lighthill–Whitham–Richards (LWR) model
[3], which assumes the conservation of the number of vehicles and the equilibrium
relation between flow and density. However, besides the continuity equation, one needs
an extra dynamic velocity equation in order to describe the emergent traffic jams and
stop-and-go traffic. This kind of two-equation model includes the Payne–Whitham
(PW) model [4, 5, 1], the Kühne model [6, 7], the Kerner–Konhäuser (KK) model
[8, 9], the Lee–Lee–Kim (LLK) model [10, 11], the gas-kinetic-based (GKT) model [12,
13, 14, 15], etc. But Daganzo pointed out that one characteristic velocity greater than
the macroscopic fluid velocity in the two-equation models would lead to nonphysical
effects [16]. Aw and Rascle replaced the space derivative of the “pressure” with a
convective derivative in PW-type models to resolve the theoretical inconsistencies
and then constructed the Aw–Rascle anticipation (ARA) model [17, 18, 19]. They
discussed the solution to the Riemann problem and the admissibility of the elementary
waves by the hyperbolic conservation laws in detail. Moreover, the ARA model is the
typical form of the anisotropic traffic flow model, which can be reduced to other
models from different viewpoints [20, 21].

A traffic flow model usually needs stability analysis and numerical simulation
in the stable and unstable density regions in order to investigate the evolution of a
traffic initial state [8, 12, 22, 20, 23, 24, 25, 26]. Since in the linear stability analysis
higher-order terms are neglected, we propose a nonlinear stability analysis by utilizing
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a wavefront expansion technique under large traffic disturbances. Moreover, some
typical nonlinear waves such as the KdV soliton, triangular shock, and kink have been
found through investigating the car-following models with the reduction perturbation
method [27, 28, 29], but only Kurtze and Hong [30] and Berg and Woods [31] did
similar work in the continuum model. The reduction perturbation method is more
difficult to conduct in the continuum model than in the car-following model because
the former has a much more complicated form than the latter. Therefore it is valuable
for the anisotropic ARA model to make the nonlinear stability and wave analysis in
traffic flow.

This paper is arranged as follows. We take the nonlinear stability analysis on
the ARA model, and one stability criterion is used to determine the pressure term in
section 2. The KdV equation is derived from the ARA model with the viscous term in
section 3. Weighted essentially nonoscillatory schemes (WENO) schemes are used to
simulate the KdV soliton in section 4. Concluding remarks are presented in section 5.

2. Nonlinear stability analysis. The ARA model is

(1) ∂tρ + ∂x(ρv) = 0,

(2) ∂t(v + p(ρ)) + v∂x(v + p(ρ)) = τ−1(V (ρ) − v),

where ρ(x, t) is the density at point x and time t, v(x, t) is the velocity, τ is the
relaxation time, V (ρ) is the equilibrium function, p(ρ) = ργ is the pressure (the
anticipation factor is more accurate), and γ is a positive constant which needs to be
determined later [17]. The ARA model under conservative form is

(3) ∂tY + ∂x(f(Y )) = g(Y ),

where the conservative vectors Y = (ρ, y) = (ρ, ρ(v+p(ρ))), f(Y ) = (ρv, ρv(v+p(ρ))),
and g(Y ) =

(
0, τ−1ρ(V (ρ) − v)

)
.

The eigenvalues of (1) and (2) are

(4) λ1 = v − ρp
′
(ρ) ≤ λ2 = v.

Formula (4) shows that all the waves propagate at a speed at most equal to the
velocity v of the corresponding state. Daganzo has pointed out that continuum models
(especially the hydrodynamic models) with one characteristic speed greater than the
macroscopic fluid velocity encounter difficulties showing nonphysical effects in certain
situations [16]. But the ARA model avoids these difficulties.

When the traffic jam happens, the density of the traffic jam is much higher than
that of the neighboring section, so most traffic jams belong to large disturbances.
When the disturbance is fairly large, the linearization method may produce incorrect
results because of neglecting higher-order terms as pointed out by Whitham [1], which
is the primary cause we propose a nonlinear stability analysis for traffic flow [1, 22, 23,
24]. If a disturbance starts at position x0 in the homogeneous state of traffic flow, the
wavefront is the propagation curve of the disturbance along the homogeneous traffic
flow [1, 22, 23, 24]. The magnitude of the initial disturbance will not increase during
its propagation if the traffic system is stable in propagation; otherwise, a disturbed
density or velocity wave may increase in magnitude as it propagates upstream and
ultimately form a shock wave or traffic jam on the highway. If the form of the initial
density disturbance is given, the initial velocity disturbance can be determined by the
equilibrium function. Furthermore, the profiles of density and velocity disturbances
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are symmetrical to some degree along the x-axis in the simulation with the continuum
model (e.g., monotone increase vs. monotone decrease, concavity vs. convexity, etc.)
[8, 9, 15], which is still considered valid in the ARA model, and this fact will also be
demonstrated by the following numerical simulation of the KdV soliton. Therefore,
when we merely demand some mathematical assumptions for the density, they are
automatically needed for the velocity, and most results are presented for either the
density or the velocity. Assume that a disturbance initiates from the equilibrium
state (ρ0, v0), the solutions of (1) and (2), in the homogeneous traffic flow. If the
mth derivatives of ρ around the wavefront WF are the first ones to be discontinuous,
the expanded Taylor series from ρ0 starts with the term in the mth power of a small
parameter, which is equally assumed for v0. Without losing generality, we might
as well assume that the first derivative of the density around the wavefront WF is
discontinuous.

It is convenient to expand the solution of the system around the wavefront WF
in powers of

(5) ξ = x−X(t),

where X(t) is the location of the wavefront WF at time t. Since the wavefront is the
boundary of the disturbance in the homogeneous state, the characteristic method is
still feasible in the near neighborhood of the wavefront WF . Therefore the wavefront
has the characteristic velocity vc1,2 in the equilibrium states, i.e.,

(6) Ẋ(t) = vc1,2(ρ0, v0) = v0 − λ1,2.

Using (5), we can expand the flow variables ρ, v, their partial derivatives, V (ρ)
and pρ(ρ), etc., in the power series of ξ as

(7) ρ(x, t) = ρ0 + ξρ1(t) +
1

2
ξ2ρ2(t) + · · · ,

(8) v(x, t) = v0 + ξv1(t) +
1

2
ξ2v2(t) + · · · ,

where

ρi(t) =
∂iρ

∂xi

∣∣∣∣(X(t)−,t), vi(t) =
∂iv

∂xi

∣∣∣∣
(X(t)−,t)

, i = 1, 2, 3, . . . ,

(9) ρt = −Ẋ(t)ρ1(t) + ξρ̇1(t) + ξ
[
−Ẋ(t)

]
ρ2(t) +

1

2
ξ2ρ̇2(t) + · · · ,

(10) ρx = ρ1(t) + ξρ2(t) +
1

2
ξ2ρ3(t) + · · · ,

(11) vt = −Ẋ(t)v1(t) + ξv̇1(t) + ξ
[
−Ẋ(t)

]
v2(t) +

1

2
ξ2v̇2(t) + · · · ,

(12) vx = v1(t) + ξv2(t) +
1

2
ξ2v3(t) + · · · .

(13) V (ρ) = V 0 + ξV 0
ρ ρ1(t) + · · · ,

where

V 0 = V (ρ0) and V 0
ρ =

∂V

∂ρ

∣∣∣∣
(ρ0,v0)

.

(14) pρ(ρ) = p0
ρ + ξp0

ρρρ1(t) + · · · .
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Substituting (7)–(14) into (1) and (2), for the coefficients of the first two terms
ξ0 and ξ1, we obtain

(15) u0ρ1 + ρ0v1 = 0,

(16) ρ̇1 + 2ρ1v1 + u0ρ2 + ρ0v2 = 0,

(17) v1 + p0
ρρ1 = 0,

(18) u0v2 + u0p
0
ρρ2 + v̇1 + v2

1 + p0
ρρ̇1 + u0p

0
ρρρ1

2 + v1p
0
ρρ1 + τ−1

(
v1 − V 0

ρ ρ1

)
= 0,

where u0 = λ1,2.
Substituting (15) into (17) yields

(19) u0 − ρ0p
0
ρ = 0,

which shows that the coefficients of terms ρ2 and v2 are linearly dependent and can
be eliminated from (16) and (18). Inserting ρ1 = −ρ0v1/u0 obtained from (15) into
(16) and (18) leads to the Bernoulli equation

(20) v̇1 + αv1 + βv2
1 = 0,

where

α = τ−1

(
1 +

V 0
ρ

p0
ρ

)
and β = 2 +

ρ0p
0
ρρ

p0
ρ

= γ + 1.

β > 0, if p(ρ) = ργ , γ > 0.
If α = 0, the solution of (20) is

(21) v1(t) =
v1(0)

βv1(0)t + 1
,

whose monotonicity is determined by

(22) v′1(t) = − βv2
1(0)

(βv1(0)t + 1)
2 .

This situation is depicted in Figure 1.
If α �= 0, (20) has two constant solutions,

(23) v1
1(t) ≡ 0 and v1

1(t) ≡ −α

β
,

and a general solution,

(24) v1(t) =
α

β

e−αt[
1 + α

βv1(0)

]
− e−αt

,

whose monotonicity is determined by

(25) v′1(t) = −α2

β

[
1 + α

βv1(0)

]
e−αt{[

1 + α
βv1(0)

]
− e−αt

}2 .
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v1(t)

t
0

v1
’(t)>0

v1
’(t)<0

Fig. 1. α = 0, β > 0. v1(t) is the partial derivative of velocity.

v1(t)

0

α
β

−

t

v1
’(t)<0

v1
’(t)>0

v1
’(t)<0

Fig. 2. α > 0, β > 0.

This situation is depicted in Figures 2 and 3. Therefore we can judge the trend of
v1(t) in the light of the parameter α and the initial equilibrium state according to
Table 1. Without loss of generality, if the density disturbance is upward, the velocity
perturbation is downward, i.e., v1(0) < 0. If v1(0) ∈ [−α/β, 0], α > 0, i.e.,

(26) Vρ > −pρ.

The system is stable for traffic flow disturbances; otherwise, the system is unstable
under v1(0) < 0 and α < 0, which is identical to the linear stability criterion. The
linear stability result is usually only one condition obtained from the nonlinear analysis
[22, 23]. Furthermore, the nonlinear stability results predict the ultimate trend of the
slope of disturbance around the wavefront WF , i.e., converging to zero or diverging
to negative infinity, which cannot be obtained from the linear stability analysis.
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v1(t)

t

α
β

−

v1
’(t)<0

v1
’(t)>0

v1
’(t)<0

0

Fig. 3. α < 0, β > 0.

Table 1

Stability conditions of (20).

α Stable region Unstable region

α > 0 v1(0) ∈ (−α
β
,+∞), v1(t) → 0 v1(0) ∈ (−∞,−α

β
), v1(t) → −∞

α = 0 v1(0) ∈ (0,+∞), v1(t) → 0 v1(0) ∈ (−∞, 0), v1(t) → −∞
α < 0 v1(0) ∈ [0,+∞), v1(t) → −α

β
v1(0) ∈ (−∞, 0), v1(t) → −∞

Hydrodynamic models with equilibrium functions have been used to obtain reli-
able results which can reflect the real traffic [8, 9, 12, 15]. Although the ARA model
doesn’t belong to the hydrodynamic model, they are both higher-order continuum
models, and we substitute the abstract form in the ARA model with the equilibrium
functions given in previous hydrodynamic models, which are related to the time-
independent and homogeneous traffic flow and are fitted by empirical data [4, 5, 8].
Some equilibrium functions established recently actually approach each other in the
fundamental diagram [23, 24], and we choose a representative one, i.e., the KK equi-
librium function first used in the KK model [8, 9], to displace the abstract form in
the ARA model:

(27) V (ρ) = Vf

⎡
⎣(1 + exp

{ ρ
ρj

− 0.25

0.06

})−1

− 3.72 × 10−6

⎤
⎦ ,

where Vf is the free flow velocity and ρj is the jam density. The KK equilibrium
function is a monotonously decreasing function with respect to ρ, reaches the minimum
0 at the jam density, and possesses a turning point which is necessary for the derivation
of the modified KdV equation [28, 29]. Moreover, stability criteria dependent on the
equilibrium function need to contain the unstable condition because the traffic flow
is unstable in one density or velocity subinterval.

The stability distribution of continuum traffic flow models along the whole density
range abides by the following rule: stable at low density −→ metastable −→ unstable
at medium density −→ metastable −→ stable at higher density, and in general the
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dimensionless unstable density region is about (0.15, 0.4) [8, 9, 23, 24]. According to
this rule, we can determine the range of the pressure parameter by (26) with the KK
equilibrium function:

(28) p(ρ) = ργ , 0.1 < γ < 1.2.

Up to now, the propagation stability for (1) and (2) can thus be analyzed in
terms of the initial condition v1(0) and the parameter α, and the pressure term has
been determined by the stability criterion and the KK equilibrium function. We
have programmed the completed ARA model with WENO schemes and succeeded
in simulating the cluster and KdV soliton (the latter will be described in detail in
section 4), which shows that the ARA model possesses the same numerical-simulation
capability as other continuum models and the method of determining the pressure
term is reasonable.

3. KdV equation. In order to obtain the unique weak solution of the nonlinear
hyperbolic equation according to the weak solution theory and smoothing numerical
solution, the continuum models always contain viscous terms, e.g., the KK model and
the LLK model [8, 9, 10, 11]. Therefore it is necessary especially for the derivation of
the KdV equation that the right-hand side of (2) be added by a higher-order viscous
term, e.g., μ∂2

xv, μ > 0, for a stable solution [9, 15, 30, 31]. We decompose the traffic
flow into a linear combination of Fourier modes, each of which grows or decays with
its own growth rate [30]. Thus we write

(29) ρ(x, t) = ρ0 +
∑
k

ρ̂k exp(ikx + σkt),

(30) v(x, t) = v0 +
∑
k

v̂k exp(ikx + σkt).

Substitute (29) and (30) into (1) and (2) with the viscous term, and linearize in ρ̂k
and v̂k. We find that each linear growth rate σk must satisfy the quadratic equation

(31) 0 = (ikv0 + σk)
2 +

(
μ

ρ0
k2 − iγρ0

γk + τ−1

)
(ikv0 + σk) + iτ−1V ′ρ0k.

Both roots of (31) have negative real parts provided

(32) V 0
ρ + γργ−1

0 > 0,

while otherwise one root has a positive real part. (32) is an equivalent form of (26).
(29)–(32) are the products of one kind of linear stability method, and the traffic flow is
stable against all infinitesimal disturbances if they satisfy the linear stability condition
(32). The neutral stability condition is

(33) η ≡ Vρ + γργ−1|ρ=ρ0
= 0.

The nonlinear stability analysis in section 2 is to take Taylor series expansions at
the location of the wavefront, retain the constant and the first-order terms, obtain an
ordinary differential equation, and finally determine the stability conditions by the
convergence of solutions. However, the linear stability analysis in this section is to take
Fourier series expansions with respect to the density and the velocity, linearize in the
small density and velocity disturbances, obtain a quadratic equation of the growth rate



612 Z.-H. OU, S.-Q. DAI, P. ZHANG, AND L.-Y. DONG

of Fourier modes, and ultimately determine the stability conditions only by judging
the sign of the real parts of roots of the quadratic equation. The linear stability
analysis cannot accurately distinguish each stability condition or present the stability
evolution like Table 1. Moreover, there is another easier method to judge the stability
according to the wave propagation rule: a higher-order partial differential equation
with respect to small disturbances of the density and velocity can be obtained after
the linearization of (1) and (2), the propagation speeds in the highest-order derivatives
always determine the fastest and slowest signals, and the kinematic wave speed must
intervene between the speeds of the fastest and slowest signals [1]. This is the so-
called subcharacteristic condition, which is exactly another linear stability criterion
[32]. Compared with the subcharacteristic conditions, the linear stability analysis
listed in (29)–(33) also has its own advantage, i.e., some further results about the
frequency and amplitude of the complex function can be worked out as follows [30].

Expanding (31) with ik near the neutral stability point yields

(34) σk = −c(ρ0)ik + τρ0
2V 0

ρ ηk
2 + μτV 0

ρ ik
3 − μτ2V 0

ρ

(
2ρ0V

0
ρ + γρ0

γ
)
k4 + O(k5),

where c(ρ0) = v0 + ρ0V
0
ρ is the wave velocity, i.e., (6). Suppose the density of traffic

flow near the neutral stability point is slightly perturbed. We quantify this supposition
by writing

(35) η = V ′(ρ0 + δρ) + p′(ρ0 + δρ) = (V 0
ρρ + p0

ρρ)δρ ≡ θξ2.

We consider the slowly varying behavior at long wavelengths near the neutral stability
line. We wish to extract slow scales for space variable x and time variable t. The
real part of (34) is τρ0

2V 0
ρ ηk

2 and −μτ2V 0
ρ

(
2ρ0V

0
ρ + γρ0

γ
)
k4. In order to balance

the two terms, k scales as k ∝ ξ, which leads to the scaling relation x ∝ ξ−1. The
imaginary part of (34) is −c(ρ0)ik and μτV 0

ρ ik
3. Since −c(ρ0)ik can be eliminated

by a reference frame moving with the velocity c(ρ0), t scales as t ∝ ξ−3. Therefore
we define the slow variables X and T [30, 27, 28, 29]:

(36) X = ξ(x− ct) and T = ξ3t.

Finally we expect that an amplitude equation would balance the linear growth term
of order ξ4A with a stabilizing nonlinear term of order A3; thus, we expect that the
disturbance saturates at a size of order ξ2. We implement the scalings by writing

(37) ρ(x, t) = ρ0 + ξ2ρ̂(X,T ),

(38) v(x, t) = v0 + ξ2v̂(X,T ).

Expanding each term in (1) and (2) added by μ∂2
xv to the fifth order of ξ leads to the

following nonlinear partial differential equations:

(39) ξ3

(
−c

∂ρ̂

∂X
+ ρ0

∂v̂

∂X
+ v0

∂ρ̂

∂X

)
+ ξ5

(
∂ρ̂

∂T
+ ρ̂

∂v̂

∂X
+ v̂

∂ρ̂

∂X

)
= 0,

ξ2
(
ρ0v̂ − ρ0V

0
ρ ρ̂
)

+ ξ3

(
−cτρ0

∂v̂

∂X
+ V τρ0

∂v̂

∂X
− cτγρ0

γ ∂ρ̂

∂X
+ V τγρ0

γ ∂ρ̂

∂X

)

+ξ4

(
ρ̂v̂ − V 0

ρ ρ̂
2 − 1

2
ρ0V

0
ρρρ̂

2 − μτ
∂2v̂

∂X2

)
+ ξ5

(
τρ0

∂v̂

∂T
+ τγρ0

γ ∂ρ̂

∂X
+ τρ0v̂

∂v̂

∂X

−τcρ̂
∂v̂

∂X
+ τV 0ρ̂

∂v̂

∂X
+ τγρ0

γ v̂
∂ρ̂

∂X
− cτγ2ρ0

γ−1ρ̂
∂ρ̂

∂X
+ V 0τγ2ρ0

γ−1ρ̂
∂ρ̂

∂X

)
= 0.(40)
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The third-order term of ξ can be rewritten as

(41)

ξ3

(
−cτρ0

∂v̂

∂X
+ V τρ0

∂v̂

∂X
− cτγρ0

γ ∂ρ̂

∂X
+ V τγρ0

γ ∂ρ̂

∂X

)
= −ξ5

(
θτV 0

ρ ρ
2
0

∂ρ̂

∂X

)
.

From the second-order term of ξ, we obtain

(42) v̂ = V 0
ρ ρ̂ + O(ξ2).

From the fourth-order and fifth-order terms of ξ, we obtain

q̂ ≡ ρ̂v̂ =

(
V 0
ρ +

1

2
ρ0V

0
ρρ

)
ρ̂2 + μτ

∂2v̂

∂X2
+ ξτρ0

{
τμV 0

ρ
2 ∂3ρ̂

∂X3
+
(
θV 0

ρ ρ0 − γρ0
γ−1
) ∂ρ̂

∂X

+
[
2V 0

ρ
2

+ ρ0V
0
ρ V

0
ρρ + (γ − γ2)V 0

ρ ρ0
γ−1
]
ρ̂
∂ρ̂

∂X

}
.(43)

Substituting (43) into the fifth-order term of ξ in (39) leads to the KdV equation with
the perturbed term:

∂ρ̂

∂T
+
(
2V 0

ρ + ρ0V
0
ρρ

)
ρ̂
∂ρ̂

∂X
+ τμV 0

ρ

∂3ρ̂

∂X3
= −ξτρ0

∂2

∂X2

{
τμV 0

ρ
2 ∂2ρ̂

∂X2

+
(
θV 0

ρ ρ0 − γρ0
γ−1
)
ρ̂ +

1

2

[
2V 0

ρ
2

+ ρ0V
0
ρ V

0
ρρ + (γ − γ2)V 0

ρ ρ0
γ−1
]
ρ̂2

}
.(44)

In order to derive the regularized equation, we make the following transformations:

(45) ρ̂ =
−h

2V 0
ρ + ρ0V 0

ρρ

ρ̂′, X = −
√

−τμV 0
ρ

h
X ′, and T =

√
−τμV 0

ρ

h3
T ′,

where h is a constant. With the use of (45), one obtains the regularized equation:

(46)
∂ρ̂′

∂T ′ + ρ̂′
∂ρ̂′

∂X ′ +
∂3ρ̂′

∂X ′3 = −ξA1
∂2

∂X ′2

[
A2

∂2ρ̂′

∂X ′2 + A3ρ̂
′ + A4ρ̂

′2
]
,

where A1, A2, A3, and A4 are constant coefficients. If one ignores the O(ε) terms in
(46), it is just the KdV equation with a soliton solution as the desired solution:

(47) ρ̂′(X ′, T ′) = A sech2

[√
A

12

(
X ′ − A

3
T ′
)]

.

Amplitude A of soliton solutions of the KdV equation is a free parameter. The
disturbance term O(ξ) of the perturbed KdV equation (46) selects a unique member
of the continuous family of KdV solitons.

Next, assuming that ρ̂′(X ′, T ′) = ρ̂′0(X
′, T ′) + ξρ̂′1(X

′, T ′), we take into account
the O(ξ) correction. In order to determine the selected value of A for the soliton
solution (47), it is necessary to satisfy the solvability condition:

(48) (ρ̂′0,M [ρ̂′0]) ≡
∫ ∞

−∞
ρ̂′0M [ρ̂′0]dX

′ = 0,

where M [ρ̂′0] is the O(ξ) term of (46).
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By performing the integration in the solvability condition (48), one obtains the
selected value

(49) A = −
7θρ0

(
2V 0

ρ + ρ0V
0
ρρ

)
4h(1 − γ)V 0

ρ

.

Rewriting each variable to the original one leads to the soliton solution of the density:

(50)

ρ = ρ0+
7ηρ0

4(1 − γ)V 0
ρ

sech2

⎧⎨
⎩
√√√√7ηρ0

(
2V 0

ρ + ρ0V 0
ρρ

)
48τμ(1 − γ)V 0

ρ
2

[
x− ct +

7ηρ0

(
2V 0

ρ + ρ0V
0
ρρ

)
12(1 − γ)V 0

ρ

t

]⎫⎬
⎭ .

4. Numerical schemes. In this section, we will use the KdV soliton simulation
to examine the analytical solution (50) and also to demonstrate that the ARA model
can be used to reproduce the nonlinear traffic behaviors in real traffic. Because the
solitary wave is a constant-shape traveling wave solution, we use WENO schemes to
conduct numerical simulation. WENO schemes are high-order accurate finite differ-
ence schemes designed for the problems with piecewise smooth solutions containing
discontinuities for hyperbolic conservation laws. The key idea lies at the approxi-
mation level, where a nonlinear adaptive procedure is used to automatically choose
the locally smoothest stencil, hence avoiding crossing discontinuities in the interpo-
lation procedure as much as possible. WENO schemes have been quite successful in
applications, especially for problems containing both shocks and complicated smooth
solution structures [33, 34, 35]. Because (3) with the viscous term is in the hyperbolic
conservative form, λ1 admits either shock waves or rarefactions, and v1(t) in (21) may
be divergent, WENO schemes fit for the simulation of a unique smooth solution of
nonlinear hyperbolic equations. Therefore, WENO schemes developed in [33, 34, 35]
will be used in the following.

Let f̂ be the numerical flux function corresponding to the flux f of (3) with the
viscous term. Then, a standard conservative scheme of (3) with the viscous term
reads as follows:

(51)
dYi

dt
+

1

�x
(f̂i+1/2 − f̂i−1/2) = g(Yi).

In the following, the numerical flux f̂i+1/2 is reconstructed by the WENO method
through the Lax–Friedrichs flux splitting. The third-order accurate WENO finite
difference scheme applies the cell point values {Yj}i+1

j=i−1 to reconstruct Y −
i+1/2, which

is the cell boundary value of xi+1/2 on the left-hand side. With {Yj}i+2
j=i , Y +

i+1/2 is

similarly constructed and is the cell boundary value of xi+1/2 on the right-hand side.
Thus, we use the Lax–Friedrichs numerical flux as follow:

(52) f̂i+1/2 =
1

2

[
f
(
Y −
i+1/2

)
+ f
(
Y +
i+1/2

)
− α
(
Y +
i+1/2 − Y −

i+1/2

)]
.

(51) and (52) constitute a complete semidiscretized scheme. We apply the third-order
accurate TVD Runge–Kutta time discretization, for which the semidiscrete scheme
(51) is written as the ODEs: Yt = L(Y ).

The equilibrium function in (1) and (2) with the viscous term is displaced by (27),
and the dimensionless unstable region of the traffic system (3) with the viscous term,
(0.105, 0.414), can be obtained from (26) or (32). We design a density disturbance in
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Fig. 4. The analytical solution with μ = 0.05, (50).
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Fig. 5. The numerical density solution in 0, 0�t; 1, 3000�t; 2, 6000�t; 3, 9000�t; and 4,
12000�t.

the steady state as an initial condition:

(53) ρ(x, 0) =

{
ρ0 + ρ̂ x0 − l ≤ x ≤ x0 + l,
ρ0 otherwise,

where ρ̂ is a small perturbation. The initial velocity is given by (27). The basic
parameters are the pressure parameter γ = 0.8, the free velocity vf = 30 m/s, the
road length L = 15000 m, the relaxation time τ = 12 s, the space interval �x = 37.5
m, the perturbed radius l = 0.03L, and the dimensionless viscous coefficient μ = 0.05
(see [10, 11]). The time interval �t must be less than 0.084 s for the numerical
convergence, and we choose �t = 0.042 s [11].

We have indeed obtained the numerical and analytical solutions of the KdV soli-
ton near the neutral stability line as shown in Figures 4–6. In Figure 5, curve-1 is still
affected by the initial condition (53) in 3000�t, and curve-2 in 6000�t and curve-3 in
9000�t are basically consistent with the analytic results in Figure 4. The amplitude,
wave propagation velocity, and the basic shape of the numerical results are close to
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Fig. 6. The numerical velocity solution in 0, 0�t; 1, 3000�t; 2, 6000�t; 3, 9000�t;and 4,
12000�t.

those of the analytical solution, but the former are smoother than the latter, which
may be caused by the numerical viscosity or the omission of the terms of the sixth
and higher orders in the asymptotic expansion. Therefore the reduction perturbation
method is superior to the semianalytical explanation in [31]. However, curve-4 in
12000�t in Figure 5 shows that the dissipation term may decrease the amplitude,
broaden the distribution, and contribute to an asymmetric effect. The propagation
situation of the velocity is shown in Figure 6: the perturbed velocity profile is nearly
symmetric to the perturbed density profile along the x-axis except the amplitude,
which has examined our viewpoints in section 2. The consistency between the ana-
lytical and numerical results demonstrates that the reduction perturbation method
in the continuum model originated by Kurtze and Hong [30] and further developed in
this paper can really give the reasonable KdV soliton solution for traffic flow.

5. Summary. Considering that the previous two-equation models mimicked the
gas dynamics equations with an unrealistic dependence on the acceleration with re-
spect to the space derivative of the traffic pressure and consequently led to nonphysical
effects, Aw and Rascle proposed the ARA model by replacing the space derivative
with a convective derivative and rigidly discussed the solution to the Riemann problem
and the admissibility of the elementary waves by the hyperbolic conservation laws.
In this paper, we have discussed the application of the ARA model to investigating
the traffic flow by the nonlinear stability and wave analyses. We have taken the non-
linear stability analysis on the ARA model through the wavefront expansion method.
In comparison with the linear stability analysis, the nonlinear stability analysis ad-
ditionally gives the analytical solution of the slope of the wavefront, and then the
evolution of disturbances with time can be illuminated by stability parameters and
initial conditions. We used the stability results to determine the anticipation factor.
We obtained the KdV equation and analytical soliton solution from the “viscous”
ARA model near the neutral stability line by extracting slow scales for space and
time variables with the reduction perturbation method. The derivation of the KdV
equation in the viscous continuum ARA model is similar to that in the car-following
models but is more difficult because the continuum model has two equations. We
applied WENO schemes to simulating the KdV soliton, and the simulation result is
consistent with the analytical solution of the soliton density wave.
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AN EXACT EQUATION FOR THE FREE SURFACE OF A FLUID IN
A POROUS MEDIUM∗
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Abstract. We study the problem of the evolution of the free surface of a fluid in a saturated
porous medium, bounded from below by a flat impermeable bottom, and described by the Laplace
equation with moving-boundary conditions. By making use of a convenient conformal transformation,
we show that the solution to this problem is equivalent to the solution of the Laplace equation on
a fixed domain, with new variable coefficients, the boundary conditions. We use a kernel of the
Laplace equation which allows us to write the Dirichlet-to-Neumann operator, and in this way we
are able to find an exact differential-integral equation for the evolution of the free surface in one space
dimension. Although not amenable to direct analytical solutions, this equation turns out to allow
an easy numerical implementation. We give an explicit illustrative case at the end of the article.
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transformation, Dirichlet-to-Neumann, groundwater flow
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1. Introduction. In this work we shall address a conceptually simple, yet until
now not fully solved, question: given a fluid totally contained in a homogeneous,
saturated, porous medium, bounded from below by a flat impermeable bottom and
with a free deformable surface above, write down the evolution equation for the free
surface in the case where the fluid can be considered two-dimensional and unbounded
in the horizontal direction.

This is a classical problem. It is mathematically expressed by the Laplace equa-
tion in two dimensions, with boundary conditions on an unknown, time-dependent,
boundary. As will be clear from the equations in the next section, its solution corre-
sponds to the determination of a Dirichlet-to-Neumann operator. The usual way to
tackle it is by a perturbative approach. Small parameters are introduced, measuring
the relative amplitude of the motion and the longness of the perturbation:

α =
a

h0
, β =

(
h0

λ

)2

,(1.1)

where a is the amplitude of the surface displacement, h0 is the unperturbed depth,
and λ is the typical wavelength of the perturbation. When β � 1 we have the
Dupuit approximation, corresponding to the physical assumption of hydrostatic mo-
tion. Its use, together with the Darcy law, leads through an asymptotic expansion to
the Boussinesq equation for the total thickness of the fluid [1], which in convenient
nondimensional variables (see below) reads simply

ht = (hxh)x.(1.2)
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Equation (1.2) has been widely studied, not only in the context of porous media
dynamics, but in such areas as high temperature gas dynamics [2] or convective in-
stabilities [3]. Although not an integrable equation, its long-time behavior is known,
being dominated by the self-similar solution, for localized initial data [4]. These self-
similar solutions exhibit shocks, that is, propagating regions where the first derivative
is singular. One speaks of diffusive waves to characterize these solutions.

Extensions of the Boussinesq equation have been proposed, in the same perturba-
tion theoretic spirit, by several authors, encompassing higher order expansions in the
longness parameter [5, 6, 7] together with a small α [8]. Still other works introduce a
new perturbative parameter, the steepness α

√
β [9]. For localized initial conditions,

the above-mentioned shocks become smoothed out, and we have propagating fronts.
A great analogy exists between the present problem and the determination of the

evolution of a free surface of an inviscid fluid, the water-wave problem with the same
two-dimensional geometry. Again, one studies the two-dimensional Laplace equation
with a free boundary, but with different boundary conditions, and the determina-
tion of the evolution of the free surface is again equivalent to the determination of
a Dirichlet-to-Neumann operator. Perturbative expansions have been widely used,
dating back to the nineteenth century [10]. The same parameters α and β as above
come into play. Assuming α � 1 and β � 1 with O(α) ≈ O(β) results in the asymp-
totic theory named long waves in shallow water and described by the Boussinesq
system of equations, or the Benney–Luke equations [11], or the Korteweg–de Vries
equation (for waves in a given direction) and its asymptotic equivalents, like the
Kaup–Boussinesq [12] or the Benjamin–Bona–Mahoney–Peregrine equations [13, 14].
Alternatively, one can also directly expand the Dirichlet-to-Neumann operator in a
Fourier series (due to a result on the analyticity of the Dirichlet-to-Neumann operator
given in [15]), leading to numerically efficient integration schemes [16, 17]. So-called
fully dispersive waves, where no assumption on β is made, have been obtained by
making use of properties of harmonic functions, which is natural in the context of the
two-dimensional Laplace equation, in [18]. Extensions to waves over variable topogra-
phy have been obtained in [19] by using results on an analytical representation of the
Dirichlet-to-Neumann operator given in [20]. All these results explore the smallness
of one or two parameters in order to obtain an approximate expression for evolution
of the free surface. On a different path, an important nonperturbative result was
obtained in [21], where an exact integral-differential equation for the evolution of the
free surface was obtained after the introduction of convenient conformal mappings.
This equation was numerically studied by an FFT pseudospectral method in [22].

In the present work we will present an exact integral-differential equation for the
evolution of a free surface in a porous medium which is analogous to the results ob-
tained in [21, 22] for the water-wave problem, although we will follow some different
steps from these papers. We will take advantage of a conformal map, mapping the
region filled with fluid to a straight strip, thus transforming the free surface problem
to a fixed domain problem for the Laplace equation, but with transformed bound-
ary conditions, which, however, will be explicitly solvable. Although not promptly
amenable to analytical calculations, the equation will lend itself to the implementation
of an efficient numerical method.

The study of free surface dynamics in a porous medium finds its main applications
in the investigations of groundwater oscillations in unconfined aquifers in coastal re-
gions. In such regions, the fluctuations of the sea surface, in the form of either surface
waves or tidal oscillations, induce watertable oscillations. These oscillations, in turn,
affect the environmental dynamics in the region. Many works have addressed this
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question [5, 6, 7, 8, 9, 23] on the theoretical side, providing equations to be used in
larger integrated models for coastal environments. In particular, we should mention
the effect caused by the periodic, tidal-induced, variation of the sea level, which is to
induce a watertable over height with respect to the mean sea level. Our numerical
calculations at the end of this article will illustrate this point.

2. Governing equations. The formulation of the problem is standard and can
be found in textbooks [1, 24]. We place ourselves in a two-dimensional plane geometry.
Let us call y the vertical axis, defined by gravity’s direction, and x the perpendicular,
horizontal, direction. Consider a fluid filling a porous medium, lying over a flat
impermeable bottom, up to a total height limited by a free surface given by a curve
described by y = h(x). The relevant dynamical variable is the piezometric head
Φ(x, y, t), defined as

Φ =
P

γ
+ y,

where P is the pressure and γ = ρg the specific weight. We assume Darcy’s law;
that is, we suppose that the seepage velocity is proportional to the gradient of the
piezometric head, i.e,

u = −K∇φ,

where K is the permeability of the medium. Darcy’s law is valid for the situation we
have in mind, which is the flow of water percolating in rocks and soils. Theoretically it
can be obtained from Stokes flow together with asymptotic expansions in a parameter
measuring the ratio of microscopic (pores) length scales to macroscopic ones. Non-
Darcian effects would typically arise if the flow in pores became turbulent (e.g., in
high-rate gas wells).

Supposing the validity of Darcy’s law and taking the flow as incompressible, we
come to our dynamical equation

Φxx + Φyy = 0, 0 < y < h(x, t),(2.1)

with the boundary conditions at the free surface given by

Φ = h− h0 at y = h(x, t),(2.2)

ht −
K

n e
Φxhx +

K

n e
Φy = 0 at y = h(x, t),(2.3)

where ne is the effective porosity and the displacement surface h−h0 is an integrable
function. At the bottom, we have a Neumann condition:

Φy = 0, y = 0.(2.4)

The problem is posed with an initial condition for the free surface, h(x, 0) = ϕ(x).
The reader will appreciate here that the above equations are directly connected to
the Dirichlet-to-Neumann operator. In rescaled variables, (2.3) says that the time-
derivative of h(x, t) is proportional to the normal derivative of Φ(x, y, t) at the surface
y = h(x, t). We have thus the Laplace equation with a Dirichlet condition at the free
boundary, (2.2) (in terms of the unknown function h(x, t)), and we have to find the
normal derivative of the solution at this boundary (again in terms of h(x, t)) to insert
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it into (2.4), implying an evolution equation for the free surface, h(x, t). Therefore,
the solution to our problem goes through a Dirichlet-to-Neumann operator. We will,
however, avoid explicitly introducing it here, for the sake of simplicity and as we would
not really gain much in doing so. Let us also point out here that the main difference
between the equations governing the classical water-wave problem and those that
govern the porous medium problem under consideration can be seen in (2.2), which
in the last case is much simpler than in the former case, where it involves time-
derivatives and nonlinear terms.

Our strategy to broach the problem will be the following: (i) first introduce
nondimensional variables; (ii) next, define a conformal transformation from the strip
�× (0, h(x)) to �× (0, μ), where μ is a constant to be defined below; (iii) this trans-
formation eliminates the free-boundary problem, replacing it by a Laplace equation
with new boundary conditions, involving the Jacobian of the transformation; (iv) we
then solve the Laplace equation, with mixed Neumann-Dirichlet conditions, in terms
of the unknown function describing the free surface, resulting in an equation for this
surface, in conformal coordinates; (v) once this equation is obtained, we will develop
an asymptotic analysis in a parameter measuring the longness of the wave with re-
spect to the depth and obtain classical results on the problem; (iv) we close the paper
with some numerical results on the full equations for the free surface.

3. Nondimensional equations and conformal transformation. We first
write (2.1)–(2.4) in a nondimensional form. To do so, we introduce the following
nondimensional variables:

x = λ x′, y = λ y′, h = h0h
′(x′, t′),

Φ = h0Φ
′, t =

ne

K

λ2

h0
t′,

where λ is the typical wavelength of the free-surface perturbation and h0 is the undis-
turbed depth of the fluid. In these new variables, we come to the following system of
equations:

ΔΦ = 0, 0 < y < μh(x, t),(3.1)

Φ = h− 1, y = μh(x, t),(3.2)

0 = ht − Φxhx +
1

μ
Φy, y = μh(x, t),(3.3)

Φy = 0, y = 0,(3.4)

where all primes have been omitted for notational convenience. A dimensionless pa-
rameter appears in these equations, μ = h0/λ. This would be the usual perturbative
parameter for long-wave asymptotics (Dupuit approximation), where μ � 1, meaning
that the wavelength is much larger than the depth. We will not make this approx-
imation from the beginning. Instead, we will obtain an exact equation for the free
surface and only then take μ � 1 in order to rederive previously known equations.

Further, we should note that we used a nondimensional variable so as to preserve
the Laplacian, a fact of which we will make good use in what follows.

The crucial step in our procedure is the introduction of a conformal mapping.
Consider a strip in the w-plane, w = ξ + iζ, given by � × [0, μ]. A mapping of this
strip to the undulated strip in the z-plane, z = x+ iy, given by �× [0, μh(x(ξ, μ), t)],
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is defined as a harmonic function, given as the solution of the Dirichlet problem

yξξ + yζζ = 0, 0 < y < μh(x(ξ, μ), t),(3.5)

y(ξ, μ) = μh(x(ξ, μ), t),(3.6)

y(ξ, 0) = 0(3.7)

if we suppose that we know the function x(ξ, μ) in the time t.
Time t plays the role of a parameter in these equations: for each t we have different

functions x(ξ, ζ) and y(ξ, ζ). Equations (3.5)–(3.7) can be solved explicitly. Indeed,
the solution is given by the imaginary part of

z(w) =
1

2

∫ ∞

−∞
tanh

[
π

2μ
(w − ξ′)

]
h(x(ξ′, μ), t)dξ′.(3.8)

Equation (3.5) is verified trivially, as well as (3.7). To show that (3.6) is also satisfied,
we first obtain explicitly the imaginary part of (3.8). This is easily done with the help
of the trigonometric identity

tanh

[
π

2μ
(w − ξ′)

]
sinh[πμ (ξ − ξ′)] + i sin[πμζ]

cosh[πμ (ξ − ξ′)] + cos[πμζ]
,(3.9)

which implies that

y(w) =
1

2

∫
�

sin[πμζ]h(ξ′, t)

cosh[πμ (ξ − ξ′)] + cos[πμζ]
dξ′.(3.10)

We now use the fact that the convolution between two functions is equal to the inverse
Fourier transform of the product of their Fourier transform, F−1[F(f)�F(g)] = f �g,
and obtain that, after some algebra,

y(w) = μ

∫
�

sinh[2πkζ]

sinh[2πkμ]
F [h]e2πiκξdκ

= μ

∫
�

sinh[2πkζ]

sinh[2πkμ]
F [h− 1]e2πiκξdκ + ζ.

(3.11)

Evaluated at ζ = μ, (3.11) gives (3.6) immediately. Therefore, we now have trans-
formed our physical space, moving-boundary, domain to a fixed one through a time-
dependent conformal mapping which is explicitly given by either (3.10) or (3.11).

4. Transformed equations and their solution: Free-surface evolution.
Although the conformal transformation introduced in the last section leaves the
Laplacian in (3.1) invariant, this is not so for the boundary conditions. In the
new coordinates (ξ, ζ) the system given by (3.1)–(3.4) takes, nevertheless, a sim-
ple and convenient form. If we use that, at the upper surface, y = μh(x(ξ, μ), t),
∂ζ = xξ (∂y − μhx∂x), which follows from the Cauchy–Riemann conditions, xξ = yζ
and xζ = −yξ and (3.6), we come to the transformed equations

ΔΦ = 0, 0 < ζ < μ,(4.1)

Φ = h− 1, ζ = μ,(4.2)

0 = ht +
Φζ

μxξ
, ζ = μ,(4.3)

Φζ = 0, ζ = 0.(4.4)
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This is now a system of equations defined on a fixed domain, with a coordinate-
dependent coefficient in (4.3). The system of equations formed by (4.1), (4.2), (4.4)
may now be seen as a Laplace equation to be solved with a Neumann condition at
ζ = 0 and a Dirichlet condition at ζ = μ, where h − 1 is the prescribed boundary
value of Φ(ξ, ζ). A solution to this problem reads

Φ(ξ, ζ, t) =

∫ ∞

−∞
F [Φ(ξ, μ, t)]

cosh[2πκζ]

cosh[2πκμ]
e2πiκξdκ,(4.5)

where F [Φ](κ, μ, t) is the Fourier transform of the piezometric head Φ at the surface
ζ = μ, given in terms of h− 1.

Equation (4.5) solves (4.1), (4.2), (4.4). We may use it to obtain a relation between
Φζ and Φ at the surface (having thus implicitly constructed a Dirichlet-to-Neumann
operator):

Φζ(ξ, μ, t) =

∫ ∞

−∞
2πκ tanh[2πκμ]F [Φ] e2πiκξdκ(4.6)

=

∫ ∞

−∞
−i tanh[2πκμ]F [Φξ] e

2πiκξdκ ≡ T∂ξ[Φ],(4.7)

where T[−] is an integral operator defined by the above equation. It will be quite
useful in the numerical calculations. For the moment, it is introduced for notational
convenience. Inserting the above equation into (4.3) gives

ht +
1

μxξ
T∂x[h] = 0,(4.8)

where use was made of the fact that hξ = Φξ at ζ = μ. Equation (4.8) gives the time
evolution of the free surface in the conformal coordinates (ξ, ζ). We should, however,
note that xξ, which can be derived from (3.8), depends also on h(x, t), making (4.8)
nonlinear.

We can see the system formed by (3.8) and (4.8) as determining the time evolution
of the free surface exactly. Let us, however, write it in a more compact form. If we
note that the real part of (3.8) may be expressed as

x(ξ, ζ) = −iμ

∫ ∞

−∞

cosh[2πκζ]

sinh[2πκμ]
F [h]e2πiκξdκ

= −iμ

∫ ∞

−∞

cosh[2πκζ]

sinh[2πκμ]
F [h− 1]e2πiκξdκ + ξ,

(4.9)

where we again used (3.9) and the properties of the Fourier transform of the convo-
lution of two functions, we can obtain xξ in the limit ζ → μ:

xξ = μ

∫ ∞

−∞
2πκ coth[2πκμ]F [h]e2πiκξdκ(4.10)

or

xξ = −μT−1∂ξ[h].(4.11)

The evolution equation for the free surface is thus given in the conformal coordi-
nates by

ht =
1

μ2

T∂ξ[h]

T−1∂ξ[h]
= 0.(4.12)
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The above equation displays the time evolution of the free surface elegantly, although
one could object that it could be difficult to use it in actual analytical calculations.
We will, therefore, go further and show two distinct developments originating from
(4.12): asymptotics and numerics.

5. Long-wave asymptotics. The theory of long-wave perturbation for a fluid
in a porous medium is a classical subject, which has been extensively studied in many
different aspects. Here we will systematically rederive this approximation from the
exact equation (4.12), or equivalently, from (4.8), (4.11). It corresponds to the limit
μ � 1.

To proceed, we note first the identities

T∂ξ[h] =

∫ ∞

−∞
2πκ tanh[2πκμ]F [h] e2πiκξdκ = − tan(μ∂ξ)∂ξ[h],(5.1)

T−1∂ξ[h] = −
∫ ∞

−∞
2πκ coth[2πκμ]F [h]e2πiκξdκ = − cot(μ∂ξ)∂ξ[h],(5.2)

where the tan and cot are defined by their series. Equations (4.8), (4.11) become
respectively

μhtxξ − tan(μ∂ξ)∂ξ[h] = 0,(5.3)

xξ = μ cot(μ∂ξ)∂ξ[h].(5.4)

Introduce now expansions up to order μ2 of both equations. This implies

0 = htxξ − hξξ −
μ2

3
hξξξξ + · · · ,(5.5)

xξ = h− μ2

3
hξξ + · · · .(5.6)

The derivatives hξ may be rewritten iteratively as terms of hx in an asymptotic sense:

hξ = hxxξ = hxh− μ2

3
hxhξξ + O(μ4),(5.7)

and then

hξξ = (hxh)ξ −
μ2

3
(hxhξξ)ξ + O(μ4)(5.8)

= (hxh)xxξ −
μ2

3
(hxhξξ)xxξ + O(μ4),(5.9)

hξξξξ = (hξξξ)xxξ + O(μ2),(5.10)

from which we obtain, by substituting into (5.5), the following:

ht = (hxh)x − μ2

3
(hxhξξ)x +

μ2

3
(hξξξ)x + · · ·

= (hxh)x +
μ2

3
[−hxhξξ + hξξxxξ]x + · · ·

= (hxh)x +
μ2

3
[−2hxhξξ + hxhξξ + hξξxh]x + · · ·
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= (hxh)x +
μ2

3
[−2hxhξξ + (hξξh)x]x + · · ·

= (hxh)x +
μ2

3
[−2hx(hxh)xh + ((hxh)xh

2)x]x + · · ·

= (hxh)x +
μ2

3
[−2hxh(hxh)x + (hxxh

3)x + (h2
xh

2)x]x + · · · .

Thus, to order μ2, we have the equation

ht = (hxh)x +
μ2

3
[hxxh

3]xx + · · · ,(5.11)

which had been derived in [7]. It is quite evident that we could consistently continue
the expansion to any desired order. Also, one notes that the approximation of small
amplitude fluctuations was not made, but could consistently be introduced, as long
as we previously state the order relations between μ2 and the order of magnitude of
the amplitude fluctuations. A further point here is to again mention the analogous
problem for water waves. Equation (5.11) shows us that the problem at hand is, phe-
nomenologically speaking, intrinsically diffusive. The first term in (5.11) represents a
nonlinear diffusion, as if the diffusion coefficient were proportional to h, and the next
terms are higher order and nonlinear diffusion ones. Water waves offer a comparison
if one exchanges diffusion for dispersion.

6. The linear problem. In the last section we saw that it is possible to obtain
a perturbative expansion in the wavelength parameter μ, giving rise to a nonlinear
partial differential equation, even in the lowest order. In this section we will explore
another possibility, which is to leave μ free, and obtain a new expansion based on the
smallness of the amplitude of the surface elevation. The corresponding lowest order
equation is a linear partial integro-differential equation, whose solution we will also
present.

Let us go back to (4.12), and let us write h = 1 + η, where η is the displacement
of the free surface from its undisturbed position. In the case where η � 1, as a first
approximation we can obtain a differential equation for η by noting that

ηt = − 1

μ

T[ηξ]

1 − μT−1[ηξ]

= − 1

μ
T[ηξ] − T[ηξ]T

−1[ηξ] + · · · ,
(6.1)

and thus that the lowest order linear equation reads

ηt = − 1

μ
T[ηξ].(6.2)

In order to give the solution of (6.2) in a compact way, define the dispersion
relation as

wk =
2πk

μ
tanh[2πkμ],(6.3)

and the function G(ξ, t) as the inverse Fourier transform of e−wkt,

G(ξ, t) =

∫
�
e−wkt e2πikξdk,(6.4)

where G satisfies limt→0 G(ξ, t) = δ(ξ).
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This allows us to write the solution of (6.2), for ξ ∈ �, as

η(ξ, t) =

∫
�
e−wktF [ϕ] e2πikξdk

=

∫
�
Gt(ξ − ξ′)ϕ(ξ′) dξ′,

(6.5)

where F [ϕ] is the Fourier transform of the initial free surface position η(ξ, 0) = ϕ(ξ).
In the case μ → 0 then wk = (2πk)2, Gt(ξ) is the Gaussian exponential, and the
solution for η is

η(ξ, t) =
1

2
√
πt

∫
�
e−

(ξ−ξ′)2
4t ϕ(ξ′) dξ′,(6.6)

a well-known formula for the small amplitude long-wave approximation. From the last
two sections, it is clear that (4.8) may be used as starting point for other perturbative
expansions involving relations between two perturbative parameters. As an example,
one can substitute h = 1 + η into (5.11), write η = εη with ε � 1, and have a
two-parameter asymptotic expansion.

7. Numerics. In this section we will briefly describe a pseudospectral numerical
method used to integrate (4.12) and display an example calculation for the classical
problem of the tide-induced over-height in unconfined aquifers.

A very important point is that we were able to reduce the dynamics of a bi-
dimensional boundary problem with a free surface to a one-dimensional problem given
by a differential-integral equation in an exact way. Although (4.12) is somewhat odd
for analytical calculations, it is quite convenient for numerical implementation. We
do not need tools like, for instance, boundary integral methods involving singular
operators. The Fourier-like transforms that appear in the integral operators are by
no means a problem, as they can be easily managed by FFTs, resulting in a method
with spectral accuracy. Let us now give a definite example of implementation of
the method. We shall solve (4.12) with a periodic boundary condition h(0, t) = 1 +
α sin(wt) at x = 0. This simulates the effect of ocean tides in contact with groundwater
in a coastal aquifer, through an idealized vertical beach. We take hx(L, t) = 0 when
L 
 h0. This last condition allows us to make a periodic extension to the interval 2L
by introducing an adjunct forced boundary condition as

h(0, t) = 1 + α sin(wt) and h(2L, t) = 1 + α sin(wt)

and, consequently, allowing the use of Fourier transform methods. In this model the
parameter α gives a measure of the nonlinearity of the problem. As initial condition
we take h(x, 0) = 1.

At each time step, the periodic functions (x, xξ, h) are expanded as discrete
Fourier series in ξ using the FFT, and the T-transform is computed in Fourier space.
For example, T[hξ] of a function can be found via FFT after multiplying the Fourier
coefficients of h by 2πκ tanh[2πκμ], as it follows from (4.7). In a similar way we may
compute T−1[hξ]. After evaluating nonlinear terms in physical space, we advance the
solution of (4.12) in time with a 4th order Runge–Kutta method.

We have worked with 516, 512, or 1024 spatial points. The spatial step size is
chosen in a range between 0.01 and 0.1. Usually we work with the time step Δt = 0.01.
We do not need a high-pass filter.
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Fig. 7.1. Different profiles for the free surface when t → ∞ and phase wt = 0, π
2
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.

In Figure 7.1 we plot the surface profile for distinct values of α and μ. The figure
presents the numerical solution for a combination of two values of α and three values
of μ when t → ∞, and for four values the phase wt = 0, π

2 , π,
3π
2 .

We see the free surface displacement decaying with the distance from the bound-
ary x = 0, while oscillating in both space and time. The decay rate is of the same
order of magnitude of the parameter μ, and the free surface elevation for large x is of
the order of α.

8. Conclusions. We have introduced a new differential-integral equation exactly
describing the evolution of a free surface of a fluid totally immersed in a saturated
porous medium and bounded from below by an impermeable bottom. Our equation,
(4.12), is a porous-media analogue of the exact equation found for water waves in [21]
and numerically studied in [22]. We have also shown that the asymptotic long-wave
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expansion for this equations leads to known equations [7, 8]. The numerical imple-
mentation of (4.12) is easy, and we have provided a simple example.

The method that we have used is based on properties of harmonic functions and
makes full use of a conformal transformation. Generalization to the case of an uneven
bottom may follow quite easily and will be the object of future work. This should
allow implementing calculations for more realistic cases of interaction of aquifers and
tides through sloping beaches. A less evident generalization would be the extension
of the results of this work for three-dimensional problems.
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Abstract. Glass microelectrodes are used widely in experimental studies of the electrophysiology
of biological cells and their membranes. However, the pulling of these electrodes remains an art,
based on trial and error. Following Huang et al. [SIAM J. Appl. Math., 63 (2003), pp. 1499–1519],
we derive a one-dimensional model for the stretching of a hollow glass tube that is being radiatively
heated. Our framework allows us to consider two commonly used puller designs, that is, horizontal
(constant force) and vertical (variable force) pullers. We derive explicit solutions and use these
solutions to identify the principal factors that control the final shape of the microelectrodes. The
design implications for pullers also are discussed.
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1. Introduction. Glass microelectrodes have played an essential role in cell
electrophysiology for decades and will continue to be an important tool in the future.
These micropipettes are used to measure membrane potentials and inject electric cur-
rent and dyes into cells. This is done by inserting the electrode tips through cellular
membranes or by “patching” the electrode tip to the membrane. The data collected
by these techniques provide crucial information about the electrical properties of the
membrane, e.g., the voltage-gated and receptor-gated ion channels, under various
conditions, including during drug applications. Laboratories generally produce these
microelectrodes on a daily basis using commercially available glass tubes and mechan-
ical microelectrode pullers. For more descriptions of the medical applications of these
electrodes, we refer interested readers to [16, 15], and references therein.

Electrode pullers vary in design, but all have the same basic features. They start
with a uniform glass tube and heat a small section using a radiative heating element.
As the glass is heated, a pulling force is applied along the axis of the tube. When the
glass temperature becomes sufficiently high, its viscosity decreases dramatically, and
the glass tube stretches rapidly. The tube then becomes extremely thin, ultimately
breaks, and each half of the tube can be used as an electrode. Pullers are designed to
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Fig. 1.1. Three possible pullers. (a) Horizontal puller with free-moving ends and equal forces.
(b) Horizontal puller with one fixed end and a single force. (c) Vertical puller with mass under
gravity.

achieve this result in different ways. For example, the pulling force may be achieved
using electromagnets or by simply attaching a weight to one end of the tube. Elec-
trodes may be formed in a single pull, or the glass can be stretched, allowed to cool,
and subjected to a second pull that then breaks the tube. Designs for three possible
pullers are shown in Figure 1.1.

Glass microelectrodes can be characterized by four experimentally relevant pa-
rameters. These are the tip length, tip diameter, electrode resistance, and electrode
capacitance. Tip length is significant because it determines the physical strength of
the electrode and the ease with which it can penetrate tissue and cells. A short steeply
tapered tip is robust but does not penetrate tissue easily. The converse is true of long
gently tapered tips. The tip shape also affects its electrical resistance and capaci-
tance. More information on the relevance of the tip shape to physical parameters can
be found in [8] and [18].

During the actual manufacturing process, the exact relationship between the vari-
ables (heater geometry, rate of pulling the glass tube, length of first pull (for a patch
electrode), rate of the second pull, etc.) and electrode properties is usually deter-
mined empirically by trial and error. Although some work has been done towards
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understanding how the final electrode shape is influenced by the heater geometry and
width [8], in general the process is not well determined. In a previous paper [12], we
developed a basic mathematical model for the formation process of these glass micro-
electrodes and, through computer simulations, showed that the model was capable of
predicting, relatively closely, the breakup process observed in the laboratory.

The results in [12] illustrate several features that are fundamental in understand-
ing the pulling process. First, the glass tube initially stretches very little due to the
large value of the viscosity at room temperature. As the portion of the tube that
is being heated by the heating element increases in temperature, the viscosity of the
glass tube decreases dramatically, and the extension and breakup of the glass tube
occur very rapidly. During this time, the temperature of the glass tube locally re-
mains approximately constant; i.e., the effects of thermal diffusion and radiation are
negligible.

In this paper, we derive a simplified model that captures the principal physics
underlying the electrode formation. Using a dimensional analysis argument, we show
that the conductive heat transfer is small compared to the radiative and convective
heat transfer, and therefore conduction can be neglected in the temperature equation.
We develop a general method to solve the model equations and, in some special cases,
compute explicit solutions to the time-dependent equations. We carefully investigate
the effects of the parameters on the final shape of the microelectrodes. Our results
are relevant to existing pullers and have important implications for the future design
of devices to fabricate microelectrodes.

There are certain similarities between the pulling of the glass microelectrodes
and the drawing of optical and polymer fibers, which have been studied extensively
in the literature [3, 4, 5, 6, 7]. For example, the governing equations for the ex-
tension of the tube or fiber can be obtained by taking the long-wave limit of the
Navier–Stokes equation for incompressible fluids. However, most of the fiber drawing
literature focuses on the steady state solution and its stability (drawing resonance)
under isothermal conditions; cf. [6, 7, 3] and references therein. Nonisothermal cases
also have been considered [11, 10, 9], but the focus is on the effect of the temperature
variation on the drawing resonance. On the other hand, in the case of making glass
microelectrodes, the problem is inherently transient. Another distinctive feature in
the electrode pulling case is that the puller normally imposes a constant or variable
force, instead of a fixed drawing speed.

Finally, the pulling of microelectrodes also has similar characteristics to exten-
sional flow and break-off of viscous drops, which has been studied extensively; cf. [19]
and references therein. However, these studies generally assume that the viscosity
of the fluid remains constant, whereas in electrode production temperature-induced
viscosity variations are critical.

The rest of the paper is organized as follows. In section 2, we state the basic
assumptions and give the model equations. Details of the control-volume approach
used in this derivation are similar to those used in [12] and [6] and therefore will be
omitted. However, some issues, which have not previously been considered, such as
the effects of surface tension on the inner and outer radii during stretching, will be
carefully addressed on the basis of dimensional analysis. A general methodology for
solving the model equations based on the method of characteristics is given.

In section 3, we obtain analytical solutions for a horizontal puller with fixed
pulling force and uniform heating. For more general cases, approximate solutions are
obtained using a simple numerical method. The role of parameter values is thoroughly
investigated, and a particularly appealing and simple approximate theory is developed
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to predict the radius of the tip at breaking. The consequences for puller design and
other applications are discussed in section 4.

2. Model for glass microelectrode formation. The basic equations used in
this paper to describe the stretching of the glass tube are similar to those derived
in [12] for heated tubes and in [6] for isothermal tubes. In this section, we address
the assumptions made in [12] and show that the flow equations reduce to those given
in [12] when surface tension is negligible and can be further simplified using dimen-
sional analysis. We also will show that the simplified model leads to a Lagrangian
formulation, which can be used to compute the solution much more efficiently than
the method used in [12].

2.1. Model formulation. We let ρ be the density of the glass and assume that
variations in the density with temperature are negligible. We assume the tube is
axisymmetric with length � and inner and outer radii r and R, respectively. In the
one-dimensional approximation, the velocity of the glass along the axis of the tube,
which we denote by u, is independent of the radial position. When the pressure inside
and outside the tube are equal, the momentum, mass, and energy conservation laws
lead to the following equations:

ρ(R2 − r2)

(
∂u

∂t
+ u

∂u

∂x
− g

)
=

∂

∂x

(
3μ(R2 − r2)

∂u

∂x
+ γ(R + r)

)
,(2.1)

∂R2

∂t
+ u

∂R2

∂x
+ R2 ∂u

∂x
= − γRr

μ(R− r)
,(2.2)

∂r2

∂t
+ u

∂r2

∂x
+ r2 ∂u

∂x
= − γRr

μ(R− r)
,(2.3)

ρcp

(
∂θ

∂t
+ u

∂θ

∂x

)
= ER,(2.4)

where g is the gravitational constant, γ is the surface tension coefficient, t is the time,
x is the coordinate measured along the axis of the cylinder, μ is the viscosity of the
glass, θ is the temperature, cp and k are the specific heat and thermal conductivity
of the glass, respectively, and ER represents the transport of thermal energy to the
glass tube by radiation. This thermal radiation term is given by

ER = 2kB

√
π

s(1 − β2)

[
Eh

εhα

1 − (1 − α)(1 − εh)

(
θ4
h − θ4

)
+ Eb

εbα

1 − (1 − α)(1 − εb)

(
θ4
b − θ4

)]
,(2.5)

where s = π(R2−r2) is the cross-sectional area, β = r/R is the ratio of the radii, kB is
the Boltzmann constant, α is the absorptivity of the glass to radiative thermal energy,
εh and εb are the emissivities of the heater and background, respectively, and θh(x, t)
and θb(x, t) are the temperatures of the heater and the background, respectively. The
quantities Eh and Eb are geometric factors between the heater and the glass tube and
between the background and the glass tube, respectively. These geometric factors
can be derived by integrating over the surface of the heater (and surrounding body)
visible to the element of the glass tube. The details can be found in [12]. The heating
is usually applied to a highly localized region of the tube of length �h � R0.

These equations are valid if the glass tube is long and thin with a small radius
to length aspect ratio, as shown in Table 2.1. In addition, they also require that
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the viscosity variation in the radial direction be small compared to that in the axial
direction, which is justified since the viscosity is temperature-dependent and the radial
variation of temperature is small, compared to that in the axial direction, as shown
in Appendix A. The derivation of (2.1)–(2.3) can be found in [6].

The above equations are subject to the following initial and boundary conditions.
Initially, we assume that the glass tube has a uniform temperature θ0, length �0, and
inner and outer radii r0 and R0. The tube is being pulled at one end with force F (t),
i.e.,

3μπ(R2 − r2)
∂u

∂x
+ γπ(R + r) = F (t)(2.6)

at x = �(t), which is a moving boundary with speed

d�

dt
= v,(2.7)

where v = u(�, t) is the velocity of the glass at x = �. For symmetric pulling, we
apply the condition of symmetry at x = 0. For asymmetric pulling with a fixed end,
we simply have

u = 0(2.8)

at x = 0.
For pulling of glass electrodes, we also apply a terminal condition. If the pulling

process is successful, the glass tube breaks in the location where the stress exceeds
the “breaking stress.” The breaking stress is a material-dependent parameter that
also depends on the temperature. For example, for the glass used in this study, the
breaking stress, Sb, is given by the empirical formula [17]

Sb =
B√
θ
,(2.9)

where B is an empirically determined constant.1 The glass tube breaks when the
stress in the tube is greater than Sb. We note that this empirical law indicates that
it becomes easier to break this type of glass as the temperature increases.

The difference between horizontal and vertical pullers appears only in the bound-
ary conditions. For vertical pullers, one end of the tube is attached to a fixed location
while a weight is attached to the other end. In this case, as the tube stretches, the

1The concept of breaking stress used in this paper is the same as the strength of glass, explored
by Coenen [1]. From observations of the processes in a glass melt during the formation of cavities
and of new surfaces, the formula

σ ≈ 27 × 106
√

γ3/θ

was given in [17, p. 272]. Here σ is the applied stress (in N/m2), γ is the surface tension coefficient
(in N/m), and θ is the temperature measured in K. The weakening of the glass melt strength is
partially caused by the decrease of elastic modulus when the temperature increases. The dominant
factor, however, is due to the surface damage that occurs upon heating, which leads to spontaneous
fracture. This mechanism is different from the pinch-off of viscous jets, where surface tension is the
dominant factor and normally the inner radius collapses. On the other hand, the functional glass
microelectrodes produced by the pullers have open annuli at the tips formed by breaking.

By neglecting the temperature-dependence of the surface tension coefficient [17] and using γ =
0.33 N/m for a soda-lime glass melt at 800◦ C, we arrive at (2.9), with B given in Table 2.1.
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weight accelerates, and so the force experienced by the end of the tube is decreased.
We denote the weight by F0, gravity by g, the distance along the tube from the fixed
end by x, and the location of the end attached to the weight by x = �(t). We obtain
an expression for the force applied to the free end of the tube, F (t), given by

F (t) = F0 −
F0

g

d2�

dt2
.(2.10)

For horizontal pullers, the situation is simpler, and the force applied to the ends of
the tube is simply F (t), a specified function of time.

Equations (2.2) and (2.3) can be combined to give an equation for the cross-
sectional area, s, which is essentially the equation of mass conservation,

∂s

∂t
+ u

∂s

∂x
+ s

∂u

∂x
= 0.(2.11)

The equations (2.2) and (2.3) also imply that the ratio of the radii, β = r/R, satisfies

∂β

∂t
+ u

∂β

∂x
= −γ(1 + β)

2μR
.(2.12)

In the rest of the paper, we will use (2.11) and (2.12) instead of (2.2) and (2.3).
In a certain range of glass temperatures, the viscosity varies rapidly, and this

plays a fundamental role in controlling the dynamics. Empirical data for soda-lime [2]
shows that for temperatures below 900 K, which generally will be the case for electrode
formation, the viscosity has an exponential dependence on temperature given by

μ(θ) = μ0 exp

[
− (θ − θ0)

θa

]
,(2.13)

where μ0 is the viscosity at the ambient temperature, θ0, and θa is the “activation
temperature change” required to change the viscosity by a factor of e−1.

The parameters for the glass tube and heater are given in Tables 2.1 and 2.2,
respectively. The other parameter that is relevant to the puller is the maximum
length that the glass can be extended. This is generally constrained by the physical
size of the device. If the device does not allow the tube to be extended sufficiently,
then the tube may not break, and so no electrode will be formed. In later sections, we
will carefully examine how the required amount of extension is related to the other
parameters.

In the following sections, we will consider the most complicated case of the vertical
puller, where the force on the glass tube is due to a weight that is accelerating under
the influence of gravity. The other cases of specified time-dependent forces are simpler,
and we will explain how to treat these cases in section 2.5.

Table 2.1

List of the physical parameters relating to the glass tube.

ρ cp k kB εh εb α

g cm−3 Erg K−1 g−1 Erg cm−1 s−1 K−1 Erg cm−2 s−1 K−4

2.23 7.538 × 106 1.130 × 105 5.67 × 10−5 1 1 0.4

�0 R0 r0 μ0 θa B γ

cm cm cm g cm−1 s−1 K dyn cm−3 K1/2 g s−2

7.56 8.66 × 10−2 4.33 × 10−2 109 50 5 × 1010 300
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Table 2.2

List of the geometrical parameters relating to the puller.

�h F0 θ0 = θb θh
cm g cm s−2 K K

0.3 2 × 105 300 1000

2.2. Dimensional analysis. For the vertical puller, we nondimensionalize the
variables using the following scales:

u =
�0F0

3μ0s0
u′, s = s0s

′, x = �0x
′, t =

3μ0s0

F0
t′, F = F0F

′,

R = R0R
′, � = �0�

′, θ = θ0 + θaθ
′, and μ(θ) = μ0μ

′(θ′),(2.14)

where the dimensionless variables are labeled with primes. Here �0, s0, R0, and r0
are the initial length, cross-sectional area, and the outer and inner radii of the glass
tube. Note that we have used

u0 =
�0F0

3μ0s0

as the velocity scale, by balancing the pulling weight F0 with the viscous force in the
glass tube using the elongation viscosity. After substitution and dropping primes, the
momentum equation (2.1), mass conservation equation (2.11), equation for the radii
ratio (2.12), and heat equation (2.4) become

Re

(
∂u

∂t
+ u

∂u

∂x
− 1

Fr

)
=

1

s

∂

∂x

(
μs

∂u

∂x
+ λR(1 + β)

)
,(2.15)

∂s

∂t
+ u

∂s

∂x
+ s

∂u

∂x
= 0,(2.16)

∂β

∂t
+ u

∂β

∂x
= −3

2
(1 − β2

0)λ
(1 + β)

μR
,(2.17)

θt + uθx = HH(x, θ)

s1/2

√
1 − β2

0

1 − β2
.(2.18)

(The derivation of (2.18) is given in Appendix A.) The dimensionless boundary con-
ditions for the vertical puller are

u = 0 at x = 0(2.19)

and

μs
∂u

∂x
+ λR(1 + β) = 1 − Fr

d2�

dt2
, u =

d�

dt
at x = �.(2.20)

The initial conditions are

u = 0, s = 1, θ = 0, � = 1 at t = 0.(2.21)

The terminal condition is the nondimensional breaking criterion

max
0≤x≤�

⎧⎨
⎩μs

∂u

∂x
+ λR(1 + β) − Cbs√

θ + θ0
θa

⎫⎬
⎭ = 0,(2.22)
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where

Cb =
Bs0

F0

√
θa

.

The dimensionless parameters

Re =
ρF0�

2
0

9μ2
0s0

, Fr =
u2

0

g�0
, λ =

πγR0

F0

are the ratio of inertia to viscous forces, the inertia to the gravity forces, and surface
tension forces to the external pulling force, respectively. β0 = r0/R0 is the initial
value of β,

H =
6μ0

√
s0kBεhαθ

4
h

√
π

ρcpθaF0

√
(1 − β2

0)[1 − (1 − α)(1 − εh)]

is the dimensionless heater strength, and

H(x, θ) = Eh(x)

(
1 −

(
θ0 + θθa

θh

)4
)

+
εb[1 − (1 − α)(1 − εh)]Eb(x)(θ4

b − (θ0 + θaθ)
4)

εh[1 − (1 − α)(1 − εb)]θ4
h

(2.23)

is the dimensionless radiation distribution. In the case when heater temperature is
much higher than that of the glass and the background, then H(x, θ) can be ap-
proximated by a given function of x. The dimensionless heater strength, H, can be
thought of as the heat absorbed by a thread being pulled with constant force F0 as
it passes through the heater, divided by the heat required to significantly change the
viscosity. Small values of H imply that the viscosity remains almost constant, and
so the solution will be similar to the isothermal case. Large values of H imply that
significant viscosity gradients will occur in the thread. The dimensionless radiation
distribution is the normalized radiative heat flux.

We now can further simplify the governing equations based on the parameter
estimates at two of the most relevant stages: the beginning of the pulling and when
the glass tube breaks. Initially, the tube is cold and the viscosity is large, whereas near
breaking, the tube will have absorbed a significant amount of heat, and the viscosity
can be reduced by several orders of magnitude. As a consequence, dimensionless
variables describing the flow can vary dramatically. Therefore, we need to consider
the relative sizes of inertia, gravity, surface tension, and viscous and pulling forces at
both stages.

Using the typical parameters in Tables 2.1 and 2.2, we see that dimensionless
parameters

λ ≈ 4 × 10−4, Re ≈ 1.6 × 10−10, and Re/Fr ≈ 10−3

are small, and therefore initially surface tension and inertial and gravitational forces
can be ignored. Typically, H = O(200); therefore initially the heating of the tube
dominates the advective term, and the tube temperature increases with very little mo-
tion. However, when the tube is heated, the viscosity decreases dramatically, the tube
stretches quickly, and the tube diameter decreases rapidly. These large changes mean
that the above dimensionless parameters may not adequately characterize the sizes of
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the surface tension, inertial and gravitational forces when the tube is close to break-
ing. We therefore must also compare the inertial, surface tension, and gravitational
forces with the size of the imposed force near breaking.

Assuming that the stress in the tube can be approximated by the pulling force
divided by the cross-sectional area, the dimensionless breaking criterion for the vertical
puller is given by

1

s

(
1 − Fr

d2�

dt2

)
=

Cb√
θ + θ0

θa

.(2.24)

We first must obtain order of magnitude estimates for the diameter at which the tube
breaks, the highest temperature that the tube reaches, and the viscosity of the tube
near breaking. The tube starts to stretch significantly when the advection and radia-
tive heating terms are of the same order of magnitude. This means that the viscosity
must drop by a factor of order H = 200. Hence, the viscosity near breaking μb will
be of order 1/200, and the dimensionless temperature must rise by approximately 6
(which corresponds to a dimensional temperature change of approximately 300 K).
Knowing the temperature, θ, and using the breaking stress formula (2.24), we can
obtain an order of magnitude estimate for the dimensionless cross-sectional area at
which breaking occurs, sb, yielding sb = 10−2 (which corresponds to a dimensional
cross-sectional area of order 10−4 cm2).

We are now in a position to estimate the dimensionless ratios near the breaking
time. Using (2.15) and (2.20), we see that the characteristic sizes of the surface tension
and inertial and gravitational terms compared to the imposed force are given by

s
1/2
b λ = O(10−5),

1

μ2
bsb

Re = O(10−3), and sb
Re

Fr
= O(10−5),

respectively. Therefore, we can conclude that surface tension, inertia, and gravity can
be neglected during the entire pulling process. The acceleration term, Fr d2�/dt2, is
negligible initially because it is O(10−7), but near the breaking time, this term may be
O(1), and so we must retain this term. Similarly, the ratio of the initial stress to the
breaking stress, Cb, is O(102), indicating that the tube is initially far from breaking,
but eventually the tube will become sufficiently thin that the stress will approach the
breaking stress.

We note that the above discussion considers only the case of successful pulling of
microelectrodes; i.e., the breaking criterion is met during the extension of the glass
tube. In practice, this is not always the case, and it is possible that the glass continues
to extend without breaking. When this occurs, the glass may become very heavily
extended, and the acceleration term Fr d2�/dt2 may approach unity. In this case, the
inertia, surface tension, and the gravity may become important. Even though this
is an interesting problem, it is not really relevant to successful production of glass
microelectrodes and will not be pursued in this paper.

2.3. Eulerian formulation. If the surface tension terms are neglected in (2.17),
we immediately see that β is conserved following material elements. We will make
the natural assumption that the initial radii, r0 and R0, of the tube are uniform, and
therefore, β will be a constant throughout the pulling process.

As a result of neglecting inertia, surface tension, and gravity, (2.15) becomes

(μ(θ)sux)x = 0.(2.25)
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Since β is constant, the heat equation (2.18) reduces to

θt + uθx = HH(x, θ)

s1/2
.(2.26)

Equations (2.25) and (2.26), combined with the mass equation

st + usx + sux = 0,(2.27)

form a closed system. The glass tube does not break as long as the inequality

1

s

(
1 − Fr

d2�

dt2

)
<

Cb√
θ + θ0

θa

(2.28)

is valid for all x. If this criterion is violated, then the tube will break and the stretching
process is terminated.

For vertical pullers, a mass is attached to one end of the glass tube. Thus, the
pulling force F (t) is determined by Newton’s second law, in nondimensional form as

F (t) = 1 − Fr
d2�

dt2
.(2.29)

The boundary condition is

μ(θ)sux|x=� = F (t).(2.30)

For horizontal pullers, the pulling force F (t) is externally prescribed. For a con-
stant force puller, this is equivalent to setting Fr = 0 in (2.29).

The momentum equation (2.25) can be integrated as

μ(θ)sux = 1 − Fr
d2�

dt2
.(2.31)

Dividing this equation by sμ(θ) and integrating from x = 0 to � gives an expression
for the velocity of the free end, denoted by v,

v(t) = u(�, t) =
d�

dt
=

(
1 − Fr

dv

dt

)∫ �

0

dη

s(η, t)μ(θ(η, t))
.(2.32)

This can be rewritten as a differential equation for v,

Fr
dv

dt
= 1 − v

(∫ �

0

dη

s(η, t)μ(θ(η, t))

)−1

.(2.33)

Using (2.31) and (2.33), the mass equation (2.27) can be reduced to

st + usx = − v

μ

(∫ �

0

dη

s(η, t)μ(θ(η, t))

)−1

.(2.34)

Finally, the temperature equation is unchanged as

θt + uθx = HH(x, θ)

s1/2
.(2.35)

Equations (2.33)–(2.35) can be solved subject to the initial conditions

s = 1, θ = 0, � = 1, u = 0, v = 0 at t = 0.(2.36)
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2.4. Lagrangian formulation. As shown in [20, 13, 19], the system of equa-
tions becomes significantly simpler if expressed in Lagrangian coordinates (ξ, τ). The
relationship between the Lagrangian and Eulerian coordinates is given by x = X(ξ, τ)
and t = τ , and

xτ =
∂X(ξ, τ)

∂τ
= u.(2.37)

When there is no ambiguity, we will use x as both Eulerian coordinate and the La-
grangian variable X, which is the spatial coordinate of a material point which was at
the location x = ξ at the initial time τ = 0.

For a function f(x, t) defined using Eulerian coordinates, its Lagrangian deriva-
tives are

fτ = ft + fxxτ = ft + ufx, fξ = fxxξ.(2.38)

It follows immediately that

ux =
uξ

xξ
=

xτξ

xξ
.(2.39)

Using (2.38) and (2.39), the conservation-of-mass equation (2.16) can be rewritten as

sτ + s
xτξ

xξ
= 0 → (sxξ)τ = 0.

Integrating and applying the initial conditions, s(ξ, 0) = 1 and x(ξ, 0) = ξ, gives

xξ =
1

s
.(2.40)

Writing μ(θ) = e−θ and using Lagrangian coordinates, (2.33)–(2.35) become

Fr vτ (τ) = 1 − v(τ)

(∫ 1

0

s(η, τ)−2eθ(η,τ)dη

)−1

,(2.41)

sτ (ξ, τ) = −v(τ)eθ(ξ,τ)

(∫ 1

0

s(η, τ)−2eθ(η,τ)dη

)−1

,(2.42)

and

θτ (ξ, τ) = HH(x(ξ, τ), θ(ξ, τ))

s(ξ, τ)1/2
.(2.43)

2.5. Horizontal puller with a specified time-dependent force. For the
horizontal puller, we need specify only the time-dependent force, F (t), applied to
the ends of the tube. We use the same nondimensionalizations specified in (2.14),
except that now F0 would be the maximal value of F (t) over the entire time period
of application.

The dimensionless (2.22) then is replaced by the simpler expression

F (t)

s
=

Cb√
θ + θ0

θa

,
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where on the left-hand side F (t) is a dimensionless specified function of time. We
note that for a horizontal puller with a constant force, the dimensionless force is given
by F (t) = 1.

In the constant force case, setting Fr = 0 in (2.41) leads to an equation for the
velocity at the free end, which is given by the algebraic equation

v(t) =

∫ �

0

dη

s(η, t)μ(θ(η, t))
.(2.44)

In Lagrangian coordinates with μ(θ) = e−θ, the velocity at the free end is given by

v(τ) =

∫ 1

0

s(η, τ)−2eθ(η,τ)dη.(2.45)

Then (2.42) and (2.43) reduce to

sτ = − 1

μ(θ)
= −eθ(2.46)

and

θτ =
H√
s
H(x(ξ, τ), θ).(2.47)

2.6. Numerical method. For a general heating profile or for time-dependent
pulling forces, no explicit solutions can be obtained, and we must resort to numerical
methods. For an arbitrary heating profile, H(x, θ), the equations (2.41)–(2.43) can
be used as the basis for a simple numerical method. The Lagrangian description of
the system allows us to implement a very simple numerical method that completely
avoids the problem of numerical diffusion, which arises in finite difference methods.

In order to solve this problem, we discretize the domain in both ξ and τ . At

any given time τ , we use the trapezoidal rule to compute the integral
∫ 1

0
s−2eθdξ.

Having done this, we then integrate the system of equations given in (2.41)–(2.43)
using an ODE solver, e.g., a simple Euler method. Since the heater profile is given in
Eulerian coordinates, we need to know the location of the material point, which can
be computed using a numerical quadrature of (2.40). We note that this method can
cope easily with generalized heating profiles, asymmetrical pulling, variable pulling
forces, and the inclusion of heat exchange terms, θ4

a/θ
4
h.

3. Results. In this section, we consider a number of possible configurations for
the puller and heating profiles. We begin with a symmetric puller with a heater
that supplies spatially constant heating. In this case, we can derive an analytical
solution of the equations, and this allows us to understand many of the important
features leading to the shape formation of the electrode. We then go on to consider
a symmetric puller with nonuniform heating, an asymmetric puller with nonuniform
heating, and finally a vertical puller.

3.1. Symmetrical pulling with constant force and constant heating. In
this section, we consider the case when the pulling force is a constant, that is, a
horizontal puller. We assume that the pulling and heating are symmetric about
x = 0, and so the velocity at x = 0 is zero by symmetry. Therefore, the point that
is initially at the centerline, ξ = 0, will always correspond to the point x = 0. Since
there is no direct coupling between the breaking criterion and the shape evolution, we
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will derive the solution by initially computing the shape profile and then determining
the time at which the breaking criterion is first satisfied.

In order to obtain an explicit solution, we make a physically relevant assumption
about the heater profile that provides a number of important insights into the problem.
We will assume that the tube is initially located in the region −1/2 ≤ x ≤ 1/2 and
that the heater is localized to the region −�h/2 ≤ x ≤ �h/2, where 0 < �h < 1 is the
length of the heater. We also assume that the geometric factor, Eh(x), is a constant
in the heater region and zero outside of the heater region. This is appropriate if the
radius of the heater element is not much larger than the outer radius of the tube.
Since the glass achieves a peak temperature that typically is significantly less than
the heater temperature, we will neglect the terms that are O(θ4

a/θ
4
h). Hence, we

approximate the heating in the heater region by a constant. After the tube absorbs
a significant amount of heat, it is stretched rapidly before it breaks, and so there is
very little time for cooling to occur outside of the heater region. This means that we
can safely neglect the cooling terms.

Therefore, the heater profile is assumed to be piecewise constant, that is,

H(x) =

{
1 0 ≤ x ≤ �h/2,
0 x > �h/2.

(3.1)

We now discuss the solution of (2.40), (2.46), and (2.47) when H(x) is given by
(3.1). For any time τ , there are three parts of the solution that need to be considered
separately.

Region (i). We first consider material points that are initially in the heater region
and remain in the heater region at time τ . We define τh(ξ) to be the solution of
x(ξ, τh(ξ)) = �h/2, which represents the time that a material element that starts at
x = ξ exits the heater region (see Figure 3.1). When τ < τh(ξ), the material element

τ

τ

 ξ  ξ  ξ

 ξ

 ξ (τ)1 2

2

3l

h

.

. . ..

.
. . . x

 

h h

(   )

Fig. 3.1. Symmetrical pulling with constant force and constant heating. Lagrangian trajectories.
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is subject to constant heating; thus, we need to solve the following equations:

sτ = −eθ, θτ =
H√
s
, and sxξ = 1,(3.2)

subject to s = 1, θ = 0, and x = ξ at τ = 0.
From (3.2), we obtain

∂s

∂θ
= −

√
seθ

H .(3.3)

Integrating and applying the initial conditions yields

√
s =

1 + 2H− eθ

2H .(3.4)

Substituting (3.4) into (3.2), we obtain

sτ = 2H
√
s− (1 + 2H) and θτ =

2H2

2H + 1 − eθ
.(3.5)

These two equations can be integrated again, and after applying the boundary con-
ditions, we obtain

(2H + 1)θ − eθ + 1 = 2H2τ,(3.6)
√
s− 1 +

2H + 1

2H ln
(
2H + 1 − 2H

√
s
)

= Hτ.(3.7)

These equations can be solved explicitly in terms of the Lambert-W function that
satisfies W (x)eW (x) = x to give

θ =
2H2τ − 1

2H + 1
−W

⎛
⎝−

exp
(

2H2τ−1
2H+1

)
2H + 1

⎞
⎠(3.8)

and

s =

(
2H + 1

2H

)2
⎡
⎣1 + W

⎛
⎝−

exp
(

2H2τ−1
2H+1

)
2H + 1

⎞
⎠
⎤
⎦

2

.(3.9)

The Lambert function is defined only for values x ≥ −e−1. At the point x = −e−1,
its value is W = −1, and its gradient becomes singular. If the glass tube is allowed
to extend, this singularity occurs at the finite time

τpinch =
(2H + 1) ln(2H + 1) − 2H

2H2
(3.10)

and corresponds to a pinch-off. However, in the case of pulling electrodes, pinch-off
does not happen for the following reason. Note that at pinch-off, the cross-sectional
area tends to zero, while the extension tends to infinity. In Figure 3.2, we plot the time
at which pinch-off occurs as a function of the heating rate H. We see that increasing
the heating rate H causes the viscosity to decrease, and so the tube pinches off more
quickly. In fact, this pinch-off will never occur because the stress in the tube will tend
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Fig. 3.2. Dimensionless time to pinch-off as a function of the dimensionless heating rate.

to infinity, hence exceeding the breaking stress. This means that the tube will always
break before a pinch-off can occur. The time for pinch-off represents an upper bound
on the duration of the pull. We will return with a more detailed discussion on the
breaking of the glass tube after presenting the solutions for regions (ii) and (iii).

We note that in Lagrangian coordinates, the cross-sectional area, s, and the tem-
perature, θ, are functions of τ only. Therefore, at time τ , we can use (3.2) to find the
location of a material element that started at x = ξ to obtain

x(ξ, τ) =

∫ ξ

0

1

s(τ)
dη =

ξ

s(τ)
.(3.11)

Hence, a material element that started at x = ξ will exit the heater region at a time
τh(ξ), which can be found by solving

s(τh(ξ)) =
2ξ

�h
.(3.12)

Substituting the above equation into (3.7), we find that

τh(ξ) =
1

H

[√
2ξ

�h
− 1 +

1 + 2H
2H ln

(
2H + 1 − 2H

√
2ξ

�h

)]
.(3.13)

Note that points that were initially arbitrarily close to the center will exit the heater
region when the time is sufficiently close to the pinching time.

In order to obtain the solution in the next region, we need the temperature of the
material element that exits the tube at τ = τh(ξ). This can be obtained by solving
(3.4) and (3.12) to yield

θ(τh(ξ)) = ln

(
2H + 1 − 2H

√
2ξ

�h

)
.(3.14)
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Region (ii). We now consider material points that are initially inside the heater
region but exit the heater region before time τ . In other words, this region contains
particles ξ for which τh(ξ) < τ . In this case, we can obtain the solution in a way
similar to that used for region (i). Over the time interval (0, τh(ξ)], the solution
for these particles is as given in region (i), while for the time interval (τh(ξ), τ), the
solution can be obtained as follows. Since the heating rate is zero, the temperature
remains constant at θ(τh(ξ)). Therefore, the equations reduce to

sτ = −eθ(τh(ξ)) and sxξ = 1,(3.15)

subject to s = 2ξ/�h and x = �h/2 at τ = τh(ξ). These can be solved easily to obtain

θ(ξ, τ) = ln

(
2H + 1 − 2H

√
2ξ

�h

)
,(3.16)

s(ξ, τ) =
2ξ

�h
−
(

2H + 1 − 2H
√

2ξ

�h

)
(τ − τh(ξ)),(3.17)

where τh(ξ) is given in (3.13). At time τ , we can find the location of a material
element that started at x = ξ using

x(ξ, τ) =
�h
2

+

∫ ξ

ξh(τ)

1

s(η, τ)
dη,(3.18)

where s is given in (3.17) and ξh(τ) is the original location of the material point that
exits the heater at time τ . An explicit expression for ξh(τ) can be obtained by solving
(3.13) to yield

ξh(τ) =
�h
2

(
2H + 1

2H

)2
⎛
⎝1 + W

⎡
⎣−exp

(
2H2τ−1
2H+1

)
2H + 1

⎤
⎦
⎞
⎠

2

.(3.19)

Region (iii). We finally consider material points that are initially outside the
heater region, that is, �h/2 < ξ ≤ 1/2. These points are never exposed to the heater;
therefore, the temperature remains at zero. Thus, the equation for the cross-sectional
area (2.42) becomes sτ = −1, which can be integrated once to yield

s = 1 − τ.

Finally, (2.40) can be integrated to yield

x(ξ, τ) = x

(
�h
2
, τ

)
+

ξ − �h/2

1 − τ
.

Breaking criterion. In order to successfully make a microelectrode, the glass tube
must break before the end of the tube reaches the maximum travel distance, �max.
We begin by computing the time at which breaking occurs, τb. We use the solution
obtained above along with the breaking criterion

1

sb

√
θb +

θ0

θa
= Cb.
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In the symmetric pulling case, the minimum cross-sectional area and maximum tem-
perature occur at all the material points that have not yet exited the heater region
at τb (region (i)). Thus, in principle, the tube can break at any of these material
points. Since this region has uniform radii and the length of the region is small and
of the same length as the heater, the ambiguity has little effect on the final tip radius
of the electrode. For simplicity, we assume that the breaking will occur at x = 0,
even though our model predicts that the glass tube can break anywhere in the heater
region since the stress is the same. This is due to the fact that we have assumed that
the heater strength is the same and the tube has uniform initial radii. In practice,
of course, the middle of the heater is most likely to be the hottest; therefore, the
glass will probably break in the middle. Using the solution obtained earlier, (3.4), the
cross-sectional area at which breaking occurs, sb, can be found by solving[

C2
b s

2
b −

θ0

θa

]
= ln [2H(1 −√

sb) + 1] .(3.20)

If the tube is preheated such that θ0 � θa, then this equation can be solved explic-
itly. Otherwise, it must be solved numerically, and this does not pose any serious
challenges.

Having obtained sb, we can compute the electrode profile at breaking. We first
compute the time at which the tube breaks, τb,

τb =
1

H

[√
sb − 1 +

2H + 1

2H ln (2H + 1 − 2H√
sb)

]
.(3.21)

Given τb, the initial location of the material element that is exiting the heater as
the breaking occurs, ξh(τb), is obtained from (3.19). At breaking, the cross-sectional
area profiles in the three different regions can be obtained using the formulas given
earlier.

(i) In the heater region, 0 < ξ ≤ ξh(τb), the cross-sectional area is independent
of location and is given by s = sb.

(ii) For points that were initially in the heater region but exited before breaking,
ξh(τb) < ξ ≤ �h/2, the solution is given parametrically by

s(ξ, τb) =
2ξ

�h
−
(

2H + 1 − 2H
√

2ξ

�h

)
[τb − τh(ξ)] ,(3.22)

x(ξ, τb) =
�h
2

+

∫ ξ

ξh(τb)

1

s(η, τb)
dη,(3.23)

where τh(ξ) is given in (3.13) and ξh(τb) is given in (3.19).
(iii) For material elements that were initially outside the heater region, �h/2 <

ξ ≤ 1/2, the cross-sectional area is also independent of location and is given
by

s(ξ, τb) = 1 − τb.

The total extension of the glass tube is given by

x(1/2, τb) = x

(
�h
2
, τb

)
+

1 − �h
2(1 − τb)

.
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With the analytical expressions for the solution, we are in a position to discuss
how to control the final electrode shape. First, we must ensure that the apparatus is
long enough to allow sufficient extension so that breaking can occur, that is, �max >
x(1, τb). If breaking occurs, then each resulting electrode is composed of three parts:
a region of length �h/2 near the tip of the electrode with constant cross-sectional area
sb, a region from x(�h/2, τb) to the end of the electrode with constant cross-sectional
area 1 − τb, and a region of width x(�h/2, τb) − �h/2 that connects these two regions.
All of these quantities can be easily computed, and this allows one to determine puller
settings to control the shape of the resulting tip.

In the following figures, we consider a heater with dimensionless length, lh = 0.5,
with a constant heating rate. In Figures 3.3 and 3.4, we plot the outer radius of the
glass tube and the temperature as functions of the distance along the axis at various
times before breaking and at the time of breaking. Initially, the glass is cool and the
viscosity is relatively high, and so the glass tube deforms very little. However, after
some time, the glass in the heater region becomes heated, and therefore the viscosity
in this region drops. The dots in the figure show the evolution of material points
that initially were spaced uniformly along the tube. From this, it is clear that the
vast majority of the deformation occurs to material elements that initially were in the
heater region.

We also see that as the breaking point is approached, the stretching occurs very
quickly. This can be seen even more clearly in Figure 3.5, where we plot the minimum
radius, which in this case occurs at the centerline, as a function of time. For the
majority of the time, the material thins slowly, but once stretching begins, it occurs
extremely rapidly. If we had ignored the breaking criteria, a pinching event would
have occurred when the radius became zero. From this, it is clear that the breaking
time can be well approximated by the time at which pinching occurs.
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Fig. 3.3. Outer radius of the glass tube as a function of position. The heater is located between
x = 0 and x = 0.25 as indicated by the dotted line. The dots in this and subsequent figures show the
evolution of material points that initially were spaced uniformly along the tube.
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Fig. 3.4. Temperature of the glass tube as a function of position. The heater is located between
x = 0 and x = 0.25 as indicated by the dotted line.
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Fig. 3.5. Minimum radius of the glass tube at the origin as a function of time.

In Figure 3.6, we plot the dimensionless stress in the glass tube and the dimen-
sionless breaking stress at the centerline as a function of time. As the glass tube
thins, the stress increases dramatically, but breaking also is aided by heating, which
acts to decrease the breaking stress. Nevertheless, during the time near breaking, the
dynamics is dominated by increases in the stress.

3.2. Approximation of tip cross-sectional area. A distinct feature of the
glass electrode formation process is the existence of two different regimes if the heating
rate H is large. At early times, the glass is heated, but the viscosity is sufficiently large
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Fig. 3.6. Dimensionless stress in the glass tube and the dimensionless breaking stress at the
centerline as functions of time.

that little stretching occurs. When the glass has absorbed sufficient thermal energy,
the viscosity drops dramatically, and the glass stretches rapidly before breaking. This
is largely due to two facts: the relatively large heater strength H and the exponential
dependence of the viscosity on temperature. In the following, we will explain briefly
how to use a local asymptotic analysis to obtain approximate solutions for these two
regimes.

We start by examining (3.7) for the cross-sectional area s. For a more general case
with nonuniform heater strength, we could apply the same local analysis to the set
of governing equation (3.2). For simplicity, we will discuss only the case of constant
heater strength. When H � 1, we can distinguish two cases, i.e., s ≈ 1 and s � 1.

3.2.1. Case 1: s ≈ 1. When s ≈ 1, or more precisely,
√
s = 1 − o(H−1), the

first two terms in (3.7) essentially cancel, and the remaining two terms are in balance

ln[1 + 2H(1 −
√
s)] = Hτ,

which yields

s ≈ 1 − eHτ − 1

H .(3.24)

This approximation is valid from Hτ = 0 up to Hτ = O(ln 2H). Using (3.6), we find
that during this regime the temperature rises from zero to θ ≈ ln(2H).

3.2.2. Case 2: s � 1. Near breaking, the glass tube has stretched significantly
at the center and the cross-sectional area s tends to zero. Use of (3.7) yields the
following approximation:

√
s− 1 + ln(1 + 2H) + ln

(
1 − 2H

√
s

1 + 2H

)
= Hτ.
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Fig. 3.7. The cross-sectional area s is plotted as a function of the scaled time Hτ for a
large value of H = 106. The solid curve represents the exact solution, while the dashed curve
represents the local asymptotic solution for 1 − s � 1, (3.24), and the dotted curve represents the
local asymptotic solution for s � 1, (3.25). The thread heats up with little thinning for a period of
time τ = O(H−1 ln(2H)) and then thins over a period of time τ = O(H−1).

Expanding the logarithmic function in
√
s yields

s ≈ 2 ln(1 + 2H) − 2(Hτ + 1).(3.25)

If the tube were not to break, it would pinch off at time

τ =
ln(1 + 2H) − 1

H .

Hence, rapid stretching occurs within a relatively short period of time of O(H−1).
This is much shorter than the initial phase, which lasted for a time on the order of
O(H−1 ln(2H)). Based on the approximate pinching time, temperature at pinch-off
can be approximated by θ ≈ ln(2H + 1). Thus the temperature variation during
rapid stretching is much smaller than the ln(2H) variation that occurred in the initial
phase.

In Figure 3.7, we have plotted the approximate solutions (3.24) and (3.25) and the
exact solution (3.7). The local asymptotic solutions approximate the exact solution
well in each regime.

3.2.3. Cross-sectional area at breaking. We now can find approximations
that allow us to easily control the shape of the tip. The minimum area of the elec-
trode, sb, will be significantly smaller than the initial area of the tube; therefore, the
breaking time occurs quite close to the pinch-off time. As discussed earlier, at the
pinching time, the temperature is given by θ ≈ ln(2H + 1). This temperature is also
a good approximation for the temperature near the breaking time, because in the
time between breaking and pinch-off the change in temperature is small. Hence, the
breaking criterion is well approximated by

sb ≈
√

ln(2H + 1) + θ0/θa
Cb

.
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Fig. 3.8. Microelectrode shape at the breaking time. Also included are the approximations for
the tip width and the width of the glass tube far from the tip.

Also, the area far from the tip, 1 − τb, can be approximated by 1 − τpinch as the
difference is O(H−1).

In Figure 3.8, we plot the final shape of the electrode along with the approxi-
mations to the tip width and the width far from the tip. They can be seen to be in
excellent agreement, and this is the case over a wide range of parameters, especially
for the tip width. We also have computed the difference between the two solutions,
which is less than 2%.

3.3. Symmetric pulling with constant force and nonuniform heating. In
this case, we also consider a tube that is initially located in the region −1/2 ≤ x ≤ 1/2
and a puller that is the same as in the above section except that the heating is spatially
nonuniform. Rather than use a constant heating profile, we use the profile

H(x) = exp(−4πx2/l2h).

This has the property that the maximum heater intensity and the integrated heat
intensity,

∫
H(x)dx, are the same as for the piecewise constant heating used in the

previous section.
In Figure 3.9, a numerical solution of the final shape of the electrode at the

breaking time (solid line) is plotted along with the approximate theory for the tip
radius and the radius far from the tip (horizontal dotted lines). In Figures 3.10
and 3.11, we plot the evolution of the outer radius and temperature. We see that
the evolution of the glass tube profile is somewhat similar to that for the constant
heating case. Of particular interest is the fact that the approximate theory for the
uniform heating case still gives an extremely accurate approximation to the final tip
radius. This can be understood by again dividing the dynamics into two stages: the
first stage in which the glass heats up with little deformation and the second stage
in which significant deformation takes place. We consider material elements near the
location of the maximum in the heater intensity. In the first stage these points heat
up with very little motion of the glass tube. Thus, the temperatures in the uniform
and nonuniform calculations are almost identical. Then, since there is very little
heating in the second stage, the breaking criteria will be achieved at approximately
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Fig. 3.9. Final shapes at the breaking times of the microelectrodes for nonuniform heating.
Profiles are given for the symmetrical pulling case (solid curve) and for the asymmetrical pulling
case (dash-dot curve for the microelectrode formed from the part of the glass tube that remains
attached to the fixed wall, dashed curve for the microelectrode formed by the part of the tube which
is being pulled). Also, the tip radius and the radius far from the tip (horizontal dotted lines) are
given by the approximate theory.
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Fig. 3.10. Outer radius of a glass tube during the evolution of the microelectrode formation
under symmetric pulling with a constant force and nonuniform heating.

the same radius in both the uniform and nonuniform cases. The only significant
difference between the uniform and nonuniform cases is that uniform heating means
that a larger section of the glass will be heated enough that it will significantly deform.
Hence, the total extension of the glass tube before breaking is significantly longer.

3.4. Asymmetric pulling with constant force and nonuniform heating.
We now consider the case of a tube that is initially located in the region 0 ≤ x ≤ 1, is
fixed at one end (x = 0), and is pulled at the other end with constant force. The tube
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Fig. 3.11. Temperature of a glass tube during the evolution of the microelectrode formation
under symmetric pulling with a constant force and nonuniform heating.

is heated in the same way as in the previous section, but with the maximum intensity
centered on the midpoint of the tube,

H(x) = exp

(
−4π(x− 1/2)2

l2h

)
.

In Figure 3.9, we plotted the final shape of the electrodes at the breaking time.
The dash-dot curve represents microelectrode shape of the section of the tube that
remains attached to the fixed wall (reversed in x for comparison purposes), and the
dashed curve represents the shape of the section to which the force was being applied.
The horizontal dotted lines represent the approximate theory for the tip radius and
radius far from the tip. In Figures 3.12 and 3.13, we plot the evolution of the outer
radius and temperature. Again, the approximate theory gives an excellent approxi-
mation for the breaking tip radius, as explained in the above section. The difference
between the electrode shapes to the left and right of the breaking point can be ex-
plained by the small differences that occur during the second stage of the evolution.
Both microelectrode tips in the asymmetrical pulling case extend further than the
tip for the symmetric case because the hottest part of the tube moves relative to
the heater maximum. Therefore, more of the glass tube near the breaking point is
significantly heated and can stretch more easily.

We note that, for spatially uniform heating, an analytical solution may be ob-
tained using a procedure similar to that used in section 3.1. There are a number of
cases to be considered, and the solutions become slightly complicated. Therefore, we
present the results in Appendix B.

3.5. Variable pulling force. We now consider the case of a variable pulling
force. We take a tube that is initially located in the region 0 ≤ x ≤ 1, is fixed at
one end (x = 0), and whose other end is attached to a mass that falls under gravity.
In this case, the situation is slightly more complicated. For the vertical puller, the
dimensionless stress is given by s−1(1−Fr d2�/dt2). If one ignores breaking, it is easy
to show that this solution will never pinch off and that � → t2/(2Fr) as t → ∞. This
corresponds to the weight simply falling due to gravity, and the glass thread exerts a
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Fig. 3.12. Outer radius of a glass tube during the evolution of the microelectrode formation
under asymmetric pulling with a constant force and nonuniform heating.
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Fig. 3.13. Temperature of a glass tube during the evolution of the microelectrode formation
under asymmetric pulling with a constant force and nonuniform heating.

negligible force on the weight. It is instructive to consider the case with no heating,
i.e., the glass tube has a spatially uniform radius. In this case, it is easy to show that
the stress is given by d ln(�)/dt. Therefore, in the limit when t → ∞, the stress tends
to 2/t, which is a decreasing function of time.

At early times, the behavior is similar to the constant force cases. This is because
the initial viscosity is high and so the deformation, and hence the acceleration of the
weight, are negligible. However, when the material becomes hot, it deforms rapidly.
Thus, the stress increases due to thinning in the tube thickness. Therefore, the
acceleration terms reduce the effective force experienced by the glass. Even though
the glass is thinning, the overall stress decreases, because the force experienced by the
glass is reduced by the acceleration of the weight in the same way as in the isothermal
case. Therefore, we expect that the stress will attain a maximum value at finite time.
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Fig. 3.14. Dimensionless stress and dimensionless breaking stress in the glass tube closest to
the location of breaking as a function of time. No breaking case.
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Fig. 3.15. Dimensionless stress and dimensionless breaking stress in the glass tube closest to
the location of breaking as a function of time. The tube breaks when the two curves first intersect.

In Figures 3.14 and 3.15, we plot the dimensionless stress and the dimensionless
breaking stress at the location that is closest to breaking as a function of time. For
large values of H and Cb, as in Figure 3.14, the maximum stress is always less than the
breaking stress. However, for smaller values of H and Cb, as in Figure 3.15, the stress
may reach the breaking stress. This explains why vertical pullers typically require
two pulls to break the glass tube. The first pull decreases the radius, which means
that the new values of H and Cb for the second pull will be reduced. This implies
that breaking will be more easily achieved in the second pull.

We caution that in the case when breaking does not occur, the tube becomes very
thin, and inertia will ultimately become important, as shown by Stokes and Tuck [19].
Nevertheless, the inclusion of glass inertia will further reduce the viscous stress which
makes it even more difficult to reach the breaking criterion. Therefore, the general
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conclusion reached based on the simplified model remains useful. As we noted earlier,
in this paper we focus only on successful pullings of microelectrodes, and the free-fall
case will not be pursued here.

4. Discussion. We now discuss the effects of the parameters and puller designs
on the shape of the final electrode. In order to do this, we will focus on the analytical
solutions and results from the numerical method discussed in the previous section.

4.1. Shape control. There are two parameters that are relatively easy to vary
continuously in an experimental context. These are the dimensional force, F0, and
the dimensional temperature of the heater, θh. In practice, one can use a graph of
τpinch against H to choose the appropriate value of the heater strength H to achieve
the required maximum area, 1 − τpinch. One then can choose Cb to give the required
minimum area, sb. Once the desired values of Cb and H are known, one simply
chooses the dimensional force, F0, to achieve the Cb value and then chooses θh to
obtain the H value. This means that the appropriate operating conditions can be
well approximated by simply using the universal graph of τpinch against H.

While it is relatively easy to set the values of applied force and heater temperature,
we also need to make sure that the glass breaks while the extension of the tube is
within the physical length of the puller. This can be achieved by choosing the correct
heater length, after the tip radius and other parameter values are determined. In
Figure 4.1, we show how we can control the final tip radius by varying the applied
force. We vary the applied force and use values of the other parameters from Tables
2.1 and 2.2. The simulation results (circles) and the approximate theory (solid line)
show excellent agreement over many orders of magnitude in the applied force. By
reducing the applied force, effectively, we can reduce the stress in the tube, and this
allows the tube to reach a smaller radius before exceeding the breaking stress.

4.2. Sensitivity analysis. In order to determine the relative robustness of the
symmetric and asymmetric methods, we performed a sensitivity analysis of the fi-
nal shape with respect to changes in the parameters H and Cb. We found that the
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Fig. 4.1. Dimensional tip radius as a function of the applied force.
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sensitivities are almost identical over a wide range of parameter values; therefore nei-
ther parameter has a significant advantage with regard to robustness. The symmetric
puller has the advantage in that it can create two identical electrodes in a single pull.
However, the asymmetric puller may be cheaper to build and easier to operate since
it requires only a force be exerted at one end.

The sensitivity of vertical pullers to changes in parameters can be quite strong.
This is particularly true if the glass breaks while the extension of the tube occurs near
the maximum stress level. Then small increases in H or Cb might prevent the stress
from reaching the breaking value, and no electrode would be formed. Even if this does
not occur, the sensitivity of the variable force method is still substantially larger than
for the constant force methods. The fact that a double pull is required also means
that the procedure is much more difficult to implement and therefore less robust.

4.3. Concluding remarks. In this paper, we have simplified a model proposed
in an earlier study (Huang et al., [10]) for glass microelectrode formation. Using a
dimensional analysis argument, we have shown that the conductive heat transfer is
small compared to the radiative and convective transfer and therefore can be neglected
in the temperature equation. We have developed a Lagrangian-based method to solve
the model equations and compute explicit solutions to the time-dependent equations
for some simple cases. By investigating the effects of the parameters on the final shape
of the microelectrodes, we have shown that vertical pullers are much less robust than
horizontal pullers.

By considering the simplified models, we have been able to understand a number
of important features of the resulting electrode. First, for typical parameter values,
the surface tension is much smaller than the applied force, and we have shown that
the ratio of the inner to outer radius will remain constant. Therefore, if a specified
ratio is required in the final electrode, the only way to achieve this is to start with
a tube that has that required ratio. Second, the length of the electrode tip is of the
same order of magnitude as the length of the heater. This means that the tip length
can be controlled by controlling the portion of the glass that is heated significantly.
Third, using our approximate theory, we have shown that an excellent approximation
to the tip width can be obtained from a very simple formula. This gives an extremely
practical and straightforward method of determining the parameter values required
to achieve a given tip radius.

In some cases, controlling the tip radius may not be sufficient, and the user
may wish to control the entire tip profile. This can be achieved either by using a
spatially dependent heater profile or by allowing a time-dependent pulling force. By
choosing different heater profiles or pulling forces, one can produce a tip shape close
to a desirable one. Since our method is simple, robust, and extremely efficient to
implement numerically, it can be used to estimate the tip profile when the heating
profile and/or pulling force are given. By using standard optimization techniques on
this function, we then can achieve an approximation to the required profile.

Finally, the analysis and solution methodology presented in this paper are not
restricted to glass microelectrode formation and may have a number of important
applications in other glass formation processes. For example, the pulling of optical
fibers uses a similar setup, even though the objective for optical fiber pulling is rather
different. Instead of seeking the conditions to break the glass tube under stretching,
a good optical fiber pulling device must ensure that the glass stretches without being
broken. However, our model and numerical method can be readily applied to fiber
pulling, with minor adjustments on the handling of boundary conditions.
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Appendix A. Derivation of the temperature equation (2.18). In the
long-wavelength limit of small radius to length aspect ratio, axial conduction can be
neglected, and the heat equation is given by

θt + uθx =
k

ρcp

1

y

∂

∂y

(
y
∂θ

∂y

)
,(A.1)

where y is the axisymmetric radial position and cp and k are the specific heat capac-
ity and the thermal conductivity of the fluid, respectively. The radiative boundary
condition is given by

k
∂θ

∂y

∣∣∣∣
y=r

= 0,(A.2)

−k
∂θ

∂y

∣∣∣∣
y=R

=
kBEhεhα

(
θ4
h − θ4

)
1 − (1 − α)(1 − εh)

+
kBEbεbα

(
θ4
b − θ4

)
1 − (1 − α)(1 − εb)

,(A.3)

where kB is the Boltzmann constant, α is the absorptivity, and θh is the heater
temperature. We have assumed that the axial conduction is negligible and that the
radiation heat exchange occurs only on the outer surface of the glass tube, as in [9].

We now nondimensionalize the heat equation (A.1) and the boundary condition
(A.3) by using the scalings

u = u0u
′, s = s0s

′, y = R0y
′, x = �0x

′, t = �0u
−1
0 t′, θ = θ0 + θaθ

′, u0 =
�0F0

3μ0s0
.

Dropping the primes, the heat equation becomes

Pe

(
∂θ

∂t
+ u

∂θ

∂x

)
=

1

y

∂

∂y

(
y
∂θ

∂y

)
,(A.4)

where

Pe =
ρcpu0R

2
0

�0k
= 4.2 × 10−3(A.5)

is the transverse Peclet number, which represents the ratio of heat advected along
the thread to heat conducted across the thread. The radiative boundary condition
becomes

∂θ

∂y

∣∣∣∣
y= r

R0

= 0,
∂θ

∂y

∣∣∣∣
y= R

R0

= BiH(x, θ),(A.6)

where

Bi =
αkbθ

4
hR0εh

kθa[1 − (1 − α)(1 − εh)]
= 3.5 × 10−1(A.7)

is the Biot number. The dimensionless function

H(x, θ) = Eh(x)

(
1 −

(
θ0 + θθa

θh

)4
)

+
εb[1 − (1 − α)(1 − εh)]Eb(x)(θ4

b − (θ0 + θaθ)
4)

εh[1 − (1 − α)(1 − εb)]θ4
h
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represents the magnitude of the net heat flux that is absorbed when the temperature
is θ. We now assume that both Bi and Pe are small, and from (2.2) we note that

H ≡ 2Bi

(1 − β2
0)Pe

.(A.8)

We assume that the temperature has an asymptotic expansion of the form

θ = Θ0 + BiΘ1 + · · · ;(A.9)

then substituting this into (A.4) and (A.6) and collecting the terms to zeroth and first
order in Bi yields

1

y

∂

∂y

(
y
∂Θ0

∂y

)
= 0 with

∂Θ0

∂y

∣∣∣∣
y= r

R0

= 0,
∂Θ0

∂y

∣∣∣∣
y= R

R0

= 0(A.10)

and

1

y

∂

∂y

(
y
∂Θ1

∂y

)
=

2

(1 − β2
0)H

(
∂Θ0

∂t
+ u

∂Θ0

∂x

)
(A.11)

with

∂Θ1

∂y

∣∣∣∣
y=r

= 0,
∂Θ1

∂y

∣∣∣∣
y=R

= H (x,Θ0) .(A.12)

Equation (A.10) implies that at leading order Θ0 is independent of y. Therefore,
using (A.11)–(A.12), we see that Θ0 satisfies

∂Θ0

∂t
+ u

∂Θ0

∂x
=

HH (x,Θ0)√
s

√
1 − β2

0

1 − β2
,(A.13)

where β = r/R. For notational brevity, we use θ to denote the leading order term,
Θ0, and obtain the equation in the final form as (2.18).

At the leading order, the viscosity is independent of the radial coordinate because
the viscosity is a function of the temperature.

Appendix B. Exact solution for asymmetrical pulling. In this appendix,
we obtain the exact solutions for the microelectrode shape and the temperature dis-
tribution for a glass tube undergoing asymmetrical pulling with uniform heating from
a finite length heater. The initial velocity at each point in the glass tube is zero, and
the other initial and boundary conditions are

θ(ξ, 0) = 0, s(ξ, 0) = 1, x(ξ, 0) = ξ, θ(0, τ) = 0, s(0, τ) = 1, x(0, τ) = 0.(B.1)

The heater is located between ξ = �1 and ξ = �2. Let τb be the breaking time and τ∗
be the time when the material point ξ = �1 has passed location �2.

We need to consider two different cases: τb ≤ τ∗ and τb > τ∗.

B.1. Case 1: τb ≤ τ∗. Let ξ1(τb) and ξ2(τb) be the initial locations of the
material points that are at �1 and �2 at τb. We have ξ1(τb) < �1 < ξ2(τb) < �2. Thus,
there exist five regions: (1) 0 ≤ ξ ≤ ξ1(τb), (2) ξ1(τb) ≤ ξ ≤ �1, (3) �1 ≤ ξ ≤ ξ2(τb),
(4) ξ2(τb) ≤ ξ ≤ �2, and (5) �2 ≤ ξ ≤ 1.
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B.1.1. 0 ≤ ξ ≤ ξ1(τb). In this region, for 0 < τ < τb, we have

θτ = 0, sτ = −eθ, sxξ = 1,

which, combined with (B.1), gives

θ1 = 0, s1 = 1 − τ, x1 =
ξ

1 − τ
.

Thus, at τb, the solution is

θ1 = 0, s1 = 1 − τb, x1 =
ξ

1 − τb
,(B.2)

from which we obtain ξ1(τb) = (1 − τb)�1.

B.1.2. ξ1(τb) ≤ ξ ≤ �1. (I). 0 ≤ τ ≤ τ1(ξ), where τ1(ξ) is the time when the
material point that is initially at ξ crosses the point �1. The solution is

θ−2 = 0, s−2 = 1 − τ, x−
2 =

ξ − ξ1(τb)

1 − τ
+ x1(ξ1(τb), τ) =

ξ

1 − τ
,

from which we obtain

�1 =
ξ

1 − τ1(ξ)

or

τ1(ξ) = 1 − ξ

�1
.

(II). τ1(ξ) ≤ τ ≤ τb. In this region, we have

θτ =
H√
s
, sτ = −eθ, sxξ = 1,

from which we obtain

2H
√

1 − τ1(ξ) + 1

2H ln

[
1 + 2H

(√
1 − τ1(ξ) −

√
s+
2

)]
=
√

1 − τ1(ξ) −
√
s+
2 + H[τ − τ1(ξ)],(

2H
√

1 − τ1(ξ) + 1
)
θ+
2 + 1 − eθ

+
2 = 2H2[τ − τ1(ξ)],

x+
2 = �1 +

∫ ξ

ξ1(τ)

1

s+
2 (τ1(η))

dη.

Therefore,

2H
√

1 − τ1(ξ) + 1

2H ln

[
1 + 2H

(√
1 − τ1(ξ) −

√
s+
2

)]
(B.3)

=
√

1 − τ1(ξ) −
√
s+
2 + H[τb − τ1(ξ)],(

2H
√

1 − τ1(ξ) + 1
)
θ+
2 + 1 − eθ

+
2 = 2H2[τb − τ1(ξ)],(B.4)

x+
2 = �1 +

∫ ξ

ξ1(τb)

1

s+
2 (τ1(η))

dη.(B.5)
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B.1.3. �1 ≤ ξ ≤ ξ2(τb). For 0 ≤ τ ≤ τb, we have

θτ =
H√
s
, sτ = −eθ, sxξ = 1,

from which we have

√
s3 − 1 +

2H + 1

2H ln (1 + 2H− 2H√
s3) = Hτ,

(2H + 1) θ3 + 1 − eθ3 = 2H2τ,

x3 =
ξ − �1
s3(τ)

+ x+
2 (�1, τ).

At τb, we have

√
s3 − 1 +

2H + 1

2H ln (1 + 2H− 2H√
s3) = Hτb,(B.6)

(2H + 1) θ3 + 1 − eθ3 = 2H2τb,(B.7)

x3 =
ξ − �1
s3(τb)

+ x+
2 (�1, τb).(B.8)

From the above equation, we determine ξ2(τb) to be

ξ2(τb) = �1 + [�2 − x+
2 (�1, τb)]s3(τb).(B.9)

B.1.4. ξ2(τb) ≤ ξ ≤ �2. (I). 0 ≤ τ ≤ τ2(ξ), where τ2(ξ) is the time at which
the material point ξ crosses the point �2. In this case, we have

θτ =
H√
s
, sτ = −eθ, sxξ = 1,

from which we have√
s−4 − 1 +

2H + 1

2H ln

(
1 + 2H− 2H

√
s−4

)
= Hτ,

(2H + 1) θ−4 + 1 − eθ
−
4 = 2H2τ,

x−
4 =

ξ − ξ2(τb)

s−4 (τ)
+ x3(ξ2(τb), τ).

From the last equation, we obtain

�2 ==
ξ − ξ2(τb)

s−4 (τ2(ξ))
+ x3(ξ2(τb), τ2(ξ)).(B.10)

From this equation, we can find the value of τ2(ξ).
(II). τ2(ξ) ≤ τ ≤ τb. In this case,

θτ = 0, sτ = −eθ, sxξ = 1,

from which we have

θ+
4 (ξ, τ) = θ+

4 (τ2(ξ)) = θ−4 (τ2(ξ)),

s+
4 (ξ, τ) = τ2(ξ) − τ + s+

4 (τ2(ξ)) = τ2(ξ) − τ + s−4 (τ2(ξ)),

x+
4 (ξ, τ) = �2 +

∫ ξ

ξ2(τ)

1

s+
4 (η, τ)

dη.
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At τb, we have

θ+
4 (ξ, τb) = θ+

4 (τ2(ξ)) = θ−4 (τ2(ξ)),(B.11)

s+
4 (ξ, τb) = τ2(ξ) − τb + s+

4 (τ2(ξ)) = τ2(ξ) − τb + s−4 (τ2(ξ)),(B.12)

x+
4 (ξ, τb) = �2 +

∫ ξ

ξ2(τb)

1

s+
4 (η, τb)

dη.(B.13)

B.1.5. �2 ≤ ξ ≤ 1. In this region,

θτ = 0, sτ = −eθ, sxξ = 1

is valid for 0 ≤ τ ≤ τb, from which we have

θ5 = 0, s5 = 1 − τ, x5 =
ξ − �2
1 − τ

+ x+
4 (�2, τ).

At τb, we have

θ5 = 0, s5 = 1 − τb, x5 =
ξ − �2
1 − τb

+ x+
4 (�2, τb).(B.14)

B.2. Case 2: τb > τ∗. In this case, there are also five regions: (1) 0 ≤ ξ ≤
ξ1(τb), (2) ξ1(τb) ≤ ξ ≤ ξ2(τb), (3) ξ2(τb) ≤ ξ ≤ �1, (4) �1 ≤ ξ ≤ �2, and (5) �2 ≤ ξ ≤ 1.

B.2.1. 0 ≤ ξ ≤ ξ1(τb). In this region, for 0 < τ < τb, the solution is the same
as that in Case 1,

θ1 = 0, s1 = 1 − τ, x1 =
ξ

1 − τ
,

and at τb the solution is

θ1 = 0, s1 = 1 − τb, x1 =
ξ

1 − τb
,(B.15)

from which we obtain ξ1(τb) = (1 − τb)�1.

B.2.2. ξ1(τb) ≤ ξ ≤ ξ2(τb). (I). When 0 ≤ τ ≤ τ1(ξ), the solution is

θ−2 = 0, s−2 = 1 − τ, x−
2 =

ξ − ξ1(τb)

1 − τ
+ x1(ξ1(τb), τ) =

ξ

1 − τ
,

from which we obtain

�1 =
ξ

1 − τ1(ξ)

or

τ1(ξ) = 1 − ξ

�1
.

(II). When τ1(ξ) ≤ τ ≤ τb in this region, we have

θτ =
H√
s
, sτ = −eθ, sxξ = 1,
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from which we obtain

2H
√

1 − τ1(ξ) + 1

2H ln

[
1 + 2H

(√
1 − τ1(ξ) −

√
s+
2

)]
=
√

1 − τ1(ξ) −
√
s+
2 + H[τ − τ1(ξ)],

(
2H

√
1 − τ1(ξ) + 1

)
θ+
2 + 1 − eθ

+
2 = 2H2[τ − τ1(ξ)],

x+
2 = �1 +

∫ ξ

ξ1(τ)

1

s+
2 (τ1(η))

dη.

Therefore,

2H
√

1 − τ1(ξ) + 1

2H ln

[
1 + 2H

(√
1 − τ1(ξ) −

√
s+
2

)]
(B.16)

=
√

1 − τ1(ξ) −
√
s+
2 + H[τb − τ1(ξ)],

(
2H

√
1 − τ1(ξ) + 1

)
θ+
2 + 1 − eθ

+
2 = 2H2[τb − τ1(ξ)],(B.17)

x+
2 = �1 +

∫ ξ

ξ1(τb)

1

s+
2 (τ1(η))

dη.(B.18)

The value of ξ2(τb) can be obtained from the following equation:

�2 = �1 +

∫ ξ2(τb)

ξ1(τb)

1

s+
2 (τ1(η))

dη.(B.19)

This is a nonlinear equation for ξ2(τb), which can be obtained using an iterative
method, after replacing the integral by a numerical quadrature.

B.2.3. ξ2(τb) ≤ ξ ≤ �1. (I). When 0 ≤ τ ≤ τ1(ξ), the solution is

θ−3 = 0, s−3 = 1 − τ, x−
3 =

ξ

1 − τ
.

(II). When τ1(ξ) ≤ τ ≤ τb in this region, we have

θτ =
H√
s
, sτ = −eθ, sxξ = 1,

from which we obtain

2H
√

1 − τ1(ξ) + 1

2H ln
[
1 + 2H

(√
1 − τ1(ξ) −

√
s∗3

)]
(B.20)

=
√

1 − τ1(ξ) −
√
s∗3 + H[τ − τ1(ξ)],

(
2H

√
1 − τ1(ξ) + 1

)
θ∗3 + 1 − eθ

∗
3 = 2H2[τ − τ1(ξ)],(B.21)

x∗
3 = x+

2 (ξ2(τb), τ) +

∫ ξ

ξ2(τb)

1

s∗3(η, τ)
dη.(B.22)



664 H. HUANG, J. WYLIE, R. MIURA, AND P. HOWELL

(III). When τ∗ ≤ τ ≤ τb in this region, the solution is

θ+
3 (ξ, τ) = θ+

3 (ξ, τ2(ξ)) = θ∗3(ξ, τ2(ξ)),

s+
3 (ξ, τ) = s+

3 (ξ, τ2(ξ)) + τ2(ξ) − τ = s∗3(ξ, τ2(ξ)) + τ2(ξ) − τ,

x+
3 (ξ, τ) = �2 +

∫ ξ

ξ2(τ)

1

s+
3 (η, τ)

dη,

where θ∗3(ξ, τ2(ξ)) and s∗3(ξ, τ2(ξ)) are from (B.21) and (B.20), with τ replaced by
τ2(ξ), and τ2(ξ) is obtained by applying (B.22) at �2:

�2 = �1 +

∫ ξ

ξ1(τ)

1

s∗3(η, τ2(ξ))
dη.(B.23)

This is a nonlinear equation for τ2(ξ), which can be solved using an iterative method.
At τb, we have

θ+
3 (ξ, τb) = θ+

3 (ξ, τ2(ξ)) = θ∗2(ξ, τ2(ξ)),(B.24)

s+
3 (ξ, τb) = s+

3 (ξ, τ2(ξ)) + τ2(ξ) − τb = s∗2(ξ, τ2(ξ)) + τ2(ξ) − τb,(B.25)

x+
3 (ξ, τb) = �2 +

∫ ξ

ξ2(τb)

1

s+
3 (η, τb)

dη.(B.26)

B.2.4. �1 ≤ ξ ≤ �2. (I). When 0 ≤ τ ≤ τ ′2(ξ) in this region, we have√
s−4 − 1 +

2H + 1

2H ln

(
1 + 2H− 2H

√
s−4

)
= Hτ,

(2H + 1) θ−4 + 1 − eθ
−
4 = 2H2τ,

x−
4 =

ξ − �1

s−4 (τ)
+ x∗

3(�1, τ).

From the last equation, we obtain

�2 =
ξ − �1

s−4 (τ ′2(ξ))
+ x∗

3(�1, τ
′
2(ξ)).(B.27)

From this equation, we can find the value of τ ′2(ξ), which is the time that the material
point which was initially at ξ crosses �2. Note that τ ′2 is different from τ2 in region (3)
since the solutions in the two regions are different.

(II). When τ ′2(ξ) ≤ τ ≤ τ∗ in this region, we have

θ∗4(ξ, τ) = θ∗4(τ ′2(ξ)) = θ−4 (τ ′2(ξ)),

s∗4(ξ, τ) = τ ′2(ξ) − τ + s∗4(τ
′
2(ξ)) = τ ′2(ξ) − τ + s−4 (τ ′2(ξ)),

x∗
4(ξ, τ) = �2 +

∫ ξ

ξ2(τ)

1

s∗4(η, τ)
dη.

(III). When τ∗ ≤ τ ≤ τb in this region we have

θ+
4 (ξ, τ) = θ+

4 (τ ′2(ξ), τ∗),

s+
4 (ξ, τ) = τ∗ − τ + s∗4(τ

′
2(ξ)),

x+
4 (ξ, τ) = x+

3 (�1, τ) +

∫ ξ

�1

1

s+
4 (η, τ)

dη.
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At τb, we have

θ+
4 (ξ, τb) = θ+

4 (τ ′2(ξ), τ∗),(B.28)

s+
4 (ξ, τb) = τ∗ − τb + s∗4(τ

′
2(ξ)),(B.29)

x+
4 (ξ, τb) = x+

3 (�1, τb) +

∫ ξ

�1

1

s+
4 (η, τb)

dη.(B.30)

B.2.5. �2 ≤ ξ ≤ 1. In this region we have

θ5 = 0, s5 = 1 − τ, x5 =
ξ − �2
1 − τ

+ x∗
4(�2, τ)

for 0 ≤ τ ≤ τ∗ and

θ5 = 0, s5 = 1 − τ, x5 =
ξ − �2
1 − τ

+ x+
4 (�2, τ)

for τ∗ ≤ τ ≤ τb.
At τb, we have

θ5 = 0, s5 = 1 − τb, x5 =
ξ − �2
1 − τb

+ x+
4 (�2, τb).(B.31)

Acknowledgments. We wish to thank Drs. Demetrius Papageorgiou, Michael
Siegel, Yuan-Nan Young, and Wendy Zhang for useful discussions at the Focused
Research Group (FRG), in Banff. Also, we thank the Banff International Research
Station (BIRS) for funding the FRG, and the staff at BIRS for their wonderful efforts
to make the FRG such a productive event. Finally we wish to express our gratitude to
the anonymous referees who helped us to improve the paper by providing constructive
comments and suggestions.

REFERENCES

[1] M. Coenen, Festigkeit von Glasschmelzen, Glastech. Ber., 51 (1978), pp. 17–20.
[2] Corning Glass Company, Pyrex Glass Code 7740, Material Properties, Brochure Pyrex B-87,

1987.
[3] M. M. Denn, Continuous drawing of liquids to form fibers, in Annu. Rev. Fluid Mech. 12,

Annual Reviews, Palo Alto, CA, 1980, pp. 365–387.
[4] J. Dewynne, J. R. Ockendon, and P. Wilmott, On a mathematical model for fiber tapering,

SIAM J. Appl. Math., 49 (1989), pp. 983–990.
[5] J. N. Dewynne, J. R. Ockendon, and P. Wilmott, A systematic derivation of the leading-

order equations for extensional flows in slender geometries, J. Fluid Mech., 244 (1992),
pp. 323–338.

[6] A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, Modeling the fabrication of
hollow fibers: Capillary drawing, J. Lightwave Technol., 19 (2001), pp. 1924–1931.

[7] A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, The mathematical modelling of
capillary drawing for holey fiber manufacture, J. Engrg. Math., 43 (2002), pp. 201–227.

[8] D. G. Flaming and K. T. Brown, Micropipette puller design, Form of the heating filament
and effects of filament width on tip length and diameter, J. Neurosci. Methods, 6 (1982),
pp. 91–102.

[9] P. Gospodinov and A. L. Yarin, Drawing resonance of optical microcapillaries in non-
isothermal drawing, Int. J. Multiphase Flow, 23 (1997), pp. 967–976.

[10] G. Gupta and W. W. Schultz, Non-isothermal flows of Newtonian slender glass fibers, Int.
J. Nonlinear Mech., 33 (1998), pp. 151–163.

[11] G. Gupta, W. W. Schultz, E. M. Arruda, and X. Lu, Nonisothermal model of glass fiber
drawing stability, Rhoel. Acta, 35 (1996), pp. 584–596.



666 H. HUANG, J. WYLIE, R. MIURA, AND P. HOWELL

[12] H. Huang, R. M. Miura, W. P. Ireland, and E. Puil, Heat-induced stretching of a glass
tube under tension: Application to glass microelectrodes, SIAM J. Appl. Math., 63 (2003),
pp. 1499–1519.

[13] A. Kaye, Convected coordinates and elongational flow, J. Non-Newtonian Fluid Mech., 40
(1991), pp. 55–77.

[14] R. J. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser, Boston, Cambridge,
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PASSIVITY OF MAGNETOSTRICTIVE MATERIALS∗
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Abstract. Magnetostrictive materials display large force and displacement in response to an
applied field, as well as short response time. However, their nonlinear and hysteretic behavior has
hindered their use. We prove, using the physics of the material, that these materials are passive. The
corresponding energy storage function is shown to be the Helmholtz energy. This result is independent
of the model used. The effect of varying load is included. Passivity is important because it can be
used to obtain control systems that maintain stability despite uncertainties and disturbances. The
minima of the storage function are also obtained. The storage function is written explicitly in the
case of a common model for these materials, the Preisach model.

Key words. passivity, smart materials, Preisach model, magnetostrictive materials, stability
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1. Introduction. There has been a growing demand by industry in recent years
for micropositioning devices. Micropositioning actuators are now frequently seen in
scanning microscopes, chip manufacturing machines, biological cell micromanipula-
tion and optical fiber alignment devices. Currently, many of these micropositioning
tasks are done with piezoceramic actuators. Piezoceramic actuators exhibit almost
linear behavior and have a reasonably fast response time.

Still, there is a demand for actuators with a larger stroke and faster response
time. For this reason, the possibility of using other active materials for actuation is
being examined. Terfenol-D, an alloy of iron, terbium, and dysprosium, has many
advantages. Terfenol-D is a magnetostrictive material. Compared to other active
materials, it has very large force and displacement with a short response time that
makes it an attractive choice for actuation.

The use of magnetostrictive materials has been hindered by the fact that their
response is highly nonlinear and hysteretic. Because of this nonlinearity, Terfenol-D
actuators are difficult to control. In many micropositioning tasks, submicron accuracy
is required. To achieve the required performance, actuators need to be used in a
closed-loop feedback system. The controller in the feedback system must be able to
stabilize the system under all conditions.

Dependence of the hysteresis on many physical conditions together with the non-
linear nature of the system make it difficult to establish stability for the closed loop.
External physical conditions such as mechanical loading and temperature affect the
behavior of magnetostrictive materials. Stability and performance of the control sys-
tem must be maintained despite these system uncertainties and also despite distur-
bances. One of the most useful methods for showing stability of nonlinear systems is
passivity. There are many passive physical systems [1]. Passive systems are impor-
tant because the stability of closed-loop passive systems can be easily established. For
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many nonlinear systems, this approach is the only way to show stability. Passivity
has been used to obtain closed-loop stability for nonlinear systems in over 300 papers
published in the last 10 years.

The Preisach model [2] is among the oldest models for magnetic materials. This
model has been successfully applied to many hysteretic systems [3, 4]. In [5], the
Preisach model is used with a set of ordinary differential equations to develop a rate-
dependent hysteresis model. Open-loop stability and other properties of the model
are discussed. These results are used to develop a model inverse-based controller for
a magnetostrictive actuator [6].

In [7], an energy-based version of the Preisach model is introduced. Unlike the
classical Preisach model, this model is based on a physical model for the material.
In [3], it is shown that the Preisach operator is passive if the system output is the
time-derivative of the output. The associated storage function is also computed. The
result is applied to the control of a shape memory alloy actuator. In [8], this approach
is extended to position control. The passivity results [3] are used in [9] to establish
asymptotic stability of closed-loop systems containing hysteresis.

In the next section we give a brief review of standard material on passivity. It
is subsequently shown, using physics, that magnetostrictive materials are passive.
The storage function is identified to be the Helmholtz energy. No assumption on the
model is used. The effects of varying load are included. The Preisach model is then
introduced and the energy storage function is written explicitly using this model. The
system equilibrium points are identified and discussed.

2. Passivity. In this section, passivity is defined in a dynamical systems frame-
work. This framework will be used later for magnetostrictive materials. Consider a
system with input u ∈ U , output y ∈ U , and state x ∈ X. The following is a standard
definition for dynamical systems [1].

Definition 1. A dynamical system is defined through input, output and state
spaces U and X, a readout operator r, and a state transition operator φ. The readout
operator is a map from U × X to U . The state transition operator is a map from
R

2 × X × U to X. The state transition operator must have the following properties
for all x0 ∈ X, t0, t1, t2 ∈ R, u, u1, u2 ∈ U :

Consistency: φ(t0, t0, x0, u) = x0.
Determinism: φ(t1, t0, x0, u1) = φ(t1, t0, x0, u2) for all t1 ≥ t0 when u1(t) = u2(t)

for all t0 ≤ t ≤ t1.
Semigroup: φ(t2, t0, x0, u) = φ(t2, t1, φ(t1, t0, x0, u), u) when t0 ≤ t1 ≤ t2.
Stationarity: φ(t1 +T, t0 +T, x0, uT ) = φ(t1, t0, x0, u) for all t1 ≥ t0, T ∈ R when

uT (t) = u(t + T ) for all t ∈ R.
Definition 2 (see [1]). Consider a dynamical system with state variables x, an

input u, and output y. If there is a real-valued function S(x) satisfying the following
relation for any ti ≤ tf and if S(x) is bounded from below, the dynamical system is
called passive:

S(x(ti)) +

∫ tf

ti

〈u, y〉 dt ≥ S(x(tf )).(1)

In this definition, 〈., .〉 is the inner product on U . The variables u and y are
vectors of the same dimension, so that 〈u, y〉 is defined. The scalar function S(x) is
called the storage function. Passive systems are frequently seen in engineering. The
storage function is often the energy.
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Fig. 1. A spring-mass-dashpot system.

Example. Consider a spring-mass-dashpot system (Figure 1). The following equa-
tion describes this system:

M
d2z

dt2
+ b

dz

dt
+ kz = u,(2)

where u is the external force applied. The velocity of the mass ż is considered to be
the system output: y = ż. The state variables are z and ż. If both sides of (2) are
multiplied by ż and integrated from ti to tf , it becomes

M

2

(
ż2(tf ) − ż2(ti)

)
+

∫ tf

ti

bż2dt +
k

2

(
z2(tf ) − z2(ti)

)
=

∫ tf

ti

〈u, y〉 dt.(3)

In this example, total energy is

E(z, ż) =
1

2
kz2 +

1

2
Mż2.(4)

Using this definition, (3) can be rewritten as

E(z(ti), ż(ti)) +

∫ tf

ti

〈u, y〉 dt ≥ E(z(tf ), ż(tf )).(5)

The storage function E(z, ż) is always nonnegative and, hence, bounded from
below. As a result, this system is passive. When u = 0, the system goes to a state
which minimizes E. The energy E is minimized when z = 0, ż = 0. This is the global
system equilibrium point.

When the force applied to the system includes a constant force, such as gravity,
its effect can be included in the system storage function. If the force applied to the
mass is Fconst + u, the following storage function is minimized at the equilibrium
point:

Ē = E − Fconstz.(6)

In this case, the equilibrium point is z = Fconst

k , ż = 0.
Define the operator ‖.‖ to be the Euclidean norm; that is, for any vector v,

‖v‖2
= 〈v, v〉. The following definitions are used to establish stability for the system

[10, 11].
Definition 3. The set L2 is the set of functions x : R → R

n for which the
following expression is bounded: ∫ ∞

0

‖x(t)‖2
dt < ∞.(7)
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Fig. 2. The standard feedback configuration.

Definition 4. The set L2e is the set of functions x : R → R
n for which the

following expression is bounded for all T ∈ R:∫ T

0

‖x(t)‖2
dt < ∞.(8)

Definition 5. A mapping R : L2e → L2e is said to be L2-stable if x ∈ L2 implies
that Rx ∈ L2.

Suppose that a given system P is passive. Consider the general feedback control
configuration shown in Figure 2. If the controller H satisfies certain conditions, the
following result can be used to show the stability of the controlled system.

Theorem 6 (see [11, Theorem 10, p. 182]). Consider the feedback system shown
in Figure 2, where H and P map U to U . The set U is a subset of L2e. Assume that
for any r′ and d in L2 there are solutions e and u in L2e and there are constants α1,
α2, α3, β1, β2, and β3 such that for every real T and x ∈ L2e the following conditions
hold:

I

√∫ T

0

‖Hx‖2
dt ≤ α1

√∫ T

0

‖x‖2
dt + β1,

II

∫ T

0

〈x,Hx〉 dt ≥ α2

∫ T

0

‖x‖2
dt + β2,(9)

III

∫ T

0

〈Px, x〉 dt ≥ α3

∫ T

0

‖Px‖2
dt + β3.

If α2 + α3 > 0, then r′, d ∈ L2 implies that e, u, He, y ∈ L2.
A passive system satisfies the third condition with α3 = 0 and β3 = inf S(x) −

S(x(0)). The second and third conditions are similar to requiring that plant and
controller be passive, but slightly stronger since α2 + α3 has to be strictly positive.
The last line of the theorem states that the closed loop is L2-stable.

This theorem can be used to establish stability for a large class of nonlinear
systems. For many systems this theorem is the only way to establish stability. The
passivity results which will be shown later can be used with this theorem to show
stability for the magnetostrictive system.

3. Passivity for magnetostrictive materials. Since magnetostrictive mate-
rials dissipate energy, we expect them to be passive with some energy function as the
storage function. In this section, the physical parameters of magnetostrictive mate-
rials are introduced. Three different energy functions for magnetostrictive materials
and their suitability as a storage function are discussed. Finally, a proof of passivity
is given.

Magnetostrictive materials react to a magnetic field. Suppose that a magnetostric-
tive sample is excited in a magnetic field produced by a coil. If there is an electrical
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current in the coil, a nonzero magnetic field H is seen around the coil. Magnetic
field H is a vector field, and it depends on the electrical current and the geometry.
Magnetic field H acts on the magnetostrictive sample, and it is usually considered to
be the input for the hysteretic system. As a result of this magnetic field, a magne-
tization M is seen in the material. The magnetization M is also a vector field, and
it is considered to be the response or output of the hysteretic system. The relation
between H and M depends on the material.

The magnetization M is not the only parameter affected by an external magnetic
field H. The mechanical variables are also affected. For a material where the magnetic
and mechanical responses are decoupled, the stress σ is usually considered to be the
input for the mechanical part, and the strain ε, the response. For magnetostrictive
materials, a magnetic field affects both magnetization and strain, and similarly for the
stress. For magnetostrictive materials, generalized force and displacement are defined
as follows:

F =

(
μ0H
σ

)
,(10)

X =

(
M
ε

)
.(11)

Generalized force F is the system input and time-derivative of generalized dis-
placement Ẋ, the output. The constant μ0 is a physical constant to ensure that
μ0 〈H,M〉 has the unit of energy per unit volume.

Various energy functions can be associated with magnetostrictive materials. Here
these energy functions are introduced and their suitability as a storage function is
discussed.

3.1. The internal energy. The internal energy U is the total potential energy
stored in the material. The first law of thermodynamics holds for this energy function:

dU

dt
=

dQ

dt
+

dW

dt
,(12)

where dQ
dt is the rate of thermal energy supplied to the material and dW

dt is the rate
of magnetic/mechanical work done on the system. The inequality of Clausius [12, p.
205] states that for any process dS

dt ≥ 1
T

dQ
dt , where T is the temperature and S is the

entropy. Using this inequality, the first law can be written as

dU

dt
≤ T

dS

dt
+

dW

dt
.(13)

A relation similar to the passivity inequality can be obtained by integrating both
sides of (13) from ti to tf :

Ui +

∫ tf

ti

(
T
dS

dt
+

dW

dt

)
dt ≥ Uf .(14)

It is seen that thermal terms should appear in the system input/output; i.e., u

should be
(
μ0H
σ
T

)
and y should be

(
Ṁ
ε̇
Ṡ

)
. Since the energy stored in the material is

limited, the amount of energy which can be pulled out of the material is also limited.
This means that the energy function U has a lower bound. As a result, the internal
energy U can be used as a storage function.
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Thermal variables are usually difficult to work with, and for magnetostrictive
materials they are difficult to measure. Extra thermal input and output are disad-
vantages to using internal energy as a storage function. For this reason, the internal
energy is not chosen as the storage function.

3.2. The Gibbs energy. The following relation defines the Gibbs energy:

G = U − TS − 〈F,X〉 .(15)

Using the relation dW
dt =

〈
F, dX

dt

〉
and (10), (11) and (13), we obtain

dG

dt
≤ −S

dT

dt
− μ0

〈
M,

dH

dt

〉
− ε

dσ

dt
.(16)

The Gibbs energy is a function of H. This means that H has to be included in
the system states. This is awkward for several reasons. First, in this application H
is an input. Second, consider a situation in which ε = 0 and H has a large value.
The Gibbs energy can be made arbitrarily small by increasing H. This means that
the Gibbs energy does not have a lower bound, and hence it is not a suitable storage
function.

3.3. The Helmholtz energy. The Helmholtz free energy ψ is defined as

ψ = U − TS,(17)

where T and S are the temperature and total entropy, respectively, of the system.
Using the inequality of Clausius, the first law of thermodynamics can be written as

dψ

dt
≤ −S

dT

dt
+

dW

dt
.(18)

Under constant temperature, this equation simplifies to

dψ

dt
≤ dW

dt
.(19)

This relation states that the work provided is more than the rate at which
Helmholtz free energy is increased. It can be said that part of the work energy
provided is absorbed by the system and added to the stored energy, while the rest is
wasted in energy dissipation. It seems that the Helmholtz free energy is the energy
actually stored in the system. In this respect, the Helmholtz energy is comparable to
the energy storage function E in the mechanical example. Since the energy E is the
storage function for the mechanical example, this comparison suggests the Helmholtz
energy as the storage function. In the next subsection, a detailed proof of passivity,
with the Helmholtz free energy as the storage function, is given.

3.4. Proof of passivity. It is assumed that, during any process discussed here,
no phase transition occurs; for example, the material is not melting. This guarantees
the existence of partial derivatives. All of the processes are under constant air pres-
sure. Work done by the air pressure is neglected. For simplicity, from now on, it is
also assumed that the thermal connection between the material and the surrounding
environment is so good that the temperature of the material is always close to the
room temperature T0 and constant.

In a magnetic material, the ratio between the dipole magnetic energy and the
energy of thermal fluctuations plays an important role. If the dipole magnetic energy
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is small compared to thermal fluctuations, the material is called paramagnetic. In
this case, the dipoles are mostly affected by thermal fluctuations and the external
magnetic field H. Dipole-dipole interaction is weak. Because of thermal fluctuations,
paramagnetic materials are memoryless and have no hysteresis. On the other hand,
if the dipole magnetic energy is large compared to thermal fluctuations, the material
is called ferromagnetic. Dipoles in a ferromagnetic sample retain their state, and the
material has memory. These materials are hysteretic. Because of strong dipole-dipole
interactions in ferromagnetic materials, the models available for these materials are
complex and difficult to use. The energy of thermal fluctuations depends linearly on
temperature. For this reason if a ferromagnetic material is heated, in a certain tem-
perature it becomes paramagnetic. This transition temperature is called the Curie
temperature Tc. Curie temperature is fairly high for most of the ferromagnetic mate-
rials. For iron Tc = 1043K.

When a ferromagnetic material is heated beyond Tc, it becomes paramagnetic,
and during this heating process, the entropy of the materials is increased. In the
following lemmas, this fact is used together with entropy relations for a paramagnetic
material to show an upper bound for the entropy in a ferromagnetic material. The
first lemma is used to show that the Helmholtz free energy has a lower bound.

Lemma 7. For a paramagnetic material at a constant temperature, the entropy
S has an upper bound.

Proof. The strength of a magnetic dipole is denoted by a constant positive half-
integer J . This constant depends on the material under discussion. The following
equations define entropy for a single dipole in a paramagnetic sample [13, pp. 213,
215, and 259]:

β =
1

kT
,

η = cβ ‖H‖ ,

Z =
sinh

[
(J + 1

2 )η
]

sinh
[
1
2η

] ,(20)

S = k

(
lnZ − β

∂ lnZ

∂β

)
,

where c is a positive constant and k is the Boltzmann constant k = 1.38e− 23 J
K .

In a paramagnetic sample with N dipoles, total magnetic entropy is simply N
times the entropy of a single dipole. Total magnetic entropy is maximized when H = 0.
(See the appendix.) This result is consistent with physics since in the presence of an
external magnetic field, dipoles become oriented and the overall system disorder is
reduced. Thus,

Smax = SH=0 = kN ln(2J + 1).(21)

Thus, at a constant temperature, the magnetic portion of entropy has an upper
bound, Smax.

The nonmagnetic portion of the entropy is a function of temperature and external
load. At any temperature, this entropy is maximized for the highest possible (tensile)
external load. This means that at any temperature, the nonmagnetic portion of the
entropy has an upper bound. Thus at any temperature, the total entropy has an
upper bound.
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The paramagnetic state is usually obtained at a high temperature. In order to
have an upper bound for entropy in normal working conditions of the material, the
lemma above should be extended to ferromagnetic materials.

Lemma 8. For any magnetic material at a constant temperature, the entropy S
has an upper bound.

Proof. Lemma 7 states that the entropy has an upper bound for the paramagnetic
state. Here we are interested in the ferromagnetic state.

To obtain a relation for entropy in the ferromagnetic state, consider a process in
which the ferromagnetic material is heated from an arbitrary initial state to a state in
which the material is paramagnetic. The entropy and temperature for the initial state
are Si and Ti, respectively. For the paramagnetic state, the entropy and temperature
are Sp and Tp, respectively. From Lemma 7, it is known that Sp has an upper bound.

The entropy is a function of the system states [12, p. 217]. The difference between
any two arbitrary states is only a function of the states. This difference is independent
of the process which connects the two states. This fact holds for the process mentioned
above. The difference Sp − Si does not depend on the process as long as the initial
and final conditions remain the same. For simplicity, consider a process in which the
temperature is increased monotonically.

Since the temperature is always increasing during this process, there should be a
nonnegative heat flow to the material during the process:

dQ

dt
≥ 0.(22)

The inequality of Clausius states that for any process dS
dt ≥ 1

T
dQ
dt . As a result, in

this process dS
dt ≥ 0 or Sp−Si ≥ 0. Since Sp has an upper bound, Si is bounded from

above. This concludes the proof.
The following is an immediate result of the lemma above.
Theorem 9. For a constant temperature, the Helmholtz free energy ψ = U −TS

is bounded from below.
Proof. Lemma 8 states that the entropy has an upper bound. This means that

−TS has a lower bound. The internal energy U has a lower bound. This results in ψ
being bounded from below.

Theorem 10. The following passivity condition is satisfied when the storage
function is the Helmholtz free energy ψ:

ψi +

∫ tf

ti

〈
F,

dX

dt

〉
dt ≥ ψf .(23)

Here, subscripts i and f denote initial and final conditions, respectively; F and X are
the generalized force applied to the system and the generalized system output, respec-
tively, as defined in (10) and (11); and σ and ε are stress and strain, respectively.

Proof. If the temperature is constant, (18) can be written as

dψ

dt
≤ dW

dt
,(24)

where dW
dt =

〈
F, dX

dt

〉
is the rate of magnetic/mechanical work done on the system.

If both sides are integrated from ti to tf , we obtain

ψf − ψi ≤
∫ tf

ti

〈
F,

dX

dt

〉
dt(25)
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Fig. 3. The Preisach relay.

or

ψi +

∫ tf

ti

〈
F,

dX

dt

〉
dt ≥ ψf .(26)

Theorem 9 shows that the Helmholtz free energy is bounded from below, which
means that it is a valid storage function. This concludes the proof.

The proof above shows the passivity of a magnetostrictive system with a three-
dimensional magnetic field and a one-dimensional stress-strain. In this proof, no model
for the magnetostrictive material is assumed. Passivity is shown with fundamental
laws of physics only. In fact, the theorem above can be applied to any model for
magnetostrictive materials.

4. The Preisach model. The Preisach model [2] is a very common model in
the smart materials literature; for examples, see [3, 4, 14, 15]. In [15], it is used to
model magnetostrictive materials. It has been shown that this model can represent
magnetostrictive materials accurately [16]. This model is briefly explained here; for
a detailed description, see [2]. In this model, a one-dimensional magnetic field is
assumed, which results in the magnetic field H and magnetization M being scalars.
It is assumed that the output is the weighted sum of the output of a continuum of
hysteresis relays. The output of each relay can be either +1 or −1, determined by the
previous relay value and the input, magnetic field H. In Figure 3 a typical hysteresis
relay is shown.

The model output is

M(t) =

∫ ∞

0

∫ ∞

−∞
Rr,s[H(·)](t)μ(r, s)dsdr.(27)

Here, Rr,s is the output of the relay defined by r and s, and μ(r, s) is a weight
function determined by experimental data.

Consider a two-dimensional coordinate system with variables r and s as shown
in Figure 4. Each point r, s in this coordinate system is in a one-to-one relation
with a Preisach relay Rr,s and its corresponding weight μ(r, s). The plane defined by
variables r and s is called the Preisach plane. Because the system input is limited,
the relays with a large r or s do not change and cannot contribute to a change in the
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Fig. 4. A typical Preisach plane boundary.

model output. For simplicity, it is assumed that the weight function μ(r, s) is zero
for these relays. In Figure 4, these relays are outside of the bold triangle. Since the
output is not affected by these relays, they are not considered.

If, in the Preisach plane, the relays equal to −1 are separated with a line from
the relays at +1, a boundary s = τ(t, r) will be produced, as shown in Figure 4. This
boundary is important since if τ(t, r) is available, the output of all relays are known.
Thus, knowledge of τ(t, r) and the input H(t) determines future values of τ(t, r) and
hence M(t). In other words, τ(t, r) contains the memory of the system. The Preisach
model is a dynamical system with τ(t, r) as the state [17]. The model output can be
rewritten in terms of the boundary:

M(t) = 2

∫ ∞

0

∫ τ(t,r)

−∞
μ(r, s)dsdr −

∫ ∞

0

∫ ∞

−∞
μ(r, s)dsdr.(28)

Note that the Preisach boundary τ(t, r) and the vertical axis r = 0 in Figure 4
intersect at the current input value; that is,

τ(t, 0) = H.(29)

4.1. Energy-based Preisach model. In this model, a physical model for mag-
netostrictive materials is used to develop a special type of Preisach model that is based
on energy considerations [7, 16]. Here, the material is assumed to be composed of a
large number of weakly interacting dipoles. The Helmholtz free energy for a single
dipole can be modeled by three parabolas [7], [15, p. 188] (Figure 5):

ψ(M, ε) =
1

2
Y ε2 − Y γεM2 +

⎧⎪⎨
⎪⎩

μ0η
′

2 (M + MR)2, M ≤ −MI ,
μ0η

′

2 (M −MR)2, M ≥ MI ,
μ0η

′

2 (MR −MI)(MR − M2

MI
), |M | < MI ,

(30)



PASSIVITY OF MAGNETOSTRICTIVE MATERIALS 677

 

M 

ψ(M) 

MR -MR MI -MI 

Fig. 5. The Helmholtz free energy.

where the variable M is the magnetization for the dipole, the parameter η′ is a
constant, γ is the magnetomechanical coupling constant, and Y is Young’s modulus.
The parameter MR is the remanence magnetization. In the absence of strain ε, ±MR

are the minima of ψ. The parameter MR is assumed to be the same for all dipoles.
The parameter MI is the inflection point where the second derivative of ψ changes
sign. Unlike MR, because of the nonhomogeneities and imperfections in the material,
MI is different for each dipole. For a valid Helmholtz free energy MR > MI . This
ensures that the Helmholtz free energy has two distinct minima, as shown in Figure 5.

Define H0 to be the local magnetic field at a dipole. Because of the imperfections
and nonhomogeneities in the material, the local magnetic field H0 might not be equal
to the external magnetic field H. It is assumed that the difference s = H − H0 is
constant over time for each dipole.

The parameters s and MI describe each dipole. Define

r = η′(MR −MI) +
2

μ0
Y γεMI .(31)

It will be shown later that it is easier to use r as defined in (31) to describe each
dipole instead of MI . This definition of r is consistent with r for a Preisach relay, as
shown in Figure 3.

For a dipole, the Gibbs energy is

Gr,s(H0,Mr,s, σ, ε) = ψr,s(Mr,s, ε) − μ0H0Mr,s − σε,(32)

as shown in Figure 6.
Consider a single dipole in a process in which the temperature, magnetic field H,

and stress are constant. In this case, (16) simplifies to

dGr,s

dt
≤ 0.(33)

This relation states that during this process, G has to either stay constant or
decrease. At a stable equilibrium point, the Gibbs energy is minimized [15, pp. 65
and 184]. In this case, the derivative of Gibbs energy has to be zero with respect to
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Fig. 6. (a) Gibbs energy when H0 = 0, (b) Gibbs energy for a positive H0, (c) if H0 is further
increased, at some point, only one minimum exists.

unconstrained variables: (
∂Gr,s(H0,Mr,s, σ, ε)

∂Mr,s

)
T,H0,σ,ε

= 0,(34) (
∂Gr,s(H0,Mr,s, σ, ε)

∂ε

)
T,H0,σ,Mr,s

= 0.(35)

By combining (32) and (34), the following relation is obtained:

μ0H0 =

(
∂ψ

∂Mr,s

)
T,ε

.(36)

In a magnetic system with many dipoles, the dipole dynamics are very fast. If the
magnetic field is not very rapidly changing, the magnetic field appears to be almost
constant for each dipole over the time constant of the dipole. The magnetization for
a dipole is a minimum of the Gibbs energy.

By combining (30), (32), and (36), the equilibrium magnetization for a dipole is
obtained:

M∗
r,s =

H − s + Rr,sη
′MR

η′ − 2Y γε
μ0

.(37)

If the dipole is in the left minimum in Figure 6(a), Rr,s = −1, and if the dipole
is in the right minimum, Rr,s = +1.

As seen in Figure 6, if H0 = 0, two minima exist. For a small positive H0 as
shown in Figure 6(b), still two minima exist, but if H0 is further increased, at some
point, one disappears, as shown in Figure 6(c). At this time, dipole magnetization
moves to the new minimum. This transition is shown with an arrow in Figure 6(c).

Using (31), it can be shown that if H ≥ s + r, the R = −1 minimum does not
exist. Similarly, for H ≤ s−r, the R = +1 minimum vanishes. For s−r < H < s+r,
two minimums exist, which means that both R = −1 and R = +1 are possible. It is
seen that for the Preisach relay introduced in Figure 3, the output −1 is nonexistent
if H ≥ s + r, and +1 vanishes if H ≤ s− r. For the values between s− r and s + r,
both outputs are possible. This similarity between the dipole and a Preisach relay
shows that the definition of r and s are consistent with r and s of a Preisach relay.
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For a large magnetic field, the dipole magnetization is the right minimum. At
this minimum, the Gibbs energy is

Gr,s =
1

2
Y ε2 +

μ0

2
ηM2

R − μ0(H − s + ηMR)2

2(η − 2Y γε
μ0

)
− σε.(38)

It is seen that, if ε = 0, the Gibbs energy can be made arbitrarily small by
increasing H. This means that the Gibbs energy is unbounded from below.

Assuming a distribution μ(r, s) for the dipoles, the overall magnetization can be
obtained:

MTot = C

∫ ∞

0

∫ ∞

−∞
M∗

r,sμ(r, s)dsdr.(39)

Define In to be

In =

∫ ∞

0

∫ ∞

−∞
snμ(r, s)dsdr,(40)

where n = 0, 1, or 2. Using (37), MTot can be written as follows:

MTot =
C

η′ − 2Y γε
μ0

[
I0(H −MRη

′) − I1 + 2MRη
′
∫ ∞

0

∫ τ(t,r)

−∞
μ(r, s)dsdr

]
,(41)

where C is a constant and τ(t, r) is the Preisach boundary for the relay configuration
Rr,s. The experimental data can be used to find the optimum weight function μ(r, s).
A few common choices for μ(r, s) can be found in [16, 18].

Unlike the Preisach model, magnetization in this model depends on ε. In this
model, σ and H are the inputs. The Preisach plane boundary τ(t, r) and strain ε are
the system states. The outputs are ε and M . The magnetization is determined by
(41). Combining (30), (32), and (35), we obtain

ε =
σ

Y
+ γM2,(42)

which determines strain ε.

4.2. Helmholtz free energy using the Preisach model. In this section,
the total Helmholtz free energy for a magnetostrictive material is calculated using
the physical Preisach model. Since this function is the system storage function, it is
written as a function of system states τ(t, r) and ε.

As stated before, the local magnetic field H0 might not be equal to the external
magnetic field H. This difference between H and H0 should have some effect on the
energy functions. For example, consider a dipole with a negative s when the dipole
magnetization is increased by dM and the external magnetic field H is constant:
Work done by the external magnetic source is HdM , and work done on the dipole is
H0dM = HdM − sdM . It is seen that the work done on the dipole is more that the
work done by the external magnetic field. This extra work is not done by the external
field. The imperfections and nonhomogeneities which are the source of the difference
between H and H0 should have done this work on the dipole. As a result, they need
to be considered when the overall system Helmholtz free energy is computed.

From (32), we have Gr,s(H0,Mr,s) = ψr,s(Mr,s) − μ0H0Mr,s − σε. Define
ψ̄r,s(Mr,s) and Ḡr,s(H,Mr,s) to be the Helmholtz free energy and Gibbs energy, re-
spectively, written in terms of external variables. When the system is viewed from an
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external point of view, the combined effect of the dipole and the imperfections is seen.
To find ψ̄r,s(Mr,s) and Ḡr,s(H,Mr,s), an assumption for the imperfections and non-
homogeneities must be made and, based on that, the contribution to the Helmholtz
free energy computed. Another approach is to construct ψ̄r,s(Mr,s) by studying the
equilibrium points of the system for a constant magnetic field.

The equilibrium points for a constant magnetic field in terms of the external
variables (H,Mr,s) can be obtained via two methods:

1. The equilibrium condition can be written for Ḡr,s(H,Mr,s).
2. The system parameters can be transformed to the local variables (H0, Mr,s).

The equilibrium condition is written for Gr,s(H0,Mr,s), and the results are
transformed back to the external variables.

These two methods must be equivalent.
The equilibrium conditions for Ḡr,s(H,Mr,s) and Gr,s(H0,Mr,s) are(

∂Ḡr,s(H,Mr,s)

∂Mr,s

)
T,H

= 0,

(
∂Gr,s(H0,Mr,s)

∂Mr,s

)
T,H0

= 0,(43)

where H = H0 + s and s is assumed constant. Further,(
∂G(H0,Mr,s)

∂Mr,s

)
T,H0

=

(
∂

∂Mr,s

)
T,H

(ψ(Mr,s) − μ0H0Mr,s − σε)

=

(
∂

∂Mr,s

)
T,H

(ψ(Mr,s) − μ0HMr,s + μ0sMr,s − σε)(44)

= 0.

Now, Ḡr,s(H,Mr,s) equals Gr,s(H − s,Mr,s) or

Ḡr,s(H,Mr,s) = ψ(Mr,s) − μ0HMr,s + μ0sMr,s − σε.(45)

It can be shown that the equilibrium conditions (43) are identical. Defining
ψ̄r,s(Mr,s) so that Ḡr,s(H,Mr,s) = ψ̄r,s − μ0HMr,s − σε, analogously with (32), we
have

ψ̄r,s(Mr,s) = ψ(Mr,s) + μ0sMr,s.(46)

Equation (37) gives the equilibrium magnetization for a dipole. By combining
(30), (37), and (46), the equilibrium value of ψ̄r,s for each dipole is obtained:

ψ̄∗
r,s =

1

2
Y ε2 +

μ0

2 (H2 − s2) − η′MR(Y γεMR − μ0sRr,s)

η′ − 2Y γε
μ0

.(47)

Similar to (39), by assuming a distribution for r and s, the Helmholtz free energy
for the entire system can be found using the superposition principle:

ψTot(τ(t, r), ε) = C

∫ ∞

0

∫ ∞

−∞
ψ̄∗
r,sμ(r, s)dsdr.(48)

By combining (29), (47), and (48), the following equation is obtained:

ψTot(τ(t, r), ε) =
CI0

2
Y ε2 +

C

η′ − 2Y γε
μ0

(
μ0I0τ

2(t, 0)

2
− η′Y γεM2

RI0

+ η′MRμ0A− μ0

2
I2

)
,(49)

where A =
∫∞
0

∫∞
−∞ Rr,ssμ(r, s)dsdr = 2

∫∞
0

∫ τ(t,r)

−∞ sμ(r, s)dsdr − I1.
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This is the value of the Helmholtz free energy, the storage function for the mag-
netostrictive system, for any ε and Preisach boundary τ(t, r). The only nontrivial
aspect of calculating ψTot(τ(t, r), ε) is efficient computation of A. It is seen that the
double integral of A is very similar to the double integral used for computing M (27).
In fact, any efficient algorithm used for the computation of M can be used here, for
example that on [2, p. 37]; only the weight function is slightly different.

4.3. Minimum of the storage function. In this section, the Preisach bound-
ary that globally minimizes the storage function is obtained.

Suppose that when τ(t, r) = τ∗(t, r) and ε = ε∗, ψTot(τ(t, r), ε) is globally mini-
mized. If ε is held fixed at ε = ε∗ and τ(t, r) is changed, ψTot(τ(t, r), ε∗) is minimized
when τ(t, r) = τ∗(t, r). This means that τ∗(t, r) globally minimizes the following
function:

ψTot(τ(t, r), ε∗) =
CI0

2
Y ε∗2 +

C

η′ − 2Y γε∗

μ0

(
μ0I0τ

2(t, 0)

2
− η′Y γε∗M2

RI0

+ η′MRμ0A− μ0

2
I2

)
.(50)

The following terms are the only variable parts of the storage function:

F1(τ(t, r)) =
μ0I0τ

2(t, 0)

2
,(51)

F2(τ(t, r)) = A.

Assume that the weight function μ(r, s) is nonnegative for all r and s. Since

η′ − 2Y γε∗

μ0
is a positive quantity, if F1 and F2 are minimized at the same time, the

storage function is minimized. Function F1 is minimized when τ(t, 0) = 0. Function
F2 is minimized when A is minimized:

A = 2

∫ ∞

0

∫ τ(t,r)

−∞
sμ(r, s)dsdr − I1.(52)

The sign of the integrand equals the sign of s. This integration is minimized when
the region of integration is the subset of the Preisach plane on which the integrand
is negative. This is the lower half of the Preisach plane. Thus, the integration is
minimized when the boundary τ(t, r) = 0. This Preisach plane boundary is shown in
Figure 7.

Function F2 is globally minimized with the boundary τ(t, r) = 0. Since for this
boundary τ(t, 0) = 0, this boundary also globally minimizes F1. This results in global
minimization of the storage function.

It is commonly seen that the weight function μ(r, s) is an even function of s; that
is, μ(r, s) = μ(r,−s) for all r and s [16, 18]. If this condition holds, by substituting
the Preisach boundary τ(t, r) = 0 into (41), it is seen that the resulting magnetization
is zero. In this case there is no magnetic field H, magnetization M , or flux density
B. This state is called the demagnetized state and is the state of lowest “energy” for
the system.
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Fig. 7. The global minimum Preisach boundary.

5. Storage function in the presence of a constant input. When the stress
and magnetic field applied to the system include a constant portion, the system can

be simplified by redefining the input as ū =
(
μ0(H − Hconst)

σ − σconst

)
, while the output is not

changed. In this case, the system is passive with the following storage function:

ψF = ψTot − μ0 〈Hconst,MTot〉 − σconstε,(53)

where ψTot is the system Helmholtz free energy and MTot is the system magnetization.
This situation is analogous to the example of a spring with a constant imposed force,
such as gravity, discussed in section 2.

Theorem 11. In the presence of a constant input, the following passivity condi-
tion is satisfied when the storage function is ψF :

ψF
i +

∫ tf

ti

〈
ū,

dX

dt

〉
dt ≥ ψF

f .(54)

Subscripts i and f denote initial and final conditions, respectively, and X =
(
M
ε

)
is

the generalized displacement.
Proof. If the definition of ū and ψF is substituted into the result of Theorem 10,

the result is

ψF
i + μ0 〈Hconst,MTot,i〉 + σconstεi +

∫ tf

ti

〈
ū +

(
μ0Hconst

σconst

)
,
dX

dt

〉
dt

≥ ψF
f + μ0 〈Hconst,MTot,f 〉 + σconstεf .(55)

This simplifies to

ψF
i +

∫ tf

ti

〈
ū,

dX

dt

〉
dt ≥ ψF

f .(56)

Since both MTot and ε have a lower bound and an upper bound, existence of a lower
bound for ψTot implies that ψF has a lower bound. The proof is complete.



PASSIVITY OF MAGNETOSTRICTIVE MATERIALS 683

 

r 

s 

+1 
 

-1 

τ(t,r) 
Hconst 

Fig. 8. The global minimum Preisach boundary in the presence of a constant input.

The storage function ψF can be written as a function of the Preisach boundary
τ(t, r) and ε by combining (49) and (53):

ψF (τ(t, r), ε) =
CI0

2
Y ε2 +

C

η′ − 2Y γε
μ0

(
μ0I0(τ(t, 0) −Hconst)

2

2
− μ0I0H

2
const

2

− η′Y γεM2
RI0 + μ0HconstMRη

′I0 + μ0HconstI1

− η′MRμ0I1 + μ0η
′MRĀ− μ0

2
I2

)
− σconstε,

(57)

where Ā = 2
∫∞
0

∫ τ(t,r)

−∞ (s − Hconst)μ(r, s)dsdr. Using an argument similar to that
of the previous section, it can be shown that the following boundary minimizes the
storage function:

τ(t, r) = Hconst.(58)

This boundary is shown in Figure 8. For a constant input, this is the state of minimum
energy. The magnetization in this state is the anhysteretic magnetization.

6. Conclusions. In this article, magnetostrictive transducers were introduced
in a dynamical system framework. Passivity of this system was shown using fun-
damental physical relations. For the energy-based Preisach model, the system states
were defined, and the storage function was computed. System equilibrium points were
also identified and discussed.

The passivity results discussed in this paper can be used to show the stability of
a closed-loop system. Future work includes the design and optimization of a robustly
stabilizing controller for magnetostrictive transducers.

Appendix. The maximization of entropy. In this appendix, it is shown that
the entropy function (20) is maximized when H = 0.
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From subsection 3.4, the following relations define entropy for a paramagnetic
sample with N dipoles:

Z =
sinh

[
(J + 1

2 )η
]

sinh
[
1
2η

] ,

S = kN

(
lnZ − β

∂ lnZ

∂β

)
,(59)

η = cβ ‖H‖ ,

β =
1

kT
,

where c is a positive constant.
Define D = η

2 = cβ
2 ‖H‖ and q = 2J + 1. Since J is a positive half-integer, q is

an integer greater than one. We can write

S = kN

(
ln

sinh qD

sinhD
− qD coth qD + D cothD

)
.(60)

This function is not defined at D = 0, but limD→0 S(D) exists:

lim
D→0

S(D) = lim
D−→0

kN

(
ln

sinh qD

sinhD
+

D coshD sinh qD − qD cosh qD sinhD

sinhD sinh qD

)

= lim
D−→0

kN

(
ln

qD + h.o.t.

D + h.o.t.
+

D4

6 (2q − 2q3) + h.o.t.

qD2 + h.o.t.

)
(61)

= kN ln q.

For D 
= 0, S(D) = S(−D); i.e., this is an even function. We do not need to
analyze this function for both positive and negative values of D. For simplicity D > 0
is studied.

If D > 0,

dS

dD
= kN

(
q2D

sinh2 qD
− D

sinh2 D

)
.(62)

It will be shown that for D > 0, dS
dD < 0. Consider the Taylor series of the

following expression:

sinh qD − q sinhD = qD +
q3D3

3!
+

q5D5

5!
+ · · · − qD − qD3

3!
− qD5

5!
− · · ·

= q

(
(q2 − 1)

D3

3!
+ (q4 − 1)

D5

5!
+ · · ·

)
.(63)

Since q > 1 and D > 0 all of the terms in the Taylor series are positive. It follows
that

sinh qD − q sinhD > 0.(64)

This inequality can be written as

1 <
sinh qD

q sinhD
(65)
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or

1 <
sinh2 qD

q2 sinh2 D
.(66)

This inequality can be further written as

q2

sinh2 qD
− 1

sinh2 D
< 0.(67)

By rewriting (62), the terms in (67) appear in the derivative of S with respect to
D:

dS

dD
= kND

(
q2

sinh2 qD
− 1

sinh2 D

)
.(68)

Since D > 0, this implies that dS
dD < 0.

Since dS
dD < 0, S can be increased by lowering D, or

sup
D>0

S(D) = lim
D→0

S(D) = kN ln q.(69)

Since S(D) is an even function, this result can be extended to all values of D 
= 0:
kN ln q is an upper bound for S(D).
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GUIDED MODES IN PERIODIC SLABS: EXISTENCE AND
NONEXISTENCE∗

STEPHEN SHIPMAN† AND DARKO VOLKOV‡

Abstract. For homogeneous lossless three-dimensional periodic slabs of fixed arbitrary geome-
try, we characterize guided modes by means of the eigenvalues associated with a variational formula-
tion. We treat robust modes, which exist for frequencies and wavevectors that admit no propagating
Bragg harmonics and therefore persist under perturbations, as well as nonrobust modes, which can
disappear under perturbations due to radiation loss. We prove the nonexistence of guided modes,
both robust and nonrobust, in “inverse” structures, for which the celerity inside the slab is less than
the celerity of the surrounding medium. The result is contingent upon a restriction on the width of
the slab but is otherwise independent of its geometry.

Key words. guided mode, periodic slab, photonic crystal, nonexistence in inverse crystals
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1. Introduction. The subject of our investigation is the existence and nonex-
istence of linear scalar waves guided by periodically structured lossless material slabs
(Figure 1). These guided modes occur in linear acoustic theory and, in the two-
dimensional reduction, in which the structure is invariant in one of the two directions
of periodicity, they describe guided polarized electromagnetic fields. Guided modes
are characterized by their frequency and Bloch wavevector in the plane of periodicity,
and they decay exponentially with distance away from the slab.

We distinguish between two types of guided mode. Those of the first type cannot
be destroyed by radiation losses under perturbation because they possess a frequency
and wavevector for which no Bragg, or Fourier, harmonics propagate away from the
slab (they are all evanescent); we call these robust guided modes. Those possessing
frequency and wavevector for which some propagating Bragg harmonics exist can be
destroyed by radiation loss by “coupling” to these harmonics under perturbation of
the structure, frequency, or wavevector. These nonrobust guided modes are known to
be connected with anomalous scattering behavior in the vicinity of the frequency and
wavenumber of the mode.

It is recognized that guided modes as well as the transmission anomalies associated
with them will be useful in the design of photonic devices. These phenomena appear
in many different photonic structures, and there is a large body of literature devoted
to them. We mention just a few references. Anomalous transmission is typically
characterized by sharp dips and peaks in the transmission coefficient. An in-depth
computational analysis of their relation to leaky modes for slabs that are invariant in
the transverse direction is given in Tikhodeev et al. [1]. Explicit asymptotic formulas
for very general geometry for some types of perturbations have been calculated by
Shipman and Venakides [2]. The connection between transmission enhancement and
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x

y

z

Fig. 1. A slab structure periodic in the x and y directions and finite in the z direction.

particular types of guided mode on metal films called “surface plasmons” has been
studied in a series of papers by several authors; see [3] and [4], for example. An
important class of guided modes that we do not treat here consists of those in optical
fibers or periodic pillars (see [5], for example). Our present study focuses on the
existence and nonexistence of guided modes in lossless dielectric slabs.

The existence of guided modes can be proved using variational principles. Bonnet-
Bendhia and Starling [6] treat two-dimensional electromagnetic structures consisting
of lossless penetrable and conducting components in which the dielectric coefficient is
essentially an arbitrary function. The treatment of nonrobust modes is more delicate
because establishing their existence requires proving the vanishing of the propagating
Bragg harmonics. The frequencies of these modes, for a given wavevector, are called
(as in [6]) singular frequencies of the problem of scattering, or diffraction, of plane
waves by the slab.

In our study, we consider three-dimensional homogeneous dielectric structures. In
this case we are able to prove a nonexistence theorem for inverse structures. An in-
verse structure is one for which the speed of waves, or the celerity, is higher inside the
structure than in the surrounding medium. This result is easily understood through
the following example. It is simple to calculate fields that are totally internally re-
flected within an infinite pane of glass surrounded by air. However, if the roles of the
air and the glass are switched, such fields no longer exist. A similar result is expected
for slabs with more general geometry. This is the content of Theorem 4.1. The result
is subject to a restriction on the width of the slab, which depends on the frequency
and wavevector; we do not know if this restriction is necessary or if it is only a artifact
of our method of proof.

For the existence theory, we include complete proofs in the appendix (section 6)
to make the work coherent and self-contained and in order to set the context and
notation for the proof of the nonexistence result.

The governing equation of dynamics is the linear wave equation arising in small-
amplitude acoustic theory:

(1) ε
∂2

∂t2
w(x, y, z, t) = ∇· 1

μ
∇w(x, y, z, t).

The positive material parameters ε and μ depend in general on the position within the
slab but are constant outside of the slab. We will restrict our analysis to slabs in which
these parameters are constant inside. The spatial factor ũ(x, y, z) of a time-harmonic
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solution

w(x, y, z, t) = ũ(x, y, z) e−iωt

is described by the Helmholtz equation

(2) ∇· 1

μ
∇ũ(x, y, z) + εω2 ũ(x, y, z) = 0.

We are interested in solutions of the Helmholtz equation that are of the pseudoperiodic
form

ũ(x, y, z) = u(x, y, z) ei(κ1x+κ2y), u periodic in x and y,

in which u(x, y, z) has the same periods as the guiding slab structure. The vector
κ = 〈κ1, κ2, 0〉 is known as the Bloch wavevector, and the field ũ is called a Bloch
wave. Such a solution to the Helmholtz equation gives rise to a solution of the linear
wave equation when multiplied by a harmonic factor in t:

w(x, y, z, t) = u(x, y, z)ei(κ1x+κ2y−ωt).

This solution is a plane wave traveling in the direction of the vector κ with wave num-
ber |κ| =

√
κ2

1 + κ2
2 , frequency ω, and speed ω/|κ|, modulated periodically through

multiplication by the factor u(x, y, z).
Fundamental to the structure of Bloch waves is their decomposition in the x and

y variables into Fourier harmonics, often called Bragg harmonics, in the regions away
from the slab (|z| sufficiently large):

u(x, y, z) =
∞∑

m,n=−∞
(c+mne

νmnz + c−mne
−νmnz)ei(mx+ny).

Each element of the sum is a separable solution to the Helmholtz equation, and the
coefficients c+mn and c−mn differ from one side of the slab to the other. The exponents
νmn, as explained in more detail below, are purely imaginary for a finite number of
pairs (m,n), corresponding to the propagating Fourier harmonics. For all other pairs,
assuming νmn �= 0 for all (m,n), this exponent is real, and boundedness of u requires
that the coefficients of the exponentially growing components vanish. Thus these
pairs correspond to the evanescent harmonics. Assuming then that u is bounded, we
can say that a guided mode is supported by the slab structure if the coefficients of all
propagating Fourier harmonics vanish.

The paper is organized as follows. In section 2, we formulate a precise definition
of a guided mode in its strong and weak forms. We explain the relation between
vanishing propagating Fourier modes and absence of energy loss by radiation. In
section 3, we discuss the existence of sequences of material constants, depending on
the geometry of the structure, the wavevector, and the frequency, that admit guided
modes in the regime of no radiating Fourier harmonics. We also prove the existence of
sequences of material constants for structures symmetric about a plane, depending on
the frequency and wave number along the plane of symmetry, for which guided modes
that travel parallel to the plane of symmetry exist. All of the proofs are deferred to
the appendix. In section 4, we prove that guided modes cannot exist in “inverse”
slab structures; specifically, we show that, under a suitable restriction on their width,
slabs with constant μ and ε whose value interior to the slab is less than its value
in the exterior, never admit guided modes. In section 5, we show a few numerical
computations of nonrobust guided modes.
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Fig. 2. A two-dimensional depiction of one period of a possible augmented three-dimensional
slab structure.

2. Mathematical formulation of guided modes. A variational description
of guided modes requires truncation of the domain in the z direction (directed away
from the slab) and the introduction of an auxiliary parameter α, serving as the eigen-
value, by which the coefficient ε is multiplied within the truncated domain (Figure 2).
The monotonicity of certain eigenvalue sequences αj(ε1) with respect to the interior
constant ε1 is utilized in the proof of nonexistence of modes in section 4.

Let Ω̃ denote a domain in R
3 with C2 boundary ∂Ω̃ that is bounded in the z

direction and 2π-periodic in the x and y directions (Figure 2). This means that
i. there are numbers z1 < z2 such that

z1 < inf{z : (x, y, z) ∈ Ω̃} < sup{z : (x, y, z) ∈ Ω̃} < z2;

ii. if (x, y, z) ∈ Ω̃, then (x + 2πj, y, z) ∈ Ω̃ and (x, y + 2πj, z) ∈ Ω̃ for each
integer j.

Let S denote the infinite square cylinder containing one period of Ω̃,

S = {(x, y, z) : −π < x < π, −π < y < π},

and denote by Ω the part of Ω̃ contained in S, constituting one period of Ω̃,

Ω = Ω̃ ∩ S = {(x, y, z) ∈ Ω̃ : −π < x < π, −π < y < π},

and by Σ the part of ∂Ω̃ contained in S,

Σ = ∂Ω̃ ∩ S.

The boundary ∂Ω of Ω includes Σ and possibly parts of the boundary ∂S of S. Denote
by R the part of S between z = z1 and z = z2,

R = {−π < x < π, −π < y < π, z1 < z < z2},

and by Γ = Γ1 ∪ Γ2 the square parts of the boundary of R parallel to the xy-plane:

Γ1 = {(x, y, z) : −π < x < π, −π < y < π, z = z1},
Γ2 = {(x, y, z) : −π < x < π, −π < y < π, z = z2}.
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We fix outward-pointing normal vectors n to all of the surfaces, as shown in Figure
2. Let the piecewise constant functions ε and μ be defined by

(3) ε(r) =

⎧⎨
⎩

αε1, r ∈ Ω,
αε0, r ∈ R \ Ω,
ε0, r ∈ S \ R,

μ(r) =

{
μ1, r ∈ Ω,
μ0, r ∈ S \ Ω,

in which ε0, ε1, α, μ0, and μ1 are fixed positive numbers.
We will be considering guided modes in the augmented structure consisting of

the flat slab in R
3 filling the space between the planes z = z1 and z = z2 with the

periodic structure Ω̃ embedded in it. For α = 1, this augmented structure reduces to
Ω̃ itself. We denote the augmented structure by Ω̃aug:

Ω̃aug = the augmented structure in Figure 2 extended periodically to R
3.

When referring to Ω̃aug, the material constants (3), repeated periodically, are tacitly
assumed.

Given a frequency ω and Bloch wavevector κ = 〈κ1, κ2, 0〉, we seek solutions
ũ = ũ(x, y, z) of the Helmholtz equation (2) in S with κ-pseudoperiodic boundary
conditions in x and y, that is,

ũ(π, y, z) = e2πiκ1 ũ(−π, y, z), ∂nũ(π, y, z) = −e2πiκ1∂nũ(−π, y, z),(4)

ũ(x, π, z) = e2πiκ2 ũ(x,−π, z), ∂nũ(x, π, z) = −e2πiκ2∂nũ(x,−π, z).(5)

The minus signs arise because the normal vector n to ∂S is always taken to point out
from S. Such a solution can be extended to a κ-pseudoperiodic solution in R

3, that
is, retaining ũ to denote this extension,

ũ(x, y, z) = ei(κ1x+κ2y)u(x, y, z),

in which u(x, y, z) is 2π-periodic in x and y. It is convenient to work with the function
u, which has periodic boundary conditions in S:

u(π, y, z) = u(−π, y, z), ∂nu(π, y, z) = −∂nu(−π, y, z),(6)

u(x, π, z) = u(x,−π, z), ∂nu(x, π, z) = −∂nu(x,−π, z).(7)

The Helmholtz equation (2) for ũ is equivalent to the following modified equation for
the periodic factor u:

(8) (∇+ iκ)· 1

μ
(∇+ iκ)u + εω2u = 0.

In the precise formulation of a guided mode below, Condition 2.2, we make clear the
implied behavior of a solution to this equation at the surfaces of discontinuity of ε
and μ, namely, Σ and Γ.

We take κ = 〈κ1, κ2, 0〉 to lie in the first symmetric Brillouin zone pertaining to
our structure, which is 2π-periodic in x and y, that is,

−1/2 ≤ κ1 < 1/2 and − 1/2 ≤ κ2 < 1/2.

In the intervals (−∞, z1) and (z2,∞), every periodic solution u of (8) is equal to
a superposition of Fourier harmonics:

(9)

u(x, y, z) =

∞∑
m,n=−∞

(a+
mne

νmnz + a−mne
−νmnz)ei(mx+ny), z < z1,

u(x, y, z) =

∞∑
m,n=−∞

(b+mne
νmnz + b−mne

−νmnz)ei(mx+ny), z > z2,
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in which

(10) ν2
mn = −ε0μ0ω

2 + (m + κ1)
2 + (n + κ2)

2,

provided that ν2
mn �= 0 for all integer pairs (m,n). If ν2

mn = 0 for some pair (m,n),
then its contribution to the sum (9) must be replaced by

(11)
(a+

mn + a−mnz)e
i(mx+ny), z < z1,

(b+mnz + b−mn)ei(mx+ny), z > z2.

For a finite number of pairs (m,n) we have ν2
mn < 0, and we take Im νmn > 0;

these correspond to the harmonics in (9) whose two terms have constant modulus and
oscillate as functions of z. We denote this set of propagating harmonics by P:

(12) P =
{
(m,n) ∈ Z

2 : ν2
mn < 0

}
(propagating Fourier harmonics).

We call the harmonics of the form (11), for which ν2
mn = 0, the linear harmonics. We

denote the union of the linear and propagating harmonics by P̃:

(13) P̃ =
{
(m,n) ∈ Z

2 : ν2
mn ≤ 0

}
(linear and propagating Fourier harmonics).

For a generic set of parameters ε0, μ0, α, κ, and ω, there are no linear harmonics;
that is, P̃ = P. For all pairs such that ν2

mn > 0 we take Re νmn > 0; these correspond
to the exponential harmonics. We require the solution u to be bounded, so that

(14) a−mn = 0 and b+mn = 0 for all linear and exponential harmonics,

to exclude unbounded growth as |z| → ∞. The harmonics that are exponentially
decaying as |z| → ∞ are called the decaying harmonics, or evanescent harmonics.

The energy conservation law holds for solutions of the Helmholtz equation. This
means that the the time-averaged energy flux through in S through planes parallel to
the xy-plane is independent of z. Only the propagating harmonics contribute to this
energy, and equating its values through Γ1 and Γ2 gives

(15)
∑

(m,n)∈P
νmn

(
|a+

mn|2 − |a−mn|2
)

=
∑

(m,n)∈P
νmn

(
|b+mn|2 − |b−mn|2

)
.

A guided mode u, which we will define precisely in Definition 2.3, is a nonzero
solution of the Helmholtz equation with exponential decay as |z| → ∞. If u satisfies
the condition (14) of boundedness as well as the vanishing of the linear and propagat-
ing harmonics, that is, a+

mn = a−mn = b+mn = b−mn = 0 for all (m,n) ∈ P̃, then u has
exponential decay as |z| → ∞, and its periodic extension to R

3 is a guided mode. In
the generic case that there are no linear harmonics, that is, ν2

mn �= 0 for each (m,n),
we may characterize guided modes by the condition that

(16) a−mn = 0 and b+mn = 0 for all (m,n) (if P̃ = P).

Indeed, (16) and (15) together imply in this case the vanishing of all propagating
harmonics as well as all exponentially growing harmonics. In the general case, in
which linear harmonics may exist, we must augment this condition to exclude these
harmonics explicitly:

a−mn = 0 and b+mn = 0 for all (m,n),

a+
mn = 0 and b−mn = 0 if ν2

mn = 0.(17)
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The reason for treating the case of no linear harmonics specially is that the condi-
tion (16) is simple. In fact, it is equivalent to the condition that u obey the following
Dirichlet-to-Neumann map on Γ defined in terms of the Fourier coefficients of u re-
stricted to Γ1 and Γ2:
(18)

If u|Γ1=
∑

amne
i(mx+ny) and u|Γ2

=
∑

bmne
i(mx+ny),

then ∂nu|Γ1
= −

∑
νmnamne

i(mx+ny) and ∂nu|Γ2
= −

∑
νmnbmne

i(mx+ny),

in which the sum is over all integer pairs (m,n). This motivates the definition of an
operator B on functions defined on Γ, which will enable us to give a precise formu-
lation of a guided mode. For the differential, or strong, formulation, this Dirichlet-
to-Neumann map needs to be defined only for twice differentiable functions in R \ Σ
whose first derivative is continuous up to Γ. We give a refined definition that will ac-
commodate the variational, or weak, formulation, which includes functions in H1(R),
that is, functions belonging to L2(R) that possess weak first derivatives also belonging
to L2(R). For such functions, a restriction to Γ is well defined as a function in the
fractional Sobolev space H1/2(Γ), but a normal derivative is not well defined. The
Dirichlet-to-Neumann map is replaced by a bounded operator B from H1/2(Γ) to its
dual space H−1/2(Γ), which coincides with the Dirichlet-to-Neumann map (18) when
restricted to twice differentiable functions with continuous derivatives up to Γ.

Definition 2.1 (Dirichlet-to-Neumann map B). Let f ∈ H1/2(Γ) be given, and
represent f as f = (f1, f2) according to the decomposition H1/2(Γ) = H1/2(Γ1) ⊕
H1/2(Γ2). Set f̂mn = (f̂1

mn, f̂
2
mn), where f̂1,2

mn are the Fourier coefficients of f1,2.

Note that νmnf̂mn = (νmnf̂
1
mn, νmnf̂

2
mn) ∈ H−1/2(Γ1) ⊕H−1/2(Γ2) = H−1/2(Γ), and

define Bf through its Fourier coefficients by setting

(19) (B̂f)mn = νmnf̂mn (definition of B).

We use integral notation to denote the action of the function Bf ∈ H−1/2(Γ) on
g ∈ H1/2(Γ), and this action is concretely expressed through the Fourier coefficients
of f and g:

(20)

∫
Γ

(Bf)g =

∞∑
m,n=−∞

νmn(f̂1
mnĝ

1
mn + f̂2

mnĝ
2
mn).

The action of Bf restricted to Γj , for j = 1, 2, is given by∫
Γj

(Bf)g =

∞∑
m,n=−∞

νmnf̂
j
mnĝ

j
mn.

If all the νmn are positive, that is, if P̃ = ∅, then B is a positive operator; that is, for
each f ∈ H1/2(R),

∫
Γ
(Bf)f̄ > 0.

We are now ready to state the condition that allows a precise definition of a
guided mode. Condition 2.2 makes precise the behavior of a solution to the Helmholtz
equation (8) at the surfaces of discontinuity of the functions ε and μ (see (3)) and
enforces the exponential decay through the Dirichlet-to-Neumann operator B. The
condition (17) necessary when linear harmonics are present is stated separately for
that case (see (21)).

Condition 2.2 (strong condition for a guided mode). Let u be a twice differen-
tiable function in S \ (Σ ∪ Γ) with continuous value and first derivative up to ∂S, Σ,



694 STEPHEN SHIPMAN AND DARKO VOLKOV

and Γ. Denote by ∂nu± the values of the normal derivative of u on Σ and Γ, where
the +-sign refers to the side toward the direction of the normal vector n. If ν2

mn �= 0
for all (m,n), then u satisfies the strong condition for a guided mode, provided that

i. (∇+ iκ)2u + μ0ε0ω
2 u = 0 in S \ R,

ii. (∇+ iκ)2u + αμ0ε0ω
2 u = 0 in S \ Ω,

iii. (∇+ iκ)2u + αμ1ε1ω
2 u = 0 in Ω,

iv. u is continuous in S,
v. ∂nu+ = ∂nu− = −Bu on Γ,
vi. μ1 (∂nu+ + (iκ·n)u) = μ0 (∂nu− + (iκ·n)u) on Σ,
vii. u(−π, y, z) = u(π, y, z) and ∂nu(−π, y, z) = −∂nu(π, y, z),
viii. u(x,−π, z) = u(x, π, z) and ∂nu(x,−π, z) = −∂nu(x, π, z).

If νmn = 0 for some (m,n), then for each such pair we require, in addition, that the
corresponding Fourier coefficient of u be zero on Γ:

(21) (2π)2(û|Γj )mn =

∫
Γj

u(x, y, z)e−i(mx+ny) = 0, j = 1, 2 ((m,n) ∈ P̃ \ P).

Definition 2.3 (guided mode). A guided mode in the augmented periodic slab
structure Ω̃aug is the pseudoperiodic extension to R

3 of a function of the form

u(x, y, z)ei(κ1x+κ2y−iωt),

in which u satisfies the strong Condition 2.2.
It is possible to restrict analysis to the region R, for if we omit the condition (i)

and the first equality in (v), then a function in R (the closure of R) satisfying the
remaining conditions can be extended in a unique way to S such that (i) is satisfied
simply by declaring

(22)

u(x, y, z) =

∞∑
m,n=−∞

amne
νmn(z−z1)ei(mx+ny), z ≤ z1,

u(x, y, z) =

∞∑
m,n=−∞

bmne
−νmn(z−z2)ei(mx+ny), z ≥ z2,

in which amn are the Fourier coefficients of u|Γ1 and bmn are the Fourier coefficients
of u|Γ2

, for this function satisfies the condition Bu = ∂nu+ = ∂nu− on Γ.
We will need a variational formulation for guided modes. The appropriate func-

tion space is the periodic subspace H1
per(R) of the Sobolev space H1(R) of functions in

L2(R) with weak gradients in L2(R): H1
per(R) is the subspace of functions f ∈ H1(R)

satisfying f(−π, y, z) = f(π, y, z) and f(x,−π, z) = f(x, π, z), where the boundary
values of f are well defined by a bounded trace operator to H1/2(∂S). H1

per(R) is a
Hilbert space, retaining the same inner product as H1(R):

(u, v)H1(R) =

∫
R

(uv̄ + ∇u∇v̄) .

In referring to the trace of f on Γ, we will be more precise and denote the trace
operator by T : H1(R) → H1/2(Γ), so that the restriction of f to Γ is denoted by Tf .

Condition 2.4 (weak condition for a guided mode, first form). A function
u ∈ H1

per(R) satisfies the weak condition for a guided mode, provided

(23)∫
R

1

μ
(∇+ iκ)u·(∇− iκ) v̄+

1

μ0

∫
Γ

(BTu)(T v̄)−
∫
R
εω2uv̄ = 0 for all v ∈ H1

per(R).

In case ν2
mn = 0 for any pair (m,n), it is required additionally that (T̂ f)mn = 0.
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The sesquilinear form in Condition 2.4 is conjugate-symmetric in H1
per(R) if and

only if P = ∅. We introduce a subspace X in which it is always conjugate-symmetric,
and, in fact, positive, namely, the subspace of functions whose traces on Γ have
vanishing Fourier coefficients for (m,n) ∈ P̃.

(T̂ f)mn = 0 for (m,n) ∈ P̃ (defining condition for f ∈ X),

or, equivalently,∫
Γ1

(Tf)e−i(mx+ny) =

∫
Γ2

(Tf)e−i(mx+ny) = 0 for (m,n) ∈ P̃ (condition for f ∈ X).

X is closed under the norm of H1(R). In order to exclude linear and propagating
Fourier harmonics from the extension to all of S of a function f in X, which has well
defined normal derivatives on Γ, it must also be demanded that the normal derivative
have vanishing Fourier coefficients for (m,n) ∈ P̃. We give an alternate variational
formulation of guided modes in the weak Condition 2.5.

Condition 2.5 (weak condition for a guided mode, second form). A function
u ∈ H1

per(R) that possesses a normal derivative on Γ satisfies the weak condition for
a guided mode, provided that u ∈ X and

i.
∫
R

1
μ (∇+ iκ)u · (∇− iκ) v̄ + 1

μ0

∫
Γ
(BTu)(T v̄) −

∫
Rεω2uv̄ = 0 for all v ∈ X,

ii. (∂nû|Γ)mn = 0 for all (m,n) ∈ P̃.
We prove in Theorem 2.7 that Conditions 2.2, 2.4, and 2.5 are all equivalent. In

particular, a function in H1
per(R) that satisfies Condition 2.4 is in fact regular and

satisfies the other two conditions, and Condition 2.5.i actually implies the existence
of a normal derivative on Γ.

In section 3, we will show the existence of a sequence of relations between α and
ε1, for each choice of ω and κ, that describe all of the pairs (α, ε1) that support a
solution of Condition 2.5.i. Because these solutions are in X, the coefficients in their
Fourier expansion for all (m,n) ∈ P (see (9)) satisfy

|a+
mn| − |a−mn| = 0 and |b+mn| − |b−mn| = 0,

implying the vanishing of energy flux in the z direction.
Condition 2.5.ii indicates that guided modes typically do not exist in the (κ, ω)-

regime of propagating or linear harmonics (P̃ �= ∅) due to this extra condition that
each of these harmonics must satisfy. The vanishing of this finite number of harmonics
must be accomplished through the tuning of other parameters of the structure. In
particular, if the structure is symmetric about the yz-plane and κ = (0, κ2, 0), or it is
symmetric about the xz-plane and κ = (κ1, 0, 0), then the functions satisfying Con-
dition 2.5.i are symmetric or antisymmetric. We focus on structures with symmetry
about the yz-plane. Ω is symmetric about the yz-plane if

(x, y, z) ∈ Ω =⇒ (−x, y, z) ∈ Ω.

In this case, the antisymmetric solutions to (i) also satisfy (ii) for all (m,n) ∈ P̃ with
m even. Thus, if there is only one propagating mode (0, 0) and the rest are evanescent,
then Condition 2.5 is satisfied in full, and the solutions therefore represent nonrobust
guided modes traveling parallel to the plane of symmetry. These modes are nonrobust
because, under a general perturbation of κ1 or the structure itself, the (0, 0) harmonic,
which is not evanescent, is no longer guaranteed to vanish.
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We make the formulation for an antisymmetric nonrobust mode in a symmetric
structure precise in Condition 2.6 and Theorem 2.7. For this, we introduce the or-
thogonally complementary subspaces Xsym and Xant of X to treat the case that Ω is
symmetric about the yz-plane, κ1 = 0, and P̃ �= ∅:

Xsym = {v ∈ X : v(x, y, z) = v(x, y, z) a.e. in R} ,
Xant = {v ∈ X : v(x, y, z) = v(−x, y, z) a.e. in R} .

It is straightforward to verify that Xsym and Xant are orthogonal in the usual H1 and
L2 inner products on X and with respect to the sesquilinear form on the left-hand
side of Condition 2.6.i:

X = Xsym ⊕Xant .

Condition 2.6 (weak condition for a nonrobust guided mode). Suppose that Ω
is symmetric about the yz-plane and that κ1 = 0. A function u ∈ H1

per(R) satisfies
the weak condition for an antisymmetric nonrobust mode, provided u ∈ Xant and

i.
∫
R

1
μ (∇+ iκ)u · (∇− iκ) v̄ + 1

μ0

∫
Γ
(BTu)(T v̄) −

∫
R εω2uv̄ = 0 for all v ∈

Xant,

ii. P̃ �= ∅ and (∂nû|Γ)mn = 0 for all (m,n) ∈ P̃ with m odd.
Theorem 2.7 (equivalence of strong and weak conditions).

i. Let u satisfy Condition 2.2. Then the restriction of u to R is in H1
per(R) and

satisfies Condition 2.4.
ii. Let u satisfy Condition 2.4. Then u can be extended to a twice differentiable

function in S \ (Σ ∪ Γ) with continuous value and first derivative up to ∂S,
Σ, and Γ. This extension satisfies Condition 2.2, and u is in X and satisfies
Condition 2.5.

iii. If u satisfies Condition 2.5, then u satisfies Condition 2.4.
iv. If u satisfies Condition 2.6, then u satisfies Condition 2.5 (for κ1 = 0).

3. Existence of guided modes. The theoretical development presented in this
section is in essence that followed in [6]. Nevertheless, we feel that complete proofs
are necessary to ensure that consistency and mathematical rigor is observed. The
proofs are given in the appendix (section 6).

Define the following sesquilinear forms in H1
per(R):

A(u, v) =

∫
R

1

μ
(∇+ iκ)u · (∇− iκ) v̄ +

1

μ0

∫
Γ

(BTu)(T v̄),(24)


(u, v) =

∫
R\Ω

ε0ω
2uv̄ +

∫
Ω

ε1ω
2uv̄.(25)

Notice that A depends on κ, ω, ε0, μ0, and μ1 (the dependence on ω and ε0 is through
B—see (19) and (10)), and 
 depends on ω, ε0, and ε1; neither of them depends on α.

A function u ∈ H1
per(R) satisfies the weak condition for a guided mode if and only

if A(u, v)−α
(u, v) = 0 for each v ∈ H1
per(R). This is equivalent to the condition that

u is an eigenfunction of the map H1
per(R) → H1

per(R)∗ :: u �→ A(u, ·) (the asterisk
denotes the dual space) with eigenvalue α in the sense that

A(u, ·) = 
(αu, ·).

If the set of propagating harmonics is empty (P = ∅), then A is conjugate-
symmetric; that is, A(u, v) = A(v, u) for all u, v ∈ H1

per(R). Otherwise, it is not due
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to the purely imaginary values of νmn in the definition (2.1) of B for (m,n) ∈ P. In
X, both A and 
 are conjugate-symmetric, and therefore the eigenvalues α are real.

Define the Rayleigh quotient by

(26) J(u) =
A(u, u)


(u, u)
=

∫
R

1
μ | (∇+ iκ)u|2 + 1

μ0

∫
Γ
(BTu)(T ū)

ε0ω2
∫
R\Ω |u|2 + ε1ω2

∫
Ω
|u|2 .

Recall that the operator B depends on κ, ω, ε0, and μ0, but not on ε1. The dependence
of J(u) on ε1 comes only in the second term of 
. For an exposition of the role of the
Rayleigh quotient in the theory of eigenvalues of elliptic operators, the reader may
refer to Jost [7, section 8.5] or Gould [8, Chapter II]; a more brief discussion is found
in Gilbarg and Trudinger [9, section 8.12].

Theorem 3.1 (eigenvalue sequences). There exists a sequence of real numbers
(eigenvalues) {αj}∞j=0 and functions (eigenfunctions) {ψj}∞j=0 such that

i. 0 < α0 ≤ α1 ≤ · · · ≤ αj ≤ · · · ,
ii. αj → ∞ as j → ∞,
iii. A(ψj , v) = αj
(ψj , v) for all v ∈ X,
iv. if A(ψ, v) = α
(ψ, v) for all v ∈ X, then there is an integer j such that α =

αj and ψ ∈ span{ψk : α = αk},
v. the sequence {ψj}∞j=0 is an orthonormal Hilbert-space basis for L2(R, 
).

The eigenvalues and eigenfunctions arise from the process of successive minimization
of the Rayleigh quotient:

αj = inf
u∈Xj ,u �=0

J(u) = J(ψj), ψj ∈ Xj ,

in which

Xj = {v ∈ X : A(ψk, v) = 0 for k = 0, . . . , j−1}.

If Ω is symmetric about the yz-plane and κ1 = 0, then {ψj}∞j=0 is the union of two
nondecreasing sequences {ψsym

j }∞j=0 and {ψant
j }∞j=0 from Xsym and Xant, respectively.

We denote the associated sequences of eigenvalues by {αsym
j }∞j=0 and {αant

j }∞j=0. The
symmetric and antisymmetric eigenfunctions and associated eigenvalues arise from
minimization of the Rayleigh quotient over Xsym and Xant:

αant
j = inf

u∈Xant
j ,u �=0

J(u) = J(ψant
j ), ψj ∈ Xant

j ,

in which

Xant
j = {v ∈ Xant : A(ψant

k , v) = 0 for k = 0, . . . , j−1}.

Lemma 3.2. The eigenvalues αj are continuous strictly decreasing functions of
ε1, and αj → 0 as ε1 → ∞. Similarly, the αj are continuous strictly decreasing
functions of μ1, and αj → 0 as μ1 → ∞.

Using this lemma, let us parse Theorem 3.1 in a form in which α is fixed, so that
the functions ε and μ given by (3) outside of the domain Ω are fixed. For the sake of
argument, let us also fix μ and denote the dependence of αj on ε1 by αj(ε1). Since
αj(ε1) ↗ ∞ as j → ∞ and because of Lemma 3.2, we may set

Nα = min
{
j : lim

ε→0
αj(ε) > α

}
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and implicitly define a nondecreasing sequence of material parameters ε1 = {Ej(α)}∞j=Nα

and a sequence of corresponding functions {φj(α)}∞j=Nα
that satisfy

αj(Ej(α)) = α, φj(α) = ψj(Ej(α)).

Because the functions αj(ε1) are continuous and strictly decreasing in ε, the values
Ej(α) are defined uniquely, and, as functions of α, are continuous and strictly de-
creasing. By Theorem 3.1, these sequences satisfy

A(φj(α), v) = α
Ej(α)(φj(α), v) for all v ∈ X.

If ω and κ are such that the medium exterior to R admits no propagating or
linear Fourier harmonics, that is, if P̃ = ∅, then each φj(α) can be extended to all of
S as a guided mode, for the second part of Condition 2.5 requiring vanishing of all of
these harmonics is vacuously satisfied.

In the case that Ω is symmetric about the yz-plane, κ = 〈0, κ2, 0〉, and there
is only one propagating Fourier harmonic, namely (0, 0), the antisymmetric eigen-
functions φant

j (ε1) satisfy Condition 2.6 and therefore give rise to nonrobust guided
modes.

We summarize these results in the following theorem.
Theorem 3.3 (existence of guided modes). For each α > 0, there exists a

sequence {Ej(α)}∞j=Nα
of real numbers and a sequence {φj(α)}∞j=Nα

of functions from
X such that

i. for each α > 0, 0 < E0(α) ≤ E1(α) ≤ · · · ≤ Ej(α) ≤ · · · ,
ii. for each α > 0, Ej(α) → ∞ as j → ∞,
iii. for each integer n ≥ 0, Ej(α) is a strictly decreasing function of α, and

Ej(α) → ∞ as α → 0,
iv. φj(α) satisfies Condition 2.5.i for guided modes.

If ω and κ are such that the medium exterior to R admits no propagating or linear
Fourier harmonics, that is, if P̃ = ∅, then for each α and each j, the function φj(α)
satisfies both conditions of Condition 2.5. In particular, it can be extended into S to
a function that satisfies Condition 2.2 and gives rise to a guided mode

ψj(α)(x, y, z)ei(κ1x+κ2y−ωt)

in the augmented slab structure defined by the functions (3).
If Ω is symmetric about the yz-plane, κ = (0, κ2, 0), and there is only one prop-

agating Fourier harmonic (0, 0), the rest being evanescent, then for each α and j the
function ψant

j (α) satisfies Condition 2.5. In particular, it can be extended into S to a
function that satisfies Condition 2.2, giving rise to a nonrobust guided mode traveling
parallel to the yz-plane:

ψant
j (α)(x, y, z)e(κ2y−iωt).

An analogous statement holds if Ω is symmetric about the xz-plane.
There are two special cases of interest:
A. Taking α = 1 gives the unaugmented structure Ω̃, as the material properties

ε and μ in S \ R and R \ Ω coincide:

ε(r) =

{
ε0, r ∈ S \ Ω,
ε1, r ∈ Ω,

and μ(r) =

{
μ0, r ∈ S \ Ω,
μ1, r ∈ Ω.
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Theorem 3.3 gives a sequence of constants ε1 = Ej(1) for which a guided
mode exists, provided the vanishing of all linear and propagating harmonics.

B. Fixing ε1 = ε0 and μ1 = μ0 corresponds to the case of a slab with no periodic
structure, having uniform material properties in R:

(27) ε(x, y, z) =

{
αε0, z ∈ R,
ε0, z �∈ R,

and μ(x, y, z) = μ0.

We analyze this instructive case explicitly in subsection 4.1.

4. Nonexistence of guided modes in inverse structures. An “inverse struc-
ture” is one in which the speed of light is higher than the speed of light in the sur-
rounding medium. This means that ε1μ1 < ε0μ0. Using the sequences of eigenvalues
constructed in section 3, we prove that certain inverse structures cannot support
guided modes, robust or nonrobust. Specifically, we fix μ1 = μ0 > 0 arbitrarily and
take 0<ε1<ε0. Our statement requires an additional restriction on the width of the
slab that depends on the material parameters, frequency, and wavevector (33). We
do not know whether this restriction arises only as a consequence of our method of
proof or whether it is truly necessary.

It is known that under a certain restrictive geometric condition, guided modes
do not exist in inverse structures. Theorem 3.5 of [6], extended to three-dimensional
structures, amounts to the following conditions for homogeneous slabs:

a. the surface Σ of the slab has two sides, given by z = f1(x, y) ≤ 0 and
z = f2(x, y) ≥ 0, where the common domain of f1 and f2 is a subset of the
square {−π ≤ x,y ≤ π};

b. ε1μ1 ≤ ε0μ0; that is, the celerity inside the slab is greater than that outside
the slab (as for a film of air within a ceramic matrix).

The first condition is a severe restriction. It excludes, among other types of structures,
periodic arrays of ellipses that do not have a major axis parallel to the z-axis and
structures that some line parallel to the z-axis intersects in more than one segment.

In addition, it is shown in [6, Theorem 4.1] that, for a given wavevector κ, the
set of frequencies for which a guided mode exists is greater than |κ|/n+, where n+ is
the maximum value of εμ. It follows that, if ε1μ1 < ε0μ0, then robust guided modes
do not exist.

Our approach to proving the nonexistence of both types of modes for μ1 = μ0 is
first to compute explicitly the eigenvalues αj(ε0), corresponding to the case ε1 =ε0, in

which the slab Ω̃aug has no genuine periodicity and then to use the restriction on the
width (33) to prove that the eigenvalues are all greater than or equal to 1. Finally,
since the eigenvalues are decreasing as a function of ε1, we observe that αj(ε1) > 1

for ε1 < ε0. As α = 1 corresponds to the unaugmented periodic slab structure Ω̃ with
material constant ε1 surrounded by a medium with constant ε0, we conclude that no
guided modes exist in Ω̃ for ε1<ε0.

Indeed, if ε1 > ε0, we have seen that nonrobust modes exist in symmetric struc-
tures if κ1 or κ2 vanishes. In fact, this restriction is not necessary: in [6], nonrobust
modes are constructed for arbitrary Bloch wavevectors for two-dimensional slabs.

4.1. Eigenvalues for a flat slab. We explicitly compute the eigenvalues αj

and corresponding eigenfunctions ψj when ε1 = ε0 and μ1 = μ0 (see (27)). In this
situation, the eigenfunctions satisfy the strong form of the Helmholtz equation in R
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(with ψ = ψj and α = αj):

(28)
(∇+ iκ)2ψ + αε0μ0ω

2ψ = 0 in R,
ψ ∈ X and ∂nψ|Γ= Bψ,
ψ has periodic boundary conditions in x and y.

Since ε(x, y, z) is constant in x and y and R is bounded by planes parallel to the three
coordinate planes, the method of separation of variables is applicable. The separable
solutions have the simple form

(29) ψ(x, y, z) =
(
Amne

ηmnz + Bmne
−ηmnz

)
ei(mx+ny), m, n ∈ Z,

in which

(30) η2
mn = (m + κ1)

2 + (n + κ2)
2 − αε0μ0ω

2

and Im ηmn > 0 if η2
mn < 0 and Re ηmn > 0 if η2

mn > 0. If ηmn = 0, then

(31) ψ(x, y, z) = (Amn + Bmnz) e
i(mx+ny).

Each solution of the Helmholtz equation with periodic boundary conditions is a series
superposition of separable solutions,

ψ(x, y, z) =

∞∑
m,n=−∞

φmn(z)ei(mx+ny),

in which φmn is of the form shown in (29) or (31). Moreover, the conditions that
ψ ∈ X and ∂nψ |Γ= Bψ impose independent conditions on the Fourier harmonics
indexed by m and n on the boundary Γ:

(32)(
ψ̂|Γ

)
mn

= 0 .5for (m,n) ∈ P̃,(
∂zψ̂|Γ1

)
mn

= νmn

(
ψ̂|Γ1

)
mn

and
(
∂zψ̂|Γ2

)
mn

= −νmn

(
ψ̂|Γ2

)
mn

for (m,n) �∈ P̃.

Because of this, if ψ satisfies the Helmholtz equation as well as the boundary condi-
tions (28), then each separable component (29) of ψ in its series representation also
satisfies both. Therefore, each solution of (28) is composed of separable solutions.

To find the values of α that admit such solutions and the solutions themselves,
we impose the condition (32) on the separable solution (29) or (31) for each pair
(m,n). For each fixed (m,n) ∈ P̃, the condition (32) is possible only for values of α
for which η2

mn < 0, which give oscillatory solutions in the interval from z1 to z2. In
addition, in order for (32) to hold, ηmn must be of the form ηmn = i

(
jπ

z2−z1

)
for some

j (independent of (m,n)), and we thus arrive at a sequence of eigenvalues α = αmnj

satisfying

αmnjε0μ0ω
2 =

(
jπ

z2 − z1

)2

+ (m + κ1)
2 + (n + κ2)

2, j = 1, 2, 3, . . . .

It is straightforward to deduce from the condition (32) that the constants Amn and
Bmn in (29) have the same modulus, so that, by multiplying the solution by a unitary
number eiθ, we may take φmnj(z) to be a shifted sine function inside the region R.
These solutions do not represent guided modes because they do not satisfy the second
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part of Condition 2.5 requiring the normal derivative of φmnj to vanish, and therefore
their extensions to all of S do not decay as |z| → ∞.

For (m,n) �∈ P̃, the condition (32) amounts to matching a solution that is decaying
as z → −∞ for z < z1 to one that is decaying as z → ∞ for z > z2 through a solution
in the interval from z1 to z2. This is possible only if the solution in this interval is
oscillatory, and this is achievable only when η2

mn < 0. By enforcing the decay of the
solution as |z| → ∞, we obtain a sequence of eigenvalues α = αmnj with αmnj → ∞
as j → ∞ satisfying

tan ζ(z2 − z1) =
2νmnζ

ζ2 − ν2
mn

, ζ =
(
αmnjε0μ0ω

2 − (m + κ1)
2 − (n + κ2)

2
)1/2

.

Again, by multiplying the solution by a unitary number, we may take φmnj(z) to be a
shifted sine function inside the region R. These solutions satisfy Condition 2.5, even
when P̃ �= ∅, as they involve only one Fourier harmonic.

The union of the sequences {αmnj}, arranged in increasing order, gives the se-
quence {αj} that we seek.

As ε1 is perturbed away from ε0, the structure attains a genuine periodicity, and
separable solutions are no longer valid. Typically all Fourier harmonics are represented
in the eigenfunctions so that the guided modes disappear in a regime admitting linear
or propagating harmonics. As we have seen, however, antisymmetric nonrobust modes
persist, for example, in symmetric structures for which there is only one propagating
harmonic, the rest being evanescent.

4.2. Nonexistence of guided modes. We use the foregoing analysis to prove a
theorem stating that guided modes do not exist in certain structures in which the inte-
rior product of the material coefficients μ1ε1 is greater than the exterior product μ0ε0.

Theorem 4.1 (nonexistence of guided modes). Let 0 < μ1 ≤ μ0 and 0 < ε1 ≤ ε0,
and let the frequency ω and wavevector κ = 〈κ1, κ2, 0〉 be given with κ in the first
Brillouin zone: − 1

2 ≤ κ1,κ2 < 1
2 . Suppose that the slab structure Ω̃ (Figure 2 with

α=1) lies between two planes {z = z1} and {z = z2} satisfying

(33) (z2 − z1)(ε0μ0ω
2 − κ2

1 − κ2
2)

1/2 ≤ π

in the case that ε0μ0ω
2−κ2

1−κ2
2 ≥ 0, that is, P̃ �= ∅ (otherwise, there is no restriction).

Then the slab with material properties

ε(r) =

{
ε0, r �∈ Ω̃,

ε1, r ∈ Ω̃,
and μ(r) =

{
μ0, r �∈ Ω̃,

μ1, r ∈ Ω̃,

admits no guided modes at the given frequency and wavevector.
Proof. We begin showing that, for ε1 = ε0, μ1 = μ0, the slab admits no guided

modes. This is the case of a flat slab analyzed in subsection 4.1. Recall the definition
of ν2

mn,

ν2
mn = −ε0μ0ω

2 + (m + κ1)
2 + (n + κ2)

2,

and define, for each α > 0, as before,

η2
mn(α) = −αε0μ0ω

2 + (m + κ1)
2 + (n + κ2)

2.

In subsection 4.1, we have seen that the eigenvalues αj (for ε1 = ε0, μ1 = μ0) corre-
spond to eigenfunctions containing a single Fourier harmonic, and we wish to show
that all of these eigenvalues are greater than or equal to 1.
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For those pairs (m,n) for which ν2
mn > 0, corresponding to the evanescent Fourier

harmonics ((m,n) �∈ P̃), we have seen in subsection 4.1 that the matching conditions
at z = z1 and z = z2 require that η2

mn(α) < 0. From the definitions of ν2
mn and

η2
mn(α), we conclude that α > 1, so that all the eigenvalues corresponding to the

evanescent harmonics are at least greater than 1.
For (m,n) ∈ P̃, we still require that η2

mn(α) < 0. Since κ is taken to lie in the
first symmetric Brillouin zone, that is, −1/2 ≤ κ1 < 1/2 and −1/2 ≤ κ2 < 1/2, we
have (recall that Im (νmn(α)) > 0 (p. 692))

−iνmn ≤ −iν00 for all (m,n) ∈ P̃.

According to the discussion of the preceding subsection, to satisfy the boundary con-
ditions at z = z1 and z = z2, α must be chosen such that

−iηmn(α) =

(
jπ

z2 − z1

)
, j a positive integer.

From condition (33), we obtain

−iηmn(α) =
jπ

z2 − z1
≥ j (ε0μ0ω

2 − κ2
1 − κ2

2)
1/2 ≥ −iν00 ≥ −iνmn,

from which it follows that α ≥ 1, so that all the eigenvalues corresponding to the prop-
agating harmonics are at least 1. As we have mentioned in the previous subsection,
these eigenvalues do not correspond to guided modes.

Since the eigenvalues αj are strictly decreasing in ε1, as well as in μ1 (Lemma
3.2), we have αj > 1 if both ε1 ≤ ε0 and μ1 ≤ μ0, which proves the theorem.

5. Numerical computations. We compute guided modes for the Helmholtz
equation. These are scalar functions u satisfying Condition 2.2, for which α = 1.
We focus on the case of one propagating Fourier harmonic, and we consider a two-
dimensional reduction, in which the slab is constant in the y direction and κ2 = 0. In
this case, only the (m, 0) Fourier harmonics enter the fields. Our method begins with
a geometry Ω that is symmetric about the yz-plane (in the two-dimensional reduction
to the x and z variables, this implies symmetry about the z-axis) and given values
of κ, ε0, μ0, μ1, and ω. The code then computes the values of ε1 which give rise to
a solution of the first part of Condition 2.6; in other words, it computes one of the
values Ej(α). The second part of the condition is automatically satisfied because only
one harmonic is propagating, namely that with (m,n) = (0, 0). The corresponding
antisymmetric nonrobust guided mode u is also computed.

We use a finite element solver in the finite rectangular region R for the eigenvalue
problem, with ε1 as the eigenvalue, for the Helmholtz equation in two variables, x
and z:

(∇ + iκ) · (∇ + iκ)u + ε0μ0ω
2u = 0 in R \ Ω,(34)

(∇ + iκ) · (∇ + iκ)u = −ε1μ0ω
2u in Ω,(35)

μ1 (∂nu+ + (iκ·n)u) = μ0 (∂nu− + (iκ·n)u) on Σ,(36)

u(−π, z) = u(π, z) and ∂nu(−π, z) = −∂nu(π, z),(37)

∂nu + ν0u = 0 on the edges z = z1 and z = z2.(38)

Note that since we assumed that only one harmonic propagates, ν0 = i
√
ε0μ0ω2 − |κ|2,

and condition (38) expresses that there are no incoming harmonics impinging the
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1.

2.

3.

4.

Fig. 3. Four guided modes in a two-dimensional structure investigated in [2, Figure 2]. One
period is shown; the structure continues periodically in the vertical direction on the page. 1: A
nonrobust antisymmetric guided mode at Bloch wavevector zero, (κ1, ω) = (0.0, 0.4017). 2 and
3: Nonrobust guided modes at nonzero wave numbers in the direction perpendicular to the line of
symmetry, (κ1, ω) = (0.14, 0.3863), (0.22, 0.3707). 4: A robust guided mode, (κ1, ω) = (0.44, 0.3306).

rectangular zone R. In fact, condition (38) is a first approximation of the Dirichlet-
to-Neumann operator B. If only one harmonic is allowed to propagate and if the
rectangular region R is chosen to be wide enough, it is reasonable to believe that this
first approximation leads to an exponentially small error. Numerical methods hinging
on this boundary approximation idea have been used in the literature, for example
by Kriegsmann [10] and Volkov and Kriegsmann [11], albeit in the case of regular
transmission problems instead of eigenvalue problems.

We discretize (34)–(38) by finite elements on a meshing of R, and then solve the
discretized problem as an eigenvalue problem in ε1. A function u satisfying (34)–(38)
satisfies

0 = ν0

∫
Γ

|u|2 −
∫
R
|(∇ + iκ)u|2 + ε0μ0ω

2

∫
R\Ω

|u|2 + ε1μ0ω
2

∫
Ω

|u|2.

Thus, loosely speaking, if the imaginary part of ε1 is very small, u and ∂nu are very
small on Γ, which is made up by the two narrow edges of the rectangle R. If the
rectangle R is long enough, this simulates the exponential decay expected from a
Bloch solution to the Helmholtz equation that is a guided mode.

We first use our numerical method to reproduce a computation of eigenvalues for
bound states, which appeared in [2]. The geometry under consideration is that of
a dielectric made up of one large circle of radius 3 and eight small circles of radius
1. (The circles are cross sections of rods that extend infinitely in the y direction.)
Their centers lie on the line x = 0, and two consecutive centers are 2π units of length
apart. Fixing μ0 = μ1 = 1, ε0 = 1, ε1 = 12, it was found in [2] that guided modes
(referred to as “bound states” in that paper) exist for the pairs (κ1 = 0.0, ω = 0.4017),
(κ1 = 0.14, ω = 0.3863), (κ1 = 0.22, ω = 0.3707), and (κ1 = 0.44, ω = 0.3306). Thus
with our present numerical method, we fix μ0 = μ1 = 1, ε0 = 1, and (κ1, ω) at one of
these pairs, and compute values for ε1 for which there appears to be a guided mode.
The computations lead to ε1 ≈ 12.0, as expected. The corresponding eigenfunction is
plotted using grayscale coloring in Figure 3.

The first of these guided modes, at (κ1 = 0.0, ω = 0.4017), is antisymmetric
about the yz-plane. It is nonrobust because it exists in the (κ1, ω)-regime of one
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1.

2.

Fig. 4. 1 : Eigenfunction for the first real eigenvalue ε1 ≈ 9.762 for the parameters ω = 1, ε0 =
1, μ0 = μ1 = 1, κ = (0, 0). 2: Cross section of the solution along the line z = π/2; the magnitude
of the solution is plotted.

propagating Fourier harmonic, which is suppressed by the symmetry of the structure
and the vanishing of κ1. The last of these modes, at (κ1 = 0.44, ω = 0.3306), is a
robust guided mode, for it exists in the (κ1, ω)-regime in which all Fourier harmonics
are evanescent. A dispersion relation for these is shown in [2].

The other two nonrobust modes are not discussed in the analysis in this paper,
for they are in a (κ1, ω)-regime of one propagating harmonic, but the wave number
κ1 in the x direction is not zero. However, at these two pairs, the coefficient for the
one propagating Fourier harmonic happens to be zero; that is, the second part of
Condition 2.6 happens to be satisfied. These values of κ1 and ω occur at points of a
complex dispersion curve calculated in [2, Figure 7.2, part 7], at which the imaginary
part of the frequency appears to vanish. The existence of nonrobust modes at nonzero
wave numbers is proved in the final section of [6].

We also show computations involving geometries that are not exclusively circular.
We choose to place two dielectrics, one shaped as an ellipse of focal lengths 1 and 2 and
centered at (−5, π), the other shaped as a circle of a radius 1 and centered at (5, π).
Their boundaries appear in Figures 4, 5, and 6. We pick the values z1 = −50, z2 = 50
to bound the rectangle R. We first assume that ω = 1, ε0 = 1, μ0 = μ1 = 1, κ = (0, 0),
ensuring that only one harmonic mode propagates. Thus, we know that nonrobust
guided modes do exist at certain values of ε1.

The first guided mode that we find corresponds to ε1 ≈ 9.762, and is plotted
in Figure 4. Values were obtained with a mesh containing 4592 elements. Numeri-
cal convergence was verified by either quadrupling the number of mesh elements or
changing z1 = −50, z2 = 50 into z1 = −60, z2 = 60. These refinements did not change
the first four digits of the numerical value for ε1. The numerical method employed
finds complex eigenvalues and sorts them in increasing real part order. Some of those
eigenvalues do not have a small imaginary part: we ignore them, as they are unrelated
to the solutions we are trying to compute. We verify decay of the solution as we move
away from the dielectrics. This is illustrated in the graph in Figure 4, which shows
the absolute value of the solution along the line z = π/2. We also show the graphs of
the second and third guided modes, still for the same values of ω, ε0, μ0, μ1, κ1. They
appear in Figure 5.
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Fig. 5. Eigenfunctions for the second and third real eigenvalues ε1 ≈ 11.00 and ε1 ≈ 25.66 for
the parameters ω = 1, ε0 = 1, μ0 = μ1 = 1, κ1 = 0. These are nonrobust guided modes.

Fig. 6. Eigenfunction for the third real eigenvalue ε1 ≈ 11.42 for the parameters ω = 0.3, ε0 =
1, μ0 = 1, μ1 = 3, κ1 = 0.4. This is a robust guided mode.

Finally, we compute a robust guided mode with κ1 �= 0. To guarantee existence,
we choose values for the material parameters such that no harmonic can propagate.
More precisely, we select ω = 0.3, ε0 = 1, μ0 = 1, μ1 = 3, κ1 = 0.4. The third
eigenfunction for that case is plotted in Figure 6.

6. Appendix: Proofs of theorems.
Proof of Theorem 2.7 (equivalence of strong and weak conditions). Many of the

arguments are standard in the literature on elliptic equations; details of the relevant
theory can be found in [9, Chapter 8], for example. We confine discussion to the basic
elements of the proof and those aspects that are unique to this problem.

i. That the strong formulation satisfies the weak is a matter of application of
the divergence theorem (integration by parts). The relevant identity is

(39) ∇·
[(

1

μ
(∇+ iκ)u

)
v̄

]
=[

(∇+ iκ)·
(

1

μ
(∇+ iκ)u

)]
v̄ +

1

μ
(∇+ iκ)u · (∇− iκ) v̄.

Applying this identity for a function u that satisfies the strong Condition 2.2,
the left-hand side of the weak Condition 2.4.i becomes

(40) −
∫
R

[
1

μ

(
(∇+ iκ)2u

)
+ εω2u

]
v̄

+
1

μ0

∫
Γ

(Bu + ∂nu−)T v̄ −
∫
∂R\Γ

1

μ
∂nuT v̄

+

∫
Σ

[
1

αμ1
(∂nu− + (iκ · n)u) − 1

αμ0
(∂nu+ + (iκ · n)u)

]
T v̄.
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The integral over R vanishes by properties (i)–(iii), the integral over Γ by
property (v), that over ∂R\Γ by properties (vii)–(viii), and the integral over
Σ by property (vi).

ii. Let u satisfy Condition 2.4. The functions v of class C∞ with compact
support in R \ Σ are contained in H1(R), and this is sufficient to establish
that u satisfies the Helmholtz equation in R\Σ (i)–(iii) and that u ∈ H2(R)
[9, section 8.3]. Thus u has values on ∂R (including the interior side of Γ) and
Σ that are of class H3/2 and normal derivatives of class H1/2. Integration by
parts, using the Helmholtz equation away from these boundaries, establishes
properties (iv)–(viii). The extension of u to all of S is achieved by the formula
(22).
The form of the extension (22) of u to S outside of R shows that a−mn = b+mn =
0 for all (m,n). The relation (15) expressing conservation of energy, which
is obtained by integration by parts with v = u, shows that a+

mn = b−mn = 0
for (m,n) ∈ P. The additional requirement in Condition 2.4 for ν2

mn = 0
establishes a+

mn = b−mn = 0 for (m,n) ∈ P̃. Therefore each harmonic with
(m,n) ∈ P̃ in the expansion (9) has vanishing value and normal derivative
on Γ, implying that u ∈ X and Condition 2.5.ii are satisfied.

iii. The functions v of class C∞ with compact support in R \ Σ are contained
in X, and again we obtain that u satisfies the Helmholtz equation in R \ Σ
and u ∈ H2(R). It suffices to prove that, for each (m,n) ∈ P, the weak

form in Condition 2.5 holds for v such that (v̂|Γ1
)mn = 1, (v̂|Γ1)m′n′ = 0 for

(m′, n′) �= (m,n), and (v̂|Γ2
)m′n′ = 0 for all (m′, n′) (and similarly with Γ1

and Γ2 interchanged). Applying integration by parts for such v together with
the Helmholtz equation for u yields for the left-hand side of the equation in
the weak Condition 2.4,

left-hand side =

∫
Γ1

(∂nu + Bu)v̄ =
(
(∂nû|Γ1)mn − νmn(û|Γ1)mn

)
= 0,

in which (∂nû|Γ1
)mn = 0 by Condition 2.5.ii and (û|Γ1

)mn = 0 because u ∈ X.
iv. To prove Condition 2.5.i, it suffices to prove the equality for v ∈ Xsym,

which follows from the observation that the integrands are antisymmetric
over the regions of integration. To prove part (ii), we observe that the
Fourier coefficients with m even are zero because u is antisymmetric in the
x-variable.

Recall the sesquilinear forms in H1
per(R),

A(u, v) =

∫
R

1

μ
(∇+ iκ)u · (∇− iκ) v̄ +

1

μ0

∫
Γ

(BTu)(T v̄),(41)


(u, v) =

∫
R\Ω

ε0ω
2uv̄ +

∫
Ω

ε1ω
2uv̄,(42)

and that A depends on κ, ω, ε0, μ0, and μ1 (the dependence on ω and ε0 is through
B—see (19) and (10)), and 
 depends on ω, ε0, and ε1; neither form depends on α.

Lemma 6.1 (estimates). There exist positive numbers C and δ such that, for all
u, v ∈ H1(R),

i. min{ε0, ε1}‖u‖2
L2 ≤ 
(u, u) ≤ max{ε0, ε1}‖u‖2

L2 (equivalence of ‖ · ‖L2 and

(·, ·)),
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ii. |A(u, v)| ≤ C‖u‖H1‖v‖H1 (boundedness of A),
iii. δ‖u‖2

H1 ≤ A(u, u) (coercivity of A).
These constants depend on the parameters κ, ω, ε0, μ0, and μ1.

Proof.
i. Part (i) is straightforward to verify.
ii. Because the trace operator T : H1(R) → H1/2(Γ) and the operator B :

H1/2(Γ) → H−1/2(Γ) are bounded, there is a constant C1 such that∣∣∣∣
∫

Γ

(BTu)(T v̄)

∣∣∣∣ ≤ C1‖u‖H1‖v‖H1 .

This, together with the estimate

min{μ0, μ1}
∣∣∣∣
∫
R

1

μ
(∇+ iκ)u · (∇− iκ) v̄

∣∣∣∣ ≤
∣∣∣∣
∫
R

(∇+ iκ)u · (∇− iκ) v̄

∣∣∣∣
≤ ‖ (∇+ iκ)u‖L2‖ (∇+ iκ)v‖L2

≤ (‖∇u‖L2 + |κ|‖u‖L2) (‖∇u‖L2 + |κ|‖u‖L2) ≤ C2‖u‖H1‖u‖H1 ,

proves the estimate.
iii. Suppose, to the contrary, that there exists a sequence {un}∞n=0 from X such

that

(43) ‖un‖H1 = 1 and A(un, un) → 0 as n → ∞.

Because of the compact embedding of X into L2(R), we simply assume that
there is a function u ∈ L2(R) such that

‖u− un‖L2(R) → 0,

and from the definition of A, we see that

‖ (∇+ iκ)un‖L2(R) → 0,

whence

‖∇un + iκu‖L2(R) → 0.

It follows that un → u in the H1-norm so that u ∈ X and

(∇+ iκ)u = 0,

from which we obtain

(44) u = C3e
i(κ1x+κ2y)

for some constant C. From the convergence of un to u in X, the boundedness
of T and B, and the definition of A, we have∫

Γ

(BTu)T ū = lim
n→∞

∫
Γ

(BTun)T ūn = 0.

Since B is a positive operator on H1/2(Γ), we obtain Tu = 0, and the form
(44) therefore gives u = 0. This is in contradiction to the supposition that
‖un‖H1 = 1, and (43) is therefore untenable.



708 STEPHEN SHIPMAN AND DARKO VOLKOV

Because of the equivalence of the norms 
(f, f) and ‖f‖L2(R) (Lemma 6.1.ii), we
may define L2(R, 
) to be the linear space of functions in L2(R) endowed with the
inner product 
(f, g).

Proof of Theorem 3.1. By the Lax–Milgram theorem, there exists a linear operator
K : L2(R, 
) → X such that, for each f ∈ L2(R),

A(Kf, v) = 
(f, v) for all v ∈ X,

and by the sesquilinearity of A and 
, we also have

A(v,Kf) = 
(v, f) for all v ∈ X.

K is self-adjoint in the inner product 
(·, ·) because


(Kf, g) = A(Kf,Kg) = 
(f,Kg) for all f, g ∈ L2(R).

In fact, K is positive because


(Kf, f) = A(Kf,Kf) > 0 for all f ∈ L2(R).

K is injective because, if Kf = 0, then 
(f, v) = 0 for all v ∈ X, and since X contains
the functions of class C∞ with compact support in R, f = 0 almost everywhere, so
that f = 0 in L2(R). The estimate

δ‖Kf‖2
H1 ≤ A(Kf,Kf) = 
(f,Kf) ≤ C‖f‖L2‖Kf‖L2 ≤ C‖f‖L2‖Kf‖H1

gives us

δ‖Kf‖H1 ≤ C‖f‖L2 ,

which shows that K is compact as an operator on L2(R). As the L2(R)-norm with
respect to Lebesgue measure on R and the norm in L2(R, 
) are equivalent, K is
compact as an operator on L2(R, 
). The spectrum of K therefore consists of a
nonincreasing sequence of eigenvalues {λj}∞j=0 converging to zero, in which eigenval-
ues are repeated according to multiplicity, and there is a corresponding sequence of
eigenfunctions {ψj}∞j=0 that form an orthonormal Hilbert-space basis for L2(R, 
).

By definition of A and K, we see that, for α ∈ R,

(45) A(u, ·) = α
(u, ·) ⇐⇒ Ku = α−1u,

in which the dot in the second argument of the forms indicates action on X. The
sequence of eigenvalues αj we seek is therefore

{αj = λ−1
j }∞j=0.

By Lemma 6.1.i and 6.1.iii,


(u, u) ≤ C4A(u, u),

which shows that α0 > 0.
We now show that the eigenvalues and eigenfunctions arise from minimization of

the Rayleigh quotient. Define

β0 = inf
u∈X,u �=0

J(u).
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We prove that there exists a nonzero function φ0 ∈ X such that

β0 = J(φ0) > 0.

Let {un}∞n=1 be a minimizing sequence; that is, un �= 0 for each n and limn→∞ J(un) =
β0. By homogeneity of J(u), we may assume that 
(un, un) = 1 for each n, and since
the sequence {J(un)} is bounded, {A(un, un)} is also bounded. Lemma 6.1.iii shows
that {‖un‖H1} is bounded.

By the compact embedding of H1
per(R) into L2(R), there is a subsequence that

is strongly convergent in L2(R); we simply assume therefore that {un} is strongly
convergent in L2(R), say to a function φ0. By the second inequality in Lemma 6.1.i,

(φ0, φ0) = 1. We now prove that ‖un−um‖H1 → 0 as m,n → ∞. The parallelogram
law holds for A:

(46) A(um − un, um − un) = A(um, um) + A(un, un) −A(um + un, um + un).

Because 
(un, un) = 1, A(un, un) = J(un), and the sum of the first two terms on
the right-hand side of (46) converges to 4β0. By definition of β0 and because of the
second inequality in Lemma 6.1.i,

A(um + un, um + un) ≥ β0
(um + un, um + un) → β0
(2u, 2u) = 4β0 as m,n → ∞.

We thus obtain A(um − un, um − un) → 0 as m,n → ∞, and from Lemma 6.1.iii,
‖un − um‖H1 → 0. Therefore, un → φ0 ∈ X in the H1-norm. Part (ii) shows that
A(un, un) → A(φ0, φ0) as n → ∞, and therefore

J(φ0) = lim
n→∞

J(un) = β0.

To define β1 and φ1, we set Y1 to be the orthogonal complement of span{φ0} in
X with respect to the sesquilinear form A(u, v),

Y1 = {v ∈ X : A(φ0, v) = 0},

and define

β1 = inf
u∈Y1,u �=0

J(u).

The proof of the existence of a minimizer φ1 in Y1 is essentially the same as the proof
of the existence of φ0. Continuing in this way, we obtain a sequence {Yj} of subspaces
of X, numbers βj , and functions φj such that

Yj = {v ∈ X : A(φk, v) = 0 for k = 0, . . . , j−1}

and

βj = inf
u∈Yj ,u �=0

J(u) = J(φj), φj ∈ Yj .

Taking the first variation of the relation A(u, u) = J(u)
(u, u) at u = φj and using
the fact that J is minimized by φj in Yj and that A(φk, φj) = 
(φk, φj) = 0 for
k = 0, . . . , j−1, we obtain

(47) A(φj , v) = βj
(φj , v) for all v ∈ X.
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By definition, φj+1 minimizes the same functional as φj , but over a smaller set, and
therefore the sequence {βj} is nondecreasing:

0 < β0 ≤ β1 ≤ · · · ≤ βj ≤ · · · .

Because of (45) and (47), we have

{βj}∞j=0 ⊆ {αj}∞j=0 and span{φj : j = 0, . . . ,∞} ⊆ span{ψj : j = 0, . . . ,∞}.

To show for j = 0, . . . ,∞ that αj = βj , that ψj can be taken to be equal to φj , and
that Xj = Yj , we prove that any eigenvalue α with eigenfunction 0 �= ψ ∈ X, in the
sense that

A(ψ, v) = α
(ψ, v) for all v ∈ X,

is necessarily one of the βj and that ψ is in the span of {φj : βj = α}. If, to the
contrary, α �= βj for all n, then A(φj , ψ) = 0 for all n because

A(ψ, φj) = α
(ψ, φj) and A(φj , ψ) = βj
(φj , ψ),

whence we obtain, from conjugating the first relation and keeping in mind that α ≥
α0 > 0 and βj ≥ α0 > 0,

(α−1 − β−1
j )A(φj , ψ) = 0.

Since α �= βj , we obtain A(φj , ψ) = 0, as desired. This implies that ψ ∈ Yj+1 so that

α =
A(ψ,ψ)


(ψ,ψ)
≥ inf

u∈Yj ,u �=0
J(u) = βj for all j,

which is impossible because βj → ∞. Therefore we may let k be

k = max{j : βj = α}.

We still have A(ψ, φj) = 0 for all j with βj �= α. If we also have A(ψ, φj) = 0 for all
j with βj = α, then

α = J(ψ) ≥ inf
u∈Yk+1,u �=0

J(u) = βk+1 > βk (a contradiction).

We now see that ψ, which was taken to be an arbitrary nonzero element of the
eigenspace for α, is such that A(ψ, φj) for some j with βj = α. This implies that the
eigenspace for α is in fact equal to span{φj : βj = α}.

The last part of the theorem on the symmetric and antisymmetric eigenfunctions
is proved analogously by replacing X by Xsym and Xant and using the fact that these
two spaces are orthogonal with respect to the sesquilinear form A(·, ·). There are no
essential changes in the proof.

The form 
 depends on the parameter ε1; we make this dependence explicit by
introducing the variable ε:


ε(u, v) =

∫
R\Ω

ε0ω
2uv̄ +

∫
Ω

εω2uv̄,(48)

Jε(u) =
A(u, u)


ε(u, u)
=

∫
R

1
μ | (∇+ iκ)u|2 + 1

μ0

∫
Γ
(BTu)(T ū)

ε0ω2
∫
R\Ω |u|2 + εω2

∫
Ω
|u|2 .(49)
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The eigenvalues and eigenfunctions also depend on ε, and we denote them by αj(ε)
and ψj(ε). Normalizing the eigenfunctions so that 
ε(ψj(ε), ψj(ε)) = 1, we have


ε(ψj(ε), ψk(ε)) = δjk, A(ψj(ε), ψk(ε)) = 0 for j �= k.

The compact operator K = Kε also depends on ε,

(50) A(Kεf, v) = 
ε(f, v) for all v ∈ X,

and the eigenvalues of Kε are {αj(ε)
−1}∞j=0 with corresponding eigenvectors {ψj(ε)}∞j=0.

Lemma 6.2. Kε is continuous in ε with respect to the operator norm on Kε.
Proof. Let ε1 > 0 be given. For an arbitrary variation Δε > 0 with 0 < |Δε| < ε1,

set

ΔK = Kε1+Δε −Kε1 and Δ
 = 
ε1+Δε − 
ε1 .

Applying the defining relation (50) for Kε to Kε1+Δε and Kε1 , with v = ΔKf , and
subtracting yields the relation

(51) A(ΔKf,ΔKf) = Δ
(f,ΔKf).

We have the following lower estimate for the left-hand side of (51),

δ‖ΔKf‖2
L2 ≤ δ‖ΔKf‖2

H1 ≤ A(ΔKf,ΔKf),

and upper estimate for the right-hand side:

|Δ
(f,ΔKf)| = |Δε|
∣∣∣∣
∫

Ω

fΔKf̄

∣∣∣∣ ≤ |Δε| ‖f‖L2 ‖ΔKf‖L2 .

Putting these inequalities together, we obtain

‖ΔKf‖L2 ≤ |Δε|
δ

‖f‖L2 ,

so that ‖ΔK‖ ≤ |Δε|/δ.
We now prove the lemma of section 3 that states that the eigenvalues α are

continuous strictly decreasing functions of ε1, and αj → 0 as ε1 → ∞. A similar
result was stated for the μ1 dependency, but we omit the proof in that case, as it is
similar.

Proof of Lemma 3.2. By Lemma 6.2, Kε is continuous in ε with respect to the
operator norm on Kε, and its spectrum is the set {αj(ε)

−1}∞j=0. Because the eigen-
values of compact operators are continuous functions of the operator in the operator
norm (Kato [12, Chapter IV, section 3.5]), we conclude that the functions αj(ε) are
continuous functions of ε.

To prove that αj(ε) is strictly decreasing in ε, let ε1 and ε2 be given with 0 <
ε1 < ε2, and let an integer N ≥ 0 be given. Define

VN = span{ψj(ε1) : 0 ≤ j ≤ N}

(V0 = {0}), in which the eigenvectors ψj(ε1) are orthonormal with respect to 
ε1(·, ·)
and orthogonal with respect to A(·, ·):


ε1(ψj(ε1), ψk(ε1)) = δjk, A(ψj(ε1), ψk(ε1)) = 0 for j �= k.
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For each ψ ∈ VN with 
ε1(ψ,ψ) = 1, there are numbers aj , for 0 ≤ j ≤ N , such that

ψ =
N∑
j=0

ajψj(ε1),

N∑
j=0

|aj |2 = 1,

and we obtain A(ψ,ψ) =
∑N

j=0 |aj |2A(ψj(ε1), ψj(ε1)) so that

(52) A(ψ,ψ) = Jε1(ψ) =

N∑
j=0

|aj |2Jε1(ψj(ε1)) =

N∑
j=0

|aj |2αj(ε1) ≤ αN (ε1).

From the definition of Jε, it is evident that Jε2(φ) ≤ Jε1(φ) for each φ ∈ X; however,
we need to show strict inequality for φ ∈ VN , which requires showing that, for each
nonzero φ ∈ VN , it is not true that φ is equal to zero almost everywhere on Ω. To
this end, let

φ =

N∑
j=0

bjψj(ε1) = 0 a.e. in Ω.

Set βj = αj(ε1)ε1μ1ω
2. As the ψj(ε1) are smooth in Ω, for each k = 0, . . . , N , we

have

0 =
∏

βj �=βk

(
(∇+ iκ)2 + βj

)
φ =

∏
βj �=βk

(−βk + βj)
∑

βj=βk

bjψj(ε1) in Ω.

Since
∏

βj �=βk
(−βk + βj) �= 0, we obtain

∑
βk=βh

bkψk(ε1) = 0 in Ω. However,∑
βj=βk

bjψj(ε1) satisfies Condition 2.2, and therefore
∑

βj=βk
bjψj(ε1) is zero in R.

As the ψj(ε1) are linearly independent, we infer that bj = 0 for j such that βj = βk.
As k was chosen arbitrarily from {0, . . . , N}, we obtain bj = 0 for 0 ≤ j ≤ N . We

conclude that ψ =
∑N

j=0 ajψj(ε1) from above is not zero in L2(Ω). It follows now
from the definitions of Jε and 
ε and from (52) that Jε2(ψ) < Jε1(ψ) ≤ αN (ε1), and
by the homogeneity of Jε2 we obtain

(53) Jε2(φ) < Jε1(φ) ≤ αN (ε1) for all φ ∈ VN .

Define, for each ε > 0,

XN (ε) = {v ∈ X : A(ψj(ε), v) = 0 for j = 0, . . . , N − 1} .

The dimension of VN ∩XN (ε2) is at least 1; let φ be a nonzero vector in this inter-
section. We obtain

αN (ε2) = inf
u∈XN (ε2),u �=0

Jε2(u) ≤ Jε2(φ) < αN (ε1),

and we have proved that αN (ε) is a decreasing function of ε.
We now prove that αN (ε) tends to zero as ε tends to infinity. We define the set

S = {ψ ∈ VN : 
ε1(ψ,ψ) = 1} .

S is compact in L2(R, 
ε1) and therefore also in L2(R). Since
∫
Ω
|ψ|2 is continuous in

L2(R) and
∫
Ω
|ψ|2 �= 0 for all ψ ∈ S, there is a number M such that

0 < M <

∫
Ω

|ψ|2 for all ψ ∈ S.
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Therefore


ε(ψ,ψ) ≥ εω2

∫
Ω

|ψ|2 > εω2M for all ψ ∈ S,

and, using (52) for ε > ε1,

Jε(ψ) =
A(ψ,ψ)


ε(ψ,ψ)
<

αN (ε1)

εω2M
for all ψ ∈ S.

The dimension of VN ∩XN (ε) is at least 1. Let φ be a nonzero vector in this inter-
section, which we may take to be in S. We then obtain

(54) αN (ε) = inf
u∈XN (ε),u �=0

Jε(u) ≤ Jε(φ) <
αN (ε1)

εω2M
.

The estimate (54) shows that the eigenvalues decay at least proportionally to 1/ε.
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ESTIMATES FOR ELECTRIC FIELDS BLOWN UP BETWEEN
CLOSELY ADJACENT CONDUCTORS WITH ARBITRARY SHAPE∗

KIHYUN YUN†

Abstract. It may be well known in practice that high stress concentrations occur in fiber-
reinforced composites. There have been several works by analysis to estimate for the stresses between
closed spaced fibers. However, the known results on stiff fibers have until now been restricted to
the particular case of circular cross-sections. Thus, we extend the blow-up results on the stresses
specialized only for disks to the general case of arbitrary shapes. Moreover, we prove that the blow-
up rate of the general case is exactly the same as that of disks. Nevertheless, from the viewpoint
of methodology, the technique we use is significantly different from the previous one restricted to
the case of disks. Referring to antiplane shear problems, these works are reduced to the gradient
estimates for the solution to the conductivity problem containing two closely spaced conductors
which represent the cross-sections of fibers. We establish a novel representation for the solution on
conductors by a probability function. Based on this, the general blow-up results are derived by a
simpler method.

Key words. gradient estimates, blow-up, arbitrary shape, conductivity problems, stresses,
composite materials

AMS subject classifications. 35J25, 73C40

DOI. 10.1137/060648817

1. Introduction. This paper is concerned with high stress concentrations be-
tween closely spaced stiff fibers in an infinite matrix. According to Budiansky and
Carrier [8], unexpectedly low strengths in longitudinal shear have been reported for
brittle-matrix, fiber-reinforced composites, and it has been suggested that this might
be explained by high stress concentrations between neighboring fibers (see also [5, 9]).
However, according to Keller [12], it is difficult to calculate numerically the stresses
in a narrow region because the stresses are much larger than elsewhere. Several ap-
proaches by analysis have been developed, but the blow-up results on the stresses
are restricted to the particular case where fibers have circular cross-sections. Until
now there has not been any established result associated with a large class of shapes.
This paper presents the blow-up result for a class of shapes which is general enough.
Moreover, the blow-up rate is exactly the same as the one for disks.

We consider two parallel elastic fibers embedded in an infinite elastic matrix. We
suppose that D1 and D2 are very closely spaced inclusions in R

2 which are ε apart,
representing the cross-sections of the fibers, and the shear moduli of the inclusions are
constants a1 and a2, different from the constant outside shear modulus 1. Referring
to a problem of antiplane shear, we get the following conductivity equation for a given
harmonic function H in R

2:

{
∇ ·

{(
1 +

∑
i=1,2(ai − 1)χ(Di)

)
∇u

}
= 0,

u(x) −H(x) = O(|x|−1) as |x| → ∞,
(1.1)
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where the function u represents the out-of-plane elastic displacement. For applications
to the composite materials, our work focuses on the stresses, represented by ∇u,
particularly in the case when ∇H is a uniform field, i.e., H(x) = A · x for some
constant vector A. The question of interest is to establish the optimal estimate on
|∇u| as the separation distance ε approaches 0.

We give a brief description of remarkable works by analysis on gradient estimates
for solutions. For finite and strictly positive shear moduli (or conductivities) a1 and
a2, it has been shown by Bonnetier and Vogelius in [7] that |∇u| remains bounded
for circular touching inclusions with comparable radii. Li and Vogelius derived in [15]
a uniform upper bound on |∇u| that is independent of the distance ε between D1

and D2, assuming that the moduli a1 and a2 stay away from 0 and ∞. It may be
noted that this result of [15] holds for an arbitrary number of inclusions with arbitrary
shape and is not restricted to two-dimensional space. Moreover, this result has been
extended to elliptic systems by Li and Nirenberg in [14].

However, to explain high stresses occurring between stiff fibers, we should pay
attention to the case of the extreme valued shear moduli. For two circular inclusions
with a1 = a2 = ∞ or a1 = a2 = 0, it has been shown by Ammari, Kang, and Lim [2]
and Ammari et al. [4] (see also [8]) that |∇u| blows up as the distance ε approaches 0
for a special uniform field ∇H. Moreover, the optimal rate of blow-up is ε−1/2. These
results on blow-up are specialized only for the case of circular inclusions. Thus there
has been a strong need for a result that is not only associated with a large class of
shapes but also has the same blow-up rate as circular inclusions.

In this paper we present the desirable result: for two inclusions D1 and D2 whose
shapes are arbitrary enough, |∇u| blows up as the distance ε approaches 0 for a special
uniform field ∇H, and the blow-up rate is exactly ε−1/2, which is the known rate in
the circular cases.

We now proceed to state the main results of this paper. To do so we need to
make our notation and assumption more precise. Let Dright be a bounded domain in
R

+ × R that is strictly convex at the unique left endpoint (0, 0) of this domain, and
let Dleft be a bounded domain in R

− × R that has a right endpoint at (0, 0) and a
C2 boundary. In addition, we assume that ϕ : C\B1(0) → R

2\Dright is a conformal
mapping such that ϕ ∈ C2(C\B1(0)) and ϕ′(z) �= 0 for z ∈ ∂B1(0) (refer to the
Riemann mapping theorem in [1]). We shall not distinguish between R

2 and C in this
paper. Let the domain D1 and D2 be as follows:

D1 = Dright +
1

2
ε and D2 = Dleft −

1

2
ε.

To consider the case when a1 = a2 = ∞, given any harmonic function H in R
2,

(1.1) is rewritten in the following form:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�u = 0 in R
2\(D1 ∪D2),

u(x) −H(x) = O(|x|−1) as |x| → ∞,

u|∂Di = Ci (constant), and∫
∂Di

∂νu ds = 0 for i = 1, 2.

(1.2)

The solution u can also be interpreted physically as the voltage potential outside un-
charged conductors D1 and D2 under the action of applied electric field ∇H (see [10]).

Theorem 1.1. Assume the conditions above. Let u be the solution to (1.2) for
H(x1, x2) = x1. If the distance ε is sufficiently small, then there exists a strictly
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positive constant C∗ independent of ε such that

|u|∂D1 − u|∂D2 | ≥ C∗
√
ε(1.3)

and, owing to the mean value theorem,

max
− ε

2<x1<
ε
2

|∇u(x1, 0)| ≥ C∗

(
1√
ε

)
.(1.4)

As mentioned earlier, we extend the result known only for disks to the general case
of inclusions with arbitrary shape. Nevertheless, the technique we use is significantly
different from the previous one. In the case of disks, the authors took advantage
of Kelvin transform and properties of layer potential which are specialized only for
circles in [2, 4, 8]. It is difficult to apply this method to other shaped inclusions even
though they are ellipses. Thus, we need to provide a new method for the general case.
To do so, we establish a new and easy representation for the difference u|∂D1 − u|∂D2

in Lemma 2.3 by a probability function ∂νw. Based on this, the blow-up result
(1.4) can be derived by a method simpler than the previous ones such as asymptotic
expansions related to discontinuous conductivity in [2, 3, 4, 6, 11, 16]. On the other
hand, applying the new representation to the recent result of Ammari et al. in [4], we
can derive the optimal upper bound of |∇u| in Theorem 1.2.

Theorem 1.2. Let H and u be the same as in Theorem 1.1. In addition, we
assume that Dleft also has a conformal mapping ψ : C\B1(0) → R

2\Dleft with the
same regularity conditions as ϕ. If the distance ε is sufficiently small, then we have
constants C∗

1 and C∗
2 independent of ε such that

|u|∂D1
− u|∂D2

| ≤ C∗
1

√
ε(1.5)

and

‖∇u‖L∞(R2\(D1∪D2)) ≤ C∗
2

(
1√
ε

)
.(1.6)

To summarize the two theorems, Theorem 1.1 provides that |∇u| blows up as the
distance ε → 0 for a special uniform field and the blow-up rate is not less than ε−1/2.
It follows from the bound (1.6) in Theorem 1.2 that the rate is exactly ε−1/2.

We now consider the case when a1 = a2 = 0. It is probably relevant to consider
the case when a1 = a2 = 0, because the fibers are there for reinforcement. However,
the solution to this case can be interpreted physically as the voltage potential outside
nonconductors D1 and D2 under the action of applied electric field ∇H̃ (see [13]). For

any given harmonic function H̃ in R
2, let ũ be the unique solution to the following

Neumann problem: ⎧⎪⎨
⎪⎩

�ũ = 0 in R
2\(D1 ∪D2),

ũ(x) − H̃(x) = O(|x|−1) as |x| → ∞,

∂ν ũ = 0 on ∂Di for i = 1, 2,

(1.7)

where ∂ν ũ is the normal derivative of ũ.

Theorem 1.3. Assume that Dleft is the same as in Theorem 1.2, and that C∗
and C∗

2 are the constants used in Theorems 1.1 and 1.2, respectively. Let ũ be the
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solution to (1.7) for H̃(x1, x2) = x2. If the distance ε is small enough, then we have
the estimates

max
− ε

2<x1<
ε
2

|∇ũ(x1, 0)| ≥ C∗

(
1√
ε

)
(1.8)

and

‖∇ũ‖L∞(R2\(D1∪D2)) ≤ C∗
2

(
1√
ε

)
.(1.9)

Proof. Let u be the voltage potential for H = x1 in Theorem 1.1. By Lemma 2.1,
we have

u = H + V1 + V2,

where Vi is a harmonic function in R
2\Di and Vi(x) = O(|x|−1) as |x| → ∞ for

i = 1, 2. Owing to Poincaré’s theorem, we have a well-defined conjugate harmonic
function of Vi, denoted by Ṽi, for i = 1, 2 such that

Ṽ1(x) + Ṽ2(x) = O(|x|−1) as |x| → ∞.

Let ũ = H̃ + Ṽ1 + Ṽ2. Then ũ satisfies (1.7) and is also a harmonic conjugate function
of u. Hence, we have

|∇u| = |∇ũ| in R
2\(D1 ∪D2).

Therefore, we have completed the proof.

2. Proof of Theorem 1.1. In this section we will give a proof of the inequal-
ity (1.3). The proof is based on (2.6) and Lemma 2.3 which present an interesting
representation for the difference u|∂D1 − u|∂D2 by a probability function ∂νw. Thus
we choose a constant C satisfying the inequality ∂νw ≥ C

√
ε (2.15). This inequality

completes the proof.
We start by representing the voltage potential u as a function related to H. To

do so, we define the operator R1 : C∞(R2\D2) → C∞(R2\D1) ∩ C(R2\D1) as⎧⎪⎨
⎪⎩

�R1(v) = 0 in R
2\D1,

R1(v)(x) = O(|x|−1) as |x| → ∞,

(v −R1(v))|∂D1 = C (constant),

(2.1)

where C is a constant dependent on v, and we also define R2 : C∞(R2\D1) →
C∞(R2\D2) ∩ C(R2\D2) similarly. It follows from Green’s theorem that∫

∂D1

∂R1(v)

∂ν
ds = 0.

By definition, H − R1(H) can be interpreted physically as the voltage potential
due only to the presence of D1, under the action of applied electric field ∇H. Since the
voltage potential u is due not only to D1 but also to D2, we take advantage of R2. We
thus expect u ∼ H −R1(H)−R2(H). But since H −R1(H)−R2(H) is not constant
on the boundaries ∂D1 and ∂D2, we expect u ∼ H − R1(H) − R2(H) + R2R1(H) +
R1R2(H) again. These steps can proceed inductively. The process provides the
following lemma.
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Lemma 2.1. For a harmonic function H defined in R
2, the voltage function u is

represented as follows:

u = H −R1(H) −R2(H) + R1R2(H) + R2R1(H)

−R1R2R1(H) −R2R1R2(H) + · · ·(2.2)

= H −R1(H) −R2(H) + R1R2(H) + R2R1(H)

+

∞∑
n=1

(R1R2)
n(−R1(H) + R1R2(H)) + (R2R1)

n(−R2(H) + R2R1(H)).

Proof. We choose an interior point p of D1. Let Ω = { x−p
|x−p|2 | x ∈ R

2\D1} ∪ {0}
and Ωε = { x−p

|x−p|2 | x ∈ D2}∪{0}. Then we have Ωε ⊂ Ω and the distance d(Ωε, ∂Ω) >

0. Hence, by the maximum principle and standard estimates, one can choose a positive
constant c < 1 such that

max
Ωε

h− min
Ωε

h ≤ c
(
max

Ω
h− min

Ω
h
)

for any harmonic function h defined in Ω. It follows that

max
∂D2

R2R1(v) − min
∂D2

R2R1(v) ≤ c

(
max
∂D1

R1v − min
∂D1

R1v

)
(2.3)

and, since R1(v)(x) = O(|x|−1) as |x| → ∞, we have

‖R1(v)‖L∞ ≤ max
∂D1

R1(v) − min
∂D1

R1(v)(2.4)

for any v ∈ C∞(R2\D2). And we can obtain similar results for D2 and R2. Since
0 < c < 1, the expansion (2.2) is well defined and satisfies (1.2).

In the particular case of circular inclusions, it follows from Lemma 2.1 and Kelvin
transforms that the main result (1.4) holds (see [2]). However, it is not easy to apply
the asymptotic expansion (2.2) directly to the general case of arbitrary shape. On
this account, we would make the expansion (2.2) simpler. We define the operator
K1 : C∞(R2\D2) → C∞(R2\D1) ∩ C(R2\D1) as follows:⎧⎪⎨

⎪⎩
�K1(v) = 0 in R

2\D1,

K1(v)(x) converges to some constant as |x| → ∞,

v = K1(v) on ∂D1.

And we also define K2 similarly. By the definitions of Ri and Ki (i = 1, 2), we have

Ri(v) = Ki(v) + some constant,

where the constant is dependent on v.
Lemma 2.2. We have

u|∂D1 = C0 + lim
n→∞

(K2K1)
n(H)|∂D1 ,(2.5)

u|∂D2 = C0 + lim
n→∞

(K1K2)
n(H)|∂D2

,

where C0 is a constant.
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Proof. Since Ki(v) = v on ∂Di for i = 1, 2, we have

(R1R2)
n(−R1(H) + R1R2(H)) + (R2R1)

n(−R2(H) + R2R1(H))

= cn + (K1K2)
n(−K1(H) + K1K2(H)) + (K2K1)

n(−K2(H) + K2K1(H))

for n = 0, 1, 2, 3, . . . , where

cn = {−(R1R2)
nR1(H) + (R2R1)

nR2R1(H)} |∂D2

+ {−(R2R1)
nR2(H) + (R1R2)

nR1R2(H)} |∂D1 .

By (2.3) and (2.4), we have
∑∞

n=0 |cn| < ∞. We thus set C0 =
∑∞

n=0 cn. Then

u = H −R1(H) −R2(H) + R1R2(H) + R2R1(H)

+

∞∑
n=1

(R1R2)
n(−R1(H) + R1R2(H)) + (R2R1)

n(−R2(H) + R2R1(H))

= C0 + H −K1(H) −K2(H) + K1K2(H) + K2K1(H)

+

∞∑
n=1

(K1K2)
n(−K1(H) + K1K2(H)) + (K2K1)

n(−K2(H) + K2K1(H))

= C0 + {H −K1(H)} + {−K2(H) + K1K2(H)} + K2K1(H) + · · ·
= C0 + lim

n→∞
(K2K1)

n(H) on ∂D1.

Hence we conclude that

u|∂D1 − u|∂D2 = lim
n→∞

(K2K1)
n(H)|∂D1 − lim

n→∞
(K1K2)

n(H)|∂D2 .(2.6)

In what follows, we consider

lim
n→∞

(K2K1)
n(H)|∂D1 .

Now we present an interesting representation for limn→∞(K2K1)
n(H)|∂D1

in the fol-
lowing lemma. Based on this, the main result would be derived without any asymp-
totic analysis and layer potentials.

Lemma 2.3. Let w be the solution of the following problem:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�w = 0 in R
2\(D1 ∪D2),

w(x) = O(|x|−1) as |x| → ∞,

w|∂D1
= c1ε (constant),

w|∂D2
= c2ε (constant),∫

∂D1
∂νw ds = 1.

(2.7)

Then we have

lim
n→∞

(K2K1)
n(H)|∂D1 =

∫
∂D1

(∂νw)Hds.

Proof. By definition, we have

H = K1(H) on ∂D1.
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Since K1(H) is harmonic in D2 and w is constant on ∂D2, we have∫
∂D2

w∂νK1(H)ds = 0.

And since K1(H) converges to some constant as |x| → ∞ and w is constant on ∂D1,
we also have ∫

∂D1

w∂νK1(H)ds = 0.

It follows from Green’s theorem that∫
∂D1

(∂νw)Hds +

∫
∂D2

(∂νw)K1(H)ds = 0.

Similarly we have∫
∂D2

(∂νw)K1(H)ds +

∫
∂D1

(∂νw)K2K1(H)ds = 0.

Hence we obtain∫
∂D1

(∂νw)Hds =

∫
∂D1

(∂νw)K2K1(H)ds

=

∫
∂D1

(∂νw)(K2K1)
n(H)ds for n = 1, 2, 3, . . .

=

∫
∂D1

(∂νw) lim
n→∞

(K2K1)
n(H)ds

= lim
n→∞

(K2K1)
n(H).

Thus we focus on ∂νw. We define ϕ1 : C\B1(0) → R
2\D1 as ϕ1 = ϕ+ ε

2 and the

conformal mapping Φ : B1(0)\{0} → R
2\D1 as

Φ(z) = ϕ1

(
z

|z|2

)
,

where ϕ : C\B1(0) → R
2\Dright is the conformal mapping defined in the introduction.

Then we have

Φ−1
(
R

2\(D1 ∪D2)
)
⊂ B1(0)

and

Φ−1 (∂D1) = ∂B1(0).

We consider the solution W to the following Dirichlet problem:⎧⎪⎨
⎪⎩

�W = 0 in B1(0)\Φ−1 (D2),

W = 1 on Φ−1(∂D1) = ∂B1(0),

W = −1 on Φ−1(∂D2).

(2.8)
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Let M = 1
2 (c1ε − c2ε) and c∗ = 1

2 (c1ε + c2ε). Then, even though w(Φ(z)) is not defined
at 0, it follows from the decreasing behavior of w at infinity that⎧⎨

⎩ w(Φ(z)) = MW (z) + c∗ for z ∈ Φ−1
(
R

2\(D1 ∪D2)
)
,

∂ν(x)
w(x) =

(
M

|ϕ′(z)|

)
∂ν(z)

W (z) for z ∈ ∂B1(0),
(2.9)

where x = Φ(z).
Without loss of generality, we assume that

Br2(r2 + ε− 1) ⊂ Φ−1(D2) ⊂ Br1(r1 + ε− 1),(2.10)

where r1 and r2 are independent of ε for any sufficiently small ε ≥ 0. (See Lemma 4.1
in the appendix for details.) Then we consider the solution U1 and U2 to the following
equations: ⎧⎪⎨

⎪⎩
�Ui = 0 in B1(0)\Bri(ri + ε− 1),

Ui = 1 on Φ−1(∂D1) = ∂B1(0),

Ui = −1 on ∂Bri(ri + ε− 1) for i = 1, 2.

(2.11)

By the maximum principle, we have

U1 ≤ W ≤ U2 in B1(0)\Br1(r1 + ε− 1),

and by Hopf’s lemma, we have

∂νU2 ≤ ∂νW ≤ ∂νU1 on ∂B1(0).(2.12)

Lemma 2.4. We have the conformal mappings Ψ1 and Ψ2 such that⎧⎪⎨
⎪⎩

Ψ1(B1(0)) = Ψ2(B1(0)) = B1(0),

Br1(r1 + ε− 1) = Ψ1

(
B1−α1

√
ε+o(

√
ε)(0)

)
,

Br2(r2 + ε− 1) = Ψ2

(
B1−α2

√
ε+o(

√
ε)(0)

)
,

(2.13)

and for i = 1, 2,

Ψ−1
i (z) =

(
βi

√
ε + o

(√
ε
)) 1

z − (−1 − γi
√
ε + o(

√
ε))

+ κi as ε → 0,(2.14)

where αi, βi, and γi are strictly positive constants.
Proof. See section 4.1 in the appendix.
Moreover, by (2.11) and (2.13), we have

Ui(Ψi(t)) = −2(log(1 − αi

√
ε + o(

√
ε)))−1 log(|t|) + 1

for t ∈ B1(0) and∫
∂B1(0)

∂ν(z)Ui(z)ds(z) =

∫
∂B1(0)

∂ν(t)Ui(Ψi(t))ds(t)

= −4π(log(1 − αi

√
ε + o(

√
ε)))−1 for i = 1, 2.
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Therefore, by (2.9) and (2.12), we have∫
∂B1(0)

M∂ν(z)
W (z)ds(z) =

∫
∂B1(0)

∂ν(z)w(Φ(z))ds(z)

=

∫
∂D1

∂νw(x)ds(x) = 1

and

M ≥ − log(1 − α1
√
ε + o(

√
ε))

4π
.

It follows that

∂ν(z)
w(Φ(z)) = M∂ν(z)W (z)

by (2.12) ≥ − log(1 − α1
√
ε + o(

√
ε))

4π
∂ν(z)U2(z)

= − log(1 − α1
√
ε + o(

√
ε))

4π
∂ν(t)U2(Ψ2(t))|(Ψ−1

2 )′(z)|

≥ log(1 − α1
√
ε + o(

√
ε))

2π log(1 − α2
√
ε + o(

√
ε))

|(Ψ−1
2 )′(z)|

≥ log(1 − α1
√
ε + o(

√
ε))

2π log(1 − α2
√
ε + o(

√
ε))

min
|z|=1

|(Ψ−1
2 )′(z)|

by (2.14) ≥ C
√
ε,(2.15)

where z = Ψ2(t) ∈ ∂B1(0). And since ϕ′
1 is independent of ε, when H(x1, x2) = x1,

we have

lim
n→∞

(K2K1)
n(H)|∂D1 ≥ C∗

√
ε

and, by definition,

lim
n→∞

(K1K2)
n(H)|∂D2 ≤ 0.

These bounds complete the proof of (1.3).
Remark 2.5. We assumed that D2 has a C2 boundary. This regularity con-

dition is used only for choosing r2 of (2.10) in Lemma 4.1. We observe that one
can prove our estimates on a relaxed regularity condition. For example, even when
D2 = (−1, 0) × (−1, 1) − ε/2, the estimates (1.3), (1.4), and (1.8) hold.

3. The proof of Theorem 1.2. We first prove that the inequality (1.5) holds.
This proof is the continuation of the proof of Theorem 1.1. By the argument similar
to (2.15), we have

∂ν(z)
w(Φ(z)) = M∂ν(z)W (z)

≤ − log(1 − α2
√
ε + o(

√
ε))

4π
∂ν(z)U1(z)

= − log(1 − α2
√
ε + o(

√
ε))

4π
∂ν(t)U1(Ψ1(t))|(Ψ−1

1 )′(z)|

≤ log(1 − α2
√
ε + o(

√
ε))

2π log(1 − α1
√
ε + o(

√
ε))

|(Ψ−1
1 )′(z)|

by z =
1

z
on ∂B1(0), ≤ CP (pεz),(3.1)
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where P (x, y) is a Poisson kernel and

pε = −1 + γ1

√
ε + o(

√
ε)

= −1 + O(
√
ε) ∈ B1(0) as ε → ∞.

One can prove by assuming ϕ(−1) = 0 and the regularity conditions of ϕ on the
boundary, instead of the assumption (2.10), that this bound (3.1) holds and pε =
−1 + O(

√
ε) ∈ B1(0) as ε → 0.

From the definition of ϕ, (ϕ( 1
z ) + c)

−1
is extended to a conformal mapping defined

in B(0) for some constant c that attains zero value at z = 0. Hence ϕ(z) can be
rewritten as follows:

ϕ(z) = a1z + h

(
1

z

)
for z ∈ C \B1(0),(3.2)

where h is analytic in B1(0) and a0 is a nonzero constant. Then for H(x1, x2) = x1,
we have

H(ϕ1(z)) = �
(
a1z + h

(
1

z

))
+

ε

2
.

Then we define H on B1(0) as follows:

H(z) = � (a1z + h (z)) +
ε

2
for z ∈ B1(0).(3.3)

It is easy to see that H(z) = H(ϕ1(z)) on ∂B1(0), and that H is a harmonic function

in B1(0) and belongs to C1(B1(0)). Then it follows from Lemma 2.3 that

0 ≤ lim
n→∞

(K2K1)
n(H)|∂D1

=

∫
∂D1

∂νw(x)H(x)ds(x)

≤ C1

∫
∂B1(0)

P (pε, z)H(ϕ1(z))ds(z)

= C1 H(pε)

by H(ϕ1(−1)) =
ε

2
, ≤ C2

√
ε.(3.4)

Applying the same argument to ψ and Dleft, we also have

0 ≥ lim
n→∞

(K1K2)
n(H)|∂D2 ≥ C2

′√ε.

These bounds are reduced to the inequality (1.5), that is,

|u|∂D1 − u|∂D2 | ≤ C∗
1

√
ε.

Remark 3.1. We suggest another method to get the inequalities (3.4) and (1.5).
We divide the integration in (3.4) into two parts as follows:∫

∂B1(0)

P (pε, z)H(ϕ1(z))ds(z) =

∫
∂B1(0) and |z+1|≤ 4

√
ε

P (pε, z)H(ϕ1(z))ds(z)

+

∫
∂B1(0) and |z+1|> 4

√
ε

P (pε, z)H(ϕ1(z))ds(z).
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Then the inequality (3.4) can also be proved directly without (3.2). Moreover, one can
prove by using the same partition of integration that the bound (1.5) still holds for
any harmonic function H with ∂x2H(0) = 0.

We now derive the inequality (1.6). We divide u into four parts as follows:

u = x1 + u0 + u1 + u2

such that for i = 0, 1, 2, Δui = 0 in R
2\D1 ∪D2 and ui = O(1) as |x| → ∞ with the

boundary conditions⎧⎪⎨
⎪⎩
u0 = u (constants) on ∂D1 ∪ ∂D2,

u1 = −x1 on ∂D1 and u1 = 0 on ∂D2,

u2 = −x1 on ∂D2 and u2 = 0 on ∂D1.

Hence, we would estimate them separately.
Estimate for u0. It follows from the maximum principle for analytic functions

that

‖∇u0‖L∞(R2\(D1∪D2)) ≤ ‖∂νu0‖L∞(∂D1∪∂D2).

Thus we estimate ‖∂νu0‖L∞(∂D1). There exists a constant C independent of ε such
that

‖∂νu0‖L∞(∂D1) ≤ C‖∂ν(z)u0(Φ(z))‖L∞(∂B1(0)),

where Φ is as defined in the proof of Theorem 1.1. By the argument similar to that
of (2.12) and (3.1), we can choose a constant C such that for z ∈ ∂B1(0)

∣∣∂ν(z)u0(Φ(z))
∣∣ ≤ ∣∣∣∣12(u|∂D1 − u|∂D2)∂ν(z)U1(z)

∣∣∣∣
by (1.5) and the Poisson kernel P (pε, ·), ≤ C

1√
ε
,

where U1 is as defined in (2.11). Since u0 is constant on ∂Di for i = 1, 2, we conclude
that

‖∇u0‖L∞(R2\(D1∪D2)) ≤ Ca
1√
ε
,(3.5)

where Ca is a constant independent of ε.
Estimate for u1. Let ψ2 : C\B1(0) → R

2\D2 be the conformal mapping defined
by ψ2 = ψ − ε

2 as ϕ1. Since u1(ψ2(z)) = 0 on ∂B1(0), u1(ψ2(z)) can be extended

harmonically to C\(B ∪ ψ−1
2 (D1)) as follows:

−u1

(
ψ2

(
z

|z|2

))
for z ∈ B1(0)\B,

where B = {z | z
|z|2 ∈ ψ−1

2 (D1)}. The symmetry of the extended u1(ψ2(z)) occurs on

∂B and ∂ψ−1
2 (D1). This yields

‖∇u1‖L∞(R2\(D1∪D2)) ≤ C‖∇u1‖L∞(∂D1),
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where C is independent of ε. We now estimate ‖∂νu1‖L∞(∂D1), because the tangential
derivative of u1 on ∂D1 is not only fixed by H(x1, x2) = x1 but also independent of
ε. Using a linear fractional transform, without loss of generality, we can also assume
that

Br4(−1 − ε− r4) ⊂ ϕ−1
1 (D2) ⊂ Br3(−1 − ε− r3),

where r3 and r4 are independent of ε. Then we consider a harmonic function V3 and
V4 as follows: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ΔVi = 0 in R

2\(B1(0) ∪Bri(−1 − ε− ri)),

Vi(z) = O(1) as |z| → ∞,

Vi(z) = u1(ϕ1(z)) = −H(ϕ1(z)) for z ∈ ∂B1(0),

Vi(z) = 0 for z ∈ ∂Bri(−1 − ε− ri)

for i = 3, 4. Since u1(ϕ1(z)) ≤ 0 for z ∈ ∂B1(0), it follows from Hopf’s lemma that

∂νV3(z) ≤ ∂ν(z)u1(ϕ1(z)) ≤ ∂νV4(z) for z ∈ ∂B1(0).(3.6)

Therefore, we now estimate ∂νV3(z) and ∂νV4(z). By a definition similar to K1 and
K2 in the previous proof, we define the operator Kα : C∞(R2\Br3(−1 − ε− r3)) →
C∞(R2\B1(0)) ∩ C(R2\B1(0)) as⎧⎪⎨

⎪⎩
�Kα(v) = 0 in R

2\B1(0),

Kα(v)(z) = O(1) as |z| → ∞,

(v −Kα(v))|∂B1(0) = 0,

and Kβ : C∞(R2\B1(0)) → C∞(R2\Br3(−1 − ε− r3)) ∩ C(R2\Br3(−1 − ε− r3)) is
defined similarly. Indeed Kα is the Kelvin transform for B1(0) and Kβ is the Kelvin
transform for Br3(−1 − ε− r3) simply. Then we define a harmonic function U on
R

2\(Br3(−1 − ε− r3) ∪B1(0)) as follows:

U = −KαH(z) + KβKαH(z) −
∞∑

n=1

(I −Kβ)(KαKβ)nKαH(z),

where H is defined at (3.3). By an argument similar to Lemma 2.2 or [2, 4], we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�U = 0 in R
2\(Br3(−1 − ε− r3) ∪B1(0)),

U(z) = O(1) as |z| → ∞,

U = 0 for z ∈ ∂Br3(−1 − ε− r3),

(U + H(ϕ(z))) |B1(0) = a constant with order O(
√
ε) as ε → 0.

We note that U is a solution to the equation with the circular inclusions. Thus, we
can apply Theorem 1.1 of Kang et al. [4] in U . Then we have

‖∇U‖L∞(R2\(Br3 (−1−ε−r3)∪B1(0))) ≤ C

(
1√
ε

)
.
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On the other hand, we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�(V3 − U) = 0 in R
2\(Br3(−1 − ε− r3) ∪B1(0)),

(V3 − U)(z) = O(1) as |z| → ∞,

(V3 − U)(z) = 0 for z ∈ ∂Br3(−1 − ε− r3),

(V3 − U)|∂B1(0) = a constant with order O(
√
ε) as ε → 0.

By the same argument as Estimate for u0, we have

‖∇(V3 − U)‖L∞(R2\(Br3 (−1−ε−r3)∪B1(0))) ≤ C

(
1√
ε

)
.

These bounds are reduced to

‖∇V3‖L∞(R2\(Br3
(−1−ε−r3)∪B1(0))) ≤ C

(
1√
ε

)
.

Similarly, we also obtain

‖∇V4‖L∞(R2\(Br4 (−1−ε−r4)∪B1(0))) ≤ C

(
1√
ε

)
.

By (3.6), these bounds yield

‖∇u1‖L∞(R2\(D1∪D2)) ≤ Cβ

(
1√
ε

)
,(3.7)

where Cβ is a constant independent of ε.
Estimate for u2. This estimate is derived in the same way as u1.
Therefore, by (3.5) and (3.7) we have completed the proof of (1.6).

4. Appendix. In this appendix we make up the parts omitted in the proof of
Theorem 1.1. We first consider Lemma 2.4.

4.1. How to construct the conformal mapping Ψ−1
1 . We now prove

Lemma 2.4; that is, we present a method for constructing Ψ−1
1 . For convenience, we

use two steps to derive it.
• Step 1. To make Ψ−1

1 (B1(0)) and Ψ−1
1 (Br1(r1 + ε− 1)) concentric balls, we find

f1(z) =
1

z − (−1 − τ(ε)
√
ε)

with f1(−1) − f1(−1 + ε) = f1(−1 + ε + 2r1) − f1(1). As ε approaches 0, we have

lim
ε→0

(
1

τ(ε)

)2

= lim
ε→0

f1(−1 + ε + 2r1) − f1(1)

=

(
1

γ1

)2

.

Therefore, we have

f1(z) =
1

z − (−1 − γ1
√
ε + o(

√
ε))

.
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• Step 2. To make Ψ−1
1 (B1(0)) a unit disk, we find

f2(z) = λ(ε)
√
εf1(z)

with f2(−1) − f2(1) = 2. Then, as ε approaches 0, we have

2 = lim
ε→0

λ(ε)
√
ε f1(−1)

= lim
ε→0

λ(ε)
1

γ1
=

β1

γ1
.

Therefore, we have

f2(z) = (β1

√
ε + o(

√
ε))

1

z − (−1 − γ1
√
ε + o(

√
ε))

and

f2(B1(0)) = B1(0) − k1 for some constant k1.

Hence, we obtain

Ψ−1
1 (z) = f2(z) + k1,

satisfying

Ψ−1
1 (B1(0)) = B1(0).

4.2. How to construct the radii r1 and r2 satisfying (2.10). To construct
them, we provide the variable ε to the definitions used in the main proof. Thus D1

and D2 are rewritten in the form D1(ε) = Dright + ε
2 and D2(ε) = Dleft − ε

2 . In
addition, we assume that ϕ : C\B1(0) → R

2\Dright is a bijective conformal mapping
with ϕ(−1) = 0. Then ϕ1 and Φ are rewritten as ϕ1ε = ϕ + ε and Φε = ϕ1ε(

z
|z|2 ).

For any r and z with 0 < r < 1 and r ≤ |z| ≤ 1, we define the ball with radius r,
denoted by Br[z], in B1(0) whose boundary attains the minimal distance r to ∂B1(0)
at z, i.e.,

d(Br[z], ∂B1(0)) = d(z, ∂B1(0)) = r and z ∈ ∂Br[z],

where d(A,B) is the distance between A and B.
Lemma 4.1. Let ε′ = d(∂B1(0), ∂Φ−1

ε (D2(ε))), that is, the distance between
∂B1(0) and ∂Φ−1

ε (D2(ε)). Then we have a constant C such that

ε < Cε′ for ε < 1.(4.1)

We suppose that for each ε > 0, zε is the point at which ∂Φ−1
ε (D2(ε)) attains the

minimal distance ε′ to ∂B1(0), i.e., zε ∈ ∂Φ−1
ε (D2(ε)) and ε′ = d(zε, ∂B1(0)). Then

we have r1, r2, and ε0 > 0 such that

Br2 [zε] ⊂ Φ−1
ε (D2(ε)) ⊂ Br1 [zε] for ε < ε0.(4.2)

If we use this result (4.2) instead of the assumption (2.10), then we can prove by
the same derivation as (2.15) that ∂ν(z)

w(Φ(z)) ≥ C
√
ε′. It follows from (4.1) that

(2.15) holds.



728 KIHYUN YUN

Proof. To prove the inequality (4.1), we suppose that pε is the closest point at
which ∂B1(0) attains the minimal distance ε′ to ∂Φ−1

ε (D2(ε)), i.e., ε′ = d(pε, zε) and
pε ∈ ∂B1(0). Then we obtain

ε ≤ d(Φε(pε),Φε(zε))

= d(Φ0(pε),Φ0(zε))

≤ Cd(pε, zε) = Cε′ for ε < 1,

where C is a strictly positive constant. Hence, we have completed the proof of (4.1).
To construct the radius r1, we may assume that the boundary ∂(ϕ−1(Dleft)) near 0

is the graph of equation z1 = f(z2), defined on I, as follows:{
f(z2) + z2i ∈ ∂(ϕ−1(Dleft)) for z2 ∈ I,

f(0) = −1 and f ′(0) = 0,

where I is a sufficient small open interval containing 0. Owing to ϕ ∈ C2(C\B1(0))
and the strict convexity of Dright at 0, we obtain

d2f

dz2
2 (0) <

[
−d2

√
1 − z2

2

dz2
2

]
z2=0

.

Hence, one can choose R0 > 0 such that

Φ−1
0 (∪0≤ε≤2D2(ε)) ⊂ BR0(−1 + R0) ⊂ B1(0).

It may be noted that{
Φ−1

ε (D2(ε)) = Φ−1
0 (D2(2ε)) ⊂ BR0(−1 + R0) for ε < 1,

R0 < 1 and −1 ∈ ∂BR0
(−1 + R0).

(4.3)

Let S = {z ∈ B1(0) | Φε(z) ∈ ∂D1(ε) for some ε ∈ [0, 1]}. Then there is a neighbor-
hood N1 of 0 such that for each z ∈ S∩N1, ε is uniquely determined by Φε(z) ∈ ∂D1(ε),
and for each ε, the boundary ∂Φ−1

ε (D1(ε)) is connected in N1. And we define κ(z) as
the curvature of ∂Φ−1

ε (D1(ε)) at z ∈ S∩N1. By the continuity of κ(z) and κ(0) > R−1
0 ,

there is a neighborhood N2 of 0 such that{
2

R0+1 < κ(z) for z ∈ S ∩N2,

the boundary ∂Φ−1
ε (D1(ε)) is connected in N2.

(4.4)

Let r1 = R0+1
2 . Then we have

∪0≤ε≤1Φ
−1
ε (D1(ε)) ⊂ BR0(−1 + R0) ⊂ Br1 [−1]

and can choose a small constant δ > 0 such that{
∪0≤ε≤1 Φ−1

ε (D1(ε)) ⊂ Br1 [z] ∪N2 for any z ∈ Bδ(−1) ∩B1(0),

Bδ(−1) ∩B1(0) ⊂ N2.

By (4.3) and the relation of ∂B1(0) and BR0(−1 + R0), we can obtain a sufficiently
small constant ε0 > 0 such that

zε ∈ Bδ(−1) for each ε < ε0,
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where zε is mentioned above. It follows that

Φ−1
ε (D1(ε)) ⊂ (Φ−1

ε (D1(ε)) ∩N2) ∪ (Φ−1
ε (D1(ε)) ∩N c

2 )

⊂ (Φ−1
ε (D1(ε)) ∩N2) ∪Br1 [zε]

by (4.4) ⊂ Br1 [zε].

This means that r1 is the desirable radius.
To choose the radius r2, we define κ : [0, ε0] × ∂Dleft → R

+ by

κ(ε, z) = the curvature of Φ−1
ε (∂D2(ε)) at Φ−1

ε

(
z − ε

2

)
.

We set r2 = (sup {κ(ε, z) | (ε, z) ∈ [0, ε0] × ∂Dleft})−1
. It is easy to prove that

Br2 [zε] ⊂ Φ−1
ε (D2(ε)) for ε < ε0.

Therefore we have completed the proof.
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MATHEMATICAL ANALYSIS OF AGE-STRUCTURED HIV-1
DYNAMICS WITH COMBINATION ANTIRETROVIRAL THERAPY∗
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Abstract. Various classes of antiretroviral drugs are used to treat HIV infection, and they target
different stages of the viral life cycle. Age-structured models can be employed to study the impact
of these drugs on viral dynamics. We consider two models with age-of-infection and combination
therapies involving reverse transcriptase, protease, and entry/fusion inhibitors. The reproductive
number R is obtained, and a detailed stability analysis is provided for each model. Interestingly,
we find in the age-structured model a different functional dependence of R on εRT , the efficacy of a
reverse transcriptase inhibitor, than that found previously in nonage-structured models, which has
significant implications in predicting the effects of drug therapy. The influence of drug therapy on
the within-host viral fitness and the possible development of drug-resistant strains are also discussed.
Numerical simulations are performed to study the dynamical behavior of solutions of the models,
and the effects of different combinations of antiretroviral drugs on viral dynamics are compared.

Key words. human immunodeficiency virus type 1, antiretroviral therapy, drug resistance,
optimal viral fitness, age-structured model, stability analysis
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1. Introduction. Since the discovery of the human immunodeficiency virus type
1 (HIV-1) in the early 1980s, the disease has spread in successive waves to most regions
around the globe. It is reported that HIV has infected more than 60 million people,
and over a third of them subsequently died [10]. Considerable scientific effort has been
devoted to the understanding of viral pathogenesis, host/virus interactions, immune
response to infection, and antiretroviral therapy.

Over the last decade, there has been a great effort in the mathematical modeling
of HIV infection and treatment strategies. These models mainly investigated the dy-
namics of the target cells and infected cells, viral production and clearance, and the
effects of antiretroviral drugs treatment. Perelson et al. [44] and Ho et al. [22] used a
simple mathematical model to analyze a set of viral load data collected from infected
patients after the administration of a protease inhibitor, and the virion clearance rate,
the rate of loss of productively cells, and the viral production rate were estimated.
These estimates were minimal estimates since the effects of antiretroviral drugs were
assumed to be 100% effective, and cells were assumed to produce new virus immedi-
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ately after they were infected [35, 36]. In order to characterize the time between the
infection of target cells and the production of virus particles, an intracellular delay
was introduced by Herz et al. [19] in a mathematical model to analyze the clinical
data. Subsequently, Culshaw and Ruan [3] investigated the effect of the time delay
on the stability of the endemical equilibrium in their model. Criteria were presented
to guarantee the asymptotic stability of the infected steady state independent of the
time delay. In [35], Nelson, Murray, and Perelson studied a generalized model that
included a discrete delay and allowed for less than perfect drug effects. The estimation
of kinetic parameters underlying HIV infection was improved by the use of a delay
differential equation model. In [31, 32], the authors used a gamma distribution func-
tion to describe a continuous delay between infection and viral production and found
no change in the estimate of δ, the death rate of productively infected cells. However,
Nelson and Perelson [36] extended this model and showed that the constancy of δ was
due to the assumption of 100% drug effectiveness. When drug effectiveness was less
than 100%, the estimate of δ depended on the delay, i.e., the variance and mean of
the assumed gamma distribution. Recently, a model including both pharmacokinetics
and the intracellular delay has been employed to obtain new estimates of intracellular
delay and the antiviral efficacy of ritonavir [7].

Age-structured models have also been developed to study the epidemiology of
HIV. Thieme and Castillo-Chavez [52] kept track of an individual’s infection age to
study the effect of infection-age-dependent infectivity on the dynamics of HIV trans-
mission in a homogeneously mixing population. Kirschner and Webb [24] proposed a
model that incorporated age structure into the infected cells to account for the mecha-
nism of AZT (zidovudine) treatment. Recently, for the within-host dynamics of HIV,
age-structured models have received increasing interest due to their greater flexibility
in modeling viral production and mortality of infected cells [16, 34]. Nelson et al. [34]
considered an age-structured model that allowed for variations in the production rate
of virus particles and the death rate of infected T cells. For a specific form of the viral
production function and constant death rate of infected cells, the authors performed
a local stability analysis of the nontrivial equilibrium point. They used numerical
simulations to illustrate that the time to reach the peak viral level depended not only
on the initial conditions but also on the speed at which viral production achieves its
maximum value. Based on this age-structured model, Gilchrist, Coombs, and Perel-
son [16] used the various life history trade-offs between viral production and clearance
of infected cells to derive the within-host relative viral fitness.

In this article, we develop two age-structured models to study HIV-1 infection
dynamics. These models extend the existing age-structured models [16, 24, 34] by
incorporating combination therapies to study the influence of antiretroviral therapy
on the evolution of HIV-1. The first model includes therapy with a combination of a
reverse transcriptase (RT) inhibitor and a protease inhibitor, while the second model
includes an entry inhibitor and a protease inhibitor. To account for the fact that
reverse transcription takes place in the early stage of infection before an infected T
cell produces virus particles, we divide the infected cells into two subclasses. One
subclass represents the cells that have been infected by the virus but in which reverse
transcription has not been completed. The other subclass contains infected cells
that have finished the reverse transcription process and are capable of producing
new virions. Our stability analysis is performed for a general form of both the viral
production rate and the mortality rate of infected cells. The stability of the infection-
free or the infected steady state is shown to depend on the reproductive ratio R being
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smaller or greater than 1. The formulation of this reproductive ratio also provides an
appropriate measure for the within-host viral fitness, which can be used to explore
the optimal viral production rate for which R is maximized.

We also discuss the possible influence of treatment for drug-sensitive strains of
HIV-1 on the development of drug-resistant strains of the pathogen. Clinical studies
have suggested that prolonged treatment with a single antiretroviral drug may be
associated with the emergence of resistant virus [20, 26, 27, 28, 39]. The impact of
drug treatment on the dynamics of resistant stains of pathogens has been studied
using age-independent mathematical models (see, for example, [11, 26, 55]). We show
that if viral production is linked to resistance, then higher treatment efficacy with
antiretroviral agents (such as protease inhibitors) may lead to the establishment of
multiple viral strains with a wider range of resistance levels.

The organization of the remaining part is as follows. In section 2, we formulate
a mathematical model for HIV-1 infection that generalizes the age-structured model
proposed in [34] by incorporating an RT inhibitor and a protease inhibitor. Section
3 is devoted to the analysis of our model, including the existence and stability of
both the infection-free and the infected steady states. In section 4, another model
including therapy with a new class of drugs, fusion/entry inhibitors, is developed.
Stability properties of the steady states are also obtained in this section. In section
5, we derive a criterion for invasion by drug-resistant strains and explore how drug
treatment may affect the optimal viral fitness of resistant strains. Some numerical
simulations are presented in section 6 to illustrate/extend our analytical results. We
also compare the treatment effects of these two combination antiretroviral therapies.
Section 7 contains concluding remarks.

2. The model with RT and protease inhibitors. HIV infection begins by
the attachment of a virus to a CD4+ cell. Inside the cell, the HIV-1 enzyme RT makes
a DNA copy of the virus’s RNA genome. During this process, if an RT inhibitor is
present, then the viral genome will not be copied into DNA, and therefore the host
cell will not produce new virus. When the virus replicates, its DNA is read out to
produce viral proteins. A large polyprotein is made, and a viral protease is needed to
cut the long polypeptide chain into individual components that are needed to produce
infectious virus particles. If the HIV-1 protease is inhibited, the newly produced virus
will be noninfectious.

From the above description of the HIV life cycle and the roles of various in-
hibitors, it is clear that the infection age of an infected cell can be important for the
study of HIV dynamics under the influence of antiretroviral drug treatment. In [34]
the following age-structured model of HIV infection (without drug treatment) was
proposed:

d

dt
T (t) = s− dT − kV T,

∂

∂t
T ∗(a, t) +

∂

∂a
T ∗(a, t) = −δ(a)T ∗(a, t),

d

dt
V (t) =

∫ ∞

0

p(a)T ∗(a, t)da− cV,

T ∗(0, t) = kV T,

(2.1)

where T (t) denotes the concentration of uninfected target T cells at time t, T ∗(a, t)
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denotes the concentration of infected T cells of infection age a (i.e., the time that
has elapsed since an HIV virion has penetrated the cell) at time t, and V (t) denotes
the concentration of infectious virus at t. s is the recruitment rate of healthy T
cells, d is the per capita death rate of uninfected cells, δ(a) is the age-dependent per
capita death rate of infected cells, c is the clearance rate of virions, k is the rate at
which an uninfected cell becomes infected by an infectious virus, and p(a) is the viral
production rate of an infected cell with age a.

The functional forms of the viral production kernel, p(a), and the death rate of
infected cells, δ(a), need to be determined experimentally [21, 34]. In [34], the authors
choose the following function for the production rate:

p(a) =

{
p∗

(
1 − e−θ(a−a1)

)
if a ≥ a1,

0 else,
(2.2)

where θ determines how quickly p(a) reaches the saturation level p∗, and a1 is the age
at which reverse transcription is completed.

To incorporate the two types of treatments mentioned above, we divide the class of
infected cells, T ∗(a, t), into two subclasses: T ∗

preRT (a, t) and T ∗
postRT (a, t). T ∗

preRT (a, t)
represents the density of cells that have been “infected” by an HIV virion but in which
reverse transcription has not been completed at infection age a. An RT inhibitor could
allow a preRT cell to revert back to an uninfected cell (because if reverse transcrip-
tion fails to complete, cellular nucleases will degrade the HIV RNA that entered the
cell) or reduce the probability that a preRT cell progresses to the postRT state [9].
T ∗
postRT (a, t) represents the density of infected cells that have progressed to the postRT

phase at infection age a. The densities of the preRT and postRT cells are related by a
function β(a) (0 ≤ β(a) ≤ 1) that describes the proportion of infected cells that have
not completed reverse transcription, i.e.,

T ∗
preRT (a, t) = β(a)T ∗(a, t), T ∗

postRT (a, t) = (1 − β(a))T ∗(a, t).(2.3)

We assume that β(a) ∈ L1[0,∞) is a nonincreasing function with the following prop-
erties: 0 ≤ β(a) ≤ 1; β(0) = 1; β(a) = 0 for a ≥ a1; β′(a) ≤ 0 a.e.

Let εRT and εPI denote the efficacy of the therapy with RT inhibitors and protease
inhibitors, respectively (0 ≤ εRT , εPI < 1). The efficacy is scaled such that zero
represents complete ineffectiveness and unity represents 100% effectiveness. To study
the effect of protease inhibitor, we divide the newly produced virus particles into
two classes: infectious virions with concentration VI(t) and noninfectious virions with
concentration VNI(t). New infectious virus particles are produced at the rate

∫∞
0

(1−
εPI)p(a)T

∗
postRT (a, t)da.

Let η(εRT ) denote the rate at which preRT cells revert to the uninfected state
due to the failure of reverse transcription. The rate at which preRT cells of all ages
become uninfected is then given by

∫∞
0

η(εRT )T ∗
preRT (a, t)da.

The reversion rate η(εRT ) is an increasing function of drug efficacy εRT . In the
absence of drug therapy, we assume there are no infected cells going back to the
uninfected class, i.e., η(0) = 0. As the limit case, when RT inhibitors are 100%
effective (εRT → 1), η(εRT ) should be very large. We shall discuss the functional form
of η(εRT ) more in the simulation section. Our analytical results are obtained for a
general reversion rate function.
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Incorporating these drugs into the equations for T , T ∗, and V in model (2.1), we
have

d

dt
T (t) = s− dT − kVIT +

∫ ∞

0

η(εRT )T ∗
preRT (a, t)da,

∂

∂t
T ∗(a, t) +

∂

∂a
T ∗(a, t) = −δ(a)T ∗(a, t) − η(εRT )T ∗

preRT (a, t)da,

d

dt
VI(t) =

∫ ∞

0

(1 − εPI)p(a)T
∗
postRT (a, t)da− cVI ,

d

dt
VNI(t) =

∫ ∞

0

εPIp(a)T
∗
postRT (a, t)da− cVNI ,

T ∗(0, t) = kVIT.

(2.4)

Notice that the variable VNI does not appear in equations for other variables. Thus,
we can ignore the VNI equation when studying the dynamics of infection. Using the
relation (2.3), we have the following system:

d

dt
T (t) = s− dT − kVIT +

∫ ∞

0

η(εRT )β(a)T ∗(a, t)da,

∂

∂t
T ∗(a, t) +

∂

∂a
T ∗(a, t) = −δ(a)T ∗(a, t) − η(εRT )β(a)T ∗(a, t),

d

dt
VI(t) =

∫ ∞

0

(1 − εPI)(1 − β(a))p(a)T ∗(a, t)da− cVI ,

T ∗(0, t) = kVIT.

(2.5)

In our analysis, we allow the viral production rate p(a) to be an arbitrary function that
is bounded (e.g., it does not have to be a monotone function). δ(a) is also assumed
to be a bounded function.

Since we are interested in the effect of combination therapy on virus dynamics,
we assume that the patients are initially at steady state and the combination of
drugs is administered at time 0. We choose the initial conditions to be T (0) = T0,
VI(0) = VI0, VNI(0) = 0, and T ∗(a, 0) = T ∗

0 (a), where T0 and VI0 are the steady state
levels of target cells and infectious virions, respectively. T ∗

0 (a) is the age distribution
of infected cells at the initial time t = 0, and

∫∞
0

T ∗
0 (a)da represents the steady state

level of infected cells before the onset of drug therapy.
System (2.5) can be reformulated as a system of Volterra integral equations. To

simplify expressions, we introduce the following notations:

K0(a) = e
−
∫ a

0
(δ(s)+η(εRT )β(s))ds

, K1(a) = η(εRT )β(a)K0(a),

K2(a) = (1 − εPI)(1 − β(a))p(a)K0(a), Ki =

∫ ∞

0

Ki(a)da, i = 1, 2.

(2.6)

K0(a) is the probability of an infected cell remaining infected at age a, hereafter the
age-specific survival probability of an infected cell. K2(a) is the product of the age-
specific survival probability of an infected cell and the rate at which infectious virus
particles are produced by an infected cell of age a. Thus, the integral of K2(a) over all
ages, i.e., K2 =

∫∞
0

(1−εPI)(1−β(a))p(a)K0(a)da, gives the total number of infectious
virus particles produced by one infected cell over its lifespan. For convenience, we call
K2 the infectious virus burst size.
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For mathematical convenience, we introduce a new variable, B(t), to describe the
rate at which an uninfected T cell becomes infected at time t,

B(t) = kVI(t)T (t).(2.7)

Integrating the T ∗ equation in system (2.5) along the characteristic lines, t − a =
constant, we get the following formula:

T ∗(a, t) =

⎧⎨
⎩

B(t− a)K0(a) for a < t,

T ∗
0 (a− t)

K0(a)

K0(a− t)
for a ≥ t.

(2.8)

Substituting (2.8) into the T and VI equations in (2.5),

d

dt
T (t) = s− dT −B(t) +

∫ t

0

K1(a)B(t− a)da + F̃1(t),

d

dt
VI(t) =

∫ t

0

K2(a)B(t− a)da− cVI + F̃2(t),

(2.9)

where

F̃1(t) =

∫ ∞

t

η(εRT )β(a)T ∗
0 (a− t)

K0(a)

K0(a− t)
da,

F̃2(t) =

∫ ∞

t

(1 − εPI)(1 − β(a))p(a)T ∗
0 (a− t)

K0(a)

K0(a− t)
da.

(2.10)

Clearly, F̃i(t) → 0 as t → ∞, i = 1, 2. Integrating the T equation in (2.9) and
changing the order of integration, we have

T (t) = T0e
−dt +

∫ t

0

e−d(t−u)

[
s−B(u) +

∫ u

0

B(u− τ)K1(τ)dτ + F̃1(u)

]
du

=

∫ t

0

[
e−d(t−u) (s−B(u)) + B(u)H1(t− u)

]
du + F1(t),

(2.11)

where

H1(t) = e−dt

∫ t

0

edτK1(τ)dτ, F1(t) = T0e
−dt +

∫ t

0

e−d(t−u)F̃1(u)du.(2.12)

Similarly, by integrating the VI equation in (2.9), we get

VI(t) = VI0e
−ct +

∫ t

0

e−c(t−u)

[∫ u

0

B(u− τ)K2(τ)dτ + F̃2(u)

]
du

=

∫ t

0

B(u)H2(t− u)du + F2(t),

(2.13)

where

H2(t) = e−ct

∫ t

0

ecτK2(τ)dτ, F2(t) = T0e
−ct +

∫ t

0

e−c(t−u)F̃2(u)du.(2.14)

Equations (2.11) and (2.13), with B(t) replaced by kVI(t)T (t), form a system of
Volterra integral equations that are equivalent to the original system (2.5). Hence,
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for determining the existence and uniqueness of the solutions we need only consider
the following system:

T (t) =

∫ t

0

[
e−d(t−u)(s− kVI(u)T (u)) + kVI(u)T (u)H1(t− u)

]
du + F1(t),

VI(t) =

∫ t

0

kVI(u)T (u)H2(t− u)du + F2(t),

(2.15)

where Hi and Fi (i = 1, 2) are given in (2.12) and (2.14).

3. Analysis of the system (2.5). In this section, we provide analytic results on
the existence of positive solutions as well as possible steady states and their stability
for the system (2.5) or the equivalent system (2.15).

3.1. Existence of positive solutions. Let x(t) = (T (t), VI(t))
�, where �

denotes the transpose of the vector. System (2.15) can be written in the form

x(t) =
∫ t

0
κ(t− u)g(x(u))du+ f(t), where f(t) = (F1(t), F2(t))

� is a continuous func-
tion from [0,∞) to [0,∞)2, κ is the 2× 2 matrix with entries being locally integrable
functions on [0,∞),

κ(t) =

(
se−dt H1(t) − e−dt

0 H2(t)

)
,

and g is defined by g(x) = (1, kVIT )�. Obviously, f ∈ C([0,∞);R2), g ∈ C(R2,R2),
and κ ∈ L1

loc([0,∞);R2×2). Theorem 1.1 in Gripenberg, Londen, and Staffans [17,
section 12.1], shows that a continuous solution exists on a maximal interval such that
the solution goes to infinity if this maximal interval is finite.

To see that all solutions will remain nonnegative for positive initial data, we use
the following system (see (2.7) and (2.9)) that is also equivalent to system (2.5):

d

dt
T (t) = s− dT −B(t) +

∫ t

0

K1(a)B(t− a)da + F̃1(t),

d

dt
VI(t) =

∫ t

0

K2(a)B(t− a)da− cVI + F̃2(t),

B(t) = kVI(t)T (t),

(3.1)

where F̃i is given in (2.10) and F̃i(t) > 0, limt→∞ F̃i(t) = 0 for i = 1, 2.
Suppose that there exists a t̄ > 0 such that T (t̄) = 0 and T (t), VI(t) > 0 for

0 ≤ t < t̄. Then B(t̄) = kVI(t̄)T (t̄) = 0, B(t) = kVI(t)T (t) > 0 for 0 ≤ t < t̄, and

thus from the T equation in (3.1) we have d
dtT (t̄) = s+

∫ t̄

0
K1(a)B(t̄−a)da+F̃1(t̄) > 0.

Hence, T (t) ≥ 0 for all t ≥ 0. Similarly, we can show that VI(t) ≥ 0 and B(t) ≥ 0 for
all t ≥ 0 and for all positive initial data.

3.2. Steady states and their stability. We use the system (3.1) for our sta-
bility analysis. According to [30], any equilibrium of system (3.1), if it exists, must
be a constant solution of the following limiting system:

d

dt
T (t) = s− dT (t) −B(t) +

∫ ∞

0

K1(a)B(t− a)da,

d

dt
VI(t) =

∫ ∞

0

K2(a)B(t− a)da− cVI ,

B(t) = kVI(t)T (t).

(3.2)
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We mention that the introduction of the variable B(t) is just for mathematical con-
venience. If we substitute kVI(t)T (t) for B(t) in the first two equations of (3.2), then
we will obtain the same stability results.

System (3.2) has two constant solutions, the infection-free steady state Ē =
(T̄ , V̄I , B̄) = (s/d, 0, 0), and the infected steady state E� = (T �, V �

I , B
�), where

T � =
c

kK2
, V �

I =
skK2 − dc

kc(1 −K1)
, B� = kT �V �

I ,(3.3)

with K1 and K2 given in (2.6). Notice that K1 is less than 1. Thus, V � > 0 if and
only if skK2 − dc > 0, or R1 > 1, where

R1 =
skK2

dc
.(3.4)

Clearly, the infected steady state (3.3) is feasible if and only if R1 > 1. Notice that
s/d is the cell density in the absence of infection, and k and c are the cell infection
and viral clearance rate, respectively. Recall that K2, the infectious virus burst size,
gives the number of infectious virus particles produced by one infected cell over its
lifespan. Therefore, R1 gives the reproductive ratio of the virus under the impact of
drugs.

We now consider the stability of steady states. Let us first consider the infection-
free steady state Ē. The following result suggests that the population sizes of virus
and infected cells will go to zero if the reproductive ratio is less than 1.

Theorem 1. The noninfected steady state Ē is locally asymptotically stable (l.a.s)
if R1 < 1, and it is unstable if R1 > 1.

Proof. The Jacobian matrix of (3.2) at the steady state Ē is

J =

⎡
⎣−d− λ −ks/d K̂1(λ)

0 −c− λ K̂2(λ)
0 ks/d −1

⎤
⎦ ,

where λ is an eigenvalue and K̂i(λ) denotes the Laplace transform of Ki(a), i.e.,
K̂i(λ) =

∫∞
0

Ki(a)e
−λada, i = 1, 2. The corresponding characteristic equation is

(λ + d)

(
λ + c− sk

d
K̂2(λ)

)
= 0.(3.5)

One negative root of equation (3.5) is λ = −d, and all other roots are given by the
equation

λ + c =
sk

d
K̂2(λ),(3.6)

which can be rewritten as

λ

c
+ 1 = R1

K̂2(λ)

K2
.(3.7)

Notice that |K̂2(λ)| ≤ K2 for all complex roots λ with nonnegative real parts (i.e.,
�λ ≥ 0). Hence, the modulus of the right-hand side of (3.7) is less than 1, provided
that R1 < 1. Since the modulus of the left-hand side of (3.7) is always greater than
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or equal to 1 if �λ ≥ 0, we conclude that all roots of (3.6) have negative real parts if
R1 < 1. It follows that Ē is l.a.s. when R1 < 1.

In the case of R1 > 1, let ψ(λ) = λ
c +1−R1

K̂2(λ)
K2

. Thus, any real roots of ψ(λ) = 0
are also roots of (3.6). Recognizing that ψ(0) = 1 −R1 < 0 and limλ→∞ ψ(λ) = ∞,
we know that ψ(λ) = 0 has at least one positive root λ∗ > 0, which is a positive
eigenvalue of the characteristic equation (3.5). This shows that the infection-free
steady state is unstable when R1 > 1.

The following theorem deals with the global stability of the noninfected steady
state Ē.

Theorem 2. For R1 < 1, the noninfected steady state Ē is a global attractor,
i.e., limt→∞(T (t), VI(t), B(t)) = (s/d, 0, 0).

In order to prove Theorem 2, we need the following lemma, in which the following
notations are used: ϕ∞ = lim inft→∞ ϕ(t), ϕ∞ = lim supt→∞ ϕ(t), where ϕ is a real-
valued function on [0,∞).

Lemma 1 (see [51]). Let ϕ: [0,∞) → R be bounded and continuously differen-
tiable. Then there exist sequences sn, tn → ∞ as n → ∞ such that ϕ(sn) → ϕ∞,
ϕ′(sn) → 0 and ϕ(tn) → ϕ∞, ϕ′(tn) → 0.

Proof of Theorem 2. It is difficult to apply Lemma 1 to the T equation of (2.5)
directly. We introduce a new variable, W (t) = T (t) + T ∗(t), where T ∗(t) denotes
the total number of infected cells at t. Notice from the T ∗ equation in (2.5) that T ∗

satisfies the equation dT ∗

dt = kVIT −
∫∞
0

[
δ(a) + η(εRT )β(a)

]
T ∗(a, t)da. Then we get

dW
dt = s−d(W−T ∗)−

∫∞
0

δ(a)T ∗(a, t)da = s−dW−
∫∞
0

(δ(a)−d)T ∗(a, t)da ≤ s−dW.
The last inequality holds because of the fact that δ(a) ≥ d (i.e., the death rate
of infected cells δ(a) is equal to the natural death rate d plus an extra death rate
due to the infection). By Lemma 1, we can choose a sequence tn → ∞ such that
W (tn) → W∞, W ′(tn) → 0. From dW

dt ≤ s− dW , we have W∞ ≤ s/d.

Rewrite the VI equation in (2.15) as VI(t) =
∫ t

0
kVI(t−u)T (t−u)H2(u)du+F2(t).

We use Lemma 1 to choose a sequence sn → ∞ such that VI(sn) → V ∞
I as n → ∞.

Taking supremum limit on both sides of the above VI equation for t = sn → ∞,
we have V ∞

I ≤ kV ∞
I T∞ ∫∞

0
H2(u)du. Noticing that T∞ ≤ W∞ ≤ s/d and that∫∞

0
H2(u)du = K2/c, we get V ∞

I ≤ ksK2V
∞
I /(cd) = R1V

∞
I . Since R1 < 1, we see

that V ∞
I = 0. Thus, VI(t) → 0 as t → ∞. It also follows that B(t) → 0 since

B(t) = kVI(t)T (t) and T ≤ W ≤ s/d. We use Lemma 1 again to choose a sequence
sn → ∞ such that T (sn) → T∞ and T ′(sn) → 0. Using the T equation in (3.2) we
get T∞ ≥ s/d. But T∞ ≤ W∞ ≤ s/d. This shows that T (t) → s/d as t → ∞, which
finishes the proof of Theorem 2.

Next, we consider the stability of the infected steady state E�. As noted earlier,
this steady state exists if and only if R1 > 1. The following result suggests that the
virus population will be established if the reproductive ratio is greater than 1.

Theorem 3. The infected steady state E� is l.a.s if R1 > 1.
Proof. The Jacobian at the steady state E� is

J =

⎡
⎣−d− kV �

I − λ −kT � K̂1(λ)

0 −c− λ K̂2(λ)
kV �

I kT � −1

⎤
⎦ .

Using the notation R1 = skK2/dc, the corresponding characteristic equation can be
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written as (
(1 −K1)λ + d(R1 −K1)

)(
λ + c− c K̂2(λ)

K2

)
= d(R1 − 1)

(
(λ + c)K̂1(λ) − c K̂2(λ)

K2

)
,

(3.8)

or (
1 +

λ

c

)(
A(λ + d) + 1 − K̂1(λ)

)
=

K̂2(λ)

K2
A
(
λ + d

)
,(3.9)

where A = (1 −K1)/(d(R1 − 1)).
We can exclude the possibility of a nonnegative real root of (3.9) as follows.

Suppose λ ≥ 0. Then K̂1(λ) ≤ K̂1(0) = K1 < 1. It follows that A > 0 and (1 +
λ
c )(A(λ + d) + 1 − K̂1(λ)) > A(λ + d). Hence, (3.9) yields K̂2(λ)/K2 > 1. However,

since λ ≥ 0, we have K̂2(λ) ≤ K̂2(0) = K2, which leads to a contradiction. Thus,
(3.9) has no nonnegative real roots.

In the next step, we will exclude the possibility that (3.9) has a complex root
λ with a nonnegative real part. We prove this by contradiction. Suppose that λ =
x0 + iy0 is a root with x0 ≥ 0 and y0 > 0. From (3.8), we have

(λ + d)

(
λ + c− c

K̂2(λ)

K2

)
→ 0 as R1 → 1.(3.10)

It follows from a similar argument as in Theorem 1 that λ = x0 + iy0 cannot be a
root if x0 > 0. Now we let x0 = 0 and y0 > 0. In this case, (3.10) has a negative root

−d, and all other roots are determined by the equation (1 + λ
c ) = K̂2(λ)

K2
or

1 +
y0

c
i =

∫∞
0

K2(a) cos(ya)da

K2
−

∫∞
0

K2(a) sin(ya)da

K2
i.(3.11)

Comparison of the real parts of both sides yields cos(ya) = 1. Thus, sin(ya) = 0,
which implies that (3.11) cannot hold. Therefore, (3.8) has no roots with nonnegative
real parts when R1 → 1.

By the continuous dependence of roots of the characteristic equation on R1, we
know that the curve determined by the roots must cross the imaginary axis as R1

decreases close to 1. That is, the characteristic equation (3.8) or (3.9) has a pure
imaginary root, say, iy, with y > 0. Replacing λ in (3.9) with iy, we see that the
modulus of the left-hand side of (3.9) satisfies

|LHS| >
∣∣∣∣Ad + 1 −

∫ ∞

0

K1(a) cos(ya)da + i

(
Ay +

∫ ∞

0

K1(a) sin(ya)da

)∣∣∣∣ .(3.12)

We claim that
∫∞
0

K1(a) sin(ya)da ≥ 0. In fact, notice that
∫∞
0

K1(a) sin(ya)da =∫ a1

0
K1(a) sin(ya)da, where a1 is the age at which reverse transcription is complete.

Notice also that K1(0) = η(εRT ) and K ′
1(a) = η(εRT )[β′(a)K0(a) + β(a)K ′

0(a)] ≤ 0
a.e. on [0,∞). Integrating

∫ a1

0
K1(a) sin(ya)da by parts, we get∫ a1

0

K1(a) sin(ya)da =
η(εRT )

y
− 1

y
K1(a1) cos(ya1) +

1

y

∫ a1

0

K ′
1(a) cos(ya)da

≥ η(εRT )

y
− 1

y
K1(a1) cos(ya1) +

1

y

∫ a1

0

K ′
1(a)da

=
1

y
K1(a1)(1 − cos(ya1)) ≥ 0.
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Thus, we have
∫∞
0

K1(a) sin(ya)da ≥ 0. We also observe that 1−
∫∞
0

K1(a) cos(ya)da ≥
1 − K1 > 0. It follows from (3.12) that |LHS| > A|d + iy|. On the other hand, the
modulus of the right-hand side of (3.9) satisfies |RHS| ≤ A|d + iy|. This leads to a
contradiction. We conclude that the characteristic equation (3.9) has no roots with
nonnegative real parts. Therefore, Theorem 3 is proved.

4. The model with entry and protease inhibitors. Since the discovery
of RT inhibitors and protease inhibitors, significant progress in drug development
has been made. Recently, a new class of drugs, entry/fusion inhibitors, has been
introduced [10, 18]. These compounds can block the fusion of the viral envelope
to the target cell membrane and interfere with continued infection. They became
available with the FDA approval of enfuvirtide (Fuzeon) in 2003.

In this section, we develop an age-structured model that takes into account the
effects of both entry inhibitors and protease inhibitors. The model can be described
by the following equations:

d

dt
T (t) = s− dT − (1 − εEI)kVIT,

∂

∂t
T ∗(a, t) +

∂

∂a
T ∗(a, t) = −δ(a)T ∗(a, t),

d

dt
VI(t) =

∫ ∞

0

(1 − εPI)(1 − β(a))p(a)T ∗(a, t)da− cVI ,

d

dt
VNI(t) =

∫ ∞

0

εPI(1 − β(a))p(a)T ∗(a, t)da− cVNI ,

T ∗(0, t) = (1 − εEI)kVIT,

(4.1)

where εEI represents the efficacy of the entry inhibitor. The other parameters and
variables have the same meaning as in the model (2.4). We remark that the model
in [34] is a special case of our model (4.1) when εEI = εPI = β(a) = 0. Our result
applies to a general form of the viral production rate p(a) and the death rate δ(a).

The existence and uniqueness of (nonnegative) solutions for the system (4.1) can
be proved in a similar way as for the system (2.4). Here we present only the stability
analysis. The following notations are used throughout the rest of this section:

K3(a) = e
−
∫ a

0
δ(s)ds

, K4(a) = (1 − εPI)(1 − β(a))p(a)K3(a), K4 =

∫ ∞

0

K4(a)da.

The following limiting system is used to derive stability results:

d

dt
T (t) = s− dT (t) − Y (t),

d

dt
VI(t) =

∫ ∞

0

K4(a)Y (t− a)da− cVI ,

Y (t) = (1 − εEI)kVI(t)T (t),

(4.2)

where the variable Y (t) is introduced for mathematical convenience.
System (4.2) has two constant solutions (steady states): the noninfected steady

state Ē = (T̄ , V̄I , Ȳ ) = (s/d, 0, 0), and the infected steady state E◦ = (T ◦, V ◦
I , Y

◦),
where

T ◦ =
c

k(1 − εEI)K4
, V ◦

I =
sk(1 − εEI)K4 − dc

kc(1 − εEI)
, Y ◦ = (1 − εEI)kT

◦V ◦
I .
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Clearly, V ◦
I > 0 if and only if R2 > 1, where R2 = sk(1 − εEI)K4/(dc) is the

reproductive ratio for model (4.1). Hence, E◦ exists if and only if R2 > 1. The
stability results are given in the following theorem. It can be proved similarly by
previous arguments. Here we omit the proof due to the space limit.

Theorem 4. (a) The noninfected steady state Ē is a global attractor if R2 < 1;
and it is unstable if R2 > 1.

(b) When R2 > 1, the infected steady state E◦ is l.a.s.
Results obtained in this section and in the previous section will be used in the

next section to explore the impact of drug treatment on the evolution of HIV-1.

5. Influence of drug therapy on the invasion of resistant strains. In the
previous sections, we have shown that a virus population can establish itself if and
only if its reproductive ratio exceeds 1. Consider an environment in which the drug-
sensitive strain of HIV-1 infection is at the infected steady state E� = (T �, V �

I , B
�)

(see (3.3)), and a small number of drug-resistant virions has been introduced into the
virus population. Denote the reproductive ratio of the sensitive strain by Rs, which
is the same as R1 defined in (3.4). We can rewrite the population size of uninfected
cells in terms of Rs, i.e., T � = s/(dRs). Assume that Rs is greater than 1.

Let ε̃RT and ε̃PI denote the efficacies of the two types of drugs for the resistant
strain, respectively, and let p̃(a) denote the viral production rate of the resistant
strain. We can define the corresponding K̃0(a) as the age-specific survival probability
of T cells infected with the resistant strain (an equivalent quantity for the sensitive
strain is given in (2.6)). For ease of illustration, we assume that all other parameters
are the same for both strains. We derive an invasion criterion for a resistant strain
by using a heuristic argument, as is done in [16]. This criterion will be applied to
different scenarios of antiretroviral therapy, such as single-drug therapy (e.g., εPI > 0
and εRT = 0) or combination therapy (i.e., εPI > 0 and εRT > 0).

Notice that 1/c is the average lifespan of a free virus. Thus a single resistant
virus can infect on average kT �/c cells in its whole life. Each of these infected cells
can produce a total of

Nr =

∫ ∞

0

(1 − ε̃PI)(1 − β(a))p̃(a)K̃0(a)da

infectious drug-resistant virus particles during its lifespan (burst size). Thus, the
reproductive ratio of the resistant strain at the resident equilibrium density T � is

R�
r =

kT �

c

∫ ∞

0

(1 − ε̃PI)(1 − β(a))p̃(a)K̃0(a)da,

and the invasion criterion is R�
r > 1. Substituting s/(dRs) for T �, we obtain that the

condition for the resistant strain to invade the sensitive strain is Rr > Rs, where the
quantity

Rr =
s

d

k

c

∫ ∞

0

(1 − ε̃PI)(1 − β(a))p̃(a)K̃0(a)da(5.1)

represents the reproductive ratio of the resistant strain when the equilibrium density
of uninfected cells is s/d (which is the value of T at the infection-free steady state).

Viral fitness is often used to describe the relative replication competence of a
virus in a given environment. Rr can be regarded as a good measure of the fitness of
a resistant virus. Thus the inequality Rr > Rs implies that natural selection within
a host favors the virus strain that maximizes its reproductive ratio.
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In order to calculate the reproductive ratio, we consider the case when the viral
production rate for the resistant strain has the form given in (2.2). That is,

p̃(a) =

{
p̃∗

(
1 − e−θ(a−a1)

)
if a ≥ a1,

0 else,
(5.2)

where p̃∗ is the saturation level for production of the resistant strain. Accordingly,
we choose β(a) to be

β(a) =

{
1, 0 ≤ a < a1,
0, a ≥ a1.

(5.3)

The death rate of cells is assumed to be the same for both strains with the form

δ(a) =

{
δ0, 0 ≤ a < a1,
δ0 + μ, a ≥ a1,

(5.4)

where δ0 and μ are positive constants with δ0 representing a background death rate
of cells and μ representing an extra death rate for productively infected cells due to
either viral cytopathicity or cell-mediated immune responses.

Drug resistance is incorporated by assuming that the efficacy of antiretroviral
therapy for the resistant strain is lower than that for the drug sensitive strain by a
factor between 0 and 1, i.e., ε̃RT = σRT εRT , ε̃PI = σPIεPI . For ease of demonstration,
we assume that σRT = σPI = σ. σ = 0 corresponds to the completely resistant
strain, while σ = 1 corresponds to the completely sensitive strain. Other strains have
an intermediate value 0 < σ < 1. Many drug-resistant HIV variants display some
extent of resistance-associated loss of fitness as the resistant viral strains propagate
at a reduced rate when compared to sensitive strains [2]. Therefore, there is a trade-
off between drug resistance and viral production rate p̃(a). We choose two types of
functional forms for the cost by which the saturation level p∗ is reduced in resistant
strains, using the following formulas:

Type I : p̃(a) = σp∗
(
1 − e−θ(a−a1)

)
,(5.5)

Type II : p̃(a) = e−φ( 1
σ−1)p∗

(
1 − e−θ(a−a1)

)
,(5.6)

where φ is a measure for the level of cost. We provide analytic results for the Type I
cost and illustrate that the qualitative properties of the two types of costs are similar.
Using (5.2)–(5.5), we have the following relationship between Rr and Rs (see [13]):

Rr =
σ(1 − σεPI)e

−η(εRT )(1−σ)a1

1 − εPI
Rs.(5.7)

We consider Rr = Rr(σ) as a function of σ. A drug-resistant strain with resis-
tance σ can invade the sensitive strain if Rr(σ) > Rs. Obviously, it is not easy to
draw conclusions from this condition. We first derive some analytic understanding
for a simpler case in which only single-drug therapy with a protease inhibitor is con-
sidered, i.e., εPI > 0 and εRT = 0. The case of combined therapy will be explored
numerically.

(a) Single-drug therapy. In this case, since εPI > 0 and εRT = 0, (5.7) sim-

plifies to Rr(σ) = σ(1−σεPI)
1−εPI

Rs. It is easy to check that in order to have Rr(σ) ≥ Rs

for some σ ∈ (0, 1) it is necessary that εPI > 1
2 . In fact, there exists a maximum
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1σopt0.1 0.5 0.8σmin
σ

Rs
4

6
Rr max

Rr ( c ) ε PI =0.7

0.1 0.5 0.8σoptσmin 1
σ

Rs

4
Rr max

6

Rr (d ) ε PI =0.8

0.5 1 σmin
σ

4

6

8

Rs

Rr ( a ) ε PI =0.4

0.5 1 1.5 σ

Rs,

4

6

8Rr max

Rr ( b ) ε PI =0.5

Fig. 1. Plots of the reproductive ratio Rr of a resistant strain vs. the resistance σ for different
treatment efficacy εPI (εRT is chosen to be 0). In (a) and (b), it is shown that Rr < Rs for all
σ < 1. Therefore, no resistant strains can invade. In (c) and (d), resistant strains with resistance σ
in (σmin, 1) can invade. The optimal resistance is σopt at which Rr reaches its maximum Rr max.

level of resistance (corresponding to the smallest value of σ), σmin = 1−εPI

εPI
< 1, such

that Rr(σ) > Rs if and only if σmin < σ < 1 (see Figure 1). Clearly, if εPI < 1
2 ,

then σmin > 1, and hence Rr < Rs for all σ. This indicates that when the drug
efficacy is very low, the sensitive strain is favored. The intuitive reason for this is
that if the cost of resistance is high, one would not expect resistance when there is
little selection pressure from the drugs. Other nonresistant strains would outcompete
it under these conditions. Resistant strains can increase in frequency only when the
selection pressure (drug efficacy) is high.

We can also determine an optimal resistance, σopt, which maximizes the repro-
ductive ratio. In fact, we can easily check that Rr(σ) has only one critical point

in the interval (σmin, 1), σ = 1
2εPI

, at which dRr(σ)
dσ = 0 (see Figure 1). Hence,

σopt = 1/(2εPI).
We summarize the following results for the case of single-drug therapy. Recall

that a resistant strain with resistance σ can invade the sensitive strain if and only if
Rr(σ) > Rs.

(i) There exists a threshold drug efficacy ε∗PI (ε∗PI = 1/2 for Type I cost) below
which no resistant strains can invade (see Figure 1(a)–(b)). Analytically, this is due
to the fact that σmin ≥ 1 when εPI < ε∗PI . Hence, Rr(σ) < Rs for all σ < 1.

(ii) When the drug efficacy is above the threshold ε∗PI , there is a range of resistance
levels for which the resistant strains are able to invade. This is because, analytically,
σmin < 1 when εPI > ε∗PI , and Rr(σ) > Rs for all σ in (σmin, 1).

(iii) When σmin < 1, the range of invasion strains, (σmin, 1), increases with the
drug efficacy εPI . The optimal resistance, σopt, decreases with the drug efficacy
εPI (a more resistant strain corresponds to a smaller σ value; see Figure 1(c)–(d)).
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εRT=0.5,Rr(σ)
εRT=0.3,Rs

εRT=0.3,Rr(σ)
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εRT=0.1,Rr(σ)

Fig. 2. Plots of the reproductive ratio Rr vs. resistance σ for εRT = 0.1 (solid), εRT = 0.3
(long dashed), εRT = 0.5 (short dashed). The value of εPI is fixed at εPI = 0.6 for which invasion
is possible in the absence of the an RT drug (i.e., if εRT = 0). For each given εRT , the values of
σ for which Rr(σ) > Rs give the range for resistance invasion, which is the range between the two
intersection points of the Rr curve and the Rs horizontal line.

This increasing property is also clear from the formulas σmin = (1 − εPI)/εPI and
σopt = 1/(2εPI).

(iv) As the drug efficacy increases, the optimal viral fitness, Rr(σopt), decreases
(see Figure 1(c)–(d)).

(b) Combination therapy. We now consider the case of combination therapy,
i.e., εPI > 0 and εRT > 0. Again, we consider Rr = Rr(σ) in (5.7) as a function of
σ. Then Rr(σ) > Rs if and only if σ satisfies the inequality

σ(1 − σεPI)e
−η(εRT )(1−σ)a1

1 − εPI
> 1.(5.8)

To explore the role of εRT , we fix εPI (e.g., εPI = 0.6 in Figure 2). Because the
numerical simulations appear qualitatively similar for different increasing reversion
rate functions, we choose η(εRT ) = εRT for simplicity here. We will discuss the
selection of the function η(εRT ) in the next section. Equation (5.8) cannot be solved
analytically for σ. However, plots of Rr(σ) for different values of εRT suggest that,
as εRT increases, the range for Rr(σ) > Rs also increases (see Figure 2). Figure
3 illustrates the joint effect of εRT and εPI on the reproductive ratios Rs and Rr.
From the contour plot (see Figure 3(c)), we see that when the drug efficacy is low
(the region in the lower-left corner in which Rs > Rr > 1) the resistant strain cannot
invade. Neither strain can survive when the drug efficacy is high (the top-right region
in which Rs < 1 and Rr < 1). In the middle region, the invasion of resistant strains
is possible as Rr > Rs.
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Fig. 3. Plots of the reproductive ratios Rs and Rr as functions of εRT and εPI . Three surfaces
are plotted in (a): Rr(εRT , εPI) (the top surface near the origin), Rs(εRT , εPI) (middle surface),
and the constant 1 (the bottom surface). The intersection of the top two surfaces is the curve on
which Rr = Rs. In (b), two surfaces, Rs(εRT , εPI) and the constant 1, are plotted to show the
curve on which Rs = 1. (c) is a contour plot of the surfaces Rr(εRT , εPI) and Rs(εRT , εPI).

Figure 4 shows that when the Type II cost is used, the qualitative property of the
reproductive ratio Rr as a function of σ is very similar to that when the Type I cost
is used. For example, the function Rr(σ) admits a unique σmin and a unique σopt for
sufficiently small values of φ.

6. Numerical results. In this section, we provide numerical simulations to
confirm and/or extend our analytical results. Backward Euler and the linearized
finite difference method are used to discretize the ODE and PDE, respectively, and
the integral is evaluated using Simpson’s rule. For all simulations, we choose the
viral production rate p(a) as (2.2) and β(a) as (5.3) with a1 = 0.25 days [24]. The
death rate of infected cells δ(a) is assumed to be constant δ = 1 day−1 [29], and
the virion clearance rate is set to our best estimate c = 23 day−1 [45]. The other
model parameters are chosen as follows [8]: s = 104 ml−1 day−1, d = 0.01 day−1,
k = 2.4 × 10−8 ml day−1, and the burst size is N = 2500.

The reversion rate function, η(εRT ), remains to be determined. We know η(0) = 0,
and when εRT → 1, η(εRT ) should be sufficiently large such that all the preRT cells
will revert back to the uninfected class. In our simulation, we assume the reversion
rate function takes the following form: η(εRT ) = −ρ ln(1 − εRT ), where the constant
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Fig. 4. Plots of the reproductive ratio Rr vs. resistance σ when Type II cost is considered. The
value of φ measures the cost of resistance. Invasion is possible for σ in the range between the two
intersection points at which Rr = Rs. It also shows that invasion is impossible if the cost is too
high (e.g., φ = 2.5).

ρ controls the steepness of the function. From the standard model in which there are
only short-lived infected cells (see [44]), the viral level will be theoretically suppressed
to be below the limit of viral detection (50 RNA copies ml−1 in the blood) in 10.2 days
if RT inhibitors are assumed to be 100% effective (we assume the same parameters
as above and choose the initial viral load to be 6.7038 × 105 ml−1).1 In our model
(2.4), under the same initial conditions and parameters, if we choose ρ = 2 day−1,
then the viral load can reach the same limit in 10.2 days when the drug efficacy of
RT inhibitors is very close to 1. Therefore, we will use the value ρ = 2 day−1 in
our simulation to study the RT inhibitor’s effects on the dynamics of viral load. The
abilities of RT inhibitors with different ρ to suppress the viral load will be discussed
later.

Figures 5 and 6 show numerical simulations of the first model (2.4) and the second
model (4.1), respectively. For the calculations underlying Figure 5, the maximum age
of infected cells amax is chosen to be 10 days [34]. In (2.2), we choose p∗ = 6.4201×103

and θ = 1 to guarantee the burst size is 2500 [8]. To see the influence of antiretroviral
drug therapy on the viral dynamics, we choose the initial conditions to be the steady
states of the standard model [44] in the absence of drug treatment. We use T (0) = 106

ml−1 [42] and V (0) = 10−6 ml−1 [50] in the standard model to get the following steady
state values: T = 3.8333×105 ml−1, T ∗ = 6.1675×103 ml−1, V = 6.7038×105 ml−1,
which are used as the initial values of our models (2.4) and (4.1). The value for the
efficacy of the protease inhibitor is fixed at εPI = 0.50. Figures 5(a)–(b) and (c)–
(d) are for different values of εRT that increase from εRT = 0.2 (Figure 5(a)–(b)) to
εRT = 0.5 (Figure 5(c)–(d)). We observe that, when εRT is increased, the infection

1In reality, the time to reach this limit is much longer, probably due to the existence of long-lived
infected cells and latently infected cells [40, 41].
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Fig. 5. Simulation of model (2.4) with εPI = 0.50. The upper panel: εRT = 0.20; the lower
panel: εRT = 0.50. The other parameters for each panel are the same: s = 104 ml−1 day−1,
d = 0.01 day−1, c = 23 day−1, k = 2.4 × 10−8 ml day−1, δ = 1 day−1, p∗ = 6.4201 × 103 day−1,
θ = 1, T0 = 3.8333 × 105 ml−1, VI0 = 6.7038 × 105 ml−1, VNI0 = 0, T ∗

0 = 6.1675 × 103 ml−1

(see text for description). The reproductive numbers of the upper and lower panel are 1.1666 and
0.9223, respectively. The upper panel shows that the virus population stabilizes at a steady state and
uninfected T cell concentration remains at 800 μl−1, and the lower panel shows that the virus dies
out and the T cell count reaches 1000 μl−1.

level at which the system stabilizes is decreased as expected. When εRT is greater
than a threshold value (εRT = 0.41; see also Figure 8(c)), the virus population will
die out. Figure 6 shows a similar qualitative behavior of the viral load, although the
efficacy of entry inhibitors has a different threshold value, εEI = 0.23 (Figure 8(c)).
The virus population persists when εEI < 0.23 and dies out when εEI > 0.23. This
is consistent with our analytic results, as the calculation of the reproductive ratio
for this set of parameters shows that R2 > 1 when εEI < 0.23 and R2 < 1 when
εEI > 0.23. The different behaviors of the models shown in Figures 5 and 6 indicate
that the entry inhibitor appears more effective than the RT inhibitor under given
conditions. However, this comparison of effectiveness depends heavily on the choice
of parameter ρ. If ρ is increased to 5, then the RT inhibitors can suppress viral load
more effectively than entry inhibitors (see more discussion in Figure 8).

Figure 7 demonstrates how the viral load can be affected by the virion production
rate p(a). Each drug efficacy has a fixed value: εEI = 0.20, εPI = 0.40. We compare
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Fig. 6. Simulation of model (4.1) with εPI = 0.50. The upper panel: εEI = 0.20; the lower
panel: εEI = 0.50. The other parameters are the same as those in Figure 5. The reproductive
numbers of the upper and lower panel are 1.0435 and 0.6522, respectively. The upper panel shows
that the virus population stabilizes at a lower steady state than in Figure 5(b) (the graphs do not show
this clearly, but the numerical values show the difference) and the uninfected T cell concentration
remains more than 900μl−1. The lower panel shows that the virus dies out and the T cell count
reaches 1000μl−1. This implies that the entry inhibitor appears more effective than the RT inhibitor
in the given conditions.

two sets of parameters p∗ = 6.4201× 103, θ = 1 (Figure 7(a)–(b)) and p∗ = 3.5311×
103, θ = 10 (Figure 7(c)–(d)) in the viral production function (2.2), which generate
the same burst size, N = 2500 [8]. However, the viral production rate in Figure
7(a)–(b) ramps up more slowly to the saturation level than in Figure 7(c)–(d). We
observe that there is not much difference in the T cell dynamics, the viral peak, the
time needed to reach the peak level, and the steady state viral load, although the
nadir of the viral load in panel (d) is less than that of panel (b). This implies that
varying the viral production function does not play an important role, at least in the
long-term virus dynamics, given the same burst size.

Comparing Figure 7(a)–(b) with Figure 6(a)–(b), we observe that when the drug
treatment becomes more effective (εPI increases from 0.4 to 0.5, εEI = 0.20), the
amplitude of the viral peak and the steady state viral load are decreased. However, it
takes longer for the viral load to reach its peak level when the drug efficacy is higher.
A possible explanation for this phenomenon is the following. Because a more effective
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Fig. 7. Simulation of model (4.1) with εEI = 0.20, εPI = 0.40. The upper panel: p∗ =
6.4201 × 103, θ = 1; the lower panel: p∗ = 3.5311 × 103, θ = 10. (The burst size of each panel is the
same: N = 2500.) The other parameters are the same as those in Figure 5. The viral production of
the lower panel ramps up more quickly to the saturation level than that of the upper panel. There
is almost no difference in the viral peak, the time to reach the peak level, and the steady state viral
load. This shows that the viral production function does not play an important role in the long-term
viral dynamics given the same burst size.

drug treatment (assuming that it is not potent enough to eliminate the virus) can
suppress the virus more substantially, the nadir that the viral load can reach is much
lower than when the treatment is more effective. Thus the time for the viral load to
reach its peak level is prolonged.

In Figure 8, we compare the effects of two combination therapies on reducing the
viral load. With the choice of p(a) and β(a) given in (2.2) and (5.3), we have the
following reproductive numbers:

R1 = e−a1η(εRT )M0, R2 = (1 − εEI)M0,(6.1)

where M0 = skθ
cdδ(θ+δ) (1 − εPI)p

∗e−δa1 . Let V
(1)
I and V

(2)
I denote the viral steady

states of models 1 and 2, respectively. Then V
(1)
I = d(R1−1)

k(1−K1)
, V

(2)
I = d(R2−1)

k(1−εEI) ,

where K1 = η(εRT )
δ+η(εRT ) (1 − e−(δ+η(εRT ))a1). If we assume the reversion rate takes the
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Fig. 8. Comparison of the two combination therapies with fixed protease inhibitor drug efficacy
εPI = 0.50. The other parameters are the same as those in Figure 5. Left column: reproductive
numbers R1 and R2 as the function of εRT and εEI , respectively. If εEI > 0.23, then R2 < 1, and
hence virus will die out. Right column: steady state VI of models (2.4) and (4.1) as the function of
εRT and εEI , respectively. The upper panel: ρ = 1, the threshold for R1 < 1 is εRT > 0.65; the
middle panel: ρ = 2, the threshold for εRT is 0.41; the bottom panel: ρ = 5, the threshold for εRT is
0.19. For a small ρ (ρ < 4), the entry inhibitors appear more effective than the RT inhibitors; for
a large ρ (ρ > 4), we have the contrary result.
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form η(εRT ) = −ρ ln(1 − εRT ), then R1 can be simplified, and (6.1) reduces to

R1 = (1 − εRT )a1ρM0, R2 = (1 − εEI)M0.(6.2)

In Figure 8(c), we let εPI = 0.50 and plot R1(εRT ) and R2(εEI) as functions of
εRT and εEI , respectively. We observe that there is a threshold value, εRT = 0.41,
such that R1 > 1 when εRT < 0.41 and R1 < 1 when εRT > 0.41. By comparison,
the threshold value for entry inhibitors is εEI = 0.23, which implies that the virus
population will die out when εEI > 0.23 (see also Figures 5 and 6). In Figure 8(d),

V
(1)
I (εRT ) and V

(2)
I (εEI) are plotted as functions of εRT and εEI , respectively. Given

the same efficacy, the value of steady state V
(2)
I (εEI) is less than V

(1)
I (εRT ). This

indicates that the entry inhibitor appears more effective in reducing the viral load
than the RT inhibitor in this scenario (ρ = 2). In fact, more information can be
obtained by looking at the slopes of R1(εRT ) and R2(εEI) in Figure 8(c) since the
slope characterizes the effectiveness of drug treatment in infection control when drug
efficacy is increased. From (6.2), we see that R1 decreases nonlinearly as εRT increases
and the decay rate is (1 − εRT )a1ρ, while R2 decreases linearly with the decay rate
(1−εEI) as εEI increases. This implies that the effectiveness of RT inhibitors depends
heavily upon the reversion constant ρ. In our simulation, we choose ρ = 2 day−1 and
find that the entry inhibitor is more likely able to annihilate the virus population than
the RT inhibitor when the efficacy is increased by the same percentage (see Figures
5, 6, and 8(c)–(d)). However, we obtain the contrary result when ρ is chosen to be
greater than 1/a1 (Figure 8(e)–(f)).

7. Concluding remarks. We have formulated two age-structured models for
HIV-1 infection with drug treatments to study the influence of antiretroviral therapy
on viral dynamics. We considered two types of combination therapies. One is the
standard combination of RT inhibitors and protease inhibitors, and the other is a
combination of an entry inhibitor with protease inhibitors. For each of these cases,
we have calculated the reproductive ratio Ri (i = 1, 2), which is shown to determine
the asymptotic stability of the infection-free steady state (when Ri < 1) and the in-
fected steady state (when Ri > 1). In simple nonage-structured models, both RT and
entry inhibitors are modeled in the same way, i.e., as a factor that reduces the rate
of infection. Here, by considering the details of the viral life cycle, we model these
inhibitors differently and explicitly. When an RT inhibitor is administered, some
infected cells may have already completed reverse transcription (postRT cells). For
these cells, the RT inhibitor will have no effect. For infected cells that have not com-
pleted reverse transcription (preRT cells), the RT inhibitor will prevent completion
of reverse transcription and allow, under the influence of enzymes that degrade the
HIV-1, a reversion of infected cells back into an uninfected state. These features of
our model are novel. An entry inhibitor, enfuvirtide, has been used in a combination
of RT and protease inhibitors [1, 33]. The addition of enfuvirtide to the regimen was
reported to increase the antiretroviral potency in one study [33] but not the other [1].
Thus the impact of entry inhibitor use needs further evaluation, and mathematical
modeling may be able to help in this regard.

We studied the impact of combination therapy using RT and protease inhibitors
on the emergence of drug-resistant HIV-1 strains. The cost of resistance was assumed
to be a reduced viral production rate. We calculated the reproductive ratio for the
resistant strain Rr(σ) with a resistance level σ and provided a criterion for the po-
tential invasion of resistant strains, i.e., Rr(σ) > Rs, in an environment where the
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wild-type strain was already established. We argue that natural selection within a
host favors virions that maximize the reproductive ratio, which is consistent with
earlier findings (see, for example, [16]). Consequently, we show that natural selec-
tion should favor viral strains that have an intermediate level of resistance and that
the optimal resistance level (σopt) decreases with increasing drug efficacy (see Fig-
ures 1 and 2). Mathematically, increasing the values of εPI and εRT results in (1)
a reduction in the reproductive ratio Rs of the drug sensitive strain (see Figure 4)
and hence a reduction in the equilibrium level of infection (see T � = s/(dcRs) and
V � = (d/k)(Rs − 1)/(1 − K1) in (3.3)); and (2) a decrease in the optimal viral fit-
ness Rr max of the resistant strain and a decrease in the optimal resistance σopt (see
Figures 1 and 3), and an increase in the range of resistance (σmin < σ < 1) for which
Rr > Rs (σmin decreases with both εPI and εRT ; see Figures 1 and 2). These are
strains that are able to invade a host population. On the other hand, if εPI and εRT

are small such that σmin is greater than 1, then Rr < Rs for all resistance σ. These
strains will not be maintained in a population. It should be noted that the condition
under which drug-resistant virus variants are selected in the presence of drug pres-
sure is very complex due to various factors [48], e.g., drug potency [46], adherence
to combination antiretroviral medications [14, 15], spatial heterogeneity [23], and the
increasing levels of transmitted resistant virus [4]. The management of HIV-infected
patients requires a better understanding of the mechanisms underlying the emergence
of drug resistance. HIV resistance testing has proved helpful in clinical practice and
is rapidly being incorporated into standard HIV care [47, 49].

We have also examined the effect of drug efficacy on viral dynamics by numerical
simulations. As the drug efficacy increases, the steady state of viral load as well as
the amplitude of the damped oscillations that characterize the approach to equilib-
rium decrease, which shows that an effective drug treatment will detectably lower the
plasma viral load after the administration (see Figures 5, 6, and 8(c)–(d)). Moreover,
the age-dependent virion production rate can also have an effect on the viral dynamics
(see Figure 7).

We compared the effects of various treatments on reducing the viral population
in plasma. The effectiveness of an RT inhibitor was proved to rely heavily on the
reversion rate, η(εRT ), at which preRT cells revert back to an uninfected state because
of the inhibitor. In fact, the reproductive ratio in the presence of an RT inhibitor, R1,
is proportional to the factor e−a1η(εRT ) (a1 is the age at which reverse transcription
is complete), while the reproductive ratio in the presence of an entry inhibitor, R2, is
proportional to the factor (1 − εEI). Thus the comparison of the effectiveness of RT
and entry inhibitors depends on a1 and the functional form of η(εRT ). We chose a
specific function −ρ ln(1− εRT ) for η(εRT ) in our simulations. Then the reproductive
ratio R1 is proportional to (1 − εRT )a1ρ. Given the same drug efficacy, an entry
inhibitor appears to be more effective in reducing viral load than an RT inhibitor (see
Figures 5, 6, and 8(c)–(d)) if ρ is chosen to be 2 day−1. We get the contrary result if
we choose ρ such that ρ > 1/a1 (ρ = 5 day−1 in Figure 8(e)–(f)).

Another comparison of the effectiveness of RT inhibitors is between that obtained
here using our age-structured model and the previous results in the literature based
on the nonage-structured “standard model” (see [37, 44]). The reproductive ratio in
the presence of an RT inhibitor for the standard model is R = (1− εRT )kps/(dcδ) [5],
where p is the constant production rate and δ is the constant death rate of productively
infected cells. Thus R decreases linearly as the drug efficacy increases, and the decay
rate is (1− εRT ). A similar comparison follows for the drug effect of RT inhibitors on
suppressing the viral load between our model and the standard model. The functional



754 LIBIN RONG, ZHILAN FENG, AND ALAN S. PERELSON

form of the reversion rate η(εRT ) awaits future studies. These findings might be helpful
in designing treatment for the control of HIV infections. In the current model, we
have not included both the wild-type and drug-resistant strains explicitly [54]. This
will be done in the future work.
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ANALYSIS OF A MODEL OF THE GLUCOSE-INSULIN
REGULATORY SYSTEM WITH TWO DELAYS∗

JIAXU LI† AND YANG KUANG‡

Abstract. We continue a recent attempt to better understand the glucose-insulin regulatory
system via a mathematical model of delay differential equations with two discrete time delays. With
explicit delays, the model is more realistic in physiology, more accurate in mathematics, and more
robust in applications. We study this model analytically and perform carefully designed numerical
simulations by allowing two parameters to vary. Our analytical and numerical results confirm most
current existing physiological observations and reveal more insightful information. The following
factors are critical for ensuring the sustained oscillatory regulation and insulin secretion: (1) the
time lag for insulin secretion stimulated by glucose and the newly synthesized insulin becoming
“remote insulin” (Theorem 4.2 (b) and Theorem 5.6); (2) the delayed effect of hepatic glucose
production (Theorem 4.2 (c) and Theorem 5.6); (3) moderate insulin clearance rate (Theorem 5.6
and simulations in section 6.4); and (4) nonoverwhelming glucose infusion (simulations in section 6.2,
6.3, and 6.4).
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1. Introduction. Beginning with the pioneering work of Bolie [5] in the 1960s,
several attempts at modeling the glucose-insulin regulatory system have been pro-
posed in recent decades [2], [17], [25], [26]. These studies are, at least partially, moti-
vated by the fact that diabetes mellitus is one of the worst diseases in the world due to
the large size of the diabetic population, especially among Native Americans [14], as
well as severe complications [10] and high health expenses (http://www.diabetes.org).
Providing more efficient, effective, and economic treatments is the ultimate goal of
these efforts (see [2], [3], [4], [5], [17], [18], [25], [26], and the references therein). The
minimal model [3] and its siblings [9], [16], [19] study the insulin sensitivity, while
the mathematical models proposed in [2], [5], [17], [25], [26] aim to better understand
the glucose-insulin regulatory system.

In the glucose-insulin endocrine metabolic regulatory system, the pancreatic hor-
mone insulin and glucagon are the two key players. Both in-vivo and in-vitro ex-
periments have revealed that the insulin is secreted from the pancreas in oscillatory
manners in two time scales. It is widely believed that the rapid pulsatile oscillation
is caused by the insulin secretory bursts from the millions of Langerhans islets in
hundreds of β-cells in the pancreas at a periodicity of 5–15 minutes [20]. The much
slower ultradian oscillation refers to the oscillation of insulin secretion with period
in the range of 50–150 minutes [23], [25]. The amplitude of the ultradian oscillation
dominates that of the rapid pulsatile oscillation. There exist two time delays in this
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system. One naturally occurring time delay is the time needed for the insulin to
release from the β-cells stimulated by elevated glucose concentration and the newly
synthesized insulin to cross the endothelial barriers and become the so-called remote
insulin, now known as interstitial insulin. The remote insulin helps the cells, e.g.,
muscle and adipose, to uptake glucose. The other time delay refers to the delayed
effect of hepatic glucose production. Applying the standard compartment transition
technique to mimic the time delays, Sturis et al. [25] formulated a model consisting
of six ordinary differential equations (ODEs) that successfully captured some of the
basic features (oscillations with periods and amplitudes comparable to experiment
observations) of ultradian oscillation. Recently, Li, Kuang, and Mason [17] proposed
an alternative model of the glucose-insulin regulatory system consisting of two delay
differential equations with two naturally explicit discrete time delays. This two-delay
model uses only physiologically meaningful and measurable parameters. It is shown
that this two-delay model provides the best overall fit among five plausible model sys-
tems with the experimental data given in [2], [17], and [25]. It is also shown [17] that
the two-time-delay model is more robust compared to the model proposed in [25].
The authors of [17] concluded that the time delay of insulin responding to glucose
stimulation plays a key role in generating the oscillatory behavior of insulin secretion.

This paper attempts to provide a systematical study of the two-delay model of
[17] with focuses on analytical studies, bifurcation analysis, and carefully designed
numerical simulations. In the following sections, we first introduce the model pro-
posed in [17], then present some preliminary results on positivity, boundedness, and
persistence of solutions. Local stability analyses are carried out in details whenever
feasible. These analytical results are complemented and confirmed by the bifurcation
diagrams produced from our extensive and carefully designed simulations. This paper
ends with a discussion section containing a list of observations.

2. The two-delay model. By applying the mass conservation law, the ap-
proach used in [27], Li, Kuang, and Mason [17] proposed a glucose-insulin regulatory
system model with two explicit time delays based on a set of well-known observations
[1], [6], [13], [17], [21], [25], [26], [27]. The model can be expressed by the following
word equations.

Glucose change rate = glucose production rate − glucose utilization rate.

Insulin change rate = insulin production rate − insulin removal rate.

Throughout this paper, we use G(t) to represent the plasma glucose concentration
and I(t) to represent the plasma insulin concentration at time t ≥ 0.

In the glucose-insulin endocrine metabolic system, the β-cells, contained in the
Langerhans islets in the pancreas, are the only source of insulin production. When
the plasma glucose concentration level is elevated, the β-cells secrete insulin after a
complex series of cascading physiological processes [1], [17]. The newly synthesized
insulin crosses the endothelial barriers to become remote insulin, which readily helps
the cells, e.g., muscle and fat cells, to utilize the plasma glucose and convert it to
energy [17]. These processes take a total of approximately 5–15 minutes [25], [26]. In
the model, this is denoted by f1(G(t − τ1)), where τ1 > 0 represents the time delay
of the insulin response to the glucose stimulation and the time needed for the newly
synthesized insulin crossing endothelial barrier to become remote insulin.

Insulin is degraded by all insulin sensitive tissues, and the degradation is medi-
ated primarily by the insulin receptor with a smaller contribution from nonspecific
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processes. The liver and kidney are the primary sites of portal insulin degradation and
peripheral insulin clearance, respectively. Insulin not cleared by the liver and kidneys
is ultimately removed mainly by muscle and adipose cells [11], [17]. The function of
insulin clearance is to remove and inactivate circulating insulin in order to control
insulin action [11]. The degradation is almost linearly proportional to insulin [27]. So
the degradation rate is denoted by a constant di > 0. Since I(t) stands for plasma
insulin concentration, it is easier to measure clinically.

In muscle and adipose tissue, insulin facilitates the transport of glucose into cells.
The glucose is then metabolized by the cells. This type of glucose consumption is
called insulin-dependent glucose utilization. Not all glucose consumption depends
on the attendance of insulin. For example, the brain and nerve cells consume the
glucose without the aid of insulin. This is referred to as insulin-independent glucose
utilization. (See [17] for more details.) Respectively, the insulin-independent and
insulin-dependent glucose utilization are represented by f2(G(t)) and f3(G(t))f4(I(t)).

Glucose enters the circulation in two ways: glucose infusion and hepatic glucose
production. Glucose infusion includes meal ingestion, oral glucose intake, continu-
ous enteral nutrition absorption, and constant infusion. Hence the model includes a
constant glucose infusion term Gin that may model the continuous enteral glucose
absorption and constant glucose infusion [17], [25], [27].

Hepatic glucose production is due to glucose dispensation by the liver endoge-
nously. When the plasma glucose concentration level becomes low, the β-cells stop
releasing insulin. Instead, the α-cells, also contained in Langerhans islets, start to
release glucagon. Glucagon exerts control over pivotal metabolic pathways in the
liver and leads the liver to dispense glucose [1]. The liver also converts the previously
stored glycogen into glucose. Opposite to the fact that glucagon secretion triggers
the liver to dispense glucose, insulin secretion inhibits glucose production by the liver
[6], [21]. Thus the hepatic glucose production is primarily controlled by insulin con-
centration in both inhibitory effect by insulin secretion and recovery effect by insulin
suppression. Some time is needed for hepatic glucose production to take significant
effect, e.g., half maximal suppression or recovery takes time [17], [21]. However, both
the pathways and the length of the delay remain unknown. Nevertheless, this time
delay is approximately between a few minutes and a half hour, or even longer [17],
[21]. The hepatic glucose production is presented by f5(I(t− τ2)), where τ2 > 0 rep-
resents the time taken for a noticeable effect on hepatic glucose production, e.g., half
maximal suppression or recovery rate.

Therefore the system [17] can be written as{
G′(t) = Gin − f2(G(t)) − f3(G(t))f4(I(t)) + f5(I(t− τ2)),
I ′(t) = f1(G(t− τ1)) − diI(t).

(2.1)

For convenience, the initial conditions of the two-time-delay model (2.1) are as-
sumed to be I(0) = I0 > 0, G(0) = G0 > 0, G(t) ≡ G0 for all t ∈ [−τ1, 0] and
I(t) ≡ I0 for t ∈ [−τ2, 0], τ1, τ2 > 0. In this paper, we assume that the functions fi,
i = 1, 2, 3, 4, 5, in model (2.1) satisfy the following conditions:

(i) Notice that β-cells release insulin due to glucose stimulation. We assume that
f1(x) > 0 and f ′

1(x) > 0 for x > 0. On the other hand, the capacity of the
insulin secretion from β-cells is saturated due to highly increased glucose con-
centration level, so we assume limx→∞ f1(x) = M1 and f ′

1(x) is bounded by a
constant M ′

1 > 0 for x > 0. Thus it is reasonable to assume that f1(x) is in sig-
moidal shape. Observing that the insulin can be secreted from the β-cells due
to bursting without the glucose stimulation, we assume that f1(0) := m1 > 0.
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(ii) As a term indicating the insulin-independent glucose utilization, it is clear
that f2(0) = 0, f2(x) > 0, and f ′

2(x) > 0 for x > 0. On the other hand, the
utilization is not unlimited, so we assume that limx→∞ f2(x) = M2 and there
exists a constant M ′

2 such that f ′
2(x) < M ′

2 for x > 0.
(iii) The insulin-dependent glucose utilization f3(G(t))f4(I(t)) can be depicted as

f3(0) = 0, f4(0) := m4 > 0, f ′
3(x) > 0, f4(x) > 0, and f ′

4(x) > 0 for x > 0.
As suggested by Sturis et al. [25], we also assume that there exist constants
k3 > 0,M4 > 0, and M ′

4 > 0 such that 0 < f3(x) ≤ k3x, limx→∞ f4(x) = M4,
and f ′

4(x) < M ′
4 for x > 0 and f4(x) is in sigmoidal shape.

(iv) Low glucose concentration will lead β-cells to stop releasing insulin and α-
cells to release glucagon. Thus, when insulin is deficit, liver dispenses glucose
caused by glucagon exerting control over pivotal metabolic pathways in the
liver, and also converts glycogen into glucose. On the other hand, the liver
stops this process when insulin is abundant. Hence we assume f5(0) > 0,
f5(x) > 0, and f ′

5(x) < 0 for x > 0, and limx→∞ f5(x) = 0 and f5 is in inverse
sigmoidal shape. Since the amount of glucose converted by the liver is small
and the process takes time, we assume ∃M5,M

′
5 > 0 such that f5(x) ≤ M5

and |f ′
5(x)| ≤ M ′

5 for x > 0. We can simply set M5 = f5(0).
The shapes of the functions are more important than their forms [13]. Figure 3 of

[17] shows the shapes of functions in model (2.1). In section 6, we adopt the functions,
(6.1)–(6.5), used in [17], [25], and [26], to perform numerical simulations.

3. Preliminaries. We first present some useful preliminary results of model
(2.1). The following fluctuation lemma is elementary and well known [12].

Lemma 3.1 (fluctuation lemma). Let f : R → R be a differentiable function. If
l = lim inft→∞ f(t) < lim supt→∞ f(t) = L, then there are sequences {tk} ↑ ∞, {sk} ↑
∞ such that for all k, f ′(tk) = f ′(sk) = 0, limk→∞ f(tk) = L, and limk→∞ f(sk) = l.

We will apply Lemma 3.1 in the proofs of Proposition 3.2 on solution boundedness
and Lemma 3.3 on a set of restrictions for the upper and lower limits of a solution.
The proofs are given in Appendices A and B.

Proposition 3.2. In model (2.1), the following hold:
(i) If limx→∞ f3(x) > (Gin−M2 +M5)/m4, then model (2.1) has unique positive

steady state (G∗, I∗) with I∗ = d−1
i f1(G

∗). Furthermore, all solutions exist
in (0,∞), and are positive and bounded.

(ii) If limx→∞ f3(x) < (Gin −M2)/m4, then lim supt→∞ G(t) = ∞.
Remark. Condition (i) indicates that the steady state is unique if insulin can help

the cells to metabolize enough glucose. Otherwise, if condition (ii) holds, the glucose
concentration level will be unbounded.

Remark. If f3(x) = k3x, where k3 > 0 is a constant, then

lim sup
t→∞

G(t) ≤ MG := (Gin + M5)/(m4k3).(3.1)

In fact, notice that m4 ≤ f4(x) ≤ M4 and f5(x) ≤ M5 and f3(x) = k3x for x > 0.
Thus G′(t) = Gin−f2(G(t))−f3(G(t))f4(I(t))+f5(I(t−τ2)) ≤ Gin−m4k3G(t)+M5.
A standard comparison argument yields (3.1).

Throughout this paper, we assume that condition (i) in Proposition 3.2 holds.
Let (G(t), I(t)) be a solution of (2.1). Throughout this paper, we denote

G = lim sup
t→∞

G(t), G = lim inf
t→∞

G(t), I = lim sup
t→∞

I(t), I = lim inf
t→∞

I(t).

Due to Proposition 3.2, it is clear that these limits are finite. Further, we have the
following lemma.
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Lemma 3.3. If (G(t), I(t)) is a solution of (2.1), then

f1(G) ≤ diI ≤ diĪ ≤ f1(Ḡ),(3.2)

f2(Ḡ) + f3(Ḡ)f4(I) ≤ Gin + f5(I),(3.3)

Gin + f5(Ī) ≤ f2(G) + f3(G)f4(Ī).(3.4)

Remark. Apparently, Ḡ = G implies Ī = I due to (3.2). If Ī = I, then (3.3) and
(3.4) together lead to f2(Ḡ) − f2(G) ≤ f4(Ī)(f3(G) − f3(Ḡ)) ≤ 0. That is, Ḡ = G.

Proposition 3.4. Model (2.1) is persistent, that is, the components of all solu-
tions are eventually uniformly bounded from above and away from zero.

Proof. Notice that f2(0) + f3(0) = 0 and f4(x) < M4 for all x ≥ 0. Then (3.4)
implies that Gin ≤ f2(G) + f3(G)M4 for all t > 0. Thus ∃δG > 0, tG > 0, such that
G(t) > δG for t > tG > 0. Hence G(t) is eventually and uniformly bounded away
from zero. Inequality (3.2) implies the same for I(t). The parts of boundedness from
above are implied in Proposition 3.2.

4. Local analysis: Case τ1τ2 = 0. We analyze the trivial case τ1τ2 = 0 in
this section. The study of the nontrivial case τ1τ2 > 0 will be carried out in the next
section.

Clearly the linearized system of model (2.1) about (G∗, I∗) is given by{
G′(t) = −AG(t) −BI(t) − CI(t− τ2),

I ′(t) = DG(t− τ1) − diI1(t),
(4.1)

where {
A := f ′

2(G
∗) + f ′

3(G
∗)f4(I

∗) > 0, B := f3(G
∗)f ′

4(I
∗) > 0,

C := −f ′
5(I

∗) > 0, D := f ′
1(G

∗) > 0.
(4.2)

The characteristic equation of (4.1) is given by

Δ(λ) = λ2 + (A + di)λ + diA + DBe−λτ1 + DCe−λ(τ1+τ2) = 0.(4.3)

Notice that Δ(0) = diA+DB+DC > 0. So λ = 0 is not a solution of the characteristic
equation (4.3). Thus, if there is any stability switch of the trivial solution of the
linearized system (4.1), there must exist a pair of pure conjugate imaginary roots of
the characteristic equation (4.3).

When τ1 = τ2 = 0, the original model (2.1) is an ODE model. The characteristic
equation of its linearized equation is given by

Δ(λ) = λ2 + (A + di)λ + diA + DB + DC = 0.

Then, A + di > 0 and diA + DB + DC > 0 imply that (G∗, I∗) is stable.
For the cases of τ1τ2 = 0 and τ1 + τ2 > 0, we need the following lemma, which

can be obtained via a standard imaginary root crossing method [8], [15]. The details
can be found in [15, pp. 74–77] and [15, Theorem 3.1].

Lemma 4.1. Assume a, c, d > 0 in the following delay differential equation:

x′′(t) + ax′(t) + cx(t) + dx(t− τ) = 0, τ ≥ 0.(4.4)

Then the number of pairs of pure imaginary roots of the characteristic equation

λ2 + aλ + c + de−λτ = 0, τ ≥ 0,(4.5)

can be zero, one, or two only.
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(i) If c > d and 2c − a2 < 2
√
c2 − d2, then the number of such roots is zero for

τ > 0. The trivial solution of (4.4) is stable for all τ > 0.
(ii) If c < d or d = c and 2c − a2 > 0, then the number of such roots is one for

some τ > 0. The trivial solution of (4.4) is uniformly asymptotically stable
for τ < τ0, and it becomes unstable for τ > τ0, where τ0 > 0 is a constant. It
undergoes a supercritical Hopf bifurcation at τ = τ0.

(iii) If c > d and 2c − a2 > 2
√
c2 − d2, then the number of such roots is two for

some τ > 0. The stability of the trivial solution of (4.4) can change (when
changing from stable to unstable, the trivial solution undergoes a supercrit-
ical Hopf bifurcation) a finite number of times at most as τ increases, and
eventually it becomes unstable.

For the case of τ1 > 0 and τ2 = 0, the characteristic equation is

Δ(λ) = λ2 + (A + di)λ + diA + (DB + DC)e−λτ1 = 0.(4.6)

Notice that, in this case, 2c − a2 = −A2 − d2
i < 0 in Lemma 4.1. Then diA >

D(B + C) implies that the trivial solution of (4.1) is always stable for τ1 > 0. Also,
diA < D(B +C) implies that ∃τ10 > 0 such that the trivial solution of the linearized
system (4.1) is stable when τ1 ∈ (0, τ10) and unstable when τ1 ≥ τ10.

For the case of τ1 = 0 and τ2 > 0, the characteristic equation becomes

Δ(λ) = λ2 + (A + di)λ + (diA + DB) + DCe−λτ2 = 0.(4.7)

In Lemma 4.1, 2c−a2 = 2DB−A2−d2
i . Thus if d2

i > 2DB−A2 and diA > D(C−B),
the trivial solution of (4.1) is stable for all τ2 > 0. If diA < D(C − B), then the
stability of the trivial solution of (4.1) switches from stable to unstable when τ2
increases through a critical value τ20 > 0 and remains unstable for τ2 > τ20. If
diA > D(C − B) and 2DB − A2 − d2

i > 2
√

(diA + DB)2 −D2C2, then the trivial
solution of the linearized system (4.1) has at most a finite number of stability switches
and eventually is unstable.

Define

H1(di, Gin) = D(B + C) − diA.(4.8)

We summarize the above analysis in the following theorem for model (2.1).
Theorem 4.2. Consider model (2.1).
(a) If τ1 = 0 and τ2 = 0, then (G∗, I∗) is stable.
(b) If τ1 > 0 and τ2 = 0, and

(b.1) if H1(di, Gin) < 0, then (G∗, I∗) is stable for τ1 > 0;
(b.2) if H1(di, Gin) > 0, then ∃τ10 > 0 such that (G∗, I∗) is stable when

τ1 ∈ (0, τ10) and unstable when τ1 ≥ τ10.
(c) When τ1 = 0 and τ2 > 0,

(c.1) if D(C −B) − diA < 0 and d2
i > 2DB −A2, then (G∗, I∗) is stable;

(c.2) if D(C −B) − diA > 0, then ∃τ20 > 0 such that (G∗, I∗) is stable when
τ2 ∈ (0, τ20) and unstable when τ1 ≥ τ20;

(c.3) if D(C −B)− diA < 0 and 2DB−A2 − d2
i > 2

√
(diA + DB)2 −D2C2,

then there are at most a finite number of stability switches and eventually
(G∗, I∗) is unstable,

where A,B,C, and D are given in (4.2).
With the specific functions (6.1)–(6.5) in section 6, Figure 5.1 (right) demonstrates

the curve H1(di, Gin) = 0 in the (Gin, di)-plane. The curves in Figure 5.1 (right) are
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independent of delay τ1 and τ2. The steady state is stable when (Gin, di) ∈ Rs, that
is, di is small. Our computations show that conditions (b.1) and (c.3) in Theorem 4.2
do not hold. Condition (c.1) holds for some values (Gin, di), and thus the sustained
oscillations would not occur.

When condition (b.2) (τ2 = 0) or (c.2) (τ1 = 0) holds, the sustained oscillation
takes place if τ1 > τ10 or τ2 > τ20. Based on the arguments (3.12)–(3.17) from [15,
pp. 74–76], we have

τ10 = θ1/ω1+,

where ω1+ is the root of (4.6) given by

ω2
1+ =

1

2

{
− (A2 + d2

i ) +
[
(A2 − d2

i )
2 + 4D2(B + C)2

]− 1
2
}
,

and 0 ≤ θ1 < 2π, satisfying{
cos θ1 = (ω2

1+ − diA)/(DB + DC),
sin θ1 = ω1+(A + di)/(DB + DC).

Similarly, we have

τ20 = θ2/ω2+,

where ω2+ is the root of (4.7) given by

ω2
2+ =

1

2

{
2DB − (A2 + di2) +

[
(A2 − d2

i )
2 − 4DB(A + di)

2 + 4D2C2
]− 1

2
}
,

and 0 ≤ θ1 < 2π, satisfying{
cos θ2 = (ω2

2+ − diA−DB)/(DC),
sin θ2 = ω2+(A + di)/(DC).

When condition (b.2) (τ2 = 0) holds, our computations show that no sustained
oscillation occurs when τ1 < 9. Similarly, when (c.2) (τ1 = 0) holds, τ20 > 12 for Gin <
0.15 or Gin > 0.85, and di = 0.06. Specifically, if Gin = 1.35, di = 0.06, then the Hopf
bifurcation point τ20 > 40. These observations, with Theorem 4.2 (a), suggest that
both delay τ1 and τ2 are critical for sustained oscillations in physiologically meaningful
ranges. In addition, notice that condition (b.2) automatically holds if (c.2) holds. This
seems to suggest that the role of delay τ1 is more critical than the role of delay τ2 to
ensure the sustained oscillations of the glucose-insulin regulatory system.

5. Local analysis: Case τ1τ2 > 0. Now assume both τ1 > 0 and τ2 > 0. Let
λ = ωi, ω > 0, be such an eigenvalue in (4.3); then we have

Δ(ωi) = [−ω2 + diA + DB cosωτ1 + DC cosω(τ1 + τ2)]

+ i[(A + di)ω −DB sinωτ1 −DC sinω(τ1 + τ2)] = 0.

That is, {
−ω2 + diA + DB cosωτ1 + DC cosω(τ1 + τ2) = 0,
(A + di)ω −DB sinωτ1 −DC sinω(τ1 + τ2) = 0.

(5.1)

This leads to

ω4 + (A2 + d2
i )ω

2 + d2
iA

2 = D2(B2 + C2 + 2BC cosωτ2).(5.2)
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5.1. Stability of the steady state. We shall consider the stability of the steady
state first. From (5.2),

ω4 + (A2 + d2
i )ω

2 + d2
iA

2 ≤ D2(B2 + C2 + 2BC) = D2(B + C)2.

It is impossible if diA ≥ D(B +C). So, by definition of H1(Gin, di) in (4.8), we have
the following proposition.

Proposition 5.1. In the linearized system (4.1), when τ1 > 0 and τ2 > 0, if
H1(Gin, di) ≤ 0, then the steady state of the linearized system (4.1) is stable.

Therefore we have the following theorem.
Theorem 5.2. In model (2.1), if τ1 > 0, τ2 > 0 and

H1(di, Gin) = D(B + C) − diA ≤ 0,(5.3)

then the steady state (G∗, I∗) of system (2.1) is stable.
Remark. When τ1 > 0, the same condition H1(di, Gin) = D(B + C) − diA < 0

ensures the steady state of system (2.1) to be stable regardless of whether τ2 = 0 or
τ2 > 0.

5.2. Instability of the steady state. We now study the instability of the
steady state (G∗, I∗). We will apply Rouchè’s theorem [7, pp. 125–126] to identify the
case that the characteristic equation (4.3) has roots with positive real part.

Rouchè’s theorem. Given two functions f(z) and g(z) analytic in a simple
connected region A ⊂ C with boundary γ, a simple loop homotopic to a point in A, if
|f(z)| > |g(z)| on γ, then f(z) and f(z) + g(z) have the same number of zeros in A.

Let

S1 =

{
2m

2n− 1
: m,n ∈ Z+,m, n ≥ 1

}
and S2 =

{
2m− 1

2n
: m,n ∈ Z+,m, n ≥ 1

}
.

Clearly Q+ = S1 ∪ S2 and S1 ∩ S2 = ∅. Furthermore, S1 and S2 are dense in Q+,
and thus in R+.

In fact, given r ∈ Q+ \ S1,∃p, q ∈ Z+ such that r = 2p−1
2q . Thus

rk =
2p− 1 − 2

2k

2q − 1
2k

=
(4kp− 2k − 2)/2k

(4kq − 1)/2k
=

2(2kp− 2k − 1)

2(2kq) − 1
∈ S1 ∀k = 1, 2, 3, . . .

and limk→∞ rk = (2p− 1)/2q = r. That is, S1 ⊇ Q+. Similarly, S2 ⊇ Q+.
Proposition 5.3. For characteristic equation

λk +

k−1∑
j=1

ajλ
j + b + ce−λσ1 + de−λσ2 = 0, k ≥ 2, σ1, σ2 > 0,(5.4)

where b, c, d > 0, aj ∈ R, j = 1, 2, 3, . . . , k, if b < d− c or b < c−d, then ∃σ10 > 0 and
σ20 > 0 such that the characteristic equation (5.4) has at least one root with positive
real part for σ1 > σ10 and σ2 > σ20 provided σ1/σ2 ∈ S1 or σ1/σ2 ∈ S2.

We need the following lemma to prove Proposition 5.3.
Lemma 5.4. For the equation

εkzk +

k−1∑
j=1

ajε
jzj + b + ce−p1z + de−p2z = 0, k ≥ 2, p1, p2 > 0, z ∈ C,(5.5)

where b, c, d > 0, aj ∈ R, j = 1, 2, 3, . . . , k − 1, assume
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(i) b < d− c and p1/p2 ∈ S1, or
(ii) b < c− d and p1/p2 ∈ S2.

Then, ∃ε0 > 0 such that for all ε, 0 < ε < ε0, equation (5.5) has at least one root with
positive real part.

The proof of Lemma 5.4 is given in Appendix C. Now we prove Proposition 5.3.
Proof. Assume b < d − c and σ1/σ2 ∈ S1 (or b < c − d and σ1/σ2 ∈ S2). In

Lemma 5.4, choose p10 and p20 such that p10/p20 ∈ S1 (or p10/p20 ∈ S2). Suppose
ε0 is given by inequality (C.2) in the proof of Lemma 5.4. Let σ10 = p10/ε0 and
σ20 = p20/ε0. Then given σ1 > σ10, σ2 > σ20, and σ1/σ2 ∈ S1 (or σ1/σ2 ∈ S2), ∃ε,
0 < ε < ε0, such that

σ1 = p1/ε > σ10 and σ2 = p2/ε > σ20.

Let λ = εz. Then (5.4) becomes (5.5) in Lemma 5.4 and the conclusion follows.
Remark. In Lemma 5.4, given p1 and p2, p1/p2 ∈ S1 in case (i) or p1/p2 ∈ S2 in

case (ii), if we carefully choose ε0 in the proof of Lemma 5.4, an estimate of unstable
region of σ1 and σ2 can be given. For the special case k = 2, r0 and ε0 can be chosen as

r0 =
√
K2x2

0 + q2π2 and ε0 =

(√
a2
1 + 4η′0 − a1

)
/2r0.

Let k = 2 and apply Proposition 5.3 to the linearized system (4.1). We have the
following.

Proposition 5.5. If diA < D|C −B|, then there exist τ10 > 0 and τ20 > 0 such
that the characteristic equation of system (4.1) has at least one root with positive real
part if

(i) diA < D(C −B), τ1 > τ10, τ1 + τ2 > τ20, and τ1/(τ1 + τ2) ∈ S1, or
(ii) diA < D(B − C), τ1 > τ10, τ1 + τ2 > τ20, and τ1/(τ1 + τ2) ∈ S2.
Proof. This is straightforward if in Proposition 5.3 we choose k = 2, a1 = A +

di, b = diA, c = DB, d = DC, σ1 = τ1, and σ2 = τ1 + τ2.
Therefore, we have the following theorem.
Theorem 5.6. In model (2.1), let

H2(di, Gin) := D|C −B| − diA.(5.6)

If τ1 > 0, τ2 > 0, and H2(di, Gin) > 0, then there exist τ10 > 0 and τ20 > 0 such
that the steady state (G∗, I∗) is unstable when τ1 > τ10, τ1 + τ2 > τ20 and

(i) τ1/(τ1 + τ2) ∈ S1 and diA < D(C −B), or
(ii) τ1/(τ1 + τ2) ∈ S2 and diA < D(B − C).
Remark. Using the function (6.1)–(6.5), if Gin = 1.35 and di = 0.06, then

H2(di, Gin) > 0 and H1(di, Gin) < 0. According to Theorem 5.6, the steady state
will lose its stability as the delays increase. Let τ1 = 7 and τ2 = 30. The simulation
result is shown in Figure 5.1 (left). There exists a periodic solution bifurcating from
the steady state. This periodic solution can be regarded as the sustained oscillation of
the insulin and glucose concentration. The period of the periodic solution is approxi-
mately 149 minutes. In each cycle, the glucose concentration peaks about 18 minutes
ahead of the insulin concentration peaks. The varying range of glucose concentration
is within physiological meaningful scope [70, 109].

Remark. It is clear that H2(di, Gin) ≤ H1(di, Gin). When H1(di, Gin) ≤ 0, the
steady state of model (2.1) is stable due to Theorem 5.2. On the other hand, when
H2(di, Gin) > 0, according to Theorem 5.6, the steady state is unstable for appropri-
ate delay values given in Theorem 5.6. With specific function (6.1)–(6.5), Figure 5.1
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Fig. 5.1. Left: The periodic solution of model (2.1) when Gin = 1.35, di = 0.06, τ1 = 7, and
τ2 = 30. The period is approximately 149 minutes and the glucose concentration peaks about 18
minutes before the insulin concentration peaks. Right: Regions in the (Gin, di)-plane divided by
curves H1(di, Gin) = 0 and H2(di, Gin) = 0. When di ∈ Rs, the steady state of model (2.1) is
stable; when di ∈ Ru1 ∪Ru2, the steady state is unstable.

(right) shows the delay-independent stable region Rs and delay-dependent unstable
region Ru1 and Ru2 in the (di, Gin)-plane determined by Theorems 5.2 and 5.6, re-
spectively. The shaded region RΔ is where H1(di, Gin) > 0 and H2(di, Gin) ≤ 0. The
local stability problem of (G∗, I∗) is open when (di, Gin) ∈ RΔ. Our intensive numer-
ical simulations reveal that RΔ is also a delay-dependent unstable region, that is, with
appropriate delay parameters, the steady state is unstable. For example, when di =
0.051 and Gin = 1.50, H1(0.051, 1.50) = 0.0019 and H2(0.051, 1.50) = −0.00042570.
The steady state is unstable when τ1 ≥ 15 and τ2 ≥ 32. When di = 0.0320 and
Gin = 1.40, H1(0.0320, 1.40) = 0.00099732 and H2(0.051, 1.50) = −0.00026753. The
steady state is unstable when τ1 ≥ 18 and τ2 ≥ 36. Periodic solutions are also
observed in these cases.

5.3. Hopf bifurcation. We show below that a local Hopf bifurcation takes place
when delay parameter τ1 or τ2 varies. It has been shown that when τ1 = 0 (τ2 = 0),
the steady state of system (2.1) is stable provided that τ2 (τ1) is small enough (see
Theorem 4.2). To show this system undergoes a unique local Hopf bifurcation at some
τ̄1 > 0 (τ̄2 > 0) as τ1 (τ2) increases from 0 and within a physiologically meaningful
range, we prove that the characteristic equation (4.3) has a pair of pure conjugate
imaginary simple roots at τ1 = τ̄1 > 0 (τ2 = τ̄2 > 0) and all such roots cross the
imaginary axis from left to right. This indicates that a periodic solution is generated
from this stability switch. Our numerical simulations show that the bifurcation is
indeed supercritical.

Consider equation

ω4 + (A2 + d2
i )ω

2 + d2
iA

2 = D2(B2 + C2 + 2BC).(5.7)

Clearly, (5.7) has a unique positive root ω̂ when diA < D(B + C), where

ω̂2 =
1

2

[
− (A2 + d2

i ) +
√

(A2 + d2
i ) − 4(d2

iA
2 −D2(B + C)2)

]
.(5.8)
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Let g(ω) = ω4 +(A2 +d2
i )ω

2 +d2
iA

2−D2(B2 +C2 +2BC cosωτ2). Then (5.2) can be
written as g(ω) = 0. If ω < ω̂ < π

2τ2
, then g(0) = d2

iA
2 −D2(B +C)2 < 0 and g(ω̂) =

2D2BC(1 − cosωτ2) ≥ 0. Further, g′(ω) = 4ω3 + 2(A2 + d2
i )ω + 2D2BC sinωτ2 > 0

for 0 < ω < ω̂ ≤ π
2τ2

. Therefore we have the following lemma.
Lemma 5.7. If diA < D(B + C) and τ2 < π

2ω̂ , then (5.2) has a unique root ω0

with 0 < ω0 ≤ ω̂.
The following propositions establish sufficient conditions for the existence of Hopf

bifurcation when τ1 or τ2 varies. We leave the proofs in Appendices D and E.
Proposition 5.8. If H1(Gin, di) = D(B +C)− diA > 0 and τ1 + τ2 < π

2ω̂ , then
(4.1) undergoes a Hopf bifurcation when τ1 increases from 0 to π

2ω̂ − τ2 for given τ2.
Proposition 5.9. If H1(Gin, di) = D(B + C) − diA > 0, τ1 + τ2 < π

2ω̂ , and

τ1 < A+di

DB , then (4.1) undergoes a Hopf bifurcation when τ2 increases from 0 to
π
2ω̂ − τ1 for given τ1.

Remark. Using the specific functions (6.1)–(6.5) given in section 6, for (Gin, di) ∈
[0, 150]×[0.001, 0.07], approximately, 47.2665 < π

2ω̂ < 214.3462 and 19.6857 < A+di

DB <

6361.7. Thus τ1 varies within its physiological range under the condition τ1 < A+di

DB .
Under the condition τ1 + τ2 < π

2ω̂ , both τ1 and τ2 are within their physiological
meaningful ranges in most situations for (Gin, di) ∈ [0, 150] × [0.001, 0.07]. When
τ1 + τ2 could be larger than 47.2665, our simulations show that the Hopf bifurcation
does exist and it is supercritical.

We summarize the above results in the following theorem.
Theorem 5.10. For model (2.1), assume H1(Gin, di) = D(B + C) − diA > 0

and τ1 + τ2 < π
2ω̂ .

(a) Then there exists a τ̄1 > 0 such that the steady state (G∗, I∗) is stable when
τ1 < τ̄1, and unstable when τ1 ≥ τ̄1. The system undergoes a Hopf bifurcation
at τ̄1 and generates a periodic solution.

(b) Further, assume τ1 < A+di

DB . Then there exists a τ̄2 > 0 such that the steady
state (G∗, I∗) is stable when τ2 < τ̄2, and unstable when τ2 ≥ τ̄2. The system
undergoes a Hopf bifurcation at τ̄2 and generates a periodic solution.

Remark. With the specific functions (6.1)–(6.5) in the next section, our intensive
numerical simulations show that the Hopf bifurcations determined by Theorem 5.10
are supercritical. Moreover, with Gin = 1.35 and di = 0.06, τ̄1 and τ̄2 approximately
satisfy 33.9τ̄1 + 17.3τ̄2 ≈ 36.9 for 0 ≤ τ̄1 ≤ 20 and 0 ≤ τ̄2 ≤ 60.

6. Numerical simulations. In this section, we present numerical analysis on
model (2.1) using DDE23 [22] in MATLAB 6.5. We use the same functions fi, i =
1, 2, 3, 4, 5, as [2], [17], [25], and [26] given in (6.1)–(6.5). The parameters, listed in
Table 6.1, were generated from experiments [25], [26].

f1(G) = Rm/(1 + exp((C1 −G/Vg)/a1)),(6.1)

f2(G) = Ub(1 − exp(−G/(C2Vg))),(6.2)

f3(G) = G/(C3Vg),(6.3)

f4(I) = U0 + (Um − U0)/(1 + exp(−β ln(I/C4(1/Vi + 1/Eti)))),(6.4)

f5(I) = Rg/(1 + exp(α(I/Vp − C5))).(6.5)
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Table 6.1

Parameters of the functions in two-time-delay model (2.1).

Parameters Units Values Parameters Units Values

Vg l 10 Rm μUmin−1 210

a1 mg · l−1 300 C1 mg · l−1 2000

Ub mg · min−1 72 C2 mg · l−1 144

C3 mg · l−1 1000 U0 mg · min−1 40

Um mg · min−1 940 β 1.77

C4 μUl−1 80 Rg mg · min−1 180

α lμU−1 0.29 C5 μUl−1 26
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Fig. 6.1. Limiting values or amplitudes of glucose (top) and insulin (bottom) concentrations
when τ1 and τ2 vary (left) or Gin and τ1 vary (right).

The simulations in [17] focused on the bifurcation when a single parameter varies
while other parameters are fixed. The detected bifurcation points of the varying pa-
rameters can determine when the sustained oscillations occur. In this section, we
carry out a sequence of two-parameter bifurcation analyses and depict their quan-
titative behaviors in three-dimensional meshes or two-dimensional curves formed by
transversal points.

For a specific subject, the insulin response time delay, the delayed effect of hepatic
glucose production, and the insulin degradation rate are intrinsic. But the exogenous
glucose infusion rate is controllable by diet, fasting, and so on. So, in addition to
the simulation on the two-delay parameters, we numerically analyze the relationships
of the glucose infusion rate Gin vs. the insulin response time delay τ1, the hepatic
glucose production time delay τ2, and the insulin degradation rate di, respectively.
We end this section by showing the significant impact of the two delays on generating
insulin ultradian oscillation.

6.1. Insulin response delay τ1 vs. hepatic glucose production delay τ2.
We analyzed the relationship between the insulin response delay τ1 and the hepatic
glucose production delay τ2 while Gin = 1.35 and di = 0.06 are fixed. Figure 6.1 (left)
shows that a simple curve (33.9τ1 + 17.3τ2 ≈ 36.9 for 0 ≤ τ1 ≤ 20 and 0 ≤ τ2 ≤ 60)
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Fig. 6.2. Left: Mesh of the periods of periodic solutions when (τ1, τ2) ∈ [0, 20] × [0, 60], where
Gin = 1.35 and di = 0.06 are fixed. Right: Meshes of the amplitudes of glucose and insulin
concentrations when (Gin, τ2) ∈ [0, 1.5] × [0, 60], where τ1 = 7 and di = 0.06 are fixed.

divides [0, 20] × [0, 60] in the (τ1, τ2)-plane into two regions. The steady state is
stable in one region and unstable in the other. The sustained oscillations occur in the
unstable region which requires both τ1 > 0 and τ2 > 0 to be sufficiently large. The
top and bottom meshes in Figure 6.1 (left) demonstrate the amplitudes of glucose and
insulin concentrations, respectively. The periods of periodic solutions are shown in
Figure 6.2 (left). According to Figure 6.1 (left) and Figure 6.2 (left), the amplitudes
of glucose concentration are between 70 and 109 and the periods of periodic solutions
are approximately within 90 and 150 when τ1 ∈ (5, 15) and τ2 ∈ (25, 50). There
is a sudden jump of amplitudes of glucose and insulin concentrations when τ1 > 10
approximately. Also, in such cases, the periods of periodic solutions decrease.

6.2. Glucose infusion rate Gin vs. insulin response time delay τ1. Taking
both insulin response delay τ1 and glucose infusion rate Gin as bifurcation parameters,
we try to identify the stability regions when (τ1, Gin) ∈ [0, 20]× [0, 1.5]. Let di = 0.06
and τ2 = 36 be fixed. The computation results are shown in Figure 6.1 (right). The
bifurcation point value τ̄1 ≈ 1.0429Gin − 1.3740 > 0 exists for 1.3175 ≤ Gin ≤ 1.50.
The meshes are the amplitudes of glucose (top) and insulin (bottom) concentrations
when (τ1, Gin) ∈ [0, 20]× [0, 1.5]. It can be seen that a simple curve (τ1 ≈ 1.0429Gin−
1.3740 > 0 for 1.3175 ≤ Gin ≤ 1.50) divides the rectangular [0, 20] × [0, 1.5] in the
(τ1, Gin)-plane into two regions. The sustained oscillations of model (2.1) occur in the
unstable region. The exogenous glucose infusion rate can be larger when τ1 increases
from [5, 15] for sustained regulatory oscillations to occur.

6.3. Glucose infusion rate Gin vs. hepatic glucose production delay τ2.
As shown in Figure 6.2 (right), our simulation results indicate that when τ1 = 7 and
di = 0.06, the rectangular [0, 60]×[0, 1.50] in the (τ2, Gin)-plane is divided by a simple
curve into two regions. The steady state of model (2.1) is unstable in the unstable
region and the oscillations are sustained. The periods of periodic solutions are in a
range of 80 and 195 minutes (not shown). The simple curve is determined by the
Hopf bifurcation point values τ̄2(Gin) as Gin varies from 0 to 150. The relationship
between Gin and τ̄2 is nonlinear. For example, τ̄2 ≈ 6.1, 2.8, 6.1, 9, 12, 18, 33 when
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Fig. 6.3. Left: Insulin degradation rate di vs. glucose infusion rate Gin while τ1 = 7 and
τ2 = 36. The steady state of model (2.1) is stable in one region and unstable in the other. Right:
Stable and unstable regions of the steady state when τ1 = 5 and τ2 = 6.

Gin = 0, 0.60, 0.80, 1.10, 1.20, 1.30, 1.40, respectively. Similar to the case of Gin vs.
τ1, the exogenous glucose infusion rate can be larger when τ2 increases from 10 to 60
minutes for sustained regulatory oscillations to occur. When τ2 < 2, the steady state
is stable and no sustained oscillation will occur regardless of what value Gin assumes.

6.4. Glucose infusion rate Gin vs. insulin degradation rate di. Similarly,
taking both glucose infusion rate Gin and insulin degradation rate di as bifurcation
parameters while τ1 = 7 and τ2 = 36 are fixed, we identified the stability regions in
(Gin, di) ∈ [0, 1.35] × [0.001, 0.20]. Figure 6.3 shows that a simple curve divides the
rectangular (Gin, di) ∈ [0, 1.35] × [0.001, 0.20] into two regions (the figure shows the
part of [0, 1.35]× [0.001, 0.035] only). The steady state of model (2.1) is stable in one
region and unstable in the other region. It is clear that larger insulin degradation
rate di facilitates the oscillatory regulation. However, if di = 1.75 is large, then no
self-sustained oscillation occurs. This suggests that di needs to be in moderate range
for oscillations to be sustained. Let τ1 = 5 and τ2 = 6 be smaller. Figure 6.3 (right)
shows that the sustained oscillation occurs in a region surrounded by a closed curve,
which requires both di and Gin to be in moderate ranges. Our simulation shows
that the amplitudes of the sustained oscillations are very small (G ∈ (80, 100) and
I ∈ (10, 12)) with periods from 58 to 105 minutes. This shows that when the delays
τ1 and τ2 are smaller, both the insulin clearance rate and the glucose infusion rate
have to be in a moderate range to ensure the oscillatory behavior of insulin secretion.

7. Discussions. In this paper, we studied the glucose-insulin regulatory system
model (2.1) analytically and numerically. Compared with the observations obtained
in [2], [17], [25], and [26], our work confirms most of the known observations and
yields additional insightful information. Using the notation in [17], we refer to the
observations in [25] and [26] as [STx] ([ST1]–[ST4]), the observations in [2] as [BGx]
([BG1] and [BG2]), and the observations in [17] as [Ax] ([A1]–[A9]). We conclude this
paper with a list of remarks and new observations (denoted by [Bx]).

[B1] Theorem 4.2 reveals that the delays in the glucose-insulin regulatory sys-
tem are critical for ensuring the sustained oscillations of regulation and
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insulin secretions. Particularly, the role of delay of insulin secretion and
the newly synthesized insulin becoming remote insulin is more critical than
the role of delay of hepatic glucose production.

[B2] If the insulin secretion responds to elevated glucose instantaneously, that is,
τ1 = 0, Theorem 4.2 (c.1) and (c.2) reveal that the insulin degradation rate
for sustaining oscillation is likely to be lower than that in the case of τ1 > 0
and τ2 = 0 (Theorem 4.2 (b.1) and (b.2)). This suggests that the oscillatory
behavior of the glucose-insulin regulation requires the insulin removal rate to
be large enough (H2(di, Gin) > 0) and the delayed effect of hepatic glucose
production to be long enough (τ2 > τ20).

[B1] and [B2] analytically confirm the numerical observation of [ST3]. It demon-
strates that the effort of dividing insulin into two compartments in the model can be
and shall be naturally and explicitly replaced by the delay parameter τ1.

[B3] According to Theorem 4.2 (b.1) for τ1 = 0, and Theorem 5.2 for τ2 > 0,
the insulin degradation rate di has to be “large” enough for sustained oscilla-
tory regulation of the glucose-insulin metabolic system. Here the meaning of
“large” refers to the numerical simulation demonstrated in Figure 5.1 (right)
that H1(di, Gin) > 0. This confirms the observation [BG1] in [2].

[B4] When τ1τ2 > 0, Theorem 5.6, Theorem 5.10, and simulations in Figure 5.1
(right) reveal the intrinsic relationship among di, Gin, τ1, and τ2 to secure
the oscillatory behavior of the metabolic system. That is, for a subject, the
oscillatory regulation occurs if one’s insulin degradation rate and the glucose
infusion rate satisfy H2(di, Gin) > 0, and the time delays in the system are
long enough (τ1 > τ10 and τ1 + τ2 > τ20). The numerical observations in
Figure 6.3 (left) indicate that if the insulin degradation rate is sufficiently
small (H1(di, Gin) < 0), the oscillations cannot be sustained. Small di causes
the insulin concentration level to remain high in plasma, which prohibits the
glucose concentration level to rise. In such cases, the oscillatory regulation
does not occur. This provides more insightful information than the general
statements in [BG1] and [A7]. On the other hand, Figure 6.3 (right) indicates
that both the glucose infusion rate and the insulin clearance rate are sensitive
to the delays τ1 and τ2. Both rates are required to be in moderate ranges for
sustained oscillations when the delayed effects are shorter.

[B5] Figures 6.1 (right), 6.2 (right), and 6.3 (left) show that when the glucose
infusion rate is high, the oscillation of insulin secretion is unlikely to persist.
This is possibly due to the fact that the β-cells cannot produce and secrete
enough insulin to uptake the large amount of glucose infused into plasma.
Thus the glucose concentration remains at a high level. The result is that
the ultradian oscillations of insulin secretion and the oscillatory regulation
of the glucose-insulin metabolic system cannot be sustained. This may help
to explain the observed steady state behavior in models of the intravenous
glucose tolerance test (IVGTT) where initial glucose infusion values are high
[3], [9], [16], [19].

[B6] In the IVGTT, the initial glucose infusion is large. Compared to such large
exogenous glucose infusion, the hepatic glucose production is negligible. For
this reason, IVGTT models are justified not to include the hepatic glucose
production term explicitly (set f5 ≡ 0 thus τ2 = 0) [3], [9], [16], and [19]. The
main goal of these models is to accurately monitor the dynamical behavior
of the glucose level, which must return to its basal level after the biphasic
insulin secretions have been triggered. Thus the insulin sensitivity can be
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tested. The simulations (Figures 1 and 2) in [16] reveal that the delay τ1 has
to be extremely large (> 400 minutes) to produce any sustainable oscillations.
Such a huge delay τ1 clearly falls out of the normal physiological range.

Since we normally eat three meals per day, it is more plausible to consider periodic
exogenous glucose infusion. That is, the constant glucose infusion rate Gin in model
(2.1) shall be replaced by a periodic function Gin(t) with a positive period ω between
180 and 300 minutes. Our simulation results reveal that there exists a harmonic
solution in such a system. For more details, interested readers can refer to [24].

Appendix A. Proof of Proposition 3.2. For the first part of (i), let

H(x) = Gin − f2(x) − f3(x)f4(d
−1
i f1(x)) + f5(d

−1
i f1(x)) = 0, x ≥ 0.(A.1)

We shall show that (A.1) has a unique root in [0,∞). Observing that f ′
1(x) > 0,

f ′
2(x) > 0, f ′

4(x) > 0, f ′
3(x) > 0, and f ′

5(x) < 0, we have H ′(x) < 0. Notice that
H(0) = Gin − f2(0) − f3(0)f4(d

−1
i f1(0)) + f5(d

−1
i f1(0)) = Gin + f5(d

−1
i f1(0)) > 0,

and

lim
x→∞

H(x) = Gin − lim
x→∞

f2(x) − lim
x→∞

f3(x)f4(d
−1
i lim

x→∞
f1(x)) + f5(d

−1
i lim

x→∞
f1(x))

= Gin −M2 − f4(d
−1
i M1) lim

x→∞
f3(x) + f5(d

−1
i M1)

< Gin −M2 −m4 lim
x→∞

f3(x) + M5 < 0.

In addition, f1(x) is strictly monotone increasing, so the proof is complete. It is
obvious that G∗ is the root of (A.1) and I∗ = d−1

i f1(G
∗).

For the second part of (i), observing that |f ′
i(x)|, i = 1, 2, 3, 4, 5, are bounded,

fi(x), i = 2, 3, 4, and fj(xt), j = 1, 5, are Lipschitzian and completely continuous
in x ≥ 0 and xt ∈ C([−max{τ1, τ2}, 0]), respectively. Then by Theorems 2.1, 2.2,
and 2.4 on pp. 19 and 20 in [15], the solution of (2.1) with given initial condition
exists and is unique for all t ≥ 0. If there exists a t0 > 0 such that G(t0) = 0 and
G(t) > 0 for 0 < t < t0, then G′(t0) ≤ 0. So

0 ≥ G′(t0) = Gin − f2(G(t0)) − f3(G(t0))f4(I(t0)) + f5(I(t0 − τ2))

= Gin − f2(0) − f3(0)f4(I(t0)) + f5(I(t0 − τ2))

= Gin + f5(I(t− τ2)) > 0.

This contradiction implies that G(t) > 0 for all t > 0. If ∃t′0 > 0 such that I(t′0) = 0
and I(t) > 0 for all 0 < t < t′0, then I(t

′

0) < 0. Therefore, 0 > I(t′0) = f1(G(t
′

0) −
diI(t

′
0 − τ1) ≥ f1(G(t′0)) > 0 . This implies that I(t) > 0 for all t > 0.
Now we show that any given solution (G(t), I(t)) of model (2.1) is bounded for

t > 0. In fact, if lim supt→∞ G(t) = ∞, there exists a sequence {tn}∞n=1 ↑ ∞ such
that limn→∞ G(tn) = ∞ and G′(tn) ≥ 0. Thus 0 < G′(tn) = Gin − f2(G(tn)) −
f3(G(tn))f4(I(tn)) + f5(I(tn − τ2)) ≤ Gin − f2(G(tn)) − f3(G(tn))m4 + M5, and
therefore

0 ≤ lim
n→∞

G′(tn) ≤ Gin − lim
n→∞

f2(G(tn)) −m4 lim
n→∞

f3(G(tn)) + M5

≤ Gin −M2 −m4 lim
x→∞

f3(x) + M5 < 0.

This contradiction shows that there is an MG > 0 such that G(t) < MG for all t > 0.
From the second equation in (2.1), since |f1(x)| ≤ M1, for all ε > 0, I ′(t) ≤ f1(MG +
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ε)−diI(t) for sufficiently large t > 0. Then we have lim supt→∞ I(t) ≤ d−1
i f1(MG+ε).

Since ε > 0 is arbitrary, lim supt→∞ I(t) ≤ d−1
i f1(MG) := MI .

If (ii) is not true, assume lim supt→∞ G(t) = MG < ∞. Then ∃{tn}∞n=1 ↑ ∞ such
that G′(tn) = 0, n = 1, 2, 3, . . . , and limn→∞ G(tn) = MG according to Lemma 3.1.
Thus G′(tn) = Gin−f2(G(tn))−f3(G(tn))f4(I(tn))+f5(I(tn−τ2)) ≥ Gin−f2(G(tn))−
f3(G(tn))m4. Let n → ∞; then 0 ≥ Gin − f2(MG) − f3(MG)m4, that is, f3(MG) ≥
(Gin−f2(MG))/m4. On the other hand, f3(MG) ≤ limx→∞ f3(x) < (Gin−M2)/m4 ≤
(Gin − f2(MG))/m4.

Appendix B. Proof of Lemma 3.3. First we show that (3.2) holds. Due
to Lemma 3.1 and part (i) of Proposition 3.2, there exists a sequence {tk}∞k=1 ↑ ∞,
such that I ′(tk) = 0, limk→∞ I(tk) = I. Thus, 0 = I ′(tk) = f1(G(tk − τ1)) − diI(tk)
for all k = 1, 2, 3, . . . . Therefore, f1(G) − diI(tk) ≥ f1(G(tk − τ1)) − diI(tk) for
k = 1, 2, 3, . . . . Thus, f1(G) − diI ≥ 0. On the other hand, there exists a sequence
{sk}∞k=1 ↑ ∞ such that limk→∞ I(sk) = I and I ′(sk) = 0 for all k > 0. Hence,
f1(G)− diI(sk) ≤ f1(G(sk − τ1))− diI(sk) for k = 1, 2, 3, . . . . Thus, f1(G)− diI ≤ 0.

Now we show that (3.3) holds. Again, due to Proposition 3.2 and Lemma 3.1,
there exists a sequence {t′k}∞k=1 ↑ ∞ as k → ∞ such that limk→∞ G(t

′

k) = G and

0 = G′(t
′

k) = Gin − f2(G(t
′

k)) − f3(G(t
′

k))f4(I(t
′

k)) + f5(I(t
′

k − τ2)), k = 1, 2, 3, . . . .
Notice that f5 ↓ 0 and f4 is monotone increasing and bounded from above by M4;
thus 0 = Gin − f2(G(t

′

k)) − f3(G(t
′

k))f4(I(t
′

k)) + f5(I(t
′

k − τ2)) ≤ Gin − f2(G(t
′

k)) −
f3(G(t

′

k))f4(I)+f5(I), k = 1, 2, 3, . . . , and thus Gin−f2(G)−f3(G)f4(I)+f5(I) ≥ 0.
Similarly we can show that (3.4) is true. According to part (i) of Proposi-

tion 3.2 and Lemma 3.1, there exists a sequence {s′

k}∞k=1 ↑ ∞ as k → ∞ such

that limk→∞ G(s
′

k) = G and 0 = G′(s
′

k) = Gin − f2(G(s
′

k)) − f3(G(s
′

k))f4(I(s
′

k)) +

f5(I(s
′

k − τ2)), k = 1, 2, 3, . . . . Notice that f5 ↓ 0 and f4 is monotone increasing

and bounded from above by M4; thus 0 = Gin − f2(G(s
′

k)) − f3(G(s
′

k))f4(I(s
′

k)) +

f5(I(s
′

k − τ2)) ≥ Gin − f2(G(s
′

k))− f3(G(s
′

k))f4(I) + f5(I), k = 1, 2, 3, . . . . This leads
to Gin − f2(G) − f3(G)f4(I) + f5(I) ≤ 0.

Appendix C. Proof of Lemma 5.4. Let f(z) = b+ ce−p1z + de−p2z. We show
that f(z) has a zero with positive real part. Since p1/p2 ∈ S1 in case (i) (p1/p2 ∈ S2

in case (ii)), there exist integers m,n ≥ 1 such that p1

p2
= 2m

2n−1 for case (i), or
p1

p2
= 2m−1

2n for case (ii). Let z = x+ qπi, where q = 2m/p1 = (2n− 1)/p2 for case (i)

or q = (2m− 1)/p1 = 2n/p2 for case (ii). Then

f(z) = b + ce−p1xe−p1qπi + de−p2xe−p2qπi

= b + ce−p1x cos 2mπ + de−p2x cos (2n− 1)π

(= b + ce−p1x cos (2m− 1)π + de−p2x cos 2nπ for case (ii))

= b + ce−p1x − de−p2x (= b− ce−p1x + de−p2x for case (ii))

:= H(x).

Notice that H(0) = b+c−d < 0 (H(0) = b−c+d < 0 for case (ii)) and limx→∞ H(x) =
b > 0; therefore H(x) has at least one zero x0 ∈ (0,∞). So f(z) has at least one zero
z0 = x0 + qπi with x0 > 0.

We perturb f(z) by gε(z) given by

gε(z) = εkzk +

k−1∑
j=1

ajε
jzj , ε > 0,(C.1)
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with small ε > 0 and show that f(z) + gε(z) has the same number of zeros as f(z)
if ε is small. To this end, we first construct a simple loop γ homotopic to a point
and then show |f(z)| > |gε(z)| on γ. Let z = x, x ∈ (−∞,∞); then |f(z)| =
b + ce−p1x + de−p2x > b. Let z = x + 2qπi, x ∈ (−∞,∞); then

|f(z)| = |b + ce−p1xe2qp1πi + de−p2xe2qp2πi|
= |b + ce−p1x cos 4mπ + de−p2x cos 2(2n− 1)π|

(= |b + ce−p1x cos 2(2m− 1)π + de−p2x cos 4nπ| for case (ii))

= b + ce−p1x + de−p2x > b.

Let z = Kx0 +yi, y ∈ [0, 2qπ], where K > 1 such that b−ce−p1Kx0 −de−p2Kx0 > b/2.
Then

|f(z)| = |b + ce−p1Kx0e−p1yi + de−p2Kx0e−p2yi|
≥ b− ce−p1Kx0 − de−p2Kx0 > b/2.

Let z = yi, y ∈ [0, 2qπ]; then

|f(z)| = |b + ce−p1yi + de−p2yi| ≥
{

d− c− b for case (i),
c− d− b for case (ii)

:= η0 > 0.

Let η′0 := min{η0, b/2}. Denote

γ := {z = x + yi ∈ C : z = x or z = x± 2qπi, x ∈ [0,Kx0],

or z = yi or z = Kx0 + yi, y ∈ [0, 2qπ].

γ◦ := {z = x + yi ∈ C : 0 < x < Kx0, − 2qπ < y < 2qπ}.

Clearly, γ is a simple loop homotopic to the original, z0 = x0+qπi ∈ γ◦ and |f(z)| > η′0
on γ. Choose r0 > 0 such that γ ⊂ A := {z ∈ C : |z| < r0}. Denote ∂A := {z ∈ C :
|z| = r0}. Thus for all z ∈ ∂A, z = r0e

θi, θ ∈ [0, 2π], we have

|gε(z)| = |εkzk +

k−1∑
j=1

ajε
jzj | ≤ εkrk0 +

k−1∑
j=1

|aj |εjrj0.(C.2)

Obviously ∃ε0 > 0 such that for all ε, 0 < ε < ε0, |gε(z)| < η′0, z ∈ ∂A. For all
z ∈ A, z = reθi; then r < r0, and

|gε(z)| = |εkzk +

k−1∑
j=1

ajε
jzj | ≤ εkrk +

k−1∑
j=1

|aj |εjrj < εkrk0 +

k−1∑
j=1

|aj |εjrj0.

Thus |gε(z)| < η′0 for all z ∈ γ. Therefore |f(z)| > |gε(z)| on γ. By Rouchè’s theorem
[7, pp. 125–126], f(z) and f(z) + gε(z) have the same number of zeros in γ◦. That is,
f(z) + gε(z) = 0 has at least one root ẑε ∈ γ◦.

Appendix D. Proof of Proposition 5.8. We need only show that the conju-
gate roots of (4.3) cross the imaginary axis from left to right. Assume τ1 + τ2 < π

2ω̂ .
From (4.3), we have[

2λ + (A + di) −DBe−λτ1τ1 −DCe−λ(τ1+τ2)(τ1 + τ2)
] dλ
dτ1

=
(
DBe−λτ1 + DCe−λ(τ1+τ2)

)
λ.
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If the root λ(τ̄1) = iω is not simple for some τ̄1 > 0, then dλ
dτ1

∣∣
τ1=τ̄1

= 0. Thus,

−DBe−iωτ̄1 −DCe−iωτ̄1+τ2iω = 0 and (B + C cosωτ2) − i sinωτ2 = 0.

This is impossible since τ2 < π
2ω̂ . Therefore,( dλ

dτ1

)−1

=
[2λ + (A + di)]e

λ(τ1+τ2) − τ2DC

(DBeλτ2 + DC)λ
− τ1

λ
.

Notice that at λ = iω,

sign
{dRe(λ)

dτ1

}
= sign

{
Re

(( dλ

dτ1

)−1)}
= sign

{
Re

( (i(A + di) − 2ω)(cosω(τ1 + τ2) + i sinω(τ1 + τ2)) − τ2DCi

−(DB cosωτ2 + iDB sinωτ2)ω

)}
= sign

{
(DB cosωτ2 + DC)2ω cosω(τ1 + τ2) + DB sinωτ2(2ω sinω(τ1 + τ2) + τ2DC)

+ DB(A + di) sinωτ1

}
= 1.

Appendix E. Proof of Proposition 5.9. Similar to the proof of Proposition 5.8
in Appendix D, assume τ1 + τ2 < π

2ω̂ . From (4.3), we have[
2λ + (A + di) − τ1DBeλτ1 −DC(τ1 + τ2)e

−λ(τ1+τ2)
] dλ
dτ2

= DCλe−λ(τ1+τ2).

If λ(τ̄2) = iω is a root of (4.3) for some τ̄2 > 0 with ω > 0, then it must be simple.
Otherwise, dλ

dτ2

∣∣
τ2=τ̄2

= 0 and leads to a contradiction, DCω cos τ1 + τ̄2 = 0. We show

that if a root of (4.3) crosses the imaginary axis while τ2 increases, it must cross from
left to right. Obviously,( dλ

dτ2

)−1

=
(2λ + (A + di))e

λ(τ1+τ2) − τ1DBe−λτ2

DCλ
− τ1 + τ2

λ
.

Thus, at λ = iω,( dλ

dτ2

)−1

=
2ω cosω(τ1 + τ2) + (A + di) sinω(τ1 + τ2) − τ1DB sinωτ2

DCω
.

Then, if τ1DB < A + di,

sign
{dRe(λ)

dτ2

}
= sign

{
Re

(( dλ

dτ2

)−1)}
= sign

{
2ω cosω(τ1 + τ2) + (A + di) sinω(τ1 + τ2) − τ1DB sinωτ2

}
= 1.
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NUMERICAL SIMULATION OF ACOUSTIC TIME
REVERSAL MIRRORS∗

CHOKRI BEN AMAR† , NABIL GMATI† , CHRISTOPHE HAZARD‡ , AND

KARIM RAMDANI§

Abstract. We study the time reversal phenomenon in a homogeneous and nondissipative
medium containing sound-hard obstacles. We propose two mathematical models of time reversal
mirrors in the frequency domain. The first one takes into account the interactions between the mir-
ror and the obstacles. The second one provides an approximation of these interactions. We prove, in
both cases, that the time reversal operator T is self-adjoint and compact. The DORT method (French
acronym for decomposition of the time reversal operator) is explored numerically. In particular, we
show that selective focusing, which is known to occur for small and distant enough scatterers, holds
when the wavelength and the size of these scatterers are of the same order of magnitude (medium
frequency situation). Moreover, we present the behavior of the eigenvalues of T according to the
frequency, and we show their oscillations due to the interactions between the mirror and the obstacles
and between the obstacles themselves.

Key words. time reversal, frequency domain, acoustic scattering, selective focusing
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1. Introduction. During the last decade, time reversal techniques have been
extensively studied, in particular for detection, localization, and identification of scat-
terers in propagative media. In the present paper, we are concerned with one of these
techniques, usually referred to as the DORT method (French acronym for decompo-
sition of the time reversal operator). This method was first developed by Prada and
Fink [17] in the context of ultrasonics (see [18] for an overview). It consists in de-
termining the invariants of a time reversal process which can be described as follows.
A time reversal mirror (TRM), composed of an array of transducers, first emits an
incident wave corresponding to a given distribution of signals sent to the transducers.
This wave is then scattered by the presence of obstacles in the propagative medium.
In a second step, the TRM measures the scattered field and time-reverses the measure,
which furnishes a new distribution of signals used to reemit a new incident wave. In
short, one cycle of the process corresponds to the succession of steps: emission, scat-
tering, measure, time reversal. The so-called time reversal operator T is obtained by
iterating this cycle twice. The DORT method deals with the eigenvalues of T and the
associated eigenvectors for a fixed frequency, that is, when time-harmonic waves are
considered. In this case, time reversal simply amounts to a phase conjugation. It was
shown [17, 19] and confirmed by experiments that for ideally resolved or pointlike and
distant enough scatterers with different reflectivities, each eigenvector corresponding
to a nonzero eigenvalue of T provides the signals to be sent to the transducers in
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order to focus on one scatterer. A mathematical justification of these selective focus-
ing properties is given in [8] for a far field approach, i.e., for an ideal TRM which
reverses the asymptotic behavior at large distance of the wave scattered by the obsta-
cles (in this case, the time reversal operator is related with the far field operator [13]
well known in scattering theory). Other applications of the DORT method, which
concern this question of focusing on a selected target, have been developed: acoustic
waveguides [10, 15], electromagnetic scattering [22, 14], or propagation in random
media [4].

The focusing properties of the eigenvectors of the time reversal operator are known
to occur for small enough scatterers, i.e., when the diameters of the scatterers are
small compared to the wavelength. Such a situation corresponds to a low frequency
case. The object of the present paper is to explore the medium frequency case by a
numerical approach, i.e., when the diameters and the wavelength have the same order
of magnitude. The model considered here differs from commonly used models in the
fact that the TRM is intrusive: instead of an array of pointlike transducers, the TRM
consists of a volumic and nonpenetrable object which perturbs the acoustic field. For
the sake of simplicity, we consider the usual simplified model of linear electroacoustic
transducers (see, e.g., [16]): the inner behavior of the TRM is modeled by a Robin
condition on its boundary.

The paper is organized as follows. In section 2, we present a mathematical model
of a nonpenetrable intrusive TRM, which is closely related to the active sonar problem
dealt with, for instance, in [20]. In this first model, the interactions between the
scatterers and the TRM are taken into account, so that we can deal with the case
where they are close to each other. Instead of the symmetric matrix obtained for a
finite number of pointlike transducers, the time reversal operator then appears, like in
the far field approach [8], as an operator acting in an L2 space representing the finite
energy space of possible excitations. The basic properties of this operator, namely
self-adjointness and compactness, are proved in section 3. They essentially tell us
that its spectrum is that of a symmetric matrix completed by an infinite number
of nonsignificant eigenvalues. In section 4, we propose a nonpenetrable intrusive
model of a TRM in which the interactions between the obstacles and the TRM are
approximated. We briefly show how to adapt the proofs of section 3. Finally, we
present some numerical results in section 5. We show that the expected selective
focusing properties hold in the medium frequency case. Moreover, we point out the
modulations of the eigenvalues of T with respect to the frequency. These oscillations
are due to the interactions between the scatterers and the TRM, and between the
scatterers themselves.

The main result of this paper, namely the properties of the time reversal operator
(Theorem 2.1), holds in many other situations which can be dealt with by similar
integral techniques. For instance, here we consider sound-hard obstacles, but we
could have chosen a Dirichlet or Robin boundary condition on ∂O instead of the
Neumann condition. Penetrable scatterers, i.e., inhomogeneities of the medium, can
also be considered.

2. A model of nonpenetrable intrusive mirror. We consider a homogeneous
medium filling the space R

n (n = 2 or 3) and containing a nonpenetrable mirror M
and some nonpenetrable obstacles O.

We study the case of an impedance condition on the boundary ∂M of the mirror
and a Neumann condition on the boundary ∂O of the obstacles (sound-hard obstacles).
Let ΩM = R

n\M , ΩO = R
n\O, and ΩM,O = R

n\(M ∪ O). We suppose that the
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boundary of the mirror is excited by a signal g (proportional to the current which
flows through each transducer). So, in the presence of the obstacles, we observe the
total field ϕT satisfying the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔϕT + k2ϕT = 0 in ΩM,O,

∂ϕT

∂n
+ μϕT = g on ∂M,

∂ϕT

∂n
= 0 on ∂O,

RC at ∞,

(2.1)

where n denotes the unit normal vector directed into the interior of the domain ΩM,O.
The wave number k is defined by k = ω/c, where ω is the frequency and c is the
speed of sound in the homogeneous medium, μ is a real parameter which represents
the inverse of the open-circuit acoustic impedance of the TRM [16], and RC is the
outgoing Sommerfeld “radiation condition” which, for ϕT , is

lim
r→+∞

r
n−1

2

(
∂ϕT

∂r
(x) − ikϕT (x)

)
= 0, r = |x|,(2.2)

where ∂ϕT /∂r denotes the radial derivative of ϕT .

In the absence of obstacles, we should observe an incident field ϕI solution to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ΔϕI + k2ϕI = 0 in ΩM ,

∂ϕI

∂n
+ μϕI = g on ∂M,

RC at ∞.

(2.3)

The perturbation due to the presence of the obstacles is the diffracted field ϕD =
ϕT − ϕI satisfying the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔϕD + k2ϕD = 0 in ΩM,O,

∂ϕD

∂n
+ μϕD = 0 on ∂M,

∂ϕD

∂n
= h on ∂O,

RC at ∞,

(2.4)

where h = −∂ϕI/∂n.

We suppose that the signal measured by the mirror is equal to ϕD/∂M
, the value

of the diffracted field on ∂M . The measured signal is then conjugated and used to
generate the incident and the total fields in the next iteration.

Time reversal operator. Let R denote the operator describing the response of
the medium, that is, the three successive steps: emission, diffraction, measure. It is
defined by

Rg = ϕD/∂M
.
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The time reversal operator is obtained by iterating the time reversal process (emission,
diffraction, measure, conjugation) twice. Therefore, T is given by

Tg = RRg, that is, T = RR,

where the operator R is defined by

Rg = Rg.

Theorem 2.1. T is a self-adjoint positive and compact operator in L2(∂M).
These properties are proved below by an integral approach based on the use of

several Green’s functions.

3. Proof of Theorem 2.1. This section is devoted to the proof of the following
result, from which Theorem 2.1 derives.

Proposition 3.1. For every g ∈ L2(∂M), the response Rg ∈ L2(∂M) of the
medium is given by

(Rg)(x) =

∫
∂M

GR(x, y)g(y)dσ(y),(3.1)

where GR ∈ L2(∂M × ∂M) is symmetric, i.e., GR(x, y) = GR(y, x).
This proposition shows that R is a Hilbert–Schmidt operator in L2(∂M) such

that R∗ = R since

(R∗g)(x) =

∫
∂M

GR(y, x)g(y)dσ(y) and (Rg)(x) =

∫
∂M

GR(x, y)g(y)dσ(y).

Hence T = R∗R is self-adjoint positive and compact in L2(∂M). It is actually a
Hilbert–Schmidt operator in L2(∂M) whose kernel G ∈ L2(∂M × ∂M) is given by

G(x, y) =

∫
∂M

GR(z, x)GR(z, y)dσ(z).

The spectral properties of T follow. On one hand, the eigenvalues of T form a de-
creasing sequence of positive numbers (λn)n∈N∗ such that

∑
n∈N∗ λ2

n is finite. On the
other hand, one can choose an orthonormal basis of L2(∂M) composed of eigenvectors
of T , and T becomes diagonal in this basis.

Integral representations. To prove Proposition 3.1, first recall that problems
(2.1), (2.3), and (2.4) are well-posed [6] in a proper functional framework which is
made precise later. Consider then the operators

ST : g �→ ϕT solution to (2.1),

SI : g �→ ϕI solution to (2.3),

SD : h �→ ϕD solution to (2.4),

as well as the Green’s functions GT , GI , and GD, which are, respectively, outgoing
solutions (in the sense that they satisfy the outgoing radiation condition (2.2)) to⎧⎪⎪⎨

⎪⎪⎩
ΔGT (x, .) + k2GT (x, .) = δx in ΩM,O,

ΘMGT (x, .) = 0 on ∂M,

ΘOGT (x, .) = 0 on ∂O,

(3.2)
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ΔGI(x, .) + k2GI(x, .) = δx in ΩM ,

ΘMGI(x, .) = 0 on ∂M,
(3.3)

⎧⎪⎪⎨
⎪⎪⎩

ΔGD(x, .) + k2GD(x, .) = 0 in ΩM,O,

ΘMGD(x, .) = 0 on ∂M,

ΘOGD(x, .) = −ΘOGI(x, .) on ∂O,

(3.4)

where δx stands for the Dirac measure at point x, ΘM = (∂/∂n + μ)/∂M , and ΘO =
(∂/∂n)/∂O. By construction, we have GT = GI + GD.

These functions can be expressed by means of the usual Green’s function G0

of the Helmholtz operator in the free space, i.e., the outgoing solution in R
n to

ΔG0(x, .) + k2G0(x, .) = δx, which is given by

G0(x, y) =

⎧⎪⎪⎨
⎪⎪⎩
− eik|x−y|

4π|x− y| if n = 3,

1

4i
H

(1)
0 (k|x− y|) if n = 2.

Indeed, we have

GI(x, .) = G0(x, .) + G̃I(x, .), where G̃I(x, .) = −SIΘMG0(x, .),

GD(x, .) = −SDΘOGI(x, .).
(3.5)

Lemma 3.2. Let Ωi stand for ΩM if i = I, and for ΩM,O if i = T or D. Then
ϕT = ST g, ϕI = SIg, and ϕD = −SDΘOϕI are given by

ϕi(x) =

∫
∂M

Gi(x, y)g(y)dσ(y) ∀x ∈ Ωi, i ∈ {T, I,D},(3.6)

where the kernels Gi are symmetric: Gi(x, y) = Gi(y, x).
Proof. Formulas (3.6) are classical. For the sake of clarity, we recall briefly how

to derive them from the usual integral representation [5]

ϕi(x) =

∫
∂Ωi

{
G0(x, y)

∂ϕi

∂n
(y) − ∂G0

∂ny
(x, y)ϕi(y)

}
dσ(y) ∀x ∈ Ωi.(3.7)

We use the fact that if two functions ϕ and ψ satisfy the Helmholtz equation either
inside a bounded domain Λ, or outside Λ together with the radiation condition (2.2),
then we have the reciprocity relation [5]∫

∂Λ

{
ψ
∂ϕ

∂n
− ∂ψ

∂n
ϕ

}
dσ = 0,(3.8)

where the normal derivative can obviously be replaced by (∂/∂n + μ).

For ϕI , we replace G0 in (3.7) by GI −G̃I , which yields two similar integral terms

on ∂M . Thanks to (3.8), the term involving G̃I vanishes. The other one reduces to
the single layer potential (3.6) by virtue of the boundary conditions satisfied by ϕI

and GI(x, .) (see (2.3) and (3.3)).
For ϕT , the same idea applies. The integral terms are now set on ∂M ∪ ∂O.

The term which involves G̃T = GT − G0 again vanishes by (3.8). Split the other
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one, which involves GT , into two integrals, respectively, on ∂M and ∂O. Thanks to
the boundary conditions in (2.1) and (3.2), the former simplifies as above to (3.6),
whereas the latter vanishes.

Finally, subtracting the previous representations yields (3.6) for ϕD = ϕT − ϕI .
The symmetry of GI is easily deduced from that of G0 by proving that the

perturbation term G̃I is also symmetric. The integral representation (3.7) of G̃I(x, .)
reads

G̃I(x, y) =

∫
∂M

{
ΘMG0(y, z)G̃I(x, z) −G0(y, z)ΘM G̃I(x, z)

}
dσ(z),

where the operator ΘM is understood with respect to z. The boundary conditions

satisfied by G̃I(x, .) and G̃I(y, .) then yield

G̃I(x, y) = −
∫
∂M

ΘM G̃I(y, z)G̃I(x, z)dσ(z) +

∫
∂M

G0(y, z)ΘMG0(x, z)dσ(z).

Thanks to the reciprocity relation (3.8) applied in ΩM for the first integral, and in M
for the second one, we see that both integrals are symmetric for (x, y) ∈ ΩM × ΩM ,

and hence so is G̃I .
The symmetry of GD is proved similarly, and that of GT follows.

Functional details. It is now clear that (3.1) follows from the integral repre-
sentation (3.6) of ϕD simply by taking its restriction on ∂M :

GR(x, y) = GD(x, y) for (x, y) ∈ ∂M × ∂M.

Hence Proposition 3.1 will be proved if we are able to justify that this double restric-
tion actually yields a function of L2(∂M × ∂M). We thus have to make precise the
function spaces in which the kernels Gi are defined: the appropriate tool to do so is
the notion of tensor product of Hilbert spaces [1].

All the domains considered are assumed to have Lipschitz boundaries (for in-
stance, ∂M and ∂O may be piecewise smooth). For a bounded domain Λ ⊂ R

n, we
denote

H(Λ) =
{
ϕ ∈ H1(Λ); Δϕ ∈ L2(Λ)

}
.

Recall that, on one hand, the trace operator γ∂Λϕ = ϕ/∂Λ is continuous from

H(Λ) to H1/2(∂Λ), and, on the other hand, the normal derivative (∂ϕ/∂n)/∂Λ is

continuous from H(Λ) to H−1/2(∂Λ). Moreover, for all bounded sets ΛM ⊂ ΩM and
ΛO ⊂ ΩM,O, the operators SI and SD are continuous from H−1/2(∂M) to H(ΛM )
and from H−1/2(∂O) to H(ΛO) (see [6]).

Lemma 3.3. Let ΛM ⊂ ΩM and ΛO ⊂ ΩM,O be two bounded sets such that
∂M ⊂ ∂ΛM , ∂O ⊂ ∂ΛO, and ΛM ∩ ΛO = ∅. Then

GI ∈ H(ΛM )⊗̂H(ΛO) and GD ∈ H(ΛM )⊗̂H(ΛM ).

Proof. Formulas (3.5), which involve operators acting on the second variable y,
can be rewritten in terms of tensor products of operators as

GI = G0 − (Id⊗ SIΘM )G0,

GD = − (Id⊗ SDΘO)GI .
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Let us first deal with GI . Thanks to its symmetry, the announced property amounts
to showing that GI ∈ H(ΛO)⊗̂H(ΛM ). This clearly holds for G0 since it is infinitely
differentiable outside the diagonal x = y. Moreover, the above-mentioned properties
of SI and traces show that SIΘM is continuous from H(ΛM ) to H(ΛM ). As a conse-
quence [1], Id ⊗ SIΘM is continuous from H(ΛO)⊗̂H(ΛM ) to itself. The conclusion
follows.

For GD, we use the previous result and the fact that Id ⊗ SDΘO is continuous
from H(ΛM )⊗̂H(ΛO) to H(ΛM )⊗̂H(ΛM ).

We finally have to notice that since γ∂M is continuous from H(ΛM ) to L2(∂M) ⊃
H1/2(∂M), the “double trace” γ∂M ⊗ γ∂M is continuous from H(ΛM )⊗̂H(ΛM ) to
L2(∂M)⊗̂L2(∂M) = L2(∂M × ∂M). Hence the above lemma yields

GR = (γ∂M ⊗ γ∂M )GD ∈ L2(∂M × ∂M),

which is obviously symmetric. This completes the proof of Proposition 3.1 and thus
of Theorem 2.1.

4. An approximate model. The model we consider in this section is an ap-
proximation of the model introduced in section 2. Although more intricate in its
presentation, it leads to a reduction of the computational cost of the time reversal
operator, for it separates the respective roles of the TRM and the scatterers. It can be
seen as the first step of an iterative method used in the context of multiple scattering
problems (see, e.g., [7, 21] and [3, 2] for a rigorous justification of the method and
[12] for an overview). The coupled problem of section 2 is solved by considering the
successive reflections between the TRM and the scatterers. Here only specular waves,
i.e., the first reflections, are taken into account. Comparing this model with that of
section 2 will help us in section 5 to understand the influence of multiple scatter-
ing between the obstacles and the TRM upon the eigenelements of the time reversal
operator.

Considering the same incident wave ϕI = SIg as in section 2, the diffracted field is

now approximated near the TRM by a superposition of two waves: ϕD = ϕ
(1)
D +ϕ

(2)
D .

The first one ϕ
(1)
D represents the result of the diffraction of ϕI by the scatterers alone,

i.e., the outgoing solution to⎧⎨
⎩Δϕ

(1)
D + k2ϕ

(1)
D = 0 in ΩO,

ΘOϕ
(1)
D = −ΘOϕI on ∂O.

(4.1)

The second one is the result of the diffraction of the latter by the TRM alone,
i.e., the outgoing solution to⎧⎨

⎩Δϕ
(2)
D + k2ϕ

(2)
D = 0 in ΩM ,

ΘMϕ
(2)
D = −ΘMϕ

(1)
D on ∂M.

(4.2)

We assume again that the TRM measures the trace of ϕD on ∂M . Hence the
response of the medium is now described by the operator

Rg = ϕD/∂M
= (ϕ

(1)
D + ϕ

(2)
D )/∂M .

Theorem 2.1 holds in this case: the time reversal operator T = RR is positive,
self-adjoint, and compact in L2(∂M).
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The proof is similar to that of section 3. We simply have to replace the Green’s

function GD by GD = G
(1)
D +G

(2)
D , where G

(1)
D and G

(2)
D are, respectively, the outgoing

solutions to ⎧⎨
⎩ΔG

(1)
D (x, .) + k2G

(1)
D (x, .) = 0 in ΩO,

ΘOG
(1)
D (x, .) = −ΘOGI(x, .) on ∂O

and ⎧⎨
⎩ΔG

(2)
D (x, .) + k2G

(2)
D (x, .) = 0 in ΩM ,

ΘMG
(2)
D (x, .) = −ΘMG

(1)
D (x, .) on ∂M.

Lemma 4.1. The following integral representation holds:

∀x ∈ ΩM,O, ϕD(x) =

∫
∂M

GD(x, y)g(y)dσ(y),

where GD is symmetric in ΩM,O × ΩM,O.
Proof. Contrary to Lemma 3.2, we are not able to give an intrinsic definition of

the total field ϕI +ϕD by means of a problem such as (2.1), which would depend only
on the incident field. We thus give a direct proof of the above integral representation,

starting from the classical formula (3.7) applied to ϕ
(1)
D in ΩO.

Using (3.5) and (3.8) applied to G̃I(x, .) and ϕ
(1)
D in ΩM,O, formula (3.7) becomes

∀x ∈ ΩM,O, ϕ
(1)
D (x) =

∫
∂M∪∂O

{
−Θ•GI(x, y)ϕ

(1)
D (y) + GI(x, y)Θ•ϕ

(1)
D (y)

}
dσ(y),

where Θ• stands for ΘM or ΘO. Thanks to the boundary conditions satisfied by

GI(x, .) and ϕ
(2)
D , the contribution on ∂M is nothing but SIΘMϕ

(1)
D = −ϕ

(2)
D by

Lemma 3.2, and so the contribution on ∂O is exactly ϕD(x). We thus have

ϕD(x) =

∫
∂O

{
ΘOG

(1)
D (x, y)ϕ

(1)
D (y) −GI(x, y)ΘOϕI(y)

}
dσ(y)(4.3)

=

∫
∂O

{
G

(1)
D (x, y)ΘOϕ

(1)
D (y) − ΘOGI(x, y)ϕI(y)

}
dσ(y)

=

∫
∂O

{
−G

(1)
D (x, y)ΘOϕI(y) + ΘOG

(1)
D (x, y)ϕI(y)

}
dσ(y)

=

∫
∂M

{
G

(1)
D (x, y)ΘMϕI(y) − ΘMG

(1)
D (x, y)ϕI(y)

}
dσ(y).

The first and third equalities result from the boundary conditions satisfied by

G
(1)
D (x, .) and ϕ

(1)
D . The second one derives from the reciprocity relation (3.8) applied,

on one hand, to G
(1)
D (x, .) and ϕ

(1)
D in ΩO and, on the other hand, to GI(x, .) and ϕI

in O. The last one again results from (3.8) applied to G
(1)
D (x, .) and ϕI in ΩM,O.

Noticing finally that ΘMG
(2)
D (x, .) = −ΘMG

(1)
D (x, .), we have∫

∂M

ΘMG
(1)
D (x, y)ϕI(y)dσ(y) = −

∫
∂M

G
(2)
D (x, y)ΘMϕI(y)dσ(y),
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thanks to (3.8) applied to G
(2)
D (x, .) and ϕI in ΩM . Since g = ΘMϕI , the integral

representation of ϕD follows.
The symmetry of GD(x, .) is proved by the same argument as in Lemma 3.2. Since

G
(1)
D (x, .) and G

(2)
D (x, .) play the same role as ϕ

(1)
D and ϕ

(2)
D , we obtain for GD(x, y) a

formula similar to (4.3):

GD(x, y) =

∫
∂O

{
ΘOG

(1)
D (y, z)G

(1)
D (x, z) −GI(y, z)ΘOGI(x, z)

}
dσ(z),

where both terms are symmetric by (3.8).

5. Two-dimensional numerical simulation. To solve numerically problems
(2.3), (2.4), (4.1), and (4.2), we formulate them in bounded domains to apply a finite
element method. We use the so-called coupling method between integral representa-
tion and finite elements, which is a nonsingular alternative to the well-known integral
equation techniques. This method has been introduced by Jami and Lenoir [9] in
hydrodynamics and then extended to many other wave propagation problems.

5.1. Bounded domain formulation. We describe the method only for prob-
lem (4.1), but the same technique is also applied for the other ones. We consider
a bounded domain Ω′ surrounding O and included in ΩO (see Figure 5.1), and we
introduce the following problem set in the domain Ω′:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Δϕ′ + k2ϕ′ = 0 in Ω′,

∂ϕ′

∂n
= h on ∂O,

ΘΣϕ
′ = ΘΣ

∫
∂O

{
G0(., y)

∂ϕ′

∂n
(y) − ∂G0

∂ny
(., y)ϕ′(y)

}
dσ(y) on Σ,

(5.1)

where Σ = ∂Ω′\∂O and ΘΣ = (∂/∂n + β), β being an arbitrary complex parameter.

It is clear that if ϕ
(1)
D is a solution of (4.1), then ϕ′ = ϕ

(1)
D/Ω′ is a solution of

problem (5.1). Similarly, provided Im(β) = 0, every solution ϕ′ of (5.1) can be

uniquely extended to a solution ϕ
(1)
D of (4.1) by the integral representation formula

on ∂O:

∀x ∈ ΩO, ϕ
(1)
D (x) =

∫
∂O

{
G0(x, y)

∂ϕ′

∂n
(y) − ∂G0

∂ny
(x, y)ϕ′(y)

}
dσ(y).(5.2)

The variational formulation of the problem (5.1) is the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find ϕ′ ∈ H1(Ω′) such that ∀ψ ∈ H1(Ω′), we have∫
Ω′

∇ϕ′.∇ψ − k2

∫
Ω′

ϕ′ψ − β

∫
Σ

ϕ′ψ

+

∫
Σ

ψ(x)

∫
∂O

ϕ′(y)

(
∂

∂nx
+ β

)
∂G0

∂ny
(x, y)dσ(y)dσ(x)

= −
∫
∂O

hψ +

∫
Σ

ψ(x)

∫
∂O

h(y)

(
∂

∂nx
+ β

)
G0(x, y)dσ(y)dσ(x).

(5.3)

Finally, we discretize problem (5.3) to obtain a linear system that we solve numerically.
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Fig. 5.1. Bounded domain Ω′.
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O O

Fig. 5.2. Geometry of the problem.

5.2. Numerical results. All the numerical results are obtained by the code
MELINA [11]. We consider an oblong mirror of width 8 and height 1 and two half-
disk obstacles of diameters 4 and 2 (see Figure 5.2). We denote by D the distance
between the mirror and the obstacles. The distance between the scatterers is δ = 2.
We investigate two cases: D = 3 and D = 8. We consider here a Neumann condition
on the boundary of the mirror ∂M (μ = 0, that is, the case of a large acoustic
impedance of the transducers).

Figure 5.3 (respectively, Figure 5.4) shows the amplitude of the total field corre-
sponding to the emission of the first (respectively, second) eigenvector associated with
λ1 = 0.0499 if D = 8 and λ1 = 0.2211 if D = 3 (respectively, λ2 = 0.0191 if D = 8 and
λ2 = 0.0534 if D = 3) in the case of the first model presented in section 2 and where
k = 3.14 (the wavelength lw = 2π/k = 2 is then equal to the distance between the
obstacles δ). We observe that the wave is focused on the biggest obstacle (respectively,
the smallest). When emitting the third eigenvector associated with λ3 = 0.0002 if
D = 8 and λ3 = 0.0085 if D = 3, we see in Figure 5.5 that the wave again focuses on
the biggest scatterer, although it seems less concentrated in its vicinity than for the
first eigenvector. These results essentially show that selective focusing, which is known
to occur for small and distant enough scatterers [8], is achieved even though the size of
the obstacles, the distance between them, and the wavelength are of the same order.

Figure 5.10 shows the first four eigenvalues of the time reversal operator T ac-
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Fig. 5.3. Emission of the first eigenvector for k = 3.14 (left: D = 8, right: D = 3).

Fig. 5.4. Emission of the second eigenvector for k = 3.14 (left: D = 8, right: D = 3).

Fig. 5.5. Emission of the third eigenvector for k = 3.14 (left: D = 8, right: D = 3).

cording to the wave number k in the case of the first model presented in section 2,
where the interactions between the mirror and the obstacles are taken into account
and where the distance D between them is, respectively, 8 or 3. Figure 5.11 shows
the same results in the case of the second model, where these interactions are approx-
imated by only the first reflections.

We can first notice in these figures that there is only one significant eigenvalue
λ1 at low frequencies, which follows from the fact that the wavelength lw is large
compared to the distance δ between the two obstacles, so that the mirror cannot dis-
tinguish between them and see them as only one. For k = 0.325 (that is, lw � 19),
this is illustrated by Figure 5.6 (respectively, Figure 5.7), which shows the amplitude
of the total field corresponding to the emission of the first (respectively, second) eigen-
vector associated with λ1 = 0.6994 if D = 8 and λ1 = 3.2717 if D = 3 (respectively,
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Fig. 5.6. Emission of the first eigenvector for k = 0.325 (left: D = 8, right: D = 3).

Fig. 5.7. Emission of the second eigenvector for k = 0.325 (left: D = 8, right: D = 3).

Fig. 5.8. Emission of the first eigenvector for k = 0.875 (left: D = 8, right: D = 3).

Fig. 5.9. Emission of the second eigenvector for k = 0.875 (left: D = 8, right: D = 3).
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Fig. 5.10. First model: four largest eigenvalues of T according to k.
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Fig. 5.11. Second model: four largest eigenvalues of T according to k.
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Fig. 5.12. The first two eigenvalues for the two models.

λ2 = 0.0006 if D = 8 and λ2 = 0.0265 if D = 3) in the case of the first model
presented in section 2.

When k increases, Figures 5.10 and 5.11 show that there are two significant eigen-
values: the gap with the third eigenvalue is pronounced when D = 8 and becomes
smaller when D = 3. This confirms a well-known effect: this gap increases when the
angular aperture under which the TRM is seen from the obstacles decreases.

We note the presence of oscillations of the first two eigenvalues of T in the case of
the first model (Figure 5.10) contrary to the case of the second model (Figure 5.11).
To understand this, we show in Figure 5.12 the first two eigenvalues of the two models
where, respectively, D = 3 and D = 8. We remark that the eigenvalues for the first
model oscillate around the corresponding eigenvalues for the second model. This can
be explained by the fact that the interactions between the mirror and the obstacles
can be constructive or destructive according to the distance between the mirror and
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Fig. 5.13. Analysis of the interactions between obstacles.

the obstacles. For the greatest eigenvalue, we note the dependence of the period of
oscillations on the distance between the mirror and the obstacles: Δk � π/D. More
precisely, the interactions between the mirror and the obstacles are constructive for
the wave numbers kn � nπ/D, n ∈ N

∗ (which correspond to local maxima of λ1), and
destructive for kn � ((n− 1/2)π)/D, n ∈ N

∗. This can be explained by the fact that
the wave numbers nπ/D, n ∈ N

∗, represent the eigenvalues of the operator −Δ with
Neumann conditions on the boundaries in the one-dimensional domain [0, D], and the
corresponding eigenfunctions are ϕn(y) = cos(kny), y ∈ [0, D].

To study the interactions between the obstacles, we now show in Figure 5.13
the first and second eigenvalues of T for the approximate model and for D = 3,
together with the first eigenvalue of T for the same model but with a new geometrical
configuration in which only the biggest or the smallest obstacle is present. We observe
that, at medium frequencies, there is a good coincidence between the first eigenvalue
of T corresponding to the case where the two obstacles are present and the one where
there is only the biggest obstacle, which explains that the interactions due to the
smallest obstacle are negligible. Meanwhile, the second eigenvalue of T corresponding
to the case where the two obstacles are present oscillates smoothly around the first
eigenvalue where there is only the smallest obstacle, which proves that the interactions
due to the biggest obstacle are important.

Figure 5.10 shows that the two greatest eigenvalues become very close near par-
ticular values of k. When the time reversal operator has a double eigenvalue, which
occurs, for instance, in the case of two identical targets, one generally requires addi-
tional information to identify the selective focusing fields within the two-dimensional
eigenspace. Here the slight distance between both eigenvalues seems sufficient to
identify these fields. Consider, for example, the case D = 3 and k = 0.875, where
λ1 = 0.1760 and λ2 = 0.1637. The associated eigenvectors generate the fields rep-
resented in Figures 5.8 and 5.9 (right). Although both targets are separated by less
than one-third of a wavelength, the TRM clearly distinguishes them, contrary to the
low frequency situation of Figure 5.6. This effect results from the proximity of the
TRM which acts in the near field. Indeed, if the TRM is moved away to D = 8 with
the same wave number (Figures 5.8 and 5.9 (left)), both targets are seen as a single
one, as in the above-mentioned low frequency case.
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ON STEP-FUNCTION REACTION KINETICS MODEL IN THE
ABSENCE OF MATERIAL DIFFUSION∗

DMITRY GOLOVATY†

Abstract. We propose a precise definition of the step-function kinetics suitable for approxi-
mating diffuse propagating reaction fronts in one-dimensional gasless-combustion-type models when
a Lewis number is large. We investigate this kinetics in the context of free-radical frontal polymer-
ization (FP) in which a monomer-initiator mixture is converted into a polymer via a propagating
self-sustaining reaction front. The notion of step-function kinetics has been extensively used in stud-
ies of the frontal dynamics both in FP and in combustion problems when the material diffusion
is negligible. However, the models have always been effectively reduced to their point-source ap-
proximations without defining exactly what the step-function kinetics is for diffuse reaction fronts.
We demonstrate numerically that dynamics of diffuse fronts in systems modeled with step-function
kinetics and in systems modeled with Arrhenius kinetics are qualitatively the same at time scales
at which the bulk reaction ahead of the front can be ignored. We perform stability analysis for the
traveling reaction wave and show that the stability threshold is in close agreement with numerical
simulations as well as with other existing kinetics approximations. The benefits of using step-function
kinetics are two-fold. The reaction dynamics predicted by the step-function kinetics approximates
the dynamics predicted by the Arrhenius kinetics over a wider range of system parameters than
the point-source approximation. Second, the systems governed by the step-function kinetics can be
analyzed both analytically and numerically within the framework of a single model.

Key words. frontal polymerization, gasless combustion, Arrhenius kinetics, traveling wave,
reaction-diffusion equations
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1. Introduction.

1.1. Physical background and existing modeling approaches. In this pa-
per we give a precise definition of the step-function kinetics in the absence of material
diffusion and study it in the context of free-radical frontal polymerization (FP).

Frontal polymerization is a process in which a monomer converts into a polymer
via a self-propagating localized reaction wave [4], [5]. A typical frontal polymerization
experiment is performed in a glass tube filled with reagents. An external heat source,
when applied at the top of the tube, initiates a descending front that appears as
a moving region of polymer formation. Depending on the choice of reactants and
the conditions of the experiment, the front either may or may not propagate with
a constant speed. Various nonuniform propagation scenarios can occur, even if it is
assumed that the front always remains flat—the situation considered in this paper.

There are several conditions necessary for the existence of the frontal mode. First,
the ignition temperature must be high enough to generate and initially sustain the
reaction front. Further, the reaction rate must be extremely small at the initial
(ambient) temperature but very large at the front temperature. The high reaction
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rate coupled with the exothermicity of the reaction must be sufficient to overcome
heat losses into the reactants and product zones [5].

Note that an alternative to frontal polymerization is bulk polymerization, in which
a mixture of reagents is heated uniformly and polymer formation occurs simultane-
ously throughout the mixture.

A more extensively studied chemical process with a frontal reaction mechanism is
self-propagating high-temperature synthesis (SHS)—a combustion process character-
ized by a heat release large enough to propagate a combustion front through a powder
compact while consuming the reactant powders [6], [13]. The simplest models and
front propagation mechanisms for FP and SHS are essentially the same, except for
the magnitudes of the model parameters.

Both steady and unsteady front propagation have been observed in FP [18] as
well as in SHS [14]. Unsteady front propagation is usually undesirable, as it leads to
nonuniform “layered” structure of the final product. One of the goals of our modeling
is to determine the range of material parameters within which the stability of a uni-
formly propagating polymerization front is guaranteed. The analysis of the full model
is, however, too complicated because it requires solving a system of coupled nonlinear
partial differential equations describing multiple reactions and energy transport. In
order to make analytical predictions, numerous simplifications are usually introduced
by employing asymptotics in terms of small parameters, considering effective kinetics,
etc.

In the presence of an appropriate small nondimensional parameter, the reaction
zone can be replaced by a propagating front with the chemical reaction approximated
by a heat source attached to the front (point-source kinetics [12]). With the removal
of a nonlinear reaction term, the governing equations become significantly simpler,
but, because the location of the front is not known a priori, the reduced problem is
of a free-boundary type. The approximate problem is easier to study analytically,
especially from the point of view of stability analysis for the traveling wave solutions.

Even though sharp-front approximation is not usually derived via a rigorous
asymptotic method, it has been shown to be an effective tool to study SHS and FP
problems, yielding qualitatively plausible results. On the negative side, the problems
with point-source kinetics are difficult to treat numerically [9]; further, for certain
regimes of FP, the main reaction zone does not always remain narrow even in the
presence of a small parameter, resulting in nonnegligible bulk reactions that are ig-
nored by default within point-source kinetics approximation. Indeed, for oscillating
reaction waves, the concentration of the monomer does not evolve via the frontal mode
alone [3], as the width of the main reaction zone varies periodically by several orders
of magnitude, leaving regions of unreacted monomer behind the polymerization front.
The monomer in these regions subsequently converts to polymer via bulk (nonfrontal)
polymerization.

Another approach that has been successfully applied in a number of combus-
tion and polymerization studies is to introduce simplified distributed kinetics [1],
[10], which is usually combined with narrow reaction zone approximation [11], [16],
[20]. Within this approach, the Arrhenius temperature dependence is replaced by a
step-function with height equal to the value of the Arrhenius function at a solution-
dependent characteristic temperature. The exact choice of characteristic temperature
is determined by the physics of the problem. Although the kinetics function in this
setup is very simple, the strong nonlinearity of the Arrhenius kinetics is preserved by
making the characteristic temperature dependent on the solution.

The advantage of the step-function kinetics is that the traveling wave solution can
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generally be found analytically. The stability analysis for this solution is, however,
very tedious, and researchers have resorted to additional simplifications, in particular
via narrow-reaction-zone-type asymptotics that essentially lead back to point-source
kinetics.

Typically, the front is postulated to have a width that is determined by a small
nondimensional parameter ε (cf. (1.11)) [11], [16], [20]. Then the characteristic tem-
perature is set as a limit of the temperature in an outer solution instead of prescribing
the explicit formula for the characteristic temperature for a diffuse front and using
a rigorous asymptotic procedure. Since the characteristic temperature for the trav-
eling wave solution is indeed the same as the appropriate outer temperature limit
at the interface, this approach successfully captures the stability threshold for the
fronts propagating with a constant speed. On the other hand, narrow reaction zone
approximations of step-function kinetics suffer from the same limitations as those of
point-source kinetics.

To our knowledge, there is no self-consistent distributed step-function kinetics for-
mulation appropriate for modeling of diffuse fronts in the absence of material diffusion.
In this paper, we introduce a version of such kinetics in the context of one-dimensional
FP/SHS. The benefits of using step-function kinetics are two-fold. The solution pro-
files for the (distributed) step-function kinetics closely resemble the solution profiles
for the Arrhenius kinetics models over a wider range of system parameters than do
the solution profiles for the point-source models. In particular, possible departures
from the purely frontal reaction mechanism can be studied by using distributed step-
function kinetics but not point-source kinetics. Second, the systems governed by
step-function kinetics can be analyzed both analytically and numerically within the
framework of a single model.

We perform the stability analysis for the traveling reaction wave in a diffuse-
front setting and determine the stability boundary. In order to make the analysis
tractable, we assume that the nondimensional parameter ε defined in (1.11) is small.
This assumption appears in a number of other works [11], [16], [20] as a justification
for considering sharp-front asymptotics of the step-function kinetics. The analysis
of [3] indicates that there is no clear relationship between the value of ε and the width
of the reaction zone, especially for pulsating fronts. Hence we do not consider the
reaction zone to be narrow in our calculations.

Because the algebra involved in handling perturbations of the ground state and
the resulting form of the dispersion relation are very complex, we handle some of the
symbolic calculations and solve the dispersion relation in Maple. We obtain the sta-
bility threshold and show that it is in excellent agreement with numerical predictions
and the existing sharp-front approximations. The combination of analytical compu-
tations and Maple has a clear advantage over the full numerical simulations in that it
does not require numerical solution of a system of partial differential equations. Also
the former requires a significantly shorter computational time (minutes versus hours)
even for a single simulation run.

The computational costs are considerably lower for the step-function kinetics
model than for the point-source kinetics model since the position of the front is not
one of the unknowns in the problem. The numerically determined behavior of the
front for the step-function kinetics is qualitatively similar to that under the Arrhenius
kinetics [7], [18], as it shows a similar hierarchy of dynamics and similar solution
features, including those that result from the nonfrontal mode of polymerization. The
same spectrum of system behaviors has also been demonstrated for the point-source
kinetics [9]; however, all bulk (nonfrontal) reactions are ignored in this setting.
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1.2. Mathematical model. Although the mechanism of free-radical polymer-
ization involves three steps—initiation, propagation, and termination—and five re-
agents—an initiator, an active initiator radical, an active polymer radical, a monomer,
and a complete polymer chain [18]—we will make a number of simplifying assump-
tions that reduce the complexity of the underlying mathematical model. Hence we
will assume [16], [18], [19] the following:

• The rates of reactions between the initiator radicals and the monomer and
between the polymer radicals and the monomer are the same.

• The rate of change of total radical concentration is much smaller than the
rates of their production and consumption.

• The initial concentration of the initiator is so large that it is not appreciably
consumed during the polymerization process.

• Material diffusion is negligible compared to thermal diffusion.
• Both reagents and the final product are viscous enough to ignore convective

effects and bubble formation.
• The test tube is sufficiently thin with the adiabatic boundary conditions on

sidewalls so that the spatial dependence of the solution can be restricted to
the axial variable.

Suppose that a test tube containing the monomer-initiator mixture occupies a
region Ω ∈ R3, and denote by M(x, t) the monomer concentration and by T (x, t) the
temperature of the mixture at the point x ∈ Ω and the time t > 0. Then the process
of free-radical polymerizations can be described [16] by what is known as a single-step
effective kinetics model of monomer-to-polymer conversion:

∂M

∂t
= −kMe

E
RgTb

(
1−Tb

T

)
,(1.1)

∂T

∂t
= div (κ∇T ) + kqMe

E
RgTb

(
1−Tb

T

)
,(1.2)

where κ is a thermal diffusivity of the mixture/final product, k is the effective pre-
exponential factor in the Arrhenius kinetics, Rg is the gas constant, E is the effective
activation energy, and Tb is a reference temperature that will be specified below. The
constant parameter q is −ΔH

cρ , where ΔH is the reaction enthalpy; c and ρ are the
specific heat and the mixture density, respectively.

Throughout this paper we will assume that the test tube is one-dimensional,
Ω = [−L ,L], and that the thermal diffusivity κ is constant. (We ignore possible
dependence of κ on temperature and degree of conversion 1 − M/M0.) Then the
problem (1.1)–(1.2) reduces to

∂M

∂t
= −kMe

E
RgTb

(
1−Tb

T

)
,(1.3)

∂T

∂t
= κ

∂2T

∂x2
+ kqMe

E
RgTb

(
1−Tb

T

)
.(1.4)

We will assume that T and M satisfy the constant initial conditions

T (x, 0) = T0, M(x, 0) = M0, x ∈ [−L ,L] .(1.5)

In order to initiate the reaction, heat must be supplied to the system; hence for the
first t0 seconds we will use the following boundary conditions

Tx(−L , t) = 0 , Mx(±L , t) = 0 , T (L , t) = Tb , t ∈ (0 , t0) .(1.6)
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During the front propagation regime, we will impose the adiabatic and impen-
etrability boundary conditions on the temperature and the monomer concentration,
respectively, by setting

Tx(±L , t) = 0 , Mx(±L , t) = 0 , t ≥ t0 .(1.7)

Multiplying (1.3) by q, adding the resulting equation to (1.4), integrating with
respect to x, applying the adiabatic boundary conditions in (1.7), and setting

H :=

∫ L

−L

(T + qM) dx(1.8)

yields

dH

dt
= 0 ,(1.9)

expressing conservation of enthalpy in the system when t > t0. Thermodynamics of
the problem dictates that the temperature of the reaction products away from the
front is given by

Tb = T0 + qM0 ,(1.10)

where T0 and M0 are the initial temperature and concentration, respectively, in (1.5).
We introduce dimensionless parameters

ε =
RgTb

E
, Z =

qM0E

RgT 2
b

,(1.11)

t̃ =
kt

Z
, x̃ =

√
k

Zκ
x , M̃ =

M

M0
, T̃ =

T − T0

Tb − T0
.

Here Tb is as defined in (1.10), and the Zeldovich number Z is a nondimensionalized
activation energy [15] constructed as a ratio of the diffusion temperature scale Tb−T0

to the reaction temperature scale
RgT

2
b

E . Also, note that Zε < 1 in order to insure
that the initial temperature of the mixture is greater than absolute zero. Then (after
dropping tildes) we obtain

∂M

∂t
= −ZM exp

(
Z(T − 1)

εZ(T − 1) + 1

)
,(1.12)

∂T

∂t
=

∂2T

∂x2
+ ZM exp

(
Z(T − 1)

εZ(T − 1) + 1

)
.(1.13)

From (1.5)–(1.7), the nondimensional temperature T and concentration M satisfy
the following initial and boundary conditions:

T (x, 0) = 0, M(x, 0) = 1, x ∈ [−l , l] ,(1.14)

Mx(±l , t) = 0 , Tx(−l , t) = 0 , T (l , t) = 1 , t ∈ (0 , τ0) ,(1.15)

Mx(±l , t) = 0 , Tx(±l , t) = 0 , t ≥ τ0 ,(1.16)

where l =
√
k/ZκL and τ0 = k t0/Z.
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2. Step-function kinetics. Stability analysis and numerical results.

2.1. Motivation. The essential, Arrhenius-like dependence of the reaction rate
on temperature is a common feature of the full Arrhenius kinetics model, the point-
source model, and the step-function kinetics model introduced below. As a conse-
quence, all three models demonstrate similar sequences of frontal propagation modes,
albeit at different threshold values of the bifurcation parameters. The advantage of
the approximate models lies mainly with the simplicity of their analytical treatment.

The relatively simple point-source model is a formal asymptotic reduction of the
Arrhenius kinetics model in which the reaction is restricted to a propagating interface
between the fresh mixture of reagents and the final product. The rigorous proof of
this reduction does not exist. In fact, in [3] we demonstrated for oscillating reaction
waves corresponding to large values of the Zeldovich number that the concentration
of the monomer does not evolve via the frontal mode alone. Numerical simulations
in [3] have shown that the width of the main reaction zone periodically varies in time
by several orders of magnitude, and there are always instances when the reaction zone
is not narrow. Further, the propagation does not occur purely in the frontal regime,
as the “pockets” of unreacted monomer are periodically left behind the reaction front.
These pockets then slowly convert into the polymer via a nonfrontal mechanism.

Clearly, the nonfrontal reactions cannot be modeled within the point-source model.
The purpose of distributed step-function-kinetics is to model diffuse interfaces and
nonlocalized reactions while retaining the relative simplicity of an analytical treatment
characteristic of the point-source models. In [3], we showed that the step-function-
kinetics model introduced in the present paper reproduces all features of reaction dy-
namics observed for the Arrhenius kinetics models—including the monomer pockets
and the oscillating width of the main reaction zone. That is, step-function kinetics
is capable of capturing not only the sequence of bifurcations between the different
modes of frontal propagation, but the solution features as well.

From now on, we will assume that ε is small; then the system of equations (1.12)–
(1.13) reduces to

∂M

∂t
= −ZMeZ(T−1) ,(2.1)

∂T

∂t
=

∂2T

∂x2
+ ZMeZ(T−1) .(2.2)

When the second nondimensional parameter Z is large, this model has been approx-
imated by using the step-function kinetics [2], [16] in a sharp-front limit as Z → ∞.
In this limit the model is identical to the sharp-front model of solid combustion with
point-source kinetics at the interface considered in [12]. Here we introduce and in-
vestigate the behavior and the stability of solutions of the (distributed) step-function
kinetics model and compare the results to both Arrhenius kinetics and point-source
kinetics. The step-function kinetics can be thought of as an intermediate approxima-
tion between point-source kinetics and Arrhenius kinetics in that it yields to relatively
straightforward analytical as well as numerical analyses. As is well known, although
the systems modeled with Arrhenius kinetics can be studied numerically, the stability
analysis for such systems is very difficult, as no analytical expressions are available for
traveling wave solutions. On the contrary, for point-source kinetics (sharp-interface
approach) the stability analysis is straightforward, while the numerical computations
are difficult, as one has to track a free boundary.
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A similar model was considered in [1] for a more general case when the Lewis
number Le (the ratio of thermal and material diffusivities) is not necessarily large.
This work has served as a basis for numerous studies in FP and combustion. As will
be explained shortly, the straightforward reduction of the treatment in [1] to (2.1)–
(2.2) cannot be considered a priori within an asymptotic procedure as Le → ∞, as
it requires additional assumptions. These assumptions will be introduced below and
studied both analytically and numerically in order to verify their validity.

In the step-function kinetics model, the reaction is assumed to occur in the tem-
perature range [Ti , Tp], and the Arrhenius term Z eZ(T−1) in (2.1)–(2.2) is replaced
by the step-function

K(T ) :=

{
0 , T < Ti ,
A(Tp) , T ≥ Ti .

(2.3)

Here Tp is the burnout temperature of the mixture immediately upon the completion
of the reaction (or, analogously, the temperature at the product end of the reaction
zone), and Ti is the ignition temperature. The temperature Tp is, generally, the
highest temperature of the mixture, and, unless the front is a steadily propagating
wave, both temperatures Tp and Ti as well as the kinetic function K(T ) depend on
time.

The step-function-type and Arrhenius-type source terms have two important com-
mon features—the reactions at both the low-temperature and the product zones
are either absent or negligible and the speed of propagation of the reaction wave
is temperature-dependent. By selecting a proper height A(Tp) and a jump location
Ti in the definition of the step-function, we can obtain the “best” qualitative match
between the properties of solutions of the Arrhenius and step-function kinetics models.

Note that the dependence of A on Tp can be arbitrary, and Ti and Tp are essen-
tially “fitting” parameters—we claim neither that the step-function approximation
of Arrhenius kinetics is mathematically rigorous nor that step-function kinetics can
be obtained from Arrhenius kinetics as a result of a limiting procedure. Rather, we
observe that the behavior of solutions of two respective systems is in a qualitative
agreement over a wide range of the system characteristics.

Even though the temperatures Ti and Tp have a clear physical interpretation
as the temperatures at which the (Arrhenius-type) reaction initiates and completes,
respectively, the values of Ti and Tp are not unique, since the monomer concentration
in the Arrhenius model is a continuous nonvanishing function of space and time.
Instead, we identify the valid ranges for the ignition and burnout temperatures and
show that the results are not sensitive to the exact choices of Ti and Tp.

The downside of this approach is that it can lead to a number of different step-
function-type kinetics models. On the other hand, the flexibility of choosing A, Ti, and
Tp allows for different step-function kinetics for systems that occupy well-separated
regions in the parameter space. In the present paper, we concentrate on the case when
ε � 1/Z � 1—and the reaction is usually understood as being purely frontal. For
this relationship between the nondimensional parameters, it is our experience that,
as long as Ti and Tp are “reasonable” (e.g., the concentration of the monomer at the
burnout temperature is small, but not too small), the solutions remain qualitatively
similar.

2.2. Formulation and traveling wave solution. Here we follow formal argu-
ments along the lines of [21] to examine the relationship between the temperatures
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Ti and Tp and to establish the expression for A. Then we discuss the proper choice
of Tp.

The main idea is to preserve the dependence between the temperature and the
speed of the reaction front when replacing the full kinetics by an approximate kinetics.
Formally, for Arrhenius kinetics, the fast reaction occurs in a narrow temperature
interval [Tp − 1/Z , Tp], where 1/Z � 1 [21]; therefore we set

Ti = Tp −
1

Z
.

The energy equation for the steady reaction wave propagation (in front-attached co-
ordinates, x → x− vt) is

−vTx = (Tx)x + M Φ(T ) ,(2.4)

where v is the velocity of the front and Φ(T ) is the rate of heat release due to the
reaction. The heat released is used to heat up the reacting mixture and to preheat the
fresh reagents to the reaction temperature; the terms responsible for these processes
are − v Tx and (Tx)x, respectively. Since 1/Z � 1, we can neglect the right-hand side
(RHS) of (2.4) to obtain that

(Tx)x + M Φ(T ) = 0 , where Tp −
1

Z
< T < Tp ,

in the main reaction zone. Then, multiplying by Tx and integrating, we have

∣∣T−
x

∣∣ ≈
(

2

∫ Tp

Tp− 1
Z

M Φ(T ) dT

) 1
2

,

where |T−
x | = vQ is the net flux from the main reaction zone toward the fresh mixture

of reagents and Q is the (nondimensional) heat generated by the reaction per unit
volume. Here we assume that the heat flux toward the (cold) mixture of reagents is
significantly larger than the flux toward the products of the reaction. Further, we
assume that both M and T are monotone in the main reaction zone so that we can
interpret M as a function of T in the integral above. We conclude that

Qv ≈
(

2

∫ Tp

Tp− 1
Z

M Φ(T ) dT

) 1
2

,(2.5)

where the integral in temperature is taken over the whole temperature region where
the reaction is not negligible [21]. Since the temperature zone [Tp − 1/Z , Tp] is narrow,
we approximate the Arrhenius term Φ(T ) by its maximum value Φ(T ) ≈ Φ(Tp) =
ZeZ(Tp−1). Then (cf. [8])

Qv ≈
(

2

∫ Tp

Tp− 1
Z

M Z eZ(Tp−1)

) 1
2

.(2.6)

If we assume that Φ(T ) = K(T ) in (2.5), where K(T ) is given by (2.3), we obtain an
expression of the same form as (2.6) once we set

A(Tp) = Z eZ(Tp−1) .(2.7)
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Hence, given the similar profiles for M , the speed of front propagation is approximately
the same for both Arrhenius and step-function kinetics with A given by (2.7).

Note that, when Z is large, the integral value of the kinetic function over the
interval from the initial to the burnout temperature is approximately the same for
both step-function kinetics and Arrhenius kinetics. Indeed,∫ Tp

0

K(T ) dT = eZ(Tp−1) ,

while ∫ Tp

0

Z eZ(T−1) dT = eZ(Tp−1) − e−Z .

Now, to fix ideas, we need a rigorous definition of the burnout temperature Tp.
In [1] this quantity is defined as the temperature at the end of the reaction zone on
the boundary xb(t) separating the reacting mixture and the products of the reaction.
Since the reaction is negligible in the products zone, it was assumed in [1] that the
concentration of the reagent vanishes at xb(t) and, hence, Tp(t) = T (xb(t), t). Both
Tp and xb are unknown and are determined as a part of the solution procedure.

The spatial domain in [1] was separated into three zones: preheating zone, re-
action zone, and products zone. When traveling-wave solutions are sought subject
to boundary conditions at infinity, the problem within each zone consists of two sec-
ond order ordinary differential equations with solutions that are “glued” together so
that the temperature, the reagent concentration, and their derivatives are continuous
across all interfaces.

Consider now the same model when the inverse of the Lewis number is equal to
zero. Because monomer diffusion is neglected, the concentration equation becomes a
first order ordinary differential equation, reducing the number of boundary conditions
within each zone—either we have to consider a singularly perturbed problem in terms
of the Lewis number, or we can no longer define xb as a point at which the concen-
tration of the monomer will vanish. Indeed, either it will cause the concentration to
vanish everywhere in the domain, or xb → ∞ as Le → ∞.

As has been already noted, the step-function kinetics approach has been widely
applied in a number polymerization studies. Step-function kinetics was used to inves-
tigate polymerization waves for two-species [11] and four-species models [19] as well
as for two-step and one-step polymerization models in the nonadiabatic case [10]. The
problem of defining the temperature of the reaction cutoff has generally been circum-
vented by assuming that the reaction zone remains narrow. In [10], for example, it
was assumed that the heat losses lead to a temperature profile with a maximum Tm

within the reaction zone. The reaction is then cut off below the ignition temperature
Tf , which itself depends on Tm. The value of Tm is not known in advance and has
to be determined as a part of the solution procedure. Even in the simplest case, the
solution to this problem is quite complicated and requires additional assumptions;
in [10] it was assumed that the reaction zone had a small width of order 0 < ε � 1.

Subsequently, the step-function kinetics was used in conjunction with the narrow
reaction zone assumption to study the stability of a uniformly propagating front in
various polymerization models in the presence [20] and in the absence [16] of heat
losses. The width of the front in both instances was assumed to be of order ε, and Tf

was set to be equal to Tp(1 − ε). Then Tf = Tp in the limit ε → 0, thus reducing the
reaction term to a jump condition on the gradient of the temperature on the interface.
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Here, instead of either considering asymptotics in terms of the Lewis number or
assuming that the reaction zone is narrow, we will set Tp(t) = T (xb(t), t), where xb(t)
is a point at which the monomer concentration falls below a small prescribed threshold
value M(xb(t), t) = β > 0.

Given this definition of the burnout temperature, K(T ) is actually a functional
K[M,T ], and the dependence of K on T is nonlocal. The methodology for choosing
the parameter β will be discussed below. Essentially, β can be interpreted as the
concentration of monomer in the transitional layer between the inner region adjacent
to the reaction front and the outer product region. Since the temperature in this
layer is approximately constant in spatial variables, the exact value of β should not
have a significant influence on the predictions of our model. This is indeed the case,
as will be demonstrated below. The range of reasonable values of β appears to be
“robust” in the sense that it is independent of the other parameters of the problem.
The magnitude of β is of order 10−2 ≈ 1/Z2 � 1

Z for the parameter regimes that we
have considered.

The formal justification for our choice of xb(t) is that the burnout temperature Tp

is defined as the maximum temperature in the main reaction zone that is reached at
the point of full monomer conversion. Due to the exponential character of the model,
the concentration of monomer never vanishes, and we have to choose a threshold
concentration below which we can assume that the reaction has terminated. If we
set this threshold too low, then the temperature at xb(t) will be measured far away
from the front and deep in the product zone. In this case, Tp ≈ const = 1 and the
dependence of the front velocity on temperature will be lost. On the other hand, if
the threshold concentration of the monomer is set to be too high, then Tp will be too
low and the front will fail to propagate.

Similar to, e.g., [16], we imposed the condition that ε � 1. Although, typically
1/Z and ε are roughly of the same order of magnitude—1/Zε ≈ 3 in this paper—the
width of the main reaction zone is not determined by ε alone and does not have to be
small.

Given our choice of K(T ) in (2.3), the step-function approximation of the model
(2.1)–(2.2) is

∂M

∂t
= −MK(T ) ,(2.8)

∂T

∂t
=

∂2T

∂x2
+ MK(T ) .(2.9)

Since we assume that the reaction begins when the temperature reaches the
threshold value of Tp − 1

Z , we will associate with this temperature the position ψ(t)
of the reaction front by defining ψ(t) implicitly through the relation

T (ψ(t), t) = Tp(t) −
1

Z
.

In order to obtain traveling-wave solutions and study their stability, we introduce
the front-attached spatial coordinate y = x − ψ(t). Then the system of equations
(2.8)–(2.9) can be written as

∂M

∂t
− ψ′(t)

∂M

∂y
= −ZMeZ(Tp−1)η(y) ,(2.10)

∂T

∂t
− ψ′(t)

∂T

∂y
=

∂2T

∂y2
+ ZMeZ(Tp−1)η(y) ,(2.11)
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where

η(y) =

{
0 , if y < 0 ,
1 , if y ≥ 0 ,

is the Heaviside function.
We will assume that y ∈ R and that the following boundary conditions at infinity

(cf. dimensional boundary conditions (1.5)–(1.7) on a finite domain) are satisfied:

T (−∞, t) = 0 , Ty(∞, t) = 0 ,(2.12)

M(−∞, t) = 1 , M(∞, t) = 0 .(2.13)

These must be supplemented by the conditions on M and T when y = 0. By the
definition of ψ(t), we immediately have that

T (0, t) = Tp(t) −
1

Z
.(2.14)

We will require that both monomer concentration and the derivative of the tem-
perature are continuous across the polymerization front, that is,

[Ty]y=0 = [M ]y=0 = 0 ,(2.15)

where [f ]y=a = f(a+) − f(a−) denotes the jump of the function f at y = a.
Further, by the definition of Tp, an additional condition

T (xb(t) , t) = Tp , where M (xb(t), t) = β ,(2.16)

must be satisfied. Here we assume that the monomer concentration is a monotone
function of x for all t > 0. In general, as has been pointed out in [3], this assumption
may not be correct for a nonuniformly propagating reacting front. This complication
can be easily circumvented, however, by assuming that xb(t) is the leftmost point in
the reaction zone satisfying the condition M (xb(t), t) = β.

First, we seek traveling-wave solutions of (2.10)–(2.11) propagating in the negative
y-direction. We set ψ′(t) = −v, where v is a positive constant, and suppose that
∂M
∂t ≡ ∂T

∂t ≡ 0. Then (2.10)–(2.11) reduce to the system of the ordinary differential
equations

v
dM̄

dy
= −ZM̄eZ(Tp−1)η(y) ,(2.17)

v
dT̄

dy
=

d2T̄

dy2
+ ZM̄eZ(Tp−1)η(y) ,(2.18)

where M̄ and T̄ are time-independent solutions of (2.10)–(2.11).
Fix Z and β. Denote the temperature at the reaction front, as in (2.14), by

Tf := T̄ (0) = Tp −
1

Z
,(2.19)

and set

A := Z eZ(Tp−1) = Z eZ(Tf−1)+1 ,(2.20)
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to be the strength of the kinetics term. The problem (2.17)–(2.18), (2.12)–(2.16)
admits the following set of solutions:

M̄(y) =

{
1 , y < 0 ,

e−
Ay
v , y ≥ 0 ,

T̄ (y) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − β)Z − 1

(1 − β)Z
ev y , y < 0 ,

1 − 1

(1 − β)Z
e−

Ay
v , y ≥ 0 ,

(2.21)

where

A = Ze−
β

1−β , v =

√
Ze−

β
1−β

Z(1 − β) − 1
, T̄f = 1 − 1

(1 − β)Z
.(2.22)

Furthermore, because of the constraint (2.16), the reaction zone extends from y = 0
to y = ȳb, where

ȳb := −v lnβ

A
= − lnβ

√
e

β
1−β

Z (Z(1 − β) − 1)
,(2.23)

so that

M̄ (ȳb) = β , T̄ (ȳb) = T̄f +
1

Z
.(2.24)

Our choice of β is dictated by the requirement that the reaction zone have a width
of order Z−1. Then lnβ should be an order-O(1) quantity, independent of Z. As we
demonstrate below, choosing β in this range leads to solution behavior that closely
resembles what is observed for the Arrhenius kinetics and its point-source approxi-
mation.

2.3. Stability analysis. Next, we consider the following perturbations of the
base state (2.21)–(2.23):

M(y , t) = M̄(y) + δ eω tμ(y) ,

T (y , t) = T̄ (y) + δ eω tτ(y) ,

Tf (t) = T̄f + δ eω tξ ,

ψ(t) = −vt + δ eω t ,

yb(t) = ȳb + δ eω tζ ,

where 0 < δ � 1 and ω ∈ C.
First, we linearize the condition (2.16). To the first order in δ we have

β = M (yb(t) , t) = M̄ (yb(t)) + δ eω tμ (yb(t))

∼ M̄ (ȳb) + δ eω t
(
M̄ ′(ȳb)ζ + μ (ȳb)

)
and

Tf (t) = T (yb(t) , t) = T̄ (yb(t)) + δ eω tτ (yb(t))

∼ T̄ (ȳb) + δ eω t
(
T̄ ′(ȳb)ζ + τ (ȳb)

)
.
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Then, using the perturbation of Tf (t) and (2.23), we obtain

M̄ ′(ȳb)ζ + μ (ȳb) = 0 , T̄ ′(ȳb)ζ + τ (ȳb) = ξ .(2.25)

It follows from (2.21), (2.24), and (2.25) that

ξ = τ (ȳb) −
T̄ ′(ȳb)

M̄ ′(ȳb)
μ (ȳb) = τ (ȳb) +

1

(1 − β)Z
μ (ȳb) .(2.26)

Linearization of (2.10)–(2.15) yields the following problems:{
vμ′ + ωμ = ωM̄ ′ , y < 0 ,
vμ′ + (ω + Z)μ = ωM̄ ′ − Z2ξM̄ , y ≥ 0 ,

(2.27)

and {
τ ′′ − vτ ′ − ωτ = −ωT̄ ′ , y < 0 ,
τ ′′ − vτ ′ − ωτ = −ωT̄ ′ − Z

(
μ + ZξM̄

)
, y ≥ 0 ,

(2.28)

subject to the boundary conditions

τ(−∞) = τ ′(∞) = [τ ′]y=0 = 0 , τ(0) = ξ ,(2.29)

μ(−∞) = μ(∞) = [μ]y=0 = 0 ,(2.30)

and (2.26).
As has already been pointed out, β � 1

Z ; however, the value of lnβ that enters
into ȳb is large. We simplify the computations by keeping lnβ as a parameter in
our calculations, and otherwise restrict our analysis to the O(1)-approximation of
(2.26)–(2.30) in β by setting β = 0. Then the base state can be written as

M̄(y) =

{
1 , y < 0 ,

e−
Z y
v , y ≥ 0 ,

T̄ (y) =

⎧⎪⎨
⎪⎩

1

v2
ev y , y < 0 ,

1 − 1

Z
e−

Z y
v , y ≥ 0 ,

(2.31)

where

v =

√
Z

Z − 1
, T̄f = 1 − 1

Z
, ȳb = − lnβ√

Z(Z − 1)
.(2.32)

The solution to (2.26)–(2.30) and the dispersion relation satisfied by the param-
eters Z and ω is very complicated, in particular due to the coupling (2.26), and was
obtained using the Maple computer algebra system. In order to find the stability
boundary, the real part of ω was set equal to zero, ω = iφ, and the resulting system
of equations was solved in Maple for Z and φ.

The dependence on lnβ of the critical value of the Zeldovich number Z and the
dimensional period of front velocity oscillations λ = 2πZ

kφ at the critical Z are shown
in Figure 2.1. Note that the stability boundary is in remarkable agreement with the
sharp-front stability boundary obtained in [12] (Z = 2

(
2 +

√
5
)
≈ 8.47) when the

reaction kinetics is approximated by the point-source on the front. The same critical
value of the Zeldovich number Z as in [12] has been obtained by using the sharp-front
limit Z → ∞ of the model with step-function kinetics. This result may be related
to the fact that the reductions of Arrhenius kinetics to point-source kinetics and to
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Fig. 2.1. Dependence of the critical value of the Zeldovich number Z and the dimensional
period of velocity oscillations λ on β.

step-function kinetics are based on similar arguments that enforce the same speed of
front propagation for both approximate kinetics and Arrhenius kinetics.

Analysis analogous to that in [16] leads to the same value of the stability boundary
as in point-source kinetics, once the jump condition for the balance of heat on the front
is imposed in place of the similar one-sided condition employed in [16]. The latter
condition was derived on the basis of generalized matched asymptotic expansions [15]
and leads to a stability threshold of Z = 6. This value disagrees with predictions of
other models.

The value of the artificial parameter β can be “tuned” so that the stability thresh-
old coincides with that obtained in [12]. Further, the dependence of the period of
oscillations on β is much stronger than that for the critical Zeldovich number.

Although the stability boundaries for the approximate models discussed here are
essentially the same (Z ≈ 8.47), the stability boundary for the model with full Ar-
rhenius kinetics [17] and small ε is slightly higher (Z ≈ 9.1).

2.4. Numerical results. To verify these conclusions, we conducted numerical
experiments with the model (2.8)–(2.9), with the Arrhenius kinetic function replaced
by the step function.

The system of equations was solved numerically using a finite difference method
with semi-implicit time integration. The physical model has no-flow homogeneous
Neumann boundary conditions at both ends of the domain. For some parameter
combinations, however, we found it necessary to apply Dirichlet boundary condition
T (L, t) = Tb, where Tb is defined in (1.10), at the ignition end of the domain for a short
period of time to initiate the reaction, and then switch to the homogeneous Neumann
boundary condition. Numerical experiments have demonstrated that the long-term
behavior of the reaction-diffusion equation system studied in this paper is not affected
by the application of the Dirichlet boundary condition during the initiation stage.

At each time step, the location of the reaction front was defined as the first grid
point, going from left to right, at which the concentration of the monomer drops below
50% of the initial value. The average velocity of the front was calculated by

v = a
Δx

Δt
,

where Δx is the distance between grid points, Δt is the size of the time step, and



806 DMITRY GOLOVATY

0 100 200 300

Time, s

0

0.005

0.01

0.015

0.02

0.025

0.03

Fr
on

t v
el

oc
ity

, c
m

/s

Ζ=8.2, ε=0.001

0 100 200 300 400

Time, s

-4

-3

-2

-1

0

1

2

Fr
on

t p
os

iti
on

, c
m

Z=8.2

Fig. 2.2. Reaction front velocity and position when Z = 8.2 and ε = 10−3.
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Fig. 2.3. Reaction front velocity and position when Z = 8.5 and ε = 10−3.

a is the number of grid intervals that the front travels through in Δt seconds. Note
that it may take multiple, say m, time steps for the front to travel through one grid
interval. In that case, we have a = 1

m .
Since we do not use an adaptive scheme, we used uniform grid refinement tech-

nique, which clearly indicated numerical convergence and demonstrated that all sharp
features are resolved and grid-independent.

We will assume that the parameters

q = 33.24 KL/mol , κ = 0.0014 cm2/s , k = 1 s−1 , Tb = 500 K

are fixed; then the state of the system is completely determined once the values of Z
and ε are specified. The length of the spatial domain (test tube) in our computations
varies from 6 cm to 10 cm, depending on the characteristic time scale of the process
of interest.

Using this choice of system parameters, we varied Z while keeping ε = 1 ·E-3 and
β = 2 ·E-2 fixed. Since ln 0.02 ≈ −3.92, the analytical stability threshold is almost the
same (Figure 2.1) as the one predicted by the stability analysis for the point-source
kinetics [12].

Our simulations predict that the stability threshold is Z ≈ 8.5. The typical
velocity and the front position profiles are presented in Figures 2.2–2.5. The front
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Fig. 2.4. Reaction front velocity and position when Z = 8.7 and ε = 10−3.
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Fig. 2.5. Reaction front velocity and position when Z = 9.4 and ε = 10−3.

propagates with the constant velocity when Z = 8.2; the velocity oscillations appear
when Z = 8.5 and become more pronounced once Z is increased (Z = 8.7). Further
increase in Zeldovich number shows that the behavior of the system is similar to
the behavior of a system reacting via Arrhenius kinetics—for instance, the “period
doubling” can be observed for Z = 9.4.

Another similarity with Arrhenius kinetics was demonstrated in [3], where we
showed that pulsating fronts in systems governed both by Arrhenius kinetics and by
the step-function kinetics evolve via a combination of bulk and frontal modes. There
we showed that, in fact, combustion can be considered to be purely frontal only for
uniformly propagating reaction waves in systems governed by kinetics that ignore
low-temperature bulk reactions. That is, for Zeldovich numbers beyond the first
critical threshold (pulsating mode) there always exists a nonfrontal component of the
dynamics. In particular, we showed that the monomer profile periodically becomes
nonmonotone in regions experiencing high front acceleration, and pockets of unreacted
monomer form behind the rapidly advancing front. These pockets later disappear
via bulk polymerization. Note that both bulk contribution and the related solution
features are always absent from the sharp-front–based models, since the reaction is
limited to the front.

The numerically determined period of velocity oscillations for Z = 8.5 near the
threshold of instability is approximately λ ≈ 31 s. This value is almost identical
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to the value obtained through the stability analysis (Figure 2.1). We conclude that
the predictions of the stability analysis are in very close agreement with numerical
simulations.

3. Conclusions. In the context of FP, we introduced a precise definition of
distributed step-function kinetics without resorting to a sharp-front approximation.
This kinetics is appropriate for simulating the behavior of one-dimensional large-
Lewis-number reaction systems governed by Arrhenius kinetics. Among the interest-
ing features of the distributed step-function kinetics is the numerical and analytical
tractability of the corresponding model that takes into account possible bulk reactions
behind the advancing front.

We demonstrated numerically that dynamics of fronts in systems modeled with
distributed step-function kinetics and in systems modeled with Arrhenius kinetics are
qualitatively the same for the time scales at which bulk reactions ahead of the front
can be neglected. Further, we showed that the stability threshold of the traveling wave
solution for the step-function kinetics is in excellent agreement with its numerically
determined value as well as with other existing kinetics approximations.

Acknowledgments. The author would like to express his gratitude to L. K.
Gross, V. A. Volpert, and J. Zhu for valuable discussions.
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LINE∗
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Abstract. We model the static behavior of point Josephson junctions in a microstrip line using
a one-dimensional linear differential equation with delta distributed sine nonlinearities. We analyze
the maximum current γmax crossing the microstrip for a given magnetic field H. In particular,
we establish its periodicity and analyze how it is affected by the geometry, length, type of current
feed, position, and area of the junctions. For the common situation of small currents, we show that
γmax can be obtained by a simple formula, the magnetic approximation. This model is in excellent
agreement with measurements obtained for real devices.
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1. Introduction. The coupling of two low Tc superconductors across a thin
oxide layer is described by the Josephson equations [13]

V = Φ0
dφ

dt
, I = sJc sin(φ),(1.1)

where V and I are, respectively, the voltage and current across the barrier; s is
the contact surface; Jc is the critical current density; and Φ0 = �/2e is the reduced
quantum flux. These two Josephson relations together with Maxwell’s equations imply
the modulation of DC current by an external magnetic field in the static regime and
the conversion of AC current into microwave radiation [1, 14]. Other applications
include rapid single flux quantum logic electronics [14] and microwave signal mixers
used in integrated receivers for radio-astronomy [17, 4]. In all these systems there is
a characteristic length which reduces to the Josephson length, λJ , the ratio of the
electromagnetic flux to the quantum flux Φ0 for standard junctions.

For many applications and in order to protect the junction, Josephson junctions
are embedded in a so-called microstrip line which is the capacitor made by the over-
lap of the two superconducting layers. This is the “window geometry” where the
phase difference between the top and bottom layer satisfies an inhomogeneous two-
dimensional (2D) damped driven sine Gordon equation [9] resulting from Maxwell’s
equations and the Josephson constitutive relations (1.1). The damping is due to the
normal electrons, and the driving is through the boundary conditions with an external
current or magnetic field applied to the device.

Even in the static regime (V ≡ 0) the 2D problem is complicated because of
the multiplicity of solutions due to the sine term. However, flux penetration occurs
along the direction of the magnetic field, so one direction dominates the other. A
quantity measured by experimentalists is the maximum (static) current Imax(H),
which can cross the device for a given magnetic field H. This gives information
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on the quality of the junctions. An important issue is how defects in the coupling
will affect this maximum current. In particular, high Tc superconductors can be
described as Josephson junctions where the critical current density is a rapidly varying
function of the position, due to grain boundaries. Fehrenbacher, Geshkenbein, and
Blatter [10] calculated Imax(H) for such disordered long Josephson junctions and for
a periodic array of defects. Experiments were also done by Itzler and Tinkham on
large 2D disordered junctions [11, 12]. However, the overall picture is complex, and it
is difficult to obtain geometric information on the junction from the curve Imax(H).
The analysis of such a 2D problem [8] provided bounds on the gradient of the solution
that were independent of the area of the junctions, so that little information could be
obtained on Imax(H). However, the study [8] proved the existence of solutions and
the convergence of the Picard iteration to obtain them.

Small junctions of length wi < λJ are easier to study and lead to the well-
known Imax(H) = sin(Hwi)/H [1]. Two such junctions are commonly associated to
form a superconducting quantum interference device (SQUID), now routinely used
to measure magnetic fields. More junctions can be used to form arrays [18] that can
bear more critical current and are more flexible than a long junction because the area
of the junction components and their position can be varied. When the junctions are
closer than λJ , such arrays behave as a long junction and could be used as microwave
generators. Almost all models are discrete lumped models where the effect of the space
between junctions is neglected. In particular, the interaction of the junctions through
this passive region has always been neglected. This makes it difficult to describe
junctions of different areas, placed nonuniformly in the microstrip. This is why up to
now mostly equidistant and identical junctions have been considered. To overcome
these difficulties we recently introduced a continuous/discrete model that preserves
the continuity of the phase and its normal gradient across the junction interface and
where the phase is assumed constant in the junctions. The 1D dynamics [6] of one
junction in a cavity revealed that the junction could stop waves across the cavity
or enhance them throughout. In [5] this model was used to calculate Imax(H) for a
misaligned SQUID in a 2D cavity. Nonuniform arrays of junctions that are generalized
SQUIDs have been produced and analyzed in particular by Salez and coworkers at
the Observatory of Paris [17, 4], and our analysis is in excellent agreement with the
measured Imax(H).

In this article we will concentrate on the 1D static problem. We justify our
continuous/discrete model and show that it allows an in-depth analysis that was out
of reach in the general 2D case. In particular, we will show the properties of Imax(H),
its periodicity, its regularity, the relation between different types of current feeds,
and how it is affected by the position of the array in the microstrip. In addition, we
introduce and justify the “magnetic approximation” in which many details of Imax(H)
can be controlled. Specifically in section 2 we introduce our model, and we give
preliminary analytical results in section 3. Section 4 details the intrinsic properties of
the maximal current as a function of the magnetic field: its periodicity, the relation
between the inline and overlap current feed, and the simple magnetic approximation.
Section 5 introduces two numerical ways to solve the problem. In section 6, we study a
SQUID and examine the effect of a little difference between the junction parameters,
and we compare this to the experiment. Section 7 deals with devices with more
junctions; there we analyze the effect of separating one junction from the others and
show the agreement with the experimental results. After concluding in section 8, we
give details of the proofs in section 9.
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Fig. 2.1. The left panel shows the top view of a superconducting microstrip line containing
three Josephson junctions; H, I, and φ are respectively the applied magnetic field, current, and
phase difference between the two superconducting layers. Here the current feed is of the overlap
type. The phase difference φ between the two superconducting layers satisfies −Δφ = 0 in the linear
part and −Δφ + sin(φ) = 0 in the Josephson junctions. The right panel shows the associated 2D
domain of size l×w containing n = 3 junctions placed at the positions y = w/2 and x = ai, i = 1, n.

2. The model. The device we model, shown in Figure 2.1, is a so-called mi-
crostrip cavity (the grey area in Figure 2.1) between two superconducting layers. In-
side this microstrip there are regions where the oxide layer is very thin (∼ 10 Angstrom),
enabling Josephson coupling between the top and bottom superconductors. The di-
mensions of the microstrip are about 100 μm in length and 20 μm in width. The
phase difference between the top and bottom superconducting layers obeys in the
static regime the following semilinear elliptic partial differential equation [9]:

−Δϕ + g(x, y) sinϕ = 0,(2.1)

where g(x, y) is 1 in the Josephson junctions and 0 outside. This formulation guaran-
tees the continuity of the normal gradient of ϕ, the electrical current on the junction
interface. The unit of space is the Josephson length λJ , the ratio of the flux formed
with the critical current density and the surface inductance to the flux quantum Φ0.

The boundary conditions representing an external current input I or an applied
magnetic field H (along the y axis) are

∂ϕ

∂y

∣∣∣∣
y=0

= − I

2l
ν,

∂ϕ

∂y

∣∣∣∣
y=w

=
I

2l
ν,

(2.2)
∂ϕ

∂x

∣∣∣∣
x=0

= H − I

2w
(1 − ν),

∂ϕ

∂x

∣∣∣∣
x=l

= H +
I

2w
(1 − ν),

where 0 ≤ ν ≤ 1 gives the type of current feed. The case ν = 1 shown in Figure 2.1,
where the current is applied only to the long boundaries y = 0, w, is called overlap
feed, while ν = 0 corresponds to the inline feed.

We consider long and narrow strips containing a few small junctions of size wj×wj

placed on the line y = w/2 and centered on x = ai, i = 1, n, as shown in Figure 2.1.
We then search for ϕ in the form

ϕ(x, y) =
νI

2L

(
y − ω

2

)2

+

+∞∑
n=0

φn(x) cos
(nπy

w

)
,(2.3)

where the first term takes care of the y boundary condition. For narrow strips w < π,
only the first transverse mode needs to be taken into account [7, 2] because the
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curvature of ϕ due to current remains small. Inserting (2.3) into (2.1) and projecting
on the zero mode, we obtain the following equation for φ0, where the 0’s have been
dropped for simplicity:

−φ′′ + g
(
x,

w

2

) wj

w
sinφ = ν

γ

l
,(2.4)

where γ = I/w and the boundary conditions are φ′(0) = H − (1 − ν)γ/2 and φ′(l) =
H + (1 − ν)γ/2.

As the area of the junction is reduced, the total Josephson current is reduced and
tends to zero. To describe small junctions where the phase variation can be neglected
but that can carry a significant current, we introduce the following function gh,

gh(x) =
wj

2h
for ai − h < x < ai + h, gh(x) = 0 elsewhere,(2.5)

where i = 1, . . . n. In the limit h → 0 we obtain our final delta function model [6],

−φ′′ +

n∑
i=1

diδ(x− ai) sinφ = νj,(2.6)

where

di =
w2

j

w
, j =

γ

l
,(2.7)

and the boundary conditions are

φ′(0) = H − (1 − ν)γ

2
, φ′(l) = H +

(1 − ν)γ

2
.(2.8)

This is our continuous/discrete 1D model of a parallel array of many point Josephson
junctions embedded in a microstrip cavity. It preserves the spatial degrees of freedom
in the linear cavity and the matching conditions at the junction interfaces.

3. General properties. The delta function seems to be a theoretical way to
approach the problem. Nevertheless we will show that it provides an excellent agree-
ment with experiments, in addition to allowing analytical solutions. We have the
following properties:

1. Integrating twice, (2.6) shows that the solution φ is continuous at the junc-
tions x = ai, i = 1, . . . , n.

2. Let φ be a solution of (2.6); then φ + 2kπ is also a solution.
3. Almost everywhere, −φ′′(x) = νγ/l, so that outside the junctions, φ is a

second degree polynomial by parts,

φ(x) = −νj

2
x2 + Bix + Ci ∀x ∈ ]ai, ai+1[.(3.1)

4. At each junction (x = ai), φ
′ is not defined, but choosing ε1 > 0 and ε2 > 0,

we get

lim
ε1→0

lim
ε2→0

∫ ai+ε2

ai−ε1

φ′′(x)dx =

∫ a+
i

a−
i

φ′′(x)dx = [φ′(x)]
a+
i

a−
i

.

Since the phase is continuous at the junction x = ai, we obtain

[φ′(x)]
a+
i

a−
i

= di sin(φi),(3.2)

with φi ≡ φ(ai).
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5. Integrating (2.6) over the whole domain,

[φ′]
l
0 =

∫ l

0

φ′′dx =

n∑
i=1

di sin(φi) − νγ,

and taking into account the boundary conditions, we obtain

γ =

n∑
i=1

di sin(φi),(3.3)

which indicates the conservation of current. Note that the total current is equal to
the sum of the jumps of φ′.

3.1. The solution as a piecewise polynomial. Let φ be a solution of (2.6)
and φ1 = φ(a1). From remark (3.1), φ is a polynomial by parts. We define Pi+1(x)
as the second degree polynomial such that Pi+1(x) = φ(x) for ai ≤ x ≤ ai+1. Using
the left boundary condition, we can specify φ on [0, a1]:

P1(x) = −νj

2

(
x2 − a2

1

)
+

(
H − 1 − ν

2
γ

)
(x− a1) + φ1.(3.4)

At the junctions, (3.2) tells us that ∀k ∈ {1, . . . , n},

P ′
k+1(ak) − P ′

k(ak) = dk sin(Pk(ak)).(3.5)

Considering that φ′′ = −νj on each interval, the previous relation, and the continuity
of the phase at the junction, we can give a first expression for Pk+1,

Pk+1(x) = −νj

2
(x− ak)

2 + [P ′
k(ak) + dk sinPk(ak)] (x− ak) + Pk(ak).(3.6)

Notice that Pk+1(x) depends on Pk(x), ν, j, and H. The parameters ν and l are fixed
by the geometry of the device. So by recurrence we see that φ is entirely determined
by the values of φ1, γ, and H.

From (3.5) we can obtain another expression for Pk+1,

Pk+1(x) − Pk(x) = dk sin(Pk(ak))(x− ak).(3.7)

Summing all these relations yields

Pk+1(x) = P1(x) +

k∑
i=1

di sin(Pi(ai))(x− ai).(3.8)

Polynomials (3.4) and (3.6) show by construction that the constants H, j, and φ1

determine completely the solution of (2.6) if one exists. In the same way, we can
show that the three other constants, j, φ′(a1), and φ1, fix φ. From (3.8), we give an
expression of φ:

φ(x) = P1(x) +

n∑
i=1

H{x≥ai}di sin(φi)(x− ai),

where

H{x≥ai} =

{
1, x ≥ ai,
0, x < ai,

is the Heaviside function.
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3.2. An nth order transcendental system. Another way to solve (2.6) for
φ is to write it as a coupled system of n transcendental equations. For that, we first
eliminate the constant term by introducing ψ such that

φ = ψ − ν
γ

l

x2

2
≡ ψ − f(x)

and obtain

−ψ′′ +

n∑
i=1

diδ(x− ai) sin(ψ − f(ai)) = 0,(3.9)

with the boundary conditions

ψ′(0) = H − (1 − ν)γ

2
, ψ′(l) = H +

(1 + ν)γ

2
.

To simplify the notation we will write fi ≡ f(ai) and ψi ≡ ψ(ai). Integrating (3.9)
over the intervals [0, a−2 ], [a+

1 , a
−
3 ], . . . , we obtain the relations

−[ψ′]
a−
2

0 + d1 sin(ψ1 − f1) = 0,

−[ψ′]
a−
3

a+
1

+ d2 sin(ψ2 − f2) = 0,

−[ψ′]
a−
4

a+
2

+ d3 sin(ψ3 − f3) = 0,(3.10)

−[ψ′]
a−
5

a+
3

+ d4 sin(ψ4 − f4) = 0,

−[ψ′]l
a+
4

+ d5 sin(ψ5 − f5) = 0,

where we have assumed n = 5 as an example. Now we can use the fact that ψ′′ = 0 in
the intervals between the junctions and the boundary conditions to obtain the final
system

H − (1 − ν)
γ

2
− ψ2 − ψ1

a2 − a1
+ d1 sin(ψ1 − f1) = 0,

−ψ3 − ψ2

a3 − a2
+

ψ2 − ψ1

a2 − a1
+ d2 sin(ψ2 − f2) = 0,

−ψ4 − ψ3

a4 − a3
+

ψ3 − ψ2

a3 − a2
+ d3 sin(ψ3 − f3) = 0,(3.11)

−ψ5 − ψ4

a5 − a4
+

ψ4 − ψ3

a4 − a3
+ d4 sin(ψ4 − f4) = 0,

−H − (1 + ν)
γ

2
+

ψ5 − ψ4

a5 − a4
+ d5 sin(ψ5 − f5) = 0.

We will use this formulation as well as the one in the previous subsection to establish
properties of the solutions and solve the problem numerically using Newton’s method.

4. General properties of γmax(H) for an n junction array. The general
problem is

−φ′′(x) +

n∑
i=1

diδ(x− ai) sin(φ) = νj,(4.1)
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with the boundary conditions

φ′(0) = H − (1 − ν)γ

2
, φ′(l) = H +

(1 − ν)γ

2
.

Experimentalists measure the maximum current γ for a given magnetic field H and
plot this as a curve γmax(H). To compare with real data it is therefore important to
compute and analyze this quantity. In this section, we give some properties of the
γmax(H) curve. In the appendix some analytical estimates on the influence of the
geometry on the maximal current will be presented.

4.1. Periodicity. We introduce

lj ≡ aj+1 − aj ,

the distance between two consecutive junctions. Let lmin be the smallest distance lj .
We define the array as harmonic if li is a multiple of lmin ∀ i.

Proposition 4.1 (periodicity of the device). For a harmonic array, the γmax(H)
curve is periodic with a period 2π/lmin.

Proof. Let φ be a solution of (4.1) for a current γ and a magnetic field H. We
introduce f(x) = (2π/lmin)(x− a1) and ψ(x) = φ(x) + f(x). So ψ verifies

−ψ′′(x) +

n∑
i=1

δ(x− ai) sin(ψ − f) = νj,(4.2)

with ψ′(0) = H + 2π/li − (1 − ν)γ/2 and ψ′(l) = H + 2π/li + (1 − ν)γ/2. Since
f(aj) = 2kπ ∀i ∈ {1, . . . , n}, then ψ is a solution of (4.1) for H + Hp ≡ H + 2π/lmin

and the same γ, and so γmax(H + Hp) ≥ γmax(H).
Conversely, by subtracting f from a solution associated with H+Hp and a current

γ, we obtain a solution for H and the same current γ, and so γmax(H + Hp) ≤
γmax(H). From the two inequalities we get

γmax(H + Hp) = γmax(H)(4.3)

with Hp = 2π/lmin.
In the nonharmonic case, if the junctions are set such that lj = pj/qj , where pj

and qj are integers, prime with each other, then γmax is periodic with period Hp such
that

Hp = 2π
LCM(q1, . . . , qn−1)

HCF (p1, . . . , pn−1)
(4.4)

(see Figure 4.1), where LCM is the lowest common multiple and HCF the high-
est common factor. To prove this write f(x) = p(x − a1) and use again the pre-
vious argument. In Figure 4.1 we show the γmax(H) curve for a three-junction
unit such that l1 = 3/2 and l2 = 5/3, so that the period of γmax(H) is Hp =
2πLCM(2, 3)/HCF (3, 5) = 12π. In the following plots we will show only one period
of γmax(H).

In the general case, we have only an approximate periodicity of γmax(H), which
can be estimated using (4.4). Also, real junctions have a finite size, which causes
γmax(H) → 0 when H → +∞. Our model is thus valid as long as the dimensionless
magnetic field H is not larger than 1/wj .
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Fig. 4.1. γmax(H) curve for an inline current feed, ν = 0 (solid line), and overlap feed, ν = 1
(dotted line), for a three-junction unit {1, 5/2, 5/2 + 5/3}, with d1 = d2 = d3 = 1. Thus l1 = 3/2
and l2 = 5/3.

4.2. Influence of the position of the junction unit. In this section, we
examine how the position of the set of junctions in the microstrip (linear domain)
will affect the γmax(H) curve. For an array of junctions placed at the distances {ai,
i = 1, n}, we define a junction unit as the set {li, i = 1, n− 1}. Then the array where
the junctions are at {a1 +c, a2 +c, . . . , an +c} is the same junction unit. We define a1

as the position of the junction unit. The length of the junction unit is lb = an − a1.
The array is centered if (an + a1)/2 = l/2.

Inline current feed : (ν = 0). Then the boundary conditions at the edge of the
junction unit are φ′(a−1 ) = φ′(0) = H−γ/2 and φ′(a+

n ) = φ′(l) = H+γ/2, independent
of the position of the junction unit.

Proposition 4.2 (inline junction unit). For inline current feed, γmax(H) is
independent of a1 (the position of the junction unit) and of the length l of the cavity.

Proof. Let φ1(x) be a solution of (4.1) for given γ,H. Let us change the position
of the junction unit to a1 + c so that the junctions are now placed at {a1 + c, a2 + c,
. . . , an + c}. It is easy to see that φ2(x) = φ1(x− c) satisfies the boundary conditions
and is a solution. This one-to-one map between φ1 and φ2 exists ∀ c, H, and γ, and
so the two junction units have the same γmax(H).

Then the γmax(H) curve is independent of the position of junction unit when
ν = 0. By the same argument, we can show that γmax(H) is independent of the
length l of the circuit (see Figure 4.3). This curve depends only on the junction unit.

General current feed : (0 < ν ≤ 1). In this case the boundary conditions at the
edge of the junction unit are

φ′(a−1 ) = −νja1 + H + (1 − ν)γ/2, φ′(a+
n ) = H − (1 − ν)γ/2 + νj(l − an).

Contrary to the inline feed, we cannot shift the phase to find a solution when the
junction unit has been shifted, because now the boundary conditions depend on the
position of the junction unit. Consider the derivative φ′ at the boundaries of the
junction unit. We will compare the curves γmax(H) for a centered unit and for a
noncentered unit. For a centered unit, an − a1 = l/2 so that

φ′(a−1 ) −H = −
(
φ′(a+

n ) −H
)
,

but this equality is false for a noncentered unit. It is possible to choose a correction
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Fig. 4.2. Plot of γmax(H) for a four-junction device (l = 10, di = 1) such that l1 = 1.5,
l2 = 2.5, l3 = 2. The left panel shows a noncentered junction unit with a1 = 0.1, and the right panel
a centered unit with a1 = 2. Notice the current-dependent shift (4.5) for the overlap solution as one
goes from a centered junction unit (right panel) to an off-centered junction unit (right panel). The
junction unit was moved to the left.

Hν to the magnetic field H in order to obtain the equality

φ′(a−1 ) −H + Hν = −
(
φ′(a+

n ) −H + Hν

)
,

−νja1 + (1 − ν)
γ

2
+ Hν = −

[
νj(l − an) − (1 − ν)

γ

2
+ Hν

]
,

Hν = νj

(
lb − l

2
+ a1

)
.(4.5)

Let us consider two arrays, circuit 1 with a centered junction unit and circuit 2 with
the same junction unit but noncentered.

Proposition 4.3 (magnetic shift). Let (H, γmax) be the coordinates of a point
of the γmax(H) curve for the circuit 1. Then (H + Hν , γmax) is a point of the curve
for the circuit 2.

Thus, moving a junction unit translates the γmax curve by νja1. Figure 4.2 shows
a γmax(H) for a four-junction device with a noncentered junction unit in the left panel
and a centered junction unit in the right panel. Both inline and overlap current feeds
are presented. Notice the unchanged behavior for the inline current feed and the effect
of Hν (= −4.1γ/10) from (4.5) in the overlap case.

Proof. Let φ{H,γ,a1} be a solution for an array A1 ≡ {a1, . . . , an} with a centered
junction unit with γ and H given. Consider another array A2 with the same junction
unit moved by s, A2 ≡ {a1 + s, . . . , an + s} ≡ A1 + s, the coefficients d1, . . . , dn being
equal for the two circuits. From the solution φ{H,γ,a1} for A1 we can deduce a solution
ψ{H+Hν ,γ,a1+s} for A2. From (4.5) we have

ψ′
{H+Hν ,γ,a1+s}(a

−
1 + s) = φ′

{H,j,a1}(a
−
1 ).

Taking

ψ{H+Hν ,γ,a1+s}(a
−
1 + s) = φ{H,γ,a1}(a

−
1 ),

and from the unicity of the solution, we obtain φ ≡ ψ in the two junction units. Thus,
if φ is a solution for {H, γ} given for A1, then ψ is a solution for {H +Hν , γ} for A2,
and vice versa.
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Let γmax,1 and γmax,2 be the γmax curves for the arrays A1 and A2. From the
solutions obtained for A1 we build solutions for A2. As a consequence, γmax,1(H +
Hν) ≤ γmax,2(H). On the other side, from solutions of A2 we build solutions for A1,
then γmax,1(H + Hν) ≥ γmax,2(H). So, we obtain the equality

γmax,1(H + Hν) = γmax,2(H) .

Notice that this equality is independent of the number of junctions.

4.3. Comparison between inline and overlap current feeds. We now com-
pare the γmax curves for inline and overlap current feed. For one junction, the prob-
lem can be solved exactly using polynomials by parts (see remark (3.1)). We obtain
γmax(H) = d1 ∀ ν. For two junctions there is the possibility of d1 
= d2, and this
will change γmax(H) qualitatively. Let us study the phase difference between two
junctions. We use remark (3.1) and the boundary conditions to get

φ2 − φ1 = −νj

2
(a2 − a1)

2 + (P ′(a1) + d1 sin(φ1)) (a2 − a1),
(4.6)

φ2 − φ1

a2 − a1
= −νj

a2 + a1

2
+ H − 1 − ν

2
γ + d1 sin(φ1).

If (a2 + a1)/2 = l/2 (the junction unit is also centered), as γ = jl, (4.6) becomes

φ2 − φ1

a2 − a1
= H − γ

2
+ d1 sin(φ1).(4.7)

Note that we can obtain (4.7) from (4.6) with ν = 0. We have shown the following
result.

Proposition 4.4 (equivalence of all current feeds for a centered SQUID). For
a centered two-junction device, all current feeds give the same γmax curve.

For an inline current feed, ν = 0, so that the phase difference φ2 − φ1 is indepen-
dent of the position of the junction unit. This is not true for the overlap feed, where
moving the junction unit causes a “magnetic shift” as seen above in Hν equation (4.5).
When the number of the junctions n ≥ 3, the γmax curve depends on ν. The effect of
moving the junction unit on the γmax curve was shown above. Thus, we can reduce
the study to a centered junction unit. In this case, we have a1 = (l − lb)/2, and

φ′(a−1 ) = φ′(0) +

∫ a−
1

0

−ν
γ

l
dx

= H − (1 − ν)
γ

2
− ν

γ

2
+

νlb
l

γ

2
= H −

(
1 − νlb

l

)
γ

2
,(4.8)

φ′(a+
n ) = H +

(
1 − νlb

l

)
γ

2
,

with lb = an − a1. We can write νj = (νlb/l)(γ/lb) and νlb/l = μ. Thus, (4.1) is
equivalent to the system

−φ′′(x) +

n∑
i=1

diδ(x− ai) sin(φ) = μ
γ

lb
,(4.9)

with

φ′(a−1 ) = H − (1 − μ)γ

2
, φ′(a+

n ) = H +
(1 − μ)γ

2
.
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Fig. 4.3. Plot of γmax(H) for the same centered junction unit l1 = 1, l2 = 4, l3 = 3,
d1 = d2 = d3 = d4 = 1 and different lengths l of the microstrip; from top to bottom, l = 8, 16,
and 64. Notice how the overlap solution tends to the inline solution as one increases l.

As 0 ≤ ν ≤ 1, 0 ≤ μ ≤ lb/l. Note that lb can be considered as the reference length of
the device. Also note that if l → +∞, then μ → 0 and (4.9) and boundary conditions
tend to the situation of inline current feed. Figure 4.3 illustrates this convergence
when we increase the microstrip length l for a centered junction unit. Notice that the
solution for the inline feed is not modified by the variation of length. With l = 8, we
have a maximum difference between the solutions for the overlap and inline current
feeds. As l increases, the solution for the overlap current feed tends to the solution
for the inline current feed. We prove this in section 9.3.

Conclusion. In the appendix, we show that when νγ/l tends to 0 the solution
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tends to the one for inline current feed. We can get this by increasing the length l or
shrinking the junction area. (See section 9.3.) We have three parameters: ν, l, and
γmax. l is determined by the circuit. ν comes from the 2D model, and depends on the
width of the circuit. The third parameter can be bounded from above: 0 ≤ γ ≤

∑
i di.

We will see in the next section what the limit of γmax(H) is for inline and overlap
feeds when di are small.

4.4. The relation between inline and magnetic approximation. The size
of the junctions wi < 1 < w so that di � 1; therefore the jump of the gradient of
the phase across the junctions can be neglected. This is the magnetic approximation
where only H fixes the phase gradient. In the previous section, we have shown that
the solutions for inline and overlap current feeds converge to the same γmax(H) curve
for small di. We will show that this limit is the magnetic approximation.

Since [φ′]
a+
i

a−
i

= di sin(φi) (remark (3.2)) and j ≤
∑

i di/l, then for small di, φ tends

to the linear function φ(x) = Hx + c. This magnetic approximation seems crude,
but we show that it approaches the solution for inline feed; see section 9.4. There
we bound the difference between the γ curves for the inline feed and the magnetic
approximation. Figure 4.4 illustrates this convergence as di decreases.

This approximation gives very good results because we work on very small junc-
tions and the corresponding di ≈ 10−2 (compared with the values taken in Figure 4.4).

4.5. Magnetic approximation. The magnetic approximation is very interest-
ing because it gives an analytic expression of γmax(H) and is independent of the value
of the current and of the scale of the circuit. Here we consider that φ(x) = Hx + c,
and from (3.3),

γ =
n∑

i=1

di sin(Hai + c) .

Notice that c is the only parameter which can be adjusted to reach the maximum.
To find the γmax(H) curve of the magnetic approximation, we take the derivative

∂γ

∂c
= − sin(c)

(
n∑

i=1

di sin(Hai)

)
+ cos(c)

(
n∑

i=1

di cos(Hai)

)
.(4.10)

The values of c canceling ∂γ/∂c are

cmax(H) = arctan

(∑n
i=1 di cos(Hai)∑n
i=1 di sin(Hai)

)
,(4.11)

and using (4.10), we have the solution:

γmax(H) =

∣∣∣∣∣
n∑

i=1

di sin(Hai + cmax(H))

∣∣∣∣∣ .(4.12)

This γmax curve is a function of H. A similar expression was given by Miller et al. [16]
for homogeneous arrays. Here we generalize this approach to nonhomogeneous arrays
and justify it rigorously.

Remark. If di = d ∀i ∈ {1, . . . , n}, we can simplify:

cmax = arctan

(∑n
i=1 cos(Hai)∑n
i=1 sin(Hai)

)
.
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Fig. 4.4. Plot of γmax(H) for the same junction unit and different coefficients di, which are
all equal; from top to bottom, di = 1, 0.3, and 0.1. The distances between the junctions are l1 = 1.5,
l2 = 2.5, l3 = 2, l = 10.

The maximum current (4.12) is then

γmax(H) = d

∣∣∣∣∣
n∑

i=1

sin(Hai + cmax(H))

∣∣∣∣∣ .
Here changing the value of d will change linearly the amplitude of the γmax curve;
this is not the case for the solutions of the boundary value problem (2.6). We can
notice, too, that the γmax(H) obtained from this approximation is invariant by the
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transformation

∀t ∈ ,
{

ai → tai,
H → H/t.

We will show in the next sections that when di � 1, (4.12) provides a good esti-
mate of the γmax(H) curve of a circuit. In addition, from its invariant properties we
can compare different models and estimate the parameters of the circuit. A cooper-
ation has begun with Boussaha and Salez from the Observatoire de Paris to match
theory and design for this type of circuit with specific properties [3].

5. Numerical solutions. We used two different methods, a stepping in the
(H, γ) plane using a Newton iteration, and what we call the method of implicit curves
to find the maximal current of (4.1) for H given.

5.1. Newton’s method. We start from the system of nonlinear transcenden-
tal equations (3.11), which is written for n = 5. Introducing the vector X =
(φ1, φ2, . . . , φn), (3.11) can be written as F (X) = 0, where F is a nonlinear map
from Rn to Rn. To solve this equation numerically, we use the Newton method:

Xk+1 = Xk − (∇F (Xk))
−1F (Xk),

where ∇F (Xk) is the gradient of F evaluated at X = Xk. A first problem is to
choose the initial vector X0. For that consider H = 0; there we expect a solution
such that γ ≈

∑n
i di and consequently φi ≈ π/2 [2π]. We have our initial vector.

After finding the solution, we step in H and take as an initial guess the previous
solution found, which for a small step in magnetic field is assumed to be close to
the one we are looking for. In this way, we obtain a solution with a magnetic field
H +dH and a current γ. We can then increase γ until the method does not converge,
and this gives the maximum current γmax(H + dH) for increasing H. Similarly we
can compute γmax(H) by starting with a large magnetic field and decreasing H to 0.
This curve will in general be different from the one obtained when increasing H due to
hysteresis. The two curves need to be overlapped to find γmax(H). So, we introduce
another method to be sure to obtain the γmax curve directly.

5.2. Implicit curves method. The polynomials (3.4) and (3.6) establish the
existence and value of φ at the junctions. This function should satisfy the boundary
conditions. The first one,

φ′(0) = P ′
1(0) = H − (1 − ν)γ/2,

is true by construction; the second (for n junction circuit),

P ′
n+1(l) = H + (1 − ν)

γ

2
,(5.1)

is true only for the solutions of (4.1). As we have remarked in section 3.1, “The
solution as a piecewise polynomial,” φ is entirely determined by φ1, γ, and H. For H
given, the solutions of (5.1) define a relation between φ1 and γ. Thus, the maximal
current solution depends on φ1 and γ, and (5.1) is the constraint it should satisfy. As
the solutions φ are defined modulo 2π from (3.1), we can assume φ1 ∈ [−π, π]. On the
other hand, because of (3.3), γ ∈ [0,

∑
i di]. To solve this problem using the software
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Fig. 5.1. Comparison between the Newton method and the implicit curve method for the γmax

curve for a three-junction unit; a1 = 1, a2 = 2, a3 = 3, d1 = d2 = d3 = 1, ν = 1, and l = 10. The
square (resp., the +) symbols correspond to the Newton results for decreasing (resp., increasing) H,
and the continuous line corresponds to the results of the implicit curve method.

package Maple [15], we plot the implicit function (the constraint) of the two variables
φ1 and γ with H and ν fixed, defined by

P ′
n+1

∣∣
x=l

(φ1, γ, ν,H) −H − 1 − ν

2
γ = 0,(5.2)

with (φ1, γ) ∈ [−π, π] × [0,
∑

i di]. The program searches, in an exhaustive way, the
biggest value of γ of this implicit curve. Incrementing H, we obtain the relation
γmax(H). We give an expression of P ′

n+1 for two and three junctions, in the appendix
(section 9.1).

Compared to the Newton method detailed in the previous section, this method
has the advantage of converging to a global maximum γmax, as long as we give enough
points to plot the implicit curve. Figure 5.1 compares γmax(H) using the two methods
for a three-junction unit. The solution given by the implicit curve method is shown as
a continuous line and superposes exactly with the other two plots. With the Newton
method we can get trapped in local maxima, while the implicit curve method always
gives the global maximum. On the other hand, the Newton method is much faster.

6. Two junctions. We have seen two methods to solve the problem numerically
and established general properties. Now let us use these results for an array with a
few junctions.

6.1. Same junction strength (d = d1 = d2). In Figure 6.1 we plot in
the left panel γmax(H) of a two-junction unit. We find the expected periodicity
Hp = 2π/ (a2 − a1), with a maximum for H = 0 in the inline case (ν = 0). For the
overlap feed, we have exactly the inline curve plus a magnetic shift. Notice that for
the inline feed the amplitude of the γmax curve is not proportional to di, contrary to
the magnetic approximation. The larger the di, the further away the γmax(H) curves
are from the ones given by the magnetic approximation. This is expected because
the magnetic approximation neglects the effect of di on the phase. In this section, to
simplify the discussion we will restrict ourselves to the inline current feed. However,
the results will be valid for the general case. The maximum of γmax corresponding
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Fig. 6.1. Plot of the γmax curve for a two-junction unit such that l1 = 2. In the left panel,
d1 = d2 = 0.5, while in the right panel, d1 = d2 = 3.
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Fig. 6.2. Left panel: plot of the phases φ1 and φ2 as a function of the magnetic field H for the
same junction unit as the one shown in the left panel of Figure 6.1 Right panel: plot of φ(x) for the
same device for H < π/(a2 − a1) (solid line) and H > π/(a2 − a1) (dashed line).

to H ≡ 0(Hp) is the only case where (φ2 − φ1)/(a2 − a1) = H. On the other hand,
by construction, in the magnetic approximation (φ2 − φ1)/(a2 − a1) = H ∀H. In
the general case, the closer H is to π/(a2 − a1), the further (φ2 − φ1)/(a2 − a1) is
from H. This can be seen in the right panel of Figure 6.2. Thus, there will be more
tunneling current in one junction than in the other. This phenomenon increases as
H increases from 0 to π/(a2 − a1). For that value, we have two possible solutions
for γmax, as shown in the left panel of Figure 6.2 for H = π/2. As the field crosses
π/(a2 − a1) the two junctions behave in the opposite fashion, as shown by the switch
of the jumps in φx at the junctions; see the right-hand panel of Figure 6.2. These two
solutions or reversing behavior of the junction cause a jump in the derivative γ′

max(H)
of γmax(H). As long as the evolution of φ1 (or φ2) is continuous there is no jump in
γ′
max. To summarize, the smaller d is, the closer (φ2 −φ1)/(a2 −a1) is to H. Another

way of relaxing this constraint on (φ2 − φ1)/(a2 − a1) for a constant d is to separate
the junctions and, we can show that if lb = a2 − a1 → +∞, then γmax(H) → d1 + d2.
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Fig. 6.3. Plot of γmax(H) curves for two two-junction units with inline current feed. Left
panel: comparison of γmax(H) given by the model for the cases d1 = d2 and d1 �= d2. Right panel:
the fit of the experimental data from a two-junction unit of the Observatory of Paris (reproduced
from [3] with permission of Morvan Salez).

6.2. Regularity of γmax(H). Junctions are never perfectly similar, and small
differences in their areas or their critical currents will affect γmax. In the left panel
of Figure 6.3, showing γmax(H) for a two-junction device, there is no discontinuity of
the slope of the curve γmax(H) labeled “nonequal”; ∂γmax/∂H exists everywhere. In
this case, the values of φ1(H) and φ2(H) associated with γmax(H) vary continuously.

To show this, consider a circuit such that d1 > d2. If φ1 = π/2, remark (3.3)
implies d1 − d2 ≤ γmax ≤ d1 + d2. Now let us find the values of H for which these
bounds can be reached. From (3.3) and (3.6) we have

γ = d1 sin(φ1) + d2 sin(φ2),

φ2 = −νj

2
l21 +

(
H −

(
νa1 +

1 − ν

2
l

)
j + d1 sinφ1

)
l1 + φ1,(6.1)

with l1 = a2 − a1. By substituting the second equality into the first and taking the
derivative with respect to φ1, we obtain

∂γ

∂φ1
= d1 cosφ1 + d2

[(
−
(
ν
a2 + a1

2l
+

1 − ν

2

)
∂γ

∂φ1
+ d1 cosφ1

)
l1 + 1

]
cosφ2.

Since we search for the maximum of γ, then ∂γ/∂φ1 = 0, so that

d1 cosφ1 = −d2 (d1l1 cos(φ1) + 1) cosφ2.(6.2)

When φ1 = π/2, this condition gives φ2 = π/2[π]. Now, inserting these solutions into
(6.1), we obtain the values of H for which these solutions are possible:

γmax(H) H
d1 + d2 2kπ/l1 + [ν(a1 + l1/2) + (1 − ν)l/2](d1 + d2)/l − d1

d1 − d2 (2k + 1)π/l1 + [ν(a1 + l1/2) + (1 − ν)l/2](d1 − d2)/l − d1

This enables us to estimate d1 and d2 from the curve γmax(H).
We now proceed to give the conditions that d1 and d2 should satisfy in order to

have an angular or smooth γmax(H). Since φ2(H) varies continuously, cos(φ2) takes
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all the values between −1 and 1. We assume that ∀φ1, d1l1 cos(φ1) + 1 ≥ 0, where
l1 = a2 − a1.

1 We consider the following two cases:
1. cosφ1 ≤ 0: as cosφ1 ≥ −1 from (6.2), we obtain

d2 cos(φ2) ≤
d1

1 − d1l1
.

Since cos(φ2) must take all values between −1 and 1 and d2 > 0,

d2 ≤ d1

1 − d1l1
.(6.3)

This is the maximal value that d2 can take compared to d1.
2. cosφ1 ≥ 0: as cosφ1 ≤ 1, for the same reason we obtain

d2 ≥ d1

1 + d1l1
.(6.4)

To summarize, dγmax(H)/dH does not vary continuously if

d1

1 − d1l1
≤ d2 ≤ d1

1 + d1l1
.(6.5)

To illustrate this effect we consider the configuration of a a microstrip with inline
current feed with two Josephson junctions built by Salez and Boussaha at the Obser-
vatoire de Paris [17, 4]. The results are shown in Figure 6.3. The square junctions have
an area of w2

j ≈ 1μm2, the Josephson length is λJ = 5.6μm, and l1 = a2−a1 = 13μm
(using the junction centers). This gives d1 = d2 ≈ 0.0357, l1 ≈ 2.32 if the areas are
equal. However, the experimental data does not go to 0, and so the junctions are
probably slightly different than expected from (6.3) and (6.4),

0.032969 ≤ d2 ≤ 0.038923.

Only a 10% difference in area is enough to give a regular γmax(H). From the fit of
the experimental data (right panel of Figure 6.3) we can estimate the areas of the
junctions as w2

1 = 0.85255μm2 and w2
2 = 1.1417μm2.

As we have seen in the previous section, when the γmax curve does not show any
spike, it is bounded by d1+d2 and |d1−d2|. From this we can obtain the characteristics
of the two junctions, their critical current density, and area, except that we do not
know which junction corresponds to d1 and which to d2. However, if the γmax does
not have any spikes, then we can give the exact area of the junctions, assuming that
the critical density current is known.

7. Many junctions. A two-junction circuit behaves as a simple SQUID and
shows a regular γmax(H). To obtain specific properties for advanced detectors, ex-
perimentalists make devices with more junctions.

7.1. 3-device junction. When we add a new junction to a circuit with two
junctions, new oscillations appear on γmax(H). We cannot predict the amplitude
of the oscillations, but we can have an idea of their number in one period, i.e., the
interval [0, Hp]. We introduce the phase difference for H = 0, δφi = φi − φ1. Using

1For small junctions this is not a strong constraint, because since di = w2
i /w � 1, wi, w � 1,

and li � 1 are about 10−2.
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Fig. 7.1. Plot of γmax(H) curves for a two-junction unit a1 = 1, a2 = 2 (l1 = 1) and a third
junction placed at a3 = 5, l2 = 3 (left panel) and a3 = 8, l2 = 6 (right panel). All the junctions
have the coefficient di = 1.
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Fig. 7.2. γmax(H) curves for all devices di = 1. Left panel: we compare a circuit of two
junctions with one of three junctions: same junction unit plus one. Right panel: a three- and a
four-junction circuit. We report on top of the box the expected shift to the left given by dn+1/2 = 0.5.

Proposition 4.1, we can state that as H goes from 0 to Hp, φ2 − φ1 goes from δφ2

to δφ2 + 2πl1/l1 = δφ2 + 2π. Similarly φ3 − φ1 goes from δφ3 to δφ3 + 2π(l2 +
l1)/l1 = δφ3 + 2π(l2/l1 + 1), which becomes δφ3 + 2π(k + 1) if the junctions are
placed harmonically so that l2 = kl1. In that case we expect the γmax(H) curve to
present k + 1 bumps within one period. In Figure 7.1, the junctions are placed in a
harmonic way a3 − a2 = k(a2 − a1), where k = 3 (left panel) and k = 6 (right panel).
As expected, we see the four intermediate “bumps” in the γmax(H) curve in the left
panel and seven bumps in the curve of the right panel. We can see the periodicity
given by Hp = 2π/(a2 − a1) ≡ 2π/l1, which adds new oscillations. This picture
shows that the closer the third junction is to the junction unit, the fewer oscillations
there are. These estimations hold approximately in the case of an array with more
junctions.

In other words, when a3 − a1 is large, as in the right panel of Figure 7.1 and the
left panel of Figure 7.2, the shape of the γmax curve tends to that for a two-junction
circuit. We explain this below.
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7.2. Influence of a faraway single junction for the inline current feed.
In Figure 7.2, for each panel we plot a γmax curve, for an n-junction unit and another
with the same junction unit plus a distanced junction. (n + 1)-junction γmax curves
look like n-junction curves to which a shift has been added. We want to evaluate this
shift.

Note that for the junction n, using the notation of (3.4) and (3.6), we know
that φn+1 is determined by Pn+1. If we increase P ′

n+1 of ε, then φn+1 increases by
ε(an+1 − an). Thus, a variation at φn of ε = ±π/(an+1 − an) is enough to obtain
sinφn+1 = 1. The farther the last junction, the smaller ε, and consequently this
junction has the smallest action on the junction unit. So, in the search of γmax, the
value of sinφn+1 is near 1. The γn+1

max curve of a circuit with n + 1 junctions is close
to γn

max + dn+1, i.e., the curve for the n-junction circuit with n junctions plus the
maximal contribution of the last junction.

Now let us assume that sinφn+1 = 1. We must not forget the boundary conditions
of our problem: φ′|{0,l} = H ∓ γ/2. But boundary conditions at the junction unit

are φ′(0) = H − γ/2 and an < x0 < an+1, φ′(x0) = H + γ/2 − dn+1. We cannot
compare this junction unit with the n-junction problem because of different boundary
conditions. As we have done in section 5.2, let H ′ = H − dn+1/2. The previous
boundary conditions become

φ′|{0,a+
n } = H ′ ∓ γ

2
.

We find wanted boundary values. Finally we show that

lim
an+1−an→+∞

γn+1
max

(
H +

dn+1

2

)
= γn

max(H) + dn+1.(7.1)

Figure 7.2 illustrates this convergence.
This argument cannot be extended simply to the overlap or general current feed,

for two reasons. First, introducing or taking out the last junction an+1 induces a
variation of the magnetic shift Hν given by (4.5). We could estimate it, but we have
the problem that the curvature of φ for an n-junction device is νj/2, where j depends
on the number of the junctions. This will affect the shift between the junctions and
consequently the curve γmax.

However, numerical simulation shows that (7.1) remains a good approximation
for the general case, even with a small number of junctions. The general feed and
inline feed problems coincide when dn+1/

∑n
1 di tends to zero. Going back to the

physical device, this means that the forces of the junctions are very small, di ≈ 10−2,
and for these values the inline and overlap results are practically indiscernible from
the magnetic approximation. Then (7.1) can be used.

7.3. A real device with five Josephson junctions. We have compared our
theory to the experimental results for a device with two Josephson junctions. The
same team at the Observatoire de Paris has made a device with five junctions. Here
the γmax curve obtained is totally different from the one for a simple SQUID. The
parameters are l1 = 20, l2 = 42, l3 = 12, and l4 = 6. Figure 7.3 shows the γmax curve
where the current and magnetic field have been scaled using approximately the same
factors as for the SQUID of Figure 6.2. Our modeling approach also gives excellent
agreement for experimental uniform arrays of 5, 10, and 20 junctions.
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Fig. 7.3. Experimental Imax(H) for an array of five junctions in a 2D microstrip line built by
Salez and Boussaha of the Observatory of Paris (reproduced with their permission). The measured
data is presented by the + symbols, and the magnetic approximation result is shown with a solid
line.

8. Conclusion. We have mathematically analyzed a new continuous/discrete
model for describing arrays of small Josephson junctions. Compared to standard
“lumped” approaches we do not approximate the equations, except for neglecting the
phase variation in the junction. In particular, our approach preserves the matching
at the interface.

We establish the periodicity of the γmax(H) curve and show how it depends on the
position of the array with respect to the microstrip. This is particularly interesting
for estimating the proportion of inline current feed versus overlap feed. We show how
separating a junction from an array will influence γmax(H).

We introduce a numerical method for estimating γmax(H) which is more reliable
than the standard Newton method used up to now.

The relative simplicity of the model allows in-depth analysis that is out of reach
for the 2D model. In particular, we show that solutions for general current feed tend
to the solutions of inline feed when νj/l → 0. All models reduce to what we call the
magnetic approximation for small di.

Our global model gives a very good agreement with experimental curves obtained
for arrays of up to five junctions. The simplicity of the magnetic approximation allows
us to address the inverse problem of determining features of the array from γmax(H).

9. Appendix.

9.1. Implicit curves. In this part, we give an example of P ′
n+1(x) for systems

with three junctions. We define the following:

⎧⎪⎪⎨
⎪⎪⎩

sin1 = sin(φ1),

C1 =
(
d1 sin(φ1) −

νγa1

l
+ H − (1 − ν)

γ

2

)
(a2 − a1) + φ1,

Dj =
νγ(aj+1 − aj)

2

2l
.

Then (3.4) and (3.6) give
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P ′
3(x) = −νγx

l
+ d2 sin(−D1 + C1) + d1 sin1 +H − (1 − ν)

γ

2
,(9.1)

P ′
4(x) = −νγx

l
+ d3 sin

[
−D2 +

{
−d2 sin(D1 − C1) −

νγa2

l

+ d1 sin1 +H − (1 − ν)
γ

2

}
(a3 − a2) −D1 + C1

]
+ d2 sin(−D1 + C1) + d1 sin1 +H − (1 − ν)

γ

2
.(9.2)

This example shows that P ′
k(x) is C∞ in the variables (γ, φ1, ν,H, x). In particular,

P ′
n(l) is C∞ in the variables (γ, φ1, ν,H).

9.2. The current feed factor ν: Analytical estimates. Equation (4.9)
shows that we tend to an inline current feed when l is large. However, we should
show that the γmax curve tends to that for the inline feed.

Lemma 9.1 (solution). ∀φ1 and H ∃ a γ such that (4.1) has a solution.
Proof. As we have seen in section 5.2, it is sufficient to solve (5.1), P ′

n+1(l) =
H + (1 − ν)γ/2, to find a solution. Let us fix a value for φ1 with ν, H, l given.
If γ < −

∑n
i=1 di, then P ′

n+1(l) < H + (1 − ν)γ/2. Conversely when γ >
∑n

i=1 di,
we obtain P ′

n+1(l) > H + (1 − ν)γ/2. But by construction, P ′
n+1(l) is a function

continuous in all its variables, in particular γ. Thus we have at least one value of γ
in [−

∑n
i=1 di,

∑n
i=1 di] such that P ′

n+1(l) = H + (1 − ν)γ/2, and thus it is a solution
for that value of φ1.

We want to study the variation of γ(H) versus the current feed ν. At this point,
we do not consider the γmax curve. Let us fix φ1. Using the previous property, we
know that there exists at least one solution of (4.1), and particularly almost one γ.
Without changing φ1 or H, we plot all the possible γ versus ν in Figure 9.1. We call
this curve the γ(ν) curve. To plot this γ(ν) curve, we use the same parameter as in
Figure 4.3, with H = 1.3617 (see the top panel; we choose this H because there is a
big difference between the solution for inline and overlap current feeds). We choose
for φ1 the value found with Maple, giving the maximum γmax for the inline feed.
Figure 9.1 (top panel), for ν = 0, confirms the γmax value found in Figure 4.3. But
for overlap the maximum current we can obtain is near 0. Thus, there is another
value of φ1 for γmax of overlap current feed (φ1 ≈ 0.252).

Let us study the curve γ(ν). By definition, γ =
∑n

i=1 di sin(φi). Let φ1 be a value
such that ∂γ/∂ν exists; then

∂γ

∂ν
=

n∑
i=1

di
∂φi

∂ν
cos(φi),

∣∣∣∣∂γ∂ν
∣∣∣∣ ≤ n∑

i=1

di

∣∣∣∣∂φi

∂ν

∣∣∣∣ .(9.3)

With φi = φ(ai), we note in the following: φ′
i = limε→0 φ

′(ai − ε) (the left derivative
of φ). Let us make some remarks: as φ1 is fixed,

∂φ1

∂ν

∣∣∣∣
ν=0

= 0,

∂φ′
1

∂ν
=

∂

∂ν

{
H −

(
1

2
− νlb

2l

)
γ

2

}
= −

(
1

2
− νlb

2l

)
∂γ

∂ν
+

lbγ

4l
;
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Fig. 9.1. Each panel corresponds to the devices studied in the panels of Figure 4.3. We plot
the implicit curve γ(ν) curve for H = 1.3617, φ1 = 1.3897, corresponding to field H giving the
maximum current γmax(H) for the inline feed. From top to bottom we increase the length of the
device and notice the stretching of the γ(ν) curve (with the coefficient found in (4.9): lb/l).

using (3.4) and (3.6) we can begin iteration,

∂φi

∂ν
= −

(
ν
∂γ

∂ν
+ γ

)
l2i−1

2l
+ li−1

∂φ′
i−1

∂ν
+

∂φi−1

∂ν
(di−1li−1 cos(φi−1) + 1),

∂φ′
i

∂ν
= −

(
ν
∂γ

∂ν
+ γ

)
li−1

l
+ di−1

∂φi−1

∂ν
cos(φi−1) +

∂φ′
i−1

∂ν
,
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with li = ai+1 − ai. This last equation can be written, for i ≥ 3,

∂φ′
i

∂ν

∣∣∣∣
ν=0

= −
(
ν
∂γ

∂ν
+ γ

)
ai − a1

l
+

∂φ′
1

∂ν

∣∣∣∣
ν=0

+

k−1∑
k=2

dk
∂φk

∂ν
cos(φk).

We obtain

∂φi+1

∂ν
= −Ki

1

∂γ

∂ν
−Ki

2γ +
∂φi

∂ν
+ li

i∑
k=2

dk
∂φk

∂ν
cos(φk),

Ki
1 = li

[
νli
2l

+ ν
ai+1 − a1

l
+

1

2
− νlb

2l

]
,

Ki
2 = li

[
li
2l

+
ai+1 − a1

l
− lb

2l

]
.

Applying absolute values, we obtain∣∣∣∣∂φi+1

∂ν

∣∣∣∣ ≤ Ki
1

∣∣∣∣∂γ∂ν
∣∣∣∣ + Ki

2 |γ| +
∣∣∣∣∂φi

∂ν

∣∣∣∣ + li

i∑
k=2

dk

∣∣∣∣∂φk

∂ν

∣∣∣∣ .(9.4)

We do not need to find the exact expression of |∂φi+1/∂ν|; we know that it is a linear
combination of |∂γ/∂ν| and |γ| and so is |∂φ2/∂ν|. Using (9.4), we can show by
iteration that |∂φi/∂ν| is a linear combination of |∂γ/∂ν| and |γ|. Applying this last
remark to inequality (9.3), we obtain that there exist two constants, C1 and C2, such
that ∣∣∣∣∂γ∂ν

∣∣∣∣ ≤ C1

∣∣∣∣∂γ∂ν
∣∣∣∣ + C2|γ|;

C1 and C2 are a combination of di, li, K
i
1, and Ki

2. For ν and di sufficiently small,
|C1| < 1; then ∣∣∣∣∂γ∂ν

∣∣∣∣ ≤ C2

1 − C1
|γ|.(9.5)

This last equation implies local continuity of the γ curve as a function of ν. As we
have seen in section 4.3, increasing l is equivalent to decreasing the range of ν (given
by μ). ∀ε, ∃L/ l ≥ L ⇒ μ ≤ ε. This shows the convergence of the γmax (0 ≤ ν ≤ 1)
curve to the one for inline current feed when l → +∞.

9.3. Convergence by the junction coefficient di. We want to show that
the solution for the general case converges to the solution of the inline case, for small
di. We have shown in Lemma 9.1 that for H and φ1 given, we can find at least one
solution, whatever ν. This shows that for the same φ1, we can find a general and an
inline solution. Let us define the following:

1. P i
n(x), ∀x ∈ ]an, an+1[, a solution of inline problem (ν = 0) of this circuit, γi

the maximal current associated to the value φ1.
2. P g

n(x), ∀x ∈ ]an, an+1[, a general solution (ν 
= 0, same l, and same junction
unit), γg the maximal current associated with the value φ1.

3. αj and βj by {
αj = P g′

j (aj) − P i′

j (aj),

βj = P g
j (aj) − P i

j (aj).



834 J. G. CAPUTO AND L. LOUKITCH

As P g
1 (a1) = φ1 = P i

1(a,), we have β1 = 0. We can calculate α1 using (4.8),

α1 = P g′

1 (a1) − P i′

1 (a1) = −γi − γg

2
+

νlb
2l

γg.

However, γi and γg are positive, and so

|α1| ≤
(

1

2
+

νlb
2l

) n∑
i=1

di.(9.6)

The aim of the following is to give an upper bound for βi. We proceed by iteration.
We recall that lk = ak+1 − ak. Using (3.6), we estimate βk+1:

βk+1 =
−νγg

2l
l2k +

[
dk(sin(P g

k (ak)) − sin(P i
k(ak))) + αk

]
lk + βk.(9.7)

Let us focus on the sine terms,

sin(P g
k (ak)) − sin(P i

k(ak)) = sin(P i
k(ak) + βk) − sin(P i

k(ak))

= sin(P i
k(ak)) [cos(βk) − 1] + sin(βk) cos(P i

k(ak))

≤ |βk|2 + |βk|.

We assume βk � 1, and thus we obtain the equivalences βk ≈ sin(βk) and −β2
k ≈

cos(βk)− 1, but we cannot predict the sign of sin(P i
k(ak)) or cos(P i

k(ak)). We neglect
|βk|2. From (9.7),

|βn+1| ≤
∣∣∣∣νγg

2l
l2n

∣∣∣∣ + (dn|βn| + |αn|) ln + |βn|,

|αn+1| ≤
∣∣∣∣νγg

l
ln

∣∣∣∣ + dn|βn| + |αn|.

Let us note G = ν
∑n

i=1 di/l; we then obtain a simple system

ζn+1 ≤ Mnζn + GVn,(9.8)

with, ζn =
(

c|βn|
|αn|

)
, Mn =

(
ccdnln+1 ln

dn 1

)
, and Vn =

(
cl2n/2
ln

)
. So, we bound |βn| and

|αn| from above, with |β1| and |α1|:

ζn ≤ Mn−1(. . . (M2(M1ζ1 + GV1) + GV2) . . . ) + GVn−1 .(9.9)

When di → 0,
1. G → 0; then equation (9.9) tends to ζn ≤ Mn−1 . . .M2M1ζ1.

2. Mk →
(
cc1 lk
0 1

)
; then, Mk . . .M2M1 →

(
cc1

∑k−1
i=1 li

0 1

)
.

From the two previous points, we obtain that

|βi| ≤ |β1| + |α1|(ai − a1) + O

(
n∑

i=1

di

)
.

Using (9.6), we have |α1|(ai − a1) ≤
(
lb/2 + νl2b/(2l)

)∑n
i=1 di, and the previous in-

equality becomes, ∀i ∈ {1, . . . , n},

|βi| ≤ |β1| + O

(
n∑

i=1

di

)
.(9.10)

Remember that β1 = 0. Then (9.10) shows that γg tends to γi. Since this convergence
occurs independently of φ1, we obtain the convergence of the γmax curve.
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9.4. Inline—Magnetic convergence. We show in this section the convergence
of an inline solution to the magnetic approximation when di � 1. We already know
that in this case the γmax curve in overlap (or in general case) and inline tend to the
same behavior. So, in this way, we show that ∀ ν the γmax curve of (4.1) tends to the
magnetic approximation when di � 1.

We know that the magnetic approximation is given by f(x) = Hx + cmax(H).
Notice that cmax does not depend on the γ value (see (4.11)). We are going to
compare the magnetic approximation and the inline current feed solution for the
same geometry. We proceed as in the previous part, choosing φ1 = Ha1 + cmax.
Remember that in the inline case, φ is piecewise linear. Then ∀x ∈ ]ai, ai+1[,

Pi+1(x) = (di sin(Pi(ai)) + P ′
i (ai))(x− ai) + Pi(ai).

Let us define

αi = P ′
i (ai) − f ′(ai) = P ′

i (ai) −H,
βi = Pi(ai) − f(ai).

We obtain that α1 = −γ/2, β1 = 0 and, for an n-junction circuit, αn+1 = γ/2. We
estimate αi+1:

αi+1 = di sin(Pi(ai)) + P ′
i (ai) −H = di sin(Pi(ai)) + αi.

We obtain αi+1 =
∑i

j=1 dj sin(Pj(aj)) + α1, and thus

|αi+1| ≤
n∑

k=1

dk .(9.11)

We write βi+1:

βi+1 = (di sin(Pi(ai)) + P ′
i (ai))(ai+1 − ai) + Pi(ai) −Hai+1 + b

= (di sin(Pi(ai)) + P ′
i (ai) −H)(ai+1 − ai) + Pi(ai) −Hai + b

= αi+1(ai+1 − ai) + βi.

Thus if β1 = 0, then

βi =

i−1∑
k=1

αk+1(ak+1 − ak) .(9.12)

Now using the bounds on the α’s and bounding the li’s, we get

|βi| ≤ nlb

n∑
k=1

dk .(9.13)

This shows that γmax of (4.1) tends to the magnetic approximation when
∑n

k=1 dk
tends to 0.
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Abstract. We study certain nonlinear continuous models of opinion formation derived from a
kinetic description involving exchanges of opinion between individual agents. These models imply
that the only possible final opinions are the extremal ones, and they are similar to models of pure drift
in magnetization. Both analytical and numerical methods allow us to recover the final distribution
of opinion between the two extremal ones.
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1. Introduction. This paper is devoted to the analysis and large-time behavior
of solutions of the equation

∂f

∂t
= γ

∂

∂x

(
(1 − x2)(x−m(t))f

)
,(1.1)

where the unknown f(x, t) is a time-dependent probability density which may repre-
sent the density of opinion in a community of agents. This opinion varies between
the two extremal opinions represented by ±1, so that x ∈ I = [−1, 1]. The constant
γ is linked to the spreading (γ = −1) or to the concentration (γ = +1) of opinions.
In (1.1) m(t) represents the mean value of f(·, t),

m(t) =

∫
I
x f(x, t) dx,(1.2)

and its presence introduces a nonlinear effect into its evolution.
When γ = −1, the related linear equation

∂f

∂t
= − ∂

∂x

(
x(1 − x2)f

)
(1.3)

has been introduced recently by Slanina in [15] to analyze the evolution of density
opinions in the voter model on a complete graph. There, the equation was derived as
the mean field limit of the Sznajd model [20] in the case of two opinions. Because of
linearity, (1.3) allows for an analytical treatment, and it is possible (see, e.g., [1, 15])
both to obtain the exact solution and to control the rate of decay towards the equilib-
rium for all values of γ (see also, e.g., [3]). Equation (1.1) was introduced in [22], in
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connection with the asymptotic limit of a Boltzmann equation for the kinetic descrip-
tion of opinion formation involving binary exchange of opinion between individual
agents. This kinetic description is based on two-body interactions involving both
compromise and diffusion properties in exchanges between individuals. Compromise
and diffusion were quantified in [22] by two parameters, which are mainly responsible
of the behavior of the model, and allow for a rigorous asymptotic analysis in which
the limiting model is a Fokker–Planck-type equation, where the second-order term
is related to diffusion, while the drift term is due to compromise. In a compromise-
dominated regime, the resulting equation is exactly (1.1). We point out that, contrary
to (1.3), the presence of the mean value m(t) in (1.1) takes into account the influence
of the mean opinion on the compromise-dominated dynamics.

Microscopic models of both social and political phenomena describing collective
behaviors and self-organization in a society have been recently introduced and ana-
lyzed by several authors (see, e.g., [2, 6, 7, 8, 11, 12, 14, 16, 17, 18, 20, 25, 26]). The
leading idea is that collective behaviors of a society composed of a sufficiently large
number of individuals (agents) can be hopefully described using the laws of statistical
mechanics as it happens in a physical system composed of many interacting particles.
The details of the social interactions between agents then characterize the emerging
statistical phenomena.

Equation (1.3), or in general (1.1) with γ = −1, can also describe a pure drift
in magnetization (see, e.g., [19] and the references therein), where the two extremal
points of I represent the opposite attraction poles. In the kinetic picture of [22], it
simply means that the compromise in the binary interaction is substituted by magnetic
repulsion between agents. Moreover, the case γ = +1 is related to models of one-
dimensional nonlinear friction equations considered in the study of granular flows
(see, e.g., [13, 21]), in connection with the quasi-elastic limit of a Boltzmann equation
for rigid spheres with dissipative collisions and variable coefficient of restitution.

The paper is organized as follows. In the next section we introduce the main
properties of the model, which justify the treatment in terms of a suitable weak for-
mulation. The qualitative analysis is given in section 3. The large-time behavior is
considered in sections 4–6. It is shown that the problem can be solved in sufficiently
high generality only in the case of concentration (γ = +1). This lack of generality in
the analytical treatment of the large-time behavior of the solution in the spreading
of opinion justifies the numerical treatment of the equation. The numerical approx-
imation is included in section 7, where both the explicit solution of (1.3) and the
knowledge of the steady state in the concentration case (γ = +1) are used as bench-
mark tests for the numerical scheme. Finally, we note that the mathematical methods
used here are close to the recent framework considered in the context of kinetic the-
ory of nonlinear friction equations [10] and made popular by the mass transportation
community [24].

2. Main properties and weak description. As briefly described in the in-
troduction, (1.1) describes the evolution of a probability density which represents
the density of opinions in a community. For all values of the constant γ, we will
show that the time-evolution driven by this equation leads the density towards a
equilibrium state that is described in terms of two Dirac masses (γ = −1) or to a
unique Dirac mass (γ = 1). Having in mind that the equilibrium solution to equation
(1.1) is given by Dirac masses, any convergence result towards equilibrium holds in
a weak∗-measure sense. The recent analysis of [10] of the nonlinear friction equation
introduced by McNamara and Young [13] suggests that a suitable way of treating
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(1.1) is based on a rewriting of this equation in terms of pseudoinverse functions. It
is immediate to show that the drift operator on the right-hand side of (1.1) preserves
positivity and mass, ∫

I
f(x, t) dx =

∫
I
f0(x) dx.(2.1)

Then, given a initial datum which is a probability density (nonnegative and with unit
mass), the solution remains a probability density at any subsequent time. Let F (x)
denote the probability distribution induced by the density f(x),

F (x) =

∫
(−∞,x]

f(y) dy(2.2)

and let μ denote the distribution on R associated to F . Since F (·) is not decreasing,
we can define its pseudoinverse function (also called quantile function) by setting, for
ρ ∈ (0, 1),

Xμ(ρ) = XF (ρ) = inf{x : F (x) ≥ ρ}.

Equation (1.1) for f(x, t) takes a simple form if written in terms of its pseudoinverse
X(ρ, t). Theorem 3.1 shows in fact that the evolution equation for X(ρ, t) reads

∂X(ρ, t)

∂t
= −γ (X(ρ, t) −m(t)) (1 −X2(ρ, t)),(2.3)

where now ρ ∈ (0, 1). Note that if we assume F to be absolutely continuous with
respect to x and strictly increasing, then Theorem 3.1 reduces to elementary compu-
tations. In (2.3)

m(t) =

∫ 1

0

X(ρ, t) dρ.(2.4)

Let us set γ = −1 (spreading). Then the weak form (2.3) clarifies the evolution of
X(ρ, t) and the role of m(t). In fact, if X(ρ, t) > m(t), X(ρ, t) increases towards 1,
while X(ρ, t) < m(t) implies that X(ρ, t) decreases towards −1. Hence, the mean
opinion m(t) represent a barrier for the density of opinions to move towards one of
the two extremal opinions. The fact that the mean opinion varies with time makes
the nonlinear problem harder to handle with respect to the linear problem considered
in [15] where the barrier is fixed equal to zero.

Among the metrics which can be defined on the space of probability measures,
which metricize the weak convergence of measures [27], one can consider the Lp-
distance (1 ≤ p < ∞) of the pseudoinverse functions

dp(X,Y ) =
(∫ 1

0

|X(ρ) − Y (ρ)|p dρ
)1/p

.(2.5)

In what follows, we’ll use the usual identifications

dp(X,Y ) = dp(fX , fY ) = dp(FX , FY ) = dp(μX , μY ) ,

where μX (μY ), FX (FY ), and fX (fY ) denote the distribution, the cumulative func-
tion, and the density associated to X (Y ), respectively. By this identification, as one
can see [10, 23, 24], d2(F,G) is nothing but the Wasserstein metric [23].
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In addition to nonlinear friction equations arising in the modeling of granular
gases [10], the strategy of passing to pseudoinverse functions has been recently ap-
plied to nonlinear diffusion equations of porous medium type [5] and to degenerate
convection–diffusion equations [4]. This rewriting of nonlinear diffusion equations has
been shown to be useful in order to obtain simple explicit numerical schemes that
satisfy a contraction property with respect to the Wasserstein metric [9].

3. Existence, uniqueness, and well-posedness of the problem. In this
section we will study the initial value problem for (1.1), with initial density

f(x, t = 0) = f0(x), x ∈ I.(3.1)

As before, we will denote by X0(ρ) the quantile function corresponding to f0, so that

X(ρ, t = 0) = X0(ρ) = inf{x : F0(x) ≥ ρ}, ρ ∈ [0, 1].(3.2)

The equivalence between (1.1) and (2.3) is contained in the following.

Theorem 3.1. There exists a weak solution of (1.1)–(3.1) if and only if there
exists a solution of (2.3)–(3.2).

Proof. Suppose first that there exists f(x, t) which solves (1.1)–(3.1). Then m(t)
is a differentiable function of time. Let y(t) be the maximal C1 solution of the Abel
differential equation:

{
y′ = −γ(1 − y2)(y −m(t)),

y(0) = ȳ0,
(3.3)

where, for any y0 ∈ [−1, 1], we denoted by ȳ0 a C1-extension of y0 to R. We have, in
weak sense,

(3.4)
d

dt

∫
(−∞,y(t)]

f(x, t) dx =

∫
R

[ ∂

∂t

(
1l(−∞,y(t)](x)

)
f(x, t) + 1l(−∞,y(t)](x)

∂

∂t
f(x, t)

]
dx

=

∫
R

(
y′(t)δy(t)(x) + γ[δy(t)(x)(1 − x2)(x−m(t))]

)
f(x, t) dx

= 0 .

Since X(ρ, t) ≤ x ⇐⇒ ρ ≤
∫ x

−∞ f(y, t) dy, the first part of the proof has been shown.

Now, let X(ρ, t) be a solution of (2.3)–(3.2). As a consequence of the proper-
ties of the solution to Abel’s equation (3.3), given any initial datum X(ρ, 0) satisfy-
ing

• X(ρ, 0) ∈ [−1, 1];
• X(ρ, 0) is nondecreasing;
• X(ρ, 0) is left-continuous,

the same properties are preserved at any subsequent time t > 0. Hence, for any
t, {X(ρ, t), ρ ∈ (0, 1)} is the quantile function of a unique probability measure on
[−1, 1]. We have only to prove that (1.1) holds. This is a consequence of the change
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of variables formula. In fact, if h is a test function,∫
R

h(x)
∂

∂t
f(x, t) dx =

∂

∂t

∫
R

h(x)f(x, t) dx

=
∂

∂t

∫ 1

0

h(Xρ(t)) dρ

=

∫ 1

0

∂

∂t
h(Xρ(t)) dρ

=

∫ 1

0

h′(Xρ(t))
(
−γ (X(ρ, t) −m(t)) (1 −X2(ρ, t))

)
dρ

=

∫
R

h′(x)
(
−γ (x−m(t)) (1 − x2)

)
f(x, t) dx

=

∫
R

h(x)
∂

∂x

(
γ (x−m(t)) (1 − x2)f(x, t)

)
dx .

We call (K, p) the (compact) set of probability distributions on [−1, 1] equipped
with the p-Wasserstein distance. Note that all the p-Wasserstein distances on (K, d)
are equivalent. In fact, if q ≥ p ≥ 1,

‖Xμ1 −Xμ2‖p ≤ ‖Xμ1 −Xμ2‖q ≤ 21−p/q‖Xμ1 −Xμ2‖p/qp .(3.5)

We will refer to K as the topological space of probability distributions on [−1, 1]
induced by any of this metric: the weak∗-topology. Before searching for a continuous
solution of (1.1) in K, we state the following trivial lemma.

Lemma 3.2 (solution Abel). Let φ(x, y) = −γ(1 − x2)(x− y). Then

|φ(x1, y1) − φ(x2, y2)| ≤ 4|x1 − x2| + |y1 − y2| .

Moreover, if f is a solution of f ′(t) = φ(f(t), g(t)) with sup |g(t)| ≤ 1 and f(0) ∈
[−1, 1],

|f(s) − f(t)| ≤ 2|s− t| .

We call any function μ ∈ C0(R,K) s.t. (1.1)–(3.1) holds a solution of (1.1)–(3.1).
We have the following theorem.

Theorem 3.3. For any probability density f0(x) in (3.1), there exists a unique
function μ ∈ C0(R,K) such that if f(x, t) denotes the weak derivative of the probability
distribution μ(t), f(x, t) satisfies (1.1) with initial value (3.1). Moreover, for any
t ∈ R, the solution depends in a continuous way on the initial datum: the problem
(1.1)–(3.1) is well-posed in C0(R,K).

Proof. [Existence] We prove the existence of a solution of the equivalent problem
(2.3)–(3.2) (see Theorem 3.1) in a constructive way. More precisely,

(A) we construct a sequence {Xn, n ∈ N} which approximates a target solution;
(B) by compactness arguments, we find a convergent subsequence Xnl

→ X;
(C) the limit X satisfies (2.3)–(3.2).
Let [−T, T ] be fixed. For any n ∈ N, we subdivide [−T, T ] into disjoint intervals

of length R/2N . Then we proceed as follows:

(A1) we compute m
(n)
0 =

∫ 1

0
X0(ρ) dρ;

(A2) we solve (2.3) on [−T/2n, T/2n] with m(n)(t) = m0, finding X(n)(ρ, t), t ∈
[−T/2n, T/2n];
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(A3) for any k = 1, . . . , 2n − 1,
• we compute

m
(n)
±k =

∫ 1

0

X(n)(ρ,±kT/2n) dρ;

• we solve (2.3) on (kT/2n, (k + 1)T/2n] with m(n)(t) = m
(n)
k and initial

data X(n)(ρ, kT/2n), finding X(n)(ρ, t), t ∈ (kT/2n, (k + 1)T/2n];

• we solve (2.3) on [−(k+1)T/2n,−kT/2n) with m(n)(t) = m
(n)
−k and initial

data X(n)(ρ,−kT/2n), finding X(n)(ρ, t), t ∈ [−(k + 1)T/2n,−kT/2n).
We call μ(n) : [−T, T ] → K the sequence of function with value in K associated to
X(n).

(B) For any n ∈ N, it is possible to prove (by induction on k) that for any t ∈
[−T, T ], X(n)(ρ, t) ∈ [−1, 1] and m(n)(t) ∈ [−1, 1]. As a consequence of Lemma 3.2,
we have ∣∣X(n)(ρ, s) −X(n)(ρ, t)

∣∣ ≤ 2|t− s|,(3.6)

i.e., for any ρ ∈ (0, 1), {X(n)(ρ, ·) : [−T, T ] → [−1, 1]}n∈N is a uniformly equicontinu-
ous sequence. A diagonal argument together with the Ascoli–Arzelà theorem ensure
the existence of a subsequence nl s.t. {X(nl)(ρ, ·) : [−T, T ] → [−1, 1]}l∈N converges
uniformly on [−T, T ] for each ρ ∈ (0, 1) ∩ Q.

Now, (3.6) implies∫ 1

0

|X(n)(ρ, s) −X(n)(ρ, t)| dρ ≤ 2|t− s| ,(3.7)

i.e., μ(n) is a equicontinuous sequence with respect to the distance d1 on K. Then the
Ascoli–Arzelà theorem again ensures the existence of a subsection of nl (we call it nl

again) such that

sup
t∈[−T,T ]

d1(μ
(nk)(t), μ(nl)(t)) ≤ M(k ∧ l) −→

k∧l→∞
0,(3.8)

sup
t∈[−T,T ]

|X(nk)(ρ, t) −X(nl)(ρ, t)| ≤ Nρ(k ∧ l) −→
k∧l→∞

0 ∀ρ ∈ Q ∩ (0, 1).(3.9)

Now, let ρ ∈ (0, 1) ∩ Q be fixed. {X(nl)(ρ, ·)}l∈N is a uniform convergent sequence
of derivable functions converging to X(ρ, t) = liml X

(nl)(ρ, t)). Left-continuity and
monotonicity of {X(ρ, t), ρ ∈ (0, 1) ∩ Q} extend the definition of X(ρ, t) to all ρ ∈
(0, 1).

(C) What remains to prove is

• liml m
(nl)(t) =

∫ 1

0
X(ρ, t) dρ =: m(t);

• X(ρ, t) is differentiable, and (2.3) holds.

Note that, from (3.8), it follows immediately that |
∫ 1

0
X(nk)(ρ, t) dρ−

∫ 1

0
X(nl)(ρ, t) dρ|

≤ M(k ∧ h) and hence∣∣∣∫ 1

0

X(ρ, t) dρ−
∫ 1

0

X(nl)(ρ, t) dρ
∣∣∣ ≤ M(h) .(3.10)

By definition of m(n),

m(n)(t) = m(n)([[2nt]]/2n) =

∫ 1

0

X(n)(ρ, [[2nt]]/2n) dρ,
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where [[·]] is the integer part of · closer to 0. Therefore,

∣∣∣m(n)(t) −
∫ 1

0

X(n)(ρ, t) dρ
∣∣∣ ≤ 2−n+1(3.11)

and hence m(nl)(t) is a Cauchy sequence on [−1, 1]. Thus, there exists m̂(t) =
limh m

(nl)(t). By (3.10) and (3.11) it follows that m̂(t) = m(t) since

∣∣∣m̂(t) −
∫ 1

0

X(ρ, t) dρ
∣∣∣ ≤ ∣∣m̂(t) −m(nl)(t)

∣∣ + 2−nl+1 + M(h) .

Now, let ρ ∈ (0, 1) ∩ Q be fixed. For simplicity of notation, define H(n, ρ, t) :=
∂
∂sX

(n)(ρ, s)
∣∣
s=t

. Moreover, we define

H(ρ, t) := lim
l→∞

H(nl, ρ, t) = −γ(1 −X(ρ, t)2)(X(ρ, t) −m(t)).

The uniform convergence theorem states that ∂
∂sX(ρ, s)

∣∣
s=t

= H(ρ, t) if {H(nl, ρ, t)}l∈N

is a uniform converging sequence on (−T, T ). To prove this, let k ≥ l. The triangular
inequality∣∣H(nk, ρ, t) −H(nl, ρ, t)

∣∣ ≤ ∣∣H(nk, ρ, t) −H(nk, ρ, [[2
nlt]]/2nl)

∣∣
+
∣∣H(nk, ρ, [[2

nlt]]/2nl) −H(nl, ρ, [[2
nlt]]/2nl)

∣∣
+
∣∣H(nl, ρ, [[2

nlt]]/2nl) −H(nl, ρ, t)
∣∣

= Aρ(k, l, t) + Bρ(l, k, t) + Aρ(l, l, t)

shows that we may prove that supt∈[−T,T ] Aρ(l, k, t) +Bρ(l, k, t) +Aρ(l, l, t) −→
l∧k→∞

0.

As a consequence of (3.7) and (3.11), we have |m(n)(s)−m(n)(t)| ≤ 2−n+2 + 2|t− s|,
which implies (see Lemma 3.2 and (3.6))

|H(n, ρ, s) −H(n, ρ, t)| =
∣∣∣(1 −X(n)(ρ, s)2)(X(n)(ρ, s) −m(n)(s))

− (1 −X(n)(ρ, t)2)(X(n)(ρ, t) −m(n)(t))
∣∣∣

≤ 4|X(n)(ρ, s) −X(n)(ρ, t)| + |m(n)(s) −m(n)(t)|
≤ 10|t− s| + 2−n+2,

and hence Aρ(k, l, t) ≤ 10·2−nl+2−nk+2. Now, let k ≥ l and l ∈ {−2nl+1, . . . , 2nl−1}.
Again, Lemma 3.2, (3.8), and (3.9) imply∣∣H(nk, ρ, l/2

nl) −H(nl, ρ, l/2
nl)

∣∣ ≤ 4Nρ(l) + M(l),

and hence Bρ(k, l, t) ≤ 4Nρ(l) + M(l). This completes the proof for ρ ∈ (0, 1) ∩ Q.
Now, fixing y0 ∈ [−1, 1], let y(t) be the maximal C1 solution of the Abel differential
equation (3.3). Since X(ρ, t) ≥ y(t) ⇐⇒ X(ρ, 0) ≥ y(0) for all ρ ∈ (0, 1) ∩ Q,
left-continuity and monotonicity of {Xρ(t), ρ ∈ (0, 1)} extend the proof to ρ ∈ (0, 1).

[Uniqueness and well-posedness] Let Y (ρ, t), X(ρ, t) be two solutions of (1.1)–
(1.2). Denote by mX(t) and mY (t) the mean values of X and Y , respectively, at time
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t. Since |mY (t) −mX(t)| ≤ d1(X,Y ) we have (by Lemma 3.2 and (3.5))

(3.12)
d

dt
d2(μX(t), μY (t)) =

d

dt

∫ 1

0

(
Y (ρ, t) −X(ρ, t)

)2
dρ

≤ 2

∫ 1

0

∣∣Y (ρ, t) −X(ρ, t)
∣∣(4

∣∣Y (ρ, t) −X(ρ, t)
∣∣ +

∣∣mY (t) −mX(t)
∣∣) dρ

≤ 10 · d2(μX(t), μY (t)) .

Gronwall’s lemma completes the proof.

4. Large-time behavior of solutions. Thanks to the uniqueness of solutions
of Abel’s equation, we obtain the following lemma.

Lemma 4.1. For any t = s ∈ R and ρ = ρ′ ∈ (0, 1), we have

X(ρ, t) = X(ρ′, t) ⇐⇒ X(ρ, s) = X(ρ′, s) ,

i.e., (1.1) does not create or destroy delta masses in finite time.
A direct consequence of the previous lemma is that the initial masses in +1, −1,

and (−1, 1) remain unchanged in time. Let us call them p+1, p−1, and 1−(p+1+p−1),
respectively.

An important argument linked to the large-time behavior of solutions to nonlinear
equations is the study both of conservation laws and of Lyapunov functionals. In
addition to mass conservation, a second conserved quantity (when defined) is furnished
by

T (t) :=

∫ 1

0

log
(1 + X(ρ, t)

1 −X(ρ, t)

)
dρ .(4.1)

In addition to the conservation of both mass and T (t), equation (1.1) possesses a
Lyapunov functional, simply given by the variance of the solution

V (t) :=

∫ 1

0

(X(ρ, t))2 dρ−
(∫ 1

0

X(ρ, t) dρ
)2

.(4.2)

We give below an easy-to-check condition which ensure both the the boundedness and
the conservation in time of the functional (4.1).

Lemma 4.2. Let log
(
(1 + X(ρ, 0))/(1 −X(ρ, 0))

)
∈ L1(0, 1). Then for all t ∈ R

T (t) :=

∫ 1

0

log
(1 + X(ρ, t)

1 −X(ρ, t)

)
dρ

is well-defined. Moreover, T (t) is differentiable and T ′(t) = 0.
Proof. Since log

(
(1 + X(ρ, 0))/(1 − X(ρ, 0))

)
∈ L1(0, 1), then X(ρ, 0) ∈ (−1, 1)

for all ρ ∈ (0, 1). Now (1 − x2)(x − 1) ≤ (1 − x2)(x −m(t)) ≤ (1 − x2)(x − 1), and
hence the uniqueness of solutions of the Abel equations imply

X(ρ, t) ∈ (−1, 1) ∀ρ ∈ (0, 1) , ∀t ∈ R .

Let G(ρ, t) = log
(
(1 + X(ρ, t))/(1 −X(ρ, t))

)
. Since |Gt(ρ, t)| ≤ 2, we have

• ∃Gt for all ρ ∈ (−1, 1), for all t ∈ [−T, T ];
• |G(ρ, t)| ≤ |G(ρ, 0)| + 2T and hence T (t) exists;
• |Gt(ρ, t)| ≤ 2 and 2 ∈ L1(0, 1);
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and hence it is possible to differentiate under the integral sign, obtaining T ′(t) =
0.

The following lemma shows that the variance is a Lyapunov functional for (1.1).
Lemma 4.3. The variance V (t) of μ(t) is a monotone differentiable function with

values in [0, 1].
Proof. V (t) is clearly differentiable, and

V ′(t) =
d

dt

∫ 1

0

(Xt(ρ) −m(t))2 dρ = −2γ

∫ 1

0

(1 −Xt(ρ)
2)(Xt(ρ) −m(t))2 dρ .

In the case γ = −1, V (t) is monotonically increasing while bounded from above by 1.
In fact, the maximum value of V is attained for μ = (δ1 + δ−1)/2. If, on the contrary,
γ = 1, V (t) is monotonically decreasing while bounded from below by 0. In this
second case, the minimum value of V is attained for μ = δa, a ∈ [−1, 1].

The most difficult problem linked to (1.1) is the study of the evolution of the mean
m(t) and to the exact evaluation of its limit value m̄ = limt→∞ m(t). The knowledge
of m̄ is of primary importance, since in consequence of the structure of the limit state
of the solution to (2.3), this value is enough to characterize completely the steady
state.

Remark. The difficulty comes out from the evolution of the mean m(t), which is
given by the “nonclosed” equation

m′(t) = −γm(t)

∫ 1

0

X2(ρ) dr + γ

∫ 1

0

X3(ρ) dr.(4.3)

In what follows, we make use of the previous results to extract information on
the behavior of the mean m(t).

Lemma 4.4. For any t, m(t) ∈ [−
√

1 − V (t),
√

1 − V (t)].
Proof. Since V (t) =

∫
x2f(x, t)dx− (m(t))2, then V (t) ≤ 1 − (m(t))2.

Lemma 4.5. The function m′ : R → [−1, 1] belongs to L2(R). Moreover,
∃ limt→∞ m′(t) = 0.

Proof. It is sufficient to note that

(m′(t))2 ≤
∫ (

1 −Xρ(t)
2
)2

(Xρ(t) −m(t))2 dρ ≤ V ′(t),

and hence m′ ∈ L2(R) by Lemma 4.3. Moreover, since m′ is a Lipschitz function (in
fact it is differentiable and m′′ ≤ 10; cf. (4.3)), it follows that limt→∞ m′(t) = 0.

5. Spreading of opinions. In this section we study the large behavior of (1.1)
when γ = −1, leaving the opposite case γ = 1 to the following section.

Remark. If X(ρ, 0) = −X(1 − ρ, 0) (i.e., the initial distribution is symmetric),
then from (4.3) it follows that m(t) = 0 for any subsequent time t > 0. If, in
addition, X(ρ1, 0) = X(ρ1 + δ, 0) = 0, then X(ρ1, t) = X(ρ1 + δ, t) = 0 for all t > 0
(i.e., any initial mass in 0 is not moved away in time if the initial distribution is
symmetric). In order to avoid these situations we will allow delta masses only in ±1:
X(ρ1, 0) = X(ρ2, 0) ⇐⇒ ρ1 = ρ2 or (X(ρ1, 0))2 = 1.

Theorem 5.1. Assume X(ρ1, 0) = X(ρ2, 0) ⇐⇒ ρ1 = ρ2 or (X(ρ1, 0))2 = 1.
Then the limit distribution exists and is given by two masses located in −1 and +1.

Proof. By Lemmas 4.3 and 4.4, m(t) ∈ [−
√

1 − V (0),
√

1 − V (0)] for all t ≥ 0.
Thus, if (X(ρ, t0)

2 > 1 − V (0), then (X(ρ, t)2 > 1 − V (0) for all t ≥ t0. Since
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X(ρ, t) < −
√

1 − V (0) ⇒ ∂
∂tX(ρ, t) ≤ 0 and X(ρ, t) >

√
1 − V (0) ⇒ ∂

∂tX(ρ, t) ≥ 0
by Lemmas 4.3 and 4.4, the two functions

ph−1(t) = sup{ρ ∈ (0, 1) : X(ρ, t) < −
√

1 − V (0)} =

∫
[−1,−

√
1−V (0))

f(x, t) dx,

ph1 (t) = inf{ρ ∈ (0, 1) : X(ρ, t) >
√

1 − V (0)} =

∫
(
√

1−V (0),1]

f(x, t) dx

are monotone. We call ph±1 = limt→∞ ph±1(t). Equation (2.3) and monotonicity of
Abel’s solutions allow us to state that

∀ρ ∈ [0, ph−1), lim
t→∞

X(ρ, t) = −1,(5.1)

∀ρ ∈ (ph+1, 1], lim
t→∞

X(ρ, t) = 1.(5.2)

Hence the limit distribution has two masses in −1 and +1. It remains to characterize
what happens for the remaining ph+1 − ph−1 mass. Let us recall that

X(ρ, t) ∈
[
−
√

1 − V (0),
√

1 − V (0)
]

∀ρ ∈ (ph−1, p
h
+1).(5.3)

By Lemma 4.5, there exists T > 0 such that |m′(t)| ≤ (V (0)/2)2 for all t > T . By
contradiction, suppose that there exist t0 ≥ T and ρ ∈ (ph−1, p

h
1 ) such that

∣∣X(ρ, t0)−
m(t0)

∣∣ > V (0)/4.

Since | ∂∂tX(ρ, t0)| > |m′(t0)|, it follows that
∣∣X(ρ, t) − m(t)

∣∣ > V (0)/4 for all
t ≥ t0. Thus, (5.3) shows the contradiction:

• ∂
∂tX(ρ, t) is continuous;

• | ∂∂tX(ρ, t)| > (V (0)/2)2 if t ≥ t0;
• X(ρ, t) is bounded.

Therefore,

∣∣X(ρ, t) −m(t)
∣∣ ≤ V (0)

4
∀ρ ∈ (ph−1, p

h
+1), t > T .(5.4)

Now, let F (x, y) = (1 − x2)(x − y) as in Lemma 3.2. Since F is differentiable, when
x1 ≥ x2, Lagrange theorem states that we can find ξ ∈ (x1, x2) such that

F (x1, y) − F (x2, y) = (x1 − x2)
∂

∂x
F (x, y)

∣∣∣
x=ξ

.

Now, if 1 − x2 ≥ V (0) and |x− y| ≤ V (0)/4, we have

∂

∂x
F (x, y) = 1 − 3x2 + 2xy ≥ V (0) + 2x(y − x) ≥ V (0)

2
,

that is,

F (x1, y) − F (x2, y) ≥ (x1 − x2)
V (0)

2
, x2

i ≤ 1 − V (0) and |xi − y| ≤ V (0)

4
.

(5.5)

Let ph−1 < ρ2 ≤ ρ1 < ph+1. Then both (5.3) and (5.4) are satisfied for all t > T , (5.5)
holds, and

∂

∂t

(
X(ρ1, t) −X(ρ2, t)

)
≥

(
X(ρ1, t) −X(ρ2, t)

)V (0)

2
∀t > T .
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Since the two solutions are bounded, the only possibility is that X(ρ1, t) = X(ρ2, t)
for all t > T and for all (ρ1, ρ2) : ph−1 < ρ2 ≤ ρ1 < ph+1, which implies ph−1 = ph1 by
Lemma 4.1 and hypothesis.

Remark. Theorem 5.1 may be read in terms of weak∗-measure convergence:

f(x, t) ⇀
t→∞

ph−1δ−1(x) + (1 − ph−1)δ1(x) .

In particular, since the support is compact, all the moments exist and will converge.
We have the following

Corollary 5.2. Assume X(ρ1, 0) = X(ρ2, 0) ⇐⇒ ρ1 = ρ2 or (X(ρ1, 0))2 = 1.
Then there exists limt→+∞ m(t) = m∞ = 1 − 2ph−1.

6. Concentration of opinions. Let us recall that the stochastic partial order is
naturally given on K. Let F (x), G(x) denote two probability distributions and XF , XG

their pseudoinverse functions, respectively. We say that F � G if F (x) ≥ G(x) for all
(x) or, equivalently, if XF (ρ) ≤ XG(ρ) for all ρ ∈ (0, 1).

Lemma 6.1. The operator

φ(X) = −(X −m(X))(1 −X2)

is a monotone operator with respect to the stochastic ordering.
Proof. Assume that X1(ρ, s) ≤ X2(ρ, s) for all ρ ∈ (0, 1). Then m1(s) ≤ m2(s)

(they are equal if and only if the distributions coincide). Let ρ ∈ (0, 1) be fixed. If
X1(ρ, s) = X2(ρ, s), then X ′

1(ρ, s) ≤ X ′
2(ρ, s). The continuity of X ′ is sufficient for

the remaining part of the proof.
Lemma 6.2. Let X0 in (3.2) be given. Then there exists limt→+∞ m(t) = m∞.
Proof. Let [a, b] be the class limit of m(t). Suppose a = −1, i.e., lim inft m(t) =

−1. Markov inequality then shows that the limit distribution is a mass concentrated
in −1, and hence b = −1. Otherwise, we may assume that m(t) ∈ [−1 + δ, 1 − δ]
for all t ≥ t0 and let p0 be the mass not concentrated in ±1 at each time (recall
Lemma 4.1). For all ε > 0, p0 − ε mass is in [−1 + ε, 1 − ε] at t = t0. Therefore, for
all ρ ∈ (0, 1), X(ρ, t0) ∈ [−1+ ε, 1− ε], and X(ρ, t) decays exponentially to m(t) with
rate not less than (min(δ, ε))2. The large behavior of this process shows three delta
masses: the initial two in ±1 and the remaining one in m(t). Stationary arguments
imply the existence of m∞.

The steady state of the process can now be defined by the following theorem.
Theorem 6.3. If (1 − p1)(1 − p−1) < 1 (i.e., if there are masses in ±1 at time

t = 0), then m∞ = p1−p−1. Otherwise, if log
(
(1+X(ρ, 0))/(1−X(ρ, 0))

)
∈ L1(0, 1),

then

m∞ =
exp {T (0)} − 1

exp {T (0)} + 1
.(6.1)

Proof. The first part is a consequence of Lemma 6.2 and stationary arguments.
The second part is a consequence of Lemma 4.2, since∫ 1

0

log
(1 + X(ρ, 0)

1 −X(ρ, 0)

)
dρ =

∫ 1

0

log
(1 + X(ρ, t)

1 −X(ρ, t)

)
dρ −→

t→∞
log

(1 + m∞
1 −m∞

)
,

the last limit being true by Lemma 6.2.
Remark. Lemma 6.1 allows us to extend the previous result to cases where

at least one of the two functions log(1 ± X(ρ, 0)) is integrable. If, for example,
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log(1 + X(ρ, 0)) ∈ L1(0, 1) and log(1 − X(ρ, 0)) ∈ L1(0, 1), if we take X(n)(ρ, 0) =
min{X(ρ, 0), 1 − 1/n}, then X(n)(ρ, t) ≤ X(ρ, t) for all t ≥ 0, for all ρ ∈ (0, 1). The

monotone convergence theorem states that limn T
(n)(0) = +∞, i.e., limn m

(n)
∞ = 1.

Thus, by the monotonicity argument of Lemma 6.1, m∞ = 1.
With this remark in mind, we now show a “counterintuitive” example. Let

f0(x) =

{
1−ε
ε if − 1 < x < −1 + ε,
1

1−x

(
ε

1−ε log(1−x)

)2
if 0 < x < 1,

and hence

F0(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if x < −1,
1−ε
ε (1 + x) if − 1 ≤ x < −1 + ε,

1 − ε if − 1 + ε ≤ x < 0,

1 − ε
1−ε log(1−x) if 0 ≤ x < 1,

1 if 1 ≤ x,

which corresponds to

X0(ρ) =

{
−1 + ε

1−ερ if 0 < ρ ≤ 1 − ε,

1 − exp(− 1
1−ρ + 1

ε ) if 1 − ε < ρ < 1.

With this data, log(1 + X(ρ, 0)) ∈ L1(0, 1) but log(1 −X(ρ, 0)) ∈ L1(0, 1); the 1 − ε
initial mass is close to −1, while the asymptotic solution is δ1.

7. Numerical examples. The analysis of the previous section left open the
problem of the identification of the steady state in the case of the spreading of opinions.
Here results can be achieved only by numerical simulation of the spreading process.
To test the numerical method, we will first derive the (explicit) solution to the pure
drift linear equation of spreading considered in [15] as the mean field limit of the
Sznajd model [20]. This equation reads

∂f

∂t
= γ

∂

∂x

(
x(1 − x2)f

)
,(7.1)

namely, (1.1) without the presence of the mean m(t). In terms of the quantile function
X(ρ, t), equation (7.1) takes the form

∂X(ρ, t)

∂t
= −γX(ρ, t)(1 −X2(ρ, t)).(7.2)

Let us set γ = −1 (spreading), and let X0(ρ) denote the initial datum. For any
given ρ ∈ [0, 1], equation (7.2) is an ordinary differential equation which can be easily
integrated to give

X(ρ, t) =
X0(ρ)e

t

(1 −X2
0 (ρ) + X2

0 (ρ)e2t)
1/2

.(7.3)

The asymptotic behavior of (7.2) can be easily deduced from the explicit solution. In
fact, the solution converges exponentially in time to −1 if X0(ρ) < 0, while it converges
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to +1 if X0(ρ) > 0. Solution (7.3) can be inverted by using the definition of X(ρ, t).
Let F0(x) x ∈ I be the initial distribution function; then, since X0(F0(x)) = x,

X(F0(x), t) =
xet

(1 − x2 + x2e2t)
1/2

.(7.4)

Thus, since the function on the right of (7.4) is increasing with respect to the variable
x, we can invert it to obtain

X

(
F0

(
y

((1 − y2)e2t + y2)
1/2

)
, t

)
= y.(7.5)

Finally, (7.5) implies

F (y, t) = F0

(
y

((1 − y2)e2t + y2)
1/2

)
.(7.6)

Differentiating with respect to y, we conclude that if f0(x), x ∈ I, is an initial density
for (7.1), the solution in time is given by

f(x, t) =
e2t

((1 − x2)e2t + x2)
3/2

f0

(
x

((1 − x2)e2t + x2)
1/2

)
.(7.7)

The behavior of (7.7) shows the formation of two peaks in correspondence to the
extremal points ±1, while in all other points of the interval I there is exponential
decay to zero.

Using the same procedure as above, we can easily solve the problem in the opposite
case of concentration, where γ = 1. In this case, if X0(ρ) denote the initial datum,

X(ρ, t) =
X0(ρ)e

−t

(1 −X2
0 (ρ) + X2

0 (ρ)e−2t)
1/2

.(7.8)

The solution now converges exponentially in time to zero, except for ρ values for which
X0(ρ) = ±1, where it remains constant. In the original formulation, the solution
f(x, t) corresponding to the initial density f0(x), x ∈ I, is

f(x, t) =
e−2t

((1 − x2)e−2t + x2)
3/2

f0

(
x

((1 − x2)e−2t + x2)
1/2

)
.(7.9)

Note that except for x = 0, f(x, t) converges exponentially to zero. If f0(0) > 0, the
solution shows the formation of a peak in x = 0.

We perform numerical simulation for different initial data in the general nonlinear
case. First, we assume an initial symmetric datum as a benchmark (see Figure 7.1),
where

f0(x) =

{
c0(1 − x2)(0.64 − x2)1.3 if |x| < 0.8;

0 otherwise.

In this case we have m(t) = 0 for all time t. Then we know the exact solution in order
to perform a comparison with numerical results. In Figure 7.1 we show the behavior
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Fig. 7.1. Benchmark case: evolution of density function (left) and comparison between analyt-
ical and numerical solutions for the quantile function (right).
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Fig. 7.2. Plots of the behavior of a numerical solution with symmetric initial data for the
concentration case (left) and for the spreading case (right).

of an exact solution and a numerical one. The last one is obtained by using standard
stiff Runge–Kutta methods, which is justified by our theoretical constructive result
stated in the proof of Theorem 3.3. As one can see in Figure 7.1 we have a good
agreement between the analytical and numerical solutions.

In Figure 7.2 we sketch the plot of the quantile function X(ρ, t) for different times
t in both the concentration and the spreading case with the same initial symmetrical
data. As expected, in the concentration case, the limit values of all quantiles numer-
ically converge to m∞ = 0, while in the spreading case the quantiles converge to −1
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Fig. 7.3. Plots of the behavior of a numerical solution with nonsymmetric initial data for the
concentration case (left) and for the spreading case (right).
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Fig. 7.4. Plots of the behavior of a numerical “counterintuitive” solution: the concentration
case tends to δ1 (left), while the 1 − 2ε mass goes to −1 in the spreading case (right).

if ρ < .5, and to 1 if ρ > .5.

In Figure 7.3 we show an asymmetric case. Now, in the concentration case m∞ =
0 given in (6.1) and quantiles converge to it. In the spreading case we can numerically
estimate the value ph−1 (see (5.1)) for which ρ < ph−1 implies X(ρ, t) → −1, ρ > ph−1

implies X(ρ, t) → 1.

Finally, in Figure 7.4 we show a numerical “counterintuitive example” analogous
to the example given at the end of the previous section. Here, the initial datum con-
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sists of the (1 − 2ε) mass very close to −1, the ε mass close to 0, and the remaining
ε mass concentrated in +1. In the concentration case, γ = 1, the mass goes asymp-
totically to +1, while in the spreading case, γ = −1, only 2ε goes asymptotically
to +1. We point out that the spreading case is really counterintuitive. In fact, if
we take X(ρ, T ), with T � 1, as solution of the concentration case as initial data
for the spreading one, the dynamic is as follows. Initially, the (1 − ε) mass decays;
then it splits into two parts: the right one goes to +1, the left one goes to −1. The
initial data can be chosen as close as we want to the distribution δ1. Then, starting
from this data (for which T (t) = +∞; see (6.1)), a (1 − 2ε) mass will reach −1. We
note that the asymptotic state for spreading phenomena seems unpredictable for such
concentrated initial data.

Remark. The method we used to solve (7.1) represents in various cases a possible
alternative to better known methods (like the method of characteristics) able to reckon
the solution to one-dimensional first-order partial differential equations of the form

∂f

∂t
=

∂

∂x
(φ(x)f) .(7.10)

Our analysis is possible in all cases where the ordinary differential equation

dX

dt
= −φ(X)

is explicitly solvable.

8. Conclusions. We investigated in this paper the spreading and/or the concen-
tration of opinion in an organized society by means of a first-order nonlinear partial
differential equation recently introduced in [22]. The presence of the nonlinearity
renders it difficult to treat the spreading case analytically, and suitable numerical
methods were discussed that are able to capture the large-time behavior of the solu-
tion in this case. This work represents a first attempt for a continuous approach to
the formation of opinion in a community of agents. More complete models can be
obtained by considering in addition the (linear or nonlinear) diffusion, which allows
for a continuous steady state distribution function. Related problems in the presence
of diffusion are presently under study.
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ON A MODEL OF FLAME BALL WITH RADIATIVE TRANSFER∗
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Abstract. In this paper, we derive an equation for the growth of a flame ball for a free boundary
combustion model with radiative transfer. The equation for the radiative field is given by the
linearized Eddington equation. We then study the mathematical properties of this equation of
growth and carry out numerical computations in order to discuss the stability or instability of steady
flame balls.
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1. Introduction. Spherical flame balls have been found to exist as stable objects
for small enough Lewis number during some experiments carried out at microgravity
[13, 14]. Since the work of Zeldovich [19], “adiabatic” flame balls are unstable to
one-dimensional radial perturbations; a stabilizing effect has to be identified. It has
been argued [12] that radiation is physically important in near limit combustion at
low gravity. Then, it is natural to consider a heat loss mechanism through radiation
as a stabilizing effect. Moreover, it is worth noting that halon (CF3Br) is added to
experimental mixtures (to increase the luminosity of flame balls), which augments the
radiation through soot formation.

Buckmaster, Joulin, and Ronney [5, 6] proposed different models to take into
account the heat loss through radiation. They first considered constant heat losses in
the burnt gases [5]: when the heat losses are not too large, they proved the existence
of two possible steady flame balls, a small one and a large one. It was proved that
they have different linear stability properties: the small flame ball, similar to the
Zeldovich flame, is unstable under radial perturbations, whereas the large flame ball is
stable under radial perturbations but unstable under three-dimensional perturbation
if its radius is too large. Similar results have been obtained for a refined version of
the previous model where linear far field heat loss is considered [6]. Using matched
asymptotic expansions for large activation energy, Buckmaster, Joulin, and Ronney
[5, 6] derived an integro-differential model for the nonlinear radial motion of the flame
when Le < 1:

∂1/2R(τ) = logR(τ) − λR(τ)2 +
Eq(τ)

R(τ)
, R(0) = 0,

with ∂1/2R = d
dt

∫ t

0
R(s)√
π(t−s)

ds and Eq(τ) representing the amount of energy injected

into the system. Numerical simulations of this model suggested that the small flame
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ball is unstable and the large one is stable. Recently, Rouzaud [15] carried out a rigor-
ous study of the long time behavior of flame balls for this equation, which confirms the
qualitative behavior. Moreover, Audounet, Roquejoffre, and Rouzaud developed nu-
merical schemes adapted for this kind of equation, which possess similar mathematical
properties and exhibit the same type of asymptotic behavior [2].

More refined models have been considered with reaction taking place within an
unbounded medium that contains a small volume fraction of porous solid that only
exchanges heat with the gas [17]. Heat losses through radiation are modeled in two
different ways: either they are constant in the burnt gas and linear in the unburnt
gas (similar to the Buckmaster et al. studies), or they are a continuous dimensionless
form of Stefan’s law having a linear part that dominates close to ambient temperatures
and a fourth power that dominates at higher temperatures. Similarly, two branches
of solutions are found, the branch of large flame balls being linearly stable and the
smaller one being unstable.

Recently, Guyonne, Hulshof, and Van den Berg [18] proposed another mecha-
nism to take into account the radiation, considering a model of flame with radiative
transfer. Indeed, the presence of particles in the mixture generates a radiation field
approximated by the well-known Eddington equation

−∇∇ · q + 3α2q + α∇θ4 = 0,

where q represents the radiative flux, θ the temperature, and α the opacity of the
medium. This system is coupled with a classical free boundary combustion model
with simple chemistry F → B, where F is the fresh gas and B the burnt gas. This
model is derived in the high activation limit, the reaction occurring in a reaction sheet
located at r = R(t), and can be written

∂tY − 1

Le
ΔY = 0, r > R(t); Y = 0, r < R(t); ∂tθ − Δθ = −β∇ · q, r �= R(t),

with the jump conditions at r = R(t)

[θ] = [y] = 0,
1

Le
[Yr] = −[θr] = Fε(θ(R(t))),

where Fε(θ) is the reaction rate modeled by an Arrhenius law. It is proved that
there exist steady flame balls for this model. Moreover, numerical simulations with
numerical continuation software show that for the same set of parameters there exist
several steady flames. Then the question of their stability arises. Even in the simpler
case where a linearized Eddington law is considered,

−∇∇ · q + 3α2q + α∇θ = 0,

the question of the linear and nonlinear stability of steady flame balls is far from
being understood: we shall mention here the works of Guyonne, Hulshof, and Van den
Berg [9] on the numerical analysis of the Evans function for the linear and nonlinear
Eddington law, and the paper of Guyonne and Lorenzi [8], which proves that spectral
instability implies nonlinear instability with semigroup techniques. Getting nonlinear
stability within this framework is quite a hard problem and remains open.

The purpose of this paper is to analyze the stabilizing effect of radiative transfer
with the viewpoint developed by Buckmaster, Joulin, and Ronney [5, 6]. Indeed, to
study the nonlinear growth of radial solutions, they derived an integro-differential
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equation using matched asymptotic expansions. This approach has been justified rig-
orously by Lederman, Roquejoffre, and Wolansky [11] for the adiabatic model with
a direct derivation from the reaction diffusion system. Moreover, the asymptotic
behavior of this kind of integro-differential equations is now well understood, and
efficient numerical schemes are available. The aim of this paper is twofold: through
the formal derivation of the same type of integro-differential equations for flame ball
growth, and the mathematical and numerical analysis of this model, we want, on the
one hand, to study the stabilizing effect of the radiative transfer in the formation of
flame balls. On the other hand, for this particular model of radiative transfer (the
linearized Eddington equation), we want to discuss directly the dynamic of flame balls
and the stability of steady flame balls under radial perturbations obtained in [18]. We
are not concerned here with the stability of flame balls under three-dimensional per-
turbations. It is worth noting that the approach proposed is very complementary to
the indirect approach, which consists of studying the linear stability and then getting
information for the full nonlinear free boundary problem. Moreover, if it is possi-
ble to rigorously justify this formal derivation, similarly to the paper of Lederman,
Roquejoffre, and Wolansky [11], this should give a complete answer on the nonlinear
stability of flame balls under radial perturbations in the presence of radiative transfer,
but this justification is a hard issue.

The paper is organized as follows. In section 2, we derive an integro-differential
equation for the nonlinear radial motion of a flame ball using matched asymptotic
expansions:

∂1/2R(τ) = logR(τ) − λR(τ) +
Eq(τ)

R(τ)
·(1.1)

The dynamic is articulated around the two steady flame balls with radius R1 < R2

solutions of logR = λR, provided that λ < 1
e . In section 3 we study mathematically

the asymptotic behavior of the solutions of (1.1) and discuss the stability of the “large”
flame ball with radius R2 and instability of the “small” flame ball with radius R1. In
section 4, we carry out numerical computations on (1.1) using the numerical schemes
designed by Audounet, Roquejoffre, and Rouzaud [2].

2. Growth model for the radius of the flame balls. We consider the follow-
ing model of combustion with simple chemistry coupled with the linearized Eddington
equation:

∂ty −
1

Le
Δy = 0, r > R(t), y = 0, r < R(t),

∂tθ − Δθ = βu, −Δu + 3α2u = αΔθ, r �= R(t),
(2.1)

where u denotes u = −∇ · q, supplemented with the jump conditions at r = R(t)

[u] = [θ] = [y] = 0,

[ur] = −α[θr],
1

Le
[yr] = −[θr] = Fε(θ(R(t))).

(2.2)

Moreover, the functions (y, θ, u) must satisfy the conditions at infinity

lim
r→∞

(y(r), θ(r), u(r)) = (1, 0, 0).(2.3)

The reaction rate Fε is given by an Arrhenius law Fε(θ) = A exp− 1
εθ : the constant

A is a preexponential factor, and ε−1 is the activation energy, which is assumed to
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be large (0 < ε � 1). In order to derive an equation for the growth a flame ball,
we follow the methodology introduced by Joulin [4] and divide the space into two
concentric regions: a quasi-stationary zone, where time derivatives are neglected, in
which the combustion occurs, and a far field zone, where the only phenomena that are
taken into account are diffusion of the reactant and the temperature. The radiative
effects are considered both in the reaction zone and the far field zone. We then obtain
an equation for the radius by matching the derivatives of the inner quasi-stationary
solution and the outer solution.

2.1. Steady solutions. Before computing quasi-steady solutions, let us first
compute the steady solutions of (2.1), (2.2), (2.3). Let us fix the radius R > 0 and

define η as η = ηαβ =
√

3α2 + αβ. Then there exists a unique steady solution with
the following analytic expression:

u(r) =

⎧⎪⎪⎨
⎪⎪⎩

−B1η
2

βr
sinh(ηr) for r ≤ R,

−B2η
2

βr
exp(−ηr) for r > R,

(2.4)

where the constants are given by

B1 =
αβYf

Leη3
exp(−ηR), B2 =

αβYf

Leη3
sinh(ηR), B3 =

3α2Yf

Leη2
.

The expression for θ is

θ(r) =

⎧⎪⎪⎨
⎪⎪⎩

B1

r
sinh(ηr) + B3 for r ≤ R,

B2

r
exp(−ηr) +

B3R

r
for r > R.

(2.5)

Finally the solution for the mass fraction variable is expressed by

y(r) = max

(
0, 1 − R

r

)
.(2.6)

Then the temperature at the front is given by

Leθ(R) = 1 +
αβ

η2

(
1 − exp(−2ηR)

2ηR
− 1

)
.

Note that the dependence of the temperature at the front on the flame radius in the
case where radiative transfer is taken into account is different from the case where heat
loss radiative terms are considered. In the latter case, the dependence is parabolic [5].

It is easily seen via (2.6) that [yr]|r=R = 1
R . Then the steady flame balls are the

steady solutions (y, θ, u) defined by (2.4), (2.5), (2.6) such that R is the solution of

Fε(θ(R)) =
1

RLe
.(2.7)

The case where α, β → 0 as ε → 0 is of particular interest: as a matter of fact,
Buckmaster, Joulin, and Ronney [5, 6] also considered vanishing heat loss terms as
ε → 0. As a consequence, in some asymptotic parameter regimes, it is possible to
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Fig. 2.1. Diagram of the bifurcation of (2.8) in the (λ = βLe√
3
, R) plane.

simplify (2.7). Under the scaling β = βε, α � β (we can choose α = O(εμ) with
0 < μ < 1), and 0 < ε � 1, we find that

θ(R) =
1

Le
− βε

Le
√

3
R + O(ε2).

Inserting this relation into (2.7) and letting ε → 0, one finds

log
R

Rad
=

βLe√
3
R,(2.8)

where Rad denotes the adiabatic radius. The set of solutions of (2.8) is plotted in

Figure 2.1 in the (R, λ) plane, where λ = βLe√
3

.

We can see that for λ > λcr = 1
Rade

no solution exists, and for λ < λcr there exist
two solutions R1 < R2, which correspond to steady flame balls. The smaller flame
ball converges to the flame ball constructed by Zeldovich in the limit λ → 0.

It is important to note the difference between the equation for steady flame balls
(2.8) when radiative transfer is taken into account and the equation for steady flame
balls when radiative heat losses are considered (which are constant in the burnt phase
of order O(ε), linear in the fresh phase and of order O(ε2)). In that case, the equation
for steady flame balls reads

log

(
R

Rad

)
= ΛR2,

where Λ is a constant depending on heat loss terms. The difference between the
two equations is that, considering the constant heat loss term in the burnt gas, the
temperature at the front θ(R) is a parabolic function of the flame radius, whereas in
the case of radiative transfer, the temperature at the front is a linear function of the
flame radius (in the parameter regime considered previously).
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2.2. Inner solutions. Now we consider the nonstationary case, and we suppose
that the flame has a spherical symmetry with a flame radius at r = R(t). The
purpose is to compute an equation satisfied by R(t). Let us denote (Y,Θ, U) the
steady solution computed at the previous section and fix ν ∈ (0, 1). We are first going
to compute an approximation of the solution (y, θ, u) on B(0, ε−ν), considering that it
is a quasi-steady solution with a flame radius r = R(t) � ε−ν . We write the solution
(y, θ, u) as

(y, θ, u) = (1 + εv(t))
(
Y,Θ, U

)
+ (0, εw(t), 0).

This solution satisfies the steady equations and the jump conditions, provided that

1 + εv(t)

RLe
= Fε

(
Θ(R) + ε(Θ(R)v + w)

)
.

This equation reads, up to order O(ε),

v +
w

Θ(R)
= − log(RLe) − log

(
Fε

(
Θ(R)

))
.

The boundary conditions at r = ε−ν are given by

θ(t, ε−ν) =
3α2

Le(3α2 + αβ)
Rεν + εw(t) + O(εν+1),

y(t, ε−ν) = 1 − ενR(t) + εv(t) + O(εν+1),(2.9)

u(t, ε−ν) = −α(1 + εv(t))εν

Le
√

3α2 + αβ
sinh(R

√
3α2 + αβ) exp

(
−
√

3α2 + αβ

εν

)

= O(εν+3).

The last estimate on u is valid, provided that
√

3α2 + αβ = O(εμ) with μ < ν.

2.3. Outer solution. We compute an approximate solution (y, θ, u) outside
B(0, ε−ν) of

∂ty −
1

Le
Δy = 0, ∂tθ − Δθ = βu, −Δu + 3α2u = αΔθ,

supplemented with the boundary conditions (2.9); the conditions at infinity are given
by limr→∞(y, θ, u) = (1, 0, 0), and the initial conditions will be specified later. Fol-
lowing the derivation of Joulin [4], we rescale time and space—τ = ε2t, ρ = εr—and
define

(y, θ, u)(τ, ρ) =

(
y(t, r) − 1

ε
,
θ(t, r)

ε
,
u(t, r)

ε3

)
, R(τ) = R(t).

Then (y, θ, u) satisfies the rescaled system

∂τy −
1

Le
Δy = 0, ∂τθ − Δθ = βu, −ε2Δu + 3α2u = αΔθ,

with the boundary conditions

y(τ, ε1−ν) = −εν−1R(τ) + v(τ) + O(εν),

θ(τ, ε1−ν) = εν−1 3α2

Le(3α2 + αβ)
R(τ) + w(τ) + O(εν),

u(τ, ε1−ν) = O(εν).
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We are interested only in the jumps of the radial derivatives, namely, (ρy)ρ, (ρθ)ρ
evaluated at the point ρ = ε1−ν . Let us start with ∂

∂ρ (ρy)|ρ=ε1−ν
+

and define Y = ρy

for all ρ > ε1−ν . Then extend Y on R by an odd function Y so that

Y (τ, ρ) =

⎧⎪⎨
⎪⎩

Y
(
τ, 1√

Le
ρ + ε1−ν

)
− Y (τ, ε1−ν) for ρ > 0,

−Y
(
τ,− 1√

Le
ρ + ε1−ν

)
+ Y (τ, ε1−ν) for ρ < 0.

Define ψ(τ) = Y (τ, ε1−ν) = −R(τ) + O(ε1−ν): Y satisfies the equation

Y τ − Y ρρ = ψ̇(τ)
(
1]−∞,0[(ρ) − 1]0,∞[(ρ)

)
,

with initial condition

Y (0, ρ) =

⎧⎪⎨
⎪⎩

Y
(
0, 1√

Le
ρ + ε1−ν

)
− ψ(0) for ρ > 0,

−Y
(
0,− 1√

Le
ρ + ε1−ν

)
+ ψ(0) for ρ < 0.

Then we find that

Y (τ, ρ) =
1√
4πτ

∫ ∞

0

(
Y

(
0,

x√
Le

+ ε1−ν

)
− ψ(0)

)(
e−

|x−ρ|2
4τ − e−

|x+ρ|2
4τ

)
dx

−
∫ τ

0

∫ ∞

0

ψ̇(s)
e−

|x−ρ|2
4(τ−s) − e−

|x+ρ|2
4(τ−s)√

4π(τ − s)
dxds.

Derive Y with respect to ρ and take the value at point ρ = 0:

∂

∂ρ
(ρy)|ρ=ε1−ν =

√
Le

∂Y

∂ρ |ρ=0

= −
√
Le∂1/2ψ(τ) + φy(τ),

where φy is a function of only the initial data y(0, x), given by

φy(τ) =
Le

3
2

√
4πτ

∫ ∞

ε1−ν

(
xy(0, x) − ε1−νy(0, ε1−ν)

)x− ε1−ν

τ
e−Le (x−ε1−ν )2

4τ ,

and the fractional derivative ∂1/2ψ(τ) is the function

∂1/2ψ(τ) =
d

dt

∫ t

0

ψ(s)√
π(t− s)

ds.

As a conclusion, we find that

∂

∂ρ
(ρy)+|ρ=ε1−ν =

√
Le∂1/2R + φy(τ) + O(ε1−ν).

We compute the derivative of ρθ at point ρ = ε1−ν : following the analysis made
previously, one introduces the functions T = ρθ, V = ρu and defines

T (τ, ρ) =

{
T (τ, ρ + ε1−ν) − T (τ, ε1−ν) for ρ > 0,

−T (τ,−ρ + ε1−ν) + T (τ, ε1−ν) for ρ < 0,
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and

V (τ, ρ) =

{
V (τ, ρ + ε1−ν) − V (τ, ε1−ν) for ρ > 0,

−V (τ,−ρ + ε1−ν) + V (τ, ε1−ν) for ρ < 0.

The functions T , V satisfy the system

∂τT − T ρρ = βV + Ṫ εH(ρ) − βV ε(τ)H(ρ),

−ε2V ρρ + 3α2V = αT ρρ + 3α2V ε(τ)H(ρ),
(2.10)

with H(ρ) = 1]−∞,0[(ρ) − 1]0,∞[ and (T ε, V ε) = ε1−ν(θ, u)(τ, ε1−ν). Take the Fourier
transform of the system (2.10): this yields

∂τ T̂ + ξ2T̂ = βV̂ + Ṫ ε(τ)Ĥ(ξ) − βV ε(τ)Ĥ(ξ),

(3α2 + ε2ξ2)V̂ = −αξ2T̂ + 3α2V ε(τ)Ĥ(ξ).
(2.11)

Eliminating V̂ from (2.11) yields the equation on T̂ :

∂τ T̂ + ξ2

(
1 +

αβ

3α2 + ε2ξ2

)
T̂ = Ṫ εĤ(ξ) + βV ε(τ)

(
3α2

3α2 + ε2ξ2
− 1

)
Ĥ(ξ).

The function T̂ is given by

T̂ (τ, ξ) = e
−(1+ αβ

3α2+ε2ξ2
ξ2τ)

T̂ (0, ξ) +

∫ τ

0

e
−(1+ αβ

3α2+ε2ξ2
)ξ2(τ−s)

Ĥ(ξ)Ṫ ε(s)ds

−
∫ τ

0

V ε(s)
βε2ξ2

3α2 + ε2ξ2
Ĥ(ξ)e

−(1+ αβ

3α2+ε2ξ2
)ξ2(τ−s)

ds.

The analysis is now completely similar to the case treated previously for the derivative

of ρy at the boundary: take the inverse Fourier transform of T̂ and derive T with
respect to ρ. There exists φθ which is a function only of θ(0, .) such that

∂

∂ρ
(ρθ)|ρ=ε1−ν = − 1

Le(1 + αβ
3α2 )

3
2

∂1/2R + φθ(τ) + O(ε1−ν).

2.4. Matching of the derivatives. Recall that the analysis of the outer solu-
tion yields

∂

∂ρ
(ρθ)+|ρ=ε1−ν = − 1

Le(1 + αβ
3α2 )

3
2

∂1/2R + φθ(τ) + O(ε1−ν),

∂

∂ρ
(ρy)+|ρ=ε1−ν =

√
Le∂1/2R + φy(τ) + O(ε1−ν).(2.12)

Moreover, it is easily proved using the expression of the inner solution that

∂

∂ρ
(ρθ)−|ρ=ε1−ν = w(τ),

∂

∂ρ
(ρy)−|ρ=ε1−ν = v(τ).(2.13)

The jump conditions at the free boundary are given by

v(τ) +
w

Θ(R)
= − log(RLe) − log

(
Fε

(
Θ(R)

))
.(2.14)
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Eliminating v, w from (2.12), (2.13), (2.14) and up to order O(ε1−ν), we find the
equation for the radius R of the flame ball:(

(LeΘ(R))−1

(1 + αβ
3α2 )

3
2

−
√
Le

)
∂1/2R = log(RLe) + log(Fε(Θ(R))) +

φθ(τ)

Θ(R)
+ φy(τ).

This expansion is valid, provided that we have chosen
√

3α2 + αβ = O(εμ) with
μ < ν. This condition is satisfied when β, α are O(εμ).

Let us choose the scaling α = αεμ and β = βε, which clearly satisfies the hypoth-
esis β, α = O(εμ). In this case, we can simplify the equation of growth. The front
temperature is given by

Θ(R) =
1

Le
− βε

Le
√

3
R + (h.o.t.),

where h.o.t. stands for higher order terms. Then the equation for the radius growth
can be written

(1 −
√
Le)∂1/2R = log

(
R

Rad

)
− Leβ√

3
R + Φ(τ),

where Rad is the adiabatic radius. The function Φ is a function of only the initial
data y(0, .) and θ(0, .).

It is remarkable to see the influence of the radiative transfer through the term
−λR instead of the heat loss term of radiation −λR2 derived in other analysis [5, 6].

Now if we consider a reaction initiated by the input of energy of order O(ε) at the
origin, we choose initial conditions so that Φ(τ) = 0, and the only difference comes
from the near field equations: we have to solve the quasi-stationary equations

−Δ θ = β u + εQ(t)δ(r = 0),

−Δu + 3α2 u = αΔ θ,
(2.15)

where Q represents the amount of energy input into the system at the origin (see [10]
for more details). This system is completed with jump conditions detailed in sec-
tion 2.2. The stationary solution of (2.15) with jump conditions is the sum of the
stationary solution computed in section 2.2 and a particular solution (up, θp) which is
smooth at point r = R(t). It is a Fourier transform exercise to prove that a particular
solution (up, θp) of this system is given by

up = αεQ(t)
sh(

√
3α2 + αβ)r

4π r
, θp =

εQ(t)

4π r
− αβεQ(t)

4π(3α2 + αβ)

sh
√

3α2 + αβr

r
.

Thus in the asymptotic α = O(εμ) with 0 < μ < 1 and β = βε, the temperature
at the front is given by

Θ(R) =
1

Le
− βε

Le
√

3
R +

εQ(t)

4π R
+ (h.o.t).(2.16)

As a consequence, we find the growth equation

(1 −
√
Le)∂1/2R = log

R

Rad
− Leβ√

3
R +

Le2

4π

Q(τ)

R
.
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In what follows, we put the last term concerning the energy input at the origin

in the form Eq(τ)

R
. Here E represents the intensity of the energy input and q(τ)

corresponds to the time fluctuations of this energy input. In the next sections, we are
going to analyze mathematically and numerically

(1 −
√
Le)∂1/2R = log

R

Rad
− Leβ√

3
R +

Eq(τ)

R
.

3. Mathematical results. In this section, we consider the more generalized
equation,

μR∂1/2R = R logR + Eq − λR, t ∈ R
+, R(0) = 0,(3.1)

where μ > 0, λ > 0 and

∂1/2R =
1√
π

∫ t

0

Ṙ(s)√
t− s

ds =
1√
π

d

dt

∫ t

0

R(s)√
t− s

ds.(3.2)

This describes the evolution of a spherical flame, initiated by a point source energy
input Eq(t), at which are applied heat losses of radiative nature, represented by the
parameter λ. The intensity of this energy input is measured by the positive constant
E, and its time evolution is described by the function q. This one is a smooth,
nonnegative function, with connected support and unit total mass; its initial values
satisfy the assumption

q(t) ∼ q0t
β as t → 0 with 0 ≤ β <

1

2
,(3.3)

and as t → +∞, q tends to 0. Finally, the parameter μ can be viewed as a time
rescaling (see section 4) and is assumed, in this section, to be a positive real number,
fixed to 1.

Mathematical results of (3.1) are, according to minor modifications in the proofs,
similar to the ones written in [1, 15]. Therefore proofs are omitted; only comments
are mentioned when necessary.

Let us begin to state existence results for the Cauchy problem.
Proposition 3.1. Let us assume q positive on [0, t0], q(0) = q0. Then there

exists t1 ∈ ]0, t0] such that (3.1) admits a solution in C3/2([0, t1]) satisfying

R(t) ∼ R0t
1/4, with R2

0 =
Eq0√
π

∫ 1

0

t−
1
4 (1 − t)−

1
2 dt.

In order to prove the existence of a unique maximal solution, the flame radius is
expressed as the trace at x = 0 of a function u(t, x), solution of the following parabolic
equation: ⎧⎨

⎩ ut − uxx = 2δx=0

(
log u +

Eq

u
− λu

)
for x ∈ R.

u(0, ·) = 0.
(3.4)

This formulation is essential to characterizing the long time behavior of the flame.
Then we consider more general Cauchy problems, such as⎧⎨

⎩ ut − uxx = 2δx=0

(
log u +

Eq

u
− λu

)
for x ∈ R,

u(0, ·) = u0(x),
(3.5)
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where u0 is an even, Lipschitz, square-integrable, nonnegative function. This is equiv-
alent to solving ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ut − uxx = 0, x > 0,

ux(t, 0) = −
(

log u +
Eq

u
− λu

)
for x ∈ R,

u(0, ·) = u0(x).

Such a formulation allows us to prove the following result.
Theorem 3.2. Let q satisfy condition (3.3). We suppose there exists t0 > 0 such

that q(t) > 0 on ]0, t0[ and q(t) = 0 if t ≥ t0; then the following hold:
(i) If t0 = +∞, (3.5) has a unique global positive solution, except at t = 0.

Moreover, u is C∞ on R
∗
+ × R

∗ and t → u(t, 0) is C∞ on R
∗
+.

(ii) If t0 < +∞, (3.5) has a unique maximal solution u defined on an interval
[0, tmax[, positive, except at t = 0. Moreover, u is C∞ on ]0, tmax[. If tmax <
+∞, there exists tn → tmax such that limn→+∞ u(tn, 0) = 0.

In particular, a consequence of this theorem is the existence of a solution of (3.1).
The uniqueness of u is based on a comparison principle (see [15] for more details).

These results now recalled, we may discuss different cases where either quenching
or stabilization of the flame occurs. For this purpose, we denote by uE the solution of
(3.4) and by RE(t) := uE(t, 0) the corresponding radius of the flame. Let us turn to
the asymptotic behavior of the radius. In order to prove the following results, mono-
tonicity methods (cf. [16]) are of major importance. Indeed, sub- or supersolutions
are computed and create, therefore, an admissible range for the solutions. At this
stage, a comparison principle coupled to a relevant choice of the bounds reveals to us
either quenching or stabilization of the flame.

Before going further, we make a remark on the role played by the parameter λ.
The stationary solutions of

ut − uxx = 2δx=0(log u− λu)

are the constants R satisfying

logR = λR;

hence the values of λcr and the distinction we have to make between the cases λ < λcr

and λ > λcr. Please note that we do not consider the case λ = λcr, the study being
identical to [15]. Moreover, λ is assumed nonnegative in what follows, so that uE , the
solution of (3.5), is a bounded function.

We first consider the supercritical case, λ > λcr, corresponding to high radiative
heat losses. Then the loss of energy is too important and the flame quenches. We
state the following proposition.

Proposition 3.3. Assume λ > λcr.
(i) If q > 0 on R

∗
+, then the solution of (3.4) is global and limt→+∞ RE(t) = 0.

(ii) If q is compactly supported, RE quenches in finite time.
We now consider the subcritical case, λ < λcr. This situation leads to different

properties, more complex because they depend on the quantities E and q, i.e., the
amount of energy we input into the system and the time length of this injection. We
have the following claim.

Theorem 3.4. Assume λ < λcr and q > 0 on R
∗
+. Then (3.1) has a unique

global solution RE(t) and there exists Ecr(q) > 0 such that
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(i) if E < Ecr(q), limt→+∞ RE(t) = 0,
(ii) if E > Ecr(q), limt→+∞ RE(t) = R2,
(iii) if E = Ecr(q), limt→+∞ RE(t) = R1.

If q is compactly supported, with support ]0, t0[, then (3.1) has a unique solution RE(t)
and there exists Ecr(q) > 0 such that

(a) if E < Ecr(q), RE quenches in finite time,
(b) if E ≥ Ecr(q), the previous result holds again.
This theorem can be proved with minor changes in the sub- and supersolutions

in the proofs developed in [15]. For more details on the theoretical study of this type
of equations, we refer the reader to [1, 15].

As a conclusion, we have verified that the equation derived in section 2,

(1 −
√
Le)∂1/2R = log

R

Rad
− Leβ√

3
R +

Eq(τ)

R
,(3.6)

is well posed, provided that Le < 1, and the flame ball quenches if Leβ exceed a
threshold. When Leβ is small enough, there exist two steady flame balls. The small
one is unstable, and the large one is stable under radial perturbations. Since we
have computed nonlinear evolutions of radial perturbations, these results shall be
understood as nonlinear stability properties of the steady flame balls.

There are different explanations to justify the assumption Le < 1. From a math-
ematical point of view, (3.6) is ill posed for Lewis numbers greater than one. Indeed,
in this case, we face a backward parabolic equation in which instabilities can occur
(see, for example, [4, 3]). The special case Le = 1 with high activation energy has
been studied in [7]. From a physical point of view, as the Lewis number is the ratio
between thermal and molecular diffusion, the condition Le < 1 is equivalent, saying
that gas molecules diffuse faster than heat. In this configuration, flame balls are able
to exist, whereas for Lewis numbers greater than one, flames vanish. Considering the
experiments performed by Ronney and coworkers (see, for example, [14]), flame balls
are observed only for lean reactant mixtures, for which the Lewis number is between
0.06 and 0.5. Thus the restriction Le < 1 is reasonable and, in fact, is a necessary
condition for stationary flame balls to exist.

4. Numerics. In this section, we follow the methods developed in [2]. We first
present the numerical scheme and then turn to numerical investigations.

4.1. Presentation of the scheme. We recall that the radius R can be seen as
the trace on the axis x = 0 of the solution u(x, t) of the diffusive problem (3.5). A
suitable scheme for studying long time behavior of such equations is an implicit Euler
scheme in time. The scheme reads⎧⎪⎪⎪⎨

⎪⎪⎪⎩
un+1 − un

τ
− un+1

xx = 0 for x > 0,

un+1
x (0) = − log un+1(0) − Eqn+1

un+1(0)
+ λun+1(0),

u0 = 0,

(4.1)

where τ denotes the time step and qn = q(nτ). The discretized heat equations can be
solved explicitly using Fourier transform, so that system (4.1) determines explicitly the
quantity in which we are really interested, i.e., the sequence Rn := un(0). Moreover,
by induction and because of the maximum principle, we have un ≥ 0.
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Fig. 4.1. Evolution of the radius when λ < λcr and E is variable; from extinction to stabilization.

Before going further, we define two quantities needed later on by⎧⎪⎨
⎪⎩ αn =

∫
R

ûn−1(ξ)dξ

1 + 4π2ξ2τ
=

√
τ

n−1∑
k=1

θn−k+1g
k, û0 = 0,

gn = fn(αn +
√
τgn), n ≥ 1,

where

θp+1 =

∫
R

2
√
τ

(1 + 4π2ξ2τ)p+1
dξ =

2p− 1

2p
θp =

Cp
2p−1

22p−1
θ1, with θ1 = 1.

The radius R is then expressed in term of these quantities, namely Rn = αn+
√
τgn >

0. The unknown gn is determined by successive resolutions of the following implicit
equation:

Φ(gn) := gn − log(αn +
√
τgn) − Eq(nτ)

αn +
√
τgn

+ λ(αn +
√
τgn) = 0.(4.2)

In order to be consistent with (3.1), we need to introduce the parameter μ different
from 1. It enters (4.2) as

Φ(gn) := μgn − log(αn +
√
τgn) − Eq(nτ)

αn +
√
τgn

+ λ(αn +
√
τgn) = 0.(4.3)

This implicit equation is solved by a Newton method with initial data gn−1.
The properties of this scheme remain unchanged so that by [2], the convergence

and comparison properties still hold. The numerical scheme also sustained qualitative
properties similar to those of the continuous model of flame ball growth (see [2] for
more details).

4.2. Numerical results. We now turn to the numerical investigation of the
problem. For this purpose, we consider an input energy q = χ[0,1]. In Figure 4.1, we
fix a value for the parameter λ, namely λ = 0.1 < λcr = 1/e, and plot the different
radius evolution possibilities for different energy inputs. We note that (see Figure 4.1
(left)) we recover the expected behavior of the radius: when E is small, the flame
quenches, whereas when it is larger, the behavior cannot be guessed with this time
scale, and numerical simulations have to be performed for longer times. For this
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Fig. 4.2. Evolution of the radius when E fixed and λ variable.

purpose, we perform a time rescaling. Writing t = τ/ε in formula (3.1) and dividing
by R implies a new expression μ̃∂1/2R, where μ̃ =

√
εμ. Dropping the tilde, we are

able to simulate a large time scale t via a smaller time scale τ only by taking values
of μ less than one. Figure 4.1(right) shows the stabilization towards the radius R2 in
the time coordinate τ .

Finally, in Figure 4.2, the energy E is fixed, and we consider different values for
λ. For important radiative heat losses, the flame quenches, whereas it can stabilize
to the corresponding critical radius, depending on the value of λ.

5. Conclusion. In this paper, we have studied the stabilizing effect of radiative
transfer on the formation of flame balls. In the formation of flame balls, radiation
is an important physical effect. Instead of considering radiative heat loss, just as
Buckmaster, Joulin, and Ronney did in [5, 6] through simplified versions of Stefan’s
law, we have considered radiative transfer using the well-known (linearized) Eddington
law. In some asymptotic parameter regime, we obtain the existence of two steady
flame balls. In our study, the asymptotic equation for the radius of the steady flame
ball is logR = λR, and that is different from the one obtained in [5, 6], logR = ΛR2.
The difference in the power of R comes from the fact that the dependence of the front
temperature on R is different depending on whether we consider heat loss terms (in
that case, the dependence is parabolic) or radiative transfer (in that case, it is linear).
This has an influence on the size of the steady flame balls.

For the linearized Eddington equation of radiative transfer, we have derived,
using an approach initiated by Buckmaster, Joulin, and Ronney, an integro-differential
equation for the growth of a flame ball. This equation differs again from the one
obtained by Buckmaster, Joulin, and Ronney with a loss term proportional to R
instead of R2. The equation obtained in this paper describes the nonlinear evolution
of radial perturbation of steady flame balls and falls into a class of integro-differential
equations that are mathematically and numerically well understood [1, 2, 15]; we
have used this framework to study mathematically and numerically the asymptotic
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behavior of this equation. When two steady flame balls exist, the smaller one is
unstable (except for particular values of the parameters), and the larger one is stable,
similar to the results obtained in [5, 6]. This gives a partial answer to the stability
properties of flame balls obtained in [18] since the perturbations considered in this
paper have the radial symmetry. Finally, we shall mention that the derivation carried
out in this paper is only formal, and it would be interesting to make this derivation
rigorously: for that purpose, instead of starting from the free boundary problem, we
shall consider the reaction diffusion system with a singular reaction term and follow
the method developed by Lederman, Roquejoffre, and Wolansky in the adiabatic
case [11].
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Abstract. A general closed expression is given for the isothermal minimum free energy of a linear
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relaxation function given by sums of exponentials. It is further shown that minimal energy states
are uniquely related to histories and that the work function is the maximum free energy with the
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1. Introduction. A general expression for the minimum free energy of a lin-
ear viscoelastic material under isothermal conditions was given in [1]. This was for
a scalar constitutive relation. A generalization to the full tensor case has also been
presented [2]. Detailed, explicit expressions for the minimum free energy and related
quantities were given in [1, 2] for discrete spectrum materials, namely those for which
the relaxation function is a sum of exponentials. The minimum free energy of com-
pressible viscoelastic fluids was determined in [3], while materials with finite memory
were considered in [4]. These results are used in the context of the viscoelastic Saint-
Venant problem in [5].

A definition of a viscoelastic state, based on the ideas of Noll [6], has been given
and explored in [7, 8, 9]. Such a state has been termed a minimal state in [10]. Further
related ideas and applications are explored in [11].

Also, a formalism has been developed [10] for the scalar case, which allows expres-
sions for a family of free energies related to a particular minimal state to be derived
for discrete spectrum models, including minimum and maximum free energies. Gen-
eralization of this work to the full tensor, nonisothermal case was presented in [12].
A generalization of the formalism in [10] has been used recently to propose a closed
formula for the physical free energy and rate of dissipation.

It is not clear how the formulae emerging from the the methodology developed
in [1, 2] apply to materials other than those exhibiting a discrete spectrum response,
in particular for materials with a continuous spectrum response, i.e., those for which
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the relaxation function is given by an integral of a density function multiplying a
decaying exponential. The object of the present work is to address this issue. We
will confine the treatment to the scalar case. There is no great loss of generality in
doing so because, in the general tensor case, explicit solutions have been given only if
the eigenspaces of the relaxation tensor derivative are time-independent, and on each
such eigenspace the explicit results are precisely those of the scalar case [2, 12].

All the above papers are based on the same methodology, which involves fac-
torizing a quantity closely related to the loss modulus of the material, in order to
solve the relevant Wiener–Hopf equation (or equivalent variational problem) for the
optimal future continuation required to determine the minimum free energy. Another
method was used in [13] for the discrete spectrum case. This involved making a very
natural assumption on the form of the optimal future continuation and solving alge-
braic equations for the various parameters. The need for factorization did not arise.
This method is also developed in the present work for continuous spectrum materi-
als. The assumption involved in this case is also a very natural one, namely that
the optimal future continuation has a singularity structure determined only by that
of the Fourier transform of the relaxation function derivative. This is analogous to
the method in [13], i.e., to restrict the class of candidate functions when seeking to
maximize the recoverable work.

The layout of the paper is as follows. In section 2, fundamental relationships
are written down and the basic factorization property is introduced. The Wiener–
Hopf equation relating to the maximum recoverable work is derived in section 3.
The factorization procedure is discussed in depth for the continuous spectrum case in
section 4, and some related formulae are considered in section 5. The minimum free
energy is discussed in section 6. The alternative approach referred to in the previous
paragraph is discussed in detail in section 7. The concept of a minimal state for
continuous spectrum materials is explored in section 8. Some examples are presented
in section 9.

2. Basic relationships. We consider a linear viscoelastic solid, subject to stress
in such a way that there is only one nonzero component of stress T (t) and strain E(t)
related by

T (t) = G0E(t) +

∫ ∞

0

G′(s)Et(s)ds, Et(s) = E(t− s), s ∈ R,

= G∞E(t) +

∫ ∞

0

G′(s)Et
r(s)ds, Et

r(s) = Et(s) − E(t),

(2.1)

where Et ∈ L1(R+) ∩ L2(R+) ∩ C1(R+) and G′ ∈ L1(R+) ∩ L2(R+), using the
following notation here and below: R is the set of reals, R+ the positive reals, and
R++ the strictly positive reals; similarly R−, R−− are the negative and strictly
negative reals. The relative history Et

r will be used extensively later.1 The relaxation
function

G(s) = G0 +

∫ s

0

G′(u)du(2.2)

is well defined, along with G∞ = lims→∞ G(s). We take

G∞ > 0,(2.3)

1Note that this notation differs from that in [1].
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so that the body is a solid.
A viscoelastic state is defined in general by the current value of strain and the

history (E(t), Et). The concept of a minimal state ([10], based on ideas introduced
in [6, 7, 9, 8, 2, 14]) can be expressed as follows: two viscoelastic states (E1(t), E

t
1),

(E2(t), E
t
2) are equivalent or in the same minimal state if

E1(t) = E2(t),

∫ ∞

0

G′(s + τ)
[
Et

1(s) − Et
2(s)

]
ds = 0 ∀ τ ≥ 0.(2.4)

Let Ω be the complex ω plane and

Ω+ = {ω ∈ Ω | Im(ω) ∈ R+},
Ω(+) = {ω ∈ Ω | Im(ω) ∈ R++}.

(2.5)

These define the upper half-plane including and excluding the real axis, respectively.
Similarly, Ω−, Ω(−) are the lower half-planes including and excluding the real axis,
respectively.

For any f ∈ L2(R), its Fourier transform fF ∈ L2(R) is given by

fF (ω) =

∫ ∞

−∞
f(ξ)e−iωξdξ.(2.6)

If f is a real-valued function in the time domain—which will be the case for all
functions of interest here—then

fF (ω) = fF (−ω),(2.7)

where the bar denotes complex conjugate.
We have

fF (ω) = f+(ω) + f−(ω),

f+(ω) =

∫ ∞

0

f(ξ)e−iωξdξ,

f−(ω) =

∫ 0

−∞
f(ξ)e−iωξdξ, f± ∈ L2(R),

(2.8)

where f+ has an analytic extension to Ω(−), by virtue of the unique differentiability
of its definition (2.8)2 in terms of an integral. For the cases of interest in the present
work, we also assume that it is analytic on an open set including Ω−, so that we
include R in the region of analyticity. Similarly, f− is analytic on an open set which
includes Ω+. We will abbreviate these statements in what follows as “f± is analytic
in Ω∓.”

The fact that the singularities of f± are restricted to Ω(±), which is required for
the derivation of the free energy [1], means that f(ξ) decays exponentially at large |ξ|.
This is a limitation in that it excludes, for example, power law decay. However, as we
will discuss later, it is in many cases possible to extrapolate final results continuously
up to the real axis, thereby removing the limitation to exponential decay.

We have

lim
ω→∞

iωf+(ω) = f(0+), lim
ω→∞

iωf−(ω) = −f(0−).(2.9)
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Functions on R which vanish identically on R−− are defined as functions on
R+. For such quantities, fF = fc − ifs, where fc, fs are the Fourier cosine and sine
transforms

fc(ω) =

∫ ∞

0

f(ξ) cosωξdξ = fc(−ω),

fs(ω) =

∫ ∞

0

f(ξ) sinωξdξ = −fs(−ω).

(2.10)

Thus

F (ω) = G′
F (ω) =

∫ ∞

0

G′(s)e−iωsds = G′
c(ω) − iG′

s(ω).(2.11)

The notation F is introduced to simplify later formulae. We shall require the property
of F that

lim
ω→∞

iωF (ω) = G′(0+) = G′(0),(2.12)

which is a special case of (2.9)1, with the added assumption that G′ is continuous
from the right, at the origin. Properties of G′

s(ω) include (see [15])

G′
s(ω) ≤ 0 ∀ ω ∈ R++,

G′
s(−ω) = −G′

s(ω) ∀ ω ∈ R,
(2.13)

the first relation being a consequence of the second law of thermodynamics and the
second being a particular case of (2.10). It follows that G′

s(0) = 0. We also have [15]

G∞ −G0 =
1

π

∫ ∞

−∞

G′
s(ω)

ω
dω < 0,(2.14)

so that G′
s(ω)/ω ∈ L1(R). It follows from (2.3) and (2.14) that G0 is positive.

The function F is analytic on Ω(−). This is a consequence of the fact that G′

vanishes on R−−, which is essentially the requirement of causality [16]. As noted
above, it is assumed that F is analytic in Ω−. Relation (2.11)1 can be used to define
F (ω) where the integral converges, namely Ω− and possibly a strip of Ω(+). Elsewhere,
it is defined by analytic continuation from the region in which the integral exists. In
fact, such continuation will generally be possible to all of Ω(+), excluding singular
points.

We let the bar denote complex conjugate. The quantity F (ω) is the complex
conjugate of the function, leaving the argument unchanged. For ω ∈ R, we have
F (−ω) = F (ω). The quantity F is analytic in Ω+, with a mirror image, in the real
axis, of the singularity structure of F (ω). Thus, G′

s(ω) has singularities in both Ω(+)

and Ω(−), which are mirror images of one another. Similarly, its zeros will be mirror
images of each other. We will be interested in the singularity structure of

H(ω) =
ω

2i

(
F (ω) − F (ω)

)
= −ωG′

s(ω) = H(−ω) ≥ 0 ∀ ω ∈ R,

H(ω) = H1(ω
2),

(2.15)

where H1 is the function H expressed in terms of ω2. This last relation is a conse-
quence of the analyticity of H(ω) on the real axis and its evenness property. It follows
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that H(ω) goes to zero at least quadratically at the origin. It is assumed that the
behavior is in fact quadratic; i.e., H(ω)/ω2 tends to a finite nonzero quantity as ω
tends to zero. Note that H(ω) is nonnegative on the real axis. For ω off the real axis,
it is defined by analytic continuation from (2.15) and is in general a complex quantity.
Its singularities are the same as those of F in Ω(+) and of F in Ω(−). We will need
the following relationship:∫ ∞

−∞

d

ds
G(|s|)e−iωsds = −2iG′

s(ω) = 2i
H(ω)

ω
,(2.16)

giving the Fourier transform of the odd extension of G′ to R.
It will be required in later developments that H(ω) can be written in the form

H(ω) = H+(ω)H−(ω),(2.17)

where H+(ω) has no singularities or zeros in Ω(−) and is thus analytic in Ω−. Similarly,
H−(ω) is analytic in Ω+ with no zeros in Ω(+). Therefore the singularities of F must
all occur in H+ and those of F in H−. There may be other singularities in H± which
cancel on multiplication. That such a factorization is always possible is shown for
general tensor constitutive relations in [2].

Using (2.12) and (2.15), one can show that

H∞ = lim
|ω|→∞

H(ω) = −G′(0) ≥ 0.(2.18)

The sign of G′(0) has been deduced by various authors from thermodynamic con-
straints in the general three-dimensional case [17, 18, 15]. We assume for present pur-
poses that G′(0) is nonzero, so that H∞ is a finite positive number. Then H(ω) ∈ R++

∀ ω ∈ R, ω �= 0.
The factorization (2.17) is unique up to a constant phase factor. We set [1]

H±(ω) = H∓(−ω) = H∓(ω),

H(ω) = |H±(ω)|2 ,
(2.19)

one consequence of which is that the factorization is now unique up to a change of
sign.

A general method is outlined in [1] for determining the factors of H. A modi-
fication of this method is presented here, which is more convenient for the present
application. Consider the function T (ω)H(ω) [1], where2

T (ω) =
ω2 + ω2

0

H∞ω2
.(2.20)

This product is nonnegative on R, is nonsingular at the origin, and approaches unity
for large ω. The frequency ω0 ∈ R++ may be chosen arbitrarily. Therefore, the
function log (T (ω)H(ω)) is well defined on R and approaches zero for large ω. Let [1]

H+(ω) =
ωh∞

ω − iω0
e−M+(ω),

h∞ = H1/2
∞ ,

(2.21)

2The introduction of the parameter ω0 represents a slight modification (improvement) of the
formula in [1].
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where M+ is given by3

M+(ω) = lim
β→0−

M(ω + iβ),

M(z) =
1

2πi

∫ ∞

−∞

log[T (ω′)H(ω′)]

ω′ − z
dω′, z ∈ Ω \ R.

(2.22)

Using (2.15), we can write

log (T (ω)H(ω)) = log

[
−i

ω − iω0

H∞
F (ω)

]
+ logU(ω),

U(ω) =
1

2

[
1 − F (ω)

F (ω)

] [
ω + iω0

ω

]
.

(2.23)

The standard branch of the logarithm function is chosen, namely that which vanishes
for argument unity. The function U is complex but nonzero on the real line and
approaches unity for large ω, by virtue of (2.12). Similarly for the argument of the
first term on the right of (2.23)1. This term has all its singularities in Ω(+) so that if
we close on Ω(−) for Imz < 0 then, by Cauchy’s theorem, its contribution to M(z)
is simply the negative of itself. Thus, we have

H+(ω) =
−iω

h∞
F (ω)e−N+(ω), ω ∈ R,

N+(ω) = lim
β→0−

N(ω + iβ),

N(z) =
1

2πi

∫ ∞

−∞

logU(ω′)

ω′ − z
dω′, z ∈ Ω \ R.

(2.24)

Using the relation (2.19)1, we deduce that

H−(ω) =
iω

h∞
F (ω)e−N−(ω), ω ∈ R,

N−(ω) = lim
β→0−

N(ω − iβ),

N(z) = − 1

2πi

∫ ∞

−∞

logU(ω′)

ω′ − z
dω′, z ∈ Ω \ R.

(2.25)

The extraction of the factor F in (2.24) and F in (2.25) has the advantage that the
correct behavior of H± at small and large ω is assured. This is of course true of (2.21),
but the apparent singularity at ω = iω0 must be eliminated, and the procedures for
doing this after the transformations described in section 4 have been carried out is
not straightforward. Using (2.24), (2.25), the parameter ω0 drops out of the formulae
in a simple manner, as we shall see later. Furthermore, the singularities of F in Ω(+)

must occur also in H+ (though, in fact, H+ may have other singularities), while a
similar statement applies to H− and F . If the transformation carried out on N+ in
section 4 were instead carried out on M+ (and this is the natural first approach), it
is in fact rather difficult to ensure that the singularity structures of H± in Ω± are
correct. This is particularly true of logarithmic singularities which can, as we shall
see, occur at the end points of the branch cuts.

3The quantity M+(ω) was denoted by M−(ω) in [1] and vice versa. The present usage is more
consistent with the rest of the paper.



THE CONTINUOUS SPECTRUM MINIMUM FREE ENERGY 875

Consider now the strain history Et. Define

Et
+(ω) =

∫ ∞

0

Et(s)e−iωsds, Et
+ ∈ L2(R+).(2.26)

It is analytic in Ω(−), a property which will be assumed to extend to Ω−. This region
can be extended to include Ω(+), excluding singular points, by analytic continuation.
From (2.9)1, it follows that

lim
ω→∞

iωEt
+(ω) = Et(0+) = E(t).(2.27)

We also require the Fourier transform of the relative history,

Et
r+(ω) = Et

+(ω) − E(t)

∫ ∞

0

e−iωsds

= Et
+(ω) − E(t)

iω− , ω− = lim
α→0+

(ω − iα),

(2.28)

where the limit is taken after any integration involving the quantity (ω−)−1 has been
carried out; for purposes of such an integration, ω− is in Ω(−). Under an assumption
similar to that for Et

+, we have that Et
r+ is analytic on Ω−. Note that, by virtue of

(2.9)1, E
t
r+ goes to zero at large ω as ω−2.

Let us also define

Et
−(ω) =

∫ 0

−∞
Et(s)e−iωsds, Et

− ∈ L2(R−).(2.29)

It is analytic in Ω(+), a property which will be assumed to extend to Ω+. It is defined
on Ω(−), excluding singular points, by analytic continuation. From (2.9), it follows
that

lim
ω→∞

iωEt
−(ω) = −Et(0−) = −E(t+).(2.30)

We also require the Fourier transform of the relative history,

Et
r−(ω) = Et

−(ω) − E(t)

∫ 0

−∞
e−iωsds

= Et
−(ω) +

E(t+)

iω+
, ω+ = lim

α→0+
(ω + iα),

(2.31)

where for any integration involving the quantity (ω+)−1 the singularity is in Ω(+).
The limit to the real axis is taken after any such integration has been carried out.
Under an assumption similar to that for Et

−, we have that Et
r− is analytic in Ω+ and

Et
r+ goes to zero at large ω as ω−2.

3. The maximum recoverable work and the Wiener–Hopf equation.
The total work done on the material up to time t is given by [2]

W (t) =

∫ t

−∞
T (s)Ė(s)ds = φ(t) +

1

2

∫ ∞

0

∫ ∞

0

Et
r(s)G12(|s− u|)Et

r(u)dsdu

= φ(t) +
1

2π

∫ ∞

−∞
H(ω)

∣∣Et
r+(ω)

∣∣2 dω,(3.1)
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where φ has the form

φ(t) =
1

2
G∞E2(t).(3.2)

This quantity is the equilibrium free energy. Also [19]

G12(|s− u|) =
∂2

∂s∂u
G(|s− u|) = −2δ(s− u)G′(|s− u|) −G′′(|s− u|),(3.3)

in terms of the singular delta function. The form (3.1)3 follows from (2.16) and the
convolution theorem.

The maximum recoverable work from a given state of a material with memory is
equal to the minimum free energy of that state, as can be shown under very general
conditions (e.g., [20] and references therein). Thus, we seek to maximize the integral

Wr(t) = −
∫ ∞

t

T (s)Ė(s)ds,(3.4)

or to minimize

W (∞) =

∫ ∞

−∞
T (s)Ė(s)ds,(3.5)

where E is varied only on [t,∞). When taking the variation, we can assume that E(∞)
vanishes [2]. It follows from (3.1), on changing the integration range to (−∞, t], that

W (∞) =
1

2

∫ ∞

−∞

∫ ∞

−∞
E(s)G12(|s− u|)E(u)dsdu.(3.6)

It is easily deduced that the optimization condition is∫ ∞

−∞
G12(|s− u|)E(u)du =

∫ ∞

−∞
G12(|s− u|)Et

r(u)du = 0, s ∈ R−.(3.7)

We can remove the derivative with respect to s since G2 tends to zero as s tends to
infinity. Also, the derivative with respect to u can be replaced by a derivative with
respect to s. Thus, we obtain the relation∫ ∞

−∞

∂

∂s
G(|s− u|)Et

r(u)du = 0, s ∈ R−,(3.8)

or ∫ 0

−∞

∂

∂s
G(|s− u|)Et

o(u)du =

∫ ∞

0

G′(u− s)Et
r(u)du, s ∈ R−,(3.9)

where Et
o : R− 	→ R is the future continuation which yields the maximum recoverable

work.

4. Factorization of H for continuous spectrum materials. We adopt the
following continuous spectrum form for the relaxation function derivative:

G′(t) =

∫ b

a

k(α)e−αtdα, t ∈ R+, b > a > 0.(4.1)
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It is assumed that k ∈ L1([a, b]). The upper limit b may be infinite. We take a > 0
because of the need to avoid singularities on the real axis. The limit a → 0 is discussed
in section 6. We take the Fourier transform of (4.1) to obtain

F (ω) =

∫ b

a

k(α)

α + iω
dα, ω ∈ R.(4.2)

This formula can be extended by analytic continuation to Ω, excluding singular points.
We restrict the density function k to be Hölder continuous on (a, b). It may be singular
at the end points with a power less than unity. It is assumed that

k(α) ≤ 0, α ∈ [a, b].(4.3)

This assumption is not essential but is the simplest which ensures compatibility with
thermodynamic constraint (2.13)1. Note that it renders G completely monotonic in
the sense discussed in [9]. Also, it is easily shown that F has no zeros on the finite
part of Ω \ [ia, ib]. Taking the complex conjugate of (4.2), we have

F (ω) =

∫ b

a

k(α)

α− iω
dα, ω ∈ R,(4.4)

which can similarly be continued into the complex plane.
The quantity F has a branch cut on [ia, ib] and F on [−ia,−ib]. As ω tends to

iα, where α ∈ R \ [−a,−b],

F (iα) = F (−iα) =

∫ b

a

k(β)

β + α
dβ = K(α),(4.5)

while if α ∈ (a, b), we have, by virtue of the Plemelj formulae [21],

FR(iα) = R(α) + iI(α),

FL(iα) = R(α) − iI(α),
(4.6)

with

R(α) = P

∫ b

a

k(β)

β − α
dβ, I(α) = −πk(α) ≥ 0,(4.7)

where FR(iα), FL(iα) are the limiting values of F (ω), approaching from the right and
the left, respectively, as one moves from ia to ib. Similarly,

FR(−iα) = R(α) + iI(α),

FL(−iα) = R(α) − iI(α),
(4.8)

for α ∈ (a, b), where FR(−iα), FL(−iα) are the limiting values of F (ω) from the right
and left, respectively, as one moves from −ia to −ib. The symbol P in (4.7) indicates
a principal value.

From (2.15), we have

H(ω) = −ω2

∫ b

a

k(α)

α2 + ω2
dα.(4.9)
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Let us consider the behavior of F (ω) at the end points ia and ib for various limiting
behaviors of k(α) as α approaches a or b [21]. If k(a) = 0, then F (ω) has a definite
finite nonzero limit as ω → ia. A similar statement applies to the limit ω → ib if
k(b) = 0.

If

k(a) = ka < 0(4.10)

and k is Hölder continuous near and at a, then F (ω) has a logarithmic singularity at
ω = ia. As ω approaches this end point along any path off [ia, ib], then

F (ω) = ka log
1

a + iω
+ F1(ω),(4.11)

where F1(a) is well defined. Similarly, if

k(b) = kb < 0(4.12)

and k is Hölder continuous near and at b, then, as ω approaches ib, not along [ia, ib],
we have

F (ω) = −kb log
1

b + iω
+ F2(ω),(4.13)

where F2(b) is well defined. For points on (ia, ib), relations (4.11) and (4.13) are
replaced by

R(α) −→
α→ia+

ka log
1

α− a

−→
α→ib−

−kb log
1

b− α
,

(4.14)

where R(α) is given by (4.7). If k(α) has dominant behavior as α → a+ along (a, b)
of the form

k(α) −→
α→a+

k1

(α− a)γ
, 0 < γ < 1, k1 < 0,(4.15)

then for ω /∈ (ia, ib)

F (ω) −→
ω→ia

Ak1

(a + iω)γ
.(4.16)

The detailed form of A is given in [21]. A similar observation applies to the case where
k has such behavior at b. For points on (ia, ib), relation (4.16) is replaced by

R(α) −→
α→a+

A1k1

(α− a)γ
,(4.17)

where again the form of A1 may be found in [21]. A similar observation applies at b.
We return our attention to (2.24). The function U(iα), α > 0, is real for α /∈ [a, b].

It is discontinuous across [a, b]. We define, for α ∈ [a, b],

UR(iα) = lim
ω→ωR

U(ω), ωR = αe
iπ
2 ,

UL(iα) = lim
ω→ωL

U(ω), ωL = αe
−3iπ

2 .
(4.18)
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As noted earlier, the function U(ω) is nonzero on Ω(+) and approaches unity
as ω → ∞. Thus, logU(ω) has a branch cut on [ia, ib] and no other singularity in
Ω(+). The factor log

[
ω+iω0

ω

]
is assigned a branch cut on [0,−iω0]. Moving the line of

integration in (2.24)3 to the infinite half-circle in Ω(+) while going around the branch
cut, we obtain

N(z) =
1

2πi

∫ b

a

Δ(α)

α + iz
dα,

Δ(α) = logUR(iα) − logUL(iα),

(4.19)

where the branch of the logarithm function is as specified earlier. Its imaginary part
lies in [−π, π]. Note that the factor

[
ω+iω

ω

]
in U(ω) cancels out of Δ(α); it can

henceforth be omitted. Thus, we set

Y (ω) =
1

2

(
1 − F (ω)

F (ω)

)
,

Δ(α) = log YR(iα) − log YL(iα),

(4.20)

where, from (4.5) and (4.6),

YR(iα) =
1

2

[
1 − K(α)

R(α) + iI(α)

]
,

YL(iα) =
1

2

[
1 − K(α)

R(α) − iI(α)

]
= YR(iα).

(4.21)

We can write

Δ(α) = 2iA(α), A(α) = arg YR(α), −π ≤ A(α) ≤ π,(4.22)

and

H+(ω) = − iω

h∞
F (ω)e−N+(ω),

N+(ω) =
1

π

∫ b

a

A(α)

α + iω
dα,

(4.23)

while

H−(ω) =
iω

h∞
F (ω)e−N−(ω),

N−(ω) =
1

π

∫ b

a

A(α)

α− iω
dα.

(4.24)

In the notation of (4.7), we have

V (α) = 2[R(α)2 + I(α)2]ReYR(iα) = R(α)2 + I(α)2 −K(α)R(α),(4.25)

where K(α), given by (4.5), is real and negative for α > −a. Also,

W (α) = 2[R(α)2 + I(α)2]ImYR(iα) = K(α)I(α) ≤ 0,(4.26)
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from which it follows that −π ≤ A(α) ≤ 0. Then

A(α) = −B(α), V (α) ≥ 0,

= −π + B(α), V (α) < 0;

B(α) = arctan

∣∣∣∣W (α)

V (α)

∣∣∣∣ , 0 ≤ B(α) ≤ π

2
.

(4.27)

Note the following result.
Proposition 4.1. The quantity

V (α) = R(α)2 + I(α)2 −K(α)R(α), α ∈ (a, b),(4.28)

is nonnegative in the vicinity of the end points a and b. It is also nonnegative when
R(α) ∈ R+.

Proof. The latter statement follows immediately from the fact that K(α) ≤ 0 for
α ∈ (a, b). The statement is trivially true when R(α) vanishes. Nonnegativity near a
given end point is manifestly true if R is unbounded at that end point, which is true
even if k is finite but nonzero at the end points (see (4.14)). Thus, we must consider
only the case where the density function k vanishes at the end point. Consider first
the lower end point a. We have

R(a) = P

∫ b

a

k(β)

β − a
dβ ≤ 0.(4.29)

Then

V (a) ≥ R(a)2 −K(a)R(a) ≥ 0(4.30)

if

−R(a) ≥ −K(a).(4.31)

Observing that

K(a) =

∫ b

a

k(β)

β + a
dβ,(4.32)

we see that (4.31) is true. Also,

R(b) =

∫ b

a

k(β)

β − b
dβ ≥ 0,(4.33)

so that V (b) ≥ 0.
If V ≥ 0 on (a, b), then

H+(ω) = − iω

h∞
F (ω) exp

{
1

π

∫ b

a

B(α)dα

α + iω

}
,

H−(ω) =
iω

h∞
F (ω) exp

{
1

π

∫ b

a

B(α)dα

α− iω

}
,

(4.34)

where B is defined by (4.27)3.
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5. Some consequences of the factorization formulae. It is of interest to
consider the limits of H±, given by (4.23) and (4.24), as ω approaches the branch cuts
on [ia, ib] and [−ia,−ib]. Consider (4.24) as ω → −iα, α ∈ (a, b), from the left, i.e.,
from the fourth quadrant. Noting (4.8), we obtain

H−L(−iα) =
α

h∞
(R(α) − iI(α))P (α)e−iA(α),

P (α) = exp

{
− 1

π
P

∫ b

a

A(β)

β − α
dβ

}
,

(5.1)

where the Plemelj formulae have been used. Also, from (4.5) and (4.23),

H+L(−iα) = − α

h∞
K(α)Q(α) = H+R(−iα),

Q(α) = exp

{
− 1

π

∫ b

a

A(β)

β + α
dβ

}
.

(5.2)

Multiplying H±L together, we obtain the limit of H(ω) as ω → −iα, α ∈ (a, b),
namely

HL(−iα) = − α2

H∞
(R(α) − iI(α))K(α)P (α)Q(α)e−iA(α).(5.3)

Also, from (2.15), we have

HL(−iα) =
α

2
(R(α) −K(α) − iI(α)).(5.4)

Equating the arguments of these two expressions for HL(−iα) gives

arg(R(α) −K(α) − iI(α)) = −A(α) + arg(R(α) − iI(α)),(5.5)

or, taking complex conjugates,

A(α) = arg

[
1 − Kα)

R(α) + iI(α)

]
,(5.6)

which is, of course, simply (4.22)2. Equating the magnitudes of the two expressions
given by (5.3) and (5.4), we obtain

−2αK(α)P (α)Q(α) = H∞

√
(R(α) −K(α))2 + I2(α)

R2(α) + I2(α)
.(5.7)

With the aid of (5.5), we can write (5.1) in the form

H−L(−iα) =
α

h∞
(R(α) −K(α) − iI(α))

√
R2(α) + I2(α)

(R(α) −K(α))2 + I2(α)
P (α)

= −h∞
2

(R(α) −K(α) − iI(α))

K(α)Q(α)
.

(5.8)

The second form follows from (5.7).
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Finally, we observe that (2.15)1, (2.17), (4.23), and (4.24) give

Z(ω) =
H∞
2iω

(
1

F (ω)
− 1

F (ω)

)
= exp

{
− 1

π

∫ b

a

A(α)dα

α + iω
− 1

π

∫ b

a

A(α)dα

α− iω

}
.(5.9)

Let us show this directly, noting that the left-hand side does not vanish at the origin
and is unity at infinity. Consider the contour C, taken clockwise at infinity except
that it excludes the positive imaginary axis above ia and the negative imaginary axis
below −ia. The quantity Z is finite and nonzero within C. Then we see that

Z(ω) = exp

{
− 1

2πi

∫
C

log(Z(u))du

u− ω

}
,(5.10)

where ω is in the interior of C. Invoking an argument similar to that leading to (4.19)
and (4.20), the result follows on noting that

logZR(iα) − logZL(iα) = log YR(iα) − log YL(iα)(5.11)

for α ∈ (a, b), since real positive factors in the arguments of the logarithms cancel.

6. The minimum free energy. First, we derive the expression for the contin-
uation that yields the maximum recoverable work—which is equal to the minimum
free energy—when F is given by (4.2), from the Wiener–Hopf equation (3.8) or (3.9).
The unique factorization of H is given by (4.23), (4.24), and (4.27). We shall use
the formalism for relative histories, defined by (2.1)2, as in [3, 4, 12, 5] rather than
in [1, 2]. Let us replace the right-hand side of (3.8) by Rt(s), where this function
vanishes on R−. Taking the Fourier transform of (3.8) yields

2i

ω
H(ω)(Et

r+(ω) + Et
m(ω)) = Rt

+(ω),(6.1)

where Et
m is the Fourier transform of the optimum relative continuation Et

o in (3.9)
and Rt

+ is an unknown function, analytic in Ω−. Equation (6.1) is an immediate
consequence of (2.16) and (2.15). Using the factorization property of H, we can write
(6.1) as

H−(ω)Et
r+(ω) + H−(ω)Et

m(ω) =
ωRt

+(ω)

2iH+(ω)
.(6.2)

Let us define

pt(z) =
1

2πi

∫ ∞

−∞
dω′H−(ω′)Et

r+(ω′)

ω′ − z
,

pt±(ω) = lim
α→0+

pt(ω ∓ iα).
(6.3)

By the Plemelj formulae [21],

H−(ω)Et
r+(ω) = pt−(ω) − pt+(ω).(6.4)

Then (6.2) can be written in the form

pt−(ω) + H−(ω)Et
m(ω) = pt+(ω) +

ωRt
+(ω)

2iH+(ω)
.(6.5)
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Recalling that Et
m is analytic in Ω+ (see after (2.29)), we see that the left-hand side

of this relation is analytic in Ω+ and the right-hand side is analytic in Ω−. Also,
the left-hand side goes to zero as ω−1, as we see by applying (2.30) to Et

m. Thus,
both sides are analytic in Ω and vanish at infinity, and are therefore individually zero.
Therefore

Et
m(ω) = −

pt−(ω)

H−(ω)
,(6.6)

and the minimum free energy is given by (see [1, 2, 4], for example)

ψm(t) = φ(t) +
1

2π

∫ ∞

−∞
H(ω)

∣∣Et
m(ω)

∣∣2 dω
= φ(t) +

1

2π

∫ ∞

−∞

∣∣pt−(ω)
∣∣2 dω,(6.7)

where φ is given by (3.2). The quantity ψm(t) was shown in [1, 2] to be a free energy
by the Graffi definition [22, 23] and in [2] by the Coleman–Owen definition [24, 25]
for the general tensor case.

From (3.1)3 and (6.4) we have

W (t) = φ(t) +
1

2π

∫ ∞

−∞

[∣∣pt+(ω)
∣∣2 +

∣∣pt−(ω)
∣∣2] dω

= ψm(t) +
1

2π

∫ ∞

−∞

∣∣pt+(ω)
∣∣2 dω,(6.8)

where the orthogonality property [1]∫ ∞

−∞
pt−(ω)p̄t+(ω)dω =

∫ ∞

−∞
pt+(ω)p̄t−(ω)dω(6.9)

was used in writing (6.8)1. This follows from Cauchy’s theorem, since p̄t± are analytic
in Ω± and go to zero as ω−1 at large ω.

Note that pt− can be written in the form

pt−(ω) =
1

2π

∫ b

a

Δh(α)Et
r+(−iα)

α− iω
dα,

Δh(α) = −i(H−L(−iα) −H−R(−iα)),

(6.10)

by closing the contour on Ω(−) around the branch cut and changing variables. The
quantity H−L is given by (5.8), while H−R is its complex conjugate. Thus, we have

Δh(α) = − 2α

h∞
I(α)P (α)

√
R2(α) + I2(α)

(R(α) −K(α))2 + I2(α)

= h∞
I(α)

K(α)Q(α)
≤ 0, α ∈ [a, b].

(6.11)

The second form has the advantage that the need to evaluate a principal value integral
is avoided. The quantities involved are also free of end point singularities.

The definitions of the various quantities in these relationships are summarized for
convenience in Table 1.
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Table 1

Definitions of the various quantities in the formula (6.11).

Formula Equation reference

F (ω) =
∫ b
a

k(α)

α + iω
dα, ω ∈ R (4.2)

K(α) =
∫ b
a

k(β)

β + α
dβ, α ∈ R\[−a,−b] (4.5)

R(α) = P
∫ b
a

k(β)

β − α
dβ, I(α) = −πk(α), α ∈ (a, b) (4.7)

A(α) = arg

[
1 − K(α)

R(α) + iI(α)

]
, −π ≤ A(α) ≤ 0 (4.21), (4.22), (4.27)

P (α) = exp

{
− 1

π
P
∫ b
a

A(β)

β − α
dβ

}
(5.1)

Q(α) = exp

{
− 1

π

∫ b
a

A(β)

β + α
dβ

}
(5.2)

Using (6.7) and (6.10), we can write the minimum free energy in the form (cf.
(3.1))

ψm(t) = φ(t) +
1

2

∫ ∞

0

∫ ∞

0

Et
r(s)G12(s, u)Et

r(u)dsdu,(6.12)

where

G12(s, u) =
1

2π2

∫ b

a

∫ b

a

Δh(α)e−αsΔh(β)e−βu

α + β
dαdβ,(6.13)

and we understand the subscripts to mean differentiation with respect to the first and
second variable. It follows that

G(s, u) = G(∞,∞) +
1

2π2

∫ b

a

∫ b

a

Δh(α)e−αsΔh(β)e−βu

(α + β)αβ
dαdβ(6.14)

if we require that [1]

G(∞,∞) = G(s,∞) = G(∞, s), s ∈ R+,(6.15)

yielding G1(s,∞) = G2(∞, s) = 0. It is also required that [1]

G(s, 0) = G(0, s) = G(s), s ∈ R+,(6.16)

where G(s) is defined by (2.2). We deduce from (6.15) and (6.16) that

G(∞,∞) = G(∞) = G∞(6.17)

in the notation of (2.1). To show that (6.16) holds, observe that for z ∈ Ω−,

1

2πi

∫ ∞

−∞

H−(ω′)

(ω′ − z)ω′ dω
′ = −H−(z)

z
=

i

2π

∫ b

a

Δh(β)

(β − iz)β
dβ,(6.18)
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where the first relation follows by closing the contour in Ω(−), and the second results
in the same manner as (6.10). It follows from (5.2) and H−(iα) = H+(−iα) that

1

2π

∫ b

a

Δh(β)

(β + α)β
dβ =

1

h∞
K(α)Q(α).(6.19)

Noting that

G(s) = G∞ −
∫ b

a

k(α)

α
e−αsdα,(6.20)

we deduce from (6.11)2 that (6.16) holds. Observe that both G and G12 are positive
quantities.

The isothermal energy balance equation can be written as

ψ̇m(t) + Dm(t) = T (t)Ė(t),(6.21)

where Dm is the rate of dissipation associated with the minimum free energy. This
quantity must be nonnegative by the second law. It is given by [1]

Dm(t) =

{
1

2π

∫ ∞

−∞
H−(ω)Et

r+(ω)dω

}2

=

{
1

2π

∫ b

a

Δh(α)Et
r+(−iα)dα

}2

=

{
1

2π

∫ ∞

0

∫ b

a

Δh(α)Et
r(u)e−αudαdu

}2

≥ 0.

(6.22)

Integrating (6.21), we obtain the relation

ψm(t) + Dm(t) = W (t),(6.23)

where Dm is the total dissipation, defined by

Dm(t) =

∫ t

−∞
D(s)ds.(6.24)

This quantity is assumed to be finite.
It is through the rate of dissipation and the total dissipation that we make the

most direct connection with measurable physical quantities. In particular, Dm(t) is
the least upper bound on the total dissipation, under isothermal conditions, which
actually occurs in the material. This is clear from (6.23), since ψm(t) is the greatest
lower bound on the physical free energy.

It follows from (6.8), (6.23) that

Dm(t) =
1

2π

∫ ∞

−∞

∣∣pt+(ω)
∣∣2 dω.(6.25)

This is not, however, particularly convenient for deriving a useful formula for Dm.
Instead, we take another, more direct approach. From (3.1), (3.3)2, (4.1), and (6.12),
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we see that

Dm(t) = W (t) − ψm(t) = −G′(0)

∫ ∞

0

[Et
r(s)]

2ds

− 1

2

∫ ∞

0

∫ ∞

0

Et
r(s)L(s, u)Et

r(u)dsdu,

L(s, u) = −
∫ b

a

αk(α)e−α|s−u|dα

+
1

2π2

∫ b

a

∫ b

a

Δh(α)e−αsΔh(β)e−βu

α + β
dαdβ.

(6.26)

A point of interest is whether we can take the limit a → 0 in the above formulae,
which would extend the class of relaxation functions beyond those with exponential
decay at large times. In light of (4.11), we see that if k(0) = 0, then there is no
singularity at the real axis, and it should always be possible to do so. In all other
cases considered in section 4, there will be an integrable singularity. However, the
form (6.11)2 is free of these singularities (see Table 1), and the integrals in (6.13),
(6.22), and (6.26) exist, so the formulae may be accepted as valid in the limit a → 0.

7. An alternative approach. Another approach to finding the minimum free
energy of a continuous spectrum material is outlined in this section. Its most remark-
able feature is that it does not require explicit factorization of the function H. It was
motivated initially by the method of Breuer and Onat [13] who propose an ansatz for
the optimal continuation in the discrete spectrum case and solve the problem by this
means. A similar ansatz can be written down without difficulty for the continuous
spectrum case. However, it turns out that no such explicit assumption is required.

We start from the form (6.1) of the Wiener–Hopf equation, absorbing the factor 2i
in R+ and seeking not Et

m(ω) but

Ξt
m(ω) = iωF (ω)Et

m(ω),(7.1)

which is also analytic in Ω+. The reason for this change of unknown is so that we end
up with formulae that are directly comparable with earlier results, in particular (6.6),
based on the factorization of H with factors F and F extracted, as in (2.24), (2.25),
and later formulae. The quantity Ξt

m is related to the memory-dependent part of the
Fourier transform of the stress associated with the optimal continuation Et

m and a
zero history before time t.

Thus, recalling (2.15), we consider the relation

H(ω)

[
Et

r+(ω) +
Ξt
m(ω)

iωF (ω)

]
= H(ω)Et

r+(ω) + Y (ω)Ξt
m(ω) = R+(ω),(7.2)

where Y is defined by (4.20). We consider the discontinuity of both sides across the
cut (−ia,−ib). The quantities Et

r+ and R+ are analytic in Ω− and therefore have
no discontinuity across the cut. Using (5.4) and its complex conjugate which gives
H−R(−iα), we obtain

Y L(−iα)Ξt
L(−iα) − Y R(−iα)Ξt

R(−iα) = iαI(α)Et
r+(−iα), α ∈ (a, b),

= 0, α /∈ (a, b),
(7.3)

where Ξt
L, Ξt

R are the limits of Ξt
m on [−ia,−ib] from the left and right, respectively. If

it were assumed that Ξt
m could be written as a Cauchy integral over [−ia,−ib], which
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amounts to the continuous version of the Breuer–Onat ansatz, then (7.3) could be put
in the form of a singular integral equation. As remarked earlier, this is unnecessary.
The only and very natural assumption needed is that the only singularity of Et

m is a
branch cut on [−ia,−ib]. Note that

Ξt
m(ω) ≈ 1

ω
(7.4)

for large frequencies, which follows from (2.9) and (7.1). Relation (7.3) is a Hilbert
problem, which we can write in the form

Ξt+(α) = C1(α)Ξt−(α) + C2(α),

Ξt+(α) = Ξt
L(−iα), Ξt−(α) = Ξt

R(−iα),

C1(α) =
Y R(−iα)

Y L(−iα)
, C2(α) =

iαI(α)Er+(−iα)

Y L(−iα)
.

(7.5)

Note that, from the complex conjugate of (4.21),

C1(a) = C1(b) = 1.(7.6)

This is clear for singular end points as given by (4.14) and (4.17). For the nonsingular
case, I(a) and I(b) vanish.

Equation (7.5) will now be solved for Ξt(z) = Ξt
m(−iz), which has a branch cut

on [a, b] and where Ξt±(α) are the limits of this function from the left and the right of
the cut. The solution is subject to (7.4) and to the condition that it is bounded except
possibly at a or b, where it may diverge logarithmically or as a power less than unity.
This latter property reflects the assumptions made relating to the density function k.
The general solution is (see [21, p. 237])

Ξt(z) =
X(z)

2πi

∫ b

a

C2(β)

X+(β)(β − z)
dβ + X(z)P (z),

X(z) = Π(z)eN(iz),

N(iz) =
1

2πi

∫ b

a

logC1(λ)

λ− z
dλ,

Π(z) = (z − a)λ1(z − b)λ2 ,

(7.7)

where λ1, λ2 are integers and P (z) is an arbitrary polynomial of degree not less than
κ− 1 with

κ = −λ1 − λ2.

Observe that N(iz) is the quantity defined by (4.19) and (4.20) since

Y R(−iα) = YR(iα), Y L(−iα) = YL(iα),(7.8)

by virtue of (4.6) and (4.8). The quantity X+(β) is the limit of X(z) as z → β ∈ (a, b)
from the positive half-plane. Near z = a, b the quantity N is finite because of (7.6),
so that

X(z)) ≈
z→a K1(z − a)λ1

≈
z→b K2(z − b)λ2 ,

(7.9)
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where K1,K2 are constants. To ensure no divergence in Ξ of order unity or stronger,
we must have λ1, λ2 ≥ 0 and κ ≤ 0. For κ < 0, solutions vanishing at infinity are
possible only if restrictions are placed on C2, which depends only on given physical
parameters [21]. Thus, we must have κ = 0 and λ1 = λ2 = 0. The polynomial P is
zero. Therefore

X(z) = eN(iz)

and

Ξt(iω) = Ξt
m(ω) =

X(iω)

2πi

∫ b

a

C2(β)

X+(β)(β − iω)
dβ.(7.10)

Observe that, from (4.24),

X(iω) =
iωF (ω)

h∞H−(ω)
(7.11)

and

X+(β) =
βFL(−iβ)

h∞H−L(−iβ)
=

1

P (β)
eiA(β), β ∈ (a, b),(7.12)

where (4.8) and (5.1) have been used. Now, from (4.21) and (7.8),

Y L(−iβ) =
1

2

[
1 − K(β)

R(β) − iI(β)

]
=

1

2

√
(R(β) −K(β))2 + I2(β)

R2(β) + I2(β)
e−iA(β),(7.13)

by virtue of (5.5). Thus

C2(β)

X+(β)
= 2iβP (β)I(β)

√
R2(β) + I2(β)

(R(β) −K(β))2 + I2(β)
Et

r+(−iβ) = −ih∞Δh(β)Et
r+(−iβ)

(7.14)

in the notation of (6.11). Then, we finally obtain from (7.1), (7.10), and (7.14)

Et
m(ω) = − 1

2πH−(ω)

∫ b

a

Δh(β)Et
r+(−iβ)

β − iω
dβ,

which agrees with (6.6) and (6.10).

Note that the quantity X, given by (7.11), is closely related to the factor H−.
This is how the factors of H enter the formulae. The quantity X is the solution of
the homogeneous part of the Hilbert problem (7.5). We note that the factorization
problem of H can be expressed as a homogeneous Hilbert problem on the real axis:

H−(w) = H(ω) [H+(w)]
−1

.

It is straightforward to show that this is equivalent to the homogeneous problem
associated with (7.5)1 by taking the limit of this relation on both sides of the branch
cut on [−ia,−ib] in H− and H, and using (7.11).
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8. Minimal states. Finally, let us explore the concept of minimal states, defined
by (2.4), in the context of continuous spectrum materials.

Proposition 8.1. For the relaxation function derivative given by (4.1), where
k is negative on (a, b), except possibly at a finite number of isolated points, and for
histories with Et

+ analytic on R (see the remark after (2.26)) the minimal states are
singletons. In other words, (E(t), Et) is the minimal state.

Proof. We define (Ed(t), E
t
d) as

Ed(t) = E1(t) − E2(t),

Et
d(s) = Et

1(s) − Et
2(s), s ∈ R+.

(8.1)

Then (2.4) becomes

Ed(t) = 0,∫ ∞

0

G′(s + τ)Et
d(s)ds =

∫ b

a

k(α)e−ατEt
d+(−iα)dα = 0 ∀ τ ≥ 0.

(8.2)

The function

Z(τ) =

∫ b

a

k(α)e−ατEt
d+(−iα)dα(8.3)

can be extended to the complex τ plane. It is analytic (and therefore zero) for
Re τ > 0. Taking the inverse Laplace transform, we deduce that k(α)Et

+(−iα)
vanishes for α ∈ R+. Thus, since k(α) does not vanish for α ∈ (a, b), except at most
at a finite number of isolated points, we have

Et
d+(−iα) = 0,(8.4)

over (a, b) or some open subinterval of this region, which in turn implies that Et
d+(ω)

vanishes in the region of analyticity connected to (−ia,−ib). This certainly includes
Ω− and in particular the real axis. We conclude that

Ed(t) = 0, Et
d(s) = 0, s ∈ R++.(8.5)

This result is in sharp contrast with the situation prevailing for discrete spectrum
materials [10, 26].

It follows from Proposition 8.1 that the work function is a function of state and
is the maximum free energy, for relaxation functions obeying a strong dissipativity
condition [8].

A generalization of Proposition 8.1 is given in [26, 11]. Also, it follows from a
more general result proved in [9, Proposition 7.3].

9. Particular cases and approximations. Explicit expressions for F (ω), R(α),
K(α), and G′(0) = −h2

∞ corresponding to a number of choices of k(α) are presented
in Table 2. These are the quantities required to determine H± in (4.23) and (4.24)
or indeed the free energy functional (6.12). A multiplying positive constant may of
course be included in k in all cases. In addition, we note the following formulae which
allow simple generalizations of those tabulated. If k(α) yields F (ω), then αk(α) yields
F1(ω), where

F1(ω) = G′(0) − iωF (ω),

G′(0) =

∫ b

a

k(α)dα.
(9.1)
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Table 2

The quantities F , K, R, and G′(0) required to determine the factors of H and the minimum
free energy for various choices of the density function k. The function I(α) = −πk(α). The quantity
c = (a + b)/2. The function Ei is the exponential-integral function. The fourth and fifth rows are,
of course, special cases (θ = 1/2) of the sixth and seventh rows. The branch of [(a − z)(b − z)]1/2

is chosen to be the one that approaches −z as |z| becomes large; similarly for (a − z)θ(b − z)1−θ.
The quantity θ ∈ (0, 1).

k
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),
α

∈
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b
)
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)
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α
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a
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Also

R1(α) = G′(0) + αR(α),

K1(α) = G′(0) − αK(α),

G′
1(0) =

∫ b

a

αk(α)dα,

(9.2)

where the subscript “1” indicates the various quantities corresponding to αk(α). Fur-
thermore, all quantities are linear in k, so that formulae for linear combinations of
density functions may be constructed without difficulty.

A choice of k which is of some physical interest is (see [27])

k(α) = −Aαλ, 0 < λ ≤ 1, 0 < α < ∞, A > 0,(9.3)

particularly for λ = 0.5. However, G′(0) is infinite for this relaxation spectrum, a
problem that is easily remedied in principle by taking the range of integrations to
be finite. In this case, it would probably be simpler to evaluate all the quantities
of interest by numerical methods. Note, however, that the seventh and fifth rows of
Table 2 provide a good approximation to (9.3) if a is set equal to zero and b is taken
to be large. In any case, the relevance of (9.3) is weakened by the fact that the power
λ may depend on the value of α.

Note that the behavior of H±, given by (4.23) and (4.24), for large ω, is approx-
imated by

H+(ω) ≈ − iω

h∞
F (ω),

H−(ω) ≈ iω

h∞
F (ω).

(9.4)

At small ω, they are approximately given by a real constant times the quantities on
the right-hand side of (9.4).

This suggests that (9.4), perhaps with multiplying constants, may provide a rea-
sonable approximation for the factors at all frequencies. However, the functional (6.7)
has the properties of a free energy (see [1]) only approximately, if (9.4) is used.
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D-BAR METHOD FOR ELECTRICAL IMPEDANCE TOMOGRAPHY
WITH DISCONTINUOUS CONDUCTIVITIES∗
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Abstract. The effects of truncating the (approximate) scattering transform in the D-bar recon-
struction method for two-dimensional electrical impedance tomography are studied. The method is
based on the uniqueness proof of Nachman [Ann. of Math. (2), 143 (1996), pp. 71–96] that applies
to twice differentiable conductivities. However, the reconstruction algorithm has been successfully
applied to experimental data, which can be characterized as piecewise smooth conductivities. The
truncation is shown to stabilize the method against measurement noise and to have a smoothing
effect on the reconstructed conductivity. Thus the truncation can be interpreted as regularization
of the D-bar method. Numerical reconstructions are presented demonstrating that features of dis-
continuous high contrast conductivities can be recovered using the D-bar method. Further, a new
connection between Calderón’s linearization method and the D-bar method is established, and the
two methods are compared numerically and analytically.

Key words. inverse conductivity problem, electrical impedance tomography, exponentially
growing solution, Faddeev’s Green’s function
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1. Introduction. The two-dimensional (2-D) inverse conductivity problem is
to determine and reconstruct an unknown conductivity distribution γ in an open,
bounded, and smooth domain Ω ⊂ R

2 from voltage-to-current measurements on the
boundary ∂Ω. We assume that there is a C > 0 such that

C−1 < γ(x) < C, x ∈ Ω.(1)

The boundary measurements are modeled by the Dirichlet-to-Neumann (DN) map

Λγf = γ
∂u

∂ν

∣∣∣
∂Ω

,

where u is the solution to the generalized Laplace equation

∇ · γ∇u = 0 in Ω, u|∂Ω = f.(2)

Mathematically, the problem is to show that the map γ �→ Λγ is injective and find
an algorithm for the inversion of the map. Physically, u is the electric potential in
Ω, and Λγ represents knowledge of the current flux through ∂Ω resulting from the
voltage distribution f applied on ∂Ω.
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The inverse conductivity problem has applications in subsurface flow monitor-
ing and remediation [30, 31], underground contaminant detection [10, 17], geophysics
[9, 27], nondestructive evaluation [11, 36, 39, 37], and a medical imaging technique
known as electrical impedance tomography (EIT) (see [8, 5] for a review article on
EIT). Conductivity distributions appearing in applications are typically piecewise
continuous. This is the case, for example, in medical EIT, since various tissues in the
body have different conductivities, and there are discontinuities at organ boundaries.
Here we consider 2-D reconstructions. These can be used to image cross-sections of a
three-dimensional (3-D) region, such as a patient’s torso. In the case of patients re-
ceiving mechanical ventilation, for example, 2-D cross-sections are useful for obtaining
regional ventilation information in the lungs, which is valuable for setting and control-
ling the airflow and pressure settings on the ventilator [34, 1]. Real-time imaging of
cross-sectional lung activity can also be used for diagnostic purposes, such as detecting
a lung collapse, a pulmonary embolism, pulmonary edema, or a pneumothorax.

Let us briefly outline the history of D-bar solution methods for EIT. Recently,
Astala and Päivärinta [2] showed that knowledge of the DN map uniquely determines
the conductivity γ(x) ∈ L∞(Ω), 0 < c ≤ γ. This result has been generalized to
anisotropic conductivities in [3]. In this work, we will refer to the 2-D uniqueness
result by Nachman [25] for γ ∈ W 2,p(Ω), p > 1, and by Brown and Uhlmann [6] for
γ ∈ W 1,p(Ω), p > 2. The proof in [25] is constructive; that is, it outlines a direct
method for reconstructing the conductivity γ from knowledge of Λγ . This method was
realized as a numerical algorithm for C2 conductivities in [29, 24, 15]. The uniqueness
result of Brown and Uhlmann in [6] was formulated as a reconstruction algorithm in
[20], which has been implemented in [18, 19]. There are many similarities between
the two methods. In fact, it was shown in [18] using the Brown–Uhlmann approach
that the reconstruction method of Nachman [25] can be extended to the class of
conductivities γ ∈ W 1+ε,p(Ω), p > 2, ε > 0. We refer the reader to [24, 5, 38] for
discussions of uniqueness results for γ in other spaces and Ω ⊂ R

n, n ≥ 2.
Nachman’s D-bar approach in [25] is based on the evaluation of the scattering

transform t(k) by the formula

t(k) =

∫
∂Ω

eikx̄(Λγ − Λ1)ψ(·, k)dσ(x), k ∈ C, x = x1 + ix2,(3)

where Λ1 denotes the DN map corresponding to the homogeneous conductivity 1.
Then γ can be recovered by solving a D-bar equation containing t(k). The functions
ψ(·, k) in (3) are traces of certain exponentially growing solutions to (2), i.e., solu-
tions that behave like eikx asymptotically as either |x| or |k| tends to infinity. These
traces can, in principle, be found by solving a particular boundary integral equation.
However, as solving such an equation is quite sensitive to measurement noise, the
following approximation to t(k) was introduced in [29]:

texp(k) =

∫
∂Ω

eikx̄(Λγ − Λ1)e
ikxdσ(x).(4)

This approximation can be viewed as a linearizing assumption, since the approxima-
tion ψ|∂Ω ≈ eikx is used instead of solving for ψ on the boundary using the nonlinear
equation (7).

Formula (4) allows the evaluation of texp(k) for L∞ conductivities, and the D-
bar method is found to be effective even when the conductivity does not satisfy the
assumptions of the original reconstruction theorem. In [15], quite accurate reconstruc-
tions are computed from experimental data collected on a phantom chest consisting
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of agar heart and lungs in a saline-filled tank. They are the first reconstructions
using the D-bar method on a discontinuous conductivity and on measured data. In
[16], the D-bar algorithm with a differencing texp approximation is used to reconstruct
conductivity changes in a human chest, particularly pulmonary perfusion.

Our aim is to better understand the reconstruction of realistic conductivities
from noisy EIT data using the D-bar method by studying its application to piece-
wise smooth conductivities. Section 2 gives necessary background on the method
and its variants. In section 3, we prove that reconstructions from any truncated
scattering data are smooth. In section 4, we show that the reconstructions from
noisy data using truncated texp are stable. We remark that previous work [23, 4]
shows that the exact reconstruction algorithm is stable in a restricted sense, i.e., as
a map defined on the range of the forward operator Λ: γ �→ Λγ . In contrast, we show
that the approximate reconstruction is continuously defined on the entire data space
L(H1/2(∂Ω), H−1/2(∂Ω)). As an application of the stability, we consider in section 5
mollified versions γλ of a piecewise continuous conductivity distribution γ and show
that reconstructions of γλ converge to reconstructions of γ as λ → 0. This means that
no systematic artifacts are introduced when the reconstruction method is applied to
conductivities outside the assumptions of the theory.

In section 6, a connection between the linearization method of Calderón [7] and
the D-bar method is established. Calderón’s method is written in terms of texp and is
revealed to be a low-order approximation to the D-bar method. The simple example
of the unit disk containing one concentric ring of constant conductivity with a dis-
continuity at the interface is studied in depth in section 7. We write texp as a series
showing the asymptotic growth rate. Reconstructions by Calderón’s method and the
D-bar method with the texp approximation are expressed in explicit formulas.

In section 8, we illustrate our theoretical findings by numerical examples. We
find that both the D-bar method and Calderón’s method can approximately recover
the location of a discontinuity. Also, both methods yield good reconstructions of
low-contrast conductivities but have difficulties in recovering the actual conductivity
values in the presence of high contrast features near the boundary.

2. The D-bar reconstruction method. In this section, we briefly review the
reconstruction method based on the proof by Nachman [25]. We will describe both
the exact mathematical algorithm and an approximate numerical algorithm.

2.1. Exact reconstruction from infinite precision data. The reconstruc-
tion method uses exponentially growing solutions to the conductivity equation. Sup-
pose γ − 1 ∈ W 1+ε,p(R2) with p > 2 and γ ≡ 1 in R

2 \ Ω. Then the equation

∇ · γ∇u = 0 in R
2(5)

has a unique exponentially growing solution u that behaves like eixk, where x is
understood as x = x1+ix2 ∈ C and the parameter k = k1+ik2 ∈ C. The construction
of exponentially growing solutions is done by reducing the conductivity equation to
either a Schrödinger equation (requires two derivatives on the conductivity) or a first-
order system (requires one derivative). Consider ψ := u

√
γ satisfying (e−ixkψ(x, k)−

1) ∈ W 1,p(R2) with p > 2, and note that since γ = 1 at ∂Ω we have u|∂Ω = ψ|∂Ω. The
intermediate object in the reconstruction method is the scattering transform defined
in terms of the DN map by (3).

The reconstruction algorithm consists of the two steps

Λγ → t → γ.(6)
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In order to compute t from Λγ by (3), one needs to find the trace of ψ(·, k) on ∂Ω. It
turns out that ψ|∂Ω satisfies

ψ(·, k)|∂Ω = eikx − Sk(Λγ − Λ1)ψ(·, k).(7)

Here Sk is the single-layer operator

(Skφ)(x) :=

∫
∂Ω

Gk(x− y)φ(y)dσ(y), k ∈ C \ 0,(8)

where the Faddeev’s Green’s function Gk is defined by

Gk(x) :=
eikx

(2π)2

∫
R2

eix·ξ

|ξ|2 + 2k(ξ1 + iξ2)
dξ, −ΔGk = δ.(9)

Here the dot product is computed with real vectors x = (x1, x2) and ξ = (ξ1, ξ2). The
Fredholm equation (7) is uniquely solvable in H1/2(∂Ω); see [25].

To compute γ from t, the key observation is that with respect to the parameter
k, the function μ(x, k) = e−ixkψ(x, k) satisfies a differential equation where t enters
as a coefficient. More precisely, μ satisfies for fixed x ∈ C the D-bar equation

∂kμ(x, k) =
1

4πk
t(k)e−x(k)μ(x, k), k ∈ C,(10)

where the unimodular function ek is defined by

ex(k) := ei(kx+kx̄) = e−i(−2k1,2k2)·x.(11)

It is shown in [25] (see also [6, 20]) that μ(x, ·) is, in fact, the unique solution to
(10) defined by the asymptotic condition μ(x, ·)− 1 ∈ Lr(R2), r > 2/ε. Moreover, the
solution belongs to Cα(R2) with α < 1; see section 3. Hence μ(x, k) can be computed
from t by solving (10) or, equivalently, the Fredholm integral equation

μ(x, s) = 1 +
1

(2π)2

∫
R2

t(k)

(s− k)k
e−x(k)μ(x, k)dk1dk2.(12)

Finally, the conductivity can be recovered from μ using the formula

γ(x) = μ(x, 0)2, x ∈ Ω.(13)

2.2. Truncation of scattering transform. Note that in (12) the integral is
over the whole plane. We will define a regularized D-bar algorithm by truncating the
scattering transform to a disk of radius R. Then

tR(k) ≡
{

t(k) for |k| ≤ R,
0 for |k| > R,

(14)

and μR(x, k) is the solution of

μR(x, s) = 1 +
1

(2π)2

∫
|k|≤R

tR(k)

(s− k)k
e−x(k)μR(x, k)dk1dk2.(15)

This defines a modified D-bar algorithm consisting of the following steps:
1. Solve (7) for ψ|∂Ω.
2. Compute tR by (3) and (14).
3. Solve the integral equation (15) for μR.
4. Compute the reconstruction γR(x) = μR(x, 0)2.

According to [24], this algorithm gives correct results at the asymptotic limit R → ∞.
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2.3. Approximate reconstruction from finite precision data. In the pres-
ence of noise in the data, solving (7) is difficult, and therefore the approximate scat-
tering transform texp(k) defined by (4) was introduced. An advantage of texp(k) is
that the definition applies just as well to discontinuous conductivities as to smooth
ones. However, it can be shown in certain cases that texp(k) grows so fast as |k| tends
to infinity (see (64) below) that the corresponding D-bar equation is not solvable. In
addition, the practical computation is stable only for |k| ≤ R, where the radius R
depends on the noise level. Thus the scattering transform needs to be truncated. Set

texp

R (k) =

{
texp(k) for |k| ≤ R,
0 for |k| > R,

(16)

and write the corresponding D-bar equation:

μexp

R (x, s) = 1 +
1

(2π)2

∫
|k|≤R

texp
R (k)

(s− k)k
e−x(k)μexp

R (x, k)dk1dk2.(17)

We arrive at the following reconstruction algorithm:
1. Compute texp

R by (4) and (16).
2. Solve (17) for μexp

R .
3. Compute γexp

R (x) = μexp
R (x, 0)2.

We will show in section 4 that this reconstruction algorithm is robust against noise.
In the numerical implementation, the challenge is to solve (17); see [29, 21].

3. Smoothness of reconstructions from truncated scattering data. We
first investigate the x-smoothness of the solution to the D-bar equation

μ(x, s) = 1 +
1

π

∫
R2

φ(k)

s− k
e−x(k)μ(x, k)dk1dk2(18)

under various assumptions on the coefficient φ. Then we will show that the reconstruc-
tions γR and γexp

R computed from truncated scattering data are smooth functions.
The analysis of (18) makes heavy use of the solid Cauchy transform

Cf(s) :=
1

π

∫
R2

f(k)

s− k
dk1dk2.(19)

The following result is essentially [25, Lemma 1.2] and [35, Theorem 1.21].
Lemma 3.1. Suppose f ∈ Lp1(R2), where 1 < p1 < 2. Then

‖Cf‖Lp̃1 (R2) ≤ C‖f‖Lp1 (R2),
1

p̃1
=

1

p1
− 1

2
.(20)

Suppose further that f ∈ Lp1(R2) ∩ Lp2(R2), where 1 < p1 < 2 < p2 < ∞. Then

‖Cf‖Cα(R2) ≤ C(‖f‖Lp1 (R2) + ‖f‖Lp2 (R2)), α = 1 − 2

p2
.(21)

In the next lemma, we consider the continuity of the Cauchy transform applied to
functions depending on a parameter. To simplify notation, we introduce for x ∈ R

2

the real-linear operator Φx by Φxf = φ(k)e−k(x)f(k).
Lemma 3.2. Let φ ∈ Lp1 ∩ Lp2(R2) with 1 < p1 < 2 < p2 < ∞. Then the map

x �→ C(φe−x)(22)
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is continuous from R
2 into Lp̃1(R2)∩Cα(R2), α = 1− 2/p2. Further, CΦx is bounded

on Lr(R2), r > 2, and the map x �→ CΦx is continuous from R
2 into L(Lr(R2)).

Proof. Using the Lebesgue dominated convergence theorem, it is straightforward
to see that the map x �→ φe−x is continuous from R

2 into Lp1(R2) ∩ Lp2(R2). The
continuity of the map (22) then follows from the linearity of C and (20)–(21).

The assumption on φ implies by the Hölder inequality that φ(k)e−k(x) ∈ L2(R2),
and, as before, we can argue that φ(k)e−k(x) is continuous with respect to x ∈
R

2. It follows then by the Hölder inequality that Φx ∈ L(Lr(R2), L2r/(2+r)(R2)).
Moreover, Φx is continuous with respect to x ∈ R

2. The claim for CΦx then follows
from (20).

We are now ready to prove the unique solvability of (18) in the case where φ is
in certain Lp-spaces and analyze how the solution depends on the parameter x.

Lemma 3.3. Let φ ∈ Lp1 ∩ Lp2(R2) with 1 < p1 < 2 < p2 < ∞. Then (18) has a
unique solution μ with μ(x, ·) − 1 ∈ Lr ∩ Cα(R2) for any r ≥ p̃1 and α < 1 − 2/p2.
Moreover, the map

x �→ μ(x, ·)(23)

is continuous from R
2 into Lr ∩ Cα(R2).

Proof. Equation (18) is equivalent to the integral equation

(I − CΦx)(μ− 1) = CΦx(1).(24)

Note that CΦx(1) ∈ Lr(R2) for any r ≥ p̃1. Now, from Lemma 3.2, we know that CΦx

is bounded on Lr(R2), r > 2. Moreover, the operator is compact (see [26, Lemma
4.2]), and hence (24) is a Fredholm equation of the second kind. Since the associated
homogeneous equation has only the trivial solution (see, for instance, [6]), we can
define

μ− 1 = [I − CΦx]−1(CΦx(1)) ∈ Lr(R2), r ≥ p̃1.(25)

By (21),

CΦx(1) ∈ Cα(R2), α = 1 − 2

p2
,(26)

CΦx(μ− 1) ∈ Cα(R2), α < 1 − 2

p2
,(27)

and then the Hölder regularity of μ− 1 is obtained from (24).
Next, we show continuity of the map x �→ (μ(x, ·) − 1) from R

2 into Lr(R) ∩
Cα(R2). By Lemma 3.2, we know that CΦx1 ∈ Lr(R2)∩Cα(R2) depends continuously
on x.

Also, by Lemma 3.2, the map x �→ CΦx is continuous from R
2 to L(Lr(R2)).

Since the operator I − CΦx is invertible for all x ∈ R
2, the map x �→ [I − CΦx]−1 is

continuous from R
2 to L(Lr(R2)) as well. Hence the right-hand side of (25) depends

continuously on x as a map from R
2 into Lr(R2). The continuity into Cα(R2) now

follows as before from (21) and (24).
Next, we consider the solvability of (18) in the case where φ is compactly sup-

ported.
Lemma 3.4. Suppose φ ∈ Lp(R2), p > 2, is compactly supported. Then (18) has

a unique solution μ with μ− 1 ∈ Lr ∩Cα(R2), r > 2, α < 1− 2/p. Moreover, the map

x �→ μ(x, ·) − 1(28)
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is smooth from R
2 into Lr ∩ Cα(R2).

Proof. Since φ ∈ Lp1 ∩ Lp(R2) for 1 < p1 < 2, by Lemma 3.3, (18) has a unique
solution μ with μ− 1 ∈ Lr ∩ Cα(R2), r > 2, α < 1 − 2/p, depending continuously on
x.

To prove that μ is smooth, we will show first that ∂x1
μ is continuous. By applying

the differential operator ∂x1 to (18), it follows that ∂x1 satisfies the equation

∂k∂x1μ = φ(k)e−k∂x1μ− φ(k)k1e−kμ.(29)

Since μ − 1 ∈ Lr(R2) for any r > 2, we have φ(k)k1e−kμ ∈ Lq(R2) for any q < p.
Hence C(φ(k)k1e−kμ) ∈ Lr(R2) for any r > 2. Equation (29) then has the unique
solution

∂x1μ = −(I − CΦx)−1(φ(k)k1e−kμ) ∈ Lr(R2) ∩ Cα(R2), r > 2, α < 1 − 2/p.

Since (φ(k)k1e−kμ) and (I − CΦx)−1 are continuous with respect to x, so is ∂x1μ.
Using induction, this argument can easily be extended to show that all x-derivatives
of μ are continuous, i.e., that μ is smooth.

We can now show using Lemma 3.3 that (12) admits a unique solution. Moreover,
by using Lemma 3.4, we can show that (15) and (17) are uniquely solvable and that
the solutions are smooth functions of the x-variable.

Proposition 3.5. Let Ω ⊂ R
2 be the unit disc, and suppose γ satisfies (1) with

γ = 1 near ∂Ω.
(a) Suppose further that γ ∈ W 1+ε,p(Ω) with 2 < p. Then for each x ∈ R

2

and R > 0, (12) and (15) have unique solutions μ, μR, respectively, which satisfy
μ(x, · ) − 1 ∈ Lr ∩ C

α(R2), r > 2/ε, α < 1, and (μR(x, · ) − 1) ∈ Lr ∩ Cα(R2), r >
2, α < 1. Furthermore, μR(x, · ) is smooth with respect to x.

(b) For x ∈ R
2 and R > 0, (17) has a unique solution μexp

R (x, · ) with μexp
R (x, · )−

1 ∈ Lr ∩ Cα(R2), r > 2, α < 1, which is smooth with respect to x.
Proof. To prove (a), we use the fact from [18, 20] that t(k)/k ∈ Lp(R2), 2 − ε <

p < ∞. Hence φ(k) = t(k)/(4πk) satisfies the assumptions in Lemma 3.3, and the
claim follows. Furthermore, φ = tR/(4πk) satisfies the assumptions in Lemma 3.4. It
follows that (15) has a unique solution μR with the indicated properties.

To prove (b), we note that texp
R is a bounded function with compact support.

Then again we use Lemma 3.4.
As a consequence of this proposition, it follows that the reconstructions γR(x) =

(μR(x, 0))2 and γexp
R = (μexp

R (x, 0))2 based on truncated scattering data are smooth
functions.

4. Stability of the approximate reconstruction method. In this section,
we show that the reconstruction method using the truncated texp is stable. We will
start by formulating the reconstruction procedure as an operator. Let Lp

c(R
2) denote

the space of Lp(R2) functions with compact support, and define for k ∈ C the linear
operator T exp

R : L(H1/2(∂Ω), H−1/2(∂Ω)) → L∞
c (R2) by

(T exp

R L)(k) = χ|k|<R
1

4πk

∫
∂Ω

(eikx − 1)L(eikx − 1)dσ(x).(30)

Define further for p > 2 the nonlinear operator

S : Lp
c(R

2) → C∞(Ω), φ �→ μ(x, 0),
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where μ(x, ·) is the unique solution to (10) (see Lemma 3.4). By composition, we then
define Mexp

R : L(H1/2(∂Ω), H−1/2(∂Ω)) → C∞(Ω) by

Mexp

R = S ◦ T exp

R .(31)

Using this notation, it is clear that

(γexp

R (x))1/2 = μexp

R (x, 0) = Mexp

R (Λγ − Λ1),(32)

since (Λγ − Λ1)1 = 0 and
∫
∂Ω

(Λγ − Λ1)fdσ(x) = 0 for all f ∈ H1/2(∂Ω). Thus Mexp
R

is an operator that implements the reconstruction algorithm based on the truncated
approximate scattering data.

The main goal of this section is to show that Mexp
R is continuous as an operator

from L(H1/2(∂Ω), H−1/2(∂Ω)) into C∞(Ω). This will show that the reconstruction
algorithm using texp

R is stable.
Lemma 4.1. The operator T exp

R is bounded from L(H1/2(∂Ω), H−1/2(∂Ω)) into
L∞
c (R2) and satisfies

‖T exp

R L‖L∞(R2) ≤ Ce2R‖L‖L(H1/2(∂Ω),H−1/2(∂Ω)).(33)

Proof. For |k| < R, it is straightforward to obtain the estimate

|T exp

R L(k)| ≤ C
1

|k| ‖e
ikx − 1‖2

H1/2(∂Ω)‖L‖L(H1/2(∂Ω),H−1/2(∂Ω)).

Hence (33) follows from the uniform estimate ‖eikx − 1‖H1/2(∂Ω) ≤ C|k|1/2e|k|.
Next, we consider the solution operator S. A stability estimate for this operator

was given in [18, Lemma 3.1.5]; we will generalize this result slightly. The aim is
to show that the solution μ to (18) depends continuously on the coefficient φ. Let
μj , j = 1, 2, be the solution to

μj(x, s) − 1 =
1

π

∫
R2

φj(k)

s− k
e−x(k)(μj(x, k) − 1)dk1dk2

+
1

π

∫
R2

φj(k)

s− k
e−x(k)dk1dk2, j = 1, 2.

(34)

Then we have the following result.
Lemma 4.2. Let 1 < p1 < 2 < p2 < ∞ with 0 < 1/p1 + 1/p2 − 1/2 < 1/2, and

suppose φj ∈ Lp1(R2) ∩ Lp2(R2), j = 1, 2. Further, let x ∈ Ω. Then, for the solution
μj(x, ·) to (34), we have the estimate

‖μ1(x, ·) − μ2(x, ·)‖Cα(R2) ≤ CK1K2‖φ1 − φ2‖Lp1 (R2)∩Lp2 (R2)∩L2(R2)∩Lq(R2),(35)

where α < 1− 2/q, 1/q = 1/p2 + 1/p1 − 1/2, and Kj = exp(C‖φj‖Lp1 (R2)∩Lp2 (R2)). If
φ1, φ2 ∈ Lp

c(R
2), p > 2, we have the estimate

‖μ1(x, ·) − μ2(x, ·)‖Cα(R2) ≤ CK1K2‖φ1 − φ2‖Lp(R2)(36)

for α < 1 − 2/p.
Proof. From [4, Lemma 2.6], we know that if a ∈ Lp1(R2)∩Lp2(R2) for 1 < p1 <

2 < p2 < ∞ and b ∈ Lp(2) for 1 < p < 2, then the solution to the integral equation

m = C(am) + C(b)
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satisfies the estimate

‖m‖Lp̃(R2) ≤ C exp(C‖a‖Lp1 (R2)∩Lp2 (R2))‖b‖Lp(R2).(37)

Applied to (34), the estimate reads

‖μ1(x, ·) − 1‖Lp̃1 (R2) ≤ CK1‖φ1‖Lp1 (R2).(38)

Since

μ1(x, s) − μ2(x, s) =
1

π

∫
R2

φ2(k)

s− k
e−x(k)(μ1 − μ2)dk1dk2

+
1

π

∫
R2

φ1(k) − φ2(k)

s− k
e−x(k)μ1(x, k)dk1dk2,

(39)

the estimate (37) applied to μ1 − μ2 then gives

‖μ1 − μ2‖Lp̃1 (R2) ≤ CK2‖(φ1 − φ2)μ1‖Lp1 (R2)

≤ CK2

(
‖φ1 − φ2‖Lp1 (R2) + ‖φ1 − φ2‖L2(R2)‖μ1 − 1‖Lp̃1 (R2)

)
≤ CK2

(
‖φ1 − φ2‖Lp1 (R2) + ‖φ1 − φ2‖L2(R2)Φ1‖φ1‖Lp1 (R2)

)
,(40)

where we have used (38). To get the Hölder estimate, we use (39) and (21) to obtain

‖μ1 − μ2‖Cα(R2) ≤ ‖φ2(μ1 − μ2)‖Lq(R2) + ‖(φ1 − φ2)μ1‖Lq(R2)(41)

for q > 2 and α = 1 − 2/q. By choosing 1/q = 1/p2 + 1/p̃1 (< 1/2 by assumption),
we have by (40) and (38)

‖φ2(μ1 − μ2)‖Lq(R2) ≤ ‖φ2‖Lp2 (R2)‖μ1 − μ2‖Lp̃1 (R2)

≤ ‖φ2‖Lp2 (R2)CK2

(
‖φ1 − φ2‖Lp1 (R2)

+ ‖φ1 − φ2‖L2(R2)K1‖φ1‖Lp1 (R2)

)
(42)

‖(φ1 − φ2)μ1‖Lq(R2) ≤ ‖φ1 − φ2‖Lp2 (R2)‖μ1 − 1‖Lp̃1 (R2) + ‖φ1 − φ2‖Lq(R2)

≤ ‖φ1 − φ2‖Lp2 (R2)CK1‖φ1‖Lp1 (R2) + ‖φ1 − φ2‖Lq(R2).(43)

Combining (41) with (42) and (43) gives (35).
Finally, (36) follows from (35) by using the compact support of φ1, φ2.
As a direct consequence of the lemma, we obtain the following result.
Corollary 4.3. The operator S is bounded from Lp

c(R
2), p > 2, into L∞(Ω)

and

‖S(φ1) − S(φ2)‖L∞(Ω) ≤ C‖φ1 − φ2‖Lp(R2),(44)

where C depends on p, the support of φ1, φ2, and ‖φ1‖Lp(R2), ‖φ2‖Lp(R2).

Proof. For fixed x ∈ Ω, (36) implies that

|S(φ1) − S(φ2)| = |μ1(x, 0) − μ2(x, 0)| ≤ CΦ1Φ2‖φ1 − φ2‖Lp(R2).

This proves the result.
We have now seen that the linear operator T exp

R is bounded and the operator S
is continuous. This enables us to conclude that Mexp

R = S ◦ T exp
R is continuous.
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5. Convergence of reconstructions of mollified conductivities. Conduc-
tivities in practical applications of EIT are often piecewise smooth, but the theory of
D-bar method covers only differentiable conductivities. We exclude the possibility of
systematic artifacts introduced by discontinuities by proving the following: smooth
approximations to nonsmooth conductivities yield almost the same reconstructions.

Let Ω = B(0, 1). Let c0 > 0 and 0 < R < 1, and define X = X(c0, R) ⊂ L∞(Ω)
by

X = {γ ∈ L∞(Ω) | c−1
0 ≤ γ ≤ c0, supp(γ − 1) ⊂ B(0, R)}.

The following lemma contains a continuity result for the operator γ �→ Λγ .
Lemma 5.1. Let γ, γj ∈ X, j ∈ N, and suppose γj → γ a.e. Then, for any s ∈ R,

Λγj − Λγ −→ 0 in the strong topology of L(H1/2(∂Ω), Hs(∂Ω)).

Proof. Let f ∈ H1/2(∂Ω). Let γ0 = γ, and define uj , j = 0, 1, 2, . . . , as the unique
solution to ∇ · γj∇uj = 0 in Ω, uj |∂Ω = f. Then

‖u0‖H1(Ω) ≤ C2‖f‖H1/2 ,(45)

where the constant C2 depends only on the uniform ellipticity constant c0. Since

∇ · γj∇(uj − u0) = ∇ · (γ − γj)∇u0, (uj − u0)|∂Ω = 0,

there is a constant C3 (depending only on c0) such that the estimate

‖(uj − u0)‖H1(Ω) ≤ C3‖(γ − γj)∇u0‖L2(Ω)(46)

holds. Furthermore, Δ(uj −u0) = 0 and ∂ν(uj −u0)|∂Ω = 0 in the region Ω\B(0, R).
Therefore we can extend (46) to

‖(uj − u0)‖Hs(Ω\B(0,R1)) ≤ C4‖(γ − γj)∇u0‖L2(Ω),

for any s ∈ R, where C4 depends on s, c0, and R1 ∈ (R, 1). By taking normal derivative
at the boundary, we then obtain, for any s ∈ R,

‖(Λγj
− Λγ)f‖Hs(∂Ω) ≤ C5‖(γ − γj)∇u0‖L2(Ω),(47)

where C5 depends on s, c0, and R.
To consider convergence in the strong topology, let us fix f and γ, implying that u0

can be considered as a fixed function. Then using Lebesgue dominated convergence,
it follows that limj→∞ ‖(γ − γj)∇u0‖L2(Ω) = 0. By (47), this implies the claim.

The next lemma shows that a strongly convergent sequence of operators is norm
convergent when composed with a compact operator defined on a Hilbert space.

Lemma 5.2. Let X,Y be Banach spaces and H be a separable Hilbert space.
Suppose T, Tj ∈ L(X,Y ), j = 1, 2, . . . , and K ∈ L(H,X) is compact. If Tj → T as
j → ∞ in the strong topology of L(X,Y ), then TjK → TK as j → ∞ in the norm
topology of L(H,Y ).

Proof. By the principle of uniform boundedness, there is a constant C0 such that
‖T‖L(X,Y ) < C0 and ‖Tj‖L(X,Y ) < C0 for all j.

Since the compact operator K maps from a separable Hilbert space into a Banach
space, there is a sequence of finite rank operators Kn, n ∈ N, with rank(Kn) = n that
converges in norm to K (see [28, Theorem 6.13] for a proof of this fact in the Hilbert
space case; the proof is the same in our case). Fix ε > 0, and take n such that

‖K −Kn‖L(H,X) < ε.
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Further, since Kn has finite rank, there is a J = J(ε) ≥ 0 such that, for j ≥ J ,

‖(Tj − T )Kn‖L(H,Y ) ≤ ε.

Hence, for j ≥ J ,

‖(Tj − T )K‖L(H,Y ) ≤ ‖Tj(K −Kn) + (Tj − T )Kn + T (Kn −K)‖L(H,Y ) = 3C0ε.

This proves the result.

We will now use the preceding lemma to prove norm convergence of the sequence
of DN maps in Lemma 5.1.

Lemma 5.3. Let γ and γj be as in Lemma 5.1. Then

lim
j→∞

‖Λγj − Λγ‖L(H1/2(∂Ω),H−1/2(∂Ω)) = 0.

Proof. Since the inclusion operator J : H1/2+r(∂Ω) → H1/2(∂Ω) is compact for
any r > 0, it follows from Lemmas 5.1 and 5.2 that

lim
j→∞

‖Λγj
−Λγ‖L(H

1
2
+r(∂Ω),Hs(∂Ω))

= lim
j→∞

‖(Λγj
−Λγ)J‖

L(H
1
2
+r(∂Ω),Hs(∂Ω))

= 0
(48)

for r > 0, s ∈ R. Further, since γ = γj = 1 near ∂Ω, Λγj −Λγ is a smoothing pseudo-
differential operator that can be extended to an operator D′(∂Ω) → C∞(∂Ω). An
application of Green’s formula implies that the operator Λγj

−Λγ : D′(∂Ω) → C∞(∂Ω)
and its transpose (Λγj

− Λγ)′ : D′(∂Ω) → C∞(∂Ω) coincide. Thus (48) implies

lim
j→∞

‖Λγj − Λγ‖L(H−s′ (∂Ω),H−1/2−r′ (∂Ω)) = 0(49)

for r′ > 0, s′ ∈ R. Interpolation of (48) and (49) gives the result; see, for example,
Theorem 5.1 and section 7.3 of [22] or formula (3.2) on p. 282 of [33].

Let γ ∈ X(c0, R) for some c0, R > 0, and suppose that γ is continuous a.e. Let
η ∈ C∞

0 (D(0, α/2)) be nonnegative and
∫

R2 η = 1. Define ηλ(x) := λ−2η(x/λ) for any
0 < λ < 1, and set γλ := ηλ ∗ γ. We then have the following result.

Theorem 5.4. Let γ ∈ X(c0, R) for some c0, R > 0, and let γλ be defined as
above. Let Mexp

R be defined as in (31). Then we have

lim
λ→0

‖Mexp

R (Λγλ
− Λγ)‖L(L∞(Ω),L∞(Ω)) = 0.

Proof. As a consequence of the definition, there exist c̃0, R̃ > 0 such that γ, γλ ∈
X(c̃0, R̃) for λ sufficiently small. Also γλ → γ a.e. Using Lemma 5.3, it follows
that Λγλ

converges to Λγ in the norm topology of L(H1/2(∂Ω), H−1/2(∂Ω)). Finally,
using the continuity of Mexp

R (see section 4), we conclude that the reconstruction

Mexp
R (Λγλ

− Λ1) of γ
1/2
λ converges to Mexp

R (Λγ − Λ1).

6. Connection to Calderón’s linearization method. In the seminal paper
[7], Calderón gave an algorithm for the reconstruction of conductivities close to con-
stant (see also [38]). We write Calderón’s method in the context of the approximate
scattering transform texp and compare it to the D-bar method.
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6.1. Calderón’s linearization method. Integrating by parts in (4) gives

texp(k) =

∫
Ω

(γ − 1)∇u(x, k) · ∇(eikx)dx,(50)

where

∇ · (γ − 1)∇u = 0 in Ω, u|∂Ω = eikx.

When ‖γ − 1‖L∞(Ω) is small, then u is close to eikx inside Ω. Indeed, if we write

u = eikx + δu for δu ∈ H1
0 (Ω) satisfying ∇ · γ∇δu = −∇ · (γ − 1)∇(eikx), we have the

estimate

‖δu‖H1(Ω) ≤ C‖γ − 1‖L∞(Ω)e
|k|r,(51)

where r is the radius of the smallest ball containing Ω. Substituting u = eikx + δu
into (50) and dividing by −2|k|2, we obtain

−texp(k)

2|k|2 = − 1

2|k|2
∫

Ω

(γ − 1)∇(eikx + δu) · ∇(eikx)dx

=

∫
Ω

(γ − 1)ek(x)dx + R(k)

= 2πF(χΩ(γ − 1))(−2k1, 2k2) + R(k),(52)

where F denotes the Fourier transform and

R(k) = − 1

2|k|2
∫

Ω

(γ − 1)∇δu · ∇(eikx)dx.

Using (51), it is not hard to obtain

|R(k)| ≤ C‖γ − 1‖2
L∞(Ω)e

2|k|r.(53)

The idea behind Calderón’s method is to multiply (52) by a smooth cut-off function
and then apply the inverse Fourier transform. Let η̂ ∈ C∞

0 (R2) be a nonnegative
function supported in the unit ball with η̂ = 1 near x = 0, and let σ be a positive
parameter determining the cut-off radius. Then from (52) we obtain

F(χΩ(γ − 1))(−2k1, 2k2)η̂

(
k

σ

)
= −texp(k)

4π|k|2 η̂(k/σ) −R(k)η̂

(
k

σ

)
.

Changing variables s = (s1, s2) = 2(−k1, k2) gives

F(χΩ(γ − 1))(s1, s2)η̂

(
(−s1, s2)

(2σ)

)

= −texp((−s1, s2)/2)

π|s|2 η̂

(
(−s1, s2)

(2σ)

)
−R

(
(−s1, s2)

2

)
η̂

(
(−s1, s2)

(2σ)

)
.(54)

Inverting F and neglecting the second term in (54) yields an approximation to γ:

γapp(x) − 1 = − 1

2π

∫
R2

eix·s
texp((−s1, s2)/2)

π|s|2 η̂

(
(−s1, s2)

(2σ)

)
ds1ds2.



D-BAR METHOD FOR ELECTRICAL IMPEDANCE TOMOGRAPHY 905

Changing back the variables in the integral to (k1, k2) = (−s1, s2)/2 yields the formula

γapp(x) − 1 = − 1

2π2

∫
R2

e2i(−x1k1+x2k2)
texp(k)

4|k|2 η̂

(
k

σ

)
4dk1dk2

= − 2

(2π)2

∫
R2

e−x(k)
texp(k)

|k|2 η̂

(
k

σ

)
dk1dk2.(55)

The reconstruction γapp is an approximation of a low-pass filtered version of γ. Choos-
ing the parameter σ as in [7] with 0 < α < 1 to be

σ =
1 − α

2r
log

1

‖γ − 1‖L∞(Ω)
(56)

yields due to (53) the error estimate

‖γapp(x) − ησ ∗ γ‖L∞ ≤ ‖R(k)η̂(k/σ)‖L1(R2) ≤ C‖γ − 1‖1+α
L∞(Ω)(log(‖γ − 1‖L∞(Ω)))

2.

Note that when ‖γ−1‖L∞(Ω) is sufficiently small this error is much smaller than ‖γ−
1‖L∞(Ω). Since in most applications the approximate magnitudes of the conductivities
comprising γ(x) are known, an estimate to σ in (56) can be computed.

In summary, the algorithm proposed in [7] is tantamount to the following:
1. Compute texp(k) by (4).
2. Construct a low-pass filter η̂(k/σ).
3. Compute the approximation γapp by (55).

6.2. Calderón’s method as an approximation of the D-bar method.
Calderón’s method using (55) can be seen as a three-step approximation of the D-bar
method using (3) and (12)–(13):

1. In (12), t(k) is approximated by texp(k)η̂(k/σ), where η̂(k/σ) is a smooth
cut-off function.

2. The function μ in the integral in the right-hand side of (12) is approximated
by its asymptotic value μ ∼ 1.

3. The square function in (13) is linearized: (1 − h)2 ∼ 1 − 2h.
In contrast, the D-bar method using texp

R makes only the first approximation (with
sharp cut-off).

7. Analysis of a simple radial conductivity distribution. In this section,
we consider the simple example of a piecewise constant radial conductivity defined in
the unit disc Ω. We will show that in this case texp can be expanded conveniently
using Bessel functions. Furthermore, such an expansion leads to a result concerning
the asymptotic behavior of texp(k) as |k| tends to infinity. We will write out explicit
formulas for γapp, the Calderón reconstruction, and γexp, the D-bar reconstruction of
γ with the texp approximation.

Consider the radial conductivity

γ(x) =

{
σ for |x| ≤ r,
1 for |x| > r,

(57)

where 0 < r < 1 and σ > 0, σ �= 1. Define

α =
σ − 1

σ + 1
.(58)
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According to [32], trigonometric basis functions are eigenfunctions for Λγ when γ
is radial. More precisely, Λγϕn = λnϕn with ϕn(α) := (2π)−1/2einα for n ∈ Z. It is
well known [12] that the eigenvalues of Λγ corresponding to (57) are given by

λn = n

(
1 +

2αr2n

1 − αr2n

)
, n = 1, 2, 3, . . . .(59)

Hence δΛ ≡ Λγ − Λ1 has eigenvalues

δλn =
2nαr2n

1 − αr2n
, n = 1, 2, 3, . . . .(60)

As in [29], one can derive a series representation of texp(k). For the case of the
conductivity distribution (57), this leads to a particularly simple representation of
texp in terms of Bessel functions, which we derive here. Expanding eikx in a Fourier
series on the circle x = eiθ yields [13]

eikx =

∞∑
n=−∞

an(k)einθ with an(k) =

{
(ik)n

n! , n ≥ 0,
0, n < 0.

Substituting this series into formula (4) and using (59) gives a series for texp(k):

texp(k) = 2π

∞∑
n=1

(λn − n)
(−1)n|k|2n

(n!)2
= 4πα

∞∑
n=1

nr2n

1 − αr2n

(−1)n|k|2n
(n!)2

.(61)

Write (1 − αr2n)−1 =
∑∞

m=0(αr
2n)m so that

texp(k) = 4πα

∞∑
m=0

αm
∞∑

n=1

n(−1)n

(n!)2
(|k|rm+1)2n.(62)

Note that the Bessel function J1(t) = −J ′
0(t) = −(2/t)

∑∞
j=1 j(−1)j(j!)−2(t/2)2j .

Thus, with t = 2rm+1|k|,

texp(k) = −4πα|k|r
∞∑

m=0

(αr)mJ1(2r
m+1|k|).(63)

This formula gives an accurate way for computing texp numerically. Furthermore, we
can derive the asymptotic behavior of texp from (63).

For small z, J1(z) ∼ z/2. So using
∑∞

m=0(αr
2)m = 1/(1 − αr2) yields

texp(k) ∼ −4πα|k|2r
∞∑

m=0

αmr2m+1 =
−4πα(|k|r)2

1 − αr2
= O(|k|2) for small |k|.

For large |z|, we have J1(z) ∼ (2/(πz))1/2 cos(z − 3π/4) + e|Imz|O(1/|z|), and so

texp(k) ∼ −4πα|k|r
∞∑

m=0

(αr)m

√
1

πrm+1|k| cos

(
2rm+1|k| − 3π

4

)

for large |k|. After some simplification, this results in the asymptotic formula

texp(k) ∼ −4πα|k|1/2r1/2

√
π

∞∑
m=0

(α)mrm/2 cos

(
2rm+1|k| − 3π

4

)
= O(|k|1/2).(64)

Note that (64) shows the importance of truncation of texp: the solvability of the D-bar
equation is not proven for texp with asymptotic behavior (64).
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7.1. Calderón’s method for a simple radial conductivity. Let γ be of the
form (57). Note from [14], for example, that the Fourier transform of the characteristic
function χr is given by

F−1(χr)(k) = χ̌r(k) =
1

2π

∫
R2

χr(p)e
ik·pdp =

1

2π

∫ r

0

∫ 2π

0

ei|k|ρ cos(θ)ρdρdθ

=
1

2π

∞∑
j=0

(i|k|)j
j!

∫ r

0

ρj+1dρ

∫ 2π

0

cosj(θ)dθ

=

{∑∞
j=0

(i|k|)j
j!

rj+2

j+2
1·3·5···(j−1)

2·4·6···j , j even,

0, j odd

=
∞∑

m=0

(m + 1)(−1)m

((m + 1)!)2

(
r|k|
2

)2m
r2

2

= − 2

|k|2
∞∑

n=1

n(−1)n

(n!)2

(
r|k|
2

)2n

.

Thus, from (62),

texp(k) = −8π|k|2α
∞∑

m=0

αmχ̌rm+1(2k).(65)

For this simple case, we can substitute texp directly into (55) and compute ex-
plicitly without multiplying by the cut-off function η̂ (or, equivalently, take σ = ∞,
implying η̂ ≡ 1). Thus Calderón’s reconstruction γapp is given by

γapp(x) = 1 − 8

(2π)2

∫
R2

e−x(k)
texp(k)

|k|2 dk1dk2

= 1 +
4

π

∫
R2

e−x(k)α

∞∑
m=0

αmχ̌rm+1(2|k|)dk1dk2

= 1 + 2α

∞∑
m=0

αm 1

2π

∫
R2

e−i(x1w1−x2w2)χ̌rm+1(|w|)dw1dw2

= 1 + 2α

∞∑
m=0

αm 1

2π

∫
R2

e−ix·w̄χ̌rm+1(|w|)dw1dw2

= 1 + 2α

∞∑
m=0

αmF(χ̌rm+1(|s|))(66)

= 1 + 2α

∞∑
m=0

αmχrm+1(x).(67)

Note that (67) preserves the location of the jump in the actual conductivity distribu-
tion γ. Furthermore, elementary calculations show γapp(0) = σ; i.e., the correct value
of the conductivity is attained at x = 0.

Similar computations were done in [14] (see also [13]), where the starting point,
however, was the Neumann-to-Dirichlet (ND) map. They found the approximation

γ(x) ≈ 1 + 2α
∞∑

m=0

(−α)mχrm+1(x).(68)
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7.2. The D-bar method for a simple radial conductivity. The series (65)
can be used in the analysis of the truncated D-bar method. We have

γexp

R (x)1/2 ≡ μexp

R (x, 0) = 1 − 1

4π2

∫
R2

texp(k)

|k|2 e−x(k)χR(|k|)μexp
R (x, k)dk1dk2

= 1 +
2α

π

∞∑
m=0

αm

∫
R2

χ̌rm+1(2|k|)e−x(k)χR(|k|)μexp
R (x, k)dk1dk2

= 1 +
α

2π

∞∑
m=0

αm

∫
R2

χ̌rm+1(|w|)e−ix·wχR(2|w|)μexp
R

(
x,

w

2

)
dw1dw2

= 1 +
α

2π

∞∑
m=0

αm

∫
R2

χ̌rm+1(|s|)e−ix·sχR(2|s|)μexp
R

(
x,

s

2

)
ds1ds2

= 1 + α

∞∑
m=0

αmF
(
χ̌rm+1(| · |)χR(2·)μexp

R

(
x,

·
2

))
(x)

= 1 +
α

2π

∞∑
m=0

αm

(
χrm+1(·) ∗ F

(
χR(2·)μexp

R

(
x,

·
2

)))
(x).(69)

It is evident from this formula that a ringing effect will appear in the reconstruc-
tion, but the effect will be somewhat blurred by the convolution of the characteristic
functions with the Fourier transform of μexp.

8. Numerical experiments. In this section, numerical examples are computed
that offer intuition and illustrate the results of the previous sections.

8.1. Example conductivities. We consider discontinuous conductivities de-
fined by (57) with all nine possible combinations of the choices r ∈ {0.2, 0.55, 0.9}
and σ ∈ {1.1, 2, 8}. See Figure 8.2 for profiles of the conductivities.

Radially symmetric examples are chosen for their ease of computation and display
(it is sufficient to display profiles of the reconstructed conductivities and scattering
transforms, which are real-valued and radially symmetric for radially symmetric ex-
amples), as well as to illustrate the results of sections 6 and 7.1. However, all of our
computational methods apply equally well to nonsymmetric conductivities.

8.2. Results. The computed scattering transform is denoted by texp

R , where R
indicates the truncation radius. We compute texp

R from the Bessel-series formula (63)
with 10 terms in the expansion, which was verified to be in very good agreement with
computations of (61) with 45 eigenvalues. Figure 8.1 contains plots of the approximate
scattering transforms texp

R with constant multiples of
√

|k| superimposed to illustrate
the growth of texp(k) as demonstrated in (64).

Plots of the reconstructed conductivities are found in Figures 8.2, 8.3, 8.4, and
8.5. Figure 8.2 contains plots of the reconstructed conductivities from the approximate
scattering transform texp

R with truncation radius R = 15 for rows 1 and 2 and R = 12
for row 3. Figure 8.3 illustrates the dependence of the reconstructions γexp

R on R.
Profiles of the reconstructed discontinuous conductivities with contrast 0.1 and a jump
at |x| = 0.2, 0.55, and 0.9 are plotted for R = 4, 5, 6, 7, 8, and 15. The reconstructions
from Calderón’s linearization method are found in Figure 8.4. Finally, 2-D plots of
three conductivities are included in Figure 8.5.
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Fig. 8.1. Profiles of approximate scattering transforms texp (solid) for the discontinuous con-
ductivity distributions given by (57) with constant multiples of

√
|k| superimposed (dashed) to illus-

trate the growth of texp. The top row corresponds to σ = 1.1 in (57), the middle row to σ = 2.0,
and the bottom row to σ = 8.0. The first column corresponds to r = 0.2 in (57), the second column
to r = 0.55, and the third column to r = 0.9. Note that the vertical axis limits are the same in each
row of plots.

0.95

1

1.1

0.7

1

2

−1 0 1
0
1

8

−1 0 1 −1 0 1

Fig. 8.2. Actual (solid) and reconstructed (dashed) conductivity profiles γexp
R (R = 15 for the

first two rows, R = 12 for the last row) for the discontinuous examples. Note that the vertical axis
limits are the same in each row of plots.
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Fig. 8.3. The discontinuous conductivity distributions (dotted lines) with a jump of 0.1 at
|x| = 0.2 (top row), 0.55 (center row), and 0.9 (bottom row) reconstructed (solid line) from texp

R

with truncation radii R = 4, 5, 6, 7, 8, 15 (left to right). Note that the vertical axis limits are the
same in each row of plots.
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Fig. 8.4. Actual (dash-dotted) and reconstructed conductivity profiles for the discontinuous
examples. The dotted reconstructions are from Calderón’s linearization formula (68) from the ND
map, and the solid reconstructions are from Calderón’s linearization formula (67) from the DN map.
Note that the vertical axis limits are the same in each row of plots.

8.3. Discussion. From Figure 8.1, we see that the scattering transforms demon-
strate the expected asymptotic growth texp ∼ O(|k|1/2). The magnitude of the scat-
tering transform increases with the amplitude of γ, and texp becomes more oscillatory
as supp(γ − 1) increases. This implies that conductivity distributions with high con-
trast near the boundary should be particularly difficult to reconstruct, because such a
scattering transform is more sensitive to errors in ∂Λγ and more difficult to represent
on a discrete mesh.

We see from the corresponding reconstructions in Figure 8.2 that in all cases
the location of the jump is reconstructed equally well, but a loss in accuracy in the
amplitude becomes apparent as the contrast increases and as the support of γ −
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Fig. 8.5. Three discontinuous conductivity distributions (left) reconstructed (right) from texp
R

with truncation radius R = 15.

1 widens. This corresponds to the fact that the approximation ψ|∂Ω = eizk|∂Ω is
better the smaller the contrast and the smaller the support of γ − 1. We see that
the reconstructions tend to underestimate the actual amplitude of the conductivity
more markedly as the support of γ − 1 widens and as the magnitude of γ increases.
Also note that the reconstructions of the discontinuous conductivities are smooth,
as predicted by Proposition 3.5. In Figure 8.3, the nature of the dependence of the
smooth approximations on R can be observed. A Gibbs-type phenomenon is indeed
present, as suggested by formula (69). Also, the support of γ−1 is reconstructed with
reasonable accuracy even for very small truncation radii, while the general shape and
amplitude of γ is reconstructed with increasing accuracy as R increases. Thus, in
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practice one should choose R as large as possible before blow-up of texp is evident. In
[29, 24, 15, 16], R was chosen by inspection.

The reconstructions from Calderón’s linearization method are found in Figure
8.4. It is interesting to note that the linearized reconstruction from the DN map
(67) achieves a more accurate approximation to the amplitude of the conductivity
than the linearized reconstruction from the ND map (68). This result also holds
for conductivities whose jump is negative (0 < σ < 1) in |x| < r. Note that the
linearization formula (67) actually achieves the amplitude of the actual conductivity
(albeit only at a single point in some cases), while the D-bar reconstruction γexp does
not. This is presumably due to the damping effect of the convolution with the Fourier
transform of μexp in (69).

Finally, in Figure 8.5 we display three reconstructions in the typical 2-D display
mode for reconstructions from experimental data. This figure further illustrates the
ringing effect in the reconstructions of the discontinuous conductivities.
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[4] J. A. Barceló, T. Barceló, and A. Ruiz, Stability of the inverse conductivity problem in the
plane for less regular conductivities, J. Differential Equations, 173 (2001), pp. 231–270.

[5] L. Borcea, Electrical impedance tomography, Inverse Problems, 18 (2002), pp. 99–136.
[6] R. M. Brown and G. Uhlmann, Uniqueness in the inverse conductivity problem for nonsmooth

conductivities in two dimensions, Comm. Partial Differential Equations, 22 (1997), pp.
1009–1027.

[7] A. P. Calderón, On an inverse boundary value problem, in Seminar on Numerical Analysis
and its Applications to Continuum Physics, Sociedade Brasileira de Matemática, Rio de
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MODELING CYCLIC WAVES OF CIRCULATING T CELLS IN
AUTOIMMUNE DIABETES∗

JOSEPH M. MAHAFFY† AND LEAH EDELSTEIN-KESHET‡

Abstract. Type 1 diabetes (T1D) is an autoimmune disease in which immune cells, notably
T lymphocytes, target and kill the insulin-secreting pancreatic beta cells. Elevated blood-sugar levels
and full-blown diabetes result once a large enough fraction of these beta cells has been destroyed.
Recent investigation of T1D in animals, namely nonobese diabetic (NOD) mice, has revealed large
cyclic fluctuations in the levels of T cells circulating in the blood, weeks before the onset of dia-
betes [J. D. Trudeau, C. Kelly-Smith, C. B. Verchere, J. F. Elliott, J. P. Dutz, D. T. Finegood,
P. Santamaria, and R. Tan, J. Clin. Invest., 111 (2003), pp. 217–223], but the mechanism for these
oscillations is unclear. We here describe a mathematical model for the immune response that sug-
gests a possible explanation for the cyclic pattern of behavior. We show that cycles similar to those
observed experimentally can occur when activation of T cells is an increasing function of self-antigen
level, whereas the production of memory cells declines with that level. Our model extends previous
theoretical work on T-cell dynamics in T1D [A. F. M. Marée, P. Santamaria, and L. Edelstein-Keshet,
Int. Immunol., 18 (2006), pp. 1067–1077], and leads to interesting nonlinear dynamics, including
Hopf and homoclinic bifurcations in biologically reasonable regimes of parameters. The model leads
to the following explanation for cycles: High rates of beta-cell death, and corresponding elevation of
self-antigen, shut off memory-cell production, leading to a gap in the population of activated T cells.
Once peptide has been cleared by nonspecific mechanisms, the memory pool is renewed, and the
cyclic behavior results.

Key words. autoimmune diabetes, type 1 diabetes, CD8+ T cells, cycles, homoclinic bifurca-
tion, mathematical model
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1. Introduction. Type 1 diabetes (T1D) is an autoimmune disease in which
pancreatic beta cells are killed by the immune system, shutting off insulin secretion,
and resulting in elevated blood glucose. The disease affects young people, severely im-
pacting their health, and requiring perpetual insulin injection. Finding cures and/or
treatment to replace the beta cells (e.g., by transplanting islets from organ donors)
remains problematic, mainly because the damage is caused by the body’s own immune
system, which also attacks the transplant.

Studying autoimmune diabetes in humans presents ethical and clinical challenges.
Therefore, animals with diabetic tendency, including nonobese diabetic (NOD) mice,
are used to gain a basic scientific understanding of the disease. In NOD mice, T1D
arises when populations of immune cells called T cells become primed to specifically
target and kill beta cells. Such cytotoxic T cells belong to a class of lymphocytes
displaying a surface marker called CD8. (Hence, they are denoted CD8+ T cells.)
We first briefly describe the background immunology and then present the detailed
aspects specific to diabetes, the data on circulating T cells, and our model.
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1.1. Immunology primer. For an excellent survey of immunology, see [9].
T cells mature in the thymus, where those that cross-react with self-proteins are
normally eliminated to prevent autoimmunity. After this period of development, they
are released, circulate, and migrate to lymph nodes. In the lymph nodes, T cells in-
teract with antigen-presenting cells (APCs) that display stimuli, consisting of a small
fragment of antigen protein (i.e., a peptide of about nine amino acids in length) held
inside a cleft of a larger protein (named major histocompatibility complex, or MHC,
for historical reasons) [4]. The peptide-MHC complex (p-MHC for short) interacts
with specific receptors on the surface of the T cells (“T-cell receptors,” abbreviated
TCRs). The strength, duration, and number of such interactions experienced by a
given T cell determines its subsequent fate [24, 26, 15, 27, 21]. Within the right
range of affinity to and quantity of p-MHC encountered, T cells with the appropriate
specificity undergo activation, and the immune response is initiated.

Under normal conditions, APCs display antigens that are derived from foreign
proteins such as viral or bacterial coat proteins. Then appropriately specific T cells
are primed to form a large battalion of effector cells to combat the infection. Activated
T cells proliferate, undergoing about six cell divisions. Their daughters are mostly
effector cells (also called cytotoxic T lymphocytes, or CTLs), efficient and specific
killers that seek out and destroy targeted cells. These effector cells, though deadly,
are relatively short-lived [5]. A few daughters of activated T cells are memory cells
that retain the same specificity but have no immediate effect [8, 25]. However, when
the stimulus (e.g., the same foreign antigen) is encountered for a second time, memory
cells can be activated rapidly to mount a faster immune response.

In autoimmune diseases such as T1D, the antigen peptide derives from normal
proteins in the host. Infection or other injury can expose such proteins and initiate the
disease, but once in progress, successive killing of targeted cells, and consequent release
and exposure of more self-antigen, can sustain the inappropriate immune response. As
the immune system is a complex web of nonlinear interactions between cells, chemicals,
and tissues, rich dynamical behavior can be expected and indeed does occur. Our first
goal in this paper is to point out interesting immunological dynamics to an audience
of applied mathematicians. Our second goal is to present a plausible explanation of
the cycles in autoimmune diabetes observed by [23], based on an established set of
known and hypothesized interactions.

1.2. Autoimmunity in T1D. It has been shown that normal development of
NOD mice includes a wave of programmed cell death (apoptosis) of pancreatic beta
cells shortly after birth [18, 19]. In these same experiments, it was also determined
that clearance of the apoptotic cells (by macrophages, nonspecific cells of the innate
immune system) is reduced in NOD mice, leading to the conjecture that material
from these dead beta cells forms self-antigen that triggers the autoimmune response.
Previous modeling efforts have focused on such early initiation events [12, 13], but
here we are mainly concerned with later stages in which the adaptive immune system
is involved.

A number of proteins, including insulin, have been implicated as self-antigens
in T1D. Most recently, experimental collaborators in Calgary (in the laboratory
of P. Santamaria) have identified a new dominant self-antigen, IGRP (glucose-6-
phosphatase catalytic subunit-related protein), a protein of beta cells whose normal
function is yet to be determined. A fragment of this protein (consisting of amino acids
206–214) is the “peptide” to which most CD8+ T cells in T1D react [10]. The discov-
ery of this specific self-antigen in NOD mice followed years of experiments in which
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Fig. 1.1. Periodic waves of circulating T cells occur in mice prone to diabetes (NOD mice) in
the weeks before the onset of the disease. Data courtesy of the authors of [23]. Dark line, circles: T-
cell level. Grey line, squares: percentage of the animals that became diabetic. Our model accounts for
the cyclic waves but not for the period of initialization in weeks 0–5, the time when other processes
prime the adaptive immune system.

libraries of artificially synthesized peptides were used to identify and label T cells
[2, 1, 6]. Use of tetramer probes (constructed of four copies of peptide-MHC with a
fluorescent tag) allowed careful investigation of the levels and dynamics of these cells
by enhancing the ability to label cells that were previously undetectable.

Using such tetramer staining experiments, it was shown by Trudeau et al. [23]
that the level of autoreactive CD8+ T cells is detectable in the pancreatic islets in 4–5-
week-old NOD mice and at elevated levels by weeks 11–14. Correlated with this rise,
populations of T cells circulating in the blood are also noticeably elevated over weeks
4–16 of age, before the high blood-sugar symptoms of diabetes occur. Surprisingly,
the levels of these cells do not simply rise monotonically as the disease progresses but,
rather, undergo dramatic fluctuations over this time frame, as shown in Figure 1.1.

Not all NOD mice develop diabetes, but the presence of these cyclic T-cell waves
in a given animal predicts that it will become diabetic. Data for each one of the mice
were aligned at the time of onset of high blood-sugar symptoms, so that the time axis
could be “normalized” before combining and averaging. These pooled data show three
peaks in the level of T cells starting at about 8 weeks of age and declining from about
16 weeks. The amplitude of the cycles increases over this time, and a slight increase
in the period is also visible. The fact that Figure 1.1 was produced experimentally as
an average of data for many mice suggests that there is some robustness in the cycling
(as well as in its period) in NOD mice. These mice are all genetically identical, which
means that parameters typical of their physiological and immunological processes
are likely very similar (with some possible exceptions due to environmental effects).
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Fig. 2.1. Scheme of the model. Programmed cell death (apoptosis) of pancreatic (insulin-
producing) beta cells generates self-antigen peptide (p). In the pancreatic lymph nodes, this peptide
is presented as part of cell-surface complexes (peptide-MHC, or p-MHC) on APCs called dendritic
cells. The amount of p-MHC presented affects the activation and the differentiation of naive T cells
into memory cells (for self-renewal) and into effector cells (CTLs) that seek and kill beta cells.
This leads to more peptide exposure and results in positive feedback that eventually culminates in
autoimmunity and T1D.

Trudeau et al. speculated that each of these cycles represents “a round of proliferation
of autoreactive T cells undergoing avidity maturation” [23], but the details of the
underlying mechanism were not explored. This exploration is the subject of our paper.

2. Background for the model. Our main hypotheses stem from a recent model
by Marée, Santamaria, and Edelstein-Keshet [14] that addressed the dynamics of
T cells and peptide. In the latter paper, the focus was on artificial peptide used to
treat the disease in a therapy similar to vaccination. It was shown that the compe-
tition of T-cell clones during peptide treatment could explain some of the puzzling
dose-response behavior of the treatment and predict its success or failure. In their
discussion, Marée, Santamaria, and Edelstein-Keshet [14] speculated that the increase
in level of peptide antigen that results from beta-cell killing could be a feedback that
explains the periodic waves of T cells observed by [23]. However, this idea has not
yet been tested rigorously in a mathematical setting. We use some of the formalism
and lessons learned in that model to investigate cyclic dynamics seen in [23]. We will
show that an explanation for such dynamics is already inherent in the framework of
the model of [14], or slight variations thereof.

Figure 2.1 summarizes the essential ingredients of our model. As shown, the
process might be initiated by some injury or infection of beta cells, or by the normal
wave of programmed cell death (apoptosis), not shown. Fragments of apoptotic cells
are processed and presented as p-MHC on dendritic cells in the lymph nodes, and
naive T cells interact with these complexes. It is known that the level of peptide
presentation (i.e., amount of p-MHC) and the affinity of the T-cell receptors for the
peptide determine whether a T cell encountering the APC will become activated to
proliferate [4, 6, 16]. When naive T cells are activated, they proliferate to produce
about 60 effector cells and about 1–4 memory cells [8]. Memory cells have a low
turnover rate. They are able to undergo reactivation in response to antigen and to
proliferate again, replenishing the pool of T cells. By killing beta cells, the effector
T cells lead to a positive feedback on the amount of peptide produced and hence
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Fig. 2.2. Simplified model scheme showing the main variables considered: A,E, and M are the
number of activated, effector, and memory T cells. B denotes beta cells, and p is peptide. The two
peptide-dependent functions are the fraction of T cells activated, f1, and the fraction of memory
cells produced, f2. (The feedback from peptide to these has been omitted in the diagram for clarity.)
The † represents the killing of beta cells by effector T cells.

on further activation of T cells. The lifetime of the effector T cells is about 3 days
[5, 7, 22] versus about 100 days for memory cells.

The level of peptide influences two important aspects of the process described
above. First, the rate of activation of T cells depends on peptide level. Second, the
fraction of daughter cells that are memory cells versus those that are effector cells
is also peptide-dependent. Experimental evidence [11, 17] points to the fact that,
at high-peptide doses, too few memory cells are produced. (This is termed “clonal
exhaustion.”) Following [14], we assume that the fraction of naive and memory T cells
activated is given by a sigmoidal increasing function, f1(p), whereas the fraction, f2, of
daughter cells of activated T cells that become memory cells decreases sigmoidally as
peptide increases. We also chose f1 and f2 to be Hill functions, i.e., rational functions
with powers of degree > 1 (the degree is called the Hill coefficient; see section 3.2.)

In Figure 2.2, we show a simplified scheme, outlining our basic assumptions for
the model: A fraction f1 of incoming naive T cells becomes activated, (A); a fraction,
f2, of their offspring is memory cells, (M), and the rest, 1− f2, are effector cells, (E).
Memory cells can be reactivated (same peptide-dependent fraction, f1, as incoming
naive T cells). The effector cells cause the death of beta cells, (B), which, in turn,
creates the peptide, (p). The peptide level affects both f1 and f2.

3. The model.

3.1. Assumptions. The following assumptions enter the model:
1. We do not consider the distinct compartments of blood, pancreas, and lymph

nodes at this stage. Since the dynamics of interest take place over many weeks,
whereas the trafficking between these compartments takes place on the time
scale of hours, we approximate all variables as densities or concentrations in
a single, well-mixed compartment.

2. We do not model the pathogenesis of the disease over the first 4–5 weeks. At
this early stage, it is likely that the innate immune system (e.g., macrophages)
may set up conditions that eventually give rise to the priming of T cells. See
[13] for an analysis of that stage.

3. We assume that effector cells are terminal. (Some controversy exists about
whether they give rise to some memory cells.) We also investigated a model
in which memory cells are a progeny of effector cells and found essentially
similar results.
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4. We do not discuss the competition of many distinct “clones” of T cells for
sites on ACPs or for p-MHC [14]. We model only the development of one
dominant clone.

5. We assume that material from dead beta cells produces self-antigen peptide
at a linear rate and that this peptide is presented proportionally as p-MHC
on the dendritic cells. In [14], this p-MHC level was denoted mt and modeled
as a quantity in a quasi-steady state (QSS) with peptide and MHC molecules.
Here we simplify such details.

6. We assume that once beta cells are gone, the production of the autoantigen
ceases, and the immune response stops, since T-cell activation does not occur
in the absence of peptide.

3.2. Model equations. Our full model consists of the following set of ordinary
differential equations (ODEs):

dA

dt
= (σ + αM)f1(p) − (β + δA)A− εA2,(3.1)

dM

dt
= β2m1f2(p)A− f1(p)αM − δMM,(3.2)

dE

dt
= β2m2(1 − f2(p))A− δEE,(3.3)

dp

dt
= REB − δpp,(3.4)

dB

dt
= −κEB,(3.5)

where A(t),M(t), and E(t) are the population levels of activated, memory, and effector
T cells at time t, p(t) is the peptide level, and B(t) is the population of remaining
beta cells. For the peptide-dependent functions, we take Hill functions,

f1(p) =
pn

kn1 + pn
,(3.6)

f2(p) =
ak2

m

km2 + pm
,(3.7)

with m,n > 1. The parameters k1 > 0 and k2 > 0 in (3.6) and (3.7) denote typical
levels of peptide at which the response of these functions is half-maximal, and 0 <
a < 1 is the maximal value of f2(p). Note that f1(p) is monotonic increasing whereas
f2(p) is monotonic decreasing with p. In (3.1)–(3.3), all T cells represent members of
clones whose specificity to beta-cell peptide is high. In (3.1), σ is the rate that naive
T cells enter the circulation from the thymus. The fraction of incoming naive and
memory cells that become activated is governed by the peptide-dependent sigmoidal
function, f1(p) (α is a factor that represents the higher rate of activation of memory
cells relative to naive cells). The rate of decay of A, δA, is augmented by a term
for competition, εA2, as discussed in [14]. Activated cells progress to a differentiated
stage at rate β. They then proliferate by a series of cell doublings to produce 2m2 ≈ 60
effector cells and 2m1 ≈ 3–4 memory cells. The commitment to development into these
two types of daughter cells depends on peptide according to the decreasing sigmoidal
function f2(p). Effector cells are terminal and have a shorter half-life than memory
cells (δM < δE).
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Equation (3.4) depicts our simple assumption about production and clearance of
peptide: the level of “peptide,” p, is produced with mass-action kinetics when effector
cells kill beta cells (at rate R per effector per beta cell) and cleared with linear kinetics
at rate δp. Recall that clearance of dead beta cells and their fragments by macrophages
is defective in NOD mice [12, 18, 19], and this defect can theoretically lead to the
early chronic inflammation that initiates the priming of T cells [13]. Therefore, it is
of interest to ask whether this same defect can also account partly for the dynamics
of T cells at this later stage of the disease. We investigate this later.

We use the simplest possible model for decay of beta cells due to killing by effector
T cells in (3.5). The parameter κ denotes the rate of killing per effector cell. We ignore
the (limited) ability of beta cells to regenerate and the very slow aging and turnover
rate of beta cells in the healthy individual. Currently, the extent to which beta cells
can self-renew after immune attack is still under investigation, and this process is
likely to occur on a slow time scale. For this reason, we did not explicitly include this
in the model at this stage.

3.3. Model equations for a reduced QSS system. Our analysis begins with
a reduction of the full system of equations (3.1)–(3.5) to a simpler model using separa-
tion of time scales. First, we argue that the time scale of peptide dynamics—hours—
is faster than any of the time scales of cell dynamics—days and weeks—justifying
a QSS assumption on the peptide. Hence, we set dp/dt = 0 in the model, so that
p = (RB/δp)E.

The model then consists of (3.1), (3.2), (3.3), and (3.5). The functions f1, f2 now
depend on E and B via the QSS peptide expression. We refer to this as the reduced
QSS model. Our first step was to explore this model computationally. To do so, we
had to estimate parameters and consider appropriate scaling. Our steps and results
are described below.

3.4. Parameter estimates, scaling arguments, and computations. Based
on nonlinearities (in the functions f1, f2), the model consisting of (3.1)–(3.5) can
have a range of interesting behaviors. As we are interested in the possible biological
and medical applications of this model, it is essential to study its behavior within a
biologically reasonable range of parameter values. Almost all parameters in the model
were based on experimental information previously compiled by Marée, Santamaria,
and Edelstein-Keshet [14]. Some exceptions include parameters associated with beta-
cell killing and peptide production, as these were not considered in the previous
treatment. To avoid lengthy diversion into the details, we concentrate all details of
the parameter estimates in the appendices. The meanings, units, and values of the
parameters are presented in Table B.1. The level of cells of type A,E,M varies on a
range of several orders of magnitude. As we wanted to present these all on the same
plot, we scaled these population densities by the appropriate powers of ten. Scaling
arguments are also given in the appendices. We left the time variable in units of days
to emphasize the period and timing of the cycles that we obtained.

Simulations of the dynamics were carried out in MATLAB. Initial conditions
were chosen to depict some (preexisting) stimulus to the immune system stemming
from earlier stages of the disease (e.g., as speculated in [13]). Bifurcation diagrams
were composed with the AUTO feature of XPP, freely available software written by
G. Bard Ermentrout.1 Unless otherwise indicated, all simulations use the basic core
set of parameter values, as shown in Table B.1.

1www.math.pitt.edu/∼bard/xpp/xpp.html.
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4. Results. Starting any simulation with the healthy state as initial condition,
i.e., A = M = E = 0, B = 1 (and thus also p = 0), clearly results in continued
health, since this point is a steady state of the system. Moreover, the stability of this
equilibrium implies that even some (sufficiently small) perturbation rapidly returns
to this state. Hence to get any immune dynamics of interest in our model, the system
should be initiated with some T cells already “primed.” Typically, we start simulations
with A = 0.5,M = 0, and E = 1. This state ensures that effector cells are present to
lead to peptide production and that activated T cells are available to renew that pool
of effectors. Other initiation values are possible, depending on parameter settings
(discussed later). This prototypical set of values represents the outcome of earlier
events that our model is not describing (but see, e.g., [13] for a possible description.)

Not all NOD mice develop diabetes. Therefore, any model for this disease also has
to account for the fact that some initial stimuli will be resolved without full-blown au-
toimmunity. We first discuss this baseline control for the model. Running the reduced
QSS model from an initially “primed” state with default parameter values gives rise
to the behavior shown in Figure 4.1; that is, an initial elevated level of effector and
memory T cells is resolved, after some time, and the immune response ceases. This
corresponds to resolution of the immune attack with no autoimmunity even though
the immune system has been provoked to respond. The beta-cell population decreases
by 40% during the immune attack. Since our model does not address replenishment of
the beta cells by reproduction or stem-cell differentiation, the beta-cell mass remains
constant after this isolated immune response.
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Fig. 4.1. (color online). Simulation of the model for NOD mice that do not become diabetic.
Number of circulating cells (scaled) versus time (days). Dark blue: A (×103 cells), green: M
(×104 cells), red: E (×106 cells), light blue: B (fraction of beta-cell mass remaining). Simulation
uses default (“NOD”) parameter values given in Tables B.2 and B.1. For the initial conditions
A = 0,M = 0.5, E = 1, B = 1, the immune response is resolved without chronic disease or cyclic
waves.
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Fig. 4.2. (color online). Simulation of the model for NOD mice that do become diabetic (by
80–90 days of age). Default (“NOD”) parameter values and scaling are as in Figure 4.1 but with
initial conditions A = 0.5,M = 0, E = 1, B = 1 that evoke the elevated periodic immune response.
Dark blue: A, green: M , red: E, light blue: B. The disease progresses with cycles of T cells that
cause waves of beta-cell killing, as predicted by the model.

When the initial conditions include more elevated levels of activated T cells (with
all other parameters left as is), oscillations can appear, as shown in Figure 4.2. As
in Trudeau et al. [23], three peaks with increasing amplitude of effector T cells occur
over days 30–80 at the period of approximately 3–4 weeks, as in the experimental
data. This run is in close agreement with the data for mice that develop full-blown
diabetes, as shown in Figure 1.1.

We can understand intuitively how such cycles occur by reasoning as follows: In
our model, (3.5) leads to the decay of beta cells whenever effector cells are present.
Due to the assault on beta cells by the T cells (specified by our choice of initial
conditions), peptide level increases, T cells are activated, and effector cells are formed.
However, once peptide rises to a high level, memory-cell production is turned off (as f2

decreases with p). Thus, replenishment of activated T cells drops, and subsequently
E also declines and is not renewed. Once the effector cells decline, new peptide
is hardly produced. It is gradually cleared and eventually reaches a low level that is
then consistent with memory-cell production. This then stimulates production of new
activated T cells, and the cycle repeats. Periodic peaks and troughs continue until
beta cells are depleted, and then no more peptide is formed, and T cell activation
stops altogether. At this stage, since beta cells are gone, full-blown diabetes sets in,
and the immune response decays to its trivial equilibrium. This reasoning is plausible
but relies on an appropriate combination of parameters governing rates of depletion
and renewal of the various cell types.
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It is noteworthy that merely by increasing the rate of clearance of the peptide,
δp, we end the tendency of the system to cycle. We ran simulations with elevated
values of δp and found behavior similar to that of Figure 4.1 for much broader ranges
of initial conditions (results not shown). These results can be taken as indications
that in “control” mice whose peptide clearance rate is normal, immune response is
less likely to lead to prolonged cycling attack. These results are discussed in more
detail later.

5. Analysis of a reduced model with B as a parameter. To gain a clearer
understanding of the behavior described above, we reduce the four-dimensional model
simulated above further yet by considering the level of beta cells, B, to be a parameter.
The onset of diabetes in NOD mice requires about 16 weeks, at which time there are
very few remaining beta cells in the pancreas. This indicates that the variable B
in the full model acts more like a slowly varying parameter compared to the other
variables in the model. We therefore consider a reduction to three variables (A,M,E)
and analyze the model behavior. We then discuss how the gradual decrease of B
influences the dynamics of the whole system. The model to be analyzed now consists
of the three equations

dA

dt
= (σ + αM)f1(p) − (β + δA)A− εA2,(5.1)

dM

dt
= β2m1f2(p)A− f1(p)αM − δMM,(5.2)

dE

dt
= β2m2(1 − f2(p))A− δEE,(5.3)

together with (3.6) and (3.7) and the QSS peptide expression

p ≈ (RB/δp)E.(5.4)

This three-dimensional system of differential equations permits a more complete anal-
ysis.

5.1. Steady states and stability properties. The three-dimensional system
of differential equations given by (5.1)–(5.3) has several types of feedback. Peptide
level (and therefore effector cell level) leads to positive feedback on T-cell activation
via f1. Simultaneously, these levels produce negative feedback on the memory-cell
production via f2. When combined, these nonlinear feedbacks lead to the possibility of
multiple steady states, depending on the parameters. Numerical experiments suggest
that this mixed feedback system can have from one up to five equilibria.

In the biologically relevant regime of parameters (discussed in the appendices),
we find that there are three equilibria. One of these is clearly the trivial equilibrium
A = M = E = 0. This follows immediately from the fact that f1(0) = 0. This
equilibrium corresponds to a disease-free state and is easily shown to be a stable
node. The fact that the origin is an attractor means that a small disturbance that
provokes the immune system should be resolved, provided it is sufficiently weak.

There also exists a positive equilibrium that corresponds to a state of elevated
immune cell levels. In that state, effector T cells are continuously killing beta cells,
and this corresponds to an autoimmune attack that eventually leads to diabetes. This
equilibrium has various stability properties that depend on the parameters. We discuss
this in more detail below. A third equilibrium is a saddle with a two-dimensional
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stable manifold, which for some parameters separates the “healthy” and diseased
equilibria. For these parameters, stimuli that fall on the wrong side of this separatrix
will be attracted to the diseased equilibrium. For other parameter values, the unstable
manifold of the diseased state connects to the stable manifold of the saddle point. In
this case, almost all positive initial conditions asymptotically approach the “healthy”
state.

As a specific example of the local analysis, we considered the system of equations
(5.1)–(5.3) with the parameters given in Table B.1 and B = 1. Due to the nonlin-
earities in the functions f1 and f2, it is not possible to solve explicitly for equilibria.
Therefore, we determined steady states, eigenvalues, and eigenvectors numerically
using the software program Maple. We found the following results: The disease-
free equilibrium, (Ā0, M̄0, Ē0) = (0, 0, 0), is a stable node with the three eigenvalues
λ = −1,−0.3,−0.01. A saddle node at (Ās, M̄s, Ēs) = (0.0116, 0.696, 0.00116) has
a two-dimensional stable manifold (eigenvalues λ1 = −1.52, λ2 = −0.0188 and as-
sociated eigenvectors v1 = [1, 0.495, 0.0245], v2 = [1,−68.5, 0.107]) and an unstable
manifold (eigenvalue λ3 = 0.210 with eigenvector v3 = [1, 2.62, 0.0589]). Finally, the
diseased equilibrium, (Ād, M̄d, Ēd) = (0.119, 0.0141, 0.0356), has a stable manifold
(with eigenvalue λ1 = −2.37 and associated eigenvector v1 = [1,−0.108,−0.0414]). It
also has a two-dimensional unstable manifold (eigenvalues λ = 0.0129 ± 0.553i) that
spirals outward toward a limit cycle. From this local analysis, we could see that at
each equilibrium, one eigenvalue is significantly more negative than the others. This
suggests that there is a globally attracting two-dimensional manifold containing the
three equilibria, where the interesting dynamic behavior occurs.

5.2. Bifurcations. We first discuss bifurcations with respect to a relevant pa-
rameter and later assemble the sequence of dynamical behaviors in Figure 6.2. In the
model given by (5.1)–(5.3), we have assumed that the destruction of beta cells occurs
on a slow time scale. Thus, the level of beta cells, B, makes a natural bifurcation
parameter to consider. At the beginning of our simulations, we normalize B = 1 and
set δp = 1. By the QSS assumption for peptide, a gradual loss of beta cells in this
model variant is dynamically equivalent to a gradual increase in the peptide clearance
rate δp. (Both parameter variations essentially describe the decreasing QSS value,
p = (RB/δp)E.) We explored this parameter variation using the AUTO option of the
software XPP. Figure 5.1 shows the result obtained thereby.

The diagram given in Figure 5.1(a) shows the basic bifurcation behavior of the
model (and uses the default parameter values given in Tables B.2 and B.1). Moving
across this diagram from left to right along the horizontal axis represents increasing
values of the peptide decay rate δp or, equivalently, a decreasing level of beta cells,
B. Close to the leftmost edge (high B, or low peptide clearance rate), we find a
stable diseased state (solid line with shallow slope). The “healthy” state, also stable,
and the saddle node are not indicated in the diagram. Moving towards the right
leads to a supercritical Hopf bifurcation at a15 = δp = 0.571, spawning a stable
limit cycle. Here we enter the regime of cyclic behavior evidenced in Figure 4.2.
The diseased equilibrium is then an unstable spiral, as predicted by the local analysis
described above. The limit cycle persists, and its amplitude increases as the parameter
increases (respectively, as the beta-cell level decreases) up to a homoclinic bifurcation
at δp = 2.268 (equivalently at B = 0.441, i.e., when only about 44% of beta-cell mass
remains). As seen in our runs and in the upper branch of this bifurcation line on
the zoomed out diagram of Figure 5.1(b), AUTO has difficulty resolving this global
bifurcation. We discuss the nature of this dynamical shift later.
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(a) (b)

Fig. 5.1. Bifurcation diagram for the peptide decay rate, a15 = δp, with all other parameters
set at their default values, as in Tables B.2 and B.1. The vertical axis is A in units of 103 cells.
(a) A portion of the diagram, enlarged, showing the typical bifurcation: a Hopf bifurcation occurs
at a15 = 0.5707, spawning a stable limit cycle. A homoclinic bifurcation occurs at a15 = 2.268.
(b) Further bifurcations on an expanded scale: another Hopf bifurcation (to an unstable limit cycle)
occurs at a15 = 4.063. This limit cycle vanishes at a15 = 20.28.

Following the homoclinic bifurcation, the diseased state remains unstable, and
the origin is the only global attractor for some range of the bifurcation parame-
ter. Interpreting this bifurcation diagram in terms of normal and reduced levels of
(peptide) clearance rates (by control versus NOD macrophages) suggests why the
clearance defect itself could make the difference between healthy (control) mice ver-
sus diabetes-prone (NOD) mice: for example, as seen in Figure 5.1(a), a “control”
peptide clearance rate of δp = 3 per day leads to dynamics that always resolve any
initial stimulus (returning to the baseline where no immune cells persist, since the
limit cycle does not occur, and the disease state is unstable), whereas a factor of two
decrease to δp = 1.5 per day (representing reduced clearance in NOD mice) puts the
same system into the regime of cyclic T-cell waves and autoimmunity.

Reinterpreting this diagram in terms of the gradual decrease of beta-cell mass
(from left to right starting from B = 1) explains the following features shared by the
data of Figure 1.1 and the simulation of Figure 4.2: (1) the increase in the amplitude
of the cycles, (2) the fact that the cyclic behavior stops abruptly (e.g., around days
80–90 in the simulation of Figure 4.2) when the homoclinic bifurcation occurs, and
(3) the slight lengthening of the period just before this transition. It also explains
why (4) the immune cells then decay to the baseline state A = M = E = 0. Thus,
the bifurcation diagram can help to provide a plausible scenario for a mechanism
underlying these dynamics.

As previously noted, immunological systems present a menagerie of curious dy-
namical behaviors that can be an enticing invitation to the applied mathematician.
As our model is nonlinear, other interesting behavior is to be anticipated. In Fig-
ure 5.1(b), we show an expanded scale, with much higher values of the peptide
turnover parameter. As seen here, at δp = 4.063 per day, a second subcritical Hopf
bifurcation takes place. Thus, for a range of values of 4.063 < δp < 20.28 per day,
the diseased state becomes (locally) stable once more, with a domain of attraction
bounded by an unstable limit cycle. All solutions inside this domain will evolve to-
wards the diseased state, whereas outside this domain of attraction, solutions eventu-
ally lead to the origin. Aside from purely mathematical interest, this diagram suggests
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that there are as yet other unexplored behaviors in this and other immunological mod-
els. On one hand, biologically, this result could be interpreted to mean that increased
removal of peptide is not always advantageous (since it can reinstate the stability of
the diseased state). On the other hand, the dynamics shown in this expanded param-
eter regime might be more of a mathematical curiosity than a result that is directly
relevant to diabetes in NOD mice.

We investigated a number of other parameter variations and bifurcations (dia-
grams omitted), starting from the default parameter set. For example, we varied
the parameter a = a4 < 1 of the function f2. This parameter specifies the maximal
fraction of memory cells produced (when p = 0). We found that decreasing a from 1
leads to the homoclinic bifurcation at a = 0.45. Similarly, for the T-cell competition
parameter, the range 0 ≤ ε ≤ 2.17 lies within the stable limit cycle regime. A Hopf
bifurcation occurs at ε = 2.173, leading to stability of the diseased state. No homo-
clinic bifurcation was obtained by varying this parameter. Finally, changing k2, the
peptide level that corresponds to the half-maximal value of f2, gave a stable diseased
state when k2 = 2, a Hopf bifurcation at k2 = 1.112, and a homoclinic bifurcation
when k2 = 0.825. Due to space constraints, these bifurcation diagrams are not shown.

6. Geometry of the solutions. Figure 6.1 shows two stereograms of the three-
dimensional AME system in the regime of parameters consistent with the stability
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Fig. 6.1. (color online). Two stereograms showing in (a) and (b) the limit cycle and location of
the saddle point (marked ◦) and in (c) and (d) the limit cycle and its unstable diseased equilibrium
(denoted by ∗). Both diagrams were made for the basic model with default parameter values but with
beta-cell mass treated as a (constant) parameter.
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of the limit cycle oscillations. In (a) and (b), we show the position of the saddle
node (close to the M -axis) with unstable manifolds in green and red. One branch of
the unstable manifold (in red) flows towards the stable disease-free state, while the
other branch (in green) spirals towards the limit cycle about the disease state. (The
two-dimensional stable manifold is not indicated in this figure.) The limit cycle and
two trajectories attracted to it are also shown. In (c) and (d), a zoomed-in view of
the limit cycle is shown. The location of the (unstable spiral equilibrium) diseased
state is indicated by a small star.

Figure 6.2(a)–(d) shows a sequence of diagrams that illustrates the bifurcations
and dynamics described in the previous section. We show two-dimensional “cartoons”
that give the overall picture (although our AME system is three-dimensional), since
it is difficult to numerically simulate the precise parameter set that leads to the
homoclinic connection and equally challenging to represent all stable and unstable
manifolds in a three-dimensional plot. As shown in this figure, the origin (heavy dot
labeled H for “healthy”) retains its stability and is a local attractor in all cases, but
its basin of attraction can vary greatly. In (a) and (b), a separatrix (one branch of
the stable manifold of the saddle node S) defines the boundary between those states
attracted to H and others that remain in the positive orthant. In (a), these other
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Fig. 6.2. This sequence of four sketches illustrates the essential geometry of the dynamics
and bifurcations. H: “healthy” state in which there are no circulating immune cells, D: diseased
equilibrium; S: saddle node, L: stable limit cycle. Heavy dots indicate stable equilibria, and open
dots indicate unstable ones. In (a), an unstable manifold of S winds into the stable spiral at D. In
(b), just past a Hopf bifurcation, there is a stable limit cycle to which this manifold is attracted.
(c) represents the homoclinic bifurcation. In (d), the unstable manifold of S makes a detour past
the unstable D, ending at H. The state H is always stable. However, the boundary of its basin of
attraction is formed by the stable manifold of S. In (d), every initial condition will eventually evolve
towards the origin.
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points are attracted to the stable diseased state (heavy dot at D), whereas in (b),
past a Hopf bifurcation, the limit cycle is attracting. A homoclinic connection (which
exists for one specific set of values of the parameters) is illustrated in (c). In (d), states
close to the unstable point D may take an “excursion” towards S but eventually arrive
at H. In this case, all solutions of (5.1)–(5.3), except for a set of measure zero (on
the stable manifold of the saddle node), would eventually converge to the disease-free
state (Ā, M̄ , Ē) = (0, 0, 0).

7. Parameter sensitivity. The hallmark of autoimmune diabetes in NOD mice
is that many small perturbations and treatments can “cure” the disease, delay its
onset, or prevent it from occurring. Thus, the actual (biological) system is sensitive
to relatively small changes in essential parameters of the system. In order to explore
the sensitivity of the model, we tested how increases and decreases in each of the
parameters in (3.1)–(3.5) affect the dynamics. We used the values of parameters that
generated Figure 4.2 as a basic set and varied each in turn by 10% up and down. The
results are shown in Table B.2.

Recall that the original parameter set is consistent with a stable limit cycle for
B = 1. In Table B.2, we note whether the dynamics obtained by a given parameter
change has moved the system in the direction of the homoclinic (→) or the Hopf
bifurcation (←) or, in some cases, beyond those bifurcations. (Arrows are indications
of shifts along the type of bifurcation shown in Figure 5.1(a).) We also indicate
the number of peaks observed between t = 0 and the time at which the homoclinic
bifurcation occurs. It can be seen that changing some parameters (e.g., n,m, k2, k1

of the peptide-dependent response functions f1, f2) has a large effect on the number
of cycles that occur, increasing the number of peaks up to 9–10. These parameters
control the location of the “activation switch” and the switch in commitment to
memory versus effector cells with respect to peptide level. The parameter β and the
number of memory cells produced, 2m1 , also has a dramatic effect on the behavior.
Other variations, e.g., δM , a, ε, have a very minor effect.

It is interesting to note that certain slight parameter shifts place the system
beyond the homoclinic bifurcation, leading to global stability of the origin (as in
Figure 6.2(d)). This includes a 10% decrease in the rate of memory-cell reactivation,
α, or memory-cell production, a, or a 10% increase in the peptide clearance rate,
δp, or the effector T cell death rate, δE (entries in Table B.2 marked with S, →).
Making these adjustments takes the system out of the cyclic regime and restores
global stability of the “healthy” state at the origin.

Here we venture to speculate on implications to the disease itself and possible
treatments. One can envision medical interventions that are designed to affect one or
another of the parameters mentioned above in patients with a known genetic tendency
to autoimmunity. If any of these parameter change(s) could be made before beta-cell
mass is destroyed, the immune attack could be resolved or prevented. Alternately,
if cycles of circulating T cells are observed, treatments could be applied to knock
the system out of its destructive cyclic regime, back to the baseline state. The most
effective treatment would be one that targets any of the more sensitive parameters
in our model. Because our model is fairly simplistic, it is premature to draw firm
conclusions about optimal therapeutic strategies. However, studying parameter sen-
sitivity and bifurcations of more detailed and more realistic models for this disease
(or other autoimmune disorders) could possibly lead to new therapeutic strategies.
Clearly, in the context of a mathematical model, one can also identify and possibly
avoid unforeseen complications (e.g., the unstable limit cycle regime in Figure 5.1(b),
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where the disease state regains stability in another range of the parameter(s)).

8. Other variants of the model. We considered several variants of the model
that incorporated other features or relaxed certain assumptions. First, we considered
a model in which memory cells are offspring (rather than sisters) of effector cells.
(In that model, a function like f2 represented the probability that an effector cell
differentiates into a memory cell.) Similar behavior was obtained in a narrower range
of parameters. As this scheme of differentiation is less widely accepted, here we omit
the details.

The immune response has several inherent delays. After beta cells die, it takes
around 8 hours to 1 day for their fragments to be collected, transported to the pan-
creatic lymph node, processed, and presented by APCs. Once T cells are activated, it
take a further 2–3 days for proliferation and production of effector cells. This means
that an immune response can take 4–6 days from the time of stimulus. We explored
some of the effects of delay in the system by investigating variants of the model that
had one or two delays. We found similar dynamics within a slightly shifted set of
parameter regimes. Results were similar to figures previously displayed and here are
omitted.

We briefly explored competition of various T-cell clones to determine how compe-
tition between different peptide-dependent cells could affect the dynamics. We found
that similar clones tend to cycle together and that competition was not a major force
in the cyclic dynamics. The details are omitted.

9. Experimental tests of the model. This model has been informed by pre-
vious theory [13, 14], supplemented by experimental observations. In turn, it suggests
new experiments that can be used to verify or refute its conclusions.

First, the model predicts a specific sequence of events, with peaks in memory cells
preceding peaks in activated T cells and preceding peaks in effector cells (as shown in
Figure 4.2). Further, the model predicts that during these cycles, one should be able
to observe cycles of apoptotic beta cells in the pancreas (since killing by effector cells
occurs via apoptosis). If the presence or sequence of cell types follows some other
trend, our model would have to be revised.

Second, the model predicts outcomes of specific interventions. For example, once
NOD T-cell cycles are observed, poisoning some fraction of their macrophages by
administering silica, a known poison for such cells (i.e., reducing the innate ability to
clear dead beta-cell material and hence reducing δp) should decrease the amplitude
of the cycles as well as the period of the cycles (see parameter sensitivity, Table B.2).
A dose response of this “macrophage poison” versus dynamical behavior would show
successively decreased cycle amplitude (see also Figure 5.1(a) for the dependence of
cycle amplitude on a15 = δp). Alternately, treatments that enhance macrophage
clearance of apoptotic material (if possible) could, at sufficient dose, stop the cycles
and retard the development of the disease. A number of similar interventions are
predicted by parameter sensitivity. While we cannot expect that we have captured all
NOD parameters accurately in this preliminary model, general trends “towards” or
“away from” the Hopf or homoclinic bifurcation predicted by the various changes in
basic parameters should be indicative of the accuracy or fallibility of the assumptions
on which the model is based. Some (but not all of these) are experimentally feasible.
Future work with experimental colleagues will address such issues in an experimental
setting.
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10. Discussion. Our main conclusion in this paper is that cyclic dynamics can
arise spontaneously in the immune response leading up to T1D, at least under con-
ditions typical of the susceptible (NOD) mice. This fact was conjectured in [14] as
a possible outcome of the interplay between the effector T cells killing the insulin-
producing beta cells and the feedback from self-antigen produced when those cells are
killed. We confirmed this conclusion by extending the model in [14] to include the
death of beta cells and the accumulation of the antigen that results. Our cyclic dy-
namics (Figure 4.2) are similar to the experimentally observed cycles (Figure 1.1) in
three important ways: (1) it shows cycles of increasing amplitudes; (2) the interpeak
time length increases slightly; and (3) the cycles stop, and the levels of T cells drop
around 16–18 weeks. (At this point, the mouse becomes diabetic in the experimental
system.) This behavior was obtained in a regime of parameters that is based mainly
on values assembled from the experimental literature in [14].

We showed that one explanation for these oscillations, illustrated by our model,
is as follows: beta-cell killing produces large quantities of self-antigen peptide, ex-
panding the population of effector cells at the expense of memory cells. This creates
a gap in self-renewal of the T cells that leads to a pause in their reproduction and
reduced effector levels for killing. After a suitable interval, when peptide is cleared,
the memory-cell production is reinstated, and the cycle begins once more. The grad-
ual loss of beta-cell mass limits the number of cycles that can occur (to three in
the case of NOD mice). The cyclic dynamics are found for a wide range of param-
eter values, provided the peptide-dependent functions that control T-cell activation,
f1, and memory-cell production, f2, ramp up (respectively, down) as peptide level
increases. Since the immune system is highly complex, with many feedbacks be-
tween cells, chemicals, and tissues, it is possible that other explanations for cycles
can be equally compelling. For example, recent work by an experimental collaborator
(P. Santamaria, U. Calgary) has focused on the role of regulatory T cells and their
cytokine IL-2. Positive and negative feedback that is emerging in these experimental
investigations will provide future opportunities for modeling and analysis using the
tools of nonlinear dynamics.

The main contribution of our study is to explain the mechanism underlying the
observed cycles by studying the nonlinear dynamics of the extended model and uncov-
ering its bifurcations. This aspect of our work is particularly apt for readers of SIAM,
some of whom may not yet be aware of rich dynamics in immunology. We showed
that all three of the observations listed above can be explained as the gradual shift
of a parameter (the mass of beta cells remaining) during the course of the immune
attack by effector T cells. This gradual shift moves the system from a regime in which
there is a stable limit cycle towards a homoclinic bifurcation. The amplitude of the
limit cycle expands very quickly just before this bifurcation, and its period increases
(theoretically up to infinity) at the homoclinic connection itself. Beyond that, all
points are attracted towards the origin; i.e., the levels of T cells drop.

We found that the number of peaks that occur in the model shifts when certain
parameters are changed (by 10%). The most sensitive parameters are those appearing
in the functions f1 and f2, but it is unlikely that these are easy to manipulate in
an experimental system. As our model is the simplest possible variant of [14] that
produces cycles, this sensitivity to parameters may be a price paid for omitting other
regulatory features of the immune system. On the other hand, the sensitivity to
parameters also suggests numerous experimental tests of our predictions that could,
in principle, validate or falsify the model. Such tests will be under consideration in
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future work on this problem. In the original model of [14], competition between various
clones of T cells for sites on APCs was considered as an important determinant of
dynamics. Here, in preliminary investigations of competition of two clones, we found
that clones tended to cycle synchronously. Future work will also address the effect of
competition in greater detail.

Our model did not address any of the spatial or compartmental aspects of the
immune response. For example, we also did not consider the details of trafficking of
T cells between blood, lymph nodes, and tissue. Some of the detailed movement and
interactions of T cells with dendritic cells in lymph nodes is currently being modeled
in conjunction with experimental observations by the group of R. J. de Boer and
A. F. M. Marée (Utrecht, The Netherlands). These insights will inform future models
in immunology, including extended models of autoimmune diabetes.

Finally, our model suggests that there are two distinct outcomes in an autoim-
mune attack typical of T1D: (1) The immune attack clearly subsides once the beta
cells have been depleted, but here the outcome is full-blown diabetes. This explains
observations in NOD mice, but, therapeutically, it is an outcome to be prevented.
(2) More intriguing, any parameter change that shifts the system beyond its homo-
clinic bifurcation would also end the immune attack. This can happen through the
process of “clonal exhaustion”; i.e, so much peptide is presented that memory-cell pro-
duction is turned off completely. It could also happen through arrest of activation,
where so little peptide is presented that T cells no longer become activated. In either
case, if this happens before a significant fraction of the beta cells have been killed,
it could provide a “cure” that resolves the autoimmunity without diabetes. Here we
have hinted at several parameters that could have precisely this type of effect. This
suggests that studying more detailed and hence more realistic variants of this model
could indicate possible therapeutic strategies by highlighting which parameters give
promising leads for medical targets.

Appendix A. Estimation of parameter values. We explain our procedure
for estimating parameters below and summarize the values we used in Table B.1.

A.1. Cell turnover rates. The death rate of memory cells is estimated as δM =
0.01 day−1 versus δE = 0.3 day−1 for effector cells. We here assumed that activated
cells have a relatively low death rate, as most are converted into differentiated cells.
Consequently, we assumed that δA ≈ 0.02 day−1.

A.2. Cell-division rates and numbers. We approximated an 8-hour cell cycle
for the immune cells and thereby obtained β ≈ 1–6 day−1. The number of memory
and effector cells produced per activated T cell is 0–8 versus 60, respectively, according
to [14], leading to values for the factors 2mi .

A.3. Circulating cell levels. According to [14], around 1–10 naive T cells
produced by the thymus per day will have the correct specificity. Consequently, σ ≈
1–10 cells day−1. To then determine the competition parameter, ε, we first considered
the possibility of a QSS for activated T cells of the form σ−δAA−εA2 = 0. We found
that this cannot be a correct approximation, because the reactivation of memory cells
plays a much greater role in sustaining the level of A than the (limited) entry of new
naive T cells from the thymus.

In our subsequent approach, we approximated M ≈ (β2m1f2/δM )A ≈ 104 circu-
lating memory cells and E ≈ (β2m2(1−f2)/δE)A ≈ 106 circulating effector cells. The
first of these implies that βf2A ≈ 10, whereas the second implies that β(1 − f2)A ≈
5 × 103. These approximations lead to f2 ≈ 0.002, and A ≈ 1 − 3 × 103.
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Now considering the situation at a high-peptide level, near the peak of activated
T-cell levels, we have dA/dt ≈ 0, i.e., σ + αMf1 − (β + δA)A − εA2 ≈ 0. The
relative magnitudes of terms in this equation are as follows: σ is very small and can
be neglected in the high-peptide scenario. If α ≈ 1 − 5 day−1 (which means that
on average, a memory cell takes a few hours to be reactivated), and f1 ≈ 1 at high
peptide, then αMf1 ≈ 1−5×104. From the above estimates, (β+δA)A ≈ βA ≈ 5×103

is of lower order, and A2 ≈ 1 − 4 × 106. The balance is mainly between the terms
αMf1 and εA2. We can use these figures to estimate the size of the competition
parameter, ε, from

ε ≈ αMf1

A2
≈ 1 − 5 × 104

1 − 4 × 106
≈ 1 − 5 × 10−2.

The units of ε are day−1cell−1.

A.4. Peptide and beta-cell levels. Because peptide level is not directly ob-
served experimentally, its level in the model is on a relative, rather than absolute,
scale. The important relation is the relative magnitude of k1, k2, the parameters that
represent the level of peptide at which memory-cell production falls off and T-cell
activation turns on, respectively. We arbitrarily chose k2 = 1 and k1 = 2. This means
that a reasonable scale of peptide level is 0–10 “peptide units.” Since peptide time
scale is fast, and the peptide variable is assumed to be on QSS, only the ratio of the
turnover rate, δp, and the production rate, R, of the peptide influence the dynamics.
Based on the estimated levels of circulating effector T cells, we used R ≈ 10−5 per
cell per day and δp = 1 per day to give the QSS value of peptide in the range of 0–10.
We also use a relative scale for the level of remaining beta cells; i.e., B represents the
fraction of beta cells still remaining, and so 0 ≤ B ≤ 1.

The removal of peptide by macrophages, by diffusion, and by other influences is
assumed to be in the range of δp ≈ 1day−1. When effector cell levels are high, E ≈ 106

cells, this leads to the approximation p ≈ 10 ≈ RBE/δ4 ≈ R× 106. This leads to an
estimate R ≈ 10−5 peptide units day−1cell−1.

A.5. Typical values of variables. The results of above ballpark estimates lead
to the following ranges of the variables concerned:

A ≈ 1 − 2 × 103, M ≈ 1 − 5 × 104, E ≈ 1 − 6 × 106, p ≈ 1 − 10, B ≈ 1.

The populations of the three types of T cells differ by many orders of magnitude. We
therefore scaled each variable in terms of some power of 10 for convenient graphics.
The scaling considerations are discussed in the next section.

Appendix B. Scaling the equations. Let A = A∗Ā, M = M∗M̄, E = E∗Ē,
etc., where stars denote numerical values and overbars denote quantities carrying
units. We keep time in units of days; i.e., time is not scaled. Equations (3.1)–(3.7)
can be rewritten as follows:

dA∗

dt
=

(
σ

Ā
+

(
αM̄

Ā

)
M∗

)
f1(p) − (β + δA)A∗ − (εĀ)(A∗)2,(B.1)

dM∗

dt
=

(
β2m1

Ā

M̄

)
f2(p)A

∗ − f1(p)αM
∗ − δMM∗,(B.2)

dE∗

dt
=

(
β2m2

Ā

Ē

)
(1 − f2(p))A

∗ − δEE
∗,(B.3)
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dB∗

dt
= −(κĒ)E∗B∗,(B.4)

QSS : p =

(
RĒB̄

δp

)
E∗B∗.(B.5)

Since peptide is already in arbitrary units, we did not rescale the peptide or
the functions f1, f2. Dropping the *’s, we thus obtained a new system of (scaled)
equations,

dA

dt
= (a6 + a7M) f1(p) − a8A− a9A

2,(B.6)

dM

dt
= a10f2(p)A− f1(p)a7a16M − a11M,(B.7)

dE

dt
= a12(1 − f2(p))A− a13E,(B.8)

dB

dt
= −a17EB,(B.9)

QSS : p = (a14/a15)EB,(B.10)

where the new parameters so defined are as follows:

Table B.1

Default “NOD mouse” parameter values used to simulate the model. See Appendix A for a
description of how these values were estimated.

Par. Meaning Default value Units Ref.

σ influx naive T cells from thymus 1–10 cell day−1 [3, 14]
α rate of production of A per M 1–5 day−1 estimated
β rate of cell division 1–6 day−1 typical
δA death rate, activated T cells ≈0.01 day−1 [22, 7]
δM death rate, memory T cells ≈0.01 day−1 [22, 7, 14]
δE death rate, effector T cells 0.3 day−1 [5, 14]
δp peptide turnover rate 0-1 day−1 estimated
ε T-cell competition parameter 1 − 5 × 10−2 (cell day)−1 estimated

k1 peptide level for 1
2

max activation 2 peptide units arbitrary

k2 peptide level for 1
2

max memory cells 1 peptide units arbitrary

m Hill coeff. for memory-cell production 2 - [14]
n Hill coeff. for T cell activation 3 - [14]

2m1 maximum number of memory cells pro-
duced per proliferating T cell

8 - [27, 20, 25]

2m2 number of effector cells produced per pro-
liferating T cell

60 - [20, 25]

a maximal fraction of memory cells pro-
duced

< 1 - fitted

R peptide accumulation rate 10−5 day−1cell−1 estimated
κ beta-cell killing per effector T cell 0.14×10−6 day−1cell−1 fitted
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Table B.2

Parameter sensitivity. The default value of each (scaled) parameter is shown, and the effect of
a 10% increase and decrease is recorded. (See Appendix C for the definition of scaled parameters.)
Original parameter values produce a stable limit cycle (i.e., dynamics between the Hopf and the
homoclinic bifurcations). → denotes a shift towards the homoclinic bifurcation, ← denotes a shift
towards the Hopf bifurcation, or even beyond it, i.e., toward the stable steady state. S denotes the
return to healthy state, and P signifies how many peaks (cycles) are seen before the homoclinic
bifurcation occurs. NC means little or no change.

Scaled Original Default Increase Decrease
parameter parameter value +10% −10%

a1 n 2 S,→ 10P, ←
a2 k1 2 S, → 10P, ←
a3 m 3 S, → 9P, ←
a4 a 0.7 NC, 3P S, →
a5 k2 1 9P← S, →
a6 σ 0.02 4P← S, →
a7 α 20 7P← S, →
a8 β + δA 1 S→ 9P, ←
a9 ε 1 NC, 3P NC, 3P
a10 β2m1 1 8P← S, →
a11 δM 0.01 NC, 3P NC,3P
a12 β2m2 0.1 4P← S, →
a13 δE 0.3 S→ 7P, ←
a14 R 50 4P← S, →
a15 δp 1 S, → 4P, ←
a16 scale 0.1 S, → 5P, ←
a17 κ 0.14 1P, → 4P, ←

a6 =
σ

Ā
, a7 =

αM̄

Ā
, a8 = β + δA, a9 = εĀ,

a10 = β2m1
Ā

M̄
, a11 = δM , a16 =

Ā

M̄
,

a12 = β2m2
Ā

Ē
, a13 = δE , a17 = κĒ, a14 = RĒB̄, a15 = δp.

The original variables, A,M,E, differ by six orders of magnitude. We therefore
selected a scaling of the main variables in various powers of 10, so as to display all
results on a common coordinate system within the range of 1–10 units. To do so, we
scaled variables by selecting the following reference scales:

Ā = 103, M̄ = 104, Ē = 106, p̄ = 10, B̄ = 1.

Appendix C. XPP code. Below is a typical file used for figures in this paper.

#XPP file for simulating AME system

#y1=A, y2=M, y3=E, y4=p, y5=B

y4 = a14*y3*y5/a15

f1 = y4^a1/(a2^a1+y4^a1)

f2 = a4*a5^a3/(a5^a3+y4^a3)

y1’ = f1*(a6+a7*y2)-a8*y1-a9*y1^2

y2’= a10*f2*y1-f1*a16*a7*y2-a11*y2

y3’ = a12*(1-f2)*y1-a13*y3
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# If beta cell mass is a variable:

# y5’ = -a17*y3*y5

# init y1=0.5,y2=0,y3=1,y5=1

#otherwise, for constant beta cells we use this:

init y1=0.5,y2=0,y3=1

par y5=1

par a1=2,a2=2,a3=3,a4=0.7,a5=1,a6=0.02

par a7=20,a8=1.0,a9=1.0,a10=1,a11=0.01,a12=0.1

par a13=0.3,a14=50,a15=1,a16=0.1,a17=0.14

@ dt=0.05, total=200

@ xlo=0,xhi=200,ylo=0,yhi=4

@ NPLOT=4, XP=t, YP=y1, XP2=t, YP2=y2, XP3=t, YP3=y3

done

Appendix D. List of abbreviations. We used the following abbreviations.

APC: antigen-presenting cell
CTL: cytotoxic T-lymphocyte
IGRP: islet-specific glucose-6-phosphatase catalytic subunit-related protein
MHC: major histocompatibility complex
NOD: nonobese diabetic mouse
ODE: ordinary differential equation
T1D: type 1 diabetes
TCR: T-cell receptor
QSS: quasi-steady state
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WAVE SCATTERING AT THE SEA-ICE/ICE-SHELF TRANSITION
WITH OTHER APPLICATIONS∗
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Abstract. We present a mathematical model that describes how ice-coupled (flexural-gravity)
waves traveling beneath a uniform, floating sea-ice sheet, defined over (−∞, 0), propagate into a
second ice sheet (l,∞) of different thickness by way of an arbitrarily defined transition region of
finite width (0, l). Each ice sheet is represented as an Euler–Bernoulli thin plate with a prescribed
thickness and material properties, either or both of which vary across the transition. The most
familiar application of this geometry is to sea-ice abutting an ice-shelf—a common occurrence found
in the waters around Antarctica and parts of the Arctic or to sea-ice skirting sikussak—the band of
extremely thick coastal fast ice that can form when local ice is sheltered from destructive storms.
Another application is to breakwaters, and this is also discussed. By using Green’s theorem two
coupled integral equations are derived: one defined over (0, l) and the second of the Wiener–Hopf
type, defined over (l,∞). The latter is solved analytically, allowing the integral equations to be
decoupled and the first equation to be solved numerically. Results are presented for the geophysical
and engineering examples referred to above.

Key words. Wiener–Hopf method, scattering, sea-ice/ice-shelf transition, flexible breakwaters
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1. Introduction. In a recent paper [19] the authors consider a related geo-
physical problem, namely, how flexural-gravity waves propagating at the plate/water
interface move between three floating elastic plates of different uniform thickness.
That work enables several phenomena commonly observed in the polar regions to be
modeled, e.g., wave propagation in the marginal ice zone—exploiting a feature of the
model that allows any of the plate thicknesses to be zero, and wave scattering by
open or refrozen leads and the abrupt thickness changes encountered at the edges of
floes. It does not permit the two exterior sheets, defined over (−∞, 0) and (l,∞),
to be joined smoothly (or otherwise) through a transition region (0, l) of prescribed
variable thickness, as the thickness in each outer region is required to be constant. In
this paper we relax that requirement, thereby expanding the range of both geophysical
and marine engineering problems that can be modeled.

Of particular interest is what occurs when waves impinge on an ice-shelf of sig-
nificantly greater thickness than the adjoining sea-ice sheet via a transition ramp
that may stretch for tens or hundreds of meters or, in some cases, several kilometers.
While it might be reasonably assumed that a typical ice-shelf would resist waves,
in the Southern Ocean waves can be very long because of the immense fetches in-
volved, and the passage of these waves is effectively unhindered by the sea-ice encoun-
tered en route. Waves of a somewhat shorter period—but still of sizable wavelength
can also reach the transition depending on the nature of the sea-ice they encounter
during their journey, as a cover of sea-ice acts to “attenuate” such waves through
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hysteresis, scattering, mechanical impacts and fracture, and hydrodynamical turbu-
lence in the water column. Given sufficient amplitude ice-coupled waves of this type
have the capacity to destroy an ice-shelf; this is a motivating interest of the current
study.

Taken in the context of global warming this is of immediate topical significance,
as temporal adjustments in pack ice serve as a proxy of climate change [14, 16, 4] and,
especially in the vicinity of the Antarctic peninsula, there has been an increased inci-
dence of breakup of ice-shelves with a concomitant recession in their fronts [20]. This
paper addresses the complex relationship between an ice-shelf and its sea-ice shield in
the context of how incident waves are scattered at the transition and, accordingly, are
or are not allowed to progress into the shelf with reduced amplitude. It is found that
reflection coefficients are oscillatory but that, because conservation of energy acts to
suppress their fine structure, the amplitude transmission coefficient curves are less
complicated and with increasing period simply decrease slightly from their low period
values to a minimum before increasing monotonically towards perfect transmission
at long periods (see Figure 7). In principle, the magnitudes of the waves within the
ice-shelf, while reduced from their sea-ice amplitude, are still sufficient to cause the
ice-shelf to flex and possibly to fracture and create an iceberg, although in practice,
because the wavelength in the ice-shelf is much longer than in the neighbouring sea-
ice, the associated strains will be modest. It is also possible that the finite geometry
of the ice-shelf will cause certain wave modes to be favored at the expense of others,
i.e., resonance [7, 15], but this is not modeled here as we have assumed the ice-shelf
is semi-infinite in extent (l,∞).

2. Equations and boundary conditions. Figure 1 illustrates schematically
the situation that we are modeling: A plane wave with unit amplitude and radial
frequency ω travels from the left-hand region through a central transition—where
it is partially reflected and partially transmitted, into the right-hand region. The
plates to the left and right are, respectively, of constant thickness h0 and h2, while
the thickness across the transition varies according to h1(x). Throughout the paper
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thickness Uniform ice

Sea water

x

z

y

Fig. 1. A plane flexural-gravity wave arrives from the left-hand region at an angle θ to normal
incidence and is partially reflected and partially transmitted through a central transition of width
l into the region beneath the right-hand plate. The thicknesses of the three plates are denoted by
h0, h1(x), h2, as shown, and each is modeled using a Euler–Bernoulli thin plate. Submergence is
neglected, so the bottom of each plate is taken to be in the z = 0 plane. The left-hand edge of the
central plate is located at x = 0 (the coordinate axes are displaced to the right to avoid clutter), and
the sea water has a finite depth of H.
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subscripts of j = 0, 1, or 2 will be used to denote quantities referring to the different
plates in the same way that they are in the hj .

The amplitudes of the reflected and transmitted waves are denoted by R and T ,
respectively; hereafter referred to as the reflection and transmission coefficients. The
determination of their values is the main purpose of our solution.

If we assume that the sea water beneath the ice is inviscid and of constant density
and that the fluid flow is irrotational, then there exists a potential function Φ(x, y, z, t)
such that the velocity of a fluid particle is given by ∇Φ. Since the forcing from the
incident wave is periodic in time and since the geometry of the problem is shift-
invariant in the y direction, we assume that Φ has the following form:

Φ(x, y, z, t) = Re
[
φ(x, z)ei(αyy−ωt)

]
.(2.1)

This reduces the dimension of the problem from four to two. The wave number αy

will be related to the incoming wave’s angle of incidence.
For each plate, define the flexural rigidity Dj , the mass per unit area mj , and the

characteristic length and time Lj and τj , as follows:

Dj =
Ejh

3
j

12(1 − νj)2
, mj = ρjhj , Lj = 4

√
Dj

ρg
, τj =

√
Lj

g
.

Ej , νj , and ρj are the Young’s modulus, Poisson’s ratio, and density of the plate in
the jth region, respectively, while ρ is the water density and g is the acceleration due
to gravity.

We now denote by the index m the region with the largest flexural rigidity and
define the natural length that we will nondimensionalize lengths with respect to, L,
as L = (Dm/ρω2)1/5. If we also scale times by a factor of τm, then we have

(x̄, ȳ, z̄) = (x, y, z)/L, t̄ = t/τm, φ̄(x̄, z̄) =
τm
L2

φ(x, z), ᾱy = αyL.

The other two significant lengths, l and H, are also scaled by L, so that l̄ = l/L and
H = H/L. Further quantities that we will refer to are

Dj = Dj/Dm, mj = mj/mm, λ =
g

Lω2
− iε, μ =

mm

ρL
,

where ε is an infinitesimal quantity introduced to force the reflected and transmitted
waves to decay exponentially as they travel away from the central ice strip. The limit
as it becomes zero will be taken once the solution has been completed.

Dropping the overbars to avoid clutter, φ(x, z) will satisfy the following system
of equations: (

∇2 − α2
y

)
φ(x, z) = 0,(2.2a)

L(x, ∂x)φz(x, 0) + φ(x, 0) = 0,(2.2b)

φx(x+, z) − φx(x−, z) = φ(x+, z) − φ(x−, z) = 0,(2.2c)

φz(x,H) = 0,(2.2d)

where L(x, ∂x) = (∂2
x−α2

y)D(x)(∂2
x−α2

y)+(1−ν)α2
yD

′′(x)+λ−m(x)μ. The function
D(x) is defined piecewise, as follows:

D(x) =

⎧⎪⎨
⎪⎩
D0 for x < 0,

D1(x) for 0 < x < l,

D2 for x > l,

and m(x) is defined analogously in terms of the mj .
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As well as applying the above equations and the required radiation conditions
(see section 3.2 below), the full solution must also satisfy some conditions at the two
edges xe = 0 and xe = l. If two adjacent plates are joined or frozen together at a given
edge, then we must apply what we shall subsequently call the fixed edge conditions:

φz(x
+
e , 0) = φz(x

−
e , 0),(2.3a)

φzx(x+
e , 0) = φzx(x−

e , 0),(2.3b)

M(x+
e , ∂x)φz(x

+
e , 0) = M(x−

e , ∂x)φz(x
−
e , 0),(2.3c)

S(x+
e , ∂x)φz(x

+
e , 0) = S(x−

e , ∂x)φz(x
−
e , 0),(2.3d)

where

M(x, ∂x) = D(x)L−(∂x),

S(x, ∂x) = D(x)L+(∂x) + D′(x)L−(∂x),

L±(∂x) = (∂2
x − α2

y) ∓ (1 − ν)α2
y.

If, on the other hand, the two plates are free to move independently, we must apply
the free edge conditions:

M(x±
e , ∂x)φz(x

±
e , 0) = 0,(2.4a)

S(x±
e , ∂x)φz(x

±
e , 0) = 0.(2.4b)

Both sets of conditions imply that energy is conserved at each edge (i.e., no
translational or rotational work is done by any of the edges). Note that even if the
free edge conditions (2.4) are applied, (2.3c) and (2.3d) are still satisfied.

3. Solution method. To begin we use Green’s theorem to derive a pair of
coupled IEs (integral equations). The first depends on φz(x, 0) over the finite interval
(0, l), and the second is an integral of the Wiener–Hopf type [13] over the semi-infinite
interval (l,∞). The latter IE may be solved analytically using the Wiener–Hopf
technique, allowing the two IEs to be decoupled. The IE over (0, l) may then be
solved numerically and, once the appropriate edge conditions have been applied, R
and T can be calculated.

3.1. Green’s function. We use a Green’s function that satisfies the following
set of equations: (

∂2
ξ + ∂2

ζ − α2
y

)
G(x− ξ, z, ζ) = δ(x− ξ, z − ζ),(3.1a)

L0(∂ξ)Gζ(x− ξ, z, 0) + G(x− ξ, z, 0) = 0,(3.1b)

Gζ(x− ξ, z,H) = 0,(3.1c)

where Lj(∂x) = Dj(∂
2
x − α2

y)
2 + λ−mjμ (j = 0, 2).

This Green’s function depends on the dispersion function for the left-hand region
f0(γ), where fj(γ) = coth(γH)/γ − Λj(γ), Λj(γ) = Lj(iα) = Djγ

4 + λ − mjμ
(j = 0, 2), and γ(α) = (α2 + α2

y)
1/2. G is presented in [5] in terms of its Fourier

transform with respect to x− ξ, Ĝ(α, z, ζ), which is given by

Ĝ(α, z, ζ) =
1

2π

∫ ∞

−∞
G(x− ξ, z, ζ)eiα(x−ξ)d(x− ξ) = χ(z−, γ)

ϕ(z+, γ)

f0(γ)
,(3.2)
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where z+ = max{z, ζ}, z− = min{z, ζ}, and

χ(z, γ) =
Λ1(γ)γ cosh(γz) − sinh(γz)

γ2 tanh(γH)
, ϕ(z, γ) =

cosh γ(z −H)

cosh(γH)
.

The derivative of G that is most relevant to this problem is Gzζ(x− ξ, 0, 0), which we
write as g(x− ξ). It is given by

g(x− ξ) =
1

2π

∫ ∞

−∞

1

f0(γ)
e−iα(x−ξ)dα = i

∑
α∈S0

A0(α)eiα|x−ξ|,(3.3)

where, for j = 0, 2, Sj = {α | fj(γ) = 0 & Im(α) > 0} and

Aj(α) = γ/αf ′(γ) = −
(
γ2/α

)/(
H(Λ2

j (γ)γ2 − 1) + 5Djγ
4 + λ−mjμ

)
.

In the limit as ε becomes zero in the definition of λ, the roots γ of each dispersion
relation fj(γ) = 0 are distributed throughout the complex plane as illustrated by
Fox and Squire [6]. There is one positive real root that we shall label γj , a complex
conjugate pair in the right-hand half-plane, an infinity of pure imaginary roots in the
upper half-plane, and the negatives of the previously mentioned roots. The effect
of the ε on the location of the roots is to produce an infinitesimal counterclockwise
rotation. In particular, each γj is moved slightly off the real line into the upper
half-plane.

The elements of each set Sj are given by α =
√
γ2 − α2

y, taking the square root

from the upper half-plane. If ε = 0 and αy < γj , Sj also contains a real root αj that
moves into the upper half-plane as ε is increased. This forces the sum in (3.3) to
decay exponentially as |x− ξ| → ∞. The other members of Sj are two complex roots
with the same imaginary parts and an infinity of pure imaginary roots.

If αy < γ0, then αy = γ0 sin θ, where θ is the angle of incidence. If αy ≥ γ0,
then no propagating waves can exist in the left-hand region—in that case waves may
travel parallel to the central transition but decay exponentially with distance in the
perpendicular direction [5].

One further property of g that we will need to be aware of later is that it has a
delta function type singularity in its fourth derivative. This can be seen by noting
that

Λ0(γ)

f0(γ)
= −1 +

coth γH

γf0(γ)
,(3.4)

which is the Fourier transform of the equation

L0(∂x)g(x) = −δ(x) −Gζ(x, 0, 0).(3.5)

3.2. Green’s theorem. The radiation conditions alluded to above require that
in the limit as ε → 0 the potential corresponds to an incident wave arriving from the
left and being either reflected or transmitted, i.e.,

φ(x, z) ∼
{(

eiα0x + Re−iα0x
)
ϕ0(z) as x → −∞,

T eiα2xϕ2(z) as x → ∞,
(3.6)

where ϕj(z) = ϕ(z, γj) for j = 0, 1, 2.
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For ε > 0, |φ| will become infinite as x → −∞ due to the incident wave potential
φ0(x, z) = eiα0xϕ0(z). To circumvent this we solve for the function ψ(x, z) = φ(x, z)−
φ0(x, z) instead, which decays exponentially as |x| → ∞.

We begin the solution by using Green’s theorem to derive a pair of coupled IEs.
Using (2.2) and (3.1), ψ can be written

ψ(x, z) =

∫∫
Ω

(
∇2

ξζGψ −G∇2
ξζψ

)
dξdζ =

∮
∂Ω

(
∂nG−G∂nψ

)
ds(3.7a)

= −
∫ ∞

−∞

(
Gζ(x− ξ, z, 0)ψ(ξ, 0) −G(x− ξ, z, 0)ψz(ξ, 0)

)
dξ,(3.7b)

where Ω is the fluid region, { (ξ, ζ) | −∞ < ξ < ∞ & 0 < ζ < H}, ∂Ω is the
positively oriented boundary of Ω, s is the arc length as we travel around ∂Ω, and
∂n is the derivative with respect to the outward normal to ∂Ω. (3.7b) follows from
(3.7a) because the exponential decay of G and ψ as |ξ| → ∞, along with the sea floor
conditions (2.2d) and (3.1c), forces the other line integrals to vanish. If we eliminate
G and ψ from (3.7b) using (2.2b) and (3.1b), integrate by parts, and simplify the
resulting expression, we can write ψ entirely in terms of φz(x, 0) for x > 0:

ψ(x, 0) =
∑

xe∈Xe

P T
xe
Ledge(∂x)Gζ(x− xe, z, 0)(3.8)

+

∫ ∞

0

(
L(ξ, ∂ξ) −L0(∂ξ)

)
Gζ(x− ξ, z, 0)φ0,z(ξ, 0)dξ,

where P xe = P+
xe

−P−
xe

are vectors containing four unknown constants that must be

determined from the edge conditions. If P(x, ∂x) = D(x)∂x − D′(x), then the P±
xe

and the operator Ledge are

Ledge(∂x) = −

⎛
⎜⎜⎝
L+(∂x) ∂x
L−(∂x)

∂x
1

⎞
⎟⎟⎠ , P±

xe
=

⎛
⎜⎜⎝

D(x±
e )

P(x±
e , ∂x)

M(x±
e , ∂x)

S(x±
e , ∂x)

⎞
⎟⎟⎠φz(x

±
e , 0).

3.3. Integral equations. We now differentiate (3.8) with respect to z and let
z → 0 to give an IE in φz(x, 0). We will solve it by splitting it into two different
equations, corresponding to regions 0 and 2. The first equation, defined for 0 < x < l,
is

φz(x, 0) = eiα0xϕ′
0(0) +

∑
xe∈Xe

P T
xe
ψ(x− xe)(3.9)

+
∑
α∈S0

β+(α)eiαx +

∫ l

0

K(x, ξ)φz(ξ, 0)dξ,

where ψ(x) = Ledgeg(x) and

β+(α) = −iA0(α)f2(γ)Φ+(α),(3.10a)

Φ+(α) =

∫ l

0

φz(ξ, 0)eiαξdξ,(3.10b)

arise from differentiating the integral from l to ∞ in (3.8), letting z → 0, and substi-
tuting (3.3) into the result.
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The kernel K(x, ξ) in (3.9) is given by

K(x, ξ) =
(
L(ξ, ∂ξ) −L(∂ξ)

)
g(x− ξ) =

4∑
j=1

dj(ξ)L1j(∂ξ)g(x− ξ),(3.11)

where if d0(x) = D1(x)/D0, d1(x) = D0

(
d0(x) − 1

)
, d2(x) = 2D′

1(x), d3(x) = D′′
1 (x),

and d4(x) = m1(x)−m0. The four L1j operators are L11(∂x) = (∂2
x−α2

y)
2, L12(∂x) =

(∂2
x − α2

y)∂x, L13(∂x) = L−(∂x), and L14(∂x) = −μ.
Now, we know from (3.5) that L11(∂ξ)g(x−ξ) has a delta function type singularity.

(This also implies that L12 g will have a jump discontinuity.) When this is integrated
out, it produces a

(
1 − d0(ξ)

)
φz(x, 0) term on the right-hand side of (3.9). Hence,

that equation becomes

d0(x)φz(x, 0) = eiα0xϕ′
0(0) +

∑
xe∈Xe

ψT (x− xe)P xe
(3.12)

+
∑
α∈S0

β+(α)eiαx +

4∑
j=1

−
∫ l

0

dj(ξ)L1j(∂ξ)g(x− ξ)φz(ξ, 0)dξ,

which can now be solved using numerical quadrature in terms of the unknown β+(α)
(α ∈ S0) coefficients. The Cauchy principal value symbol

−
∫ l

0

= lim
ε′→0

(∫ x−ε′

0

+

∫ l

x+ε′

)

is used to show that any delta function singularities have been integrated out (as they
are identically zero outside the interval x−ε′ < ξ < x+ε′) and none of the integrands
are actually Cauchy singular. The above limit can be taken analytically. The next
step in the solution is to set up an IE that will facilitate the elimination of β+ from
(3.12) and allow us to solve for φz(x, 0) within the ramp independently of its value in
region 2.

The equation over x ∈ (l,∞) is obtained in the same way that (3.9) was found
from (3.8), only this time we assume that x > l. Doing this gives us

φz(x, 0) −
∑
α∈S0

β−(α)eiα(x−l) =

∫ ∞

l

(
L2(∂ξ) −L0(∂ξ)

)
g(x− ξ, z, 0)φz(ξ, 0)dξ,

(3.13)

where if pT (α) = Ledge(−iα), then

β−(α) = e−iαlϕ′
0(0)δα,α0 + iA0(α)

∑
xe∈Xe

pT (−α)P xee
iα(l−xe)(3.14)

+ iA0(α)L1j(−iα)

4∑
j=1

∫ l

0

dj(ξ)φz(ξ, 0)eiα(l−ξ)dξ.

Equation (3.13) is an IE of the Wiener–Hopf type and thus may be solved analytically
in terms of the β− coefficients. We now proceed to show how this is done.
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3.4. Solution of Wiener–Hopf integral equation. Let

Φ−(α) = −
∫ l

−∞

∫ ∞

l

(
L2(∂ξ) −L0(∂ξ)

)
g(x− ξ, z, 0)φz(ξ, 0)eiα(x−l)dξ d(x− l),

and let C
+ and C

− be the upper and lower complex half-planes, respectively. Φ−

is analytic in C
− and, in the following, all functions with a “−” superscript will be

analytic in C
− and will be termed “minus functions,” and all functions with a “+”

superscript will be analytic in C
+ and will be termed “plus functions.”

Assuming that the left-hand side of (3.13) is zero for x < l, taking its Fourier
transform with respect to x− l gives

Φ+(α) − i
∑
k∈S0

β−(k)

α + k
= Φ−(α) +

(
1 − f2(γ)

f0(γ)

)
Φ+(α),(3.15)

so that

f2(γ)

f0(γ)
Φ+(α) − i

∑
k∈S0

β−(k)

α + k
= Φ−(α).(3.16)

From [3], the quotient f2/f0 can be written as the product of a plus function K+(α)
and a minus function K−(α) = K+(−α), where

K+(α) =
∏
k∈S2

α + k

γ(k)

/ ∏
k′∈S0

α + k′

γ(k′)
.(3.17)

Consequently, we can rearrange (3.16) to give

K+(α)Φ+(α) − i
∑
k∈S0

β−(k)/K+(k)

α + k
(3.18)

=
Φ−(α)

K−(α)
+ i

∑
k∈S0

β−(k)

α + k

(
1

K−(α)
− 1

K+(k)

)
.

Now the above equation states that its left-hand side, which is a plus function, agrees
with its right-hand side, a minus function, on the real line. By the Riemann principle
both sides must therefore be equal to a single entire function J(α). If h2 > 0, then
K±(α) ∼ O(1) as α → ∞, so it is clear that both sides of (3.18) are O(α−1). Hence
J(α) = 0 by Liouville’s theorem, and we can write

Φ+(α) = i
∑
k∈S0

β−(k)/K+(k)

K+(α)(α + k)
.(3.19)

If h2 = 0, K±(α) ∼ O(α−2), so the right-hand side of (3.18) is potentially linear as
a → ∞. However, the left-hand side is again O(α−1), so J = 0 again and Φ+ is still
given by (3.19).

Substituting this formula for Φ+ into (3.10a), we can now eliminate the β+ co-
efficients from (3.9), putting them in terms of integrals involving φz(x, 0) over (0, l).
These integrals may be approximated by quadrature, and (3.9) can be solved as a
standard Fredholm IE over a finite interval. (We use the same method of doing this
as [18].)
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3.5. Scattering coefficients and application of the edge conditions. φz(x, 0)
can be calculated for x < 0 from (3.8) and for x > l from (3.19), giving the following
eigenfunction expansions:

φz(x, 0) =

{
eiα0x +

∑
α∈S0

a(α)e−iαx for x < 0,∑
α∈S2

b(α)eiα(x−l) for x > l,
(3.20)

where

a(α) = iA0(α)
∑

xe∈Xe

pT (α)P xee
iαxe + β+(α)eiαl(3.21a)

+ iA0(α)

4∑
j=1

L1j(iα)

∫ l

0

dj(ξ)φz(ξ, 0)eiαξdξ,

b(α) = A2(α)f0(γ)
∑
k∈S0

K+(α)β−(k)

K+(k)(α− k)
.(3.21b)

Once the unknowns in the P xe vectors have been found (by applying the edge con-
ditions), R and T are given by R = a(α0)/ϕ

′
0(0) and T = b(α2)e

−iα2l/ϕ′
2(0), respec-

tively.
The edge conditions (2.3c) and (2.3d) are applied by simply setting

[
P xe

]
3

and[
P xe

]
4

to zero. If Xe = {0, l}, then the remaining two frozen edge conditions can
be applied by substituting (3.20) into (2.3a) and (2.3b). However, if Xe has other
elements, this is not possible. In that case (2.3a) is most easily applied by observing
that, when it holds, [

P xe

]
1

=
(
D(x+

e ) −D(x−
e )

)
φz(x

±
e , 0)

(note that this is zero if D is continuous at xe), while (2.3b) is best applied by requiring
that

D(x±
e )

[
P xe

]
2

=
(
D(x+

e ) −D(x−
e )

)
P(x±

e , ∂x)φz(x
±
e , 0)(3.22)

+
(
D(x+

e )D′(x−
e ) −D(x−

e )D′(x+
e )

)
φz(x

±
e , 0).

The quantity P(x±
e , ∂x)φz(x

±
e , 0) can be calculated without the necessity of numerical

differentiation from the formula

1

D0
P(x±

e , ∂x)φz(x
±
e , 0) = iα0e

iα0xϕ′
0(0) +

∑
xf∈Xe

P T
xf
ψ′(x±

e − xf )(3.23)

+
4∑

j=1

−
∫ l

0

dj(ξ)L1j(∂ξ)g
′(x±

e − ξ)φz(ξ, 0)dξ,

which is obtained by differentiating (3.9) with respect to x and integrating out the
delta function singularities produced.

When D is continuous, the continuous-slope condition simplifies to[
P xe

]
2

=
(
D′(x+

e ) −D′(x−
e )

)
φz(x

±
e , 0),

the right-hand side of which vanishes when D′ is also continuous.
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The free edge conditions can usually be applied by substituting (3.20) into (2.4).
However, when h2 = 0, or when there are free edges inside (0, l), we must adjust
our procedure. Applying L−(∂x) and L+(∂x)∂x to (3.9) and again allowing for delta
function singularities gives the following formulae for the bending moment and the
transverse edge force:

(3.24a)

1

D0
M(x±

e , ∂x)φz(x, 0) = L−(α0)e
iα0xϕ′

0(0) +
∑

xf∈Xe

P T
xf
L−(∂x)ψ(x±

e − xf )

+

4∑
j=1

−
∫ l

0

L1j(∂ξ)L−(∂x)g(x±
e − ξ)dj(ξ)φz(ξ, 0)dξ,

(3.24b)

1

D0
S(x±

e , ∂x)φz(x, 0) = iα0L+(α0)e
iα0xϕ′

0(0) +
∑

xf∈Xe

P T
xf
L+(∂x)ψ′(x±

e − xf )

+
4∑

j=1

−
∫ l

0

L1j(∂ξ)L+(∂x)g′(x±
e − ξ)dj(ξ)φz(ξ, 0)dξ.

Setting these to zero, choosing whether to apply them at x+
e or x−

e since we have
already applied (2.3c) and (2.3d), allows us to find

[
P xe

]
1

and
[
P xe

]
2
.

4. Results. We begin this section by documenting the different types of transi-
tion profiles that can be used, classified in terms of the continuity properties of D(x)
and D′(x) at the ends of the variable region (section 4.1). This is followed in section
4.2 by some results that aim to validate the theory and its numerical implementation.

After those two sections we describe two applications. Section 4.3 models a sea-
ice/ice-shelf transition, such as occurs where the Ross Sea sea-ice meets the Ross
ice-shelf, while section 4.4 presents a discussion on the effectiveness of breakwaters
with different widths and thickness profiles. In principle the latter results could be
used to protect a very large floating structure (VLFS) of pontoon-type such as a
floating airport from incoming ocean waves.

4.1. Types of transition profiles. Transition profiles are classed as either
type 0, type 1, or type 2. Type 0 transitions have the property that D(x) and D′(x)
are continuous at their edges, and thus no edge conditions are required there (assuming
frozen edge conditions are applied, one must always apply two conditions at each free
edge); for type 1 transitions D(x) is continuous but D′(x) is not, and so one edge
condition must be applied; for type 2 transitions D(x) and/or D′(x) are discontinuous,
so that two edge conditions must be applied. Examples of each type are plotted in
Figures 2(a), 2(d), and 2(g), and the scattering behavior of each is plotted in the
two graphs that appear to their right. The middle column of plots (2(b), 2(e), and
2(h)) shows the scattering of normally incident waves, while the right-hand column
(2(c), 2(f), and 2(i)) shows the scattering of obliquely incident waves for a number of
periods.

All three profiles have the same average thickness and consequently produce sim-
ilar amounts of reflection at normal incidence. The type 2 scattering curve, however,
has the most structure at low periods, although we observe that the linear (type 1)
transition also has a zero in |R| at about 0.3 s. We attribute structure to the greater
coherence of the shorter, uniform wavelengths in the intermediate 1.5-m-thick ice
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Fig. 2. The scattering of waves incident on three different types of transition—a smooth type 0
transition with profile shown in (a), a linear type 1 transition (d), and a double step type 2 transition
(g). Scattering results for each different type of transition are shown in the two plots to the right
of the corresponding thickness profile—figures in the second column (b), (e), and (h) illustrate the
variation in the amount of reflection of normally incident waves with wave period, while figures in
the right-hand column (c), (f), and (i) show the behavior of |R| with the angle of incidence at a
number of different wave periods. The periods used are 2 s (solid curves), 5 s (dashed curves), 10 s
(dashed-dotted curves), and 15 s (dotted curves). The water depth is infinite.

compared to the varying dispersion of the type 0 and type 1 cases. The more compli-
cated the thickness profile is in a functional sense, the less the fine structure in the
scattering curve and the more the reflection. This is also found for smooth ridges,
which seem to produce more reflection than linear ones [18].

There are two main differences between the scattering of obliquely incident waves
by transition zones and by ridges—both arising because h0 	= h2. The first is that
zeros in |R| occur only when the period exceeds a certain value, e.g., in the three 15 s
curves (dotted) of Figures 2(c), 2(f), and 2(i). Curves corresponding to lower periods
either have minima or increase monotonically (see the 2 s curve in 2(i)). The second
is that each period has a critical angle, less than π/2, above which any incident waves
will be completely reflected. This is due to the wave number in the thinner sea-ice
to the left (γ0) being less than that in the thicker shelf ice on the right (γ2). If αy,
the component of the wave number in the y direction, exceeds γ2, no wave is able
to propagate into the right-hand region in the x direction. (This corresponds to α2

either vanishing or becoming imaginary.)
Figure 3 plots this critical angle as a function of period for a series of values of the

ratio h2/h0. The two smallest values of h2/h0 show that as the ratio becomes smaller
and smaller there is a “critical period” at which the critical angle reaches π/2 that
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moves closer to the vertical axis. In the limit, when h2 reaches h0, the critical angle
is constantly π/2 since the wave numbers on both sides of the transition are equal
(cf. Figure 2). This critical period moves to larger periods as h2 increases relative
to h0 and has moved out of the plotted range for the three curves corresponding to
h2/h0 = 3, 5, and 10. A result of this is that the critical angle curves move downward
as h2/h0 increases so that very little transmission of obliquely incident waves can
occur when an ice-shelf is very thick.

4.2. Validation of results. The figures in this section are mostly intended to
establish that the theory described in sections 2 and 3 produces results that converge
to ones that can be independently verified by alternative solutions. Before this is
done, however, in Figure 4 we attempt to reproduce Figure 5(a) of the paper by
Porter and Porter [12]. These authors develop a variational solution for the spatially
inhomogeneous floating plate and then invoke a mild slope approximation to enable
results to be computed; zero submergence is not required.

Figure 4(a) plots the thickness profiles of the linear ramps that Porter and Porter
use, and 4(b) plots the corresponding scattering calculated by our method as a func-
tion of incident wave number. The two methods agree well, although they diverge in
the long wave limit. As α0 → 0, Figure 4(b) predicts that |R| will vanish for all three
profiles, while the figure in [12] shows it tending towards a small finite value that
decreases as h2 decreases. This value is predicted in [9] and is the result of narrowing
of the right-hand fluid region due to the increased submergence of the ice on that
side. This example shows that the no-submergence assumption is unsuited to small
finite depths.

Figure 5 illustrates how the scattering for a series of increasingly steep type 1
linear ramps converges to the scattering by a step. Results for a step can be checked
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Fig. 4. Verification of linear ramp results. The plot shown is a reproduction of Figure 5(a) of
[12]. The upper plot (a) shows three different thickness profiles that ramp up linearly from 1m to
either 1.5, 2, or 3m. The scattering by each ramp is plotted in (b) using the same line style used
for its profile’s line style in (a). In that figure |R| is plotted against its dimensional wave number
for the left-hand region, α0/L. The incident waves are normally incident, and the water depth is
20m.

by comparing them to Figure 8 in [1], where |R| displays a monotonic decrease from
about 0.22 as the period is increased. As the steepness of the ramps is increased the
progression of their reflection coefficient curves towards the step’s scattering behavior
can be seen, especially at large periods. It can also be seen in the period below which
each ramp curve starts to significantly depart from the step curve. For the 100-m-
wide ramp this happens at about 14 s, while the 25-m-wide ramp’s reflection is still
quite close to that for the step for periods above about 10.5 s. After each curve drops
away, it has a maximum followed by either a minimum or a zero. The height of this
maximum increases towards the step curve as steepness increases, while the period
at which the zero occurs marches to the left. It has almost moved out of the plotted
range by the time the ramp width has dropped to 25 m. These results are consistent
with those of [18], which shows that the larger a feature’s width in relation to the
incident wavelength, the more opportunity there is for resonance and the more fine
structure that is observed in the corresponding scattering curves.

An analogous computation for type 0 transition can also be done. The smooth
transition curves display less fine structure than their linear equivalents, although
their reflection is similar to that of the step for larger period ranges. That is, |R|
for each smooth transition begins to depart from |R| for the step at a period about



SCATTERING AT THE SEA-ICE / ICE-SHELF TRANSITION 951

0 50 100

1

1.5

2

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

(a)

(b)

h
(x

),
m

xL, m

Step

Ramp|R
|

Wave period, s

Fig. 5. Convergence of the scattering by a series of increasingly steep type 1 linear ramps to the
scattering by a step, which may be considered as an infinitely steep ramp. The curve corresponding
to the step is pointed out in (b), as is the curve corresponding to the ramp profile plotted in (a) with
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their profile in (a). The incident waves are normally incident, and the water depth is infinite.

1 s lower than the equivalent period for the linear ramp of the same width. Likewise
the scattering by a sequence of smooth transitions as their profiles become more and
more similar to a double step can be modeled. These examples and more are provided
in [17].

We finish this section by reminding the reader that all of the results provided in
[17] and in this paper assume that submergence is negligible. Comparing Figure 4
with the equivalent figure of [12] showed that this makes a slight difference for long
waves. While this should be borne in mind at small depths, it will not cause problems
for deeper water and especially not in the infinite depth limit.

4.3. The sea-ice/ice-shelf transition. The configurations modeled in sections
4.1 and 4.2 of one ice thickness ramping up to a different thickness over a given distance
lend themselves well to modeling a ramp connecting relatively thin sea-ice to a much
thicker, fresh water ice-shelf. Such a situation is found in the Ross Sea, where the
transition from the sea-ice up to the Ross ice-shelf is gentle enough that one can easily
walk up it.

Figure 6 plots the scattering by such a transition when the sea-ice has thickness
h0 = 1 m and the thickness of the ice-shelf, h2, is (a) 5 m, (b) 10 m, (c) 15 m, and
(d) 20 m. Results are plotted for transition widths of 250, 500, and 750 m.

A typical sea-ice/ice-shelf transition would ramp up from 1 to 15 m over about
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Fig. 6. The reflection of normally incident waves produced by a sea-ice/ice-shelf transition.
The sea-ice has thickness h0 = 1m, and the thickness then increases linearly to values for h2 of
(a) 5m, (b) 10 m, (c) 15m, and (d) 20m. The widths of the ramps are 250m (solid curves), 500m
(dashed curves), and 750m (dashed-dotted curves), and the water depth is infinite.

500 m (cf. the dashed curve in Figure 6(c)), but the other plots are included to give
the reader more of an idea about the effect of changing the different dimensions.

Clearly, increasing the width of the ramp produces more complicated reflection
patterns due to the occurrence of more resonances when several wavelengths repeat
within the transition. In addition, increased width without a concomitant change in
thickness lowers the slope of the ramp, making the overall change in the thickness
less abrupt and in turn reducing the amount of reflection. In contrast, increasing the
thickness h2 while keeping the width constant increases the slope and thus causes
more reflection. The next most noticeable effect of an increase in h2 is that the scale
over which the |R| curves change increases: The spacings between successive maxima
and minima become wider, and |R| takes a lot longer to begin dropping to zero. The
increase in spacings is attributed to the fact that as the ice becomes thicker the waves
in the transition become much longer in comparison to its width. The slow decay in
reflection is due to the overall size of the features taking longer to become insignificant
in relation to the incident wavelength.

In general it appears that sea-ice/ice-shelf transitions of this type have the most
marked effect on the longer waves (in comparison to other features in sea-ice). A value
of |R| = 0.19 is the largest reflection of a 20 s wave produced by any feature modeled
in the previous figures, and none of the features to be discussed later will produce such
a large reflection for so long a wave. On the other hand, waves at smaller periods are
not unaffected by the considerable increase in thickness as they travel into the region



SCATTERING AT THE SEA-ICE / ICE-SHELF TRANSITION 953

beneath the ice-shelf. We have already mentioned how the wavelength of a wave of a
given period increases with thickness. This increase is actually quite dramatic. For
example, when the wave period is 5 s, the wavelength increases from 85 to 205 m as
thickness increases from 1 to 5 m. When h2 = 20 m, the wavelength becomes 450 m.

Before leaving Figure 6 we return again to the matter of submergence, as we
wish to reassure the reader that the effects we are reporting would not be dwarfed
by its assimilation into the model. To do this we invoke results from new work
that allows both smooth and abrupt changes of property with submergence correctly
incorporated [2]. Reassuringly the results are very similar to those reported herein [21]
for the most challenging configuration, namely, the solid curve of Figure 6(b) where the
thickness change is largest over the shortest horizontal distance. Differences between
the current paper and [2] for no submergence are small (and explainable), giving us
further confidence that the present theory is correct because the methods employed
are mathematically independent, and the change when submergence is introduced is
no more than 10% at worst. Of interest, the separation of the no-submergence and
submergence results is negligible at short periods and for very long waves, with an
intermediate range of periods where the curves deviate most (up to the 10% figure
mentioned previously). It is argued that this occurs because at short periods the slope
is so mild that the submergence is not noticed. As the period is gradually increased,
the wavelength becomes longer with the result that the slope of the feature above
and below the water line appears more abrupt. However, at very long periods the
submergence is inconsequential compared to the wavelength. The validation of our
results using [2] reassures us that the inclusion of submergence will not significantly
alter our conclusions.

The wave amplitude is less under thicker ice due to its greater rigidity and, to
a lesser extent, its greater mass. Accordingly, if an incident wave of amplitude A
was perfectly transmitted into the region under the ice-shelf, its amplitude would
drop to σA, where σ = ϕ′

2(0)/ϕ′
0(0) < 1. Figure 7 plots σ as a function of period

for the four different values of h2 used in Figure 6. It can be seen that the drop in
amplitude is greatest at lower periods but that, as the period increases, the difference
diminishes. As might have been expected, σ takes longer to climb to 1 as the ice-
shelf becomes thicker. Figure 7 also plots the modulus of T = σT , the amplitude
transmission coefficient, for the twelve ramps featured in Figure 6. Allowing for
imperfect transmission, therefore, the final amplitude of a wave that initially has
amplitude A is AT .

We can see immediately that the width of the sea-ice/ice-shelf transition has only
a negligible effect on the amplitude transmission coefficient. The most divergence is
in Figure 7(d) when h2 = 20 m, where the three curves separate very slightly around
19 s. In addition, the longer scale over which the curves for the thicker ice-shelves
take to reach perfect transmission (the dotted curve) is also apparent.

A final point to make on comparison of Figure 7 with Figure 6 is that the |T |
curves show no evidence at all of the oscillatory maxima and minima that were evident
in the |R| curves. This is expected and is a consequence of conservation of energy,
i.e., s|T |2 = 1 − |R|2, where s = σ2A0(α0)/A2(α2) is the intrinsic admittance [17]:
If two values of |R| are both quite small, their squares will be even smaller and the
corresponding values of |T | will both be very close to 1/

√
s.

4.4. A flexible breakwater. Another physical application of the method de-
scribed in this paper is to a breakwater shielding a VLFS from waves arriving from
the open ocean. While it would be unusual for such structures to be made from ice,
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Fig. 7. The relative amplitudes of normally incident waves transmitted by a sea-ice/ice-shelf
transition. If a wave has amplitude A in the sea-ice region, its amplitude when it reaches the ice-shelf
will be AT , where T = σT , and σ = ϕ′

2(0)/ϕ′
0(0) is the relative amplitude of a perfectly transmitted

wave. σ is plotted for reference as a dotted line when h0 = 1m and h2 takes values of (a) 5m,
(b) 10m, (c) 15m, and (d) 20m. In each figure, i.e., for each value of h2, |T | is actually plotted
when the widths of the transition regions are 250m (solid curve), 500m (dashed curve), and 750m
(dashed-dotted curve) but the latter two curves are almost indistinguishable from the solid ones. The
water depth is infinite.

for convenience we shall take the building material to have the same density, Young’s
modulus and Poisson’s ratio as sea-ice. As an aside the reader may be interested to
know that there was actually a plan by the British during World War II to construct
an aircraft carrier out of ice for use against German U-boats in the mid-Atlantic.
Known as Project Habbakuk (an Admiralty clerk’s misspelling of the biblical name
Habakkuk), it was proposed that a 4000 × 600 ft VLFS with 40-ft-thick walls and a
displacement of 2 million tons or more would be constructed in Canada from 280,000
blocks of ice. The building material was changed later to a mixture of ice and wood
pulp known as pykrete but, because of the immense cost, the project was eventually
scrapped.

Figure 8 shows the amounts of reflection produced by three different profiles for
three different widths: 5 m (b), 15 m (c), and 30 m (d). The solid, dashed, and dashed-
dotted curves correspond to the profiles in Figure 8(a) plotted in the same line style.
The outer thicknesses are h0 = 1 m and h2 = 0, and the incident wave arrives normally
from the right.

The differences in widths are not great enough for huge variations in the scattering
patterns, but we can see that the maxima in |R| at about 4 s in Figure 8(b) moves
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Fig. 8. Wave scattering by a breakwater. (a) shows the three different shapes used. The incident
wave arrives at a normal angle from the open water region to the right, and the breakwater is located
between the x = 0 and x = l planes and is separated by a free edge from the floating structure to the
left that it shields. The reflection that each different shape produces is plotted in the same line style
used for its profile in (a) when the width of the breakwater is either (b) 5m, (c) 15m, or (d) 30m
wide. The water depth is infinite.

to the right and drops in height as l increases. The region of very high reflection at
low periods also moves to the right. The breakwater that is sloping away from the
open water (plotted as a solid curve) gives noticeably more reflection than the other
breakwaters in the intermediate period range (about 5 to 10 s), although the size of
this interval depends on the breakwater’s width. When l is larger, it takes longer to
become small in comparison to the incident wavelength, at which point the reflection
by the three shapes converges. However, when we consider transmission into the
region under the VLFS, the differences between the three different widths and shapes
become less significant. This is demonstrated by Figure 9, which investigates the
effect of a breakwater on a common open water wave spectrum.

The spectral density function (SDF) we use corresponds to a Pierson–Moskowitz
wave spectrum [11], given by

�fsd(τ) = β(τ0τ)3 × exp
(
− η(τ0τ)4

)
,(4.1)

where τ0τ is the dimensional wave period (τ is nondimensional), β = 7.4×10−4 m2 s−4,
and η = 3.0 × 10−4 s−4. The arrow over the f is intended to indicate that this is the
incident wave spectrum. In open water, this density function is very similar in shape
to the dotted curves, climbing from zero in the short wave limit to a peak period at
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Fig. 9. The effect of a breakwater on a Pierson–Moskowitz incident wave spectrum. The
dotted lines in each figure are reference lines plotting the spectrum that would result if the Pierson–
Moskowitz spectrum was transmitted perfectly from the open water region into the VLFS. If �fsd is
the SDF for the incident wave spectrum, this reference SDF is given by fsd = σ2 �fsd. The dotted,
dashed, and dashed-dotted curves show the SDFs resulting from the breakwater profiles plotted in
Figure 8 in the same line styles, and their widths are either (a) 5m, (b) 15m, or (c) 30m. (Note
that the dashed and dashed-dotted curves are very hard to distinguish from the solid curves.) Their

SDFs are given by fsd = �fsd × |T |2. The incident waves are all taken to arrive normally, and the
water depth is infinite.

8 s, before dropping to zero again as the period increases further.
The dotted lines in Figure 9 actually plot σ2 �fsd(τ), which is intended as a reference

to show what the wave spectrum beneath the VLFS would look like if the breakwater
did not produce any reflection. The solid, dashed, and dashed-dotted curves plot the
spectra resulting from the different shaped breakwaters plotted in Figure 8(a), while
the different subplots, Figures 9(a), 9(b), and 9(c), correspond to the three different
widths used in Figure 8(b), 8(c), and 8(d), respectively.

The spectra are calculated by fsd(τ) = �fsd(τ) × |T |2, and it can be seen that
the different breakwater shapes produce a negligible difference in the wave spectra
underneath the VLFS. The width does not seem to make a large amount of differ-
ence either, although the 5-m-wide breakwaters seem to filter out a little more wave
amplitude.

Similarly, Figure 10 shows that using a breakwater with a larger average thickness
does not affect the transmitted wave spectrum markedly, although in general it does
increase |R|. Figures 10(a) and 10(c) show |R| and fsd for three 5-m-wide breakwaters:
1 m thick (solid curve), 2 m thick (dashed curve), and 3 m thick (dashed-dotted curve).
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Fig. 10. Further investigations of the reflection and transmission produced by a breakwater. (a)
and (c) show |R| and fsd for three 5-m-wide breakwaters of 1m thickness (solid curve), 2m thickness
(dashed curve), and 3m thickness (dashed-dotted curve), and (b) and (d) show the analogous results
for 15-m-wide breakwaters. The waves are normally incident, and the water depth is infinite.

Figures 10(b) and 10(d) show the analogous results for 15-m-wide breakwaters.
The results of this section lead one to conclude that, should one be required to

construct a flexible breakwater to protect a VLFS, the extra expense and effort needed
to make it wider and/or thicker would not filter out a significant proportion of the
incoming wave amplitude. Of course, if the thickness was reduced too much, reflection
would start to decrease, but keeping it at 1 m would seem to be sufficient.

The most economical approach to improving the amount of protection that is
afforded the VLFS would probably be to have several smaller breakwaters side by
side—possibly separating them by small expanses of open water. Increasing the num-
ber of abrupt changes in surface properties that the incident waves must cross would
help to produce greater reflection.

5. Conclusions. We have considered wave scattering arising from a change of
physical properties—referred to as the transition, across two floating, Euler–Bernoulli,
elastic plates. A new model is reported that utilizes Green’s theorem to construct two
coupled IEs, defined over (0, l) and (l,∞), respectively, and invokes the Wiener–Hopf
method to decouple the system by first solving the IE in (l,∞). After validating the
model two applications are discussed.

1. Wave scattering at the sea-ice/ice-shelf transition, whereby ocean waves in-
cident from the open ocean enter an extended region of sea-ice that may be shore-fast
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or separated from the coast by a lead, i.e., a “river” in the ice, before impinging on
the ice-shelf itself. This geophysical application of the theory has topical relevance
because climate warming is known to be inducing ice-shelf melting in specific regions
of Antarctic, e.g., the Antarctic Peninsula alongside the Weddell Sea, and is contribut-
ing to a reduction in pack ice and shore-fast ice that would formerly have protected
ice-shelves from severe storms. The model described herein replicates this impor-
tant marine system mathematically, potentially allowing anthropogenically assisted
changes in the coastal ice masses to be utilized as a proxy of global change. By way
of example it is proposed that in concert with surface-meltwater-enhanced fracture
involved in the breakup of the 200–300 m-thick Larson B ice-shelf [10, 8], the removal
of the sea-ice barrier and temperature-induced weakening of the ice were precursors
that preconditioned the ice-shelf for breakup. An opportunity to test this hypothesis
using the current model to compute the flexural waves that energize the ice-shelf with
and without the sea-ice barrier in place has arisen and will be the focus of a separate
paper directed at the geophysics as opposed to the mathematical development. While
nothing in polar geophysics is ever straightforward, the mechanisms we have suggested
are worthy of consideration, especially when the possibility of standing waves created
by waves reflected at the hingeline and geometric resonance are also incorporated as
contributing factors [7, 15].

2. Floating, flexible breakwaters are also considered as an application of the
current model. Here, for mathematical convenience the configuration is reversed so
that waves travel towards the transition from the right. Concomitantly, the ice-shelf
is allowed to become vanishingly thin, i.e., open water. Waves then propagate through
the transition region into a floating plate of uniform prescribed thickness. This is an
effective model of a VLFS, e.g., a floating airport, shielded by a skirt of specified
geometry, and the question becomes “how should the skirt be designed to minimize
the amount of wave energy reaching the VLFS?” This is not outrageously futuristic.
A six-year plan launched in 1995 to research and develop Megafloat, a floating airport
in Yokosuka Bay, Japan, involved the construction of a 1,000 m by 60–121 m model
that successfully passed takeoff and landing tests. A detailed evaluation of the tests
on the 1000 m Megafloat and the 4000 m-class test design concluded that a Megafloat
airport with a scale of up to 4000 m was more than feasible. Breakwaters of some type
will be necessary to avoid significant wave-induced flexure of the VLFS, so it is fitting
that we investigate their design using the tools we have developed. Of significance, we
find that the effect of thickness and width of the transition is secondary once a certain
thickness is reached, so a simple cost-benefit analysis needs to be done to decide the
optimum configuration for a particular VLFS.
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INVERSE PROBLEMS RELATED TO ION CHANNEL SELECTIVITY∗
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Abstract. Ion channels control many biological processes in cells, and, consequently, a large
amount of research is devoted to this topic. Great progress in the understanding of channel func-
tion has been made recently using advanced mathematical modeling and simulation. This paper
investigates another interesting mathematical topic, namely inverse problems, in connection with ion
channels. We concentrate on problems that arise when we try to determine (“identify”) one of the
structural features of a channel—its permanent charge—from measurements of its function, namely
current-voltage curves in many solutions. We also try to design channels with desirable properties—
for example with particular selectivity properties—using the methods of inverse problems. The use
of mathematical methods of identification will help in the design of efficient experiments to deter-
mine the properties of ion channels. Closely related mathematical methods will allow the rational
design of ion channels useful in many applications, technological and medical. We also discuss certain
mathematical issues arising in these inverse problems, such as their ill-posedness and the choice of
regularization techniques, as well as challenges in their numerical solution. The L-type Ca channel
is studied with the methods of inverse problems to see how mathematics can aid in the analysis of
existing ion channels and the design of new ones.

Key words. ion channels, Poisson–Nernst–Planck equations, identification, optimal design,
permanent charge, current-voltage relations

AMS subject classifications. 35R30, 92C05, 92C40, 65N21, 65R32

DOI. 10.1137/060664689

1. Introduction. Ion channels are proteins with a hole down their middle that
allow ions to move through otherwise impermeable cell membranes, thereby control-
ling many biological processes of great importance in health and disease. Interest in
channels has grown rapidly because of their general role as controllers of biological
function in health and disease. A quick glance at the literature through a search
on the Internet will find hundreds of papers on channelopathies, diseases of channels
(cf. [As99, LHJR00]). Specifically, channels are proteins akin to enzymes (cf. [Ei90])
that control the flow of ions through membranes and thus control a wide range of
biological functions (cf. [Aletal94, Hi01]).

Channels generate the action potential which conducts all information in the
nervous system and coordinates contraction, including the contraction which allows
the heart to function as a pump. Channels are involved in nearly all sensory function,
in the secretion of hormones, and in the function of the kidney and intestine. There
is hardly a biological function that is not controlled by channels or transporters in an
important way.
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The enormous importance of channels has generated enormous amounts of exper-
imental work. Literally hundreds of laboratories and thousands of scientists measure
channel properties every day with remarkable resolution, often studying the prop-
erties of just one protein molecule. Molecular genetics and molecular biology allow
routine (although tedious) engineering of channel proteins nearly one atom at a time
(cf. [Mietal06]). Few areas of biology are so well explored at such resolution.

Channels also are much simpler than enzymes. Channel function does not involve
changes in covalent bonds or chemistry in that sense. Channels perform many of their
functions without changing structure (on the biological time scale of msec). Ions
move through channels driven by concentration gradients and electrical potential at
room temperature. Channels form an unusual nearly unique system because they are
both physically simple and biologically very important. The daunting complexity of
the structure of many biological systems is not found in single molecules of channel
proteins [TBSS01, Ei98, Maetal03].

One of the defining characteristics of proteins is their selectivity. Most proteins
bind specific organic chemicals with great specificity even at very low concentrations,
10−5 times smaller than concentrations of ions always associated with proteins, e.g.,
K+, Na+, and Cl−, which are typically found at 0.2 M concentration. These organic
molecules often control the biological function of the protein with great specificity
even at these very low concentrations. Ion channels (for example) conduct ions of
one type much better than ions of another type, and this selectivity among ions is
essential for their role in signaling in the nervous system, and coordination of muscle
contraction, particularly in the heart. If the selectivity of ion channels is understood,
and a physical theory is available showing how channel structure produces channel
function, channel proteins can be designed to specification and built using the well-
developed techniques of molecular engineering, e.g., by site-directed mutagenesis.

The design of ion channels to specification can also be seen as an application of
the mathematical theory of inverse problems (“reverse engineering”). Design requires
specialized mathematics because of the complexity and sensitivity (with respect to
perturbations) of the system and the mutual dependence of various design goals: im-
proving some properties can make others worse, and so mathematics is needed to find
a good compromise. In this paper, we show how iterative and variational regulariza-
tion methods developed for inverse problems can be applied to design or identify the
function—in particular the selectivity—of ion channels using the physical chemistry
of crowded charge, which is modeled through the Poisson–Nernst–Planck equations, a
system of nonlinear partial differential equations combined with a density functional
theory of excess chemical potential. The main idea of this approach is to formulate the
design or identification of permanent charge as an abstract operator equation or opti-
mization problem involving Poisson–Nernst–Planck (or related) models for the flow of
electrical charge through the channel and to regularize it either by using an iterative
method with appropriate stopping criterion and/or additional penalization of the ob-
jective functional. This regularization is necessary to compute numerical solutions in
a stable and robust way, since the inverse problem is ill-posed in the sense that small
differences in the electrical current can correspond to arbitrarily large differences in
the permanent charge. In the context of identification, regularization methods allow
computation of a stable approximation to the permanent charge in the channel. In
the context of design, they also allow us to introduce a priori ideas of suitable designs.

Inverse problems arise whenever one searches for causes of desired or observed
effects. Two problems are called inverse to each other if the formulation of one problem
involves the solution of the other one. At first sight, it might seem arbitrary which of
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these problems is called direct and which is called inverse. Usually, the direct problem
is the more classical one. But there is an intrinsic mathematical reason to call one
problem “inverse,” namely the fact that it is usually ill-posed (cf. [EHN96]). When
dealing with partial differential equations, the direct problem usually predicts the
evolution of the described system from knowledge of its present state and the governing
physical laws including information on all physically relevant parameters. A possible
inverse problem would be to compute (some of) the parameters from observations
of the evolution of the system; this particular inverse problem is called “parameter
identification” and is usually ill-posed (cf. [CER90, EHN96, ER95, IS05, Na06]). We
shall highlight the ill-posedness of the inverse problem in a simplified setup, which we
nonetheless expect to capture the essential features of the problem, and we also discuss
identifiability, i.e., the question of whether the unknowns in the inverse problem are
determined uniquely from the data.

Regularization methods are needed to overcome these instabilities and to design
solution techniques that are robust (i.e., that are stable with respect to data and nu-
merical errors). In general terms, regularization methods replace an ill-posed problem
by a family of neighboring well-posed problems. We perform this task for design and
identification problems in ion channels. In addition to the stable approximation, the
regularization methods are also used to introduce a priori knowledge about the ion
channel structure. In a case study of an L-type Ca channel, we present various nu-
merical results, which demonstrate the feasibility of our approach and highlight some
particular issues that are likely to appear in channel and protein problems.

2. Modeling ion channels. In the following, we give a brief overview of contin-
uum models of ion transport through channels. Such models need to incorporate the
electrostatic interaction between the charged particles, the change of charge density
by the mobile ions and a consequent change of the electric field, the generation of ion
flux by the electric field, and the direct electrochemical interactions between the ions.
Here we shall detail and use Poisson–Nernst–Planck (PNP) models, where the un-
knowns are the electric potential V and the densities ρk of the various (ionic) species
present in the channel. Continuum models of this sort have received much atten-
tion in the literature (cf. [CE93, GNE02, GNE03, IR02a, IR02b, Maetal03, NCE00])
as well as criticism, mostly because they neglect correlations produced by the small
number of ions that can fit into a single channel. Correlations can be included in
the derivation of PNP (cf. [SNE01, NHE03]), and certain types of correlations can
be analyzed and included in generalizations of PNP with some success (cf. [GNE02,
GNE03, Maetal03, SNE01, XWGM06]). Much more work is needed in this regard,
and it remains to be seen how well extensions of PNP can deal with the entire set
of correlations present in particle-based simulations. Despite similar limitations, con-
tinuum models are used very widely in many fields: For example, in computational
electronics, continuum models are widely used because they are typically much faster
than particle-based simulations (cf. [Se84, JaLu89]).

In our work, we use the extended form of PNP as found in [GNE02, GNE03],
understanding that we will need to refine and replace this model as it is improved.
The following sections show how our inversion approach can easily be updated to
possibly improved forward models.

We assume that the total number of different species is M , but we distinguish
between the free species and the species confined to the channel, which create the
permanent charge of the channel. For simplicity, we restrict ourselves to a single
confined species, denoted with index M , but extensions to multiple confined species
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Fig. 1. Two-dimensional sketch of the computational domain Ω modelling the bath-channel
system.

are possible. We mention that selectivity in an ion channel can occur only if M ≥ 4,
since one needs at least two free species with charges of the same sign in order to have
selectivity of one over the other, as well as a confined species (permanent charge) and
a free species of opposite sign to achieve charge neutrality in the bath. Since the bath
and channel in practice always includes water, the number of densities should satisfy
M ≥ 5. Indeed, in the case of an L-type Ca channel we study in further detail below,
the number of species is exactly equal to five.

The concentrations have to be computed in a domain Ω that describes the bath
and channel. A schematic setup of Ω is depicted in Figure 1.

The electric potential is computed from the Poisson equation with a source term
equal to the charge generated by the ions, including the permanent charge. For
the continuum description of ion transport, the Nernst–Planck (NP) equations are
used, which involve a diffusion term as well as a drift term caused by the electric
field (ideal electrostatic potential), an external confining potential, and the excess
electrochemical potential. A computational model is a coupled system of the form
(after suitable scaling)

−λ2ΔV =
∑
k

zkρk,(2.1)

−∇ · (mjρj∇μj [ρ1, . . . , ρM ;V ]) = 0, j = 1, . . . ,M.(2.2)

Here zk denotes a relative charge of the kth species, mj is the mobility, and λ is a
scaled variable depending on the dielectric coefficient, elementary charge, and typical
values of the concentrations ρk. The potentials μk are computed as variations of an
energy functional, i.e.,

μk =
∂

∂ρk
E[ρ1, . . . , ρM ;V ],(2.3)
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which is of the form

E[ρ1, . . . , ρM ;V ] =

∫
Ω

(
−λ2|∇V |2 +

∑
k

(zkV ρk + ckρk log ρk + μ0
kρk)

)
dx(2.4)

+ Eex[ρ1, . . . , ρM ].

The functional E includes electrostatic interaction via the electric field (the first two
terms), diffusion (the logarithmic term), external forces via potentials μ0

k, and direct
electric and chemical interactions. Note that the Poisson equation (2.1) can be seen
as an equilibrium condition for this energy, i.e.,

0 =
∂

∂V
E[ρ1, . . . , ρM , V ].(2.5)

Besides the specific exchange terms in energy and potentials, the PNP equations
(2.1), (2.2) are a standard model for electrodiffusion of charged species (cf. [Ru90]),
which has well-known applications to semiconductors (cf. [VR50, MRS90]). A major
difference between electrodiffusion of ions and semiconductors is that it is easy to con-
trol the concentrations of the different species in the bath independently of the applied
potential, while it is not easy (or even usually possible) to control the concentration
of holes or electrons independent of the contact potential. Boundary conditions for
the ion channel problem are of the form

V = U on ΓD,

ρj = ηj on ΓD, j = 1, . . . ,M − 1,

∂μM

∂n
= 0 on ΓD,

∂V

∂n
= 0 on ΓN ,

∂μj

∂n
= 0 on ΓN , j = 1, . . . ,M.

(2.6)

Here the boundary is split into ∂Ω = ΓD ∪ ΓN , where ΓN is the insulated part and
∂.
∂n denotes the normal derivative. Since there are usually two baths, ΓD will consist
of two separated components, and the boundary values are typically constant on each
component. The potential U (or, rather, the difference of U between the left and
right bath) denotes an applied voltage, and ηj are the bath concentrations of the free
species, which are constrained by the charge neutrality condition

M−1∑
j=1

zjηj = 0.(2.7)

Note that the confined species is usually modeled at equilibrium, which is equivalent
to the zero flux boundary condition (for the constrained ions) on the whole boundary.
The total number of confined particles NM needs to be specified to determine ρM ,
giving ∫

Ω

ρM dx = NM .(2.8)
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The (measured) output of a channel is the current flowing out on one side, given
by

I =

M−1∑
k=1

∫
Γ0

zkJk · dn,(2.9)

where Γ0 ⊂ ΓD is one of the connected components of ΓD and Jk denotes the flux of
species k given by

Jk = −ρk∇μk = −ck∇ρk − zkρk∇V − ρk∇μ0
k − ρk∇μex

k ,(2.10)

where the excess potential is defined as μex
k = ∂Eex

∂ρk
. The current can also be measured

and computed from the charge induced on surrounding (Dirichlet) boundaries using
the Shockley–Ramo theorem (cf. [NPGE04]).

We mention that the nondimensionalization and scaling of (2.1), (2.2), (2.6) can
be performed in an analogous way to the drift-diffusion model for semiconductors
(cf. [MRS90]), and for typical values one also has to expect that λ is small; i.e., the
Poisson equation (2.1) becomes a singularly perturbed problem.

The system just described has to be coupled to some model for the excess poten-
tials. The excess electrochemical potentials (obtained as variations of the excess en-
ergy with respect to the particle densities) include the direct interactions between the
ions, usually obtained from hard-sphere or Lennard-Jones models. The external con-
fining potential describes the external forces produced by the structure of the channel
on the ionic groups of the protein that make up the permanent charge. This confined
permanent charge produces the selectivity of the channel. For our test computations
detailed below, we use a specific model of the other components of the excess potential
based on density-functional theory (DFT), as described in [GNE02, GNE03, NCE00].
Other models of the excess electrochemical potential require similar computational
schemes and lead to the same kind of inverse problems. For a detailed statement of
all equations used in the computation of the excess potentials we refer to the appendix
of [BEE06].

3. Inverse problems in ion channels. As in many inverse problems, we con-
sider two classes of inverse problems in ion channels, which have different practical
motivations:

• Identification problems consist in determining properties of a “real” channel
(permanent charge and structure), given measurements of the channel output
(the total current, in a standard experimental setting) at various different
conditions (applied voltages, bath concentrations of the ions).

• Design problems consist in determining properties of a “synthetic” channel—
either a modification of a natural channel (cf. [Mietal06]) or an abiotic ana-
logue of a biological channel (cf. [Sietal06])—such that optimal characteristics
are obtained with respect to some criterion (e.g., selectivity with respect to
certain ion species). The medical and technological effects of improved se-
lectivity can be very important. For example, improving Ca selectivity in
the L-type Ca channel (by using a drug that changes permanent charge in a
way mathematics suggests, if such a drug can be made) would be medically
relevant.

The unknowns to be identified or designed are related to the permanent charge,
i.e., the ion species confined to the channel. First, an important number is the total
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amount of permanent charge, i.e., the number NM of charged particles confined to
the channel. A second important quantity determining the permanent charge is the
external confining potential μ0

M , which represents the forces acting on the permanent
charge and encodes the channel structure. In the absence of an electrical field and of
electrochemical interaction with other ions, the permanent charge density is given by

ρM = γMNM exp
(
−μ0

M/zk
)

(3.1)

with a constant γM determined from the condition (2.8). Hence, the number NM

and the confining potential μ0
M determine the permanent charge density and, subse-

quently, the selectivity properties of the channel. If the sensitivity of the permanent
charge density ρM with respect to voltages and bath concentrations in the measured
range appears to be negligible, one can also try to directly infer ρM from the mea-
surements, ignoring the NP equation for ρM . The total charge NM is a single positive
number for which a lower bound (zero) and an upper bound (since too large per-
manent charges would destroy the channel) are available, and thus it could even be
determined by sampling all its possible values. The ill-posedness plays no significant
role in the determination of NM . The confining potential μ0

M (and also the density
ρM as an alternative) is a function of space, so that the inverse problem of determin-
ing the confining potential is infinite-dimensional. Since ill-posedness in the sense of
discontinuous dependence on data arises only for infinite-dimensional problems and
numerical instability becomes more severe as the number of unknowns/design param-
eters in the inverse problems increases (cf. [EHN96]), instability effects are expected
to be more significant for determining the confining potential than for determining the
total charge. As a consequence of the ill-posedness, suitable regularization methods
have to be used to compute stable approximations of the confining potential, as ex-
plained in the previous sections. In the following, we will describe the computational
solution of the inverse problems of determining total charge and confining potential
in detail, both in the cases of identification and of design.

3.1. Identification. The aim of the identification problem is to find the total
charge and/or the confining potential from measurements of the outflow current I
taken at different bath concentrations ηj (boundary values of the densities ρj) and
at different applied voltages U (boundary values of the electric potential V ). The
measured current I is one real number for each combination of voltage and bath
concentrations. In general, I can be seen as a functional of voltage and bath concen-
trations. The underlying forward model creates a relation between the input P and
the output I, which can be modeled via a nonlinear operator F : P �→ I between
function spaces. Note that the evaluation of the operator F for a specific value of P
involves the solution of forward problems with given P for each combination of volt-
age and bath concentrations (in the idealized setting an infinite number of forward
problems). In this setup, the identification problem can be formulated as the operator
equation

F (P ) = Iδ,(3.2)

where Iδ denotes the noisy version of the current obtained from measurements.
We mention that this identification problem has many similarities to the iden-

tification of doping profiles (i.e., permanent charges) in semiconductor devices from
electrical measurements, a problem which has been investigated in detail previously
(cf. [BEMP01, BEM02, BELM04, LMZ06, Wo06, WB06]). Since the underlying dif-
ferential operators appearing in the forward model are exactly the same, one may
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expect similar mapping properties of the forward operator F . In particular, this
analogy suggests that the identification problem in ion channels (concerning the per-
manent charge density or the associated constraining potential) is severely ill-posed,
as was found in some cases for semiconductors (cf. [BEMP01]). Below we shall also
provide analytical arguments for a simplified model and numerical ones for the full
model confirming the severe ill-posedness.

We also want to highlight some important differences between the identification
problem for the permanent charge of ion channels and the already known identifica-
tion of doping profiles in semiconductors. First, the forward models include additional
effects such as the higher number of species, the excess electrochemical potentials, the
different boundary conditions, and the model for the permanent charge density de-
pending on the constraining potential. The second and most important difference is
the amount of data that can be used. For semiconductors, only the voltage can be
varied, but the boundary concentrations (of electrons and holes) are fixed. As a conse-
quence, the amount of data is not enough to produce a unique solution of the inverse
problem using current measurements (cf. [BEM02, Wo06]). On the other hand, one
can also measure capacitances in the case of semiconductors (i.e., variations of the to-
tal charge with respect voltage change), which can significantly improve the quality of
reconstructions in the case of unipolar devices (cf. [Wo06]), but measurements of non-
linear capacitance in biological systems are not analogous (cf. [BeSt98]). However,
even with additional capacitance measurements, there are examples of nonunique-
ness for the identification of doping profiles in bipolar devices due to an inherent
antisymmetry caused by the special boundary values in semiconductors (cf. [Wo06]).
Boundary values cover a wide range in an ion channel, and so this antisymmetry is
broken, and uniqueness in the identification becomes more likely.

For semiconductors, it has already been shown that very demanding problems
such as the inverse conductivity problem with a measured Dirichlet-to-Neumann map
arise as special cases, and the full inverse dopant profiling is even more complex
(cf. [BEMP01]). Since the measured currents and capacitances are functions of a
single variable—the voltage—in semiconductors, the evaluation of the corresponding
forward map F involves significantly fewer numerical solutions (“solves”) than in the
case of ion channels, where the PNP system (2.1), (2.2) has to be solved for varying
bath concentrations as well as voltage. Consequently, the computational complexity
of the identification problem is even higher for ion channels and seems to be one
of the most challenging inverse problems with respect to this issue. Because of the
high number of solves of the PNP system, it is of fundamental importance to use
efficient numerical schemes for the forward problem. Here we use a mixed finite
element scheme with a novel symmetric linearization, which allows an efficient and
robust solution of PNP systems with input parameters that cover a wide range of
values (cf. [BW07]). The fact that currents are measured for many different setups
in ion channel experiments is of crucial importance for the quality of reconstructions.
Since the data set is richer than for semiconductors, one can actually achieve more
ambitious goals in the inverse problem, e.g., unique reconstruction of the permanent
charge density as a function of space (as we shall see below).

3.2. Design. The general remarks and notation of section 3.1 are also valid
here. However, in the case of (optimal) design, there is an objective to be achieved
instead of an object to be determined. In the applications to ion channels we have
in mind, the primary objective is always to increase selectivity of one species over
another. As discussed in detail in [GE02], selectivity has to be defined by experimental
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results, and several different selectivity measures are available. A selectivity measure
Sj of a species can be defined as a functional of ion densities and fluxes (possibly
at varying voltage; cf. [GE02]). Since the densities and fluxes depend implicitly on
the unknowns P related to the permanent charge (total number of charges or the
constraining potential), the selectivity measure can also be rewritten as a functional
Sj = Sj(P ) of these parameters. If the aim is to increase selectivity of species a over
b, then one can minimize a relative selectivity measure

Q(Sa(P ), Sb(P )) → min
P

.(3.3)

A simple widely used choice which we also use in our computational experiments is
the selectivity quotient Q(Sa, Sb) = −Sa

Sb
(note that minimizing the negative quotient

is equivalent to the original aim of maximizing the relative sensitivity). Analogous
treatment is possible for other choices of Q, e.g., Q(Sa, Sb) = Sb

Sa
or Q(Sa, Sb) =

−Sa + Sb.
In practice, to achieve a design task does not mean to actually maximize the

functional Q, but usually one is satisfied if a significant improvement with respect to
the criterion described by Q, e.g., the channel selectivity, is achieved.

The optimal design problem shares many of the problems of instability and ill-
posedness with the identification problem. In the optimal design problem, however,
there are no input data, but only a goal to be achieved, so that noise in the input
data is not relevant. However, if one minimizes a functional Q as part of the solution
of the design problem, as was done previously in the identification problem, then
first of all the minimizer might not exist, which means that the norm of P tends to
infinity in the associated minimization algorithm. Even if a minimizer exists, it might
not be robust with respect to small perturbations of the problem (modeling errors,
numerical errors, small changes of applied voltage and concentrations, etc.), so that
a computed solution becomes useless in practice. Due to these instabilities, we have
used regularization approaches to solve the design problem similar to those used for
the identification problem (section 5).

We finally mention that optimal design problems for PNP systems have also been
investigated before in semiconductor applications (cf. [HP02a, HP02b, BP03]), but
again there are many significant differences in applications to ion channels. Besides
all the differences in the forward problem, the optimal design of semiconductors (and,
in particular, the objective functional) is always related to currents. In semiconduc-
tors, only holes and electrons carry charge, and so there is no analogue to selectivity
measures of ion channels. Hence, the optimal design task for ion channels is a quite
new problem that connects only loosely to previous literature.

4. Analysis of a simplified model. In order to obtain further insight into the
structure of the inverse problems, we study a simplified model case for a spatially one-
dimensional setup, i.e., Ω = (−L,L), with the channel being the subregion (−�, �).
We ignore all direct interactions; i.e., we set Eex ≡ 0, and, moreover, we set μ0

k ≡ 0.
Hence, we arrive at the one-dimensional PNP model

−λ2V ′′ −
M∑
j=1

zjρj = 0,(4.1)

J ′
k = 0, k = 1, . . . ,M − 1,(4.2)

Jk − ρkzkV
′ − ckρk

′ = 0, k = 1, . . . ,M − 1,(4.3)
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with boundary conditions

V (−L) = 0, V (L) = U, ρk(±L) = η±k , k = 1, . . . ,M − 1.

The equations simplify after an exponential transform to a new set of variables
(also called Slotboom variables; cf. [MRS90]) uk = e−βkV ρk, where βk = − zk

ck
. We

obtain

−λ2V ′′ −
M−1∑
j=1

zje
βjV uk = zMρM ,(4.4)

J ′
k = 0, k = 1, . . . ,M − 1,(4.5)

Jk − cke
βkV u′

k = 0, k = 1, . . . ,M − 1,(4.6)

with boundary values V (−L) = 0, V (L) = U , uk(−L) = η−k , and uk(L) = e−βkUη+
k .

Starting from this transformation, (4.5) and (4.6) can be integrated to obtain the
solution

ρk(x) =

(
η−k + (e−βkUη+

k − η−k )
Gk(x)

Gk(L)

)
eβkV (x)(4.7)

with the function

Gk(y) :=

∫ y

−L

e−βkV (x) dx.

Inserting the explicit solution for the concentrations from the NP equations into the
Poisson equation, we obtain a single nonlinear integro-differential equation for the
electric potential as

−λ2V ′′ −
M−1∑
k=1

Rk[V ] = zMρM(4.8)

with the nonlinear operators Rk given by

Rk[V ](x) = zk

(
η−k + (e−βkUη+

k − η−k )
Gk(x)

Gk(L)

)
eβkV (x).(4.9)

The fluxes Jk can be computed as

Jk =
(e−βkUη+

k − η−k )∫ L

−L
e−βkV (x) dx

.(4.10)

Since the fluxes Jk are constant in spatial dimension one (and JM = 0), we obtain
the current globally as

I =

M−1∑
k=1

zkJk.(4.11)

From a computational viewpoint, it seems attractive to consider a setup around
(thermodynamic) equilibrium, since the solution of the forward model can be approxi-
mated by the simpler linearization around the equilibrium state. An equilibrium situ-
ation is obtained if the fluxes of all species vanish, which means in the one-dimensional



970 M. BURGER, R. S. EISENBERG, AND H. W. ENGL

setting that η−k = e−βkUη+
k , since the flux of every ionic species vanishes in this case.

Note that one can always find suitable combinations of the bath concentrations that
satisfy the above equilibrium condition as well as charge neutrality (e.g., vanishing
bath concentration will always be an equilibrium case), so that we obtain a family of
equilibria, still freely parameterized by the voltage U . This is an important particular
feature of PNP systems in channels and will allow us to study some new effects. On
the other hand, this also highlights possible redundancy in the data, since there are
several parameter combinations that produce zero fluxes and even more that produce
zero current, i.e., data without information content for the inverse problem.

The equilibrium electric potential parameterized by U will satisfy

−λ2V ′′
0,U −

M−1∑
k=1

zkη
−
k e

βkV0,U = zMρM , V0,U (−L) = 0, V0,U (L) = U.(4.12)

Since βk and −zk have the same sign and since η−k is nonnegative, the nonlinear
terms zkη

−
k e

βkV0,U in the Poisson equation depend monotonically on V0,U , so that
the existence and uniqueness of the solution can be seen easily, as well as the stable
dependence on ρM .

Now consider the linearization of the problem around the equilibrium values of
η±k , i.e., the first-order change (in ε) of the output I with respect to perturbations of
the form η±k + εη̂±k that still satisfy charge neutrality. The first-order expansion of the
integral term in (4.10) disappears, since the numerator vanishes at equilibrium, and
hence the linearized output is given by

Î(U) =

M−1∑
k=1

zk
(e−βkU η̂+

k − η̂−k )∫ L

−L
e−βkV0,U (x) dx

.

We mention that the use of ÎU instead of I produces only a restriction of the data set.
It is not a simplifying assumption because ÎU can be computed from the measurements
of currents I in a full range of parameters around their equilibrium values.

Now assume that M ≥ 4, so that we have at least three different mobile species.
Then one can always find values η̂±k satisfying charge neutrality such that η̂−k =
e−βkU η̂+

k , k 	= m, and η̂−m 	= e−βmU η̂+
m for some m ∈ 1, . . . ,M − 1. Hence, for this

choice,

Î(U) = zm
(e−βmU η̂+

m − η̂−m)∫ L

−L
e−βmV0,U (x) dx

,

and therefore one can directly infer the knowledge of M(U) =
∫ L

−L
e−βmV0,U (x) dx

from the knowledge of ÎU . Since the equilibrium Poisson equation can be solved
uniquely for fixed U and given ρM , the forward map can be related to a (nonlinear)
integral operator, and the identification of the permanent charge density corresponds
to a nonlinear integral equation of the first kind (the unknown appears only under
the integral sign), which is a classical ill-posed problem (cf. [En97, Gr84]).

The analysis particularly simplifies for the equilibrium case of small bath con-
centrations, i.e., a perturbation of η±k ≡ 0. In this situation, we can compute
V0,U = V0,0 + x+L

2L U , where V0,0 solves

−λ2V ′′
0,0 = zMρM , V0,0(±L) = 0.
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Noticing that there is a one-to-one dependence between ρM and the function f :=
e−βmV0,0 , we can rephrase the integral equation as

M̃(σ) =

∫ L

−L

e−σxf(x) dx

with M̃(σ) = e
βmU

2 M(U) and σ = −βm

2LU . Varying the voltage U in an interval
(−Umax, Umax) is then equivalent to varying σ ∈ (−σmax, σmax). Hence, we arrive
at a Fredholm integral equation of the first kind for f , with an analytic kernel, a
problem which is known to be severely ill-posed (see the analysis below). The standard
classification of ill-posedness we refer to divides into mildly ill-posed problems with an
error amplification that grows like a polynomial with increasing frequency and severely
ill-posed problems with faster growing error amplification (usually exponentially).
The remaining step of computing ρM from f is another nonlinear ill-posed problem,
which involves the application of a logarithm and two differentiations to compute

ρM =
λ2

zMβm
(log f)

′′

and is therefore mildly ill-posed.
Identifiability, i.e., uniqueness of the reconstruction from the given data set, can be

guaranteed in this case independent of the size of Umax (respectively, σmax). Assume
that M(σ) is known in an arbitrarily small interval around σ = 0; then, in particular,
all derivatives

(−1)p
dp

dσp
M̃(0) =

∫ L

−L

xpf(x) dx, p = 0, 1, . . . ,

and hence all moments of f are known. Since a function is uniquely determined from
its moments, we conclude the uniqueness of the reconstruction of f and subsequently
of ρM . Note that we have used only a subset of the data to show identifiability, and
so one might argue that the full inverse problem is actually overdetermined.

In order to gain some quantitative information about the instability present in
the identification problem, we investigate the singular values of the operator

K : L2([−L,L]) → L2([−σmax, σmax]), f �→
∫ L

−L

e−σxf(x) dx.

Note that K is a symmetric positive semidefinite operator, and hence the singular
values and eigenvalues are equal. As mentioned above, the fact that the integral kernel
is analytic implies that the eigenvalues decay faster than any polynomial (cf. [We68]).
One actually expects exponential decay. This is confirmed by a numerical computation
of the spectrum (with 1025 grid points) displayed in Figure 2, where we plot the
singular values (rescaled so that the leading one is equal to one) for different values
of σmax and L = 1 fixed. (We do not consider the change of L, since its change can
be related to the change of σmax by a simple rescaling.) Since the error amplification
factor at each frequency equals the inverse of the singular value, this problem is indeed
severely ill-posed. The influence of the maximal value σmax is seen by comparing the
four results in the figure. For a smaller value of σmax, the decay of singular values is
faster, which implies a more significant loss of information. Since σmax is proportional
to the maximal value of the applied voltage U , this result shows that one should
make measurements at as large a voltage as possible to reduce the instability in the
reconstruction as much as possible.
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Fig. 2. Leading singular values of the linear operators K for different values of σmax.

5. The full inverse problems. In the following, we shall discuss the forward
problem, namely the solution of the PNP-DFT model for given data, and the map F
to the output, namely current-voltage curves for different bath concentrations. This
map will be of fundamental use in the mathematical formulation and solution of the
inverse problems. As a first step, we analyze the existence and uniqueness of solutions,
which hold at least for small bath concentrations of the free species.

5.1. Properties of the forward operators. In the following, we provide an
analysis of the PNP model, including the excess free energy. We mention that an ex-
tensive analysis of PNP systems is available for applications to semiconductor devices
(cf. [MRS90] and the references therein), but the inclusion of the excess free energy in
the ion channel model prevents a direct extension of these available results. We shall
consider only a particular case of small bath concentrations in the following, in order
to make sure that the forward operator can indeed be well-defined at least in some
parameter range. To clarify, we state the system we consider, namely the solution of
(2.1), (2.10) and, as an equivalent statement of (2.2),

∇ · Jk = 0, k = 1, . . . ,M,(5.1)

together with (2.6) and (2.8). In order to show the specific dependence on the applied
voltage U , the vector of bath concentrations η = (ηk)k=1,...,M−1, the number NM

of confined particles, and the confining potential μ0
M , we introduce the following

nomenclature:

We denote by P(U, η;NM , μ0
M ) the problem of solving (2.1), (2.10),

(5.1), (2.6), (2.8) for the unknowns (V, ρ1, . . . , ρM ).

We shall assume that U ∈ H
1
2 (∂ΩD)∩L∞(ΩD) and that Eex is twice continuously

differentiable on H1(Ω)M ∩L∞(Ω)M . For the sake of simplicity, we also assume that
Eex(ρ1, . . . , ρM−1, ·) is a convex functional of the last variable if ρk, k = 1, . . . ,M −1,
is sufficiently small. Consequently, the map between the density ρM and the confining
potential μ0

M is monotone in this range.
We start our analysis in the case of zero bath concentrations, i.e., ηk = 0, for

k = 1, . . . ,M − 1. In this case, there is obviously no flow, and we can easily construct
a solution.
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Lemma 5.1. Under the above assumptions, there exists a solution

(V, ρ1, . . . , ρM ) ∈ H1(Ω)M+1 ∩ L∞(Ω)M+1

of problem P(U, 0;NM , μ0
M ), which satisfies ρk ≡ 0 for k = 1, . . . ,M − 1.

Proof. The functions ρk ≡ 0 satisfy the boundary conditions as well as (2.10),
(5.1). We now look for a solution of the remaining problem

−λ2ΔV = zMρM , ρM = γMNM exp

(
−zMV + μ0

M + μex
M

cM

)
,

with the boundary conditions remaining for ρM and V . Using the monotone depen-
dence of μex

M on ρM it is straightforward to show that for each V ∈ H1(Ω) ∩ L∞(Ω)
there exists a unique solution ρM ∈ H1(Ω) ∩ L∞(Ω) of the second equation. More-
over, the specific exponential dependence on V implies that the map F : V �→ −zMρM
is monotone and continuously Fréchet-differentiable, too. Hence, we can perform a
further reduction to a problem of the form

−λ2ΔV + F(V ) = 0 in Ω

with Neumann and Dirichlet boundary conditions on the respective parts of ∂Ω.
Finally, a standard result for elliptic equations with monotone operators implies ex-
istence and uniqueness of this remaining problem (cf. [Sh96]).

In order to proceed to small positive bath concentrations, we shall perform a
linearization around zero concentrations. The formal linearization of the PNP system
around a given state (V, ρ1, . . . , ρM ) is given by

−λ2ΔV̂ −
∑

zkρ̂k = f0,(5.2)

∇ ·

⎛
⎝ck∇ρ̂k + zkρk∇V̂ + zkρk∇

⎛
⎝∑

j

∂μex
k

∂ρj
ρ̂j

⎞
⎠+ zkρ̂k∇(V + μ0

k + μex
k )

⎞
⎠= ∇ · (ρk∇fk),

(5.3)

cM
ρ̂M
ρM

+ V̂ +
∑
j

∂μex
M

∂ρj
ρ̂j = fM(5.4)

with right-hand sides fj ∈ L∞(Ω) ∩ H1(Ω), j = 0, . . . ,M , to be solved for V̂ and
ρ̂k. The left-hand side of (5.2), (5.3) is indeed a Fréchet derivative of the left-hand
side in the PNP system. We are going to prove that this linearization defines a con-
tinuously invertible linear operator (f0, . . . , fM ) �→ (V̂ , ρ̂1, . . . , ρ̂M ) around zero bath
concentrations, i.e., for (V, ρ1, . . . , ρM ) being the solution of problem P(U, 0;NM , μ0

M )
from Lemma 5.1. The implicit function theorem in Banach spaces (cf. [De85, Theo-
rem 15.1]) then yields the local existence and uniqueness of solutions as well as the
well-posedness of the linearized problems for small bath concentrations.

Lemma 5.2. Let (V, ρ1, . . . , ρM ) be the solution of problem P(U, 0;NM , μ0
M ), as

in Lemma 5.1. Then, for any fj ∈ L∞(Ω)∩H1(Ω), . . . , there exists a unique solution

(V̂ , ρ̂1, . . . , ρ̂M ) ∈ H1(Ω)M+1 ∩ L∞(Ω)M+1

of (5.2), (5.3), which depends continuously on the data.
Proof. Due to ρk ≡ 0 for k = 1, . . . ,M − 1, the NP equations (2.2) simplify to

∇ ·
(
ck∇ρ̂k + zkρ̂k∇(V + μ0

k + μex
k )

)
= 0
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and, in particular, become scalar equations decoupled from the other variables. After
a change of variables to uk := ρ̂k exp(−βk(V + μ0

k + μex
k )), with βk = − zk

ck
, we obtain

the equation

∇ ·
(
ck exp(−βk(V + μ0

k + μex
k ))∇uk

)
= 0,

whose well-posedness can be analyzed by standard techniques for elliptic equations due
to the absence of convective terms. Using also the equilibrium boundary conditions
for ρ̂M , we obtain the remaining problem

−λ2ΔV̂ − zM ρ̂M = f̃0, cM
ρ̂M
ρM

+ V̂ +
∂μex

M

∂ρM
ρ̂M = f̃M ,

now with the given right-hand sides f̃0 =
∑M−1

k=1 zkρ̂k + f0 and f̃M =
∑M−1

k=1 (fk −
∂μex

M

∂ρk
ρ̂k). For the remaining problem to compute V̂ and ρ̂M , exactly the same ar-

guments as in Lemma 5.1 apply, so that we can conclude the well-posedness of the
linearization.

We now have collected the necessary prerequisites to prove the well-posedness of
the problem for small bath concentrations.

Theorem 5.3. Let ‖ηk‖H1/2(ΓD) and ‖ηk‖L∞(ΓD) be sufficiently small. Then,

for each U ∈ H1/2(ΓD), there exists a locally unique solution

(V, ρ1, . . . , ρM ) ∈ H1(Ω)M+1 ∩ L∞(Ω)M+1

of problem P(U, η;NM , μ0
M ), and the linearized problem (5.2), (5.3) is well-posed.

Proof. In the lemmas above, we have shown that the problem for η ≡ 0 is
well-posed and its Fréchet-derivative exists with continuous inverse in the respective
function spaces. Moreover, the equation operator is Fréchet differentiable, so that we
can apply the implicit function theorem in Banach spaces (cf. [De85, Theorem 15.1])
to conclude that a locally unique solution of problem P(U, η;NM , μ0

M ) exists around
η ≡ 0 and that the linearized problems are well-posed for small η.

As a direct consequence of the above result, we can verify the well-definedness and
even differentiability of the map from the relevant input data related to the permanent
charge to the output current.

Corollary 5.4. Let ‖ηk‖H1/2(ΓD) and ‖ηk‖L∞(ΓD) be sufficiently small. Then,

for each U ∈ H1/2(ΓD), the map

G(·;U, η) : R
+ × (H1(Ω) ∩ L∞(Ω)) → R,

(NM , μ0
M ) �→ I(U, η) =

∫
ΓD

∑
zkJk dσ

(5.5)

is well-defined, compact, and continuously Fréchet differentiable.

5.2. Regularization. In practice, one has to discretize the function I of the bath
concentrations and voltages, so that one computes only a finite number K of function
evaluations, denoted by I1, . . . , IK , and the operator F can be written in the form
F = (F1, . . . , FK). The evaluation of a single part Fj amounts to a single solution
of the forward problem for a specific combination of the bath concentrations and
the applied voltage and the subsequent computation of the outflow current from the
solution. The linearization is then of the form F ′ = (F ′

1, . . . , F
′
K), and its adjoint is of

the form F ′(P )∗ =
∑K

j=1 F
′
j(P )∗. Note that the operators Fj are of the form Fj(P ) =
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G(H(P );U j , ηj), where H is the affine linear operator mapping the parameter P to
the pair (NM , μM

0 ). If both NM and μM
0 are the unknowns in the inverse problem,

then H is just the identity. If one of them is known, then H is the operator mapping
the other one to the pair (NM , μM

0 ). The well-definedness and compactness of the
operators Fj and subsequently of F can directly be inferred from Corollary 5.4, and
one can even conclude the existence of Fréchet derivatives of F .

Due to the instability of the inverse problems, regularization methods should be
used for their solution. One of the most frequently used classes of regularization
methods for nonlinear problems is variational methods (cf. [EHN96, EKN89, SV89]),
where the inverse problem (3.2) is approximated by the variational problem

Jα(P ) := ‖F (P ) − Iδ‖2 + αR(P ) → min
P

(5.6)

with a suitable regularization functional R (e.g., R(P ) = ‖P − P ∗‖2 for Tikhonov
regularization) and a positive real regularization parameter α. An alternative is iter-
ative regularization methods (cf. [KNS06, ES00, OBGXY05]), based on an iteration
procedure of the form

Pn+1 = Pn −Gn(F (Pn) − Iδ)(5.7)

with a linear or even nonlinear operator Gn (depending on Pn in general). Such an
iterative scheme becomes a regularization method with the appropriate choice of a
stopping index n∗ at which the iteration is stopped. A common choice of stopping
rule—due to its computational simplicity—is the discrepancy principle; i.e., the iter-
ation is stopped when the residual reaches the order of the noise level. We mention
that with the properties of the operator F and its linearization F ′ derived above,
the existing theory of variational and iterative regularization methods can be applied
(cf. [EHN96, EKN89, KNS06, ES00]) to our case. We can then guarantee the regu-
larizing properties and convergence of the methods we apply to inverse problems in
ion channels.

We mention that an analogous iteration method to (5.7) can (and should) be
used to solve the variational problem appearing in variational methods. In our test
examples detailed below, we carried out a gradient-based method, which is an iteration
procedure of the form

Pn+1 = Pn − τn
[
F ′(Pn)∗(F (Pn) − Iδ) + αR′(Pn)

]
= Pn − τnJ

′
α(Pn)(5.8)

which can be interpreted as a minimization method for the variational problem (5.6)
or, with α = 0 and an appropriate choice of the stopping index, as an iterative
regularization method of the form (5.7). Here F ′, R′ denote the derivatives of the
operator F and the functional R, respectively, in the appropriate function spaces.
Moreover, F ′(Pn)∗ is the adjoint of the derivative (which is a linear operator between
these function spaces).

The simplest, but already quite significant, inverse problem to be solved in this
context is to determine the number NM , characterizing the total permanent charge
(i.e., P = NM in the above setting). As noticed above, this problem is one-dimensional
as an inverse problem (although, of course, the direct problem is still a system of
partial differential equations), and hence the instability does not appear. Also, this
problem is not very challenging with respect to the optimization algorithm, which is
fortunate because this problem is particularly important biologically. The main issue
in the optimization is the evaluation of the functional Jα (respectively, the operator
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F ) and its derivative, which involves the solution of several forward problems. The
derivatives can be computed via the adjoint operator F ′

j(Pn)∗ or approximated simply
by finite differencing, which typically creates a higher computational effort but needs
no further implementations than those already used to evaluate the forward operator.
Since the aim is to identify a single real number only, it seems reasonable that this
is possible for rather low values of K, and indeed our computational experiments
indicate that this is possible with high accuracy already for K = 10 and even for
K = 5.

The next level of complexity is the identification of the confining potential μ0
M or

the identification of the permanent charge ρM . By analogy to the simplified problems
considered above, we have to expect that these identifications are severely ill-posed so
that regularization is of fundamental importance. The computational complexity of
this inverse problem is much higher also because a much higher number K of different
setups is needed in order to obtain a reasonable reconstruction of the confining po-
tential or the permanent charge density. It is interesting that numerical exploration
of the forward problem suggests that the details of the distribution of permanent
charge, and thus the details of the constraining potential, are much less important for
biological function than the total amount of that charge as long as the charge is of
one sign and also is not too small.

Also for the design tasks introduced above, one can define variational regulariza-
tion methods by just changing the objective functional to Q + αR. In our computa-
tional tests, we specifically use a variational method of the form

Q(Sa(P ), Sb(P )) + α‖P − P ∗‖2 → min
P

,(5.9)

where P ∗ is a favored initial design. In a synthetic ion channel, this a priori guess
could introduce additional criteria into the minimization; e.g., P ∗ can represent a
total charge or a confining potential that is easy to manufacture, so that the reg-
ularization term would introduce a criterion for the minimizer to be close to easily
manufacturable states. In this way, robustness is introduced in the problem, which
can also be observed in the results of our computational experiments.

From a computational viewpoint, the minimization of the regularized variational
problem (5.9) is an analogous task to the one appearing in identification problems.
The main steps are the evaluation of the objective functional (by solving forward
problems and subsequently evaluating selectivity measures) and the computations of
gradients of the objective functional with respect to P . The latter task can again be
carried out by finite differencing, which reduces to additional solves of the forward
problem and creates a high computational effort, or by solving appropriate adjoint
problems. The total computational effort for solving optimal design problems is usu-
ally much less than for solving identification problems, since the selectivity measure is
computed only for very few different combinations of bath concentrations and voltages.
Significantly fewer forward problems have to be solved for evaluating the objective
functional than in the case of identification.

6. Case study: An L-type Ca channel. In this section, we report on a
case study performed for an L-type Ca channel (LCC), for which we performed the
identification and design tasks as described above. A sketch of the LCC is provided
in Figure 3.

We choose the LCC because it is of enormous importance as the regulator of the
contraction of skeletal and cardiac muscle, and it has received extensive attention in
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Fig. 3. Illustration of the LCC when filled with Ca.

Table 1

Parameter settings for the LCC example, using elementary charge e = 1.602 × 10−19C.

k 1 2 3 4 5

Species Ca2+ Na+ Cl−1 H2O O−1/2

Charge zk 2e e −e 0 − e
2

ρk(L) 6 mM 12 mM 24 mM 55 M 0 M
ρk(−L) var var var 55 M 0 M

the biophysics literature for that reason (cf., e.g., [KMS83, Hetal92, SMC03]). Recent
work shows quite clearly that many properties of two types of calcium channels can be
quantitatively described by extended versions of the PNP model (cf. [Betal06, GNE02,
Mietal06, Mietal04, Waetal05, XWGM06]). Given the importance of calcium channels
and the demonstrated ability of PNP-type models to explain current voltage relations
and selectivity over large ranges of concentration of many types of ions, it is natural
to use this system in our investigation of inverse problems.

6.1. Forward model. The forward model of the LCC involves the electrical
potential V and five densities ρk modeling the three mobile ion species Ca2+, Na+,
Cl−, a neutral mobile species H2O, and half-charged oxygens O−1/2 corresponding to
the permanent charge. This means that each forward problem consists of a coupled
system of six partial differential equations, the Poisson equation (2.1) and five NP
equations (2.2) for the densities ρ1, . . . , ρ5 (see Table 1 for the assignment of densities
to the species).

The channel is modeled as cylindrical with diameter 0.4 nm (y − z plane) and
length 2� = 1 nm (x-direction), embedded in two baths both of length 1.7 nm. This
yields a total length of 4.4 nm for the system, and therefore the computational domain
is chosen as (−L,L) with L = 2.2 nm.

From the geometry of the system, it is rather obvious that the flow arises in
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Fig. 4. Plot of ion densities and electr potential as functions of spatial location for an LCC
with applied voltage 50 mV. The illuminated region is the channel which is scaled in the x-direction
by a factor five compared to the bath regions.

the x-direction, and the model can be reduced by averaging in the y − z plane to a
one-dimensional problem with single spatial variable x; but note that our procedures
are in no way restricted to the one-dimensional case. In this averaging procedure,
the shape of the channel has to be taken into account, which yields some spatially
dependent coefficients in the reduced system of one-dimensional differential equations.
The details of the averaging and an exact statement of the equations to be solved for
the LCC can be found in [GNE02, GNE03, NCE00, BEE06].

We solve the forward problem on a grid with n = 1251 (for data generation) and
n = 1000 cells (for the inverse problem) with a standard conforming finite element
discretization of the electric potential and the Poisson equation and a mixed finite
element discretization of the continuity equations for the ions. Since we have the
electric potential and five different species (Ca2+, Na+, Cl−, H2O, and O−1/2), this
yields 1252 + 5 × 1251 = 7507 degrees of freedom (for data generation), respectively,
1001 + 5 × 1000 = 6001 (for the inverse problem) degrees of freedom, in the forward
problem.

The measurements are the currents, taken as functions of the voltage and of
the left bath concentrations ρk(−L) for k = 1, 2, whereas the right bath concentra-
tions ρk(L) are kept fixed. The water concentration (“osmolarity”) is fixed in both
baths, and ρ5(±L) = 0, because of the confinement of permanent charge to the chan-
nel. The concentrations ρ3(±L) are finally determined from the charge neutrality∑

k zkρk(±L) = 0. The parameter settings for the boundary values are given in
Table 1, where var means that the values are varied in the identification process.

The solution of the forward model for an LCC with the above settings—applied
voltage U = 50 mV, NM = 8 confined oxygens, and confining potential μ0

M plotted as
the exact value in Figure 8—is illustrated in Figure 4. The illuminated region corre-
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sponds to the channel, while the white region to the left and right correspond to the
bath. In this example, one observes many typical effects, in particular the selectivity
properties of the channel. Due to the negative permanent charge (oxygens), there is
an attractive electrical force on the positively charged ions (Na and Ca) and a repul-
sive force on the negatively charged ions (Cl). Moreover, the additional “chemical”
forces arising from the finite volume of the ions produce an additional decrease of the
densities in the channel region. These excluded volume forces are particularly impor-
tant because of the narrow cross section of the channel. This decrease in densities
can be observed in particular in the plot of the water density, since it is the only force
acting on this species. (There are no electrical interactions with water in our system
due to neutrality of our model of water.)

6.2. Identification I: Reconstruction of the total charge. In this case,
one assumes that the structure of the channel is known, but the total charge of the
crowded elements in the selectivity filter is unknown. The inverse identification prob-
lem consists of identifying the total charge based on measurements of the total current
for different bath concentrations of the ions. As noticed before, the reconstruction of
the total charge is the simplest case of an inverse problem for ion channels, so that
we expect more accurate results than for the more complicated inverse problems in
the sections below.

This inverse problem is a finite-dimensional one. We try only to identify a single
real number from a finite number of measurements. As mentioned above, this inverse
problem is not ill-posed in the classical sense of inverse problems theory, cf. [EHN96],
because of the low dimension. The only possible instability is due to nonlinearity
effects, but such effects seemed not to appear in the various computational tests.

For a test of the inverse problem technique, we generated synthetic data for the
setup as used in the LCC [GNE03], i.e., a crowded charge consisting of eight half-
charged oxygens. This means we solve the forward problem with the finer grid and
then compute the resulting currents. Subsequently, we perturb the synthetic mea-
surements by noise and use them as data to solve the inverse problem. (The same
technique is also used for the other inverse problems below.) In this way, we have a
known reference solution, and we can check to see if the algorithm yields reasonable
reconstructions in a stable way.

The reconstructions are carried out by a gradient method for the associated least-
squares functional describing the residual. The gradients are approximated by finite
differences. This is for illustration only. More efficient ways are possible to approxi-
mate the gradient for this and related problems, e.g., via adjoint problems.

In this case, one obtains very accurate reconstructions of the exact total charge
even for noisy data and even for a rather low number of measurements, allowing us to
deal effectively with this quite significant biological problem. The pessimism of early
analysis can be removed if the problem is posed with PNP equations and solved with
the methods of inverse problems (cf. [At79, AJ78]); see below. A typical setup consists
of three different applied voltages (0.1V, 0V, −0.1 V) and two different concentrations
for Na and Ca (2 mM and 4 mM) in the left bath. With all combinations, this gives
3 × 2 × 2 = 12 measured values; i.e., the problem is already overdetermined. An
illustration of the reconstruction process in this situation is given in Figure 5. Here
the reconstructed mass of the crowded particles (scaled by the mass of the eight half-
charged oxygens in the real structure) are plotted versus the number of iterations
in the optimization method. In this case, a standard stopping criterion would stop
the calculation after some 90 to 100 iterations. (The reconstruction does not change
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Fig. 5. Plot of the total charge (relative to the exact value) during the iterations of the gradient
method.

significantly with more computation.) The difference between the scaled mass of the
real total charge and the reconstructed one is less than 5%, although the initial value
is quite far away from the solution. Similar behavior was found also in other tests
with different initial values and parameter settings.

6.3. Identification II: Reconstruction of the structure. The second in-
verse problem is related to the reconstruction of the structure of the channel. This
is done indirectly by identifying the confining potential acting on the crowded ions
(oxygens in our example), which models the way the structure interacts with the
channel. More specifically, the confining potential models the forces that keep the
charged oxygens of the channel inside the selectivity filter.

The unknown in the above setting is given by P = μ0
5. Now the inverse prob-

lem is to find a space-dependent function on the channel region, which is really an
infinite-dimensional problem. In an idealized setting, the unique reconstruction of the
confining potential (as a function of space) would require an infinite number of mea-
surements. Therefore, any measurement realized in practice (where, of course, only a
finite number of measurements can be taken) has to be interpreted as a discretization
of the problem with an infinite number of measurements. It therefore seems obvious
that a higher number of measurements yields better reconstruction, and this is also
confirmed by all our tests. On the other hand, a much higher number of measurements
forces an extremely high computational effort.

The variation of the confining potential μ0
5 has a significant influence only in the

channel region, since outside it will just take some very large values that cause the
confinement of the permanent charge species. In the solution of the identification
problem, we use this a priori knowledge and approximate μ0

5 by a constant func-
tion in the baths. Note that due to the large values of μ0

5 in the bath regions, the
concentration ρ5 is almost zero there in any case.

As representative examples of the behavior of the reconstructions, we illustrate
the results for

(a) four applied voltages and different left bath concentrations for Na and Cl,
for a total of 4 × 2 × 2 = 16 measurements (voltages ±10 mV, ±5 mV and
concentrations 2 mM, 4 mM),

(b) six applied voltages and different left bath concentrations for Na and Cl, for
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Fig. 6. Plot of the squared residual ‖F (Pn) − Iδ‖2 as a function of the iteration number for
4 × 2 × 2 measurements (left) and 6 × 3 × 3 measurements (right).

Fig. 7. Plot of the identification error ‖Pn − P †‖ as a function of the iteration number for
4 × 2 × 2 measurements (left) and 6 × 3 × 3 measurements (right).

a total of 6×3×3 = 54 measurements (voltages ±10 mV, ±6.6 mV, ±3.3 mV
and concentrations 2 mM, 4 mM, 6 mM),

obtained with 0.1% noise. The resulting evolution of the least-squares functional dur-
ing the iteration is plotted in Figure 6 (left for case (a) and right for case (b))—one
observes that they are quite similar in the two cases, and the residual decreases to
some value around the size of the noise level. As has to be expected for iterative reg-
ularization methods (cf. [EHN96, KNS06]), the evolution of the reconstruction error,
however, is completely different, as one can see in the plots of Figure 7 (left for case (a)
and right for case (b)). In the first case (16 measurements), the reconstruction error
is hardly reduced, while in the second case, one already obtains a very significant
decrease before the noise level is reached. This can also be seen from the final recon-
structions obtained with a stopping of the iteration dependent on the noise, which are
shown (here plotting the negative potentials for illustration purpose) in Figure 8 (left
for case (a) and right for case (b)). The initial guess used in both cases is shown in
Figure 9. One observes that the second reconstruction is already rather close to the
real potential, in particular in the left part of the channel. The reason for the better
reconstruction in the left part is that the concentrations are varied in the left bath,
and so there is more sensitivity with respect to the data in this region.
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Fig. 8. Final reconstructions Pn∗ obtained at the stopping index determined by the discrepancy
principle for 4 × 2 × 2 measurements (left) and 6 × 3 × 3 measurements (right).

Fig. 9. Initial value P0 used for all reconstructions of potentials.

These results clearly indicate that the reconstructions will improve for an increas-
ing number of measurements. For a very high number of measurements, the computa-
tional complexity of the inverse problem dramatically increases and will be necessary
to implement very efficient methods to compute reconstructions, including faster for-
ward solvers (cf. [BW07]), adjoint methods for computing derivatives (cf. [GP00]),
and multiscale versions of the regularization methods (cf. [Sch98, BM02]).

The instability of the identification problem in this case is illustrated in the plots
of Figure 10. Here we use the same setup as before (6 × 3 × 3 measurements) but
a slightly higher noise level (1%). We start with an initial guess where the residual
is in the order of the noise level; in such a situation, a stopping rule for an iterative
regularization such as the discrepancy principle would immediately stop the iteration.
If one iterates further (which one would do when using a standard optimization stop-
ping criterion based on the gradient of the residual), then the error starts to increase
(and then possibly oscillates), although the residual is still decreasing. This situation
is illustrated in Figure 10, where the least-squares functional and the error are plotted
as functions of the iteration number. One observes that in this case the least-squares
functional is still decreasing, but the error between the reconstruction and the exact
solution can increase, which demonstrates the ill-posedness of the problem. Note that
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Fig. 10. Plot of the residual (left) and identification error ‖Pn − P †‖ (right) as a function of
the iteration number without regularizing stopping criterion.

this effect did not appear in the examples with a stopping criterion based on regu-
larization theory as described in section 5, which again illustrates the importance of
regularization.

6.4. Identification III: Reconstruction of the permanent charge density
for PNP. As a final step in our study of identification problems, we consider the
reconstruction of the permanent charge density ρM in a pure PNP model; i.e., the
forward model consists in solving (2.1), (2.2), and (2.6) for k = 1, . . . ,M−1 with given
ρM and Eex ≡ 0. Apart from the elimination of the equation for ρM , the discretization
and numerical schemes used to solve the PNP system are the same as in the previous
section; in particular, we use the Landweber iteration as a regularization method.

In this case, we numerically implemented adjoint solvers to compute derivatives,
which results in improved accuracy and lower computational effort even for finer dis-
cretizations (in this case, we use 21 grid points) of the unknown in the inverse problem.
We refer the reader to [GP00] for a general overview of adjoint methodology and to
[BEMP01, Wo06] for the derivation of adjoint problems in related semiconductor
applications.

For the reconstruction, we used five different values of the voltage U and eight dif-
ferent bath concentrations of Na and Ca, which results in a total number of 5× 16×
16 = 1280 measured values. With this amount of data, very reasonable reconstruc-
tions can be obtained even in the presence of noise. The development of the residual
and error ‖Pn − P †‖ are illustrated in Figures 11 (without noise) and 12 (with noise
level 3%). One observes that the residual and error both decrease in a monotone way
in the noiseless case, whereas a minimum of the error is reached after some iteration
number in the presence of noise. However, at this iteration number the relative resid-
ual is already very close to the noise level, so that a stopping rule like the discrepancy
principle would stop already slightly earlier. These results have been obtained with
an initial value P0 ≡ 3 and an exact value P † ≡ 5, but qualitatively similar results
have been computed also with other choices of P0 and P †.

The quality of the reconstructions is illustrated in Figure 13 for permanent charge
P † being constant (left) and of a sinusoidal shape (right). In both cases, the starting
value P0 is dashed, the exact solution P † is dotted, and the reconstruction is the solid
line. One observes that with the amount of data we use, it is possible to reconstruct
the constant solution very accurately, while there remains some visible deviation for
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Fig. 11. Plot of the residual (left) and identification error ‖Pn − P †‖ (right) as a function of
the iteration number in the absence of noise.

Fig. 12. Plot of the residual (left) and identification error ‖Pn − P †‖ (right) as a function of
the iteration number for 3% data noise.

Fig. 13. Plot of reconstructions in the absence of noise for a spatially constant permanent
charge (left) and a spatially varying permanent charge (right).
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the more complicated shape. However, the magnitude of values as well as the prin-
cipal shape (a valley in the middle) could also be reconstructed in the more difficult
sinusoidal second case. Reconstructions of this moderate quality have to be expected
in a severely ill-posed problem even for a larger number of measurements, and even
these are quite tricky to achieve. Situations in which the permanent charge changes
sign or reaches nearly zero are likely to pose even more problems.

6.5. Design: Maximizing selectivity. The final inverse problem we consider
is an optimal design problem, which aims at designing in silico channels with optimal
sensitivity properties (or at least improved sensitivity compared to a given initial de-
sign but possibly also close to this one, which can be used as a constraining criterion).

As a test case, we use one of the three selectivity measures from [GE02], the
so-called permeability ratio, at equal concentrations for all ions in the left and right
bath. (For this sake, we use the bath concentrations ρk(±L) = 20 mM for k = 1, 2
and ρ3(±L) = 60 mM.) More precisely, the selectivity measure is the permeability
ratio for Na and Ca, where the permeabilities on the right side of the channel are
computed (detailed formulas for the computations of the permeabilities Sa are given
in the appendix of [BEE06] and in [GE02]). The unknown to be designed is again
related to the structure of the channel; i.e., we set P = μ0

5 and use the same dis-
cretization as in the previous section. Since our design goal is to maximize or at least
significantly increase the selectivity, we should minimize the negative permeability

ratio. It turns out that formulating the negative permeability ratio −SNa(P )
SCa(P ) as the

objective functional for selectivity, one ends up with a very unstable problem (which
is also expected from the arguments in section 3.2). Moreover, the computed designs
seem not really useful for practical construction due to various oscillations. Therefore,
we use an additional regularization term as proposed in (5.9),

Jα(P ) := −SNa(P )

SCa(P )
+ α‖P − P ∗‖2 → min

P
,(6.1)

where P = μ0
5 is the confining potential to be optimized and P ∗ is the favored initial

design of the confining potential (the one used in the simulations in [GE02]). Besides
its regularizing effect, the second term in the objective functional favors solutions as
close as possible to the initial design, which helps to obtain potentials that can be
realized in practice.

The objective functional is then minimized with a gradient method and suitable
step-size selection to guarantee decrease of the objective, and the gradients are again
approximated by finite differences (see above for a discussion of this point).

A special design case (with parameter α = 200) is illustrated in the plot in
Figure 14 (left), which shows the evolution of the objective functional (black) as well

as its first part, the negative permeability (i.e., selectivity) ratio −SNa(P )
SCa(P ) , during the

iteration until convergence. One observes that an increase in the selectivity measure
of more than 100% is achieved by the optimization. The initial value used for the
optimization and the final result are plotted in Figure 15. One observes that the two
potentials are still very close, and so the structure has not been changed completely.

For comparison (and illustration of instabilities), the classical approach of just
minimizing the negative permeability (i.e., selectivity) ratio is also illustrated with the
same initial value and parameter settings but with the objective functional J(P ) :=

−SNa(P )
SCa(P ) . Again, the right plot in Figure 14 displays the objective functional during

the iterations; the optimal solution is plotted in Figure 16. One observes that in this
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Fig. 14. Objective functional Jα(Pn) (black) and negative permeability ratio (grey; red online)
as a function of the iteration number for α = 200 (left) and α = 0 (right).

Fig. 15. Initial value (left) and computed optimal confining potential (right) for the functional
Jα with α = 200.

Fig. 16. Initial value (left) and computed optimal confining potential (right) for the functional J.

case, the gradient method needs many more iterations than with penalization but
does not yield a dramatic increase of selectivity ratio (around 17 instead of 14 for
the penalized case). However, just one look at the optimal confining potential in the
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unpenalized case (Figure 16) shows that the (small) increase in the ratio is caused by
a blowup in the confining potential (notice the vertical scale of 106!). Obviously, such
extremely high forces will not be easy to realize, and the resulting channel will not be
useful in practice, which is another point in favor of our regularization approach. The
regularization parameter α can control the balance between increasing the selectivity
and “practicability,” namely, remaining close enough to the initial design that the
new channel can actually be built. If α is very large, then the minimizer of Jα will
remain close to the initial guess. For α → 0, the permeability ratio can be increased
further, but also the optimal confining potential will increase more and more (until
it reaches the one computed for J in the limit). So, regularization gives (in addition
to the advantages discussed) even more flexibility in finding a compromise between
different design goals.

We summarize by stating that our examples show that both the identification and
the design goals can be achieved in a stable and efficient way by our approach based
on regularization, as illustrated by the special case using Tikhonov regularization
with an iterative minimization of the Tikhonov functional, and that such results are
not possible by standard approaches due the ill-posed nature of the inverse problems
considered. It will be interesting to see how regularization methods help in the solution
of a range of problems in ion channels and proteins.

REFERENCES

[Aletal94] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Molec-
ular Biology of the Cell, Garland, New York, 1994.

[As99] F. M. Ashcroft, Ion Channels and Disease, Academic Press, New York, 1999.
[At79] D. Attwell, Problems in the interpretation of membrane current-voltage relations,

in Membrane Transport Processes, Vol. 3, C. F. Stevens and R. W. Tsien, eds.,
Raven Press, New York, 1979, pp. 21–41.

[AJ78] D. Attwell and J. J. B. Jack, The interpretation of membrane current voltage
relations: A Nernst-Planck analysis, Prog. Biophys. Mol. Biol., 34 (1978), pp.
81–107.

[BeSt98] F. Bezanilla and E. Stefani, Gating currents, Methods Enzymol., 293 (1998), pp.
331–352.

[Betal06] D. Boda, M. Valisko, B. Eisenberg, W. Nonner, D. Henderson, and D.

Gillespie, Effect of protein dielectric coefficient on the ionic selectivity of a
calcium channel, J. Chem. Phys., 125 (2006), 034901.

[BEE06] M. Burger, B. Eisenberg, and H. W. Engl, Mathematical Design of Ion Chan-
nel Selectivity via Inverse Problems Technology, U.S. Patent Application, Serial
Number 60/791,185.

[BELM04] M. Burger, H. W. Engl, A. Leitao, and P. Markowich, On inverse problems for
semiconductor equations, Milan J. Math., 72 (2004), pp. 273–314.

[BEM02] M. Burger, H. W. Engl, and P. Markowich, Inverse doping problems for semi-
conductor devices, in Recent Progress in Computational and Applied PDEs,
T. F. Chan, Y. Huang, T. Tang, J. A. Xu, and L. A. Ying, eds., Kluwer, Boston,
Dordrecht, London, 2002, pp. 39–54.

[BEMP01] M. Burger, H. W. Engl, P. Markowich, and P. Pietra, Identification of doping
profiles in semiconductor devices, Inverse Problems, 17 (2001), pp. 1765–1795.
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Abstract. The method of moments in the context of nonlinear Schrödinger equations relies on
defining a set of integral quantities, which characterize the solution of this partial differential equation
and whose evolution can be obtained from a set of ordinary differential equations. In this paper we
find all cases in which the method of moments leads to closed evolution equations, thus extending
and unifying previous works in the field of applications. For some cases in which the method fails
to provide rigorous information we also develop approximate methods based on it, which allow us
to get some approximate information on the dynamics of the solutions of the nonlinear Schrödinger
equation.
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1. Introduction. Nonlinear Schrödinger (NLS) equations appear in a great ar-
ray of contexts [1] as, for example, in semiconductor electronics [2, 3], optics in non-
linear media [4], photonics [5], plasmas [6], fundamentation of quantum mechanics [7],
dynamics of accelerators [8], mean-field theory of Bose–Einstein condensates [9], or
biomolecule dynamics [10]. In some of these fields and many others, the NLS equa-
tion appears as an asymptotic limit for a slowly varying dispersive wave envelope
propagating in a nonlinear medium [11].

The study of these equations has served as the catalyst for the development of new
ideas or even mathematical concepts such as solitons [12] or singularities in partial
differential equations [13, 14].

One of the most general ways to express an NLS equation is

(1.1) i
∂u

∂t
= −1

2
Δu + V (x, t)u + g(|u|2, t)u− iσ(t)u,

where Δ = ∂2/∂x2
1 + · · ·+ ∂2/∂x2

n and u is a complex function which describes some
physical wave. We shall consider here the solution of (1.1) on R

n and therefore
u : R

n × [0, T ] → C, with initial values u(x, 0) = u0(x) ∈ X, X being an appropriate
functional space ensuring finiteness of certain integral quantities to be defined later.

The family of NLS equations (1.1) contains many particular cases, depending
on the specific choices of the nonlinear terms g(|u|2, t), the potentials V (x, t), the
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de Educación y Ciencia de la Junta de Comunidades de Castilla-La Mancha).

http://www.siam.org/journals/siap/67-4/64313.html
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dissipation σ(t), and the dimension of the space n. The best known cases are those of
power type, g(|u|2) = α|u|p, or polynomial, g(|u|2) = α1|u|p1 +α2|u|p2 , nonlinearities.

The potential term V (x, t) models the action of an external force acting upon the
system and may have many forms. Finally, we include in (1.1) a simple loss term
arising in different applications [15, 16]. In many cases these losses are negligible,
i.e., σ = 0.

The description of the dynamics of initial data ruled by this equation is of great
interest for applications. Nevertheless, gathering information about the solutions of
a partial differential equation that is nonlinear like (1.1) constitutes a problem that
is a priori nearly unapproachable. For this reason, most studies about the dynamics
of this type of equation are exclusively numerical. The rigorous studies carried out to
date concentrate on (i) properties of stationary solutions [17], (ii) particular results
on the existence of solutions [18, 19], and (iii) asymptotic properties [13, 14].

Only when n = 1, g(|u|2, t) = |u|2, V (x, t) = 0, σ = 0 it is possible to arrive
at a solution of the initial value problem by using the inverse scattering transform
method [12]. In this paper we develop the so-called method of moments, which tries
to provide qualitative information about the behavior of the solutions of NLS equa-
tions. Instead of tackling the Cauchy problem (1.1) directly, the method studies the
evolution of several integral quantities (the so-called moments) of the solution u(x, t).
In some cases the method allows one to reduce the problem to the study of systems of
coupled ordinary nonlinear differential equations. In other cases the method provides
a foundation for making approximations in a more systematic (and simpler) way than
other procedures used in physics, such as those involving finite-dimensional reductions
of the original problem, namely, the averaged Lagrangian, collective coordinates, or
variational methods [20, 21]. In any case the method of moments provides information
which is very useful for the applied scientist, who is usually interested in obtaining
as much information as possible characterizing the dynamics of the solutions of the
problem.

It seems that the first application of the method of moments was performed
by Talanov [22] in order to find a formal condition of sufficiency for the blowup of
solutions of the NLS equation with g(|u|2) = −|u|2 and n = 2. Since then, the method
has been applied to different particular cases (mainly solutions of radial symmetry in
two spatial dimensions), especially in the context of optics, where many equations of
NLS type arise [23].

In previous research, the method of moments has been studied in a range of
specific situations, but in all such cases the success of the method is unrelated to a
more general study. In this paper we try to consider the method systematically and
solve a number of open questions: (i) to find the most general type of nonlinear term
and potentials in (1.1) for which the method of moments allows us to get conclusions,
and (ii) to develop approximate methods based on it for situations in which the
moment equations do not allow us to obtain exact results.

2. Preliminary considerations. Let us define the functional space Q(H) as
the space of functions for which the so-called energy functional,

(2.1) E(u) = (u,Hu)L2(Rn) +

∫
Rn

G(|u|2, t)dx,

is finite, G being a function such that ∂G(|u|2, t)/∂|u|2 = g(|u|2, t), (·, ·)L2(Rn) de-

noting the usual scalar product in L2(Rn), and H = − 1
2Δ + V (x, t). For the case



992 V. PÉREZ-GARCÍA, P. TORRES, AND G. MONTESINOS

V (x, t) = 0 and g independent of time, several results on existence and uniqueness
were given by Velo [18].

As regards the case V �= 0, which is the one in which we are mainly interested
in our work, the best documented case in the literature is that of potentials with
|DαV | bounded in R

n for every |α| ≥ 2; that is, potentials with at most quadratic
growth. Oh [24] proved the local existence of solutions in L2(Rn) and in Q(H) for
nonlinearities of the type g(u) = −|u|p, 0 ≤ p < 4/n. However, the procedure used
allows one to substitute this nonlinearity with other more general ones. It also seems
possible to extend the results to the case in which the potential depends on t.

Therefore, from now on we shall suppose that the nonlinear term satisfies the
conditions set by Velo and that |DαV | is bounded in space for all |α| ≥ 2. Under
these conditions it is possible to guarantee at least local existence of solutions of (1.1)
in appropriate functional spaces.

2.1. Formal elimination of the loss term. In the first place we carry out the
transformation [15]

(2.2) û(x, t) = u(x, t)e
∫ t
0
σ(τ)dτ ,

which is well defined for any bounded function σ(t) (this includes all known realistic
cases arising in the applications). The equation satisfied by û(x, t) is obtained from
the following direct calculation:

i
∂û

∂t
= i

∂u

∂t
e
∫ t
0
σ(τ)dτ + iσ(t)ue

∫ t
0
σ(τ)dτ

=

[
−1

2
Δu + V (x, t)u + g(|u|2, t)u− iσ(t)u

]
e
∫ t
0
σ(τ)dτ + iσ(t)ue

∫ t
0
σ(τ)dτ

= −1

2
Δû + V (x, t)û + ĝ(|û|2, t)û,

where

(2.3) ĝ(|û|2, t) = g(|u|2, t) = g(e−2
∫ t
0
σ(τ)dτ |û|2, t).

From here on we shall consider, with no loss of generality, that σ(t) = 0 in (1.1),
assuming that this choice might add an extra time-dependence to the nonlinear term.

3. The method of moments: Generalities.

3.1. Definition of the moments. Let us define the following quantities:

Ik,j(t) =

∫
xk
j |u(x, t)|2dx =

∥∥∥xk/2
j u
∥∥∥2
L2(Rn)

,(3.1a)

Vk,j(t) = 2k−1i

∫
xk
j

(
u(x, t)

∂ ¯u(x, t)

∂xj
− ū

∂u(x, t)

∂xj

)
dx,(3.1b)

Kj(t) =
1

2

∫ ∣∣∣∣∂u(x, t)

∂xj

∣∣∣∣2 dx =
1

2

∥∥∥∥ ∂u∂xj

∥∥∥∥2
L2(Rn)

(3.1c)

J(t) =

∫
G(|u(x, t)|2, t)dx,(3.1d)

with j = 1, . . . , n and k = 0, 1, 2, . . . , which we will call moments of u(x, t) in analogy
with the moments of a distribution. From now on and also in (3.1) it is understood
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that all integrals and norms refer to the spatial variables x ∈ R
n unless otherwise

stated. In (3.1) we denote by ū the complex conjugate of u.

In some cases we will make specific reference to which solution u of (1.1) is used
to calculate the moments by means of the notation: Iuk,j , etc.

The moments are quantities that have to do with intuitive properties of the so-
lution u(x, t). For example, the moment I0,0 is the squared L2(Rn)-norm of the
solution and therefore measures the magnitude, quantity, or mass thereof. Depending
on the particular application context, this moment is denominated mass, charge,
intensity, energy, number of particles, etc. The moments I1,j(t) are the coordi-
nates of the center of the distribution u, giving us an idea of the overall position
thereof. The quantities I2,j are related to the width of the distribution defined as
Wj = (

∫
Rn(xj − I1,j)

2|u|2dx)1/2 = (I2,j + I2
1,jI0,0 − 2I2

1,j)
1/2, which is also a quantity

with an evident meaning.

The evolution of the moments is determined by that of the function u(x, t). From
now on we will assume that the initial datum u0(x) and the properties of the equation
guarantee that the moments are well defined for all time. This excludes explicitly
certain classes of initial data such as plane waves, etc., which do not decay at infinity.
Thus our results will be relevant for studying the evolution of initially localized and
regular enough initial data.

3.2. First conservation law. It is easy to prove formally that the moment I0,0
is invariant during the temporal evolution by just calculating

d

dt
I0,0(t) =

∫
Rn

(
d

dt
|u|2
)
dx =

∫
Rn

(
ū
∂

∂t
u + u

∂

∂t
ū

)
dx

=

∫
Rn

i

(
1

2
ūΔu− V (x, t)|u|2 − g(|u|2, t)|u|2

)
dx

+

∫
Rn

i

(
−1

2
uΔū + V (x, t)|u|2 + g(|u|2, t)|u|2

)
dx

=

∫
Rn

i

2
(ūΔu− uΔū) dx

=
i

2

(∫
Rn

|∇u|2dx−
∫

Rn

|∇u|2dx
)

= 0,(3.2)

where we have performed integration by parts and used that the function u and its
derivatives vanish at infinity.

Obviously the above demonstration is formal in the sense that a regularity, which
we do not know for certain, has been used for u. Nevertheless, this type of proof can
be formalized by making a convolution of the function u with a regularizing function.
The details of these methodologies can be seen in [18] or [24, 25]. In this paper we
will limit ourselves to formal calculations.

4. General results for harmonic potentials.

4.1. Introduction. From this point onward we will focus on the particular case
of interest for this study when V (x, t) is a harmonic potential of the type V (x, t) =
1
2 (x,Λ(t)x), where Λ is a real matrix of the form Λij(t) = λ2

i (t)δij , with λi ≥ 0 for
i = 1, . . . , n, and δij is the Kronecker delta. Bearing in mind the results of section 2.1,
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the NLS equation under study is then

(4.1) i
∂u

∂t
= −1

2
Δu +

1

2

⎛
⎝ n∑

j=1

λ2
jx

2
j

⎞
⎠u + g(|u|2, t)u.

This equation appears in a wide variety of applications such as propagation of waves
through optical transmission lines with online modulators [26, 27, 28, 29], propagation
of light beams in nonlinear media with a gradient of the refraction index [30, 31], or
dynamics of Bose–Einstein condensates [9]. Generically it can provide a model for
studying some properties of the solutions of NLS equations localized near a minimum
of a general potential V (x).

4.2. First moment equations. If we differentiate the definitions of the mo-
ments I1,j and V0,j , we obtain, after some calculations, the evolution equations

dI1,j
dt

= V0,j ,(4.2a)

dV0,j

dt
= −λ2

jI1,j ,(4.2b)

so that I1,j , j = 1, . . . , n, satisfy

(4.3)
d2I1,j
dt2

+ λ2
jI1,j = 0

with initial data I1,j(0), İ1,j(0) = V0,j(0). These expressions are a generalization
of the Ehrenfest theorem of linear quantum mechanics to the NLS equation and
particularized for the potential that concerns us [24, 32].

This result has been discussed previously in many papers and is physically very
interesting. It indicates that the evolution of the center of the solution is independent
of the nonlinear effects and of the evolution of the rest of the moments and depends
only on the potential parameters.

4.3. Reduction of the general problem to the case I1,j = V0,j = 0. We
shall begin by stating the following lemma [33].

Lemma 4.1. Let u(x, t) be a solution of (4.1) with the initial datum u(x, 0) =
u0(x). Then the functions

(4.4a) uR(x, t) = u(x−R(t), t)eiθ(x,t),

where

(4.4b) θ(x, t) =
(
x, Ṙ
)

+

∫ t

0

[
(Ṙ(t′), Ṙ(t′)) − (R(t′),Λ(t′)R(t′))

]
dt′

and

(4.4c)
d2R

dt2
+ ΛR = 0

for any set of initial data R(0), Ṙ(0) ∈ R
n, are also solutions of (4.1).

Proof. All we have to do is substitute (4.4a), (4.4b), and (4.4c) into (4.1).
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One noteworthy conclusion is that, given a solution of (4.1), we can translate it
initially by a constant vector and obtain another solution. In the case of stationary
states, defined as solutions of the form

(4.5) u(x, t) = ϕμ(x)eiμt,

which exist in the autonomous case (i.e., dλ/dt = 0) and whose dynamics is trivial,
this result implies that under displacements the only dynamics acquired is one of the
movement of the center given by (4.4c). The coincidence of the evolution laws (4.3)
and (4.4c) allows us to state the following theorem, which is an immediate consequence
of the above lemma.

Theorem 4.2. If ψ(x, t) is a solution of (4.1) with nonzero Iψ1,j or V ψ
0,j, then

there exists a unique solution u(x, t) = ψ(x + {Iψ1,j(t)}j , t)eiθ(x,t) with

θ(x, t) = −
∑
j

xjV
ψ
0,j +

∑
j

[∫ t

0

V ψ
0,j(t

′)2 − λj(t
′)2Iψ1,j(t

′)2
]
dt′

such that Iu1,j = 0 and V u
0,j = 0.

The important conclusion of this theorem is that it suffices to study solutions with
I1,j and V0,j equal to zero, as those that have one of these coefficients different from
zero can be obtained from previous ones, by means of translation and multiplication
by a linear phase in x. From a practical standpoint, what is most important is that
I1,j be null without any loss of generality, as then we can establish a direct link
between the widths and the moments I2,j (see the discussion in the third paragraph
of section 3).

4.4. Moment equations. Assuming that all of the moments can be defined at
any time t, we can calculate their evolution equations by means of direct differentia-
tion. The results are gathered in the next theorem.

Theorem 4.3. Let u0(x) be an initial datum such that the moments I2,j, V1,j,
Kj, and J are well defined at t = 0. Then

dI2,j
dt

= V1,j ,(4.6a)

dV1,j

dt
= 4Kj − 2λ2

jI2,j − 2

∫
Rn

D(ρ, t)dx,(4.6b)

dKj

dt
= −1

2
λ2
jV1,j −

∫
Rn

D(ρ, t)
∂2φ

∂x2
j

dx,(4.6c)

dJ

dt
=

∫
Rn

D(ρ, t)Δφdx +

∫
Rn

∂G(ρ, t)

∂t
dx,(4.6d)

where D(ρ, t) = G(ρ, t) − ρg(ρ, t), ρ = |u(x, t)|2.
Proof. The demonstration of the validity of (4.6) can be carried out from direct

calculations, performing integration by parts, and using the decay of u and ∇u at
infinity.

To demonstrate (4.6a) it is easier to work with the modulus-phase representation
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of u, u = ρ1/2eiφ (with ρ > 0). Then

dI2,j
dt

=

∫
x2
j ρ̇ = −

∫
x2
j (∇ρ · ∇φ + ρΔ · φ)

= −
∫

x2
j∇ρ · ∇φ +

∫
∇(x2

jρ) · ∇φ

= −
∫

x2
j∇ρ · ∇φ +

∫
x2
j∇ρ · ∇φ +

∫
∇(x2

j )ρ · ∇φ

= 2

∫
xjρ

∂φ

∂xj
= V1,j .

We can also prove (4.6b) as follows:

dV1,j

dt
= i

∫
xj

(
ut

∂ū

∂xj
+ u

∂ūt

∂xj
− ūt

∂u

∂xj
− ū

∂ut

∂xj

)

=

∫
xj

[
−1

2
Δu

∂ū

∂xj
+

1

2

(∑
λ2
kx

2
k

)
u
∂ū

∂xj
+ gu

∂ū

∂xj
+ u

1

2

∂Δū

∂xj

−λ2
jxj |u|2 −

1

2

(∑
λ2
kx

2
k

)
u
∂ū

∂xj
− ∂g

∂xj
|u|2 − gu

∂ū

∂xj
+ c.c.

]

= −2λ2
j

∫
x2
j |u|2 − 2

∫
xj |u|2

∂g

∂xj

− 1

2

∫
xj

(
Δu

∂ū

∂xj
+ Δū

∂u

∂xj
− u

∂Δū

∂xj
+ ū

∂Δu

∂xj

)
,(4.7)

where c.c. indicates the complex conjugate. Operating on the above integrals, we have∫
xj

(
Δu

∂ū

∂xj
+ Δū

∂u

∂xj
− u

∂Δū

∂xj
− ū

∂Δu

∂xj

)

= −2

∫
xj

(
∇u · ∂∇ū

∂xj
+ ∇ū · ∂∇u

∂xj

)
− 4

∫ ∣∣∣∣ ∂u∂xj

∣∣∣∣2 − 2

∫
|∇u|2

= 2

∫
|∇u|2 − 4

∫ ∣∣∣∣ ∂u∂xj

∣∣∣∣2 − 2

∫
|∇u|2 = −4

∫ ∣∣∣∣ ∂u∂xj

∣∣∣∣2
and ∫

xj
∂g

∂xj
ρ = −

∫
gρ−

∫
xj

∂G

∂xj
= −
∫

gρ +

∫
G =

∫
D.

By substitution into (4.7), we arrive at the desired result:

dV1,j

dt
= −2λ2

j

∫
x2
j |u|2 + 2

∫ ∣∣∣∣ ∂u∂xj

∣∣∣∣2 − 2

∫
D

= −2λ2
jI2,j + 4Kj − 2

∫
D.

Let us now prove (4.6c):

dKj

dt
=

1

2

∫
d

dt

(
∂u

∂xj

∂ū

∂xj

)
=

1

2

∫ (
∂ut

∂xj

∂ū

∂xj
+

∂u

∂xj

∂ūt

∂xj

)

=
1

2

∫
∂

∂xj

[
i

2
Δu− i

2

(
n∑

k=1

λ2
kx

2
k

)
u− igu

]
∂ū

∂xj
+ c.c.;
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then

dKj

dt
= − i

2
λ2
j

∫
xj

(
u
∂ū

∂xj
− ū

∂u

∂xj

)
− i

2

∫
∂g

∂xj

(
u
∂ū

∂xj
− ū

∂u

∂xj

)

+
i

4

∫ (
∂Δu

∂xj

∂ū

∂xj
− ∂u

∂xj

∂Δū

∂xj

)
= −1

2
λ2
jV1,j +

∫
g

∂

∂xj

(
ρ
∂φ

∂xj

)

= −1

2
λ2
jV1,j +

∫
g

(
ρ
∂2φ

∂x2
j

+
∂ρ

∂xj

∂φ

∂xj

)
,

and, using the definition of G, we obtain

dKj

dt
= −1

2
λ2
jV1,j +

∫
gρ

∂2φ

∂x2
j

+

∫
∂G

∂xj

∂φ

∂xj

= −1

2
λ2
jV1,j +

∫
gρ

∂2φ

∂x2
j

−
∫

G
∂2φ

∂x2
j

= −1

2
λ2
jV1,j −

∫
(G− ρg)

∂2φ

∂x2
j

= −1

2
λ2
jV1,j −

∫
D
∂2φ

∂x2
j

.

Finally, to demonstrate (4.6d) we proceed as follows:

dJ

dt
=

∫
dG(ρ, t)

dt
=

∫ [
∂G

∂ρ

(
∂ρ

∂u
ut +

∂ρ

∂ū
ūt

)
+

∂G

∂t

]

=

∫ [
∂G

∂ρ
(ūut + uūt) +

∂G

∂t

]
=

i

2

∫ [
g (ūΔu− uΔū) +

∂G

∂t

]

=

∫ [
−g∇ · (ρ∇φ) +

∂G

∂t

]
=

∫ [
−g∇ρ · ∇φ− gρΔφ +

∂G

∂t

]

=

∫ [
−∇G · ∇φ− gρΔφ +

∂G

∂t

]
=

∫
(G− gρ) Δφ +

∫
∂G

∂t

=

∫
DΔφ +

∫
∂G

∂t
.

A direct consequence of the theorem is the following.
Corollary 4.4. Let u(x, t) be a stationary solution of (4.1). Then

(4.8) Kj =
1

2
λ2
jI2,j +

1

2

∫
D(ρ)dx.

5. Solvable cases of the method of moments. In this section we will study
several particular situations of practical relevance in which the method of moments
thoroughly provides exact results.

5.1. The linear case g(ρ, t) = 0. In this case, (3.1d) and (4.6d) tell us that
J(t) = 0 for all t, and then the moment equations (4.6) become

dI2,j
dt

= V1,j ,(5.1a)

dV1,j

dt
= 4Kj − 2λ2

jI2,j ,(5.1b)

dKj

dt
= −1

2
λ2
jV1,j .(5.1c)
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That is, in the linear case the equations for the moments along each direction j of the
physical space R

n are uncoupled. This property was known in the context of optics
for n = 2 and constant λj [34]. Here we see that this property holds for any number
of spatial dimensions, time dependence λ(t), and even for nonsymmetric initial data.

5.2. Condition of closure of the moment equations in the general case.
Equations (4.6) do not form a closed set, and therefore to obtain, in general, their
evolution we would need to continue obtaining moments of a higher order, which would
provide us with an infinite hierarchy of differential equations. Given the similarity
among the terms that involve second derivatives of the phase of the solution in (4.6),
it is natural to wonder whether it would be possible to somehow close the system and
thus obtain information about the solutions.

From this point on, and for the rest of the section, we will limit ourselves to the
case λj(t) = λ(t), j = 1, . . . , n, which is the most realistic one, and which includes as
a particular case the situation without external potentials λj = 0. Let us define the
following quantities:

(5.2) I =

n∑
j=1

I2,j , V =

n∑
j=1

V1,j , K =

n∑
j=1

Kj .

Differentiating (5.2) and using (4.6), we have

dI
dt

= V,(5.3a)

dV
dt

= 4K − 2λ2I − 2n

∫
Rn

D(ρ, t)dx,(5.3b)

dK
dt

= −1

2
λ2V −

∫
Rn

D(ρ, t)Δφdx,(5.3c)

dJ

dt
=

∫
Rn

D(ρ, t)Δφ +

∫
Rn

∂G(ρ, t)

∂t
dx.(5.3d)

If we add up (5.3c) and (5.3d), we arrive at

dI
dt

= V,(5.4a)

dV
dt

= 4

[
K − n

2

∫
Rn

D(ρ, t)dx

]
− 2λ2I,(5.4b)

d (K + J)

dt
= −1

2
λ2V +

∫
Rn

∂G

∂t
dx.(5.4c)

In order that equations (5.4) form a closed system, they must fulfill −n
2

∫
Rn D(ρ, t)dx

= J =
∫

Rn G(ρ, t)dx and that
∫

Rn

∂G(ρ,t)
∂t dx can be expressed in terms of the other

known quantities. The former condition requires that

0 =

∫
Rn

[n
2
D(ρ, t) + G(ρ, t)

]
dx =

∫
Rn

[(
1 +

n

2

)
G(ρ, t) − n

2

∂G(ρ, t

∂ρ
ρ

]
dx.

As G(ρ, t) does not depend explicitly on x, this condition is verified when

(5.5)
∂G(ρ, t)

∂ρ
=

(
1 +

2

n

)
G(ρ, t)

ρ
,
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that is, if

(5.6) G(ρ, t) = g0(t)ρ
1+2/n,

or, equivalently, if

(5.7) g(ρ, t) = g0(t)ρ
2/n,

where g0(t) is an arbitrary function that indicates the temporal variation of the
nonlinear term. Then

(5.8)

∫
Rn

∂G(ρ, t)

∂t
dx =

1

g0

dg0

dt

∫
Rn

G(ρ, t)dx =
1

g0

dg0

dt
J(t).

To close the equations it is necessary that g0(t) be constant in order to cancel the last
term of this expression. Then, the nonlinearities for which it is possible to find closed
results are

(5.9) g(ρ) = g0ρ
2/n = g0|u|4/n,

with g0 ∈ R, remembering that in the case g0 < 0 there may be problems of blowup
in finite time. Fortunately, these nonlinearities for n = 1, 2, 3 correspond to cases
of practical interest. For instance, the case n = 1 with quintic nonlinearity has
been studied in [35, 36, 37] and the case n = 2, with cubic nonlinearity, corresponds
probably to the most relevant instance of the NLS equation, i.e., the cubic one in two
spatial dimensions [30, 31]. For n = 3 the nonlinearity given by (5.9) appears in the
context of the Hartree–Fock theory of atoms.

5.3. Simplification of the moment equations. Defining a new quantity E =
K + J , (5.4) becomes

dI
dt

= V,(5.10a)

dV
dt

= 4E − 2λ2(t)I,(5.10b)

dE
dt

= −1

2
λ2(t)V.(5.10c)

These equations form a set of nonautonomous linear equations for the three averaged
moments: E(t), V(t), and I(t). To continue our analysis, we note that

(5.11) Q = 2EI − 1

4
V2

is a dynamical invariant of (5.10). We finally define X = |Q|−1/4 I1/2, which is
proportional to the mean width of u. A simple calculation allows us to corroborate
that the equation that X(t) satisfies is

(5.12)
d2X

dt2
+ λ2(t)X =

sgn(Q)

X3
.

Solving (5.12) allows us to calculate V and E by simple substitution in (5.10). This
equation is similar to that obtained in [30] for solutions of radial symmetry in the
case n = 2 and g(u) = |u|2. Here we find that it is possible to obtain a more general
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result for solutions without specific symmetry requirements, and for any combination
of dimension and nonlinearity g(u) = |u|p satisfying the condition np = 4. The case
with sgn(Q) = −1 corresponds to collapsing situations [13, 38]. In what follows we
consider mostly the case Q > 0.

Equation (5.12) was studied by Ermakov in 1880 [39], although since then it has
been rediscovered many times (see, e.g., [40]). It is a particular case of the so-called
Ermakov systems [41, 42, 43], for which it is possible to give fairly complete results.
Especially easy, though tedious to demonstrate, is the following claim.

Theorem 5.1 (Ermakov, 1880). Let X(t) be the solution of (5.12) with initial
data X(0) = X0, Ẋ(0) = Ẋ0. Then, if χ1(t) and χ2(t) are solutions of the differential
equation

(5.13a)
d2χ

dt2
+ λ2(t)χ = 0

satisfying the initial data χ1(0) = X0, χ̇1(0) = Ẋ0 and χ2(0) = 0, χ̇2(0) �= 0, then

(5.13b) X(t) =

√
χ2

1(t) +
1

w2
χ2

2(t),

where w is the constant w = χ1χ̇2 − χ2χ̇1.
Equation (5.13b) is often called the principle of nonlinear superposition. Equation

(5.13a) is the well-known Hill’s equation [44] which models a parametrically forced
oscillator and which has been studied in depth. In the following, we shall study a
couple of special situations in view of their physical interest.

It is remarkable that the complex dynamics of a family of nonlinear partial dif-
ferential equations can be understood in terms of a simple equation such as Hill’s.

If we suppose that the function λ2(t) depends on a parameter ε in the way λ2(t) =
1+λ̃ε(t), λ̃ε(t) being a periodic function with maximum value ε (not necessarily small),
there exists a complete theory that describes the intervals of values of ε for which the
solutions of (5.13a) are bounded (intervals of stability) and the intervals for which the
solutions are unbounded (intervals of instability) [44].

5.4. Connection of the method of moments with variational methods.
In the physical literature devoted to the study of applications of the NLS equations
there is a widely used method which receives different names depending on the spe-
cific field of application: time-dependent variational method, collective coordinates
method, or method of averaged Lagrangians. There is a huge literature on the appli-
cations of this method to different problems (see, e.g., the reviews [20] and [21] for
two specific application fields).

The idea of the method is to write the Lagrangian density corresponding to the
NLS equation

(5.14) L =
i

2

(
u
∂ū

∂t
− ū

∂u

∂t

)
− 1

2
|∇u|2 + V (x, t)|u|2 + G(|u|),

and to transform the problem of solving the NLS equation into the problem of finding
u(x, t) such that the action

(5.15) S(u, ū) =

∫
L(x, t)dx dt

has an extremum.
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This new problem is as difficult to handle as the equation itself. The idea of the
heuristic method of averaged Lagrangians (or variational method or collective coor-
dinates method) is to restrict the analysis of this variational problem to a particular
family of trial functions which are not the true solutions, i.e., finding the extremum
over a prescribed family of trial functions. Taking a particular form of the trial
function depending on a few parameters u(x, t) = ϕ(x, p1(t), . . . , pS(t)) leads to an
averaged finite-dimensional Lagrangian

(5.16) L(t) =

∫
Rn

L(x, t)dx.

From (5.16), using the Euler–Lagrange equations

(5.17)
d

dt

(
∂L

∂ṗj

)
− ∂L

∂pj
= 0,

one obtains evolution equations for the parameters pj(t).
Since the trial functions (sometimes called “solutions”) must be incorporated from

the very beginning in the treatment (i.e., one must choose their specific form to be
either Gaussian, sech, etc.), the information provided by this method is the “approxi-
mate” evolution of the parameters pj(t), and since nobody knows how far the solution
is from the trial function, it is not clear what the word “approximate” means in that
context. Usually one can choose ϕ based on experience or qualitative considerations.

In this sense the moment method, when it works, provides a much more convenient
and rigorous way to obtain the evolution of the relevant parameters without assuming
an (incorrect) specific form of the solution. Moreover, since there are no error bounds
for the estimates of the method of averaged Lagrangians, one must at the end simulate
numerically the full NLS equation in order to validate the predictions of the time-
dependent variational method. Within the framework of the method of moments
these simulations are not necessary, since the equations are exact.

6. Applications.

6.1. Dynamics of laser beams in GRIN media. When a laser beam prop-
agates in a medium with a gradex refraction index (GRIN medium) with a specific
profile quadratic in the transverse coordinates, the distribution of intensity u(x, y, z)
in the permanent regime is ruled by (4.1) with g(ρ) = ρ and n = 2 (in the optical
version of the equation t ↔ z), so that we are dealing with the critical case that we
know how to solve. Although in principle it would be possible to design fibers with
arbitrary profiles, technically the simplest way is to join fibers with different uniform
indexes in each section.

In this case, the phenomenon can be modeled by

(6.1) λ2(t) =

{
a2, t ∈ [0, Ta],

b2, t ∈ (Ta, Ta + Tb = T ].

Equation (5.13a) with λ(t) given by (6.1) is known as the Meissner equation,
whose solution is trivial, given in each segment by a combination of trigonometric
functions.

The solutions to the Meissner equation can be bounded (periodical or quasi-
periodical) or unbounded (resonant oscillations). In Figure 6.1 the two types of solu-
tions are shown for a particular choice of parameters.
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Fig. 6.1. Solutions of (5.13a) with λ(t) given by (6.1). (a) Resonant solution for Ta = 10π,
T = 20π, a = 0.05, b = 0.15 and (b) regions of resonance for Ta = Tb = T/2.

As far as the regions of stability in the space of parameters are concerned, they
can be obtained by studying the discriminant of (5.13a), defined as the trace of the
monodromy matrix, that is,

(6.2) D(a, b, Ta, Tb) := φ1(T ) + φ′
2(T ),

where φ1, φ2 are the solutions of (5.13a) satisfying the initial data φ1(0) = 1, φ′
1(0) = 0

and φ2(0) = 0, φ′
2(0) = 1, respectively.

In our case it is easy to arrive at

φ1(T ) = cos(aTa) cos(bTb) −
a

b
sen(aTa) sen(bTb),(6.3a)

φ′
2(T ) = cos(aTa) cos(bTb) −

b

a
sen(aTa) sen(bTb).(6.3b)

Finally, the form of the discriminant is

(6.4) D(a, b, Ta, Tb) = 2 cos(aTa + bTb) −
(a− b)2

ab
sen(aTa) sen(bTb).

The Floquet theory for linear equations with periodical coefficients connects the sta-
bility of the solutions of (5.13a) with the value of the discriminant. The regions
of resonance correspond to values of the parameters for which |D| > 2, whereas
if |D| < 2, the solutions are bounded [44]. The equations D(a, b, Ta, Tb) = 2 and
D(a, b, Ta, Tb) = −2 are the manifolds that limit the regions of stability in the four-
dimensional space of parameters. In reality, defining α = aT , β = bT , Ta = γT ,
Tb = (1 − γ)T , the number of parameters is reduced to three:

(6.5) D(γ, α, β) = 2 cos(αγ + β(1 − γ)) − (α− β)2

αβ
sen(αγ) sen(β(1 − γ)).

Therefore, the isosurfaces D(γ, α, β) = 2 and D(γ, α, β) = −2 can be visualized in
three dimensions, as is shown in Figure 6.2.

The general study of the regions that appear in Figure 6.2 is complex, which leads
us to focus on a few particular cases below.
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Fig. 6.2. (a) Isosurfaces corresponding to D = −2 (in this range of values D ≤ 2) for a limited
range of parameters. The regions between the gray surface and the planes limiting the drawing are
regions of resonance. Sections are shown for two particular values of β, where the bluish tones
correspond to the regions of resonance. The color bar indicates the color corresponding to each level
of D(γ, α, β), and the arrow indicates the color assigned to the isosurface D = −2. (b) The same
as (a) but for a larger range of parameters. Isosurfaces D = 2 and D = −2 are shown in brown
and green, respectively. A section is shown for a particular value of β with bluish and reddish tones
corresponding to regions of resonances with D < −2 and D > 2, respectively. In this case the two
values D = 2 and D = −2 are indicated by arrows on the color bar.
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y

y

Fig. 6.3. (a) First four regions of resonance in y (shaded) for Ta = T/2, b = 2a, as a function
of y = aT/2. (b) First five regions of resonance in the plane a− 1/T .

For example, in the case in which the two sections have the same length Ta = Tb,
the discriminant depends only on aT, bT and it is

(6.6) D(a, b) = 2 cos

(
(a + b)T

2

)
− (aT − bT )2

abT 2
sen

(
aT

2

)
sen

(
bT

2

)
,

so that now the condition |D| = 2 determines curves such as those of Figure 6.1(b).
The structure of the regions of resonance can be explored in more detail, fixing

the relative values of the coefficients; for example, taking b = 2a,

(6.7) D(a, T ) = 2 cos

(
3aT

2

)
− 1

2
sen

(
aT

2

)
sen(aT ).

Defining the variable y = aT/2, the discriminant is a function D(y); see Figure 6.3.

The so-called characteristic curves are hyperbolas of the form 2y
(n)
± = aT with y

(n)
+

and y
(n)
− being respectively the solutions of the algebraic equations f±(y) = 2 cos 3y−

1
2 sen y sen 2y ∓ 2 = 0. It is easy to demonstrate that the regions of resonance are
contained between two consecutive zeros of f+ or f− that can be obtained using any
elementary numerical method. If we draw a as a function of 1/T , the regions of
resonance are the shaded portions in Figure 6.3(b). Obviously the image is repeated
due to the periodicity 2π of D(y), and there are only four basic regions of resonance
(together with its harmonics) contained in the intervals (roots of f+ and f−): y ∈
[0.84, 1.23] ∪ [1.91, 2.3] ∪ [3.98, 4.37] ∪ [5.05, 5.44] (see Figure 6.3(a)).

Another case of possible interest is that in which one of the fibers is not of GRIN
type, that is, b = 0. Then the discriminant is given by the limit of (6.4) when b → 0:

(6.8) D(a, T ) = −aT sen

(
aT

2

)
+ 2 cos

(
aT

2

)
.

As in the previous case, the only relevant parameter is y = aT/2, the regions of
resonance on the plane a−T are hyperbolas, and the relevant quantities are the zeros
of f+ and f−, which are given by

(6.9) f±(y) = −y sen y + 2 cos y ∓ 2 = 0.
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Now there is no exact periodicity in the positions of the zeros any more, but at least it
is possible to estimate the location of those of high order. To do this we must bear in
mind that for y big enough the dominating term in both cases is f±(y) � −y sen y, so
that the zeros will be given by y = nπ. It can be seen with a perturbative argument

that the convergence ratio is of the order of O(1/n). Writing y
(n)
± = nπ + ε

(n)
± and

substituting it into (6.9), it is found that

(6.10) ε
(n)
± � (−1)n+1 1 ± 2

nπ
.

This type of analysis can be extended to any restricted set of parameters.

6.2. Dynamics of Bose–Einstein condensates. There has recently been great
interest in the study of the dynamics of Bose–Einstein condensates in a parametrically
oscillating potential. Recent experiments (see, e.g., [45, 46]) have motivated a series
of qualitative theoretical analyses (the pioneer works on this subject can be seen in
[47, 48, 49], although there is a great deal of subsequent literature).

In the models to which we refer, the trap is modified harmonically in time; that
is,

(6.11) λ2(t) = 1 + ε cosωt

with ε > −1. Equation (5.13a) with λ(t) given by (6.11) is called the Mathieu equa-
tion. For this equation it is possible, as in the case of the Meissner equation, to
carry out the study of the regions of the space of parameters in which resonances
occur. In the first place, for any fixed ε, there exist two successions {ωn}, {ω′

n} with

ωn, ω
′
n

n→∞−→ 0 such that if we take ω ∈ (ωn, ω
′
n), (5.13a) possesses a resonance. In the

second place, for fixed ω, the resonances appear when ε is large enough. The bound-
aries of those regions are the so-called characteristic curves that cannot be obtained
explicitly but whose existence can be demonstrated analytically, as in the previous sec-
tion, by using the discriminant. In the case of the Mathieu equation, it can be proven
that the regions of instability begin in frequencies ω = 2, 1, 1/2, . . . , 2/n2, . . . [44].

As in the previous case, the resonant behavior depends only on the parameters
and not on the initial data. With respect to stability, the Massera theorem implies
that if (ε, ω) is in a region of stability, then there exists a periodic solution of (5.13a),
and by the nonlinear superposition principle, such a solution is stable in the sense of
Lyapunov.

7. Approximate methods I: Quadratic phase approximation (QPA).

7.1. Introduction and justification of the QPA. Up to now, the results we
have shown for the evolution of the solution moments are exact and in some sense
rigorous. Unfortunately, in many situations of practical interest it is not possible to
obtain closed evolution equations for the moments. In this section we will deal with
an approximate method which is based on the method of moments.

The idea of this method is to approximate the phase of the solution u by a
quadratic function of the coordinates, that is,

(7.1) u(x, t) = U(x, t) exp

⎛
⎝i n∑

j=1

βjx
2
j

⎞
⎠ ,

where U(x, t) is a real function.
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Why use a quadratic phase? Although there is not a formal justification and
we do not know of any rigorous error bounds for the method to be presented here,
there are several reasons which can heuristically support the use of this ansatz for the
phase for situations where there are no essential shape changes of the solutions during
the evolution. First of all, when (4.1) has self-similar solutions, they have exactly a
quadratic phase [50]. Second, the dynamics of the phase close to stationary solutions
of the classical cubic NLS equation in two spatial dimensions (critical case) is known
to be approximated by quadratic phases [14, 16]. Finally, to capture the dynamics
of the phase of solutions close to the stationary ones, which have a constant phase,
by means of a polynomial fit, the terms of lowest order are quadratic since the linear
terms in the phase may be eliminated by using Theorem 4.2.

For NLS equations all commonly used ansatzes in the framework of the previously
mentioned variational methods have a quadratic phase, e.g., in applications related
to dispersion management [51, 52], Bose–Einstein condensation, etc. Our systematic
method provides a more general framework in which other methods can be system-
atized and understood.

As we will see in what follows, the choice (7.1) allows us to obtain explicit evolu-
tion equations and solves the problem of calculating the integrals of the phase deriva-
tives in (4.6).

7.2. Modulated power-type nonlinear terms. Under the QPA, for modu-
lated power-type nonlinearities g(ρ, t) = g0(t)ρ

p/2, p ∈ R, for which
∫

Rn D(ρ)dx =
−pJ/2, the moment equations (4.6) are

dI2,j
dt

= V1,j ,(7.2a)

dV1,j

dt
= 4Kj − 2λ2

jI2,j + pJ,(7.2b)

dKj

dt
= −1

2
λ2
jV1,j + pβjJ,(7.2c)

dJ

dt
= −p

⎛
⎝ n∑

j=1

βj

⎞
⎠ J +

1

g0

dg0

dt
J.(7.2d)

To these equations we must add the identity V1,j = 4βjI2,j , which is directly obtained
by calculating V1,j . Or, expressed otherwise,

(7.3) βj =
İ2,j
4I2,j

.

Let us now consider the simplest case of solutions with spherical symmetry with
λj = λ(t), j = 1, . . . , n, for which φ(x1, . . . , xn) = β(t)

(
x2

1 + · · · + x2
n

)
. Using the

same notation as in (5.2), the moment equations become

dI
dt

= V,(7.4a)

dV
dt

= 4
(
K +

np

4
J
)
− 2λ2I,(7.4b)

dK
dt

= −1

2
λ2V + npβJ,(7.4c)

dJ

dt
= −npβJ +

1

g0

dg0

dt
J(7.4d)
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Fig. 7.1. Solutions of (4.1) in three dimensions with p = 2, λ2(t) = 1 + 0.1 sin(2.8t), and

g0 = 10 with initial data u0(x) = e−x2/2/π3/4. (a) X2(t) obtained numerically from the solutions
on the 3D grid. (b) Isosurfaces for |u|2 = 0.02 on the spatial region [−3, 3] × [−3, 3] × [−3, 3] and
different instants of time showing the oscillations of the solution.

with V = 4βI. Despite the complexity of the system of equations (7.4) it is possible
to find two positive invariants,

Q1 = 2KI − V2/4,(7.5a)

Q2 =
np

2g0
Inp/4J.(7.5b)

The existence of these invariants provides J as a function of I, which allows us to
arrive at an equation for X = I1/2,

(7.6)
d2X

dt2
+ λ2(t)X =

Q1

X3
+ g0(t)

Q2

Xnp/2+1
.

Again we obtain a Hill’s equation with a singular term. Note that in the case n = 3,
p = 2 we have a quartic term in the denominator, which corresponds with the type of
powers that appear in the equations which are obtained in the framework of averaged
Lagrangian methods [20].

The quadratic phase method provides reasonably precise results that at least
describe the qualitative behavior of the solutions of the partial differential equation.
Using several numerical methods, we have carried out different tests especially in the
most realistic case np = 6 in (4.1). For example, in Figure 7.1 we present the results
of a simulation of (4.1) with n = 3, p = 2, λ2(t) = 1 + 0.1 sin(2.8t), and g0 = 10

for an initial datum u0(x) = e−x2/2/π3/4. In this case the simplified equation (7.6)
predicts quasi-periodic solutions, which is what we obtain when resolving the complete
problem.

In Figure 7.2 we show the results for λ2(t) = 1+0.1 sin(2.1t), for which (7.6) pre-
dicts resonant solutions. Again, the results of the two models are in good agreement.

Another interesting application of the quadratic phase approximation method is
the case of cubic nonlinearity, g(ρ, t) = g0(t)ρ = g0(t)|u|2, without potential λ(t) = 0.
In this situation (7.6) becomes

(7.7)
d2X

dt2
=

Q1

X3
+ g0(t)

Q2

Xn+1
,
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Fig. 7.2. Results of the simulation of (4.1) in three dimensions on a grid of 64× 64× 64 with
Δt = 0.005 for p = 2, λ2(t) = 1 + 0.1 sin(2.1t). X2(t) obtained numerically from the solutions on
the 3D grid is shown.

where the conserved quantities are

Q1 = 2KI − V2

4
,(7.8a)

Q2 =
n

g0
In/2J.(7.8b)

This model describes the propagation of light in nonlinear Kerr media as well as
the dynamics of trapless Bose–Einstein condensates. In this situation the previous
equations are used to study the possibility of stabilizing unstable solutions of the NLS
equation by means of an appropriate temporal modulation of the nonlinear term, that
is, by choosing a suitable function g0(t), thus providing an alternative to more heuristic
treatments [53, 54, 55]. More details can be seen in [56].

7.3. Closure of the equations in other cases. We have just seen that the
quadratic phase approximation method allows us to close the moment equations in
the case of power-type nonlinear terms. Following those ideas, we have managed to
close the equations in more general cases.

We start from the evolution equations for the mean moments (5.4), that after
performing the quadratic phase approximation become

dI
dt

= V,(7.9a)

dV
dt

= 4K − 2λ2I − 2n

∫
Rn

D(ρ, t),(7.9b)

dK
dt

= −1

2
λ2V − 2nβ

∫
Rn

D(ρ, t),(7.9c)

dJ

dt
= 2nβ

∫
Rn

D(ρ, t) +

∫
Rn

∂G(ρ, t)

∂t
,(7.9d)
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and V = 4βI.

The idea to close the previous equations is to calculate the evolution of
∫

Rn D(ρ, t)dx,
which is the term that prevents us from closing the equations, and try to write this
evolution in terms of the moments. Let us define a new moment F as

(7.10) F(t) =

∫
Rn

D(ρ, t)dx = J −
∫

Rn

ρ
∂G(ρ, t)

∂ρ
dx.

Then, the evolution equations are

dI
dt

= V,(7.11a)

dV
dt

= 4K − 2λ2I − 2nF ,(7.11b)

dK
dt

= −1

2
λ2V − 2nβF ,(7.11c)

dJ

dt
= 2nβF +

∫
Rn

∂G

∂t
dx,(7.11d)

together with the evolution of F

(7.12)
dF
dt

= 2nβF + 2nβ

∫
Rn

ρ2 ∂
2G

∂ρ2
dx +

∫
Rn

∂G

∂t
dx−

∫
Rn

ρ
∂

∂t

∂G

∂ρ
dx.

To try to close the system of equations (7.11)–(7.12) we impose that
∫

Rn ρ2 ∂2G
∂ρ2 dx is

a linear combination of F and J

(7.13)

∫
Rn

ρ2 ∂
2G

∂ρ2
dx = aFF + aJJ = (aF + aJ)

∫
Rn

Gdx− aF

∫
Rn

ρ
∂G

∂ρ
dx,

where aF and aJ are two arbitrary constants. Then G must verify

∫
Rn

[
ρ2 ∂

2G

∂ρ2
+ aFρ

∂G

∂ρ
− (aF + aJ)G

]
= 0.

Therefore, if the nonlinear term g(ρ) in the NLS equation is such that G(ρ) verifies
Euler’s equation

(7.14) ρ2 ∂
2G

∂ρ2
+ aFρ

∂G

∂ρ
− (aF + aJ)G = 0,

the evolution equations will close. In that case we can write G(ρ, t) = g0(t)G1(ρ),
where g0(t) is an arbitrary function which indicates the temporal variation of the
nonlinear term and G1(ρ) satisfies (7.14). So

∫
Rn

∂G

∂t
dx =

dg0

dt

∫
Rn

G1(ρ)dx =
1

g0

dg0

dt
J(t),∫

Rn

ρ
∂

∂t

∂G

∂ρ
dx =

dg0

dt

∫
Rn

ρ
dG1

dρ
=

1

g0

dg0

dt
[J(t) −F(t)],
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and the moment equations are written as

dI
dt

= V,(7.15a)

dV
dt

= 4K − 2λ2I − 2nF ,(7.15b)

dK
dt

= −1

2
λ2V − 2nβF ,(7.15c)

dJ

dt
= 2nβF +

1

g0

dg0

dt
J,(7.15d)

dF
dt

= 2nβ(1 + aF )F + 2nβaJJ +
1

g0

dg0

dt
F .(7.15e)

By solving (7.14), we obtain specific nonlinear terms for which the quadratic
phase approximation allows us to write closed equations for the moments. Depending
on the parameter δ = (1 + aF )2 + 4aJ , there exist three families of solutions

(7.16) G1(ρ) =

⎧⎪⎨
⎪⎩
C1ρ

p+ + C2ρ
p− , δ > 0,

C1ρ
R + C2ρ

R log ρ, δ = 0,

C1ρ
R cos(I log ρ) + C2ρ

R sin(I log ρ), δ < 0,

where p± =
(
(1 − aF ) ± δ1/2

)
/2, R = (1 − aF ) /2, I = |δ| 12 /2.

The most interesting case for applications is δ > 0, the nonlinear term being of
the form

(7.17) g1(ρ) = k1ρ
p+−1 + k2ρ

p−−1,

where k1 and k2 are arbitrary constants and p+ and p− are defined through the
relations

aF = 1 − p+ − p−,(7.18a)

aJ = −(p+ − 1)(p− − 1).(7.18b)

Equation (7.17) implies that the quadratic phase approximation allows us to close the
moment equations for nonlinear terms, which can be written as a linear combination
of two arbitrary powers of |u|.

As in the previous subsection, it is possible to find some invariant quantities,
namely,

Q1 = 2KI − V2

4
,(7.19a)

Q+ = C
n

f+

Ia+n

g0
(J + f+F),(7.19b)

Q− = C
n

f+

Ia−n

g0
(J + f−F),(7.19c)

where

(7.20) a± =
p± − 1

2
, f± =

1

p∓ − 1
, C =

(
1 − f−

f+

)−1

=

(
1 − p− − 1

p+ − 1

)−1

.
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These conserved quantities allow us to write a differential equation for the dynamical
width X(t) = I1/2:

(7.21)
d2X

dt2
+ λ2(t)X =

Q1

X3
+ g0(t)

(
Q−

X2a−n+1
− Q+

X2a+n+1

)
.

The most interesting kind of nonlinearity in the form of (7.17) is the so-called
cubic-quintic nonlinearity, for which g0(t) = 1, g1(ρ) = k1ρ + k2ρ

2 = k1|u|2 + k2|u|4.
Then we have p+ − 1 = 2, p− − 1 = 1, aF = −4, aJ = −2, a+ = 1, f+ = 1, a− = 1/2,
f− = 1/2, C = 2. The invariant quantities are

Q1 = 2KI − V2

4
,(7.22a)

Q+ = 2nIn(J + F),(7.22b)

Q− = 2nIn/2

(
J +

F
2

)
,(7.22c)

and the equation for the width is

(7.23)
d2X

dt2
+ λ2(t)X =

Q1

X3
+

Q−
Xn+1

− Q+

X2n+1
.

These equations contain a finite-dimensional description of the dynamics of localized
solutions of the model and are similar to those found under specific assumptions for
the profile u(x, t) (see, e.g., [57, 58, 59]). The main difference is that the method of
moments allows us to obtain the equations under minimal assumptions on the phase of
the solutions and that depend on general integral quantities related to the initial data
Q1,Q+,Q−. This is an essential advantage over the averaged Lagrangian methods
used in the literature for which the specific shape of the solution must be chosen a
priori (see also [20, 50]).

8. Approximate methods II: The Thomas–Fermi limit.

8.1. Concept. In the framework of the application of the NLS equations to
Bose–Einstein condensation problems (and thus for nonlinearities of the form g(ρ) =
g0ρ), the Thomas–Fermi limit corresponds to the case g0 � 1. (Note that this is only
one of the many different meanings of “Thomas–Fermi” limit in physics.)

Usually, what is pursued in this context is to characterize the ground state, defined
as the stationary solution of the NLS equation given by (4.5) with fixed L2-norm
having minimal energy E. It is also interesting to find the dynamics of the solutions
under small perturbations of the ground state solution.

8.2. Physical treatment. Let us consider the problem of characterizing the
ground state of (4.1). The usual “physical” way of dealing with this problem consists
of assuming that if the nonlinear term is very large, then it would be possible to
neglect the Laplacian term in (4.1) (!) and to obtain the ground state solution as

(8.1) ϕTF (x) =

√√√√(μ− 1
2

∑
λ2
jx

2
j

g0

)
+

.

The value of μ is obtained from the condition of normalization ‖ϕTF ‖2 = 1. This
procedure provides a solution without nodes, which is then argued to be an approxi-
mation to the ground state.
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This method is used in many applied works, but unfortunately it is not even
self-consistent. Near the zero of the radicand of (8.1) the approximation obtained
has divergent derivatives, which contradicts the initial hypothesis of “smallness” of
the Laplacian term. Although several numerical results can be obtained using this
approximation, its foundation is very weak.

In order to understand the problem better, we rewrite (4.1) making the change
of variables κ = μ/g0, η = x/

√
g0, ψ(η) = ϕ

(
x/

√
g0

)
, to give us the equation

(8.2) −1

2
ε2Δψ +

1

2

⎛
⎝∑

j

λ2
jη

2
j

⎞
⎠ψ + |ψ|2ψ = −κψ,

with ε = 1/g0. It is evident that ε2Δψ is a singular perturbation whose effect may
not be trivial.

8.3. The method of moments and the Thomas–Fermi limit. What can
be said for the case of power-type nonlinearities in the limit g � 1 on the basis of
the method of moments? Before making any approximations we write an evolution
equation for I as follows. For the sake of simplicity, though it is not strictly necessary,
we will consider the case of λj = λ for j = 1, . . . , n and study the equations for the
mean values (5.2).

First, we write (5.3a) and (5.3b) as

dI
dt

= V,(8.3a)

dV
dt

= 4
(
K +

np

4
J
)
− 2λ2I = (4 − np)K + npH−

(
2 +

np

2

)
λ2I,(8.3b)

where H is the conserved energy. Combining (8.3a) and (8.3b), we arrive at

(8.4)
d2I
dt2

+
(
2 +

np

2

)
λ2I = (4 − np)K + npH.

Equation (8.4) is exact.
The fact that the energy functional E reaches a minimum over ϕ0 implies, by

Lyapunov stability, that initial data u0(x) = ϕ0(x) + εδ(x) close to the ground state
must remain proximal for sufficiently small values of ε.

The only approximation needed to complete our analysis is to assume that when
g � 1, then J � K for the ground state. Notice that this is a much more reason-
able assumption than the direct elimination of the second derivative in the evolution
equation. Thus, the energy conservation and the previous considerations allow us to
affirm that J(t) � K(t) for all times.

Although these facts can be used to write explicit bounds for K, as a first approx-
imation and just in order to show the power of these ideas we can simply take K � 0.
Under this approximation we have

(8.5)
d2I
dt2

+
(
2 +

np

2

)
λ2I ≈ npH,

whose solutions can be obtained explicitly as

(8.6) I(t) � npH
λ2
(
2 + np

2

) + A cos

(
λt

√
2 +

np

2

)
+ B sen

(
λt

√
2 +

np

2

)
.
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The equilibrium point of (8.4) (corresponding to A = B = 0) gives us the “size”
of the ground state as a function of the physical parameters. Also the frequency of
the oscillations around the equilibrium point is immediately obtained from (8.6):

(8.7) Ω = λ

√
2 +

np

2
.

We have performed numerical simulations of the partial differential equations (4.1) to
verify this prediction. Specifically, taking g = 5000, 20000, λ = 1, and initial data of
the form u0(x) = ϕ0((1 + ε)x)/

√
1 + ε for ε = 0.01 and ε = 0.02, we find a numerical

frequency of Ωnum = 2.26, which is in excellent agreement with the value provided by
our Thomas–Fermi formula ΩTF =

√
8 = 2.24.

9. Summary and conclusions. In this paper we have developed the method
of moments for nonlinear Schödinger equations. First we have found the general
expressions of the method and classified the nonlinearities for which it allows a closed
explicit solution of the evolution of the moments. We have also discussed several
applications of the method such as the dynamics of Kerr beams in nonlinear stratified
media and the dynamics of parametrically forced Bose–Einstein condensates.

Approximate techniques based on the method of moments have also been dis-
cussed in this paper. In particular, the quadratic phase approximation was developed
here and applied to different problems, such as the writing of simple equations de-
scribing the stabilization of solitonic structures by control of the nonlinear terms and
the dynamics of localized structures in cubic-quintic media. Finally, we have also
studied the moment equations in the so-called Thomas–Fermi limit.
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V. M. Pérez-Garćıa, eds., World Scientific, Singapore, 1996, pp. 39–67.

[19] D. G. de Figueiredo and Y. H. Ding, Solutions of a nonlinear Schrödinger equation, Discrete
Contin. Dyn. Syst. Ser. B, 3 (2002), pp. 563–584.

[20] B. Malomed, Variational methods in nonlinear fiber optics and related fields, Progr. Optics,
43 (2002), pp. 70–191.

[21] A. Sánchez and A. R. Bishop, Collective coordinates and length-scale competition in spatially
inhomogeneous soliton-bearing equations, SIAM Rev., 40 (1998), pp. 579–615.

[22] V. I. Talanov, Focusing of light in cubic media, JETP Lett., 11 (1970), pp. 199–203.
[23] M. A. Porras, J. Alda, and E. Bernabeu, Nonlinear propagation and transformation of

arbitrary laser beams by means of the generalized ABCD formalism, Appl. Optim., 32
(1993), pp. 5885–5892.

[24] Y. Oh, Cauchy problem and Ehrenfest’s law of nonlinear Schrödinger equations with potentials,
J. Differential Equations, 81 (1989), pp. 255–274.

[25] E. H. Lieb and M. Loss, Analysis, Grad. Stud. Math. 14, AMS, Providence, RI, 1996.
[26] N. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Enhanced power solitons

in optical fibres with periodic dispersion management, Electron. Lett., 32 (1996), pp. 54–55.
[27] I. Gabitov, E. Shapiro, and S. Turitsyn, Asymptotic breathing pulse in optical transmission

systems with dispersion compensation, Phys. Rev. E, 55 (1997), pp. 3624–3633.
[28] S. Kumar and A. Hasegawa, Quasi-soliton propagation in dispersion-managed optical fibers,

Opt. Lett., 22 (1997), pp. 372–374.
[29] S. Turitsyn, Stability of an optical soliton with Gaussian tails, Phys. Rev. E, 56 (1997), pp.

R3784–R3787.
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[31] V. M. Pérez-Garćia, P. Torres, J. J. Garćia-Ripoll, and H. Michinel, Moment analysis

of paraxial propagation in a nonlinear graded index fiber, J. Opt. B Quantum Semiclass.
Opt., 2 (2000), pp. 353–358.

[32] V. M. Pérez-Garćia, H. Michinel, and H. Herrero, Bose-Einstein solitons in highly asym-
metric traps, Phys. Rev. A, 57 (1998), pp. 3837–3842.
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Abstract. We consider a deterministic model of landscape evolution through the mechanism
of overland flow over an erodible substrate, using the St. Venant equations of hydraulics together
with the Exner equation for hillslope erosion. A novelty in the model is the allowance for a nonzero
bedload layer thickness, which is necessary to distinguish between transport limited and detachment
limited sediment removal. It has long been known that transport limited uniform flow is unstable
when the hillslope topography is geomorphologically concave (i.e., the center of curvature is above
ground). In this paper, we show how finite amplitude development of the consequent channel flow
leads to an evolution equation for its depth h of the form ht = h3/2 + (h3/2)Y Y , where Y is the
cross-stream space variable. We show that solutions of compact support exist but that, despite
appearances, blow up does not occur because of an associated integral constraint, and the channel
equation admits a unique and apparently globally stable steady state. The consequences for hillslope
evolution models are discussed.
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1. Introduction. The formation of river networks is one of a class of morpho-
logical problems in which fractal structures are generated by an instability in the
medium. Other familiar examples are the lungs, blood capillary beds, and under-
ground limestone cave systems. Two questions immediately present themselves in
connection with such structures. The first is whether it is possible to explain quan-
titatively the basic mechanisms which are involved in causing them to form. The
second is the consequent deeper issue of whether it is possible to explain and predict
the fractal structures which are observed in nature, given that the model will originate
as a deterministic set of differential equations. In this paper, we will be concerned
with the first of these questions.

The basic way in which landscape evolves under fluvial erosion is this. Tectonic
processes cause uplift of mountain belts, and as the mountains are raised, erosion due
to rainfall and runoff causes a gradual lowering of the topography. Other processes,
such as glacial erosion and landslides, contribute more dramatically: glaciation at
high altitudes, and landslides in regions of higher relief. As is evident from Figure 1,
this balance between uplift and erosion is unstable, and the runoff is concentrated
into small river channels which drain the catchment.

In attempting to formulate a model to describe this process, we identify two
variables of importance; these are the surface elevation s and the water depth h
(Figure 2). These will be described by evolution equations representing conservation
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Fig. 1. Hillslope topography. Photograph courtesy of Gary Parker.

of sediment and water, respectively.
Smith and Bretherton (1972) presented such a model and found that while there is

a uniform steady state solution, it is unstable to the formation of channel-like features.
In particular, they associated instability with concavity of the hillslope, i.e., sxx > 0,
where x is the downslope direction of flow.

The particular way in which this instability is manifested is curious. The physical
mechanism is plain enough, that increasing depth causes increased water flow, which
in turn causes increased erosion and thus channel deepening. In their linear stability
analysis, Smith and Bretherton found that the mathematical cause of instability was
an effective lateral diffusion coefficient for hillslope which was negative. This naturally
produces instability, but the resulting growth rate is unbounded at short wavelength,
and their model is consequently ill-posed. Unsurprisingly, properly resolved numerical
solutions of the Smith–Bretherton model are not available.

Another consequence of this ill-posedness is a suspicious absence of wavelength
selection. Loewenherz (1991) addressed this issue by carrying out a formal linear
stability analysis using normal modes (something Smith and Bretherton did not do),
and she extended this to convex/concave slopes using the asymptotic technique of
WKB theory (Carrier, Krook, and Pearson (1966)) at high wave number k. She
also considered the problem of regularization as k → ∞, by introduction of a (fairly
arbitrary) modification to the sediment transport law.

Later (Loewenherz-Lawrence (1994)), she treated the whole problem again, but
now starting from the hydrodynamic theory, which is also the starting point for the
model we present below. In this way, she was able to identify the cause of the ill-
posedness of the Smith–Bretherton theory, which lies in the assumption of equal water
and land surface slopes. The small mismatch between these two allows regularization
at high wave number, and therefore also wavelength selection.

A different approach to the issue of wavelength selection was taken by Izumi and
Parker (1995, 2000), who used a St. Venant overland flow model together with a finite
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threshold stress for the onset of erosion to show that there is a preferred wavelength
for instability. Their estimate in the earlier paper was 33 m, comparable to observed
headwater spacings of order 100 m. A formal stability analysis in the second paper
(of a slightly different problem) yielded plausibly similar values.

The next logical steps in the development of this theory are a nonlinear theory
for finite depth channel development, and full numerical solution of the governing
equations. Progress in the first of these aims was made by Kramer and Marder (1992),
who developed a nonlinear evolution equation for channel depth by seeking particular
solutions of their hillslope model, which was similar, but by no means identical to,
the Smith–Bretherton model. The main difference between their result and that of
the present paper is that their model is partially empirical, and the derivation of the
channel model is not placed in the context of a formal asymptotic approximation to
the full model. This leads to important differences in the way the channel evolution
equation is posed.

Kramer and Marder also sought to implement a direct numerical simulation, but
here, in common with other authors, they were stymied. The apparent reason for
this is that the governing partial differential equations are very stiff in both space
and time. Water flow in channels occurs on much shorter space and time scales than
hillslope evolution, and such numerical computational studies as there have been have
not been able to overcome this difficulty.

In response to this, they adopted a cellular lattice model, with physically moti-
vated rules at the lattice points determining the evolution of water depth and land
surface elevation. Such cellular models do produce networks but evidently lack a
theoretically based predictive capacity. To a large extent, they provide the compu-
tational model of choice for other researchers also (e.g., Howard (1994), Tucker and
Slingerland (1994)).

A variant on this was the model developed by Willgoose, Bras, and Rodŕiguez-
Iturbe (1991), which combined physically based erosion and water flow equations with
an artificial equation for an indicator function Y . Essentially, Y would switch from
Y = 0 (hillslope) to Y = 1 (channel) when water flow increased beyond a critical
threshold. In this way, Willgoose et al. could simulate network formation but again
without a physically based predictive criterion.

In a sequence of papers, Smith and his coworkers have developed a semianalytic
theory of hillslope and channel evolution. Their work is actually orthogonal to the
present paper but will be discussed in some detail here because of the apparent par-
allelism with our work. Smith, Birnir, and Merchant (1997a) consider a simplified
version of the Smith–Bretherton model, and use it to suggest that large time solu-
tions have separable form, which they are able to characterize in terms of a variational
principle. Smith, Birnir, and Merchant (1997b) elaborate this description by suggest-
ing that an initially smooth hillslope develops channels on a small scale through the
Smith–Bretherton instability; the channels saturate via nonlinearity and then evolve
into the long time separable solutions described earlier. These results are obtained
numerically. In order to obtain numerical results for the ill-posed Smith–Bretherton
model, Smith, Birnir, and Merchant (1997b) used a coarse grid on a small plot (100 m
by 100 m with grid spacing 1 m), together with enough numerical diffusion to stabilize
the results. Smith, Merchant, and Birnir (2000) develop a theory for the time evolu-
tion of the grade line of both alluvial and bedrock channels; the former is modelled
by a nonlinear diffusion equation, and the latter is modelled by a nonlinear first-order
wave equation. Both theories ignore hillslope evolution and make heuristic assump-
tions in order to derive the models. Birnir, Smith, and Merchant (2001) develop the
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Fig. 2. Geometry of overland flow.

ideas originated in the earlier papers by Smith, Birnir, and Merchant (1997a, 1997b).
They paint a fairly compelling picture of landscape evolution, which hinges on the
twin hypotheses that small scale shock formation in overland flow acts as a seed for
white noise to drive the slower hillslope evolution towards a self-similar (separable in
time) mature landscape. Crucial to this notion is the assumption that the numerical
results are sufficiently detailed to support it. The numerical procedures are improved
over those of Smith, Birnir, and Merchant (1997b), but apparently retain the small
plot and coarse grid of the earlier calculations, and are therefore open to the same
objection, that the coarse grid in particular allows only mildly unstable results by
suppressing the high wave number instabilities. The paper by Welsh, Birnir, and
Bertozzi (2006) is similar to that of Smith, Merchant, and Birnir (2000), insofar as it
uses the Smith–Bretherton model to assess the evolution of the long profile of a river
channel. To do this, it assumes a purely one-dimensional model, so that the channel
evolves in isolation from the surrounding hillslope.

Our purpose in this paper is to show that a hydrodynamic model similar to those
of Loewenherz-Lawrence (1994) and Tucker and Slingerland (1994) leads formally
to the derivation of an evolution equation for channel depth (which resembles that
of Kramer and Marder). The solution properties of this equation are studied, and
it is shown that, despite a similarity of the channel equation to partial differential
equations having blow-up properties, there is a unique steady state solution which is
stable. This solution may provide an ingredient for future direct numerical simulations
of hillslope evolution.

2. A model for sediment and water transport. The geometric situation we
consider is portrayed in Figure 2. The vertical coordinate is z, while x and y are
horizontal coordinates. The simplest situation is where overland flow occurs down
a plane slope, and in this case we take x in the downstream direction and y across
stream. The land surface is z = s(x, y, t), the water surface is z = η(x, y, t), and the
water depth is h, and thus h = η − s. This relationship is not exact, because the
sedimentary surface is further subdivided into a mobile part and a stationary part. A
precise statement is given below in (2.9).

The St. Venant equations of hydraulic flow can be written in the form

ht + ∇. (hu) = r,

ut + (u.∇)u = −g∇η − f |u|u
h

.(2.1)
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These represent conservation of water mass and momentum and can be derived from
the vertically integrated point forms of the equations. r is the source due to rainfall, u
is the mean velocity, and f is a friction factor in a term which represents the bed stress
exerted by the flow, assuming this is turbulent. While this is a good parameterization
of the bed friction in channelized flow, it is less obviously appropriate for the very
thin films which characterize overland flow. We shall comment further on this below,
but for the moment we note that consideration of laminar flow at low flow rates would
simply have the effect in the model of changing the term f |u| in (2.1)2 to a constant
k, making quantitative but not conceptual difference to the discussion.

Sediment transport. Sediment transport in rivers occurs, for noncohesive sedi-
ments with little clay content, when an appropriately dimensionless shear stress (called
the Shields stress) delivered by the river exceeds a certain critical value. The turbulent
shear stress is taken to be

(2.2) τ = fρw|u|u,

where ρw is water density. If the sediment particles are of diameter Ds (supposed
uniform, for simplicity) at the bed, the streamflow exerts a force of approximately
τD2

s on it, and it is this force which causes motion. On a slope, there is an additional
force due to gravity, approximately −ΔρgDs∇s, where Δρ = ρs − ρw is the density
difference between sediment and water, and g is gravitational acceleration. Thus the
net effective stress causing motion is actually

(2.3) τ e = τ − ΔρgDs∇s.

The Shields stress is

(2.4) μ =
τe

ΔρgDs
,

and particle motion occurs if μ >∼ μc ≈ 0.05; the critical value depends to some extent
on particle size via the particle Reynolds number.

Particle motion occurs in two ways. Larger particles bounce and roll along the
bed, and the resultant transport is called bedload transport. Finer particles are
lifted up and carried in suspension. In this paper, we will suppose that only bedload
transport is relevant. This assumption is made partly for convenience, partly because
it corresponds to the choice of Smith and Bretherton (1972), and partly because it
may be an unnecessary elaboration to consider suspended load instead or as well.

Various empirical formulae for bedload transport qb have been proposed. A pop-
ular one is that due to Meyer-Peter and Müller (1948), which takes the form

(2.5) qb =

(
ρsK

ρ
1/2
w Δρ g

)
(τe − τc)

3/2
+ ,

where Meyer-Peter and Müller chose values of K = 8 and μc = 0.047, and the critical
stress τc is defined by

(2.6) τc = μcΔρgDs.

The units of qb are kg m−1 s−1, i.e., mass per unit stream width per unit time.
It is commonly the case that bedload transport is conceived to occur in a layer

of zero thickness, if this is considered at all. Although the moving bedload layer
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thickness may indeed be small, it is essential to include it in the model (as did Tucker
and Slingerland (1994)), because otherwise a relationship such as (2.5) implies that
transport occurs even if the substrate is inerodible bedrock. In fact, we must modify
(2.5) so that the bedload transport is zero if the bedload layer thickness is equal to
zero.

To be specific, we now suppose that z = s describes the interface between sta-
tionary bed and moving bedload, and we suppose that the moving bedload layer has
thickness a. If the (constant) porosity of the bed (both mobile and immobile) is φ
and the bedload transport is qb, then conservation of mobile sediment implies that

(2.7) ρs(1 − φ)at + ∇.qb = ρs(1 − φ)vA,

where vA is the abrasion or entrainment rate of the immobile bed, measured as a
velocity.

The Exner equation which describes land surface evolution can now be written in
the form

(2.8) ρs(1 − φ)st = −ρs(1 − φ)vA + ρs(1 − φ)U,

where U is the velocity of tectonic uplift, or more generally, baselevel fall. The
geometric relation between the various depths is seen to be

(2.9) η = s + a + h.

Equations (2.1), (2.7), (2.8), and (2.9) provide five equations for the five variables η,
s, a, h, and u; the abrasion rate vA and bedload transport qb need to be prescribed
in constitutive relations.

Abrasion and transport rates. It is a fact of observation that the thickness
a of the moving bedload layer in a stream is commonly quite small, perhaps only
one or two grain thicknesses (Slingerland, Harbaugh, and Furlong (1994, pp. 80–81)).
If the stream flow is very rapid, we might expect the consequently rapidly moving
grains to mobilize the grains below them. These considerations suggest that the
abrasion rate vA should be a (nonnegative) decreasing function of a which tends to
zero at large a and that it should depend on stream flow. With little to guide us, we
make the simplest assumption that vA = 0 for a larger than some constant threshold
a0, although it is not difficult to modify this assumption. When a ≥ a0, we have
conditions of transport limitation, and when a < a0, we have detachment limitation.

We define a bedload velocity (when a = a0)

(2.10) vb =
qb

ρs(1 − φ)a0
,

and vb is a function of τe. For example, the Meyer-Peter–Müller law (2.5) gives

(2.11) vb =

(
K

ρ
1/2
w Δρ g(1 − φ)a0

)
(τe − τc)

3/2
+ .

The constitutive assumptions we will then make for transport and abrasion rates are

qb = ρs(1 − φ)avb (τe)N,

vA = kvb (τe)

[
1 − a

a0

]
+

;(2.12)



1022 A. C. FOWLER, NATALIA KOPTEVA, AND CHARLES OAKLEY

the dimensionless constant k would be expected to be extremely small. The direction
of bedload transport is given by the unit vector

(2.13) N =
τ e

τe
.

Equations (2.7) and (2.8), for mobile and immobile bed surface, respectively, can now
be written in the form

at + ∇.[avbN] = vA,

st = −vA + U.(2.14)

Nondimensionalization. We choose scales for the variables h, u, η, s, a, τe, as
well as x and t, by balancing suitable terms in the governing equations. Suppose that
d is a suitable hillslope height scale and l is a suitable horizontal length scale; then
we choose

r ∼ rD, U ∼ UD, vb ∼ vD, vA ∼ UD,

η, s ∼ d, x ∼ l, t ∼ [t] =
d

UD
, τe ∼ [τ ] = fρw [u]2,

u ∼ [u] =

(
grDd

f

)1/3

, a ∼ a0, h ∼ [h] = l

(
fr2

D

gd

)1/3

,(2.15)

where square-bracketed terms indicate scales, rD and UD are typical precipitation
and uplift rates, and for the Meyer-Peter–Müller law (2.11) we would define

(2.16) vD =

(
K[τ ]3/2

ρ
1/2
w Δρ g(1 − φ)a0

)
.

The choice of l is determined by the implied tectonic setting. The simplest con-
ceptual idea is the continuing uplift of an island (or mountain belt), with sea level
fixed at prescribed boundaries, and this determines a natural length scale l, the scale
of the island. Similarly, crustal folding determines l via the folding wave length. The
other length scale d is fixed by the balance of uplift rate with hillslope denudation,
which requires (since vA ∼ UD and also vA ∼ kvD) that

(2.17) UD = kvD.

This determines d through the dependence of vD on [τ ] and thus [u]. For example, if
we take vD to be given by (2.16), then we find

(2.18) d =

(
Δρ(1 − φ)

Kf1/2ρw

)
a0UD

krD
.

The first bracketed term is a constant of O(1), and so we see that the depth scale
d ∼ a0UD

krD
; high mountains are (in this theory) a consequence of high uplift rate

and low rainfall, which makes intuitive sense. In addition, the thickness (a0) and
abrasiveness (k) of the bedload layer are crucial in determining d. In practice, we will
actually use observed estimates for d to infer suitable values for k.

Using the scaled variables in the model equations (2.1), (2.9), (2.7), and (2.8), we
obtain the dimensionless set (where now all the variables refer to the dimensionless
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quantities)

δεht + ∇. (hu) = r,

δF 2[ δεut + (u.∇)u] = −∇η − |u|u
h

,

η = s + δh + δνa,

δναat + ∇.[aV N] = αA,

st = −A + U,

τ e = |u|u − β∇s,(2.19)

where the dimensionless bedload velocity V and abrasion rate A are given, from (2.11)
and (2.12)2, by

(2.20) V = [τe − τ∗c ]
3/2
+ , A = [1 − a]+V,

and the parameters are given by

F =
[u]

(g[h])1/2
, ε =

UD

rD
, δ =

[h]

d
,

ν =
a0

[h]
, α =

kl

a0
=

lUD

a0vD
, β =

ΔρDs

ρw[h]
.(2.21)

The dimensionless critical stress can be written in the form

(2.22) τ∗c =
Δρ

ρw

Ds

[h]

μcl

d
,

which sets out simply how the size of this parameter is determined by the hillslope
aspect ratio and by the ratio of water film depth to grain size. μc is the dimensionless
critical Shields stress, defined in (2.6), and differs from τ∗c because of the way in which
we have nondimensionalized the bed stress.

Parameter estimation. Typical values of precipitation and uplift are rD ∼
1 m y−1, UD ∼ 10−3 m y−1 (1 km per million years). There is some flexibility in the
choice of length scales l and d. Let us suppose that d ∼ 103 m, l ∼ 105 m (i.e., one
kilometer uplift over a distance of 100 km) and that f ∼ 0.1 and g ∼ 10 m s−2. From
these, we find

(2.23) [u] ∼ 0.15 m s−1, [h] ∼ 2.2 cm.

Let us additionally suppose that a0 ∼ Ds ∼ 1 mm, Δρ/ρw = 2. It then follows that

F 2 ∼ 0.1, ε ∼ 10−3, δ ∼ 10−5,

α ∼ 0.1, β ∼ 0.1, ν ∼ 0.05, τ∗c ∼ 0.5.(2.24)

It should be emphasized that there is some flexibility in the values of these parameters,
but they are all less than one, and in particular ε and δ are very small. It is then
legitimate to neglect all the terms proportional to δ in the model. We shall find later
that this is a singular approximation, and in order to regularize it we will need at
least some of the δ terms to be retained. Apparently, the largest such term is δh in
the definition of η, and we therefore choose to retain this term only. It will be easy
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to check a posteriori that the neglected terms indeed remain small when the δh term
becomes significant.

With the neglect of the terms in δ excluding this excepted term, we derive the
reduced model

∇. (hu) = r,

0 = −∇η − |u|u
h

,

η = s + δh,

∇. [aV N] = αA,

st = −A + U,

τ e = |u|u − β∇s.(2.25)

The downslope normal N is still defined by (2.13).

In order to prescribe boundary conditions for (2.25), consider the uplift of an
island continent D with a boundary ∂D; the natural conditions to apply are then

(2.26) η = 0 and
∂η

∂n
= 0 on ∂D.

These represent the idea that the water surface gradient becomes equal to the ocean
gradient (zero) at the coastline. Because the equation for η is essentially elliptic (see
the first two equations in (2.25)), the extra condition in (2.26) locates the precise
position of the shoreline. Because δ is small, the shoreline position ∂D is essentially
known. It will be seen that these conditions are sufficient, together with an initial
condition for s, to determine the solution.

A comment on bedload transport. For a given water flow and depth, and
thus constant V , the solution for a is a = 1−exp(−αx), where x is the direction of flow,
and assuming that a = 0 initially. Thus when α � 1, we have conditions of transport
limitation, and when α � 1, the transport is detachment limited. The parameter
α is the ratio of two small numbers (see (2.21)): k, the ratio of abrasion velocity to
bedload velocity (see (2.12)), and a0/l, the ratio of bedload layer thickness to regional
length scale. Its size therefore depends critically on our assumptions about abrasion
and bedload. It is plausible that α � 1 is the more appropriate condition in a regional
context over long geological time scales, as suggested by Howard (1994), but this will
depend on the friability of the underlying rock. In the laboratory, however, α can be
much larger than one because the abrasion coefficient k is likely to be close to one for
noncohesive sediments. Simply, noncohesive sediment is eroded and removed rapidly
in the field, and over longer time scales, detachment limitation is more appropriate.

A comment on time scales. Although the model and the associated parameter
values derived above are consistent with observation, it is unrealistic in the sense that,
for example, rainfall is not continuous, and there is no continual overland flow. Rather,
erosion actually occurs during severe storms and is virtually absent between them. In
a sense, time is not a continuous variable, and it may be more appropriate to switch on
the erosional part of the model only during storms. The consequence of this would be
a much higher value of rD, with consequent changes in the parameter values. Despite
this, it is still robustly the case that δ � 1, and so it seems that the model may be
suitable in any case; this, at least, is our assumption.
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3. Linear stability. In this section, we review the stability results of Smith and
Bretherton (1972) and Loewenherz-Lawrence (1994). We define the downstream flow
direction by

(3.1) n = − ∇η

|∇η | ,

the stream slope as

(3.2) S = |∇η |,

and the water flux as

(3.3) q = h|u |.

From (2.25), we then have

∇. [ qn ] = r,

q = h3/2S1/2,(3.4)

and the effective stress is

(3.5) τ e = −(h + β)∇η + δβ∇h.

In order to relate our model to those of previous authors, we begin by making
corresponding assumptions about bed abrasion and transport. In essence, the pre-
scription of the abrasion rate A in (2.25) is replaced by an assumption that the bedload
layer thickness a is constant, a = 1. In this case, A is determined by the model, and
the bed evolution equation is

(3.6) st = U − 1

α
∇. [V N].

This form of the equation is in fact what is obtained in transport limiting conditions
when A is prescribed and α � 1. If A is not prescribed, then the constant k is
undefined, so that (2.17) cannot be used to define d. Instead, we define d by choosing
α = 1, which leads (via (2.21)) to

(3.7) d =

(
Δρ(1 − φ)

Kf1/2ρw

)
lUD

rD
,

which can be compared with (2.18). For the time being, we assume this to be the
case.

Now let us consider the evolution of (one side of) a unidirectional hillslope as
shown in Figure 3; that is, we suppose the equations (2.25) are to be solved in the
domain 0 < x < 1, −L < y < L, where x is the downslope direction. Suitable
boundary conditions are for there to be zero normal flux of sediment and water at
the ridge and the two sides, and η = 0 at x = 1. (The extra condition ηx = 0 at the
shoreline is used to locate its precise position near x = 1.)

If we take r and U to be constant (more generally, they could be functions of
x), then there is a steady state solution for hillslope and water flux; we denote the
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z
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x
Fig. 3. One-dimensional hillslope geometry.

s

x

concave

convex

Fig. 4. Convexity and concavity.

steady hillslope profile by η = η0(x). Smith and Bretherton (1972) showed that for
this steady state

(3.8) x
∂V

∂S
S′ = V − q

∂V

∂q
,

where the bedload transport function V is taken to be a function of q and S. (This
can be done only if the term in δ is ignored.) Somewhat confusingly, geomorphologists
term a slope with S′ < 0 concave (see Figure 4) or, better, concave upwards, and we
shall follow this practice.

As we expect, ∂V/∂S > 0, and this implies that a slope is geomorphologically
concave if ∂V/∂q > V/q, and in particular for mathematically convex functions V . We
shall find that geomorphologically concave slopes are unstable to channel formation.
To leading order in δ, (3.4) and (3.5) imply

(3.9) τe = (qS)2/3 + βS,

and so the dimensionless Meyer-Peter–Müller relationship in (2.20), for example, can
be written in the form

(3.10) V = [(qS)2/3 + βS − τ∗c ]
3/2
+ .
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Fig. 5. V (q, S) given by (3.10) for β = 0.1, τ∗c = 0.5.

Figure 5 shows that this relation typically produces a (weakly) mathematically convex
function and hence a weakly concave upward hillslope.

Our aim is study perturbations to the steady state η = η0(x). Even if the water
depth perturbations are large, we can still linearize the geometry of the directions n
and N by expanding in terms of δ. We do this first. In the one-dimensional steady
state, N = n = i. We put

(3.11) η = η0 + η̃,

and suppose that η̃ is small. We then find

∇η = η′0i + ∇η̃,

|∇η | = S = S0 − η̃x + · · · ,(3.12)

where the steady state slope is

(3.13) S0 = |η′0|.

Thus

n = i − η̃y
S0

j + · · · ,

q = h3/2S1/2,(3.14)

and in a similar way we find (if also δh is small)

τe = (h + β)S + δβhx + · · · ,

N = i − 1

S0

{
η̃y −

δβ

h + β
hy

}
j + · · · .(3.15)
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Adopting for the moment only these approximations (that is, we linearize the
geometry only), we derive from (3.4) and (3.6) the following approximate model:

∂q

∂x
− ∂

∂y

[
q

S0

∂η̃

∂y

]
= r,

∂η̃

∂t
− δ

∂h

∂t
= U − ∂V

∂x
+

∂

∂y

[
V

S0

{
∂η̃

∂y
− βδ

h + β

∂h

∂y

}]
,(3.16)

with q and τe defined in (3.14) and (3.15). Notice that this model is still nonlinear.
If the steady solution in which q0 = rx and V0 = Ux of this pair of equations is

linearized, then what we find is the following. If we put δ = 0 (and thus V = V (q, S)),
instability occurs if ∂V/∂q > V/q at any point, as stated above, and the growth rate
is unbounded (∝ k2) as the lateral wave number k of modes ∝ eiky increases. This
implies ill-posedness of the model with δ = 0. If δ > 0 but is small, then the system is
stabilized at high wave number. More detailed consideration of the linear eigenvalue
problem suggests that instability occurs for k in the range O

(
1

δ1/2

)
< k < O

(
1
δ

)
,

and that maximal growth occurs for k = O
(

1
δ3/4

)
. Oscillations in the x direction are

stabilizing.
In dimensional terms, the range of unstable wavelengths lu is thus in the range

(3.17)
[h]l

d
< lu <

[h]1/2l

d1/2
,

and thus it bears no simple relation to any of the three geometric length scales of the
problem but involves them all.

Because δ � 1, i.e., [h] � l, the result in (3.17) suggests that a nonlinear theory
for channel formation can be based on the fact that the lateral length scale for growing
perturbations is much smaller than the downstream length scale; in other words, we
now turn to a direct asymptotic solution of (3.16) when h is large.

4. An evolution equation for channel formation. The discussion above of
linear stability when δ � 1 suggests that a distinguished lateral length scale of order
<∼ δ1/2 may serve to delineate the unstable growth of rills. Let us now focus on this

growth by defining

(4.1) y = δ1/2Y, η̃ = δZ, t = δt̃;

the rescaling of η̃ and t is motivated by the linear stability result of Loewenherz-
Lawrence (1994), which suggests that when y ∼ 1/k � 1, then η̃ ∼ q̃/k2, or more
generally η̃ ∼ h3/2/k2, and t ∼ 1/k2. For k ∼ 1/δ1/2 and h ∼ O(1), we obtain (4.1).
Note that if the original time scale ∼ d/UD was 106 years, then this new time scale
is [h]/UD (film thickness divided by uplift or erosion rate), of order 10 years.

The equations (3.16) retain their validity based on geometric linearity, and take
the form

∂q

∂x
− ∂

∂Y

[
q

S

∂Z

∂Y

]
= r,

∂Z

∂t̃
− ∂h

∂t̃
= U − ∂V

∂x
+

∂

∂Y

[
V

S

{
∂Z

∂Y
− β

h + β

∂h

∂Y

}]
,(4.2)

in which S(x) is the steady slope (i.e., such that Z = 0 is a solution of (4.2)), and the
water flux q and effective driving stress for sediment transport τe are given by

(4.3) τe ≈ (h + β)S, q = h3/2S1/2.
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To be specific, we pose these equations on a rectangular domain −L < y < L
(thus −L/δ1/2 < Y < L/δ1/2) and 0 < x < 1. In terms of x and y, the no flux and
shoreline boundary conditions require

∂h

∂y
=

∂Z

∂y
= 0 on y = ±L,

q = V = 0 on x = 0,

Z = 0 on x = 1.(4.4)

These equations enclose the linear instability of the steady state (on a lateral
space scale Y = O(1), and time scale t̃ = O(1)); but they are fully nonlinear equations
and may provide a vehicle to understand the nonlinear development of the linear rill
instability we have found before.

One possibility is that stable finite amplitude solutions (rills) exist for this model,
with h ∼ O(1). Such rills have depths of order millimeters or centimeters, and do not
correspond to larger river channels, which presumably evolve over longer geological
time scales, possibly by coarsening and scale evolution.

We make the supposition that larger channels can evolve in this model, and
therefore we seek solutions representing such large channels in which the depth h � 1,
and where it is a function of the short length scale Y ∼ O(1). Note that a consequence
of (4.2)1 is that

(4.5)

∫ L/δ1/2

−L/δ1/2

q dY = 2Lrx/δ1/2,

which serves as a constraint on the channel depth. In particular, (4.3) suggests a
distinguished limit h ∼ 1/δ1/3 when most of the rainfall finds its way into the channel.
Thus we rescale the variables as

(4.6) h =
H

δ1/3
, q =

Q

δ1/2
, V =

F

δ1/2
, τe =

Te

δ1/3
, t̃ = δ1/6T.

(This assumes that V ∼ τ
3/2
e for large τe, as is the case for the Meyer-Peter relation

in (2.20).) With δ ≈ 10−5, then 1/δ1/3 ≈ 46, and the new depth scale is of the order
of a meter, sensible for a developed stream. The choice of time scale (corresponding
dimensionally to a year) is so that the time derivative of h in (4.2)2 is balanced. On
the other hand, we expect the water surface to remain flat, so that we do not seek to
rescale Z: as we will see, this is consistent with the model equations.

Introducing (4.6) into (4.2) and (4.3), we obtain

∂Q

∂x
− ∂

∂Y

[
Q

S

∂Z

∂Y

]
= δ1/2r,

δ1/2 ∂Z

∂T
− ∂H

∂T
= δ1/2U − ∂F

∂x
+

∂

∂Y

[
F

S

{
∂Z

∂Y
− β

H + δ1/3β

∂H

∂Y

}]
,(4.7)

Te ≈ (H + δ1/3β)S, Q = H3/2S1/2.(4.8)

The rescaled sediment transport function F is only O(1) with this rescaling if F ∼
τ

3/2
e , which is of course precisely true for the Meyer-Peter–Müller law:

(4.9) F =
[
Te − δ1/3τ∗c

]3/2

+
.
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Any other choice of transport law would require a more contorted rescaling.
We can use (4.8) to write (4.9) in the form

(4.10) F = QS + 3
2 (δQS)1/3(βS − τ∗c ) + · · · .

Simplification of (4.7)2 now yields

(4.11) −δ1/2 ∂Z

∂T
+

∂H

∂T
= S′S1/2H3/2 + S1/2 ∂

∂Y

[
βH1/2 ∂H

∂Y

]
+ C

∂2Z

∂Y 2
,

with inessential error terms of O(δ1/3). The instability parameter C is given by

(4.12) C =
Q

S

(
FQ − F

Q

)
≈ −δ1/3(βS − τ∗c )

(
H

S

)1/2

.

It is a peculiarity of the Meyer-Peter–Müller law that C = 0 to leading order, so that
the steady state is approximately neutrally linearly stable (at these large stresses).
This is because at leading order F is linear in Q, and the function is neither mathe-
matically convex nor concave

Equation (4.11) reveals the essence of linear instability and its nonlinear devel-
opment. Linear instability is associated with the negative diffusion coefficient of Z if
C > 0, i.e.,

(4.13) S < Sc =
τ∗c
β

=
μcl

d
,

using (2.21) and (2.22). In dimensional terms, this suggests instability if the slope is
less than μc, which occurs at the shoreline. If the resulting rills are able to grow to
significant depth, then the nonlinear evolution of H is described approximately by

(4.14)
∂H

∂T
= S′S1/2H3/2 + S1/2 ∂

∂Y

[
βH1/2 ∂H

∂Y

]
,

and Z then follows from (4.7) by quadrature. Equation (4.14) is a degenerate nonlinear
diffusion equation, about which a good deal is known. The source term is suggestive
(if S′ > 0, i.e., on the (upper) convex portion of the hillslope) of blow up and the
possibility that H could reach ∞ at a finite time. The degenerate diffusion coefficient
is suggestive of solutions of compact support.

The integral constraint (4.5) can be written in the limiting form (as δ → 0)

(4.15)

∫ ∞

−∞
H3/2 dY =

2Lrx

S1/2
.

Note that this constraint is independent of (4.14), which is derived from sediment
conservation, whereas (4.15) is a condition of water mass flow.

Suitable boundary conditions for (4.14) follow from matching to an outer film
flow, where Y ∼ 1/δ1/2 and H ∼ δ1/3. Consequently, we require

(4.16) H → 0 as Y → ±∞.

The initial condition is that H is initially small (since we suppose it arises from
an instability of the steady state H ∼ δ1/3), i.e.,

(4.17) H → 0 as T → 0.
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The precise behavior of H for small T is less easy to describe. The reason for this
is that we have omitted an intermediate discussion of the nonlinear stability of the
uniform steady state. The long time evolution of an arbitrary (infinitesimal) per-
turbation to the steady state can be described by consideration of a Fourier integral
over normal modes of wave number k. The upshot of such a consideration is that the
emerging linear solution is a monochromatic oscillation whose wave number is that
with maximum growth rate, and this would serve as a suitable initial condition for
the resulting nonlinear equations in (4.2). However, to obtain an appropriate initial
condition for (4.14), we really need to know how solutions to (4.2) behave. We sup-
pose that the nonlinear equations (4.2) do not (always) have stable bounded solutions
for H and that (for example) they may exhibit some kind of blow up. In that case,
one might expect to obtain a suitable form for the initial behavior of H by matching
to the large amplitude solution of (4.2). This is similar to the procedure adopted by
Stewartson and Stuart (1971).

In directly seeking solutions at larger amplitude, we are motivated by the fact
that developed river channels do indeed attain depths on the order of a meter, and
this is consistent with the scale of the solutions described by (4.14).

5. Solution properties. The problem (4.14) with the integral constraint, bound-
ary, and initial conditions (4.15)–(4.17) can be written in normalized form by defining
new variables u, t, η (note this is unrelated to the use of η for the water surface in
sections 2 and 3) via

(5.1) H =

(
6

β

)1/3

(Lrx)2/3u, T =

(
β

6

)1/6
S1/2S′

(Lrx)1/3
t, Y =

(
2β

3S′

)1/2

η,

whence we find

ut = u3/2 +
(
u3/2

)
ηη

,∫ ∞

−∞
u3/2 dη = 1, u → 0 as η → ±∞, t → 0.(5.2)

This equation has been much studied by pure mathematicians, and it features
prominently in the book by Samarskii et al. (1995), where numerous results concerning
blow up and localization (i.e., attainment of compact support) are proved. The results
in this book are, however, concerned with smooth solutions, for which blow up is
essentially obvious; that is, for solutions of compact support, it is assumed that the
derivative of u is zero at the boundary of the support. The derivation of the same
equation here from a real physical model is clearly of some interest, but it is clearly
incorrect to suppose that solutions will necessarily have zero derivative at the support
margin. In general, the derivatives are finite at the margins, and in fact blow up does
not occur (which, physically, is an appropriate behavior).

In our investigation of the solutions of (5.2), we are led to assert the following.
A solution of the problem exists, and there is a unique steady state which is globally
stable and of compact support. Starting from an initial condition of infinite support,
the solution attains finite support immediately (i.e., for all t > 0). We have not proved
these results, but we show why we think they are true in the following subsections.

Steady state and linear stability. We will limit our attention to symmetric
solutions, so that u is even, and uη = 0 on η = 0. It is convenient to define

(5.3) v = u3/2,
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and we note that for symmetric solutions, we have

(5.4)

∫ ∞

0

v dη = 1
2 .

It is trivial to see that there is a unique steady state vs(η), given by

v = 1
2 cos η, 0 < η < π/2,

v = 0, η > π/2.(5.5)

To examine linear stability, we put

(5.6) v = 1
2 cos η + V,

and linearize the equations, to obtain

(5.7)
2

3v
1/3
s

Vt = Vηη + V,

subject to

(5.8)

∫ π/2

0

V dη = 0, Vη = 0 at η = 0.

(The condition on v at the margin determines the motion of the margin.) Separable
solutions to this of the form V = W (η)eσt exist, and W then satisfies a nonstandard
eigenvalue problem. It is convenient to define

(5.9) φ = W + Wη|π/2 cos η;

it follows that φ satisfies the nonstandard eigenvalue problem

(5.10) φ′′ + φ =
2σ

3v
1/3
s

[
φ− vs

∫ π/2

0

φdη

]
,

subject to

(5.11) φ′(0) = φ′(π/2) = 0.

Consider for a moment the equation

(5.12) ψ′′ + ψ = λψ,

subject to

(5.13) ψ′(0) = ψ′(π/2) = 0.

This is a standard eigenvalue problem with eigenfunctions cos 2nη and eigenvalues
λ = 1 − 4n2, n ∈ N, and direct integration shows that

(5.14) λ =

∫ π/2

0

(ψ2 − ψ′2) dη∫ π/2

0

ψ2 dη

.
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The standard variational formulation for Sturm–Liouville problems then implies that
the functional λ(ψ) defined by (5.14) is maximized by the principal eigenfunction
cos 2η, for which λ = −3. It follows from this that for all functions φ satisfying (5.10)
and (5.11) (and thus not proportional to this eigenfunction), we have

(5.15)

∫ π/2

0

(φ2 − φ′2) dη < −3

∫ π/2

0

φ2 dη.

Multiplying (5.10) by φ and integrating from 0 to π/2, we thus have

(5.16)
2σ

3

[∫ π/2

0

φ2

v
1/3
s

dη −
∫ π/2

0

v2/3
s φdη

∫ π/2

0

φdη

]
=

∫ π/2

0

(φ2 − φ′2) dη < 0.

We are assuming for convenience in this exposition that σ is real. The problem (5.10)
is not self-adjoint, and so σ may be complex. We leave it as an exercise to show
that the proof below that σ < 0 can be straightforwardly generalized to the result
Reσ < 0.

From the Cauchy–Schwarz inequality, we have

∫ π/2

0

v2/3
s φdη ≤

(∫ π/2

0

v5/3
s dη

)1/2 (∫ π/2

0

φ2

v
1/3
s

dη

)1/2

,

∫ π/2

0

φdη ≤
(∫ π/2

0

v1/3
s dη

)1/2 (∫ π/2

0

φ2

v
1/3
s

dη

)1/2

,(5.17)

and thus

∫ π/2

0

v2/3
s φdη

∫ π/2

0

φdη ≤
(∫ π/2

0

v5/3
s dη

∫ π/2

0

v1/3
s dη

)1/2 ∫ π/2

0

φ2

v
1/3
s

dη

<
π

4

∫ π/2

0

φ2

v
1/3
s

dη,(5.18)

since vs ≤ 1
2 . It follows from this and (5.16) that σ < 0. More generally, we can prove

Reσ < 0, so that the steady state is linearly stable as far as the discrete spectrum is
concerned.

Front motion. The degeneracy of (5.2) suggests that solutions will be of com-
pact support and that the fronts where u = 0 will move at finite speed. The fronts
correspond to the location of the margins of the channel. Even if the initial support
is unbounded, we suggest below that the solution support instantly becomes finite. It
is then of interest to know how the front moves.

We write (5.2) in terms of v = u3/2, and thus

(5.19)
2

3v1/3
vt = vηη + v,

and if the front position is ηm(t) (thus v > 0 for η < ηm), we assume that near the
front,

(5.20) v ∼ c(ηm − η)ν + d(ηm − η)μ + · · · ,
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where μ > ν > 0. Substituting this into (5.19) and balancing the leading-order terms,
we obtain ν = 3, η̇m = 3

2 (ν − 1)c1/3, and thus

(5.21) v ∼ c(ηm − η)3, η̇m ∼ 3c1/3.

In terms of u, this implies

(5.22) u ∼ α(ηm − η)2, η̇m ∼ 3
√
α,

and we see that such solutions are possible only for front advance. In particular, they
do not describe the evolution of a channel from the initial conditions in (5.2).

Another balance is possible if ν = 1, when the second-order term in (5.20) comes
into play. Balancing of terms then implies μ = 5

3 , and then

(5.23) v ∼ c(ηm − η) + d(ηm − η)5/3 + · · · , η̇m ∼ 5d

3c2/3
.

In terms of u, this yields

(5.24) u ∼ α(ηm − η)2/3 + β(ηm − η)4/3 + · · · , η̇m ∼ 5β

2
√
α

;

the slope is infinite at the front, and the direction of motion depends on the coefficient
of the higher-order corrective term. Fatter fronts advance, and thinner ones retreat.

Small time solution. We have mentioned above that numerical results are
consistent with the idea that the solution immediately becomes of finite support. To
examine how this occurs, we study the form of the solution for small t.

It is convenient for the analysis (and also for the numerical solution of the prob-
lem) to transform the domain to a fixed interval. A smart way to do this is to define
the independent variable

(5.25) s =

∫ η

0

v dη.

Changing variables from η, t to s, t leads to the pair of equations for v and η (which
now becomes a function of s and t):

vηs = 1,
2

3v1/3
[vt − ηtvvs] = v + v[vvs]s,(5.26)

subject to the conditions

η = vs = 0 on s = 0,

v = 0 on s = 1
2 ,

v = v0(s) at t = 0.(5.27)

The front position is then found a posteriori from the equation

(5.28) ηm(t) = η( 1
2 , t).

If we take v′0(
1
2 ) to be finite, then the initial support is infinite, ηm(0) = ∞, and

the solution has a singularity at t = 0, s = 1
2 . In expanding the solution for small
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t, we therefore make use of the method of strained coordinates in order to ensure a
uniform expansion. This will enable us to determine the initial position of the front
ηm. We define new variables T, ζ via

(5.29) t = εT, s = ζ + εs1(ζ) + · · · ,

in terms of which the equations become

v(1 − εs1ζ . . . )ηζ = 1,

vT − εs1T vζ . . .− (ηT − εs1T ηζ . . . )v(1 − εs1ζ . . . )vζ

=
3

2
εv4/3

[
1 + (1 − εs1ζ . . . )

∂

∂ζ
{v(1 − εs1ζ . . . )vζ}

]
.(5.30)

Now we seek solutions in the form

(5.31) v ∼ v0 + εv1 . . . , η ∼ η0 + εη1 . . . ,

anticipating that the leading-order solution v0 is given by the initial function v0(ζ).
The function s1 is to be chosen in order to ensure that the expansions in (5.31) are
uniformly valid.

Equating powers of ε, we find that at O(1),

v0η0ζ = 1,

v0T − η0T v0v0ζ = 0.(5.32)

We take the solution of this to be

(5.33) v0 = v0(s), η0 =

∫ ζ

0

dζ ′

v0(ζ ′)
.

Then at O(ε), we find (since η0T = 0)

v0η1ζ + η0ζv1 = s1ζ ,

v1T − v0v0ζη1T = 3
2v

4/3
0 [1 + (v0v0ζ)ζ ].(5.34)

The conditions we require to be satisfied for the functions η1, v1, and s1 are

η1 = v1ζ = s1 = 0 on ζ = 0,

s1 = v1 = 0 at T = 0.(5.35)

The choice of s1 = 0 ensures that s = 0 when ζ = 0 and seems feasible because of the
term s1ζ in (5.34)1; it is less obvious that we will be able to choose s1 = 0 at T = 0,
but if so, then s = ζ initially, which allows us to prescribe v1 = 0 initially. Note that
there is no boundary condition at the front, as its location in terms of ζ is not known:
we do not expect to be able to prescribe s1 = 0 at ζ = 1

2 .
The solution can be found by eliminating v1 in (5.34), and we find

η1 =
s1

v0
− 3TI(ζ)

2v0
,

v1 = v0s1ζ − v2
0η1ζ ,(5.36)
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taking into account the boundary and initial conditions. The function I(ζ) is defined
by

(5.37) I(ζ) =

∫ ζ

0

v
1/3
0 [1 + (v0v0ζ)ζ ] dζ

′.

We compute v1ζ at ζ = 0 and find

(5.38) v1ζ |ζ=0 = s1|ζ=0 + 3
2Tv

7/3
0 v′′′0 .

Because of our assumption of a symmetric solution, v0 is even, and therefore v′′′0 (0) =
0. It is because of this that we can consistently choose s1 = 0 at ζ = 0.

Finally, we must specify s1. This is done by examining the behavior of the solution
as ζ → 1

2 . We define

(5.39) a = −v′0(
1
2 ).

Then as ζ → 1
2 ,

(5.40) v0 ∼ aX, η0 ∼ −1

a
lnX + O(1),

where we write X = 1
2 − ζ. We thus require s1 to be such that v1 ≤ O(X) and

η1 ≤ O(lnX). Expanding v1 and η1 for small X, we find

η1 ∼ s1

aX
− 3ImT

2aX
+ O(1),

v1 ∼ −as1 +
3ImaT

2
. . . ,(5.41)

where

(5.42) Im = I( 1
2 ) =

∫ 1/2

0

v
1/3
0 [1 + (v0v0ζ)ζ ] dζ

′.

In order to suppress the singular terms, a simple choice of s1 which also satisfies the
requested initial and boundary conditions is

(5.43) s1 = 3
2ImT (1 − 2X).

Of principal interest is the margin position, which is given implicitly by the pair
of equations

ηm = η0(ζ) + εη1(ζ, T ) + · · · ,
1
2 = ζ + εs1(ζ, T ) + · · · .(5.44)

Using the definitions of η1 and s1 and expanding for small ε, we find that the margin
position is given in terms of t by the expression

(5.45) ηm ≈ 1

a
ln

{
1

3Imt

}
+

∫ 1/2

0

[
1

v0(ζ)
− 1

a( 1
2 − ζ)

]
dζ + O(t).

This result suggests (but does not prove) that the solution is of compact support
for all t > 0. The asymptotic form of the front position is consistent with a numerical
solution of the problem, as we now describe.
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Numerical solution. To solve the system (5.26) and (5.27) numerically, we dis-
cretize the equations on uniform meshes. To avoid a sparse mesh in the neighborhood
of the endpoint η = ηm, which would occur because of the slow change of s there, we
reformulate our problem once again by defining a new positive space variable ξ as

(5.46) (1 − ξ) =
√

1 − 2s.

The model can then be written in the form

ut = ηtwuξ + w(wvξ)ξ + v for ξ ∈ (0, 1), t > 0,

v = u3/2, w =
v

1 − ξ
,

uξ(0, t) = 0, u(1, t) = 0,

v(ξ, 0) = v0[s(ξ)],

ηξ =
1 − ξ

v
for ξ ∈ (0, 1], η(0, t) = 0, t ≥ 0,(5.47)

where now u = u(ξ, t), v = v(ξ, t), and η = η(ξ, t). Furthermore, we now have

ηm(t) = η(1, t).

We discretize in time using the first-order explicit Euler method and in space
using second-order finite differences on uniform meshes. Hence the time step τ is
chosen much smaller than the space mesh size N−1.

Approximations of η are computed at each time level by numerical integration
of (5.47)5 and thus will be O(N−2)-accurate. If we evaluated ηt in (5.47)1 using
these computed approximations of η, we would introduce huge errors of order N−2/τ
in the discretization of (5.47)1 and fail to get accurate computed solutions. More
accurate approximations of ηt are obtained by differentiating (5.47)5 with respect
to t, eliminating vt from the right-hand side by (5.47)1, and solving the resulting
differential equation for ηt numerically. This is equivalent to replacing (5.47)1 by

χξ = −3(1 − ξ)

2u
[w(wvξ)ξ + v], χ(0, t) = 0,

ut =
χ

1 − ξ
uξ + w(wvξ)ξ + v,(5.48)

where χ replaces vηt. The convective term uξ in (5.48)2 was discretized using second-
order upwinding that depends on the sign of χ; for details see, e.g., Kopteva (1996).

In our computations, we used the initial condition

(5.49) v ∝ exp

{
− aη2

η + 1

}
at t = 0,

since it follows from (5.26) that if v′0(s = 1
2 ) = −a, then v ∼ exp(−aη) as η → ∞.

Figure 6 shows snapshots of the relaxation of the solution towards the steady state,
while Figure 7 shows the margin evolution. We have checked the initial evolution
of the margin against the asymptotic formula (5.45) and found excellent agreement.
The results support the conjecture that the steady state solution is globally stable.
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Fig. 6. Relaxation of the solution of (5.19) to the steady state. The initial condition v0(η)

(using the formulation in (5.25)–(5.27)) is given by v0 ∝ exp
{
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Fig. 7. Evolution of the front position ηm as a function of t for the solution in Figure 6. The

singularity at t = 0 is approximately (numerically) logarithmic.
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6. Conclusions. Beginning with a physics-based model of hillslope evolution
and hydraulic drainage, we have shown how one can obtain a rational model for the
local evolution of a stream or drainage channel. This model takes the form of a
nonlinear diffusion equation with a nonlinear source term, similar to equations which
have been much studied by analysts, but with the novelty of an additional integral
constraint. The evidence we have gathered appears to indicate that this model is well-
posed, and that its solution evolves to a unique steady state, with a width which is
self-determining. This observation is interesting in view of the continuing difficulty in
finding models of stream flow which can describe the stream width (see, for example,
Parker (1978)).

A question of concern (but which is not addressed here) is that of putting our
channel model within the context of the large scale evolution of hillslope topography.
The way this can be done is as follows. As a river channel evolves, sediment is trans-
ported from the adjoining hillslope which is thus lowered. In a maturing hillslope,
the channel thus eats its way down into the valley. In terms of the mathematical
model, the channel will act as a thin, “shock-like” transition region between regions
of hillslope with different gradients; it is a boundary layer connecting the different
parts of the outer hillslope solution. Thus the results of the present paper can be
used to provide a parameterization of the local channel dynamics in terms of the
fluxes of sediment and water delivered from the surrounding hillslope, which evolves
essentially via the Smith–Bretherton model. In this description, the hillslope evolves
smoothly until it becomes concave, at which point a new channel will form. Specif-
ically, this occurs where the characteristics of the water flow equation intersect, and
the evolution of the head of the channel up the hillslope is determined by the point
of shock formation. This is similar in tone but not in application to the discussion by
Birnir, Smith, and Merchant (2001).

There are a number of interesting mathematical questions which deserve further
study: the nonstandard eigenvalue problem (5.10) and (5.11), and the selection of
front advance rate between (5.22) and (5.24), are two obvious ones. Of most concern
in the application of the model to river system development is the fact that these
channels grow (see (4.14)) when S′ > 0; i.e., the hillslope is convex (upwards, in the
sense of Figure 3). This is precisely the Smith–Bretherton condition which ensures
that a uniform overland flow is stable. We thus have the paradoxical result that finite
amplitude channels exist and are stable when the uniform steady state is also stable.

This observation is suggestive of bistability. We have not yet performed a study of
the “rill” scaled model (4.2), but it is reasonable to expect it to have finite amplitude
steady solutions, and these might plausibly connect to the uniform state branch at the
linear stability, and “become” the channel branch as S′ increases. It has to be said
that it is not at all obvious how such a bifurcation diagram should be constructed.
As with the other problems described above, this problem also awaits study.

Two other practical considerations deserve mention on this point. One is that
our model assumes an unlimited sediment supply. In mature landscapes, erosion may
become detachment limited (Howard 1994), and the form of the channel equation is
somewhat changed. In essence, it appears that a similar equation may be appropriate
in that case also but with a source term H3/2S3/2 which is independent of hillslope
curvature.

The other comment is that in mature landscapes, such as that of Figure 1, it is
evident that there will be flux of water and sediment to the channel; the hillslope is
essentially three-dimensional, and it is possible that in such an altered geometry, the
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conditions for channel formation are simply slope (and not curvature) dependent.

Acknowledgment. We thank Bruce Malamud for assistance with computer
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CHANNEL FLOW OF A BINARY MIXTURE OF RIGID SPHERES
DESCRIBED BY THE LINEARIZED BOLTZMANN EQUATION AND

DRIVEN BY TEMPERATURE, PRESSURE, AND
CONCENTRATION GRADIENTS∗
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Abstract. An analytical version of the discrete-ordinates method (the ADO method) is used
with recently established analytical expressions for the rigid-sphere scattering kernels in a study
devoted to the flow of a binary gas mixture in a plane channel. In particular, concise and accurate
solutions to basic flow problems in a plane channel driven by temperature, pressure, and concentration
gradients and described by the linearized Boltzmann equation are established for the case of Maxwell
boundary conditions for each of the two species. The velocity, heat-flow, and shear-stress profiles,
as well as the mass- and heat-flow rates, are established for each species of particles, and numerical
results are reported for two binary mixtures (Ne-Ar and He-Xe).

Key words. rarefied gas dynamics, binary mixtures, rigid spheres, channel flow, linearized
Boltzmann equation
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1. Introduction. While the classical problems of Poiseuille flow and thermal-
creep flow in a plane channel in the general field of rarefied gas dynamics [24, 3, 5, 4]
have been extensively studied for the case of a single-species gas (see, for example,
[1, 25, 20, 22, 21, 14, 17] and the references therein), there are relatively few works (for
example, [23, 16, 13]) devoted to these problems for gas mixtures. While [23] and [16]
are based on the McCormack kinetic model [15], the work of Kosuge et al. [13] is
carried out in terms of the linearized Boltzmann equation (LBE). It can be noted
that the paper by Siewert and Valougeorgis [23] reports (in terms of the McCormack
model) concise and accurate solutions to the problems of channel flow driven by
pressure, temperature, and concentration gradients. While the approach used in [16],
also based on the McCormack model, is purely numerical, that work does investigate
flow in a two-dimensional channel. Most closely related to this work is [13], where
purely numerical methods are used to establish some results for channel-flow problems
based on the LBE.

In this work, we develop and evaluate concise and accurate solutions for flow prob-
lems in a plane-parallel channel driven by pressure, temperature, and concentration
gradients. We make use of an analytical discrete-ordinates method (ADO method,
[2]), and we use (in the LBE) explicit forms of the rigid-sphere collision kernels for
binary gas mixtures [12, 6, 8]. The developed solutions depend (aside from some
normalizations) only on the mass and diameter ratios and the relative equilibrium
concentration of the two species of particles. We allow a free choice of the accom-
modation coefficients for each species at the confining surfaces of the channel. Our
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approach relies on a continuous treatment of both the space and speed variables that
has proved to be particularly efficient and accurate for other classical problems for
binary gas mixtures [7, 9, 10].

2. Basic formulation. The flow problems considered in this work are driven
by a temperature gradient, a pressure gradient, or concentration gradients (or any
linear combination of these effects), and so we base our linearizations of the particle
distribution functions about local rather than absolute conditions, as was done in [9],
for example. We use x to measure distance in the direction (parallel to the confining
walls of the plane-parallel channel) of the mentioned gradients, and so we write the
local Maxwellians (for the two species of particles identified by the subscripts α = 1
and 2) as

(2.1) fα,0(x, v) = nα(x)

[
mα

2πkT (x)

]3/2

exp

{
− mαv

2

2kT (x)

}
, α = 1, 2,

where v is the magnitude of the velocity v. If we now express the considered linear
variations in the number densities and the temperature as

(2.2) nα(x) = nα(1 + Rαx), α = 1, 2,

and

(2.3) T (x) = T0(1 + KTx),

where Rα and KT are considered to be given (small) constants, we can linearize (2.1)
to obtain the approximations

(2.4) f∗
α,0(x, v) = fα,0(v)[1 + fα(v)x], α = 1, 2,

where

(2.5) fα,0(v) = nα(λα/π)3/2e−λαv2

, λα = mα/(2kT0),

is the absolute Maxwellian distribution for nα particles of mass mα in equilibrium
at temperature T0. Here k is the Boltzmann constant, and the fα(v) are to be
determined. If we express the pressure distribution as

(2.6) p(x) = p0(1 + KPx),

where p0 = nkT0, n = n1 + n2, and KP is a given (small) constant, then using the
perfect gas law

(2.7) p(x) = n(x)kT (x),

where

(2.8) n(x) = n1(x) + n2(x),

we find, after neglecting second-order effects,

(2.9) c1R1 + c2R2 = KP −KT ,

where cα = nα/n, α = 1, 2. And so, making use of (2.9), we find that we can use

(2.10a) f1(v) = [m1v
2/(2kT0) − 5/2]KT + KP + c2KC
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and

(2.10b) f2(v) = [m2v
2/(2kT0) − 5/2]KT + KP − c1KC ,

with KC = R1 − R2, to complete (2.4). Using the variable z ∈ [−z0, z0] to measure
the transverse or cross-channel direction, we now write the true velocity distributions
as

(2.11) fα(x, z,v) = fα,0(v){1 + fα(v)x + hα(z, λ1/2
α v)},

where the perturbations hα(z, λ
1/2
α v) are to be determined from a form of the LBE

used in [12, 6, 8, 7, 10] that has an added inhomogeneous driving term due to the x
variation in (2.11).

And so we proceed with an inhomogeneous form of the LBE, for a binary mixture
of rigid spheres, written as

(2.12) S(c) + cμ
∂

∂z
H(z, c) + ε0V (c)H(z, c) = ε0

∫
e−c′2K(c′ : c)H(z, c′)d3c′,

where ε0 is, at this point, an arbitrary parameter that we will soon use to define a
dimensionless spatial variable,

(2.13) H(z, c) =

[
h1(z, c)
h2(z, c)

]
,

and

(2.14) S(c) = c(1−μ2)1/2 cosφ

{
(c2 − 5/2)KT

[
1
1

]
+ KP

[
1
1

]
+ KC

[
c2

−c1

]}
.

Considering that the driving term in (2.12) is given by (2.14), we note that (i) the
case of flow driven by a temperature gradient corresponds to KP = 0, KC = 0, and
KT �= 0, (ii) the case of flow driven by a pressure gradient corresponds to KT = 0,
KC = 0, and KP �= 0, and (iii) the case of flow driven by concentration gradients
corresponds to KP = 0, KT = 0, and KC �= 0. Furthermore, we note that in writing
(2.12), we have introduced the variable changes

(2.15) hα(z, c) = hα(z, λ1/2
α v), α = 1, 2,

in order to work with the dimensionless velocity variable c. Continuing, we note that
we use spherical coordinates {c, θ, φ}, with μ = cos θ, to describe the dimensionless
velocity vector, so that

H(z, c) ⇔ H(z, c, μ, φ).

In our notation, cμ is the component of the (dimensionless) velocity vector in the
positive z direction, and

(2.16) cx = c(1 − μ2)1/2 cosφ

is the component of velocity in the direction x (parallel to the confining surfaces) of
the flow.

In regard to the homogeneous version of (2.12), we note that all of the defining
elements have been developed in a recent series of papers [12, 6, 8]. We consider
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that these works [12, 6, 8] can be consulted if a complete understanding of all of the
required elements is desired. And so at this point we simply quote from our previous
work [12, 6, 8] and list without additional comments the required definitions. First,

(2.17) V (c) = (1/ε0)Σ(c)

and

(2.18) K(c′ : c) = (1/ε0)K(c′ : c),

where

(2.19) Σ(c) =

[
	1(c) 0

0 	2(c)

]
,

with

(2.20) 	α(c) = 	(1)
α (c) + 	(2)

α (c)

and

(2.21) 	(β)
α (c) = 4π1/2nβσα,βaβ,αν(aα,βc).

Here

(2.22) ν(c) =
2c2 + 1

c

∫ c

0

e−x2

dx + e−c2

and

(2.23) aα,β = (mβ/mα)1/2, α, β = 1, 2.

We use σα,β to denote the differential-scattering cross section, which (for the case of
rigid-sphere scattering that is isotropic in the center-of-mass system) we write as [4]

(2.24) σα,β =
1

4

(
dα + dβ

2

)2

, α, β = 1, 2,

where d1 and d2 are the atomic diameters of the two types of gas particles. We
continue to follow [12, 6, 8] and write

(2.25) K(c′ : c) =

[
K1,1(c

′ : c) K1,2(c
′ : c)

K2,1(c
′ : c) K2,2(c

′ : c)

]
,

where

K1,1(c
′ : c) = 4n1σ1,1π

1/2P(c′ : c) + n2σ1,2π
1/2F1,2(c

′ : c),(2.26)

K1,2(c
′ : c) = 4n2σ1,2π

1/2G1,2(c
′ : c),(2.27)

K2,1(c
′ : c) = 4n1σ2,1π

1/2G2,1(c
′ : c),(2.28)

and

(2.29) K2,2(c
′ : c) = 4n2σ2,2π

1/2P(c′ : c) + n1σ2,1π
1/2F2,1(c

′ : c).
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Here

(2.30) P(c′ : c) =
1

π

(
2

|c′ − c| exp

{
|c′ × c|2
|c′ − c|2

}
− |c′ − c|

)

is the basic kernel for a single-species gas used by Pekeris [18]. In addition,

(2.31) Fα,β(c′ : c) = F(aα,β ; c′ : c)

and

(2.32) Gα,β(c′ : c) = G(aα,β ; c′ : c),

where
(2.33)

F(a; c′ : c) =
(a2 + 1)2

a3π|c′ − c| exp

{
a2 |c′ × c|2

|c′ − c|2 − (1 − a2)2(c′
2

+ c2)

4a2
− (a4 − 1)c′ · c

2a2

}

and

(2.34) G(a; c′ : c) =
1

aπ

∣∣c′ − ac
∣∣[J(a; c′ : c) − 1],

with
(2.35a)

J(a; c′ : c) =
(a + 1/a)2

2Δ(a; c′ : c)
exp

{
−2C(a; c′ : c)

(a− 1/a)2

}
sinh

{
2Δ(a; c′ : c)

(a− 1/a)2

}
, a �= 1,

or

(2.35b) J(a; c′ : c) =
1

|c′ − c|2 exp

{
|c′ × c|2
|c′ − c|2

}
, a = 1.

We have used the definitions [12, 6, 8]

(2.36) Δ(a; c′ : c) =
{
C2(a; c′ : c) + (a− 1/a)2|c′ × c|2

}1/2

and

(2.37) C(a; c′ : c) = c′
2

+ c2 − (a + 1/a)c′ · c.

In this work, we intend to compute the velocity, the shear-stress, and the heat-flow
profiles which we express as

U(z) =
1

π3/2

∫ ∞

0

∫ 1

−1

∫ 2π

0

e−c2H(z, c)c3(1 − μ2)1/2 cosφdφdμdc,(2.38)

P (z) =
2

π3/2

∫ ∞

0

∫ 1

−1

∫ 2π

0

e−c2H(z, c)c4μ(1 − μ2)1/2 cosφdφdμdc,(2.39)

and

(2.40) Q(z) =
1

π3/2

∫ ∞

0

∫ 1

−1

∫ 2π

0

e−c2H(z, c)

(
c2 − 5

2

)
c3(1 − μ2)1/2 cosφdφdμdc,
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where the components of U(z), P (z), and Q(z) are the functions Uα(z), Pα(z), and
Qα(z), for α = 1, 2, that can be used, as mentioned in Appendix A of [9], to define
the macroscopic quantities for a binary mixture.

As in [9], it is clear (for the specific flow problems considered here) that an
expansion of H(z, c) in a Fourier series (in the angle φ) requires only one term—that
is, one proportional to cosφ. And so we follow [8] and introduce the dimensionless
spatial variable

(2.41) τ = zε0,

where

(2.42) ε0 = (n1 + n2)π
1/2

(
n1d1 + n2d2

n1 + n2

)2

,

and write

(2.43) H(τ/ε0, c) = Ψ(τ, c, μ)(1 − μ2)1/2 cosφ,

where Ψ(τ, c, μ) is the (vector-valued) function to be determined. We now let z = τ/ε0

in (2.38)–(2.40) and consider that

U(τ) =
1

π1/2

∫ ∞

0

∫ 1

−1

e−c2Ψ(τ, c, μ)c3(1 − μ2)dμdc,(2.44)

P (τ) =
2

π1/2

∫ ∞

0

∫ 1

−1

e−c2Ψ(τ, c, μ)c4(1 − μ2)μdμdc,(2.45)

and

(2.46) Q(τ) =
1

π1/2

∫ ∞

0

∫ 1

−1

e−c2Ψ(τ, c, μ)

(
c2 − 5

2

)
c3(1 − μ2)dμdc

are the quantities to be computed. It should be noted that to avoid excessive notation,
we have, in writing (2.44)–(2.46), followed the (often-used) procedure of not always
introducing new labels for dependent quantities (in this case U , P , and Q) when the
independent variable is changed.

We can now use (2.43) in (2.12), multiply the resulting equation by cosφ, integrate
over all φ, and use the Legendre expansion of the scattering kernel K(c′ : c) that was
introduced in a previous work—see equations (26) and (65) of [8]—to find

(2.47) Υ(c) + cμ
∂

∂τ
Ψ(τ, c, μ) + V (c)Ψ(τ, c, μ)

=

∫ ∞

0

∫ 1

−1

e−c′2f(μ′, μ)K(c′, μ′ : c, μ)Ψ(τ, c′, μ′)c′
2
dμ′dc′,

where

(2.48) f(μ′, μ) =

(
1 − μ′2

1 − μ2

)1/2

.

In addition,

(2.49) K(c′, μ′ : c, μ) cosφ′ =

∫ 2π

0

K(c′ : c) cosφdφ,
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which we can express, in the notation of [8], as

(2.50) K(c′, μ′ : c, μ) = (1/2)

∞∑
n=1

(2n + 1)P 1
n(μ′)P 1

n(μ)Kn(c′, c),

where P 1
n(x) is used to denote one of the normalized associated Legendre functions.

More explicitly,

(2.51) Pm
l (μ) =

[
(l −m)!

(l + m)!

]1/2

(1 − μ2)m/2 dm

dμm
Pl(μ),

where Pl(μ) is the Legendre polynomial. In addition,

(2.52) Kn(c′, c) =

[
K(1,1)

n (c′, c) K(1,2)
n (c′, c)

K(2,1)
n (c′, c) K(2,2)

n (c′, c)

]
,

with

K(1,1)
n (c′, c) = p1P(n)(c′, c) + (g2/4)F (n)(a1,2; c

′, c),(2.53a)

K(1,2)
n (c′, c) = g2G(n)(a1,2; c

′, c),(2.53b)

K(2,1)
n (c′, c) = g1G(n)(a2,1; c

′, c),(2.53c)

and

(2.53d) K(2,2)
n (c′, c) = p2P(n)(c′, c) + (g1/4)F (n)(a2,1; c

′, c).

We also can write

(2.54) V (c) =

[
v1(c) 0

0 v2(c)

]
,

where now

(2.55a) v1(c) = p1ν(c) + g2a2,1ν(a1,2c)

and

(2.55b) v2(c) = p2ν(c) + g1a1,2ν(a2,1c).

In writing (2.53) and (2.55), we have used

(2.56a) pα = cα

(
ndα

n1d1 + n2d2

)2

, α = 1, 2,

and

(2.56b) gα = cα

(
ndavg

n1d1 + n2d2

)2

, α = 1, 2,

where

(2.57) davg = (d1 + d2)/2.
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In order to avoid too much repetition, we do not list here our expressions for the
Legendre moments

P(n)(c′, c), F (n)(a; c′, c), and G(n)(a; c′, c),

since they are explicitly given in Appendix A of [8]. To complete (2.47), we note that
the inhomogeneous driving term is

(2.58) Υ(c) = (c/ε0)

[
(c2 − 5/2)KT + KP + c2KC

(c2 − 5/2)KT + KP − c1KC

]
.

At the walls located at τ = −a and τ = a, we use a combination of specular and
diffuse reflection, and so, in regard to (2.12), we write the boundary conditions as

(2.59a) H(−a, c, μ, φ) − (I −α)H(−a, c,−μ, φ) −αI−{H}(−a) = 0

and

(2.59b) H(a, c,−μ, φ) − (I − β)H(a, c, μ, φ) − βI+{H}(a) = 0

for μ ∈ (0, 1] and all c and all φ. Here

I∓{H}(z) =
2

π

∫ ∞

0

∫ 1

0

∫ 2π

0

e−c′2H(z, c′,∓μ′, φ′)μ′c′
3
dφ′dμ′dc′,(2.60)

α = diag
{
α1, α2

}
,(2.61a)

and

(2.61b) β = diag
{
β1, β2

}
,

where α1, α2, β1, and β2 are the accommodation coefficients to be used for the two
species of gas particles at the confining surfaces. Taking note of (2.43), we find from
(2.59) the boundary conditions subject to which we must solve (2.47), that is,

(2.62a) Ψ(−a, c, μ) − (I −α)Ψ(−a, c,−μ) = 0

and

(2.62b) Ψ(a, c,−μ) − (I − β)Ψ(a, c, μ) = 0,

for μ ∈ (0, 1] and all c. We use I to denote the 2 × 2 identity matrix.

3. Solutions. Following our previous work as reported in [9, 11], we express our
solution (evaluated at the N pairs of discrete ordinates ±μi) of (2.47) in the form

(3.1) Ψ(τ, c,±μi) = Ψps(τ, c,±μi) + Ψ∗(τ, c,±μi) + Ψapp(τ, c,±μi)

for i = 1, 2, . . . , N . We note that Ψ∗(τ, c, μ) is defined in terms of two of the exact
elementary solutions we reported in a previous work [8], that is,

(3.2) Ψ∗(τ, c, μ) = A1cΦ + B1

[
cτΦ − μB(c)

]
,

where

(3.3) Φ =

[
1

a1,2

]
,
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and where B(c) is one of the generalized Chapman–Enskog (vector-valued) functions
discussed in [8]. In addition,
(3.4)

Ψapp(τ, c,±μi) = Π(c)

J∑
j=2

[
AjΦ(νj ,±μi)e

−(a+τ)/νj + BjΦ(νj ,∓μi)e
−(a−τ)/νj

]
.

For our computations, we use the 2 × 2(K + 1) matrix

(3.5) Π(c) =
[
P0(2e−c − 1)I P1(2e−c − 1)I · · ·PK(2e−c − 1)I

]
,

where K + 1 is the number of basis functions used to represent the speed dependence
of the approximate part of our solution. We note that [9] can be consulted if a
complete understanding of the eigenvalue spectrum {νj} and the elementary solutions
{Φ(νj ,±μi)} is desired. Since (2.47) has the inhomogeneous driving term Υ(c), we
have included in (3.1) the particular solution

(3.6) Ψps(τ, c, μ) = ΨP (τ, c, μ) + ΨT (τ, c, μ) + ΨC(τ, c, μ),

the elements of which were developed and reported in [11]. We repeat from [11]:

ΨP (τ, c, μ) = [1/(ε0εp)]{cτ2Φ − 2μτB(c) + (1/5)D(c) + [(5μ2 − 1)/5]E(c)}KP ,

(3.7)

ΨT (τ, c, μ) = −(1/ε0)[A
(1)(c) + A(2)(c)]KT ,(3.8)

and

(3.9) ΨC(τ, c, μ) = (1/ε0)[c2A
(1)(c) − c1A

(2)(c)]KC .

In [8] and [11], we have defined and computed, for selected cases, the generalized

Chapman–Enskog and Burnett (vector-valued) functions A(1)(c), A(2)(c), B(c), D(c),
and E(c) that appear in (3.7)–(3.9). In addition, the constant εp is expressed in [11]
as

(3.10) εp =
[
c1 c2

]
εp,

where

(3.11) εp =
16

15π1/2

∫ ∞

0

e−c2B(c)c4dc.

We note that the components εp,1 and εp,2 of εp have been evaluated (for several data
sets) in [8].

Finally, to complete our discussion of (3.1), we note that the arbitrary constants
{Aj , Bj} are to be determined from boundary conditions to be applied at τ = ±a. For
this purpose, we substitute (3.1) into discrete-ordinates versions of (2.62), multiply
the resulting equations by

c2 exp{−c2}ΠT (c),

where the superscript T is used to denote the transpose operation, and integrate
over all c to define a system of 2J linear algebraic equations for the 2J unspecified
constants. We note that only the right-hand-side vector of such system is problem-
dependent.
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4. Quantities of interest. Considering that we have solved the system of linear
algebraic equations to establish the arbitrary constants {Aj , Bj}, we can use (3.1) to
find our final expressions for the quantities of interest here, that is, the velocity, heat-
flow, and shear-stress profiles. And so, using (3.1) in discrete-ordinates versions of
(2.44)–(2.46), we find

U(τ) = Ups(τ) + (1/2)(A1 + B1τ)Φ +

J∑
j=2

[
Aje

−(a+τ)/νj + Bje
−(a−τ)/νj

]
U j ,

(4.1a)

Q(τ) = Qps(τ) +

J∑
j=2

[
Aje

−(a+τ)/νj + Bje
−(a−τ)/νj

]
Qj ,(4.1b)

and

(4.1c) P (τ) = P ps(τ) − (1/2)B1εp +

J∑
j=2

[
Aje

−(a+τ)/νj −Bje
−(a−τ)/νj

]
Pj .

In writing (4.1), we have used the definitions

U j = Π1Xj ,(4.2a)

Pj = 2Π2Y j ,(4.2b)

and

(4.2c) Qj = [Π3 − (5/2)Π1]Xj ,

where

Xj =
1

π1/2

N∑
k=1

wk(1 − μ2
k)[Φ(νj , μk) + Φ(νj ,−μk)],(4.3a)

Y j =
1

π1/2

N∑
k=1

wkμk(1 − μ2
k)[Φ(νj , μk) − Φ(νj ,−μk)],(4.3b)

and

(4.4) Πn =

∫ ∞

0

e−c2Π(c)cn+2dc.

In (4.3), we use the weights {wk}, along with the nodes {μk}, to complete the defi-
nition of our N -point, half-range quadrature scheme. Finally, to complete (4.1), we
must compute

Ups(τ) =
1

π1/2

∫ ∞

0

∫ 1

−1

e−c2Ψps(τ, c, μ)c3(1 − μ2)dμdc,(4.5)

Qps(τ) =
1

π1/2

∫ ∞

0

∫ 1

−1

e−c2Ψps(τ, c, μ)

(
c2 − 5

2

)
c3(1 − μ2)dμdc,(4.6)
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and

(4.7) P ps(τ) =
2

π1/2

∫ ∞

0

∫ 1

−1

e−c2Ψps(τ, c, μ)c4(1 − μ2)μdμdc.

Using (3.6)–(3.9), we find

Ups(τ) = (1/ε0){(1/εp)[(1/2)τ2Φ + DU ]Kp

− [A
(1)
U + A

(2)
U ]KT + [c2A

(1)
U − c1A

(2)
U ]KC},

(4.8)

Qps(τ) = (1/ε0){(1/εp)DQKp − [A
(1)
Q + A

(2)
Q ]KT + [c2A

(1)
Q − c1A

(2)
Q ]KC},(4.9)

and

(4.10) P ps(τ) = −[τ/(ε0εp)]εpKp,

where

DU =
4

15π1/2

∫ ∞

0

e−c2D(c)c3dc,(4.11a)

A
(α)
U =

4

3π1/2

∫ ∞

0

e−c2A(α)(c)c3dc, α = 1, 2,(4.11b)

DQ =
4

15π1/2

∫ ∞

0

e−c2D(c)

(
c2 − 5

2

)
c3dc,(4.11c)

and

(4.11d) A
(α)
Q =

4

3π1/2

∫ ∞

0

e−c2A(α)(c)

(
c2 − 5

2

)
c3dc, α = 1, 2.

Since the expressions listed as (4.1a), (4.1b), (4.8), and (4.9) are analytical and
continuous in the space variable, we can immediately find results for the normalized
mass- and heat-flow rates

(4.12) U =
1

2a2

∫ a

−a

U(τ)dτ

and

(4.13) Q =
1

2a2

∫ a

−a

Q(τ)dτ,

where the factor 1/(2a2) is included in order to be consistent with definitions adopted
in other works and to facilitate comparisons with numerical results reported in these
works. We find

(4.14) U =
1

2a2

[
Ups + aA1Φ +

J∑
j=2

νj(Aj + Bj)(1 − e−2a/νj )U j

]

and

(4.15) Q =
1

2a2

[
Qps +

J∑
j=2

νj(Aj + Bj)(1 − e−2a/νj )Qj

]
,
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Table 1

Pressure-driven flow: species-specific velocity, heat-flow, and shear-stress profiles for the Ne-Ar
mixture with 2a = 0.1, α1 = 0.2, α2 = 0.4, β1 = 0.6, β2 = 0.8, and n1/n2 = 2/3.

η −U1(−a + 2ηa) −U2(−a + 2ηa) Q1(−a + 2ηa) Q2(−a + 2ηa) P1(−a + 2ηa) P2(−a + 2ηa)

0.0 2.0012(−1) 1.6301(−1) 6.6293(−2) 4.8754(−2) 1.7779(−2) 3.2742(−2)
0.1 2.0308(−1) 1.7049(−1) 6.7557(−2) 5.1904(−2) 9.6303(−3) 2.1508(−2)
0.2 2.0430(−1) 1.7393(−1) 6.8083(−2) 5.3332(−2) 1.4419(−3) 1.0300(−2)
0.3 2.0455(−1) 1.7547(−1) 6.8208(−2) 5.3981(−2) −6.7713(−3) −8.9089(−4)
0.4 2.0395(−1) 1.7549(−1) 6.7987(−2) 5.4019(−2) −1.5002(−2) −1.2071(−2)
0.5 2.0254(−1) 1.7409(−1) 6.7431(−2) 5.3493(−2) −2.3243(−2) −2.3243(−2)
0.6 2.0028(−1) 1.7128(−1) 6.6527(−2) 5.2399(−2) −3.1491(−2) −3.4411(−2)
0.7 1.9708(−1) 1.6691(−1) 6.5233(−2) 5.0678(−2) −3.9742(−2) −4.5577(−2)
0.8 1.9274(−1) 1.6068(−1) 6.3464(−2) 4.8191(−2) −4.7990(−2) −5.6745(−2)
0.9 1.8682(−1) 1.5183(−1) 6.1023(−2) 4.4605(−2) −5.6229(−2) −6.7919(−2)
1.0 1.7702(−1) 1.3641(−1) 5.6912(−2) 3.8171(−2) −6.4447(−2) −7.9107(−2)

where

(4.16) Ups = (2a/ε0){(1/εp)[(1/6)a2Φ + DU ]Kp

− [A
(1)
U + A

(2)
U ]KT + [c2A

(1)
U − c1A

(2)
U ]KC}

and

(4.17) Qps = (2a/ε0){(1/εp)DQKp − [A
(1)
Q + A

(2)
Q ]KT + [c2A

(1)
Q − c1A

(2)
Q ]KC}.

As our solutions are now complete, we are ready for some numerical results.

5. Numerical results. The sample cases for which we report numerical results
in this work are defined in terms of two binary mixtures: Ne-Ar and He-Xe. We
note that only the mass ratio m1/m2, the diameter ratio d1/d2, and the density ratio
n1/n2 are needed to define the LBE for rigid-sphere interactions, and so we use the
basic data:

m2 = 39.948, m1 = 20.183, d2/d1 = 1.406, n1/n2 = 2/3

for the Ne-Ar mixture and

m2 = 131.30, m1 = 4.0026, d2/d1 = 2.226, n1/n2 = 2/3

for the He-Xe mixture. It should be noted here that the values of the masses of these
gas species were taken from [23] and those of the diameter ratios from [19].

We report in Tables 1–12 the velocity, heat-flow, and shear-stress profiles com-
puted for the three considered problems of pressure-driven, temperature-driven, and
concentration-driven flow, using as additional input data the accommodation coeffi-
cients α1 = 0.2, α2 = 0.4, β1 = 0.6, and β2 = 0.8 and two different values of the
channel width (2a = 0.1 and 1.0). The numerical results reported in Tables 1–12 are
thought to be correct to within ±1 in the last reported digit and were obtained by in-
creasing the values of the approximation parameters {L,M,K,N,Ks} of our method
in steps, until numerical convergence was observed. Here L is the kernel truncation
parameter (the maximum value of n considered in the summation of (2.50)), M is
the order of the Gaussian quadrature used to evaluate numerically integrals over the
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Table 2

Pressure-driven flow: species-specific velocity, heat-flow, and shear-stress profiles for the He-Xe
mixture with 2a = 0.1, α1 = 0.2, α2 = 0.4, β1 = 0.6, β2 = 0.8, and n1/n2 = 2/3.

η −U1(−a + 2ηa) −U2(−a + 2ηa) Q1(−a + 2ηa) Q2(−a + 2ηa) P1(−a + 2ηa) P2(−a + 2ηa)

0.0 1.7251(−1) 1.7483(−1) 7.3532(−2) 4.9529(−2) 1.4254(−2) 3.5944(−2)
0.1 1.7469(−1) 1.8461(−1) 7.4540(−2) 5.4100(−2) 7.6815(−3) 2.3659(−2)
0.2 1.7559(−1) 1.8881(−1) 7.4952(−2) 5.6008(−2) 1.1142(−3) 1.1370(−2)
0.3 1.7577(−1) 1.9069(−1) 7.5037(−2) 5.6886(−2) −5.4543(−3) −9.1737(−4)
0.4 1.7532(−1) 1.9079(−1) 7.4839(−2) 5.6994(−2) −1.2031(−2) −1.3200(−2)
0.5 1.7426(−1) 1.8925(−1) 7.4367(−2) 5.6408(−2) −1.8622(−2) −2.5472(−2)
0.6 1.7257(−1) 1.8606(−1) 7.3610(−2) 5.5124(−2) −2.5236(−2) −3.7729(−2)
0.7 1.7017(−1) 1.8106(−1) 7.2531(−2) 5.3067(−2) −3.1881(−2) −4.9966(−2)
0.8 1.6692(−1) 1.7388(−1) 7.1059(−2) 5.0049(−2) −3.8566(−2) −6.2176(−2)
0.9 1.6246(−1) 1.6353(−1) 6.9031(−2) 4.5589(−2) −4.5303(−2) −7.4352(−2)
1.0 1.5509(−1) 1.4439(−1) 6.5634(−2) 3.6907(−2) −5.2111(−2) −8.6479(−2)

Table 3

Pressure-driven flow: species-specific velocity, heat-flow, and shear-stress profiles for the Ne-Ar
mixture with 2a = 1.0, α1 = 0.2, α2 = 0.4, β1 = 0.6, β2 = 0.8, and n1/n2 = 2/3.

η −U1(−a + 2ηa) −U2(−a + 2ηa) Q1(−a + 2ηa) Q2(−a + 2ηa) P1(−a + 2ηa) P2(−a + 2ηa)

0.0 1.3905 1.5596 1.3575(−1) 9.4647(−2) 1.6828(−1) 4.3756(−1)
0.1 1.4709 1.8014 1.5711(−1) 1.5084(−1) 1.1953(−1) 3.0339(−1)
0.2 1.5097 1.9042 1.6796(−1) 1.7100(−1) 5.7794(−2) 1.7788(−1)
0.3 1.5257 1.9529 1.7378(−1) 1.8082(−1) −1.0287(−2) 5.6604(−2)
0.4 1.5209 1.9600 1.7546(−1) 1.8426(−1) −8.1812(−2) −6.2380(−2)
0.5 1.4958 1.9292 1.7326(−1) 1.8256(−1) −1.5489(−1) −1.8033(−1)
0.6 1.4498 1.8612 1.6702(−1) 1.7579(−1) −2.2800(−1) −2.9825(−1)
0.7 1.3818 1.7538 1.5622(−1) 1.6306(−1) −2.9965(−1) −4.1716(−1)
0.8 1.2893 1.6006 1.3972(−1) 1.4198(−1) −3.6806(−1) −5.3821(−1)
0.9 1.1651 1.3840 1.1491(−1) 1.0648(−1) −4.3065(−1) −6.6315(−1)
1.0 9.6070(−1) 9.8737(−1) 6.7860(−2) 2.0640(−2) −4.8170(−1) −7.9579(−1)

Table 4

Pressure-driven flow: species-specific velocity, heat-flow, and shear-stress profiles for the He-Xe
mixture with 2a = 1.0, α1 = 0.2, α2 = 0.4, β1 = 0.6, β2 = 0.8, and n1/n2 = 2/3.

η −U1(−a + 2ηa) −U2(−a + 2ηa) Q1(−a + 2ηa) Q2(−a + 2ηa) P1(−a + 2ηa) P2(−a + 2ηa)

0.0 6.4867(−1) 1.8406 1.4476(−1) 9.1086(−2) 7.4981(−2) 5.2277(−1)
0.1 6.8104(−1) 2.1498 1.5355(−1) 1.7507(−1) 5.1223(−2) 3.7194(−1)
0.2 6.9653(−1) 2.2785 1.5721(−1) 2.0267(−1) 2.4189(−2) 2.2330(−1)
0.3 7.0306(−1) 2.3412 1.5884(−1) 2.1651(−1) −4.4918(−3) 7.5753(−2)
0.4 7.0167(−1) 2.3519 1.5896(−1) 2.2175(−1) −3.4250(−2) −7.1074(−2)
0.5 6.9255(−1) 2.3149 1.5770(−1) 2.1998(−1) −6.4771(−2) −2.1739(−1)
0.6 6.7546(−1) 2.2308 1.5497(−1) 2.1132(−1) −9.5859(−2) −3.6334(−1)
0.7 6.4971(−1) 2.0973 1.5044(−1) 1.9468(−1) −1.2739(−1) −5.0898(−1)
0.8 6.1378(−1) 1.9075 1.4339(−1) 1.6716(−1) −1.5929(−1) −6.5438(−1)
0.9 5.6382(−1) 1.6418 1.3211(−1) 1.2119(−1) −1.9153(−1) −7.9956(−1)
1.0 4.7729(−1) 1.1502 1.0784(−1) 1.7932(−3) −2.2385(−1) −9.4468(−1)

speed variable, K is the order of the basis-function approximation introduced in (3.4)
and (3.5) to take care of the speed dependence of the solution, N is the number of
discrete ordinates used to represent the μ variable in (0, 1), and Ks is the number
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Table 5

Temperature-driven flow: species-specific velocity, heat-flow, and shear-stress profiles for the
Ne-Ar mixture with 2a = 0.1, α1 = 0.2, α2 = 0.4, β1 = 0.6, β2 = 0.8, and n1/n2 = 2/3.

η U1(−a + 2ηa) U2(−a + 2ηa) −Q1(−a + 2ηa) −Q2(−a + 2ηa) −P1(−a + 2ηa) −P2(−a + 2ηa)

0.0 6.9591(−2) 4.6009(−2) 3.3654(−1) 2.2923(−1) 6.9271(−5) 3.4849(−4)
0.1 7.0821(−2) 4.8693(−2) 3.4162(−1) 2.3995(−1) 9.1318(−5) 3.3379(−4)
0.2 7.1328(−2) 4.9914(−2) 3.4369(−1) 2.4483(−1) 9.9311(−5) 3.2847(−4)
0.3 7.1444(−2) 5.0468(−2) 3.4414(−1) 2.4704(−1) 9.9592(−5) 3.2828(−4)
0.4 7.1223(−2) 5.0495(−2) 3.4320(−1) 2.4716(−1) 9.5821(−5) 3.3079(−4)
0.5 7.0675(−2) 5.0036(−2) 3.4092(−1) 2.4536(−1) 9.0902(−5) 3.3407(−4)
0.6 6.9786(−2) 4.9086(−2) 3.3723(−1) 2.4160(−1) 8.7513(−5) 3.3633(−4)
0.7 6.8517(−2) 4.7594(−2) 3.3197(−1) 2.3566(−1) 8.8411(−5) 3.3573(−4)
0.8 6.6783(−2) 4.5443(−2) 3.2477(−1) 2.2707(−1) 9.6781(−5) 3.3015(−4)
0.9 6.4392(−2) 4.2344(−2) 3.1481(−1) 2.1462(−1) 1.1689(−4) 3.1675(−4)
1.0 6.0363(−2) 3.6811(−2) 2.9793(−1) 1.9222(−1) 1.5656(−4) 2.9030(−4)

Table 6

Temperature-driven flow: species-specific velocity, heat-flow, and shear-stress profiles for the
He-Xe mixture with 2a = 0.1, α1 = 0.2, α2 = 0.4, β1 = 0.6, β2 = 0.8, and n1/n2 = 2/3.

η U1(−a + 2ηa) U2(−a + 2ηa) −Q1(−a + 2ηa) −Q2(−a + 2ηa) P1(−a + 2ηa) −P2(−a + 2ηa)

0.0 7.6247(−2) 4.0307(−2) 3.4185(−1) 2.1217(−1) −2.3469(−4) 1.8717(−4)
0.1 7.7279(−2) 4.3532(−2) 3.4621(−1) 2.2424(−1) −1.4265(−4) 2.4853(−4)
0.2 7.7703(−2) 4.4892(−2) 3.4798(−1) 2.2939(−1) −4.3015(−5) 3.1495(−4)
0.3 7.7789(−2) 4.5519(−2) 3.4834(−1) 2.3174(−1) 6.0403(−5) 3.8389(−4)
0.4 7.7585(−2) 4.5592(−2) 3.4747(−1) 2.3196(−1) 1.6554(−4) 4.5398(−4)
0.5 7.7098(−2) 4.5163(−2) 3.4541(−1) 2.3024(−1) 2.7077(−4) 5.2414(−4)
0.6 7.6316(−2) 4.4230(−2) 3.4212(−1) 2.2658(−1) 3.7457(−4) 5.9334(−4)
0.7 7.5204(−2) 4.2737(−2) 3.3743(−1) 2.2073(−1) 4.7534(−4) 6.6052(−4)
0.8 7.3690(−2) 4.0546(−2) 3.3104(−1) 2.1217(−1) 5.7114(−4) 7.2438(−4)
0.9 7.1607(−2) 3.7317(−2) 3.2222(−1) 1.9955(−1) 6.5924(−4) 7.8312(−4)
1.0 6.8134(−2) 3.1091(−2) 3.0745(−1) 1.7544(−1) 7.3409(−4) 8.3302(−4)

Table 7

Temperature-driven flow: species-specific velocity, heat-flow, and shear-stress profiles for the
Ne-Ar mixture with 2a = 1.0, α1 = 0.2, α2 = 0.4, β1 = 0.6, β2 = 0.8, and n1/n2 = 2/3.

η U1(−a + 2ηa) U2(−a + 2ηa) −Q1(−a + 2ηa) −Q2(−a + 2ηa) P1(−a + 2ηa) −P2(−a + 2ηa)

0.0 1.6352(−1) 1.1439(−1) 7.3626(−1) 5.3931(−1) −1.5921(−3) 1.8955(−3)
0.1 1.7493(−1) 1.3808(−1) 7.7567(−1) 6.1916(−1) −2.3711(−3) 1.3762(−3)
0.2 1.8001(−1) 1.4709(−1) 7.9100(−1) 6.4734(−1) −2.2690(−3) 1.4442(−3)
0.3 1.8245(−1) 1.5156(−1) 7.9742(−1) 6.6053(−1) −1.8145(−3) 1.7473(−3)
0.4 1.8282(−1) 1.5304(−1) 7.9733(−1) 6.6445(−1) −1.1850(−3) 2.1669(−3)
0.5 1.8121(−1) 1.5202(−1) 7.9125(−1) 6.6080(−1) −4.6766(−4) 2.6451(−3)
0.6 1.7752(−1) 1.4845(−1) 7.7869(−1) 6.4946(−1) 2.7989(−4) 3.1435(−3)
0.7 1.7133(−1) 1.4188(−1) 7.5812(−1) 6.2872(−1) 9.9769(−4) 3.6220(−3)
0.8 1.6181(−1) 1.3114(−1) 7.2619(−1) 5.9426(−1) 1.5901(−3) 4.0170(−3)
0.9 1.4703(−1) 1.1335(−1) 6.7487(−1) 5.3501(−1) 1.8583(−3) 4.1958(−3)
1.0 1.1654(−1) 7.1981(−2) 5.6056(−1) 3.8620(−1) 1.2125(−3) 3.7653(−3)

of spline functions used to compute (without postprocessing) the Chapman–Enskog

(vector-valued) functions A(1)(c), A(2)(c), B(c), D(c), and E(c), as explained in de-
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Table 8

Temperature-driven flow: species-specific velocity, heat-flow, and shear-stress profiles for the
He-Xe mixture with 2a = 1.0, α1 = 0.2, α2 = 0.4, β1 = 0.6, β2 = 0.8, and n1/n2 = 2/3.

η U1(−a + 2ηa) U2(−a + 2ηa) −Q1(−a + 2ηa) −Q2(−a + 2ηa) P1(−a + 2ηa) −P2(−a + 2ηa)

0.0 1.6158(−1) 9.7015(−2) 6.8378(−1) 4.7673(−1) −1.6983(−3) 1.0746(−3)
0.1 1.6960(−1) 1.2111(−1) 7.1404(−1) 5.5454(−1) −1.5536(−3) 1.1711(−3)
0.2 1.7288(−1) 1.2977(−1) 7.2547(−1) 5.8063(−1) −1.0929(−3) 1.4782(−3)
0.3 1.7427(−1) 1.3418(−1) 7.2994(−1) 5.9301(−1) −5.1014(−4) 1.8667(−3)
0.4 1.7425(−1) 1.3582(−1) 7.2943(−1) 5.9702(−1) 1.4055(−4) 2.3005(−3)
0.5 1.7293(−1) 1.3512(−1) 7.2436(−1) 5.9424(−1) 8.3761(−4) 2.7652(−3)
0.6 1.7019(−1) 1.3205(−1) 7.1433(−1) 5.8455(−1) 1.5696(−3) 3.2532(−3)
0.7 1.6572(−1) 1.2617(−1) 6.9803(−1) 5.6636(−1) 2.3234(−3) 3.7557(−3)
0.8 1.5882(−1) 1.1639(−1) 6.7267(−1) 5.3564(−1) 3.0706(−3) 4.2538(−3)
0.9 1.4786(−1) 9.9969(−2) 6.3148(−1) 4.8193(−1) 3.7379(−3) 4.6988(−3)
1.0 1.2437(−1) 5.9234(−2) 5.3915(−1) 3.3921(−1) 4.0610(−3) 4.9141(−3)

Table 9

Concentration-driven flow: species-specific velocity, heat-flow, and shear-stress profiles for the
Ne-Ar mixture with 2a = 0.1, α1 = 0.2, α2 = 0.4, β1 = 0.6, β2 = 0.8, and n1/n2 = 2/3.

η −U1(−a + 2ηa) U2(−a + 2ηa) Q1(−a + 2ηa) −Q2(−a + 2ηa) P1(−a + 2ηa) P2(−a + 2ηa)

0.0 8.5004(−2) 3.3436(−2) 3.2208(−2) 9.7700(−3) 7.5261(−3) −6.8152(−3)
0.1 8.6279(−2) 3.4967(−2) 3.2792(−2) 1.0403(−2) 4.0901(−3) −4.5245(−3)
0.2 8.6795(−2) 3.5673(−2) 3.3027(−2) 1.0691(−2) 6.8986(−4) −2.2577(−3)
0.3 8.6903(−2) 3.5997(−2) 3.3081(−2) 1.0828(−2) −2.6950(−3) −1.1075(−6)
0.4 8.6666(−2) 3.6015(−2) 3.2985(−2) 1.0847(−2) −6.0786(−3) 2.2546(−3)
0.5 8.6094(−2) 3.5752(−2) 3.2742(−2) 1.0758(−2) −9.4735(−3) 4.5179(−3)
0.6 8.5173(−2) 3.5201(−2) 3.2347(−2) 1.0559(−2) −1.2892(−2) 6.7972(−3)
0.7 8.3857(−2) 3.4331(−2) 3.1777(−2) 1.0236(−2) −1.6349(−2) 9.1014(−3)
0.8 8.2054(−2) 3.3072(−2) 3.0988(−2) 9.7578(−3) −1.9858(−2) 1.1441(−2)
0.9 7.9550(−2) 3.1254(−2) 2.9878(−2) 9.0476(−3) −2.3442(−2) 1.3830(−2)
1.0 7.5288(−2) 2.8012(−2) 2.7939(−2) 7.7216(−3) −2.7137(−2) 1.6294(−2)

Table 10

Concentration-driven flow: species-specific velocity, heat-flow, and shear-stress profiles for the
He-Xe mixture with 2a = 0.1, α1 = 0.2, α2 = 0.4, β1 = 0.6, β2 = 0.8, and n1/n2 = 2/3.

η −U1(−a + 2ηa) U2(−a + 2ηa) Q1(−a + 2ηa) −Q2(−a + 2ηa) P1(−a + 2ηa) P2(−a + 2ηa)

0.0 9.3618(−2) 3.3805(−2) 4.3904(−2) 9.3958(−3) 7.6577(−3) −6.9794(−3)
0.1 9.4798(−2) 3.5686(−2) 4.4496(−2) 1.0264(−2) 4.1248(−3) −4.6241(−3)
0.2 9.5276(−2) 3.6496(−2) 4.4737(−2) 1.0627(−2) 6.1580(−4) −2.2848(−3)
0.3 9.5370(−2) 3.6870(−2) 4.4785(−2) 1.0800(−2) −2.8838(−3) 4.8252(−5)
0.4 9.5131(−2) 3.6911(−2) 4.4669(−2) 1.0833(−2) −6.3842(−3) 2.3819(−3)
0.5 9.4572(−2) 3.6648(−2) 4.4392(−2) 1.0741(−2) −9.8947(−3) 4.7222(−3)
0.6 9.3677(−2) 3.6077(−2) 4.3949(−2) 1.0523(−2) −1.3425(−2) 7.0757(−3)
0.7 9.2405(−2) 3.5164(−2) 4.3317(−2) 1.0161(−2) −1.6985(−2) 9.4488(−3)
0.8 9.0671(−2) 3.3826(−2) 4.2455(−2) 9.6159(−3) −2.0586(−2) 1.1850(−2)
0.9 8.8280(−2) 3.1859(−2) 4.1263(−2) 8.7885(−3) −2.4244(−2) 1.4288(−2)
1.0 8.4274(−2) 2.8114(−2) 3.9260(−2) 7.1141(−3) −2.7987(−2) 1.6783(−2)

tail in [8] and [11]. To be more specific, we note that we have used 20 ≤ L ≤ 95,
100 ≤ M ≤ 400, 20 ≤ K ≤ 35, 20 ≤ N ≤ 50, and 80 ≤ Ks − 2 ≤ 1280. In addition to
the profiles reported in Tables 1–12, we report in Tables 13–15 mass- and heat-flow
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Table 11

Concentration-driven flow: species-specific velocity, heat-flow, and shear-stress profiles for the
Ne-Ar mixture with 2a = 1.0, α1 = 0.2, α2 = 0.4, β1 = 0.6, β2 = 0.8, and n1/n2 = 2/3.

η −U1(−a + 2ηa) U2(−a + 2ηa) Q1(−a + 2ηa) −Q2(−a + 2ηa) P1(−a + 2ηa) P2(−a + 2ηa)

0.0 1.6697(−1) 6.1119(−2) 5.0453(−2) 5.4942(−3) 1.9191(−2) −1.7106(−2)
0.1 1.7575(−1) 7.0455(−2) 5.3750(−2) 7.7513(−3) 1.1026(−2) −1.1663(−2)
0.2 1.7865(−1) 7.4230(−2) 5.4732(−2) 8.3674(−3) 4.9631(−3) −7.6208(−3)
0.3 1.7964(−1) 7.6312(−2) 5.5100(−2) 8.6958(−3) −1.8189(−4) −4.1908(−3)
0.4 1.7935(−1) 7.7304(−2) 5.5117(−2) 8.9489(−3) −4.9955(−3) −9.8168(−4)
0.5 1.7796(−1) 7.7372(−2) 5.4846(−2) 9.1930(−3) −9.9215(−3) 2.3023(−3)
0.6 1.7537(−1) 7.6472(−2) 5.4254(−2) 9.4308(−3) −1.5388(−2) 5.9467(−3)
0.7 1.7122(−1) 7.4366(−2) 5.3204(−2) 9.6061(−3) −2.1898(−2) 1.0287(−2)
0.8 1.6470(−1) 7.0492(−2) 5.1378(−2) 9.5542(−3) −3.0148(−2) 1.5786(−2)
0.9 1.5379(−1) 6.3444(−2) 4.7937(−2) 8.7972(−3) −4.1284(−2) 2.3211(−2)
1.0 1.2756(−1) 4.5357(−2) 3.8020(−2) 4.3594(−3) −5.7978(−2) 3.4340(−2)

Table 12

Concentration-driven flow: species-specific velocity, heat-flow, and shear-stress profiles for the
He-Xe mixture with 2a = 1.0, α1 = 0.2, α2 = 0.4, β1 = 0.6, β2 = 0.8, and n1/n2 = 2/3.

η −U1(−a + 2ηa) U2(−a + 2ηa) Q1(−a + 2ηa) −Q2(−a + 2ηa) P1(−a + 2ηa) P2(−a + 2ηa)

0.0 1.9140(−1) 6.6006(−2) 8.6133(−2) 2.3421(−3) 2.0835(−2) −1.8831(−2)
0.1 1.9968(−1) 7.6638(−2) 9.0237(−2) 4.9463(−3) 1.2501(−2) −1.3275(−2)
0.2 2.0272(−1) 8.0883(−2) 9.1762(−2) 5.6234(−3) 5.6487(−3) −8.7065(−3)
0.3 2.0383(−1) 8.3276(−2) 9.2365(−2) 6.0203(−3) −5.6862(−4) −4.5616(−3)
0.4 2.0357(−1) 8.4413(−2) 9.2316(−2) 6.3456(−3) −6.6101(−3) −5.3396(−4)
0.5 2.0206(−1) 8.4450(−2) 9.1676(−2) 6.6616(−3) −1.2845(−2) 3.6227(−3)
0.6 1.9919(−1) 8.3338(−2) 9.0391(−2) 6.9674(−3) −1.9640(−2) 8.1526(−3)
0.7 1.9461(−1) 8.0837(−2) 8.8283(−2) 7.2021(−3) −2.7422(−2) 1.3341(−2)
0.8 1.8755(−1) 7.6392(−2) 8.4971(−2) 7.1972(−3) −3.6768(−2) 1.9571(−2)
0.9 1.7615(−1) 6.8612(−2) 7.9529(−2) 6.4773(−3) −4.8586(−2) 2.7450(−2)
1.0 1.5069(−1) 4.8837(−2) 6.7082(−2) 1.7050(−3) −6.4896(−2) 3.8323(−2)

rates, as defined by (4.14)–(4.17), for several values of the channel width. We note
that the composition and the wall interaction data used to generate Tables 13–15 were
the same as those used for Tables 1–12, and that the numerical results for the flow
rates are also thought to be correct to within ±1 in the last reported digit.

While an implementation of our solutions for the three considered problems re-
quires, in general, some hours of computer time to establish the high-quality results we
are reporting in our tables, solutions good enough for graphical presentation require
very modest computational expense. To have an idea of the CPU time for what we
might consider “practical results,” we found, for example, that all of the He-Xe results
given in Tables 1–15 could be obtained with essentially three figures of accuracy in
less than one minute on an Apple MacBook running at 2 GHz.

Finally, we note that we have (for the three considered problems) compared nu-
merical results from our approach based on the LBE for binary mixtures with those
of the McCormack model, as developed and implemented in [23]. Due to different
ways of the defining the dimensionless space variables in [23] and in this work, we
have used the relationship

a = ξMaM ,
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Table 13

Pressure-driven flow: mass- and heat-flow rates for the case α1 = 0.2, α2 = 0.4, β1 = 0.6,
β2 = 0.8, and n1/n2 = 2/3.

Ne-Ar mixture

2a −U1 −U2 Q1 Q2

1.0(−2) 7.02875 4.57921 3.05198 1.90616
1.0(−1) 3.97126 3.34605 1.31567 1.01481
5.0(−1) 2.88363 3.26237 5.15113(−1) 4.87750(−1)
1.0 2.80472 3.50334 3.07392(−1) 3.07713(−1)
2.0 3.02335 4.02064 1.72501(−1) 1.77501(−1)
5.0 3.94713 5.45691 7.46936(−2) 7.77126(−2)
1.0(1) 5.49952 7.68822 3.82931(−2) 3.99837(−2)
1.0(2) 3.27996(1) 4.61398(1) 3.90604(−3) 4.09657(−3)

He-Xe mixture

2a −U1 −U2 Q1 Q2

1.0(−2) 7.28191 4.43169 3.45590 1.72889
1.0(−1) 3.42560 3.62500 1.46027 1.05889
5.0(−1) 1.68434 3.80750 5.26626(−1) 5.60196(−1)
1.0 1.31140 4.18704 2.99703(−1) 3.63014(−1)
2.0 1.16837 4.90801 1.61420(−1) 2.13010(−1)
5.0 1.32920 6.86910 6.77017(−2) 9.41384(−2)
1.0(1) 1.80118 9.93900 3.43884(−2) 4.85365(−2)
1.0(2) 1.10778(1) 6.34092(1) 3.48652(−3) 4.98132(−3)

Table 14

Temperature-driven flow: mass- and heat-flow rates for the case α1 = 0.2, α2 = 0.4, β1 = 0.6,
β2 = 0.8, and n1/n2 = 2/3.

Ne-Ar mixture

2a U1 U2 −Q1 −Q2

1.0(−2) 3.08637 1.87391 1.49378(1) 9.36209
1.0(−1) 1.38130 9.53251(−1) 6.68507 4.71728
5.0(−1) 5.65163(−1) 4.40808(−1) 2.59532 2.04733
1.0 3.41095(−1) 2.76103(−1) 1.51266 1.23229
2.0 1.91966(−1) 1.59245(−1) 8.25888(−1) 6.85471(−1)
5.0 8.29642(−2) 6.99555(−2) 3.48778(−1) 2.92661(−1)
1.0(1) 4.25182(−2) 3.60209(−2) 1.77504(−1) 1.49452(−1)
1.0(2) 4.34037(−3) 3.68920(−3) 1.80306(−2) 1.52261(−2)

He-Xe mixture

2a U1 U2 −Q1 −Q2

1.0(−2) 3.47992 1.63717 1.59823(1) 8.73594
1.0(−1) 1.51411 8.53282(−1) 6.79083 4.41149
5.0(−1) 5.71005(−1) 3.90743(−1) 2.45191 1.85972
1.0 3.30863(−1) 2.44038(−1) 1.39410 1.10712
2.0 1.80382(−1) 1.40608(−1) 7.49405(−1) 6.11321(−1)
5.0 7.61935(−2) 6.17139(−2) 3.13429(−1) 2.59709(−1)
1.0(1) 3.87787(−2) 3.17730(−2) 1.59023(−1) 1.32410(−1)
1.0(2) 3.93853(−3) 3.25543(−3) 1.61100(−2) 1.34710(−2)

where ξM is the conversion factor defined by equation (7.19) of [9], to relate the
channel half-width a used in this work with the aM used in [23]. For the mass-
and heat-flow rates, this is the only conversion that is required; for the profiles, in
addition to the channel half-width conversion, the LBE results must be divided by ξM ,
in order to be properly compared to the results of [23]. Thus, concerning the mass-
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Table 15

Concentration-driven flow: mass- and heat-flow rates for the case α1 = 0.2, α2 = 0.4, β1 = 0.6,
β2 = 0.8, and n1/n2 = 2/3.

Ne-Ar mixture

2a −U1 U2 Q1 −Q2

1.0(−2) 3.96894 1.59880 1.75432 6.58115(−1)
1.0(−1) 1.68853 6.87292(−1) 6.40069(−1) 2.04304(−1)
5.0(−1) 6.06366(−1) 2.50910(−1) 1.95828(−1) 4.19489(−2)
1.0 3.41892(−1) 1.43652(−1) 1.05381(−1) 1.73285(−2)
2.0 1.82236(−1) 7.77918(−2) 5.47167(−2) 6.98903(−3)
5.0 7.57830(−2) 3.25972(−2) 2.23853(−2) 2.28975(−3)
1.0(1) 3.84251(−2) 1.64751(−2) 1.12765(−2) 1.05773(−3)
1.0(2) 3.89650(−3) 1.65480(−3) 1.13525(−3) 9.79098(−5)

He-Xe mixture

2a −U1 U2 Q1 Q2

1.0(−2) 4.30486 1.52721 2.07209 −5.94298(−1)
1.0(−1) 1.85963 7.02653(−1) 8.71981(−1) −2.01990(−1)
5.0(−1) 6.81859(−1) 2.67760(−1) 3.11395(−1) −3.71345(−2)
1.0 3.89145(−1) 1.56308(−1) 1.76153(−1) −1.22203(−2)
2.0 2.09485(−1) 8.63759(−2) 9.43221(−2) −3.14174(−3)
5.0 8.76311(−2) 3.70753(−2) 3.93363(−2) −3.25368(−4)
1.0(1) 4.44688(−2) 1.89313(−2) 1.99386(−2) 6.323 (−7)
1.0(2) 4.50724(−3) 1.91922(−3) 2.01820(−3) 1.48122(−5)

flow rates reported in Tables 1–9 of [23], we have found maximum relative deviations
(with respect to our LBE results) of 33%, 62%, and 33% for the problems driven
by pressure, temperature, and concentration gradients, respectively. For the heat-
flow rates reported in these same tables of [23], we have found maximum relative
deviations of 40%, 34%, and 300%, respectively, for the pressure-, temperature-, and
concentration-driven problems. In all cases but one, the maximum deviations were
found to occur for the following input parameters considered in [23]: the heaviest
gas particle (Xe), the widest channel (2aM = 100), and the largest concentration
of the lighter species (c1 = 0.9). Large maximum relative deviations between the
McCormack profiles reported in Tables 10–18 of [23] and those computed with our
current (LBE) approach were also observed.

6. Onsager relationships. In [23], Siewert and Valougeorgis established three
independent (generalized) Onsager relationships relevant to the flow of binary gas
mixtures in a plane-parallel channel driven by pressure, temperature, and concentra-
tion gradients. While the derivations reported in [23] were based on the McCormack
kinetic model [15], little work is required to establish those same relationships [23] for
the LBE (for rigid-sphere interactions) used in this work. For that purpose, we follow
here a procedure described in detail for half-space flow problems in [9]. However,
before starting our derivation, we should mention that, to denote the solutions and
the driving terms of two different problems (among the three that can be defined by
considering separately pressure, temperature, and concentration gradients), we attach
subscripts X and Y to Ψ(τ, c, μ) and to Υ(c).

In short, using the fact that the kernel defined by (2.25) is such that

(6.1) SKT (c : c′) = K(c′ : c)S,
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where

(6.2) S =

[
c2 0
0 c1a1,2

]

and a1,2 is given by (2.23), we can multiply (2.47) with μ changed to −μ and subscript
Y added to Ψ(τ, c, μ) and Υ(c) by

c2(1 − μ2)e−c2ΨT
X(τ, c, μ)S−1,

multiply (2.47) with subscript X added to Ψ(τ, c, μ) and Υ(c) by

c2(1 − μ2)e−c2ΨT
Y (τ, c,−μ)S−1,

subtract the resulting equations, one from the other, and integrate the result of this
operation over all μ, over all c, and over τ from −a to a to find, after using (2.62),

(6.3)

∫ a

−a

∫ ∞

0

∫ 1

−1

e−c2c2(1 − μ2)
[
ΨT

X(τ, c, μ)S−1ΥY (c)

− ΨT
Y (τ, c,−μ)S−1ΥX(c)

]
dμdcdτ = 0.

Taking all possible combinations of X and Y (with the restriction that X �= Y ) when
these subscripts are set equal to P , T , and C in (6.3) and using the forms of the
driving terms appropriate to each problem, we find the relationships

KT [c1a1,2 c2]QP = KP [c1a1,2 c2]UT ,(6.4a)

KT [c1a1,2 c2]QC = c1c2KC [a1,2 −1]UT ,(6.4b)

and

(6.4c) c1c2KC [a1,2 −1]UP = KP [c1a1,2 c2]UC ,

where we have added subscripts P , T , C to the quantities defined by (4.14) and
(4.15) as tags for the problems driven, respectively, by pressure, temperature, and
concentration gradients. As a (minor) test of our computations, we have confirmed
the three identities listed as (6.4) for the data sets used to define the numerical results
reported in this work. Moreover, since Kosuge et al. [13] have tabulated numerical
results related to our (6.4), we include in Table 16 our numerical results for the
quantities used in [13] to express the (generalized) Onsager relationships. We note
that the results listed in Table 16 are relevant to the special case [13] of strictly diffuse
reflection at both walls, equal-diameter particles, mass ratio m2/m1 = 2, and density
ratio n2/n1 = 1 at equilibrium. In order to compare with [13], we used the channel
half-width

(6.5) a =

(
1

k

)[
(c1 + c2d2/d1)

2

4(21/2)c1 + c2(1 + d1/d2)2(1 + m1/m2)1/2

]
,

where k is the Knudsen number used in [13], and the following expressions (valid for
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Table 16

The quantities ΛXY , X �= Y , X,Y = P, T, C as defined in [13] for various values of k with
α1 = 1.0, α2 = 1.0, β1 = 1.0, β2 = 1.0, m2/m1 = 2, d2/d1 = 1, and n2/n1 = 1.

k ΛTP ΛPT −ΛCP −ΛPC ΛCT ΛTC

0.05 4.622713(−2) 4.622713(−2) 1.248352(−2) 1.248352(−2) 8.743064(−3) 8.743064(−3)
0.10 8.584004(−2) 8.584004(−2) 2.371949(−2) 2.371949(−2) 1.646907(−2) 1.646907(−2)
1.00 3.497536(−1) 3.497536(−1) 1.202181(−1) 1.202181(−1) 7.322853(−2) 7.322853(−2)
10.0 7.076139(−1) 7.076139(−1) 2.785816(−1) 2.785816(−1) 1.472278(−1) 1.472278(−1)
20.0 8.340453(−1) 8.340453(−1) 3.317800(−1) 3.317800(−1) 1.717606(−1) 1.717606(−1)

KP , KT , and KC set equal to ε0) for the quantities defined in [13]:

ΛPT =
1

2c1
a2,1 [c1a1,2 c2]UT ,(6.6a)

ΛPC =
1

2c1c2
a2,1 [c1a1,2 c2]UC ,(6.6b)

ΛTP =
1

2c1
a2,1 [c1a1,2 c2]QP ,(6.6c)

ΛTC =
1

2c1c2
a2,1 [c1a1,2 c2]QC ,(6.6d)

ΛCP =
1

2
a2,1 [a1,2 −1]UP ,(6.6e)

and

(6.6f) ΛCT =
1

2
a2,1 [a1,2 −1]UT .

Note that subscript D is used in [13] with the same meaning as subscript C in this work
(i.e., a tag for the concentration-driven problem). To be clear, we have listed identical
results in various columns of Table 16 in order to emphasize that all quantities were
computed as defined.

Finally, we note that we have also confirmed that

p∗ = [c1 c2]P (τ) + (KP /ε0)τ,

where the second term on the right-hand side should not be taken into account for the
cases of temperature and concentration gradients, is a (problem-dependent) constant.

7. Concluding remarks. We have reported in this work what we believe to
be a compact, fast, and accurate method of solving channel-flow problems driven
by pressure, temperature, and concentration gradients and described by the (vector)
LBE for a binary mixture of rigid spheres. Accurate numerical results were given for
the velocity, heat-flow, and shear-stress profiles, as well as for the mass- and heat-flow
rates, for selected cases based on Ne-Ar and He-Xe mixtures.
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Table 17

Refined results for Tables 10, 11, and 12 of [21] in the notation of [21].

−UP QP

2a α = 0.1 α = 0.5 α = 1.0 α = 0.1 α = 0.5 α = 1.0

0.10 2.0244(1) 4.3874 1.9504 4.1702 1.5684 7.9969(−1)
1.00 1.7564(1) 3.3264 1.5067 7.1258(−1) 5.2875(−1) 3.8908(−1)
10.0 1.8743(1) 4.5346 2.7296 7.9139(−2) 8.4299(−2) 8.9950(−2)

UT −QT

2a α = 0.1 α = 0.5 α = 1.0 α = 0.1 α = 0.5 α = 1.0

0.10 4.1702 1.5684 7.9969(−1) 2.0650(1) 7.7804 3.9044
1.00 7.1258(−1) 5.2875(−1) 3.8908(−1) 3.4557 2.5138 1.7830
10.0 7.9139(−2) 8.4299(−2) 8.9950(−2) 3.7488(−1) 3.6167(−1) 3.4674(−1)

In addition to the comparisons with the numerical results of the McCormack
model that are discussed in section 5, we have also performed comparisons with the
single-gas LBE results of [21], using three different ways of achieving the single-gas
limit in our formulation:

(i) c1 = 0, (ii) c2 = 0, or (iii) m1 = m2, d1 = d2, α1 = α2, and β1 = β2.

We note that to convert our results to the same spatial units used in [21] we made
use of the factor

ξS,p = 0.449027806 . . . ,

which (for a single-species case) is the ratio between our dimensionless spatial variable,
as defined by (2.41) and (2.42), and that used in [21] for channel-flow problems. Doing
this, we found good but not perfect agreement with the five-figure results for the mass-
and heat-flow rates and for the velocity and heat-flow profiles that are tabulated
in [21]. In regard to the flow rates, while we found at most a difference of one unit
in the fifth digit listed in Table 10 of [21], where the accommodation coefficients are
taken to be equal to 0.1, we did find a maximum difference of 7 units in the fifth digit
listed in Table 11 of [21] (case with accommodation coefficients equal to 0.5) and a
maximum difference of 4 units in the fourth digit listed in Table 12 of [21] (case with
accommodation coefficients equal to 1.0). The largest differences always occurred for
the smallest channel width considered in Tables 10–12 of [21]. For the velocity and
heat-flow profiles listed in Tables 13 and 14 of [21], we have observed, respectively,
maximum differences of 5 and 3 units in the fifth digit listed in these tables. The
maximum differences for the profiles were found to always occur at the channel walls.
We have confirmed that the loss of accuracy in Tables 10–14 of [21] was due to using
L = 8 in those computations, and so we list in Tables 17–19 our improved results
(based on L = 30) for the cases studied in Tables 10–14 of [21].

Finally, we should like to mention that, considering the large deviations between
the numerical results from the LBE and those from the McCormack model that were
observed in this and other [9, 10] works, we are of the opinion that the McCormack
model has a limited value as an economical alternative to the LBE for gas mixtures.
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Table 18

Refined results for Table 13 of [21] in the notation of [21].

α = 0.1 α = 0.5 α = 1.0

τ/a −uP (τ) qP (τ) −uP (τ) qP (τ) −uP (τ) qP (τ)

0.0 8.8693 3.7271(−1) 1.7574 2.8921(−1) 8.5378(−1) 2.2669(−1)
0.1 8.8671 3.7230(−1) 1.7549 2.8859(−1) 8.5116(−1) 2.2589(−1)
0.2 8.8602 3.7106(−1) 1.7475 2.8672(−1) 8.4327(−1) 2.2348(−1)
0.3 8.8486 3.6895(−1) 1.7350 2.8355(−1) 8.2994(−1) 2.1938(−1)
0.4 8.8320 3.6592(−1) 1.7172 2.7898(−1) 8.1090(−1) 2.1348(−1)
0.5 8.8101 3.6187(−1) 1.6935 2.7288(−1) 7.8568(−1) 2.0559(−1)
0.6 8.7822 3.5667(−1) 1.6635 2.6501(−1) 7.5357(−1) 1.9539(−1)
0.7 8.7473 3.5006(−1) 1.6258 2.5499(−1) 7.1335(−1) 1.8239(−1)
0.8 8.7035 3.4160(−1) 1.5785 2.4212(−1) 6.6281(−1) 1.6568(−1)
0.9 8.6461 3.3023(−1) 1.5167 2.2483(−1) 5.9696(−1) 1.4323(−1)
1.0 8.5500 3.1009(−1) 1.4143 1.9464(−1) 4.8982(−1) 1.0466(−1)

Table 19

Refined results for Table 14 of [21] in the notation of [21].

α = 0.1 α = 0.5 α = 1.0

τ/a uT (τ) −qT (τ) uT (τ) −qT (τ) uT (τ) −qT (τ)

0.0 3.6061(−1) 1.7429 2.8168(−1) 1.3193 2.2268(−1) 9.9636(−1)
0.1 3.6050(−1) 1.7425 2.8125(−1) 1.3178 2.2198(−1) 9.9383(−1)
0.2 3.6018(−1) 1.7414 2.7995(−1) 1.3132 2.1987(−1) 9.8616(−1)
0.3 3.5963(−1) 1.7395 2.7775(−1) 1.3054 2.1629(−1) 9.7311(−1)
0.4 3.5883(−1) 1.7368 2.7457(−1) 1.2942 2.1113(−1) 9.5424(−1)
0.5 3.5777(−1) 1.7332 2.7032(−1) 1.2790 2.0422(−1) 9.2884(−1)
0.6 3.5640(−1) 1.7284 2.6484(−1) 1.2593 1.9530(−1) 8.9575(−1)
0.7 3.5466(−1) 1.7223 2.5785(−1) 1.2340 1.8392(−1) 8.5314(−1)
0.8 3.5242(−1) 1.7144 2.4886(−1) 1.2011 1.6928(−1) 7.9764(−1)
0.9 3.4941(−1) 1.7036 2.3677(−1) 1.1561 1.4960(−1) 7.2184(−1)
1.0 3.4412(−1) 1.6844 2.1575(−1) 1.0763 1.1583(−1) 5.8840(−1)
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PATTERN SELECTION FOR FARADAY WAVES IN AN
INCOMPRESSIBLE VISCOUS FLUID∗
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Abstract. When a layer of fluid is oscillated up and down with a sufficiently large amplitude,
patterns form on the surface, a phenomenon first observed by Faraday. A wide variety of such patterns
have been observed from regular squares and hexagons to superlattice and quasipatterns and more
exotic patterns such as oscillons. Previous work has investigated the mechanisms of pattern selection
using the tools of symmetry and bifurcation theory. The hypotheses produced by these generic
arguments have been tested against an equation derived by Zhang and Viñals in the weakly viscous
and large depth limit. However, in contrast, many of the experiments use shallow viscous layers of
fluid to counteract the presence of high frequency weakly damped modes that can make patterns
hard to observe. Here we develop a weakly nonlinear analysis of the full Navier–Stokes equations
for the two-frequency excitation Faraday experiment. The problem is formulated for general depth,
although results are presented only for the infinite depth limit. We focus on a few particular cases
where detailed experimental results exist and compare our analytical results with the experimental
observations. Good agreement with the experimental results is found.

Key words. Faraday waves, superlattice patterns, weakly nonlinear analysis
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1. Introduction. Waves on the surface of a fluid excited by a vertical oscillation
were first observed by Faraday [1]. Subsequently, in the 1980’s, the so-called Faraday
crispation experiment became one of the first fluid experiments where mode interac-
tions and chaos were observed [2]. Over the last decade, this experiment has become
a testbed for ideas of pattern selection in systems under parametric excitation, and
a large variety of patterns have been observed including not just regular patterns of
squares and hexagons but many more exotic patterns such as superlattice patterns,
quasipatterns, and oscillons. These more recent studies were initiated by the results
of Edwards and Fauve [3], who used a two-frequency, rather than a single-frequency,
excitation, thereby increasing the number of parameters in the problem and break-
ing the subharmonic time symmetry. Further two-frequency experiments have been
performed by Kudrolli, Pier, and Gollub [4] and Arbell and Fineberg [5, 6, 7]. Subse-
quently, many of the patterns have been observed in experiments with only a single
frequency of excitation [8]. Meanwhile, in practical applications of Faraday waves,
the phenomenon has been investigated as a tool to produce patterns on films [9, 10],
investigated as a mechanism for transporting gas across an air/water boundary [11],
and seen as oscillations on the surface of bubbles [12].

In a container, if the amplitude of the vertical excitation is not too large, then no
waves form on the surface of the fluid and the fluid is merely translated up and down.
As the amplitude of the excitation is increased, waves appear at a critical amplitude
of excitation. This onset of waves was first described theoretically by Benjamin and
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Ursell [13], who showed that for an inviscid infinite layer of fluid the problem reduces
to a Mathieu equation. Kumar and Tuckerman [14] developed a method for solving
the linear stability problem for the viscous, finite depth fluid problem for a single
frequency of excitation. This work was extended to two-frequency excitation [15] and
gives excellent agreement with experimental measurements of the onset of patterns.

Understanding not just the onset of patterns but the type of patterns is challeng-
ing. The full mathematical description of the fluid problem involves the Navier–Stokes
equations in a domain with a free surface, and the excitation makes the problem
nonautonomous. Symmetry arguments along with the notion of resonant trial inter-
actions have been used to uncover some of the pattern selection mechanisms [18]. This
showed that weakly damped harmonic modes play a key role, with the wavenumber
of the weakly damped mode relative to the critical wavenumber being an indicator of
what patterns are likely to be seen. Since the wavenumbers of weakly damped modes
are determined by the particular forcing function, this in turn has led to theoretical
work in the nearly Hamiltonian limit on controlling pattern selection [19, 20]. In this
work, they showed how multiple frequency components in the forcing can be used to
enhance particular resonant triad interactions that in turn promote the stability of
particular superlattice patterns. The theoretical ideas in [18, 19, 20] were all tested
by calculating the coefficients of the relevant amplitude equations for a two-coupled
scalar partial differential equation model derived and analyzed by Zhang and Viñals
describing the Faraday problem in a weakly viscous and large depth limit [16, 17].
While the theory and the results calculated from the Zhang–Viñals equation agree
well, it is harder to establish to what degree these pattern selection mechanisms can
be used to explain experimental findings. This is because many of the experimental
studies use a fluid that is either moderately viscous or a container that is shallow,
neither of which is within the range of validity of the Zhang–Viñals model. The reason
that experiments tend to focus on these cases is because of the presence of long wave-
length modes that can make it difficult to observe regular patterns: these modes can
be damped either by increasing the viscosity or by increasing the dissipation from the
lower boundary by making the container shallower [21]. The large viscosity also min-
imizes the impact of the lateral boundaries on the patterns and the effect of patterns
formed by meniscus waves emitted from the sidewalls.

Weakly nonlinear analysis from the full fluid equations for single-frequency exci-
tation in an infinite fluid layer has been carried out by Chen and Viñals [22]. In this
paper, we extend the formulation of the weakly nonlinear problem to two-frequency
excitation and to finite fluid depth. The former involves a significantly different ap-
proach to the derivation of a solvability condition: for a single frequency of excitation,
the form of the linear problem may be written as a recursion relation, and an adjoint
to this recursion relation may be defined. This works because, in the linear Faraday
problem, modes with different frequencies are coupled only through the excitation.
Specifically, a frequency component cosωt in the excitation couples the nth Fourier
mode to the n− 1 and the n + 1 mode. When an N mode truncation is taken, then
the equation for the Nth mode is coupled only to the (N − 1)th mode. Consequently,
one can solve for the Nth mode in terms of the (N − 1)th mode. In turn, this then
allows one to solve for the (N − 1)th mode and, recursively, for all modes. If instead
multiple frequency forcing, for example, cosχ cosM1ωt+sinχ cosM2ωt, is used, then
the nth Fourier mode is coupled to four other modes, n−M1, n−M2, n+M1, n+M2.
Truncating at N modes leaves the Nth mode coupled to both N −M1 and N −M2,
and so a recursion relation cannot readily be defined.

In the future, we will investigate the effect of depth on the coefficients of the
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amplitude equations; however, for the purposes of this paper, we have focused on
carrying out the calculations and detailed results for infinite depth only.

The pattern selection problem is further complicated by several issues. First,
above onset not just a single wavenumber but a band of wavenumbers is unsta-
ble. Allowing for variation of the spatial scale to account for this typically leads
to Ginzburg–Landau-type amplitude equations. Second, in the viscous Faraday prob-
lem, there are weakly damped long wavelength modes. These are coupled to the free
surface deformation so that the larger the amplitude of the Faraday waves the more
significant the effect. Both of these effects are discussed in [23] for Faraday waves in
two space dimensions, but as yet there has been no attempt to include these effects in
three space dimensions. Note that since the weakly damped long wavelength modes
are coupled to the surface deformation, they do not effect the pattern selection at
onset but could have an effect thereafter. Finally, at onset the wavenumber specifies
the magnitude but not the direction of the associated wavevector. The spatial scale
is therefore determined but not the particular pattern. Typically, a finite number
of wavevectors are considered and amplitude equations derived for the amplitude as-
sociated with each wavevector. Two approaches are taken. In the first, an integer
number of eigenvectors corresponding to modes that are equispaced around a circle
are considered. Depending on the number of modes used, this leads to an amplitude
equation describing squares, hexagons, or quasipatterns. The amplitude equations are
of gradient form, and a Lyapunov function can be written down. The relative stability
of the different patterns is then inferred from the relative value of the energy for the
different states. A clear discussion of some of the issues involved in using amplitude
equations to describe quasipatterns is given in [24]. Alternatively, eigenvectors that
generate different spatially periodic lattices are considered. Amplitude equations may
again be derived, but this time the eigenvalues indicating the relative stability for dif-
ferent patterns that are supported by the same lattice are considered. The methods
are closely related, as discussed further in sections 4 and 6. In their single-frequency
study, Chen and Vinãls [22] focus on squares, hexagons, and quasipatterns. Here in
our two-frequency approach we, at least initially, consider spatially periodic patterns
on a lattice. We apply our results to the particular two-frequency experimental results
of Kudrolli, Pier, and Gollub [4] and find good agreement with their observations.

The layout of this paper is as follows. In section 2, we set up the mathematical
problem. In section 3, a weakly nonlinear expansion about the critical wavenumber
is carried out and the weakly nonlinear equations at each order derived. In section 4,
we briefly discuss the pattern formation context within which we work and specify
the general form of the solutions in the horizontal direction. This leads to a sequence
of problems for the surface height and the vertical dependence of the velocity. These
equations are solved in section 5, leading to the evaluation of the coefficients for the
amplitude equations describing the weakly nonlinear pattern formation. The problem
contains a number of physical parameters, and the coefficients are calculated for a
range of values relevant to the experimental results in [4]. The calculations in section 5
are performed only in the case of infinite depth, although all early sections are not
restricted in this way. The justification for this and the implications of the values of
the coefficients for the pattern selection are discussed in section 6. Our conclusions
are drawn in section 7.

2. Mathematical model. We consider an infinite horizontal layer of viscous
incompressible fluid of finite depth that is subjected to gravity g and to a vertical
periodic acceleration of amplitude a. At the lower boundary the fluid is in contact
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z=0

z=−h/l

z=ζ(x,y;t)

af(t)

g

Fig. 2.1. Sketch of a cross-section through the layer of fluid.

with a rigid plane, while at the upper boundary the surface is open to the external
ambient conditions. This means that the upper surface is a free boundary whose
shape and evolution is an unknown of the problem.

We consider a frame of reference which is moving with the periodic excitation
whose z-axis is perpendicular to the rigid plane at the bottom at z = −h/l, where
h/l is the nondimensional depth of the layer. A sketch of the geometry is shown
in Figure 2.1. We suppose the free surface is regular enough to be written in the
Cartesian representation z = ζ(x, y; t); then the fluid motion is described by the
dimensionless Navier–Stokes equations

∇ · u = 0,

∂tu + u · ∇u = −∇P + CΔu − (1 + af(t))e3,(2.1)

where u = (u, v, w) is the velocity field, P the pressure, and

(2.2) f(t) ≡ f1(t) = cos(ωt)

for single-frequency excitation and

(2.3) f(t) = f2(t) = cos(χ) cos(M1ωt) + sin(χ) cos(M2ωt + φ)

for two-frequency excitation, where M1 and M2 are integers and χ and φ are real.
The units of length, time, velocity, and pressure have been taken as l,

√
l/g,

√
gl,

and �gl, respectively. The amplitude of the acceleration due to the excitation, a, is
measured in units of g. Here l is taken as k−1

c , where kc is the wavenumber of the
pattern at onset. The parameter C = ν/(gl3)1/2 is the square of the inverse of the
Galileo number, where ν is the kinematic viscosity of the fluid. We have used the
notation ∇ = (∇H , ∂z), with ∇H = (∂x, ∂y). Equations (2.1) apply in a domain
Ω = Σ × (−h/l, ζ(x, y; t)), where Σ is the horizontal periodicity cell. The bottom of
the container, at z = −h/l, is rigid, and therefore we take no-slip boundary conditions
here:

(2.4) u = v = w = 0.

At the free surface z = ζ(x, y; t) we have the kinematic condition, which says that the
surface is advected by the fluid, and two further conditions, one for the balance of
the tangential stresses and one for the balance of normal stresses. This leads to three
conditions at z = ζ(x, y; t), namely

∂tζ + u∂xζ + v∂yζ = w,

t1 · Tn = t2 · Tn = 0,(2.5)

−P + 2CnD(u)n = BH− pe,
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where T = −PI + 2CD(u) is the stress tensor, D(u) = (∇u +∇Tu)/2 is the rate-of-
strain tensor, H = ∇H · (∇Hζ/

√
1 + |∇Hζ|2) is the double mean curvature, and the

unit normal and tangent vectors are defined as

n(x, y; t) =

(
− ∂xζ√

1 + |∇Hζ|2
,− ∂yζ√

1 + |∇Hζ|2
,

1√
1 + |∇Hζ|2

)
,

t1(x, y; t) =

(
1√

1 + |∂xζ|2
, 0,

∂xζ√
1 + |∂xζ|2

)
,

t2(x, y; t) =

(
0,

1√
1 + |∂yζ|2

,
∂yζ√

1 + |∂yζ|2

)
.

Here pe is the dimensionless pressure of the external ambient fluid and is assumed
known. The parameter B = σ/�gl2, where σ is the surface tension and � the density of
the fluid, is the inverse Bond number and is a nondimensional measure of the relative
importance of surface tension and gravity.

It is convenient to define a new pressure,

(2.6) p = P + (1 + af(t))z,

and this has the effect of shifting the acceleration term from the momentum equation
to the normal stress condition. In addition, we eliminate the pressure from the mo-
mentum equation by taking −(∇×∇×). Using the relation ∇×∇×u = ∇(∇·u)−Δu
and the fact that ∇ · u = 0, the problem then becomes

∇ · u = 0,

∂tΔu − CΔΔu = ∇×∇× (u · ∇u),(2.7)

with boundary conditions on z = −h/l,

(2.8) u = v = w = 0,

and on z = ζ,

∂tζ + u∂xζ + v∂yζ = w,

t1 · Tn = t2 · Tn = 0,(2.9)

2CnD(u)n = BH + p− pe − (1 + af(t))ζ.

Equations (2.7) with boundary conditions (2.8) and (2.9) have a trivial solution,

(2.10) u = 0, p = pe, ζ = 0.

This solution corresponds to a flat-surface state where there is no relative motion of
the fluid with respect to the moving frame.

3. Weakly nonlinear analysis. The flat-surface state loses stability at a crit-
ical amplitude of the excitation frequency to regular patterns of standing waves. We
use a multiple timescale approach to derive equations describing the amplitude of
these standing waves near threshold. In order to do this, the governing equations and
the boundary conditions are expanded in a power series of the dimensionless distance
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away from the threshold, ε, and solved order by order in ε. So for the driving di-
mensionless amplitude a, we let a = a0 + εa1 + ε2a2 and expand the flow variables
as

u = εu1 + ε2u2 + ε3u3 + · · · ,
p = pe + εp1 + ε2p2 + ε3p3 + · · · ,
ζ = εζ1 + ε2ζ2 + ε3ζ3 + · · · .

At each order in ε the solution is defined in a different domain since each ζi is different.
In order to overcome this difficulty, Chen and Vinãls [22] take a Taylor expansion of
the boundary conditions at the free surface around the flat surface state z = 0, so that
they consider the solution in Σ× [−h/l, 0] at each order. We follow the same approach
here. Near threshold, ε � 1, we separate fast and slow timescales: t = τ+T1/ε+T2/ε

2

such that ∂t = ∂τ +ε∂T1
+ε2∂T2 . The fast timescale is the timescale of the excitation,

while the slower timescales describe the evolution of the amplitude of the patterns
over many periods of the excitation. In sections 3.1, 3.2, and 3.3, we list the problem
for each of the first three orders in ε. These agree with those used in the computations
of [22], although note that there is a typographical error in their paper for the normal
stress boundary condition at third order. In section 3.4, we derive the linear adjoint
problem that is needed in order to find the solvability conditions that lead to the
amplitude equations. The general form for the solvability conditions themselves are
given in section 3.5. As found in [14] for the linear problem, the linear operator on the
left-hand side of the hierarchy of problems for different ε depends only on the vertical
velocity w and on the height of surface ζ. The horizontal components of the velocity,
u and v, and the pressure, p, are needed to evaluate the nonlinear terms that appear
on the right-hand side. These may be computed from w and ζ: details are given in
the appendices.

3.1. Linear problem (first order problem).

(3.1) ∂τΔw1 − CΔΔw1 = 0,

with boundary conditions on z = −h/l,

(3.2) w1 = ∂zw1 = 0,

and on z = 0,

∂τζ1 − w1 = 0,

ΔHw1 − ∂2
zw1 = 0,

−∂τ∂zw1 + C∂3
zw1 + 3CΔH∂zw1

−BΔHΔHζ1 + (1 + a0f(τ))ΔHζ1 = 0.

Here ΔH = ∂2
x + ∂2

y .

3.2. Second order problem.

(3.3) ∂τΔw2 − CΔΔw2 = N (2)
eq ,

with boundary conditions on z = −h/l,

(3.4) w2 = ∂zw2 = 0,
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and on z = 0,

∂τζ2 − w2 = N
(2)
kc ,

ΔHw2 − ∂2
zw2 = N

(2)
ts ,

−∂τ∂zw2 + C∂3
zw2 + 3CΔH∂zw2

−BΔHΔHζ2 + (1 + a0f(τ))ΔHζ2 = N (2)
ns .

Here

N (2)
eq = [∇×∇× (u1 · ∇)u1] · e3 − ∂T1

Δw1,

N
(2)
kc = −∂T1ζ1 − u1∂xζ1 − v1∂yζ1 + ∂zw1ζ1,

N
(2)
ts = ∂x

[
−∂zzu1ζ1 − ∂xzw1ζ1 + 2(∂xu1 − ∂zw1)∂xζ1 + (∂yu1 + ∂xv1)∂yζ1

]
+∂y

[
−∂zzv1ζ1 − ∂yzw1ζ1 + 2(∂yv1 − ∂zw1)∂yζ1 + (∂yu1 + ∂xv1)∂xζ1

]
,

N (2)
ns = ∂T1

∂zw1 −∇H · (u1 · ∇)u1 + ΔH(−2C∂zzw1ζ1 + ∂zp1ζ1) − a1f(τ)ΔHζ1.

3.3. Third order problem.

(3.5) ∂τΔw3 − CΔΔw3 = N (3)
eq ,

with boundary conditions on z = −h/l,

(3.6) w3 = ∂zw3 = 0,

and on z = 0,

∂τζ3 − w3 = N
(3)
kc ,

ΔHw3 − ∂2
zw3 = N

(3)
ts ,

−∂τ∂zw3 + C∂3
zw3 + 3CΔH∂zw3

−BΔHΔHζ3 + (1 + a0f(τ))ΔHζ3 = N (3)
ns .

Here

N (3)
eq = [∇×∇× (u1 · ∇)u2] · e3 + [∇×∇× (u2 · ∇)u1] · e3 − ∂T2Δw1 − ∂T1Δw2,

N
(3)
kc = −∂T2ζ1 − ∂T1ζ2 + ∂zw1ζ2 + ∂zw2ζ1 +

1

2
∂zzw1ζ

2
1

−u1∂xζ2 − u2∂xζ1 − ∂zu1ζ1∂xζ1 − v1∂yζ2 − v2∂yζ1 − ∂zv1ζ1∂yζ1,

N
(3)
ts = ∂x

[
−∂zzu2ζ1 − ∂zzu1ζ2 −

1

2
∂zzzu1ζ

2
1 − ∂xzw2ζ1 − ∂xzw1ζ2 −

1

2
∂xzzw1ζ

2
1

−2(∂zw2 − ∂xu2)∂xζ1 − 2(∂zw1 − ∂xu1)∂xζ2 − 2∂z(∂zw1 − ∂xu1)ζ1∂xζ1

+(∂yu2 + ∂xv2)∂yζ1 + (∂yu1 + ∂xv1)∂yζ2 + ∂z(∂yu1 + ∂xv1)ζ1∂yζ1

]

+∂y

[
−∂zzv2ζ1 − ∂zzv1ζ2 −

1

2
∂zzzv1ζ

2
1 − ∂yzw2ζ1 − ∂yzw1ζ2 −

1

2
∂yzzw1ζ

2
1

−2(∂zw2 − ∂yv2)∂yζ1 − 2(∂zw1 − ∂yv1)∂yζ2 − 2∂z(∂zw1 − ∂yv1)ζ1∂yζ1

+(∂yu2 + ∂xv2)∂xζ1 + (∂yu1 + ∂xv1)∂xζ2 + ∂z(∂yu1 + ∂xv1)ζ1∂xζ1

]
,
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N (3)
ns = ∂T2

∂zw1 + ∂T1
∂zw2 − a2f(τ)ΔHζ1 − a1f(τ)ΔHζ2 −∇H · [u1 · ∇u2 + u2 · ∇u1]

+ΔH

[
∂zp2ζ1 + ∂zp1ζ2 +

1

2
∂zzp1ζ

2
1 − 2C∂zzw1ζ2 − 2C∂zzw2ζ1 − C∂zzzw1ζ

2
1

+2C(∂zu2 + ∂xw2)∂xζ1 + 2C(∂zw1 − ∂xu1)(∂xζ1)
2 + 2C(∂zv2 + ∂yw2)∂yζ1

+2C∂z(∂xw1 + ∂zu1)∂xζ1ζ1 + 2C∂z(∂yw1 + ∂zv1)∂yζ1ζ1

+2C(∂zw1 − ∂yv1)(∂yζ1)
2 − 2C(∂yu1 + ∂xv1)∂xζ1∂yζ1 −

3

2
B∂xxζ1(∂xζ1)

2

−3

2
B∂yyζ1(∂yζ1)

2 − 1

2
B∂xxζ1(∂yζ1)

2 − 1

2
B∂yyζ1(∂xζ1)

2 − 2B∂xζ1∂yζ1∂xyζ1

]
.

3.4. Linear adjoint problem. In order to use the Fredholm alternative and
derive a solvability condition, the solution to the linear adjoint problem is needed.
We suppose that S1 = (w1, ζ1) is the solution of the linear problem and denote by
S∗ = (w∗, ζ∗) the solution of the linear adjoint problem. Then S1 and S∗ satisfy

(3.7) (S∗,LS1) = 0 = (L∗S∗, S1),

where L and L∗ are the linear and the linear adjoint operators, respectively, and (·, ·)
means the following scalar product:

(3.8)

∫ 2π/ω

0

∫
Ω

w∗
(
∂τΔw1 −CΔΔw1

)
dΩdτ +

∫ 2π/ω

0

∫
Σ

ζ∗

[
∂τζ1 −w1

]
z=0

dΣdτ = 0,

where Ω = Σ × (−h/l, 0) and Σ is the horizontal periodicity cell.

3.5. Solvability conditions. From the Fredholm alternative theorem it follows
that at second order the solvability condition takes the form of

∫ 2π/ω

0

∫
Ω

w∗(∂τΔw2 − CΔΔw2 −N (2)
eq )dΩdτ

+

∫ 2π/ω

0

∫
Σ

[ζ∗(∂τζ2 − w2 −N
(2)
kc )]z=0dΣdτ = 0.(3.9)

This implies that

∫ 2π/ω

0

∫
Ω

w∗N (2)
eq dΩdτ +

∫ 2π/ω

0

∫
Σ

[ζ∗N
(2)
kc ]z=0dΣdτ

+

∫ 2π/ω

0

∫
Σ

[w∗N (2)
ns ]z=0dΣdτ + C

∫ 2π/ω

0

∫
Σ

[∂zw
∗N

(2)
ts ]z=0dΣdτ = 0.

Similarly at third order, we have
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∫ 2π/ω

0

∫
Ω

w∗N (3)
eq dΩdτ +

∫ 2π/ω

0

∫
Σ

[ζ∗N
(3)
kc ]z=0dΣdτ

+

∫ 2π/ω

0

∫
Σ

[w∗N (3)
ns ]z=0dΣdτ + C

∫ 2π/ω

0

∫
Σ

[∂zw
∗N

(3)
ts ]z=0dΣdτ = 0.

4. Patterns. In order to proceed further, we need to first solve the linear prob-
lem set out in section 3.1. However, in an unbounded horizontal domain, while the
linear problem predicts the onset of spatially periodic patterns at a given excita-
tion frequency and excitation amplitude with a wavenumber kc, it does not uniquely
determine the pattern that is produced. This is related to the fact that, in an un-
bounded horizontal domain, the Faraday problem is isotropic so that no particular
direction is preferred: any wavevector with wavenumber kc would give an allowable
solution; for example, stripes with any orientation would be possible. Furthermore,
within the linear problem, linear superposition of different wavevectors with the crit-
ical wavenumber also give solutions. In this way, solutions such as squares, hexagons,
superlattice patterns, and quasipatterns may be constructed by adding together stripe
solutions of the appropriate orientation. However, the fact that these are solutions
to the linear problem does not guarantee their existence or stability for the nonlinear
problem. Indeed, only particular combinations of patterns are observed in experi-
ments. Here we consider patterns that are spatially periodic, and this is implicit in
our choice of domain in sections 2 and 3.

For patterns that are spatially periodic in two space dimensions, previous work has
used equivariant bifurcation theory to find the generic types of solutions that exist [25],
the generic amplitude equations that these patterns satisfy, and the stability of each
pattern in terms of the coefficients of these amplitude equations [26]. For example,
on the family of lattices with hexagonal symmetry, the generic amplitude equations
are

ż1 = λz1 + εz̄2z̄3

+(b1|z1|2 + b2|z2|2 + b2|z3|2 + b4|z4|2 + b5|z5|2 + b6|z6|2)z1 + O(|z|4),
ż2 = λz2 + εz̄3z̄1

+(b2|z1|2 + b1|z2|2 + b2|z3|2 + b6|z4|2 + b4|z5|2 + b5|z6|2)z2 + O(|z|4),
ż3 = λz3 + εz̄1z̄2

+(b2|z1|2 + b2|z2|2 + b1|z3|2 + b5|z4|2 + b6|z5|2 + b4|z6|2)z3 + O(|z|4),
ż4 = λz4 + εz̄6z̄5(4.1)

+(b4|z1|2 + b6|z2|2 + b5|z3|2 + b1|z4|2 + b2|z5|2 + b2|z6|2)z4 + O(|z|4),
ż5 = λz5 + εz̄4z̄6

+(b5|z1|2 + b4|z2|2 + b6|z3|2 + b2|z4|2 + b1|z5|2 + b2|z6|2)z5 + O(|z|4),
ż6 = λz6 + εz̄5z̄4

+(b6|z1|2 + b5|z2|2 + b4|z3|2 + b2|z4|2 + b2|z5|2 + b1|z6|2)z6 + O(|z|4),

where the zi are complex amplitudes and λ, ε, and bi are real. An example of one
of the family of such lattices is shown in Figure 4.1, where Kih is the mode with
amplitude zi. Different lattices correspond to different choices for θ. In terms of the
Faraday problem considered in this paper, these equations arise by representing the
horizontal spatial dependence of the linear problem for the surface height ζ1 and the
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K1h

K2h

K3h

K5h

K4h

K6h

θ

Fig. 4.1. Hexagonal lattice generated by 12 wavevectors on the critical circle.

vertical velocity w1 as a sum of six modes where the ith mode has amplitude zi and
wavevector Kih .

For each hexagonal lattice, the equivariant branching lemma gives six patterns
that bifurcate from the trivial state, and these are listed in Table 4.1 along with their
branching equations and stability assignments. A further pattern has been found
to exist and bifurcate from the trivial solution as discussed in [27]. We have not
included this in Table 4.1 since its eigenvalues are indistinguishable from those for
superhexagons at cubic order. We refer to both the superhexagons and the patterns
discussed in [27] as superlattice patterns.

Similar results exist for families of square lattices.
Previously, the coefficients of the amplitude equations have been calculated for

a long wavelength scalar partial differential equation describing a range of convec-
tion problems [28], for Turing patterns [29], and more recently for the Zhang–Viñals
model of the Faraday problem [18]. These calculations allow inferences on the relative
stability of different spatially periodic patterns to be made.

The cubic truncation of the amplitude equations (4.1) can be written in gradient
form:

(4.2) żi = −∂F
∂z̄i

,

where the Lyapunov function is given by

F = −
∑

i=1..6

[
λ|zi|2 −

1

2
b1|zi|4

]
−ε(z1z2z3 + z4z5z6 + z̄1z̄2z̄3 + z̄4z̄5z̄6)

−b2
(
|z1|2|z2|2 + |z1|2|z3|2 + |z4|2|z5|2 + |z4|2|z6|2 + |z5|2|z6|2

)
−b4

(
|z1|2|z4|2 + |z2|2|z5|2 + |z3|2|z6|2

)
− b5

(
|z1|2|z5|2 + |z2|2|z6|2 + |z3|2|z4|2

)
−b6

(
|z1|2|z6|2 + |z2|2|z4|2 + |z3|2|z5|2

)
.(4.3)
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Table 4.1

Branching equations and signs of eigenvalues for primary bifurcation branches on the hexagonal
lattice; ε, b1, . . . , b6 are coefficients in the bifurcation equation (4.1).

Branching equation Signs of nonzero eigenvalues

Stripes (S) sgn(b1), sgn(ε̃AS + (b2 − b1)A2
S),

z = (AS , 0, 0, 0, 0, 0) sgn(−ε̃AS + (b2 − b1)A2
S),

0 = λAS + b1A3
S + O(A5

S) sgn(b4 − b1), sgn(b5 − b1), sgn(b6 − b1).

Simple hexagons (H±) sgn(ε̃AH + 2(b1 + 2b2)A2
H),

z = (AH , AH , AH , 0, 0, 0) sgn(−ε̃AH + (b1 − b2)A2
H),

0 = λAH + ε̃A2
H sgn(−ε̃AH + (b4 + b5 + b6 − b1 − 2b2)A2

H),

+(b1 + 2b2)A3
H + O(A4

H) sgn(−ε̃AH + O(A3
H)).

Rectangles (Rh1,m,n) sgn(b1 + b4), sgn(b1 − b4),

z = (AR, 0, 0, AR, 0, 0) sgn(μ1), sgn(μ2), where

0 = λAR + (b1 + b4)A3
R + O(A5

R) μ1 + μ2 = (−2b1 − 2b4 + 2b2 + b5 + b6)A2
R,

μ1μ2 = −ε̃2A2
R + (b1 + b4 − b2 − b5)

(b1 + b4 − b2 − b6)A4
R.

Rectangles (Rh2,m,n) sgn(b1 + b5), sgn(b1 − b5),

z = (AR, 0, 0, 0, AR, 0) sgn(μ1), sgn(μ2), where

0 = λAR + (b1 + b5)A3
R + O(A5

R) μ1 + μ2 = (−2b1 − 2b5 + 2b2 + b4 + b6)A2
R,

μ1μ2 = −ε̃2A2
R + (b1 + b5 − b2 − b4)

(b1 + b5 − b2 − b6)A4
R.

Rectangles (Rh3,m,n) sgn(b1 + b6), sgn(b1 − b6),

z = (AR, 0, 0, 0, 0, AR) sgn(μ1), sgn(μ2), where

0 = λAR + (b1 + b6)A3
R + O(A5

R) μ1 + μ2 = (−2b1 − 2b6 + 2b2 + b4 + b5)A2
R,

μ1μ2 = −ε̃2A2
R + (b1 + b6 − b2 − b4)

(b1 + b6 − b2 − b5)A4
R.

sgn(ε̃ASH + 2(b1 + 2b2 + b4 + b5 + b6)A2
SH),

Superhexagons (SH±
m,n) sgn(ε̃ASH + 2(b1 + 2b2 − b4 − b5 − b6)A2

SH),

z = (ASH , ASH , ASH , sgn(−ε̃ASH + O(A3
SH)),

ASH , ASH , ASH) sgn(−ε̃ASH + O(A3
SH)),∗

0 = λASH + ε̃A2
SH + (b1 + 2b2)A3

SH sgn(μ1), sgn(μ2), where

+(b4 + b5 + b6)A3
SH + O(A4

SH) μ1 + μ2 = −4ε̃ASH + 4(b1 − b2)A2
SH ,

μ1μ2 = 4(ε̃ASH − (b1 − b2)A2
SH)2

−2((b4 − b5)2 + (b4 − b6)2

+(b5 − b6)2))A4
SH ,

sgn(μ0), where μ0 = O(A
2(m−1)
SH ).

∗These two eigenvalues differ at O(A3
SH).

The different planforms then correspond to minima of the Lyapunov functional, and an
“energy” for each state may be computed. In Table 4.2, we list the different planforms
and the corresponding value of the Lyapunov function (4.3). The information given
by the eigenvalues of the amplitude equations given in Table 4.1 and that given by
the energy of the different states as given in Table 4.2 is complementary. Below we
calculate the coefficients for the amplitude equations (4.1) from the full Navier–Stokes
equation formulation of the Faraday problem. We then calculate the eigenvalues to
examine relative stability. For those states that are relatively stable, we calculate the
value of the Lyapunov function to find which have the lowest energy.

The coefficients of the amplitude equations are found by focusing on three calcula-
tions: one for stripes, one for rectangular patterns, and one for hexagons; these corre-
spond to considering the three subspaces, z = (AS , 0, 0, 0, 0, 0), z = (AR, 0, 0, AR, 0, 0),
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Table 4.2

Value of the Lyapunov function F for each of the primary bifurcation branches on the hexagonal
lattice; ε, b1, . . . , b6 are coefficients in the bifurcation equation (4.1). Only one of the rectangular
states has been included: the other two may be obtained by cyclic permutation.

Planform F

Stripes (S) λ2

b1

z = (AS , 0, 0, 0, 0, 0)

Simple hexagons (H±) −
(
3λA2

H + 2εA3
H + 3

2
(b1 + 2b2)A4

H

)
,

z = (AH , AH , AH , 0, 0, 0) where 0 = λ + εAH + (b1 + 2b2)A2
H

Rectangles (Rh1,m,n) λ2

(b1+b4)

z = (AR, 0, 0, AR, 0, 0)

Superhexagons (SH±
m,n) −

(
6λA2

SH + 4εA3
SH + 3(b1 + 2b2 + b4 + b5 + b6)A4

SH

)
,

z = (ASH , ASH , ASH , ASH , ASH , ASH) where 0 = λ + ε̃ASH + (b1 + 2b2 + b4 + b5 + b6)A2
SH

and z = (AH , AH , AH , 0, 0, 0), respectively. Focusing on a particular pattern means
that we make an assumption about the particular form of the horizontal behavior of
the fluid variables. We can use this to reformulate the weakly nonlinear analysis in
section 3 that is in terms of functions of x, y, and z to a simpler set of problems for
sets of functions that depend only on z. It is this reformulation of the problem that
is carried out in this section for each of the stripes, rectangles, and hexagons. Since
stripes and rectangles arise through a symmetry-breaking bifurcation, there are no
quadratic terms in the amplitude equations for these patterns. A result of this is that
the solvability condition at second order necessarily leads to a1 = 0. This fact can
be included from the beginning of the analysis, and then we need only scale on two
timescales; that is, we let t = τ + T/ε2 so that ∂t = ∂τ + ε2∂T . (The more general
formulation on three timescales is needed for hexagons.)

For stripes, we consider a solution to the first order problem given in section 3.1
of the form

w1(x, z, τ, T ) = AS(T )(eikx + e−ikx)
∑
n

W1,n(z)ei(nω+α)τ ,

ζ1(x, τ, T ) = AS(T )(eikx + e−ikx)
∑
n

Z1,ne
i(nω+α)τ ,

and for rectangular patterns, we consider

w1(x, y, z, τ, T ) = AR(T )[eikx + eik(cx+sy) + c.c.]
∑
n

W1,n(z)ei(nω+α)τ ,

ζ1(x, y, τ, T ) = AR(T )[eikx + eik(cx+sy) + c.c.]
∑
n

Z1,ne
i(nω+α)τ ,(4.4)

where s = sin θ and c = cos θ and θ is the angle between the wavevectors that make
up the rectangular pattern. Here k is the wavenumber of the pattern, and a Floquet
expansion in the basic frequency ω has been used as in [14]. When α = 0, the expan-
sion gives a harmonic solution, and when α = ω/2, the expansion gives a subharmonic
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solution. Here and below we sum from n = −∞ to n = +∞. Consequently, since
both the w1 and ζ1 are real, we have in addition

W1,n = W̄1,−n, α = 0,

W1,n = W̄1,−n−1, α = ω/2.(4.5)

Although we do not list them, there are analogous reality conditions for the velocity
components and surface height at each order. Similar choices for the expansion are
made for the behavior of the horizontal velocity components u1 and v1, and these are
listed in Appendix A. Since the results for stripes can be obtained by setting θ = 0
and careful consideration of some factors of two, in what follows we include stripes as
a special case in our formulation of the problem for rectangles. In order to proceed,
the general form (4.4) for the pattern is substituted into the first order problem given
in section 3.1. The result is a homogeneous fourth order linear differential equation
for the vertical dependence of the vertical velocity component W1,n(z) along with the
appropriate boundary conditions at z = 0 and z = −h/l. This is given in section 4.1.

At second order, as for the first order problem, assuming that we are interested
in particular patterns means that we know the form for the horizontal behavior of the
fluid. Specifically, we take the general form of the second order solution for rectangles
as

w2(x, y, z, τ, T ) = A2
R(T )[e2ikx + e2ik(cx+sy) + c.c.]

∑
n

W2,1,n(z)ei(nω+2α)τ

+A2
R(T )[eik[(1+c)x+sy] + c.c.]

∑
n

W2,2,n(z)ei(nω+2α)τ

+A2
R(T )[eik[(1−c)x−sy] + c.c.]

∑
n

W2,3,n(z)ei(nω+2α)τ ,

ζ2(x, y, τ, T ) = A2
R(T )[e2ikx + e2ik(cx+sy) + c.c.]

∑
n

Z2,1,ne
i(nω+2α)τ

+A2
R(T )[eik[(1+c)x+sy] + c.c.]

∑
n

Z2,2,ne
i(nω+2α)τ

+A2
R(T )[eik[(1−c)x−sy] + c.c.]

∑
n

Z2,3,ne
i(nω+2α)τ .(4.6)

The forms that are taken for the velocity components u2 and v2 are given in Appen-
dix A. The expressions for the velocity components are substituted into the equations
and boundary conditions at second order given in section 3.2, and this leads to an
inhomogeneous fourth order ordinary differential equation for W2,i,n(z) along with
boundary conditions. These are given in section 4.2.

As discussed above, if we take a1 = 0, then there is no solvability condition at
second order for rectangles. However, at third order there is a solvability condition. In
order to derive this, the general form for the adjoint problem is needed. In section 4.3,
we give the formulation for the adjoint problem, derived from the adjoint problem
given in (3.8) along with the assumption that patterns to the adjoint problem take
the general form

w∗(x, z, τ, T ) = A∗(T )(eikx + e−ikx)
∑
n

W ∗
n(z)ei(nω+α)τ ,

ζ∗(x, τ, T ) = A∗(T )(eikx + e−ikx)
∑
n

Z∗
ne

i(nω+α)τ .
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This then allows us to formulate the solvability condition at third order in section 4.4.
The result is an amplitude equation for rectangles whose coefficients may be deter-
mined from W1,n(z), Z1,n,W2,i,n(z), Z2,i,n and their derivatives along with the adjoint
eigenfunctions W ∗

1,n(z) and Z∗
1,n and their derivatives.

In the case of hexagons, we consider a first order solution of the form

w1(x, y, z, τ, T1, T2)

= AH(T1, T2)[e
ikx + eik(−x+

√
3y)/2 + eik(−x−

√
3y)/2 + c.c.]

∑
n

W1,n(z)ei(nω+α)τ ,

ζ1(x, y, z, τ, T1, T2)
(4.7)

= AH(T1, T2)[e
ikx + eik(−x+

√
3y)/2 + eik(−x−

√
3y)/2 + c.c.]

∑
n

Z1,ne
i(nω+α)τ

with similar choices for u1 and v1 that are listed in Appendix A. This leads to the
same first order problem as for stripes and rectangles, as given in section 4.1 below.

At second order hexagons differ from rectangles. Generically, in problems that
have E(2) symmetry, hexagons arise in a transcritical bifurcation and are necessar-
ily locally unstable. In the weakly nonlinear analysis, this appears as a quadratic
amplitude equation that results from the solvability condition for the second order
problem. Two cases of interest arise that can result in stable hexagonal solutions:
first, when there is an extra symmetry in the problem that removes the quadratic
term, and second, when the coefficient of the quadratic term is sufficiently small so
that the quadratic terms may formally be included at cubic order [30]. The Faraday
problem is an example of a system that has E(2) symmetry. As we shall see below,
for some values of the parameter χ in the drive (2.3), the response is subharmonic,
and for some values it is harmonic. When the response is subharmonic, then there
is an extra time symmetry in the problem and there are no quadratic terms in the
amplitude equations. When χ = 0, the response is harmonic, but since there is no M2

component in the drive, there is again an extra symmetry in the problem, and again
there are no quadratic terms in the amplitude equations. However, as the parameter
χ is increased from 0, this extra symmetry is broken, and there is a gradual increase
from zero in the size of the coefficient of the quadratic term. There is therefore at
least some range in parameter space where it is reasonable to include the quadratic
terms at cubic order. The way we proceed with the hexagon calculation is therefore
as follows. First, we consider three timescales and formulate the solvability condition
at second order. This is done using the solvability condition given in (3.9) and the
specific form for the hexagonal pattern at first order (4.7); the result is given in sec-
tion 4.5. This gives us a quadratic amplitude equation and enables us to compute the
size of the quadratic term.

Next, we make the assumption that the coefficient of the quadratic term is either
zero or sufficiently small (O(ε)) so that we may formally include the terms at cubic
order. We therefore set a1 = 0, rescale the problem on two timescales, and formulate
the problem for the solution at second order by taking as a general form for the second
order problem

w2(x, y, z, τ, T ) = A2
H [e2ikx + eik(−x+

√
3y) + eik(−x−

√
3y) + c.c.]

∑
n

W2,1,n(z)ei(nω+2α)τ

+A2
H [eik

√
3y + eik(3x+

√
3y)/2 + eik(3x−

√
3y)/2 + c.c.]

∑
n

W2,2,n(z)ei(nω+2α)τ ,
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ζ2(x, y, τ, T ) = A2
H [e2ikx + eik(−x+

√
3y) + eik(−x−

√
3y) + c.c.]

∑
n

Z2,1,ne
i(nω+2α)τ

+A2
H [eik

√
3y + eik(3x+

√
3y)/2 + eik(3x−

√
3y)/2 + c.c.]

∑
n

Z2,2,ne
i(nω+2α)τ .(4.8)

Expressions for u2 and v2 are listed in Appendix A. Substitution of these expressions
into the second order equation and boundary conditions given in section 3.2 leads to
an inhomogeneous fourth order ordinary differential equation for W2,i,n along with
boundary conditions. These are given in section 4.6. Finally, including the quadratic
terms at cubic order, we formulate the solvability condition for the third order hexag-
onal problem in section 4.7.

4.1. The linear problem. The linear problem is the same for all periodic pat-
terns and is given by

(4.9) [i(nω + α) − C(D2 − k2)](D2 − k2)W1,n(z) = 0,

where D indicates the derivative with respect to z, with boundary conditions

(4.10) W1,n = DW1,n = 0,

on z = −h/l, and on z = 0,

i(nω + α)Z1,n −W1,n = 0,(4.11)

(D2 + k2)W1,n = 0,(4.12) (
i(nω + α) + 3Ck2

)
DW1,n − CD3W1,n + k2(Bk2 + 1)Z1,n = −1

2
a0k

2Z1,f,n.(4.13)

For a single frequency of excitation,

(4.14) Z1,f,n = Z1,n−1 + Z1,n+1,

and for two frequencies,

(4.15) Z1,f,n = cos(χ)(Z1,n−M1 + Z1,n+M1) + sin(χ)(eiφZ1,n−M2
+ e−iφZ1,n+M2

).

These equations are supplemented by the reality conditions

W1,−n(0) = W̄1,n(0), Z1,−n = Z̄1,n

for harmonic modes and

W1,−n(0) = W̄1,n−1(0), Z1,−n = Z̄1,n−1

for subharmonic modes, where the bar indicates complex conjugation.

4.2. Second order problem for rectangles and stripes. The functions
W2,i,n and Z2,i,n, i = 1, 2, 3, can all be found from the same system of equations
with different choices made for the parameters θ and d. For i = 1, we take θ = 0 and
d = 1/2: this would be the same as solving for stripes. For i = 2, we take θ = θ̃ and
d = 1. For i = 3, we take θ = π + θ̃ and d = 1, where θ̃ ∈ (0, π/2]. The solutions
W2,i,n satisfy

[i(nω + 2α) − C(D2 − 2k2(1 + c))](D2 − 2k2(1 + c))W2,i,n(z)

= d
∑

l+m=n

[
4k2s2DW1,l(z)W1,m(z) − 2(1 + c)D3W1,l(z)W1,m(z)

+2(−1 + c + 2c2)D2W1,l(z)DW1,m(z)
]

(4.16)
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at z = −h/l,

(4.17) W2,i,n = DW2,i,n = 0,

while at z = 0 we have the kinematic condition and the tangential stress condition,

i(nω + 2α)Z2,i,n −W2,i,n = 2d(1 + c)
∑

l+m=n

DW1,lZ1,m,(4.18)

(D2 + 2k2(1 + c))W2,i,n = −d
∑

l+m=n

[
2(1 + c)Z1,lD

3W1,m

+2(3 + 2c)(1 + c)k2Z1,lDW1,m

]
,(4.19)

and the normal stress condition,[
i(nω + 2α) + 6(1 + c)Ck2

]
DW2,i,n − CD3W2,i,n

+2k2(1 + c)(2B(1 + c)k2 + 1)Z2,i,n = S1,i,n − a0k
2(1 + c)Z2,f,i,n,(4.20)

where

S1,i,n = d
∑

l+m=n

[
2c(1 + c)DW1,lDW1,m

+4(1 + c)k2Z1,lDP1,m − 8(1 + c)Ck2Z1,lD
2W1,m − 2(1 + c)W1,lD

2W1,m

]
.

For a single frequency,

Z2,f,i,n = Z2,i,n−1 + Z2,i,n+1,

and for two frequencies,
(4.21)
Z2,f,i,n = cos(χ)(Z2,i,n−M1 + Z2,i,n+M1) + sin(χ)(eiφZ2,i,n−M2 + e−iφZ2,i,n+M2).

Note that if there is no extra symmetry that suppresses it, then the resonant triad
interaction at second order causes this calculation to blow up at θ = π/3.

4.3. Linear adjoint problem. The adjoint problem is

(4.22)
[
i(nω + α) + C(D2 − k2)

]
(D2 − k2)W ∗

n(z) = 0,

with boundary conditions

W ∗
n = DW ∗

n = 0,

on z = −h/l, and on z = 0,[
i(nω + α) − 3Ck2

]
DW ∗

n + CD3W ∗
n = Z∗

n,(4.23)

(D2 + k2)W ∗
n = 0,(4.24)

i(nω + α)Z∗
n + k2(Bk2 + 1)W ∗

n = −1

2
a0k

2W ∗
f,n.(4.25)

For a single frequency,

W ∗
f,n = W ∗

n−1 + W ∗
n+1,

and for two frequencies,

W ∗
f,n = cos(χ)(W ∗

n−M1
+ W ∗

n+M1
) + sin(χ)(eiφW ∗

n−M2
+ e−iφW ∗

n+M2
).
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4.4. Solvability condition for rectangles and stripes. The solvability con-
dition is

(4.26) δ
dA

dT
= a2βA + γA3,

where A ≡ AS in Table 4.1 for stripes and A ≡ AR in Table 4.1 for rectangles and

δ =
∑(1)

l,m

[
−2Z∗

l Z1,m + 2W ∗
l (0)DW1,m(0)

+2

∫ 0

−h/l

W ∗
l (z)

(
−D2W1,m(z) + k2W1,m(z)

)
dz

]
.(4.27)

For one frequency,

(4.28) β = −k2

[∑(4)

l,m

W ∗
l (0)Z1,m +

∑(5)

l,m

W ∗
l (0)Z1,m

]
,

and for two frequencies,

β = −k2

[
cos(χ)

(∑(6)

l,m

W ∗
l (0)Z1,m +

∑(7)

l,m

W ∗
l (0)Z1,m

)

+ sin(χ)

(∑(8)

l,m

W ∗
l (0)eiψZ1,m +

∑(9)

l,m

W ∗
l (0)e−iψZ1,m

)]
.(4.29)

The coefficient γ is given by the sum of three separate components corresponding to
contributions from each of W2,i,n and Z2,i,n. They may each be calculated from a
single function γi(θs, d) by taking each of the three functions in turn and different θs
and d. Specifically,

γ(θs, d) = γ1

(
0,

1

2

)
+ γ2(θs, 1) + γ3(π + θs, 1).

The function γi is given in Appendix B.

4.5. Second order solvability condition for hexagons. The second order
solvability condition for hexagons leads to the amplitude equation

(4.30) δ
dAH

dT1
= a1βAH + γ2A

2
H ,

and γ2 is given by

γ2 = −2

(2)∑
l,m,n

Z∗
l Z1,mDW1,n(0)

−
(2)∑

l,m,n

W ∗
l (0)

[
DW1,m(0)DW1,n(0) + 8Ck2Z1,mD2W1,n(0)

]

+

(2)∑
l,m,n

W ∗
l (0)

[
4k2Z1,mDP1,n(0) − 2W1,m(0)D2W1,n(0)

]
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−C

(2)∑
l,m,n

DW ∗
l (0)Z1,m

[
2D3W1,n(0) + 4k2DW1,n(0)

]

−
(2)∑

l,m,n

∫ 0

−h/l

W ∗
l (z)

[
W1,m(z)(6k2DW1,n(z) − 2D3W1,n(z))

−4DW1,m(z)D2W1,n(z)
]
dz.(4.31)

4.6. Second order problem for hexagons. The second order problem for
hexagons consists of W2,1,n(z) = W2,n(z), which solves the same problem as that
obtained for stripes, and W2,2,n, which satisfies

[i(nω + 2α) − C(D2 − 3k2)](D2 − 3k2)W2,2,n(z)

=
∑

l+m=n

(3k2W1,l(z)DW1,m(z) − 3D3W1,l(z)W1,m(z)).

At z = −h/l we have W2,2,n = DW2,2,n = 0, while at z = 0 we have the kinematic
condition and the tangential stress conditions, namely,

i(nω + 2α)Z2,2,n −W2,2,n = 3
∑

l+m=n

Z1,lDW1,m,

(3k2 + D2)W2,2,n = −
∑

l+m=n

[
3Z1,lD

3W1,m + 12k2Z1,lDW1,m

]
,

and the normal stress condition,

(i(nω + 2α) + 9Ck2)DW2,2,n − CD3W2,2,n + 3k2(3Bk2 + 1)Z2,2,n

= S1,h,n − 3

2
a0k

2Z2,f,n,

where

S1,h,n =
∑

l+m=n

(
3

2
DW1,lDW1,m − 12Ck2Z1,lD

2W1,m

+6k2Z1,lDP1,m − 3W1,lD
2W1,m

)
.

For a single frequency of excitation,

Z2,f,n = Z2,2,n−1 + Z2,2,n+1,

and for two frequencies,

Z2,f,n = cos(χ)(Z2,2,n−M1
+ Z2,2,n+M1

) + sin(χ)(eiφZ2,2,n−M2
+ e−iφZ2,2,n+M2

).

4.7. Solvability condition for hexagons at third order. The solvability
condition at third order problem takes the form

(4.32) δ
dAH

dT
= a2βAH + γ2A

2
H + (γ1 + γ3)A

3
H ,

where δ, β, and γ1 are the same as for stripes, γ2 is given by (4.31), and γ3 is given
in Appendix C.
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5. Calculation of the coefficients of the amplitude equations. In sec-
tion 4, we formulated a hierarchy of problems for the z dependence of the fluid pa-
rameters. In this section, we outline how we solve this sequence of problems and
calculate the coefficients of the amplitude equations. We focus on the harmonic case,
α = 0, but the calculations for the subharmonic case are similar. We also note that
using the transformation ω → ω/2, M1 → 2M1, M2 → 2M2, the subharmonic case
can be incorporated into the formulation for the harmonic problem. As explained
in section 5.1, the calculations are substantially simpler in the specific case of an
infinite layer, and while we have solved the linear problem for both the finite and
infinite cases, we have calculated the coefficients of the amplitude equations only for
infinite depth. We justify why this is a reasonable approximation for the specific fluid
parameter choices we use when we discuss the results in section 6.

5.1. Linear problem. The general solution for W1,n(z) that satisfies (4.9) is

W1,0(z) = (a1,0 + zc1,0)e
kz + (b1,0 + zd1,0)e

−kz,

W1,n(z) = a1,ne
kz + b1,ne

−kz + c1,ne
q1,nz + d1,ne

−q1,nz, n 	= 0,(5.1)

where

q2
1,n =

inω

C
+ k2.

Applying the boundary conditions allows values for the coefficients a1,n, b1,n, c1,n,
and d1,n to be found. However, the subsequent analysis is substantially easier in the
particular case of an infinite layer, where the lower boundary conditions are replaced
with the requirement that the solution be bounded as z → −∞. In this case, b1,n =
d1,n = 0, and it is this case we discuss below.

In order to find a1,n and c1,n, they are expressed first in terms of Z1,n using the
kinematic condition (4.11) and the tangential stress condition (4.12) to give

a1,0 = 0,

a1,n = (inω + 2Ck2)Z1,n, n 	= 0,

c1,0 = 0,(5.2)

c1,n = −2Ck2Z1,n, n 	= 0.

Then the normal stress condition (4.13) is used to eliminate W1,n to give

k2
(
Bk2 + 1

)
Z1,0 = −1

2
a0k

2Z1,f,0, n = 0,(5.3)[
k(2Ck2 + inω)2 − 4C2k4q1,n + k2

(
Bk2 + 1

)]
Z1,n = −1

2
a0k

2Z1,f,n, n 	= 0.

This is a generalized eigenvalue problem for a0 of the form

AZ = a0BZ,

where Z = (Z1,0, Z1,1, . . . , Z1,N )T . This generalized eigenvalue problem is the same
as that solved in [15]. The minimum real positive eigenvalue a0 gives the critical
amplitude of onset of patterns, and the corresponding eigenvector gives the values
for Z1,n. Hence W1,n can be found from (5.2) and (5.1). These calculations and
those that follow were carried out using MATLAB. For the majority of the harmonic
calculations, we take N = 20, and for the subharmonic calculations, we take N = 40.
Doubling the number of modes typically changed the results by less than 0.2%.
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5.2. Linear adjoint problem. The general solution for the linear adjoint prob-
lem (4.22) for a fluid of infinite depth is

W ∗
0 (z) = (a∗0 + zc∗0)e

kz,

W ∗
n(z) = a∗ne

kz + c∗ne
q∗nz, n 	= 0,

where

q∗n
2 = − inω

C
+ k2.

Note that q∗n is the complex conjugate of q1,n. This can be solved analytically in
terms of Z∗

n using the adjoint equivalents to the kinematic condition (4.23) and the
tangential stress condition (4.24), and after some manipulation we find

Z∗
0 = −2Ck3W ∗

0 (0),

Z∗
n =

1

indnω
W ∗

n(0), n 	= 0,(5.4)

where

dn =
(
k(2Ck2 − inω)2 − 4C2k4q∗n

)−1
.

Substitution of these expressions for Z∗
n into the normal stress condition (4.25) gives

k2(Bk2 + 1)W ∗
0 (0) = −1

2
a∗0k

2W ∗
f,0(0),(5.5)[

k(2Ck2 − inω)2 − 4C2k4q∗n + k2(Bk2 + 1)
]
W ∗

n(0) = −1

2
a∗0k

2W ∗
f,n(0), n 	= 0.

This results in a second generalized eigenvalue problem of the form

A∗W∗ = a∗0B
∗W∗.

As expected, when we solve this, we find a0 = a∗0, and W ∗
n(0) is the complex conjugate

of Z1,n. Once W ∗
n has been found, then Z∗

n follows from (5.4).

5.3. Second order problem for stripes and rectangles. Next, we consider
the problem for W2,i,n(z), (4.16). The homogeneous equation has the solution

W2,i,0(z) = (a2,i,0 + zc2,i,0)e
k̃z,

W2,i,n(z) = a2,i,ne
k̃z + c2,i,ne

q2,i,nz, n 	= 0,

where

k̃2 = 2(1 + c)k2,

q2
2,i,n =

inω

C
+ k̃2.

In the inhomogeneous equation (4.16), the right-hand side generates terms of the form
αl,meQl,mz. Each of these contributes to the solution a term δl,meQl,mz, where

δl,m =
αl,m(

inω − C
(
Q2

l,m − k̃2
))

(Q2
l,m − k̃2)

.
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The general solution to (4.16) is therefore

W2,i,0(z) = (a2,i,0 + c2,i,0z)e
k̃z +

∑
l+m=0

δl,meQl,mz,

W2,i,n(z) = a2,i,ne
k̃z + c2,i,ne

q2,i,nz +
∑

l+m=n

δl,meQl,mz, n 	= 0.(5.6)

The coefficients a2,i,n and c2,i,n can be found in terms of Z2,i,n, using the tangen-
tial stress condition (4.19) and the kinematic condition (4.18), to give

a2,i,n = γ1,i,nZ2,i,n + v1,i,n,

c2,i,n = γ2,i,nZ2,i,n + v2,i,n,(5.7)

where

γ1,i,0 = 0,

γ1,i,n = (inω + 2Ck̃2), n 	= 0,

γ2,i,0 = 0,

γ2,i,n = −2Ck̃2, n 	= 0,

and

v1,i,0 = S2,i,0,

v1,i,n =
C

inω

((
inω

C
+ 2k̃2

)
S2,i,n − S3,i,n

)
, n 	= 0,

v2,i,0 =
1

2k̃

(
S3,i,0 − 2k̃2S2,i,0

)
,

v2,i,n =
C

inω

(
−2k̃2S2,i,n + S3,i,n

)
, n 	= 0,

and

S2,i,n = −2(1 + c)d
∑

l+m=n

Z1,lDW1,m −
∑

l+m=n

δl,m,

S3,i,n = −d
∑

l+m=n

(
2(1 + c)Z1,lD

3W1,m + (3 + 2c)k̃2Z1,lDW1,m

)
−

∑
l+m=n

Q2
l,mδl,m − k̃2

∑
l+m=n

δl,m.

Substitution of the general solution (5.6) into the normal stress condition, (4.20),
gives

k̃2
(
Bk̃2 + 1

)
Z2,i,0 +

1

2
a0k̃

2Z2,f,i,0 = −2Ck̃3S2,i,0 + S1,i,0

−3Ck̃2
∑

l+m=0

Ql,mδl,m + C
∑

l+m=0

Q3
l,mδl,m,
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k̃(inω + 2Ck̃2)γ1,i,n + 2Ck̃2q2,i,nγ2,i,n

+k̃2
(
Bk̃2 + 1

))
Z2,i,n +

1

2
a0k̃

2Z2,f,i,n = −k̃(inω + 2Ck̃2)v1,i,n − 2Ck̃2q2,i,nv2,i,n

+S1,i,n − (inω + 3Ck̃2)
∑

l+m=n

Ql,mδl,m

+C
∑

l+m=n

Q3
l,mδl,m, n 	= 0.

This is of the form

AZ2 = b,

where Z2 = (Z2,i,0, Z2,i,1, . . . , Z2,i,N ). This can be solved for Z2,i,n, and hence W2,i,n

can be found from (5.7) and (5.6).

5.4. Solvability condition for stripes and rectangles. Once the calculations
for the linear, linear adjoint, and second order problem have been completed, the
coefficients for the solvability condition are calculated from (4.27), (4.28), (4.29), and
(B.1).

5.5. Second order problem and solvability condition for hexagons. The
linear and linear adjoint problems for hexagons are the same as for stripes and rect-
angles. Once Z1, W1, Z

∗, and W ∗ are known, the size of the quadratic coefficient in
the amplitude equation for hexagons may be computed from (4.31). The calculations
of the second order solution and solvability condition at third order then follow in a
very similar fashion to the calculation for rectangles: the same products appear but
with different coefficients.

5.6. Evaluating the coefficients of the amplitude equations. In order to
compute the stability of the patterns as given in Table 4.1, we need to calculate each
of the cubic coefficients bi that appear in the generic amplitude equations (4.1) along
with the value of the quadratic coefficient ε̃. From the calculations for rectangles,
stripes, and hexagons this may be done as follows. The solvability condition for
rectangles and stripes takes the form given in (4.26), that is,

(5.8) δ
dA

dT
= a2βA + γA3.

The values of δ and β are independent of the type of pattern considered, but the value
of γ is not. By comparing the amplitude equations with the equations given for each
state given in Table 4.1, we see that when γ is computed in the case of stripes, it
gives us the value for b1. If the solvability condition is calculated for rectangles, then
γ gives us b1 + b4, and hence the value of b4 (and similarly b5 and b6) may be found.
In the case of hexagons, the solvability condition takes the form

(5.9) δ
∂AH

∂T
= a2βAH + γ2A

2
H + (γ1 + γ3)A

3
H ,

where δ, β, and γ1 are the same as for stripes and γ2 is given by (4.31) and γ3

comes from (C.1). By comparing with the amplitude equation for hexagons given in
Table 4.1, we see that γ3 gives the value of 2b2. Note that while b1 and b2 are fixed for a
given set of fluid parameters, the values of b4, b5, and b6 depend on the lattice angle θ.

In the results we present in the next section, we rescale the amplitude equations
by letting A 
→

√
|β/b1|A, AH 
→

√
|β/b1|AH , and T 
→ |δ/β| so that the cubic

coefficient for stripes b1 in the rescaled equations is always ±1.
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Fig. 6.1. Linear stability curves for different values of χ. ρ = 0.95cm−3, ν = 20.9cS, σ =
20.6dyn/cm. Excitation is a(cosχ cosM1ωt + sinχ cosM2ωt) with (M1,M2) = (4, 5), ω = 44π.
Harmonic tongues are marked with solid lines and subharmonic tongues with dashed lines.

6. Results. Here we present the results of our calculations for the particular
fluid parameters used in the experimental results given in [4].

6.1. Linear stability results. First, the generalized eigenvalue problem (5.3)
is solved, and this gives the critical amplitude as a function of k. Typical curves are
shown in Figure 6.1. These are analogous to those computed by Besson, Edwards, and
Tuckerman [15] but focus on the particular parameter values that are used by Kudrolli,
Pier, and Gollub [4], namely ρ = 0.95cm−3, ν = 20.9cS, and σ = 20.6dyn/cm. Curves
that have a subharmonic response with the excitation are indicated with dotted lines,
and those that are harmonic are marked with a solid line. The critical onset occurs
at the minimum value of a, and this occurs at a critical wavenumber kc. For ease of
comparison with the experimental results, the curves are plotted in dimensional rather
than nondimensional units: with our choice of nondimensionalization, the value of kc
is always 1. The minimum value point is indicated by a dot. The richness of the
dynamics that is seen with two-frequency forcing is partly due to the fact that the
parameter χ allows one to tune between the critical value for a occurring for either
a harmonic tongue, as is the case for 0◦ < χ < 60◦, or a subharmonic tongue, as
is the case for 60◦ < χ < 90◦. There is a bicritical point that occurs when χ is
approximately 60◦. The phase φ has little impact on the position of the minimum
value of the lowest tongue and therefore in the position of the bicritical point (changes
in the position of the mimima are typically less than 0.001%). The phase does,
however, alter the position of the tongues for some of the other harmonics.

Experimentally, it is the onset of patterns as a function of χ that is observed rather
than the linear stability curves directly. In Figure 6.2, we show how the minimum
of the linear stability curves varies with the relative importance of the amplitude of
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Fig. 6.2. Path of a0 as a function of χ. (a) (M1,M2) = (4, 5), φ = 16◦, and ω = 44π;
(b) (M1,M2) = (6, 7), φ = 20◦, and ω = 32.88π.

the two components of the excitation as given by a cosχ and a sinχ. Two cases are
shown: Figure 6.2(a) is for the same parameter values as for Figure 6.1. Figure 6.2(b)
is for the same fluid parameters but different excitation parameters. These two cases
correspond to the two cases considered in detail in Kudrolli, Pier, and Gollub, and the
linear stability boundaries compare well with the corresponding experimental results
shown in Figures 1 and 6 of their paper [4]. The bicritical point occurs for χ = 63.4
in the case (M1,M2) = (4, 5) and χ = 61.8 when (M1,M2) = (6, 7). These compare
well with the value quoted by Kudrolli, Pier, and Gollub of χ = 61.5.

As discussed in the introduction, high viscosity or shallow depth are used to damp
modes with a small wavenumber that can make regular patterns hard to observe. The
fluid used by Kudrolli, Pier, and Gollub was of moderate viscosity (C ≈ 0.4 rather
than C � 1). How “shallow” a container is depends on the product kch, in particular
whether e−kch is negligible when compared with ekch. For the Kudrolli–Pier–Gollub
experiments, h = 0.3cm, giving kc ≈ 14 and e−kch/ekch ≈ 0.0002. In the weakly
nonlinear calculations, we shall see that it is not just the main harmonic tongue that
is of importance but the weakly damped harmonic tongue that has a minimum at
k ≈ 6cm−1. For this tongue, e−kch/ekch ≈ 0.03. Since this is also small, we believe
that an infinite depth approximation is reasonable. Consequently, in the nonlinear
results that we present below, the calculations are performed only for infinite depth.

6.2. Single-frequency results (χ = 0◦ and χ = 90◦). The two-frequency
excitation term we are interested in is of the form

f(t) = f2(t) = cos(χ) cos(M1ωt) + sin(χ) cos(M2ωt + φ).

When χ = 0◦ or 90◦, this reduces to a single-frequency excitation. When χ = 0◦, this
corresponds to a pure M1 excitation, and when χ = 90◦, this is a pure M2 excitation.
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Fig. 6.3. For (M1,M2) = (4, 5) and χ = 0◦ the value of the coefficient b4 as a function of the
lattice angle θ.

Since the two cases we consider have M1 even and M2 odd, the pure M1 response is
harmonic and the pure M2 response is subharmonic. In each case, the overall picture
is similar. The quadratic term in the amplitude equations is zero and we find the
following:

• All the eigenvalues for hexagons given in Table 4.1 are negative for all values
of the lattice angle θ. This suggests that hexagons are a stable state.

• Stripes and superlattice patterns have at least one unstable eigenvalue.
• Rectangular patterns are stable, on the lattice on which they occur, if they

are “sufficiently square.”
This last point may be seen by considering the eigenvalues of the family of rectangles
Rh1,m,n listed in Table 4.1. The eigenvalues b1 + b4, μ1, and μ2 are all negative. The
remaining eigenvalue, b1−b4, is negative only if the lattice angle θ is sufficiently large.
In the case (M1,M2) = (4, 5) and χ = 0◦ in Figure 6.3, we plot the scaled value of b4
as a function of the lattice angle θ. Since in the scaled units b1 = −1, b1− b4 < 0 only
if θ > 52◦. The aspect ratio of the rectangles is given by

√
(1 − cos θ)/(1 + cos θ) so

that stability for rectangles with θ > 52◦ means that rectangles with an aspect ratio
between 0.48 and 1 are stable (on the lattice on which they occur).

By considering the eigenvalues on spatially periodic lattices alone, we find that
both hexagons and rectangles are possible stable states. If we find the values of the
Lyapunov function F (see Table 4.2) for hexagons and rectangles, then we find that
those rectangles with an aspect ratio closest to 1 have the lowest value.

The results are similar for the three other single frequency cases that are relevant
to the bifurcation sets shown in Figure 6.2, namely (M1,M2) = (4, 5) and χ = 90◦

and (M1,M2) = (6, 7) and χ = 0◦ or χ = 90◦. The conclusion is that the calculations
for solutions on periodic lattices show that stripe patterns are unstable. Hexagons
and “sufficiently square” rectangular patterns are relatively stable states with square
patterns having the lowest value of the Lyapunov function. This suggests that square
patterns will be observed at the points where χ = 0◦ and χ = 90◦. These square
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Fig. 6.4. (M1,M2) = (4, 5) and χ = 60◦, φ = 20◦: (a) The value of the coefficient b4 as a
function of the lattice angle θ. At θ = 60◦ quadratic resonance occurs, and the calculation for b4 is
not valid. For this reason, this point has been excluded from the calculation. (b) The value of the
coefficient b4 + b5 + b6 compared with b1 + 2b2 as a function of the lattice angle θ. Just as b4 has a
singularity at 60◦, b5 has a singularity at 0◦, and so the region around 0◦ has been excluded.

patterns will be harmonic when χ = 0◦ and subharmonic when χ = 90◦. This agrees
with the experimental findings of Kudrolli, Pier, and Gollub.

Note that if we use the same parameter values as used by Chen and Viñals in [22]
in their single-frequency study, then we get excellent agreement with their work.

6.3. Two-frequency results (0 < χ < 90◦). For two-frequency excitation,
we have performed a systematic study of the coefficients ε̃, b1, b2, b3, b4, b5, and b6
as a function of χ and the lattice angle θ for the same fluid parameters as used above
and for the two cases (M1,M2) = (4, 5) and (M1,M2) = (6, 7). In the first case, most
results are presented for φ = 16◦ and in the second case for φ = 20◦: these are the
values for which the majority of the results in [4] are presented. We focus on the onset
of harmonic patterns since along the subharmonic branch squares the absence of the
quadratic term means that hexagons and rectangles remain the only stable states,
with squares having the lowest energy.

From the values of the coefficients we have computed the stability of the different
planforms based on the eigenvalues for each state given in Table 4.1 as a function of
the lattice angle. If the eigenvalues indicate that the state is relatively stable, then
we compute the value of the Lyapunov function, as given in Table 4.2.

When χ is zero, b4 increases monotonically with θ, as shown in Figure 6.3. How-
ever, this changes as χ is increased and peaks develop. In Figure 6.4(a), we plot b4(θ)
for (M1,M2) = (4, 5) and for χ = 60◦, φ = 16◦. The angle θ = 60◦ has been ex-
cluded because this corresponds to the quadratic resonance point, and the calculation
for rectangles breaks down here. From Table 4.1 it can be seen that for superlattice
patterns to become stable, one needs b4 + b5 + b6 − b1 − 2b2 > 0. This same quantity
causes the destabilization of hexagons. In Figure 6.4(b), we plot b4 + b5 + b6 along
with b1 +2b2. For most values of θ, and so on most lattices, b4 +b5 +b6−b1−2b2 < 0,
and superlattice patterns are unstable. However, the peak in b4(θ) at 31.8◦ leads to
a small region centered at 30◦ for which b4 + b5 + b6 − b1 − 2b2 > 0, and it is possible
for superlattice patterns to be stable.

The corresponding graphs of b4 and b4 + b5 + b6 for (M1,M2) = (6, 7) are
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Fig. 6.5. (M1,M2) = (6, 7) and χ = 60◦: (a) The value of the coefficient b4 as a function of
the lattice angle θ; (b) the value of the coefficient b4 + b5 + b6 compared with b1 + 2b2 as a function
of the lattice angle θ.

shown in Figure 6.5. In this case, there is a peak in b4 at 21.2◦, and this leads
to a peak in b4 + b5 + b6 with a maximum at 21.2◦. Note that even at χ = 60◦,
b4 + b5 + b6 − b1 − 2b2 < 0, and all superlattice patterns are unstable. It is only once,
χ > 61◦, that stable superlattice patterns occur, the first to stabilize being those that
occur on a lattice with lattice angle θ = 21.2◦.

We have shown for χ = 0◦ that both hexagons and rectangles may be stable with
rectangles having the lowest value of the Lyapunov function. Figure 6.4 suggests that
in the case (M1,M2) = (4, 5), stable superlattice patterns may occur for χ = 60◦. In
Figure 6.6(a), we show a bifurcation set that summarizes the regions where different
states are stable for the λ, χ plane. Note that hexagons are a planform that exists on
all the hexagonal lattices and so that where hexagons are shown as stable they are
stable to perturbations on all hexagonal lattices. Where they are unstable, there is
at least one lattice on which they are unstable. The peak in b4(θ) at 30◦ means that
the maximal region of instability for hexagons occurs as θh → 30◦. For rectangles
and superlattices, the story is more complicated. Different lattices support different
superlattice patterns and different rectangles. Since it is on lattices with θ → 30◦ that
hexagons become unstable first (and superlattices onset first), we plot the regions for
the stability of rectangles and superlattice patterns for the specific case θ = 30◦.

At the actual value of θ = 30◦ the center manifold reduction that leads to the
amplitude equations is not formally valid, as discussed in [24], and the “superlattice
patterns” are in fact quasipatterns. However, in practical terms, there is little real
difference between taking a periodic lattice that has a lattice angle close to 30◦ and
taking 30◦ itself: although on the periodic lattice the amplitude equations may be
formally justified, the spectral gap between critical and noncritical eigenvalues will
be small, and thus the formal region of validity for the center manifold is likely
to be small. Visually, it is impossible to distinguish between a quasipattern and a
superlattice pattern with a very large lengthscale. Similarly, the regions of stability
would be indistinguishable whether we took θ = 30◦ or a value of θ close to 30◦ that
results in a spatially periodic lattice.

As shown in Figure 6.6(a), for most values of λ and χ, there is bistability where
more than one pattern is stable. In Figure 6.6(b), we show which of the stable



PATTERN SELECTION FOR FARADAY WAVES 1091

0 0.2 0.4
0

10

20

30

40

50

60

λ

χ

1 2

3

4

5 6
77

(a)

0 0.2 0.4
0

10

20

30

40

50

60

Rectangles

Hexagons

Superlattice

(b)

λ

Fig. 6.6. Results in the λ, χ plane for (M1,M2) = (4, 5) and φ = 16◦. (a) Eigenvalue results.
The regions correspond to 1. trivial state stable, 2. stable rectangles and hexagons, 3. stable hexagons
and superlattice patterns, 4. stable rectangles, hexagons, and superlattice patterns, 5. stable super-
lattice patterns, 6. stable superlattice patterns and rectangles, 7. stable rectangles. (b) Patterns with
the lowest energy as computed from the Lyapunov function. Black: superlattice patterns. Dark grey:
hexagons. Light grey: rectangles.

patterns has the lowest value of the Lyapunov function. What we find is that, for
small values of χ, rectangles and hexagons are both stable, with rectangles being
the most stable state. Note that it is the Rh3,m,n rectangles that are stable, and as
θ → 30◦, the aspect ratio of these particular rectangles tends to 1. As χ increases, the
value of ε̃ increases from zero, and this results in the destabilization of the rectangles
so that hexagons become the preferred state at onset. Near the bicritical point,
hexagons are themselves destabilized to superlattice patterns, and there are regions
where superlattice patterns are the only stable state. A typical bifurcation diagram
for (M1,M2) = (4, 5) at χ = 60◦ is shown in Figure 6.7. Note that the values of
ε̃ are small so that higher order correction terms for the position of the secondary
bifurcation points are unlikely to affect the overall qualitative bifurcation sequence.

The analogous bifurcation set and energy diagram for the case (M1,M2) = (6, 7)
are shown in Figure 6.8. In this case, the lattice angle θ = 21.2◦ has been used since in
the case (6, 7), it is on this lattice that hexagons are destabilized first. On this lattice,
the stable rectangles have aspect ratio 0.86. The overall picture is similar to that for
(4, 5) but with the transitions from rectangle to hexagon and hexagon to superlattice
pattern occurring for larger values of χ.

Figures 6.6 and 6.8 compare well with the experimental results of Kudrolli, Pier,
and Gollub. As is suggested by our results, they find that rectangles are stable for low
values of χ giving way to hexagons as χ is increased. As for our theoretical results,
the transition from rectangles to hexagons occurs for higher values of χ in the (6, 7)
case than in the (4, 5) case. In both cases, there are superlattice/quasipatterns near
the bicritical point.

Kudrolli, Pier, and Gollub also investigated the dependence of their results on the
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Fig. 6.7. Bifurcation diagram for (M1,M2) = (4, 5) and χ = 60◦, φ = 16◦. Stable branches are
shown by a solid line and unstable lines by a dotted line. Only branches where some part is stable
are shown.
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Fig. 6.8. Results in the λ, χ plane for (M1,M2) = (6, 7). (a) The regions correspond to 1. trivial
state stable, 2. stable rectangles and hexagons, 3. hexagons, 4. stable hexagons and superlattice
patterns, 5. stable superlattice patterns. (b) Patterns with the lowest energy as computed from the
Lyapunov function. Black: superlattice patterns; dark grey: hexagons; light grey: rectangles.

phase φ for χ = 61◦. In the (6, 7) case, they found relatively little phase dependence.
In the (4, 5) case, they found that the largest region of superlattice patterns was for
angles of φ close to 16◦, but they also found that for some values of φ there were
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Fig. 6.9. (M1,M2) = (4, 5), χ = 61◦, θ = 30◦: (a) Dependence of b1+2b2 and b4+b5+b6 on φ.
(b) Bifurcation set: 1. trivial state stable, 2. stable rectangles and hexagons, 3. stable hexagons and
superlattice patterns, 5. stable superlattice patterns, 6. stable superlattice patterns and rectangles,
7. stable rectangles, 8. no state stable. (c) Planforms with lowest energy as a function of φ and λ.
Black: superlattice; dark grey: hexagons; light grey: rectangles; white (for λ > 0): no stable state
found.

no stable states near onset and for others the hexagons bifurcated to a pattern they
called superlattice II. We cannot hope to capture this latter transition in our study
since these patterns are time periodic and our amplitude equations have a gradient
structure. A theoretical explanation for these patterns was given in [31]. Nevertheless,
we illustrate how the phase does effect our results in Figure 6.9 for (4, 5) and χ = 61◦.
First, in Figure 6.9(a), the quantities b1 + 2b2 and b4 + b5 + b6 are shown. These
are π/2 periodic functions of φ. The consequence is that the regions of stability
of different patterns depend on φ, as shown by the bifurcation set in Figure 6.9(b)
and the corresponding plot of the Lyapunov function in Figure 6.9(c) for the angle
θ = 30◦. These show that it is for phases close to 16◦ that stable superlattice patterns
occur closest to onset. We also find values of the phase for which there are no stable
spatially periodic pattern near onset (the white wedge region in Figure 6.9).

Overall, the results of Figures 6.4 through 6.8 show that the cases (M1,M2) =
(4, 5) and (M1,M2) = (6, 7) are broadly similar. The experimental results show sim-
ilar bifurcation sequences in both cases but very different forms for the planforms:
in the case (6, 7), superlattice patterns are observed with an easily visible regular
periodic structure with two wavelengths. In [4], these are referred to as superlattice-I
patterns. In the (4, 5) case, quasipatterns are observed. The key difference in the two
cases is the lattice angle for which stable superlattice patterns are possible. In [18], it
was argued that the stabilization of the superlattice-I patterns followed from a reso-
nant triad formed by the harmonic tongue with one of the weakly damped harmonic
tongues. This was supported by a peak in the value of the rhombic coefficient (b4
here) at around 22◦ for the Zhang–Vinãls model. In Figures 6.5 and 6.8, we have seen
that the same mechanism operates in the full Navier–Stokes equations. Furthermore,
it is the same fundamental mechanism that is at play in the (4, 5) case, as shown in
Figures 6.4 and 6.6, where now it is a peak in b4 at 32.8◦ which is significant. This
peak can again be traced to a resonant triad between the main harmonic mode and
the first (that is, smallest k) weakly damped harmonic mode. The consequence is
that while the analysis for the (6, 7) case suggests that a superlattice pattern with
angle close to 21.2◦, such as that shown in Figure 6.10(a), will occur, for the (4, 5)
case a superlattice pattern/quasipattern with angle close to 30◦, such as that shown
in Figure 6.10(b), will occur.
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Fig. 6.10. Typical superlattice patterns. Superlattice patterns have the form z =
(ASH , ASH , ASH , ASH , ASH , ASH); the associated planform has the form ASH(cos(K1h

· r+ψ) +
cos(K2h

· r+ψ) + cos(K3h
· r+ψ) + cos(K4h

· r+ψ) + cos(K5h
· r+ψ) + cos(K6h

· r+ψ)), where
r = (x, y). (a) For θ ≈ 21.2◦, ψ = 2π/3. (b) For θ ≈ 30◦, ψ = 0. The superlattice pattern for ψ = 0
has a hexagonal rather than a triangular symmetry. Of these two states, only one is stable, but which
one is not determined at cubic order. The experimental patterns for the (6, 7) case clearly show a
triangular structure, and it was this that motivated the theoretical work of [27] on the ψ = 2π/3
superlattice pattern.

Note that there is a peak in the value of the coefficient b4 for values of χ far
from the bicritical point. For example, there is still a distinct peak in b4 at approx-
imately 21◦ for χ = 30◦ in the (4, 5) case. This can be related to the fact that
the weakly damped harmonic tongue involved in the triad resonance is still promi-
nent, as seen in Figure 6.1(c). However, it is only near the bicritical point that
b4 + b5 + b6 − b1 − 2b2 becomes positive, allowing superlattice patterns to stabilize.

7. Conclusion. In this paper, we have derived the form of the weakly nonlinear
problem for a finite depth of fluid that is subject to a vertical oscillation from the full
Navier–Stokes equations. Using the ideas of symmetry for patterns that tessellate the
plane, we have found the coefficients of the amplitude equations and calculated the
consequences for stability of different spatially periodic patterns in the infinite depth
case. We have focused on the particular parameters that were used in experimental
results presented in [4]. Good agreement has been found between the predictions of
the weakly nonlinear analysis and the experimental results, without the use of any
fitted parameters.

In the future, there are many interesting questions relating to regular patterns in
the Faraday problem that we plan to use our method to explore. Our current code will
allow us to perform a careful comparison between the Zhang–Viñals equations and the
full Navier–Stokes equations for varying viscosity. We will also be able to investigate
how the coefficients of the amplitude equations scale with the different parameters and
compare with the scaling arguments given in [20] for multiple frequency forcing. This
will enable us to see the degree to which the arguments for the control of patterns
through multiple frequency in the weak viscosity case carry over to moderate and
large viscosity. (With our formulation, it is straightforward to include more than two
frequency components.)

The solvability condition is valid for both finite and infinite depth, although our
subsequent calculations were carried out only for infinite depth. Our future plans also
include coding up the finite depth case. This will allow us to explore how the coef-
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ficients vary with depth and enable comparison with experimental results in shallow
containers to be made.

Meanwhile, the Faraday wave experiment continues to be a rich source for striking
and intriguing patterns, as shown by the recent results of Epstein and Fineberg [32].

Appendix A. Form for the horizontal components of the velocity. The
form of the horizontal velocity components can be derived from the form of the vertical
velocity and equations (2.1). Hence, the horizontal velocity components for rectangles
at first order are

u1 =
iAR

k
[eikx + ceik(cx+sy) − c.c.]

∑
n

DW1,n(z)ei(nω+α)τ ,

v1 =
isAR

k
[eik(cx+sy) − c.c.]

∑
n

DW1,n(z)ei(nω+α)τ .

Horizontal velocity components for rectangles at second order are

u2 =
i

2k
A2

R[e2ikx + ce2ik(cx+sy) − c.c.]
∑
n

DW2,1,n(z)ei(nω+2α)τ

+
i

2k
A2

R[eik[(1+c)x+sy] − c.c.]
∑
n

DW2,2,n(z)ei(nω+2α)τ

+
i

2k
A2

R[eik[(1−c)x−sy] − c.c.]
∑
n

DW2,3,n(z)ei(nω+2α)τ ,

v2 =
is

2k
A2

R[e2ik(cx+sy) − c.c.]
∑
n

DW2,1,n(z)ei(nω+2α)τ

+
is

2k(1 + c)
A2

R[eik[(1+c)x+sy] − c.c.]
∑
n

DW2,2,n(z)ei(nω+2α)τ

− is

2k(1 − c)
A2

R[eik[(1−c)x−sy] − c.c.]
∑
n

DW2,3,n(z)ei(nω+2α)τ .

Horizontal velocity components for hexagons at first order are

u1 =
iAH

k

[
eikx − 1

2
eik(−x+

√
3y)/2 − 1

2
eik(−x−

√
3y)/2 − c.c.

]∑
n

DW1,n(z)ei(nω+α)τ ,

v1 =
i
√

3AH

2k
[eik(−x+

√
3y)/2 − eik(−x−

√
3y)/2 − c.c.]

∑
n

DW1,n(z)ei(nω+α)τ .

Horizontal velocity components for hexagons at second order are

u2 =
iA2

H

2k

[
e2ikx − 1

2
eik(−x+

√
3y) − 1

2
eik(−x−

√
3y) − c.c.

]∑
n

DW2,1,n(z)ei(nω+2α)τ

+
iA2

H

2k
[eik(3x+

√
3y)/2 + eik(3x−

√
3y)/2 − c.c.]

∑
n

DW2,2,n(z)ei(nω+2α)τ ,

v2 =
i
√

3A2
H

4k
[eik(−x+

√
3y) − eik(−x−

√
3y) − c.c.]

∑
n

DW2,1,n(z)ei(nω+2α)τ

+
iA2

H√
3k

[
eik

√
3y +

1

2
eik(3x+

√
3y)/2 − 1

2
eik(3x−

√
3y)/2 − c.c.

]∑
n

DW2,2,n(z)ei(nω+2α)τ .
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Appendix B. Cubic coefficient for rectangles and stripes.

γi = −
∑(2)

l,m,n

Z∗
l [Z1,mDW2,i,n(0) − 2cDW1,m(0)Z2,i,n]

−
∑(2)

l,m,n

W ∗
l (0)

[
W1,m(0)D2W2,i,n(0) − 2cD2W1,m(0)W2,i,n(0)

]
+2k2

∑(2)

l,m,n

W ∗
l (0)

[
Z1,mDP2,i,n(0) +

1

4d
Z1,mDP2,4,n(0) + DP1,m(0)Z2,i,n

]

−2Ck2
∑(2)

l,m,n

W ∗
l (0)

[
Z1,mD2W2,i,n(0) + 2D2W1,m(0)Z2,i,n

]
−

∑(2)

l,m,n

W ∗
l (0)

[
DW1,m(0)DW2,i,n(0) − 4(1 + c)Ck4Z1,mW2,i,n(0)

]
−C

∑(2)

l,m,n

DW ∗
l (0)

[
Z1,mD3W2,i,n(0) − 2cD3W1,m(0)Z2,i,n

]
−2Ck2

∑(2)

l,m,n

DW ∗
l (0)

[
(3 + 3c + c2 − s2)DW1,m(0)Z2,i,n − 2cZ1,mDW2,i,n(0)

]
−

∑(3)

l,m,n,j

Z∗
l Z1,mZ1,nD

2W1,j(0)

+
∑(3)

l,m,n,j

W ∗
l (0)Z1,mZ1,n

[
Bk6(3 − 2s2)Z1,j + 4Ck4(2 + c2)DW1,j(0)

−2Ck2D3W1,j(0) + 3k2D2P1,j(0)
]

−C
∑(3)

l,m,n,j

DW ∗
l (0)Z1,mZ1,n

[
(9 − 4s2)k2D2W1,j(0) + D4W1,j(0)

]

−
∑(2)

l,m,n

∫ 0

−h/l

W ∗
l (z)

[
2k2(2 + c)DW1,m(z)W2,i,n(z) + 3k2W1,m(z)DW2,i,n(z)

]
dz

−
∑(2)

l,m,n

∫ 0

−h/l

W ∗
l (z)

[
(2c− 1)D2W1,m(z)DW2,i,n(z) − 2DW1,m(z)D2W2,i,n(z)

]
dz

+
∑(2)

l,m,n

∫ 0

−h/l

W ∗
l (z)

[
W1,m(z)D3W2,i,n(z) − 2cD3W1,m(z)W2,i,n(z))

]
dz.(B.1)

The following notation has been used for the sums in (4.27), (4.28), (4.29), and (B.1):∑(1)

l,m

=

{
l + m = 0 (α = 0),
l + m + 1 = 0 (α = ω/2),

∑(2)

l,m,n

=

{
l + m + n = 0 (α = 0),
l + m + n + 2 = 0 (α = ω/2),

∑(3)

l,m,n,j

=

{
l + m + n + j = 0 (α = 0),
l + m + n + j + 2 = 0 (α = ω/2),

∑(4)

l,m

=

{
l + m + 1 = 0 (α = 0),
l + m + 2 = 0 (α = ω/2),
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∑(5)

l,m

=

{
l + m− 1 = 0 (α = 0),
l + m = 0 (α = ω/2),

∑(6)

l,m

=

{
l + m + M1 = 0 (α = 0),
l + m + M1 + 1 = 0 (α = ω/2),

∑(7)

l,m

=

{
l + m−M1 = 0 (α = 0),
l + m−M1 + 1 = 0 (α = ω/2),

∑(8)

l,m

=

{
l + m + M2 = 0 (α = 0),
l + m + M2 + 1 = 0 (α = ω/2),

∑(9)

l,m

=

{
l + m−M2 = 0 (α = 0),
l + m−M2 + 1 = 0 (α = ω/2).

Note that terms involving the derivative of the pressure with respect to z appear
in the solvability condition. These may be computed from the flow variables, as
discussed in Appendix D.

Appendix C. Cubic coefficient for hexagons.

γ3 =

(2)∑
l,m,n

Z∗
l (2DW1,m(0)Z2,2,n − 2Z1,mDW2,2,n(0))

+

(2)∑
l,m,n

W ∗
l (0)

(
2D2W1,m(0)W2,2,n(0) − 2W1,m(0)D2W2,2,n(0)

)

+4k2

(2)∑
l,m,n

W ∗
l (0)

(
DP1,m(0)Z2,2,n(0) + Z1,mDP2,2,n(0) + Z1,mDP2,0,n(0)

+
1

3
Z1,mDP2,3,n(0)

)

−Ck2

(2)∑
l,m,n

W ∗
l (0)

(
4Z1,mD2W2,2,n(0) + 8D2W1,m(0)Z2,2,n

)

−
(2)∑

l,m,n

W ∗
l (0)

(
−12Ck4Z1,mW2,2,n(0) + 2DW1,m(0)DW2,2,n(0)

)

+C

(2)∑
l,m,n

DW ∗
l (0)

(
2D3W1,m(0)Z2,2,n − 2Z1,mD3W2,2,n(0)

)

+C

(2)∑
l,m,n

DW ∗
l (0)

(
4k2Z1,mDW2,2,n(0) − 16k2DW1,m(0)Z2,2,n

)

−4

(3)∑
l,m,n,j

Z∗
l Z1,mZ1,nD

2W1,j(0)

+k2

(3)∑
l,m,n,j

W ∗
l (0)Z1,mZ1,n

(
12D2P1,j(0) + 36Ck2DW1,j(0) − 8CD3W1,j(0)

+6Bk4Z1,j

)
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−C

(3)∑
l,m,n,j

DW ∗
l (0)Z1,mZ1,n

(
24k2D2W1,j(0) + 4D4W1,j(0)

)

−
(2)∑

l,m,n

∫ 0

−h/l

W ∗
l (z)

(
10k2DW1,m(z)W2,2,n(z) + 6k2W1,m(z)DW2,2,n(z)

)

+4

(2)∑
l,m,n

∫ 0

−h/l

W ∗
l (z)DW1,m(z)D2W2,2,n(z)

+

(2)∑
l,m,n

∫ 0

−h/l

W ∗
l (z)

(
2W1,m(z)D3W2,2,n(z) − 2D3W1,m(0)W2,2,n(z)

)
.(C.1)

Appendix D. A posteriori computation of the pressure. We compute
the pressure from the Navier–Stokes equations. As we need only the derivative of
the pressure with respect to z, we need only consider the third component of the
Navier–Stokes equations:

(D.1) ∂zp = −∂tw + CΔw − u · ∇w.

At the first order this reduces to

(D.2) ∂zp1 = −∂τw1 + CΔw1,

and then we can take ∂zp1 in the form

(D.3) ∂zp1 = AS(eikx + e−ikx)
∑
n

DP1,n(z)ei(nω+α)τ ,

or the equivalent form for rectangles and hexagons, where DP1,n(z) solves

(D.4) DP1,n(z) = [−i(nω + α) + C(D2 − k2)]W1,n(z).

At the second order we have

(D.5) ∂zp2 = −∂τw2 + CΔw2 − u1 · ∇w1 − ∂T1w1.

The solution for the rectangular pattern does not depend on T1. Here we take ∂zp2

in the form

∂zp2 = A2
R[e2ikx + e2ik(cx+sy) + c.c.]

∑
n

DP2,1,n(z)ei(nω+2α)τ

+A2
R[eik[(1+c)x+sy] + c.c.]

∑
n

DP2,2,n(z)ei(nω+2α)τ

+A2
R[eik[(1−c)x−sy] + c.c.]

∑
n

DP2,3,n(z)ei(nω+2α)τ

+A2
R

∑
n

DP2,4,n(z)ei(nω+2α)τ ,

where

DP2,1,n(z) = [−i(nω + 2α) + C(D2 − 4k2)]W2,1,n(z),
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DP2,2,n(z) = [−i(nω + 2α) + C(D2 − 2(1 + c)k2)]W2,2,n(z)

−2(1 − c)
∑

(l+m=n)

W1,l(z)DW1,m(z),

DP2,3,n(z) = [−i(nω + 2α) + C(D2 − 2(1 − c)k2)]W2,3,n(z)

−2(1 + c)
∑

(l+m=n)

W1,l(z)DW1,m(z),

DP2,4,n(z) = −8
∑

(l+m=n)

W1,l(z)DW1,m(z).

In the hexagonal pattern, the solution depends on both T1 and T2. We take the
pressure as the sum of two terms:

∂zp2 = ∂z p̂2 + ∂z p̃2,

where p̂z solves

(D.6) ∂z p̂2 = −∂τw2 + CΔw2 − u1 · ∇w1,

while p̃z = −∂T1
w1. We take p̂z in the form of a hexagonal pattern:

∂z p̂2 = A2
H [eikx + eik(−x+

√
3y)/2 + eik(−x−

√
3y)/2 + c.c.]

∑
n

DP2,0,n(z)ei(nω+2α)τ

+A2
H [e2ikx + eik(−x+

√
3y) + eik(−x−

√
3y) + c.c.]

∑
n

DP2,1,n(z)ei(nω+2α)τ

+A2
H [eik

√
3y + eik(3x+

√
3y)/2 + eik(3x−

√
3y)/2 + c.c.]

∑
n

DP2,2,n(z)ei(nω+2α)τ

+A2
H

∑
n

DP2,3,n(z)ei(nω+2α)τ ,

where

DP2,0,n(z) = −3
∑

(l+m=n)

W1,l(z)DW1,m(z),

DP2,1,n(z) = [−i(nω + 2α) + C(D2 − 4k2)]W2,1,n(z),

DP2,2,n(z) = [−i(nω + 2α) + C(D2 − 3k2)]W2,2,n(z)

−
∑

(l+m=n)

W1,l(z)DW1,m(z),

DP2,3,n(z) = −12
∑

(l+m=n)

W1,l(z)DW1,m(z).
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[16] W. Zhang and J. Viñals, Pattern formation in weakly damped parametric surface waves, J.
Fluid Mech., 336 (1997), pp. 301–330.
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LOCATING TRANSPARENT REGIONS IN OPTICAL ABSORPTION
AND SCATTERING TOMOGRAPHY∗

NUUTTI HYVÖNEN†

Abstract. The aim of optical absorption and scattering tomography is to reconstruct the
optical properties inside a physical body, e.g., a neonatal head, by illuminating it with near-infrared
light and measuring the outward flux of photons on the object boundary. Because brain consists
of strongly scattering tissue with imbedded cavities filled by weakly scattering cerebrospinal fluid,
propagation of near-infrared photons in the human head can be treated by combining the diffusion
approximation of the radiative transfer equation with geometrical optics to obtain the radiosity-
diffusion forward model of optical tomography. Currently, a disadvantage with the radiosity-diffusion
model is that the locations of the transparent cavities must be known in advance in order to be able
to reconstruct the physiologically interesting quantities, i.e., the absorption and the scatterer in the
strongly scattering brain tissue. In this work we show, both theoretically and numerically, that
under suitable conditions the factorization method of Andreas Kirsch can be used for locating the
transparent cavities through the boundary measurements of optical tomography if the background
optical properties of the strongly scattering tissue are known.

Key words. optical absorption and scattering tomography, inverse boundary value problems,
factorization method, nonscattering regions, transparent regions, inclusions
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1. Introduction. In optical absorption and scattering tomography (OAST), a
physical body is illuminated with a flux of near-infrared (NIR) photons and the out-
ward flux is measured on the surface of the body. The idea is to reconstruct the
optical properties, such as absorption and scatter, inside the body by using the mea-
sured pairs of input and output fluxes. OAST has a few possible clinical applications,
the most important of which are, arguably, screening for breast cancer and the devel-
opment of a cerebral imaging modality for mapping structure and function in newborn
infants, and possibly adults too. For more medical and instrumental details we refer
to the articles [2, 3, 5, 14, 16].

In a strongly scattering medium, e.g., brain tissue, propagation of NIR photons
can be modeled to a good extent by the diffusion approximation of the radiative
transfer equation (RTE) [2]. Since the diffusion approximation is not valid in weakly
scattering regions [4, 11], e.g., in cavities that are filled with nearly transparent cere-
brospinal fluid, some other approximation of the RTE is also needed when building
up the forward model of OAST for the human head. By combining the diffusion
approximation with geometrical optics, one obtains the radiosity-diffusion forward
model [19, 29], which takes into account the effect of the weakly scattering regions.

As noted in [14], a disadvantage with the current implementation of the radiosity-
diffusion model is that the boundaries of the transparent cavities must be known
in advance when solving the actual inverse problem of OAST, i.e., reconstructing
the absorption and the scatter in the strongly scattering tissue. If an anatomical
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magnetic resonance image is available, it is possible to segment the head into diffusive
and transparent regions and proceed by reconstructing the optical properties in the
diffusive region within the framework of the radiosity-diffusion model [14]. However,
if there is no such a priori information on the locations of the transparent cavities,
the natural way to solve the inverse problem of OAST is to locate the cavities and
reconstruct the optical properties of the diffusive region simultaneously. In this work
we tackle a preliminary simplified version of this inverse problem: We assume that the
absorption and the scatter in the diffusive region of the examined body are known and
try locate the transparent regions through boundary measurements. Notice that this
is not an easy task for a state-of-the-art iterative Newton-type algorithm based on the
output least squares formulation of the inverse problem (cf. [2, 14]) since differentiating
the measurement mappings with respect to the shape of the transparent region is
difficult (cf. [19, 29]).

The factorization method, introduced originally within inverse obstacle scattering
by Kirsch [25], provides a tool that can be used for locating inhomogeneities in a
diffusive background in noniterative fashion. The factorization technique has already
been applied to electrical impedance tomography in [7, 8, 20] and to OAST with
strongly scattering inclusions in [21, 23] and with thin transparent layers in [6] (see
also [13]). In this work, we will use the factorization method to obtain a conditional
characterization of the transparent cavities via boundary measurements. Based on this
theoretical work, we will formulate a reconstruction algorithm and test it numerically
with two-dimensional simulated data.

This text is organized as follows. In section 2, we introduce the radiosity-diffusion
model. Since our formulation differs slightly from the material in some of the refer-
ences, we do not use mere citations but provide the most essential details, as well.
Section 3 introduces and proves the conditional characterization result. In section 4,
we interpret the theoretical work of section 3 as a reconstruction algorithm and test
it numerically with simulated data. Section 5 contains some concluding remarks.

2. Radiosity-diffusion model. Propagation of electromagnetic radiation in a
medium is governed by Maxwell’s equations. In particular, this holds for the case
of interest to us, namely, NIR light traveling through some biological tissue. How-
ever, since the radiation within a strongly scattering medium is completely incoherent
and the wavelength of NIR light is small compared to the characteristic distances of
human tissue, the exact models are totally useless. Therefore, we will model light
propagation by using approximations of the radiative transfer equation, also known
as the Boltzmann equation. Because the human brain consists of strongly scattering
tissue with weakly scattering cavities filled by cerebrospinal fluid [3, 28], our aim is
to treat these two extremes separately and then bundle the models together to obtain
the so-called radiosity-diffusion forward problem [3, 11, 12].

We begin our work with a short glance at transport theory. Let Ω ⊂ R
n, n = 2, 3,

be a bounded body with a smooth enough boundary. The radiation flux density at
x ∈ Ω at time t ∈ R to the infinitesimal solid angle ds in direction θ̂ ∈ Sn−1 is written
as

d �J(x, t, θ̂) = I(x, t, θ̂)θ̂ds(θ̂),

where the amplitude I(x, t, θ̂) is called the radiance. In the framework of transport
theory, this scalar function satisfies the RTE
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1

c
It(x, t, θ̂) + θ̂ · ∇I(x, t, θ̂) + (μa(x) + μs(x))I(x, t, θ̂)

− μs(x)

∫
Sn−1

f(x, θ̂, ω̂)I(x, t, ω̂)ds(ω̂) = q(x, t, θ̂),(2.1)

where c is the speed of light (assumed to be constant), the positive scalar functions
μa and μs are the absorption and scattering coefficients, respectively, and q denotes
the source term, which is assumed to vanish in this discussion. The kernel f is the
scattering phase function, satisfying the following three conditions:∫

Sn−1

f(x, θ̂, ω̂)ds(θ̂) =

∫
Sn−1

f(x, θ̂, ω̂)ds(ω̂) = 1,

f(x, θ̂, ω̂) ≥ 0, x ∈ R
n, θ̂, ω̂ ∈ Sn−1,

f(x, θ̂, ω̂) = f(x,−ω̂,−θ̂), θ̂, ω̂ ∈ Sn−1.

Due to the first two conditions, for fixed x, f may be regarded as a probability
distribution on Sn−1 with respect to either of the variables θ̂ and ω̂.

The net photon flux through an infinitesimal oriented surface patch ν(x)dS(x) is
obtained by integrating the flux density over all radiation directions,

(2.2) dΦ(x, t) =

(∫
Sn−1

d �J(x, t, θ̂)

)
· ν(x)dS(x) = �J(x, t) · ν(x)dS(x),

where the vector field �J is the energy current density. In a similar manner, the
outward dΦ+ and the inward flux dΦ− through νdS can be computed by choosing the
domain of integration in (2.2) to be the positive {θ̂ ∈ Sn−1 | θ̂ ·ν > 0} or the negative

hemisphere {θ̂ ∈ Sn−1 | θ̂ · ν < 0}, respectively. Furthermore, the scalar function

ϕ(x, t) =

∫
Sn−1

I(x, t, θ̂)ds(θ̂)

is the photon density. Note that ϕ(x, t) and �J(x, t) are essentially the coefficients of

the zeroth- and first order terms for the linearization of I(x, t, θ̂) with respect to θ̂.
For more transport theory the reader may consult, e.g., [9].

2.1. Strong scattering. Being an integro-differential equation, the radiative
transfer equation, as discussed above, can easily lead to numerical problems of pro-
hibitive size if no simplifications are made. The commonly used simplification is called
the diffusion approximation, which has been shown to be justified for materials that
are much more scattering than absorbing [14, 17].

Let P : L2(Sn−1) → span{1, θ1, . . . , θn} be an orthogonal projection which lin-
earizes the dependence on the components of the scattering direction. Denoting the
integro-differential operator induced by the left-hand side of (2.1) by B, we define the
diffusion approximation of the radiative transfer equation as

(2.3) PBPI = 0,

where I denotes the radiance. Due to the way that the projection P is defined, one
should be able to write the diffusion approximation using only the photon density
ϕ and the energy current density �J defined above. Indeed, by a straightforward
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calculation [3, 18], one sees that (2.3) is equivalent to the coupled system

1

c
ϕt = −∇ · �J − μaϕ,(2.4)

1

c
�Jt = − 1

n
∇ϕ− (μaI + (I −B)μs) �J,(2.5)

where I ∈ R
n×n is the identity matrix and the symmetric matrix B ∈ R

n×n is defined
by

Bjk =
n

|Sn−1|

∫
Sn−1

∫
Sn−1

θjωkf(x, θ̂, ω̂)ds(θ̂)ds(ω̂).

In order to be able to handle the boundary conditions corresponding to the dif-
fusion approximation, we write out the total flux inwards (−) and outwards (+) on
the boundary ∂Ω when the dependence on the scattering direction is linearized [18]:

(2.6) Φ± =

(
±γϕ +

1

2
ν · �J

)∣∣∣∣
∂Ω

,

where ν = ν(x) is the exterior unit normal of ∂Ω, in two dimensions γ = 1/π and in
three dimensions γ = 1/4. Note that the expression for the fluxes Φ± differs somewhat
from the one given in most references (cf. [29]). However, it is carefully deduced from
the mathematical model described above, and so it is one reasonable choice.

2.2. Transparent regions. In weakly scattering regions, the diffusion approx-
imation ceases to be valid [11, 12], and so we will have to come up with something
different. Let D ⊂ Ω, with ∂D ∩ ∂Ω = ∅, be a nonscattering region with a C2-
boundary. Because in a nonscattering, or transparent, region all radiation is in the
forward direction, in D equation (2.1) yields the relation

1

c
It(x, t, θ̂) + θ̂ · ∇I(x, t, θ̂) + μ̃aI(x, t, θ̂) = 0,

where μ̃a > 0 is the absorption coefficient that is assumed to be constant in D. For
the time-harmonic case I(x, t, θ̂) = Î(x, θ̂)e−iωt, we have

(μ̃a − ik)Î + θ̂ · ∇Î = 0,

yielding an attenuated plane wave solution

Î ∼ e−(μ̃a−ik)θ̂·x,

where k = ω/c.
Let x ∈ ∂D be a boundary point of the nonscattering region. Denote the unit

normal vector of ∂D pointing into D by ν = ν(x), and let θ̂ ∈ Sn−1 satisfy θ̂ · ν(x) <

0. Let y(θ̂) ∈ ∂D be the first boundary point where the line emanating from x

into direction −θ̂ hits the boundary ∂D. Since the radiation propagates with no
scattering, the contribution from the direction −θ̂ to the time-harmonic amplitude of
the radiation flux density at x is

d �J(x, θ̂) = θ̂Î(y, θ̂)e−(μ̃a−ik)θ̂·(x−y)ds(θ̂).

Using this expression and assuming that the total flux into the nonscattering region
distributes uniformly to all directions, i.e., Î(y, θ̂) = Î0(y), through a straightforward
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geometrical consideration one obtains the following dependence between the time-
harmonic amplitudes of the total fluxes in (+) and out (−) of the nonscattering
region (for details, see [19]):

Φ−(x) =
n− 1

|Sn−2|

∫
∂D

v(x, y)
(ν(x) · (x− y))(ν(y) · (x− y))

|x− y|n+1

×e−(μ̃a−ik)|x−y|Φ+(y)dS(y)

= (GΦ+) (x),(2.7)

where v(·, ·) is a visibility function,

(2.8) v(x, y) =

{
1 if tx + (1 − t)y ∈ D for 0 < t < 1,
0 otherwise.

Thus, we have obtained a relation between the inward and outward fluxes on the
boundary of the nonscattering region, which gives us the means to handle the trans-
parent regions using nonlocal boundary conditions.

The following lemma summarizes a few essential properties of G [19, 22].
Lemma 2.1. The linear integral operator G : L2(∂D) → L2(∂D) is compact and

‖G‖L2(∂D)→L2(∂D) < 1.

In particular, I − G : L2(∂D) → L2(∂D) is invertible. Furthermore, if k = 0, G is
self-adjoint.

2.3. Forward problem. Let us consider the time-harmonic radiosity-diffusion
forward problem of optical tomography in a bounded domain Ω consisting of a non-
scattering open region D, with ∂Ω ∩ ∂D = ∅, and a strongly scattering region Ω \D.
Assume that the time-harmonic flux Φin(x)e−iωt is conducted through the object
boundary ∂Ω. By solving (2.5) for the time-harmonic amplitude of the energy cur-
rent density and substituting into (2.4), we see that the time-harmonic amplitude of
the photon density (still denoted by ϕ) satisfies the equation

(2.9) ∇ · κ∇ϕ + (ik − μa)ϕ = 0 in Ω \D,

where k = ω/c and

κ =
1

n
((μa − ik)I + (I −B)μs)

−1.

Further, by using identity (2.6), together with (2.5) and (2.7), one obtains the outer
boundary condition

(2.10) γϕ +
1

2
ν · κ∇ϕ = Φin on ∂Ω,

where the sign of Φin is inverted for convenience, and the nonlocal inner boundary
condition

(2.11) Gϕ + ν · κ∇ϕ = 0 on ∂D.

In (2.11), we have used the shorthand notation

(2.12) G = 2γ(I − G)−1(I + G),
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where (I − G)−1 : L2(∂D) → L2(∂D) denotes the L2(∂D)-inverse of I − G. Notice
that G : L2(∂D) → L2(∂D) is self-adjoint if k = 0; this can be seen, for example,
by expanding (I − G)−1 as a Neumann series and using the self-adjointness of G. In
all above formulae and in what follows, the normal vectors point out of the strongly
scattering region Ω \D.

In [19] and [22], it has been shown that the radiosity-diffusion forward problem,
obtained as a combination of (2.9), (2.10), and (2.11), has a unique solution under
physically reasonable conditions, as follows.

Theorem 2.2. Assume that 0 < ca ≤ μa ≤ Ca, 0 ≤ μs ≤ Cs, μ̃a > 0, and
that ∂Ω and ∂D are smooth enough. Then κ is well defined and positive definite, and
the time-harmonic radiosity-diffusion forward problem has a unique weak solution
ϕ ∈ H1(Ω \D) for any input flux Φin ∈ H−1/2(∂Ω).

2.4. Inverse problem. According to the above derived mathematical model
and under the assumption of time-harmonicity, to know all pairs of inward and out-
ward photon fluxes on the object boundary ∂Ω is equivalent to knowing the Robin-
to-Robin boundary map

Υ : Φin �→
(
γϕ− 1

2
ν · κ∇ϕ

)∣∣∣∣
∂Ω

,

where ϕ is the solution of (2.9) with the boundary conditions (2.10) and (2.11). If the
assumptions of Theorem 2.2 hold, it is easy to see that Υ is a bounded linear operator
from H−1/2(∂Ω) to itself (cf. [21]). The idealized time-harmonic inverse problem of
OAST is to determine μa and κ from the knowledge of Υ.

Since collecting all Robin–Robin boundary value pairs is in a pure mathematical
sense equivalent to collecting all Neumann–Dirichlet pairs, besides Υ we may assume
to know the Neumann-to-Dirichlet boundary map

Λ : f �→ ϕ|∂Ω,

where ϕ ∈ H1(Ω \D) is the solution of (2.9) with the boundary conditions (2.11) and

ν · κ∇ϕ = f on ∂Ω.

It is easy to see that Λ is an isomorphism from H−1/2(∂Ω) to H1/2(∂Ω). When
implementing the factorization method to the framework of OAST and transparent
inclusions, we will work with Λ instead of Υ for the sake of convenience and readability.

In earlier work [11], it has been demonstrated that reconstructing the optical
parameters inside Ω \ D is practically impossible if the shape of the nonscattering
region D is not known in advance. On the other hand, locating ∂D via boundary
measurements by using some Newton-type iterative algorithm seems far-fetched due
to the difficulties encountered when differentiating the boundary operator G with
respect to the shape of D: It is easy to see that the differentiation results in awkward
formulae even if the effect of the irregular visibility function (2.8) is not taken into
account. In consequence, introducing noniterative algorithms for finding D is of great
importance for the further development of OAST.

In the following section, we will assume that the absorption coefficient μa and
the diffusion tensor κ inside Ω are known but the whereabouts of the possible non-
scattering region D is unknown. We will show that under such circumstances there is
reason to believe that the factorization method of Kirsch [25] can be used for locating
D via boundary measurements. To be more precise, we will formulate and prove a
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conditional characterization result. In section 4, the functionality of the method will
be confirmed through numerical studies.

3. Factorization method and transparent regions. We begin by summa-
rizing our framework. Let Ω ⊂ R

n, n = 2, 3, be a bounded body with a connected
complement and D ⊂ Ω, with ∂D ∩ ∂Ω = ∅, a nonscattering region for which Ω \D
is connected. For simplicity, we assume that the measurements are static in time,
i.e., k = 0 in the formulae of the preceding section. Furthermore, assume that the
a priori known absorption coefficient μa : Ω → R and symmetric diffusion tensor
κ : Ω → R

n×n are smooth enough and satisfy the the following conditions:

(3.1) ca ≤ μa ≤ Ca, cκI ≤ κ ≤ CκI,

where ca, cκ, Ca, and Cκ are positive constants and the latter inequality is to be
understood in the sense of positive definiteness.

We denote the Neumann-to-Dirichlet map corresponding to the object containing
the transparent region by Λ, i.e.,

(3.2) Λ : f �→ ϕ|∂Ω, H−1/2(∂Ω) → H1/2(∂Ω),

where the photon density ϕ ∈ H1(Ω\D) satisfies the elliptic boundary value problem

(3.3)

∇ · κ∇ϕ− μaϕ = 0 in Ω \D,

ν · κ∇ϕ = f on ∂Ω,

Gϕ + ν · κ∇ϕ = 0 on ∂D,

and the operators G and G are defined by (2.12) and (2.7), respectively, with k = 0 and
a constant μ̃a > 0. Moreover, let Λ0 be the Neumann-to-Dirichlet map corresponding
to the same object without any nonscattering regions, meaning that Λ0 is also defined
by (3.2) but this time the first equation of (3.3) is satisfied everywhere in Ω and the
inner boundary condition of (3.3) is deleted. Since μa and κ are assumed to be known
in advance, Λ0 can be computed and Λ—or at least a noisy incomplete version of
Λ—can be measured. Notice that both Λ and Λ0 are self-adjoint (cf. [7, 19]), i.e.,

〈f1,Λf2〉L2(∂Ω) = 〈f2,Λf1〉L2(∂Ω) and 〈f1,Λ0f2〉L2(∂Ω) = 〈f2,Λ0f1〉L2(∂Ω)

for all f1, f2 ∈ H−1/2(∂Ω). Here and in what follows, we denote by 〈f, g〉L2(∂Ω) =∫
∂Ω

fgdS the inner product of L2(∂Ω) as well as its extension to the dual system

〈H−1/2(∂Ω), H1/2(∂Ω)〉.
Before we can formulate the conditional characterization result, a couple of auxil-

iary concepts need to be introduced. Let hy be the photon density corresponding to a
point source at y ∈ Ω, no transparent region, and a homogeneous Neumann condition
on ∂Ω; i.e., hy is the solution of

(3.4)
∇ · κ∇hy(x) − μahy(x) = δ(x− y) in Ω,

ν · κ∇hy = 0 on ∂Ω,

where δ is the delta distribution. Furthermore, let Λ−1
D : H1/2(∂D) → H−1/2(∂D)

be the Dirichlet-to-Neumann boundary map corresponding to D and the diffusion
equation. To be more precise,

Λ−1
D g = ν · κ∇u|∂D,
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where ν is the unit normal pointing into D and u satisfies the Dirichlet boundary
value problem

(3.5)
∇ · κ∇u− μau = 0 in D,

u = g on ∂D.

Theorem 3.1. Assume that Λ−1
D + G : H1/2(∂D) → H−1/2(∂D) is injective.

Then, hy|∂Ω belongs to the range of |Λ−Λ0|1/2 if and only if y ∈ D. Here, Λ−Λ0 is
interpreted as a compact operator from L2(∂Ω) to itself and |Λ−Λ0| = {(Λ−Λ0)

2}1/2.
The proof of Theorem 3.1 will be presented in the following subsection. Mean-

while, we will concentrate on the implications of the theorem itself. Since Λ can be
measured and Λ0 and hy|∂Ω can be computed, Theorem 3.1 provides an explicit way
to locate D through boundary measurements, assuming that Λ−1

D +G : H1/2(∂D) →
H−1/2(∂D) is injective. This injectivity condition can be interpreted in an intuitive
way: If D is strongly scattering and characterized by the optical parameters κ and μa,
Λ−1
D maps the Dirichlet boundary value of the photon density on ∂D onto the Neu-

mann boundary value of the photon density on ∂D. On the other hand, as indicated
by (2.11), −G does the same job if D is a transparent region. Consequently, Λ−1

D +G
is injective if and only if one can determine whether D is transparent or diffusive by
any single nontrivial measurement of the Dirichlet and Neumann boundary values of
the photon density on ∂D.

Since Λ−1
D : H1/2(∂D) → H−1/2(∂D) is an isomorphism [10], G : H1/2(∂D) →

L2(∂D) is bounded, and the imbedding L2(∂D) ↪→ H−1/2(∂D) is compact [10], Λ−1
D +

G : H1/2(∂D) → H−1/2(∂D) is a Fredholm operator of index zero, and so its null
space is in any case finite dimensional. Hence, the condition of Theorem 3.1 does not
seem totally unrealistic, although there is in general no guarantee that Λ−1

D + G is
injective: One can quite easily find physically reasonable parameters μa, κ, and μ̃a for
which the injectivity is lost. Luckily, the odds of meeting such parameters in practice
seem quite low, but unfortunately the algorithmic implementation of Theorem 3.1
may run into trouble also if the optical properties inside Ω are just close to those
causing noninjectivity. These statements are clarified by the following examples and
the numerical studies of section 4.

Example 3.1. Let D be an isotropic unit disc, and assume that κ and μa are
constant within D. Solving the problem (3.5) explicitly in polar coordinates x =
r(cos(θ), sin(θ)) yields the spectral decomposition

Λ−1
D : eijθ �→ −λje

ijθ, j ∈ Z,

where λj is given by

(3.6) λj =
√
μaκ

Ij−1

(√
μa/κ

)
+ Ij+1

(√
μa/κ

)
2Ij

(√
μa/κ

)
and Ij is the modified Bessel function of the first kind. In this simple geometry
the integral operator G obeys a similar representation. Indeed, by denoting y =
(cos(φ), sin(φ)) in (2.7), one easily sees that

(3.7) (GΦ)(θ) = − 1

4
√

2

∫ π

−π

(1 − cos(φ− θ))1/2e−
√

2μ̃a(1−cos(φ−θ))1/2

Φ(φ)dφ.
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By substituting eijφ into (3.7), making a suitable change of variables, bearing (2.12) in
mind, and using the even parity of the kernel in (3.7), it is straightforward to deduce
that

G : eijθ �→ 2

π

1 + ηj
1 − ηj

eijθ, j ∈ Z,

where {ηj} are the eigenvalues of G:

(3.8) ηj = − 1

4
√

2

∫ π

−π

cos(jυ)(1 − cos(υ))1/2e−
√

2μ̃a(1−cos(υ))1/2

dυ.

These spectral decompositions indicate that the injectivity of Λ−1
D + G is lost if and

only if the identity

(3.9) λj =
2

π

1 + ηj
1 − ηj

holds for some j ∈ Z.
Let us assume that μ̃a > 0 and κ > 0 are fixed and consider how μa > 0 should

be chosen in order to make Λ−1
D + G noninjective. It is easy to check that

lim
μa→0

λj = |j|κ, lim
μa→∞

λj = ∞, and
∂

∂μa
λj > 0 for all j ∈ Z and μa > 0,

where the equalities follow from the basic properties of the modified Bessel func-
tions [1] and the inequality is a consequence of the monotonicity of 〈Λ−1

D g, g〉L2(∂D)

with respect to μa for any g ∈ H1/2(∂D) (cf. [7]). Notice also that due to Lemma 2.1,
|ηj | < 1 for all j ∈ Z and ηj converges to zero as |j| goes to infinity. Hence, there
exists a finite J = J(μ̃a, κ) > 0 such that for 0 ≤ j ≤ J , equality (3.9) is satisfied
by at most one value of μa, whereas no μa solves (3.9) for any j > J . To put it all
together, in our simplified framework there are only finitely many values of μa that
make Λ−1

D + G noninjective for fixed κ and μ̃a.
Example 3.2. Let us continue working with the simple framework of Example 3.1

and assume that μ̃a = μa � min{1, κ}. Under such circumstances, the exponential
term in (3.8) can be approximated fairly well by its linearization:

e−
√

2μa(1−cos(υ))1/2 ≈ 1 −
√

2μa(1 − cos(υ))1/2.

By substituting this into (3.8) and calculating the resulting integral with the help of
Lemma 3.5 of [19], one sees that

2

π

1 + η0

1 − η0
≈ 2μa

4 − πμa
≈ μa

2
.

On the other hand, since
√
μa/κ is small, the modified Bessel functions in (3.6) can

be approximated by the constant and linear terms of their series representations [1],
yielding

λ0 ≈ √
μaκ

√
μa/κ

2
=

μa

2
.

In consequence, (3.9) is satisfied approximately for j = 0.
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According to the above result, it is difficult to distinguish between a nonscattering
disc and a homogeneous isotropic strongly scattering disc by a single rotationally sym-
metric measurement if both discs are characterized by the same negligible absorption.
From the point of view of the factorization method, this observation is troublesome
since the algorithmic implementation of Theorem 3.1 may fail if the transparent inclu-
sion is as absorbing as its strongly scattering surroundings. This drawback is studied
numerically in section 4.

3.1. Proof of the characterization result. Theorem 3.1 follows with some
work from the following result, which is a simplified version of Theorem 3.3 in [26].

Theorem 3.2. Let X ⊂ U ⊂ X∗ be a Gelfand triple with Hilbert space U and
reflexive Banach space X such that the imbeddings are dense. Furthermore, let H be
another Hilbert space, T : X∗ → H linear, compact, and injective with dense range,
R : X → X∗ linear and self-adjoint, and

(3.10) A = TRT ∗.

Assume that R : X → X∗ is an isomorphism that can be written as R = E + K,
where K : X → X∗ is self-adjoint and compact and E : X → X∗ is self-adjoint and
coercive, i.e.,

〈Eψ,ψ〉 ≥ C ‖ψ‖2
X for all ψ ∈ X.

Then, the ranges of T : X∗ → H and |A|1/2 = (A2)1/4 : H → H coincide.
In order to utilize Theorem 3.2, we need to show that Λ−Λ0 obeys a factorization

of the type (3.10). To this end, let us introduce a few auxiliary operators. We define
the mapping L : H−1/2(∂D) → H1/2(∂Ω) through

(3.11) L : φ �→ v|∂Ω,

where v ∈ H1(Ω \D) is the weak solution of

∇ · κ∇v − μav = 0 in Ω \D,

ν · κ∇v = 0 on ∂Ω,

ν · κ∇v = φ on ∂D.

In what follows, L plays the role of T in Theorem 3.2. The adjoint L∗ : H−1/2(∂Ω) →
H1/2(∂D) is defined by (cf. [7])

(3.12) L∗ : φ′ �→ v′|∂D,

where v′ ∈ H1(Ω \D) is the weak solution of

∇ · κ∇v′ − μav
′ = 0 in Ω \D,

ν · κ∇v′ = φ′ on ∂Ω,

ν · κ∇v′ = 0 on ∂D.

Next, we will introduce two mappings that constitute the intermediate operator
R of Theorem 3.2. For ψ ∈ H1/2(∂D), let w0 ∈ H1(Ω \ ∂D) be the weak solution of
the transmission problem

(3.13)

∇ · κ∇w0 − μaw0 = 0 in Ω \ ∂D,

ν · κ∇w0 = 0 on ∂Ω,

w+
0 − w−

0 = ψ on ∂D,

ν · κ∇w+
0 − ν · κ∇w−

0 = 0 on ∂D.
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Here and in what follows, we denote by w±
0 the trace from the exterior and from the

interior of Ω \D, respectively; the superscripts will often be left out if the direction
of approach is clear from the context or if it does not affect the value of the trace.
Moreover, assume that w ∈ H1(Ω \D) is the weak solution of

(3.14)

∇ · κ∇w − μaw = 0 in Ω \D,

ν · κ∇w = 0 on ∂Ω,

G(w + ψ) + ν · κ∇w = 0 on ∂D.

We define the operators F0, F : H1/2(∂D) → H−1/2(∂D) through

(3.15) F0 : ψ �→ ν · κ∇w0|∂D, F : ψ �→ ν · κ∇w|∂D.

The following lemma lists some essential properties of the above introduced op-
erators.

Lemma 3.3. The operators L : H−1/2(∂D) → H1/2(∂Ω), L∗ : H−1/2(∂Ω) →
H1/2(∂D), and F0, F : H1/2(∂D) → H−1/2(∂D) defined by (3.11), (3.12), and (3.15),
respectively, are linear and bounded. Furthermore, L is injective and compact, and its
range is dense in H1/2(∂Ω); −F0 is a coercive and self-adjoint isomorphism, and F
is compact and self-adjoint.

Proof. The fact that L : H−1/2(∂D) → H1/2(∂Ω) and L∗ : H−1/2(∂Ω) →
H1/2(∂D) are linear and bounded follows from the standard theory of elliptic partial
differential equations [10]. Furthermore, both L and L∗ are injective and compact
due to the unique continuation principle and the regularity theory for elliptic partial
differential equations (cf. [26]). In particular, R(L) = N (L∗)⊥ = H1/2(∂Ω); i.e., the
range of L is dense in H1/2(∂D).

The unique solvability of (3.13) in H1(Ω \ ∂D) and the solution’s continuous
dependence on the data ψ ∈ H1/2(∂D) follow, for example, from the material in [27]
(see also [26]). Since ∇ · κ∇w0 = μaw0 ∈ L2(Ω \ ∂D), F0 : H1/2(∂D) → H−1/2(∂D)
is bounded according to a slight modification of [10, Lemma 1, p. 381]. Furthermore,
the self-adjointness of F0 follows by modifying the proof of Lemma 3.3 of [7] in an
obvious way. In addition, −F0 can be shown to be coercive by estimating as follows:

〈−F0ψ,ψ〉L2(∂D) = 〈ν · κ∇w0, w
−
0 〉L2(∂D) − 〈ν · κ∇w0, w

+
0 〉L2(∂D)

=

∫
Ω\D

(
κ∇w0 · ∇w0 + μa|w0|2

)
dx

+

∫
D

(
κ∇w0 · ∇w0 + μa|w0|2

)
dx

≥ C
{
‖w0‖2

H1(Ω\D) + ‖w0‖2
H1(D)

}
≥ C

{∥∥w−
0

∥∥2

H1/2(∂D)
+
∥∥w+

0

∥∥2

H1/2(∂D)

}
≥ C ‖ψ‖2

H1/2(∂D) ,

where we used Green’s formula [10], the symmetry of κ : Ω → R
n×n, (3.1), and the

trace theorem. Since −F0 : H1/2(∂D) → H−1/2(∂D) is coercive and self-adjoint, it is
injective and its range is closed and dense. In other words, F0 is an isomorphism.

To finish the proof, let us consider F . The variational formulation of (3.14) is to
find w ∈ H1(Ω \D) such that

(3.16)

∫
Ω\D

(κ∇w · ∇v + μawv) dx +

∫
∂D

GwvdS = −〈Gψ, v〉L2(∂D)
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for all v ∈ H1(Ω \ D). Because of (3.1), Lemma 2.1, the trace theorem, and the
nonnegativeness of G : L2(∂D) → L2(∂D) indicated by Theorem 3.12 of [19], the
left-hand side of (3.16) defines a coercive and bounded sesquilinear form from H1(Ω \
D)×H1(Ω\D) to C, and the right-hand side induces a bounded antilinear functional
from H1(Ω \D) to C. In consequence, due to the Lax–Milgram lemma, (3.16) has a
unique solution w ∈ H1(Ω \D) which depends continuously on the data:

‖w‖H1(Ω\D) ≤ C ‖Gψ‖H−1/2(∂D) ≤ C ‖ψ‖L2(∂D) .

In particular, by the trace theorem and Lemma 2.1,

‖Fψ‖L2(∂D) = ‖G(w + ψ)‖L2(∂D) ≤ C
{
‖w‖L2(∂D) + ‖ψ‖L2(∂D)

}
≤ C ‖ψ‖L2(∂D) ;

i.e., F is bounded from L2(∂D) to itself. Hence, due to the compactness of the
imbeddings H1/2(∂D) ↪→ L2(∂D) and L2(∂D) ↪→ H−1/2(∂D) [10], F : H1/2(∂D) →
H−1/2(∂D) is bounded and compact.

In order to prove that F is self-adjoint, let w1, w2 ∈ H1(Ω \D) be the solutions
of (3.14) corresponding to the inputs ψ1, ψ2 ∈ H1/2(∂D), respectively. By using the
self-adjointness of G : L2(∂D) → L2(∂D) and the inner boundary condition of (3.14),
it follows that

〈Fψ1, ψ2〉L2(∂D) = −
∫
∂D

G(ψ1 + w1)ψ2dS

=

∫
∂D

ψ1(ν · κ∇w2 + Gw2)dS −
∫
∂D

w1Gψ2dS

= 〈Fψ2, ψ1〉L2(∂D) +

∫
∂D

(Gψ1w2 − w1Gψ2)dS.(3.17)

Thus, by showing that the latter term on the last line of (3.17) vanishes, the proof is
complete:∫

∂D

(Gψ1w2 − w1Gψ2)dS =

∫
∂D

(ν · κ∇w2w1 − ν · κ∇w1w2)dS

+

∫
∂D

(w1Gw2 −Gw1w2)dS

=

∫
∂Ω

(ν · κ∇w1w2 − ν · κ∇w2w1)dS = 0,

where we used the boundary conditions of (3.14), the self-adjointness of G, the sym-
metry of κ, and Green’s formula.

Next, we will provide the needed factorization.
Lemma 3.4. The difference of the operators Λ,Λ0 : H−1/2(∂Ω) → H1/2(∂Ω)

can be factorized as Λ − Λ0 = L(F − F0)L
∗, where L : H−1/2(∂D) → H1/2(∂Ω),

L∗ : H−1/2(∂Ω) → H1/2(∂D), and F0, F : H1/2(∂D) → H−1/2(∂D) are defined by
(3.11), (3.12), and (3.15), respectively.

Proof. Let ϕ ∈ H1(Ω\D) be the solution of (3.3) corresponding to f ∈ H−1/2(∂Ω),
and let ϕ0 ∈ H1(Ω) be the solution of

(3.18) ∇ · κ∇ϕ0 − μaϕ0 = 0 in Ω, ν · κ∇ϕ0 = f on ∂Ω.

Clearly,

L (ν · κ∇(ϕ− ϕ0)|∂D) = (ϕ− ϕ0)|∂Ω = (Λ − Λ0)f.



LOCATING TRANSPARENT REGIONS IN OAST 1113

By defining the operators

B : f �→ ν · κ∇ϕ|∂D, H−1/2(∂Ω) → H−1/2(∂D),

B0 : f �→ ν · κ∇ϕ0|∂D, H−1/2(∂Ω) → H−1/2(∂D),

we have thus far obtained the factorization

(3.19) Λ − Λ0 = L(B −B0).

Notice that B is bounded (from H−1/2(∂Ω) to L2(∂D)) due to the trace theorem and
Lemma 2.1, and the boundedness of B0 follows from the fact that ∇·κ∇ϕ0 = μaϕ0 ∈
L2(Ω) [10].

By following the line of reasoning used in the proof of Lemma 3.2 in [7], one easily
sees that the adjoint operator of B0 : H−1/2(∂Ω) → H−1/2(∂D) is defined through

B∗
0 : ψ �→ w0|∂Ω, H1/2(∂D) → H1/2(∂Ω),

where w0 ∈ H1(Ω \ ∂D) is the solution of (3.13). Similarly, the adjoint of B :
H−1/2(∂Ω) → H−1/2(∂D) can be defined through

B∗ : ψ �→ w|∂Ω, H1/2(∂D) → H1/2(∂Ω),

where w ∈ H1(Ω \D) is the solution of (3.14). Indeed, by using the self-adjointness
of G : L2(∂D) → L2(∂D), Green’s formula, and the boundary conditions of (3.3) and
(3.14), we obtain that

〈Bf, ψ〉L2(∂D) = −
∫
∂D

GϕψdS

=

∫
∂D

ϕ(Gw + ν · κ∇w)dS

=

∫
∂D

ν · κ∇wϕdS −
∫
∂D

ν · κ∇ϕwdS

=

∫
∂Ω

ν · κ∇ϕwdS −
∫
∂Ω

ν · κ∇wϕdS

= 〈f, w〉L2(∂Ω).

Bearing in mind how F, F0 : H1/2(∂D) → H−1/2(∂D) and L : H−1/2(∂D) →
H1/2(∂Ω) were defined, it is straightforward to deduce that

(3.20) L(F − F0) = B∗ −B∗
0 .

By taking the adjoint of (3.20), plugging it into (3.19), and using the self-adjointness
of F and F0, we finally obtain that

Λ − Λ0 = L(F − F0)L
∗,

which completes the proof.
Now the proof of Theorem 3.1 follows by combining Theorem 3.2 with Lemma 3.4

and showing that F − F0 : H1/2(∂D) → H−1/2(∂D) is an isomorphism if Λ−1
D + G :

H1/2(∂D) → H−1/2(∂D) is injective.
Proof of Theorem 3.1. Inspired by Theorem 3.2, let us make the choices X =

H1/2(∂D), U = L2(∂D), H = L2(∂Ω), R = F − F0, A = (Λ−Λ0)|L2(∂Ω) : L2(∂Ω) →
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L2(∂Ω), and T = L with R(L) interpreted as a subspace L2(∂Ω). Clearly, X ⊂ U ⊂
X∗ is now a Gelfand triple, and T is compact and injective with dense range in H
because of Lemma 3.3 and since the imbedding H1/2(∂Ω) ↪→ L2(∂Ω) is compact and
dense [10]. Furthermore, by making the choices E = −F0 and K = F , R : X → X∗

is given as a sum of two self-adjoint operators, one of which is coercive and the other
one compact. Hence, to be able to use Theorem 3.2, the only thing we still need to
prove is that F − F0 : H1/2(∂D) → H−1/2(∂D) is an isomorphism.

Since F −F0 : H1/2(∂D) → H−1/2(∂D) is a sum of a compact and an isomorphic
operator, it is a Fredholm operator of index zero, and so it is bijective if and only if it
is injective. Assume that ψ ∈ H1/2(∂D) belongs to the null space of F −F0, meaning
that the solutions of (3.14) and (3.13), namely w ∈ H1(Ω \D) and w0 ∈ H1(Ω \ ∂D),
satisfy the equality

(3.21) ν · κ∇w = ν · κ∇w0 on ∂D.

In consequence, w and w0|Ω\D satisfy the diffusion equation with the same Neumann

boundary values in Ω \D. Due to (3.1), such a Neumann boundary value problem is
uniquely solvable in H1(Ω\D) [10], and so w0|Ω\D = w. In particular, w−

0 |∂D = w|∂D.

Clearly, w0|D ∈ H1(D) satisfies (3.5) with g = w+
0 |∂D = w|∂D +ψ, from which it

follows that

Λ−1
D (w|∂D + ψ) = ν · κ∇w0.

By using (3.21) and the inner boundary condition of (3.14), we deduce that(
Λ−1
D + G

)
(w|∂D + ψ) = 0,

i.e., w|∂D + ψ = 0 since Λ−1
D + G is injective by assumption. In consequence, (3.14)

transforms into a homogeneous Neumann problem, and so w0|Ω\D = w = 0. In

particular, ν · κ∇w0|∂D = 0, or in other words, F0ψ = 0. Since F0 : H1/2(∂D) →
H−1/2(∂D) is an isomorphism, we deduce that ψ = 0. Thus, N (F − F0) = {0} and
F − F0 is a linear isomorphism.

Now Theorem 3.2 tells us that

R
(∣∣(Λ − Λ0) |L2(∂Ω)

∣∣1/2) = R(L).

Bearing this equality in mind, the claim finally follows by using the same line of
reasoning as in the proof of Lemma 3.5 in [7].

4. Numerical examples. In this section, the performance of the introduced
method is evaluated by simulated test cases. In subsection 4.1, we discuss the algo-
rithmic implementation of Theorem 3.1. Subsection 4.2 considers briefly the compu-
tational methods for finding forward solutions to the radiosity-diffusion model. The
reconstruction results are presented in subsection 4.3.

4.1. Algorithmic implementation. Assume that fα
y ∈ L2(∂Ω) is the unique

minimizer of the Tikhonov functional

(4.1)
∥∥∥|Λ − Λ0|1/2 f − hy

∥∥∥2

L2(∂Ω)
+ α ‖f‖2

L2(∂Ω) , f ∈ L2(∂Ω),

where α > 0 is a regularization parameter and hy ∈ C∞(Ω \ {y}) is the singular
solution of (3.4). Let us examine how fα

y behaves as α goes to zero. It is well known
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that fα
y converges to the minimum norm solution of the equation

|Λ − Λ0|1/2 f = hy|∂Ω

if hy|∂Ω belongs to the range of |Λ − Λ0|1/2 : L2(∂Ω) → L2(∂Ω) [24]. On the other
hand, if hy|∂Ω /∈ R(|Λ − Λ0|1/2) and the injectivity condition of Theorem 3.1 is
satisfied, in which case R(|Λ − Λ0|1/2) is dense in L2(∂Ω), the L2(∂Ω)-norm of fα

y

goes to infinity as α goes to zero. In consequence, provided that the assumptions of
Theorem 3.1 are valid, y belongs to D if and only if

lim sup
α→0+

∥∥fα
y

∥∥
L2(∂Ω)

< ∞.

In practical computations we choose an L2(∂Ω)-orthonormal set of input patterns
{fl}ml=−m, denote the orthogonal projector onto the span of {fl} by P , and replace
(4.1) by

(4.2)

∥∥∥∥|P (Λ − Λ0)P |1/2 f − Phy

‖Phy‖L2(∂Ω)

∥∥∥∥L2(∂Ω)
2

+ αδ(y) ‖f‖2
L2(∂Ω) .

Furthermore, instead of examining how the norm of the minimizer for (4.2) behaves as
y moves around in Ω, we take a slightly different approach that gives better contrast.
We choose αδ : Ω → R+, 0 < δ < 1, in such a way that the minimizer fδ

y ∈ L2(∂Ω) of
the Tikhonov functional (4.2) satisfies the discrepancy condition

(4.3)

∥∥∥∥|P (Λ − Λ0)P |1/2 fδ
y − Phy

‖Phy‖L2(∂Ω)

∥∥∥∥
L2(∂Ω)

= δ

for every y ∈ Ω. If this condition cannot be met for some y ∈ Ω, we set αδ(y) = 0; not
taking into account possible numerical restrictions, such a situation can occur only if
the injectivity condition of Theorem 3.1 does not hold true.

Let us explain why the graph of αδ : Ω → R+ contains information on the location
of D, provided that the injectivity condition of Theorem 3.1 is satisfied. The above
considerations suggest that if (4.3) is satisfied for a small 0 < δ < 1 and y ∈ Ω\D, the
corresponding minimizer fδ

y ∈ L2(∂Ω) probably has a large norm. Since the norm of
the minimizer of (4.2) is monotonically decreasing with respect to the regularization
parameter [24], αδ(y) is likely to be small if y ∈ Ω \ D. Conversely, if y ∈ D,
the minimizer of (4.2) satisfying (4.3) is probably smallish in norm, and so αδ(y) is
presumably large compared to the case y ∈ Ω \ D. In consequence, the graph of
αδ : Ω → R+ should be flat apart from an elevation over the inclusion D.

In the practical algorithm, we have chosen to work with Phy/ ‖Phy‖L2(∂Ω) instead

of Phy because one is ultimately interested in the shape of the singular solution on
∂Ω, not in its magnitude; it is trivial to check that Theorem 3.1 remains valid if hy|∂Ω

is replaced by hy|∂Ω/ ‖hy‖L2(∂Ω).

4.2. Numerical implementation. To be able to test the algorithm introduced
in subsection 4.1 numerically, one needs to simulate {Λfl} and {Λ0fl}, compute
P (hy|∂Ω) for numerous y ∈ Ω, and introduce a procedure aiming at satisfying (4.3).
In what follows, we will discuss each of these steps briefly.

4.2.1. Simulation of the measurement data. The numerical solution of (3.3)
is based on the finite element method with piecewise linear basis functions. The
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domain Ω \D is divided into T triangles joined at N vertex nodes, and the solution
is sought in the form

ϕN =

N∑
k=1

akφk,

where ak ∈ C and the basis function φk is continuous, piecewise linear, smooth in
each triangle, has value one at the kth node, and vanishes at all the other nodes. The
coefficient vector a = (a1, . . . , aN )T is solved from the matrix equation

(K + M + A)a = F,

which is obtained from the variational formulation of problem (3.3) in standard finite
element style (cf. [19]):

Kjk =

∫
Ω\D

κ∇φk · ∇φjdx,

Mjk =

∫
Ω\D

μaφkφjdx,

Ajk =

∫
∂D

GφkφjdS,(4.4)

Fj =

∫
∂Ω

fφjdS.

These matrix elements are approximated by integrals over the finite element trian-
gulation; an approximative way to compute Gφk, needed in the evaluation of (4.4),
is given in [4]. After a ∈ C

N corresponding to the input fl has been solved, Λfl is
approximated by the Dirichlet boundary value of ϕN on ∂Ω.

The elliptic boundary value problem corresponding to Λ0, i.e., (3.18), could be
solved in a similar manner. However, in the numerical studies presented in subsec-
tion 4.3, Ω is the unit disc, μa and κ are constant and scalar in Ω, and fl = eilθ with
θ being the polar angle. This simplifies the situation considerably as Λ0 obeys the
spectral representation (see Example 3.1)

(4.5) Λ0 : eilθ �→ 2
√
μaκ

Il

(√
μa/κ

)
Il−1

(√
μa/κ

)
+ Il+1

(√
μa/κ

)eilθ, l = Z,

where Il is the modified Bessel function of the first kind. In what follows, {Λ0fl} are
computed using (4.5).

4.2.2. Computation of the singular photon density. Let us assume that
μa and κ are scalar and constant in Ω. In this case, the solution of (3.4) can be
computed with the help of the modified Bessel function of the second kind because

h̃y = − 1

2πκ
K0

(√
μa

κ
|x− y|

)
satisfies the first equation of (3.4) [1]. Hence, the solution of (3.4) can be given as

hy = h̃y − vy,
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where vy is the solution of the boundary value problem

(4.6) ∇ · κ∇v − μav = 0 in Ω, ν · κ∇v = ν · κ∇h̃y on ∂Ω.

In consequence, for each probe location y ∈ Ω we must, in general, solve one elliptic
Neumann boundary value problem using, for example, the finite element method.

The numerical studies of subsection 4.3 are conducted in the unit disc with the
Fourier input patterns {eilθ}. Since only the projection P (hy|∂Ω) is explicitly needed
in (4.2) and (4.3), in this simple framework the algorithm of subsection 4.1 can be im-
plemented without having to solve (4.6). Indeed, by using the spectral decomposition
(4.5), it is easy to see that

P (hy|∂Ω) = P
(
h̃y|∂Ω

)
− PΛ0

(
ν · κ∇h̃y|∂Ω

)
= P

(
h̃y|∂Ω

)
− Λ0P

(
ν · κ∇h̃y|∂Ω

)
,

which can be computed efficiently with the help of (4.5).

4.2.3. Computation of the indicator function. Let us consider finding the
regularization parameter αδ(y) satisfying (4.3) for a fixed y ∈ Ω. It is well known that
the minimizer of the functional (4.2), with αδ(y) replaced by a generic regularization
parameter α > 0, is given by [24]

fα
y =

1

‖Phy‖L2(∂Ω)

{|P (Λ − Λ0)P | + αI}−1 |P (Λ − Λ0)P |1/2 Phy,

where we have used the self-adjointness of Λ, Λ0, and P . Furthermore, the derivative
of the discrepancy function

e(α) =

∥∥∥∥|P (Λ − Λ0)P |1/2 fα
y − Phy

‖Phy‖L2(∂Ω)

∥∥∥∥2

L2(∂Ω)

can be written as [24]

e′(α) = 2α
〈
fα
y , {|P (Λ − Λ0)P | + αI}−1

fα
y

〉
L2(∂Ω)

.

By using these formulae, αδ(y) can be computed efficiently by Newton’s method; if the
discrepancy condition (4.3) cannot be achieved within the working precision, αδ(y)
is set to zero. Notice that the number of orthogonal input patterns used is typically
quite low—in our studies, nine—and so computing the inverse operators needed above
is relatively cheap.

4.3. Results. In this subsection, we evaluate the performance of the proposed
method with four test cases. In the first test case, we try to locate a nonconvex trans-
parent inclusion inside an object that is far less scattering and absorbing than the
tissues encountered in practical applications. The idea is to set up an upper bound
on the performance of the algorithm: When performing measurements with an ob-
ject characterized by smaller absorption and scattering coefficients, there are more
photons that travel through the inner parts of the object without being absorbed
before arriving at the object boundary. As a consequence, the measurements contain
more information on the inner parts of the object and the inverse problem becomes
less ill-posed. The second test case considers a circular nonscattering inhomogene-
ity and optical parameter values that are chosen so that the injectivity condition of
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Fig. 4.1. The first test case with the optical parameters κ = 0.5, μa = 0.05, and μ̃a = 0.005.
The graph of the indicator function αδ is compared with the original kite-shaped transparent cavity
for different δ > 0. Top left: The original cavity. Top right: δ = 10−3. Bottom left: δ = 10−5.
Bottom right: δ = 10−7.

Theorem 3.1 is not satisfied. The third and fourth cases work with realistic optical pa-
rameters and noisy data. In the third test, the object is contaminated by a nonconvex
transparent inclusion, and in the fourth one we have two circular inclusions.

The computations were conducted in two dimensions, and the object of interest
Ω was an isotropic unit disc with constant background diffusion and absorption coef-
ficients. In all studies, we worked with full aperture data and used nine L2-orthogonal
input patterns {eilθ}l=4

l=−4, where θ is the polar angle. By following the line of reason-
ing introduced in [15] for electrical impedance tomography, the algorithm could also
be implemented with limited aperture data, but the resulting reconstructions would
be worse than those presented in this work. The reason behind the low number of
inputs is twofold: First, the higher spatial frequencies penetrate the object so poorly
that their outputs contain more numerical noise than information on the location of
the transparent region. Second, because of the limitations of the real-life measurement
setting [16], one cannot assume the object to be exposed on arbitrarily high spatial
frequencies in a controlled manner. The outputs {(Λeil·)(θ)} and {(Λ0e

il·)(θ)} were
simulated by the finite element method, with approximately five hundred thousand
nodal points, and by formula (4.5), respectively. In the computations, we used two
types of inclusion shapes:

D1 = {x ∈ Ω | |x− x0| < R} , x0 ∈ Ω, |x0| + R < 1,

and D2 is the celebrated nonconvex kite-shaped inclusion; i.e., D2 is the interior of
the region bounded by the curve

z(t) = x0 + R(cos t + 0.65 cos 2t− 0.65, 1.5 sin t), t ∈ (−π, π],

where x0 and R are such that Ω contains the curve.
The results for the first test case are illustrated in Figures 4.1 and 4.2. The original

transparent inclusion, namely D2 with x0 = (−0.45, 0.3) and R = 0.16, is shown in the
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Fig. 4.2. The first test case. The inclusion supports obtained by approximating the indicator
functions in the sense of least squares are compared with the original kite-shaped transparent cavity.
Top left: The original inclusion. Top right: δ = 10−3. Bottom left: δ = 10−5. Bottom right:
δ = 10−7.

top left image of Figure 4.1. The a priori known background optical parameters were
κ = 0.5 and μa = 0.05, and the absorption in the nonscattering region was μ̃a = 0.005;
these parameter values correspond to absorption and scattering that are less than a
tenth of the values that would be used if one modeled the neonatal head [2]. The other
three images of Figure 4.1 show the graphs of the indicator function αδ : Ω → R on a
rectangular grid with three different discrepancy parameter values: δ = 10−3, 10−5,
and 10−7. The reconstructed inclusion supports presented in Figure 4.2 were obtained
by approximating the indicator functions in the sense of least squares by piecewise
constant functions that take at most two distinct values. As Figures 4.1 and 4.2
demonstrate, the algorithm finds the approximate location of the inclusion with all
three discrepancy parameters, whereas only the smallest two parameter values result
in reconstructions that represent some characteristics of the inclusion shape. Although
the reconstructed inclusion supports illustrated on the bottom row of Figure 4.2 are
slightly concave on the side that corresponds to the nonconvex face of the original
kite-shaped cavity, one cannot claim that the convexity properties of the inclusion
are reconstructed correctly since there is also some concavity on the two originally
convex sides. In fact, by testing the method with transparent cavities that are more
concave than the one used here, it can be demonstrated that the proposed method is
not accurate enough to capture nonconvexity reliably.

Figure 4.3 shows the findings of the second test case, where the transparent inclu-
sion was D1 with x0 = (−0.4,−0.5) and R = 0.2. In this test, we used three different
sets of optical parameters: κ = 0.5, μa = 0.05, and μ̃a = 0.005; κ = 0.5, μa = 0.05,
and μ̃a = 0.05; κ = 0.254, μa = 0.05, and μ̃a = 0.005. By using the same line of
reasoning as in Examples 3.1 and 3.2, it is easy to see that the latter two parameter
sets make Λ−1

D1
+ G nearly noninjective. To be more precise, with the second set of

parameters

(Λ−1
D1

+ G)(eijθ) ≈ 0
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Fig. 4.3. The second test case. The graph of the indicator function αδ, with δ = 10−5, is
compared with the original circular inclusion. Three different sets of optical parameters were used.
Top left: The original inclusion. Top right: κ = 0.5, μa = 0.05, and μ̃a = 0.005. Bottom left:
κ = 0.5, μa = 0.05, and μ̃a = 0.05. Bottom right: κ = 0.254, μa = 0.05, and μ̃a = 0.005.

for j = 0, and with the third set the same equation holds for j = ±1. Here, θ
denotes the polar angle with respect to the center of the inclusion. The graphs of the
indicator functions corresponding to the three parameter sets and δ = 10−5 are shown
in Figure 4.3. The reconstruction corresponding to the first set of parameters is good,
but the reconstructions with the latter two parameter sets have their shortcomings
as expected: The indicator function corresponding to the second set of parameters
contains almost no information on the location of the inclusion, whereas the indicator
function corresponding to the last set of parameters finds the location correctly but
contains little information on the size of the inhomogeneity.

The inclusion geometry of the third test case was the same as in the first test,
as shown in the top left image of Figure 4.4. This time, the optical parameters
were chosen so that the unit disc could model a neonatal head of radius 25 mm [2]:
κ = 0.05, μa = 0.5, and μa = 0.05. The noisy measurements were simulated by adding
Gaussian random noise with standard deviation ε ≥ 0 times the maximum element
of PΛP ∈ R

9×9 to each element of the matrix P (Λ − Λ0)P ∈ R
9×9. The results are

illustrated in Figure 4.4, where the top right image shows the indicator function αδ

for ε = 0 and δ = 0.01, the bottom left for ε = 10−4 and δ = 0.03, and the bottom
right for ε = 10−3 and δ = 0.1. As Figure 4.4 demonstrates, the shape of the inclusion
is not reconstructed correctly even if the data contains no noise. Compared to the
first test case, this shortcoming is probably due to the higher level of ill-posedness
caused by the introduction of the realistic optical parameters. However, one cannot
rule out the possibility that the injectivity condition of Theorem 3.1 also plays a role
in the relatively poor quality of the reconstructions. On the positive side, the graph
of the indicator function contains information on the location of the inclusion with
all three noise levels. The amount of additive noise used in the computations can be
put into perspective by noticing that the maximal absolute value of the elements of
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Fig. 4.4. The third test case with the optical parameters κ = 0.05, μa = 0.5, and μa = 0.05.
The graph of the indicator function αδ is compared with the original kite-shaped transparent cavity
for three different noise levels. Top left: The original inclusion. Top right: ε = 0 and δ = 0.01.
Bottom left: ε = 10−4 and δ = 0.03. Bottom right: ε = 10−3 and δ = 0.1.
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Fig. 4.5. The fourth test case with the optical parameters κ = 0.05, μa = 0.5, and μa = 0.05.
The graph of the indicator function αδ is compared with the original circular transparent cavities
for three different noise levels. Top left: The original inclusions. Top right: ε = 0 and δ = 0.01.
Bottom left: ε = 10−4 and δ = 0.03. Bottom right: ε = 10−3 and δ = 0.1.

PΛP is 7.7, whereas the maximal absolute value of the elements of P (Λ − Λ0)P is
only 0.048.

Figure 4.5 illustrates the results of the fourth and final test case, where we used
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the same optical parameters as in the third test. The top left image of Figure 4.5
shows the original nonscattering region that consists of two distinct circular inclusions
of the type D1. The top right image of Figure 4.5 shows the indicator function αδ

for ε = 0 and δ = 0.01, the bottom left for ε = 10−4 and δ = 0.03, and the bottom
right for ε = 10−3 and δ = 0.1. Both inclusions are visible but malformed in all three
reconstructions.

5. Conclusions. We have shown that, within the framework of the radiosity-
diffusion model of OAST, the factorization method provides means to extract informa-
tion on the transparent cavities embedded in known strongly scattering background
from boundary measurements. Although the quality of the obtained reconstructions is
quite sensitive to noise and depends strongly on the optical properties of the diffusive
background and the absorption inside the nonscattering cavities, the results are quite
promising because using sampling-type techniques, as is the factorization method,
to locate the transparent regions seems straightforward compared to implementing
Newton-type methods that search for the optimal inclusion shape iteratively.

In this work, we considered only the situation where the optical properties of the
diffusive region surrounding the cavities are known in advance. However, in practice
one is ultimately interested in locating absorbing inhomogeneities in the strongly
scattering tissue. In consequence, to make the factorization method more useful for
the further development of OAST, the possibility of characterizing transparent and
absorbing inclusions simultaneously should be considered. This observation and the
testing of the proposed method with measured data provide interesting subjects for
future studies.

REFERENCES

[1] G. Arfken, Mathematical Methods for Physicists, Academic Press, New York, 1968.
[2] S. R. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999), pp. R41–

R93.
[3] S. R. Arridge, Diffusion tomography in dense media, in Scattering and Inverse Scattering

in Pure and Applied Science, Vol. 1, R. Pike and P. Sabatier, eds., Academic Press, San
Diego, CA, 2002, pp. 920–936.

[4] S. R. Arridge, H. Dehghani, M. Schweiger, and D. T. Delpy, The finite element model
for the propagation of light in scattering media: A direct method for domains with non-
scattering regions, Medical Phys., 27 (2000), pp. 252–264.

[5] S. R. Arridge and J. C. Hebden, Optical imaging in medicine: II. Modelling and reconstruc-
tion, Phys. Med. Biol., 42 (1997), pp. 841–853.

[6] G. Bal, Reconstructions in impedance and optical tomography with singular interfaces, Inverse
Problems, 21 (2005), pp. 113–131.
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[8] M. Brühl and M. Hanke, Numerical implementation of two noniterative methods for locating
inclusions by impedance tomography, Inverse Problems, 16 (2000), pp. 1029–1042.

[9] K. M. Case and P. F. Zweifel, Linear Transport Theory, Addison-Wesley, New York, 1967.
[10] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and

Technology, Vol. 2, Springer-Verlag, Berlin, 1988.
[11] H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, Optical tomography in the

presence of void regions, J. Opt. Soc. Amer., 17 (2000), pp. 1659–1670.
[12] M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delby, An investigation of light

transport through scattering bodies with non-scattering regions, Phys. Med. Biol., 41 (1996),
pp. 767–783.

[13] B. Gebauer, The factorization method for real elliptic problems, J. Anal. Appl., 25 (2006), pp.
81–102.

[14] A. P. Gibson, J. C. Hebden, and S. R. Arridge, Recent advances in diffuse optical tomog-
raphy, Phys. Med. Biol., 50 (2005), pp. R1–R43.



LOCATING TRANSPARENT REGIONS IN OAST 1123
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RECONSTRUCTION OF THE SHAPE AND SURFACE IMPEDANCE
FROM ACOUSTIC SCATTERING DATA FOR AN ARBITRARY

CYLINDER∗
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Abstract. The inverse scattering for an obstacle D ⊂ R2 with mixed boundary condition can be
considered as a prototype for radar detection of complex obstacles with coated and noncoated parts
of the boundary. We construct some indicator functions for this inverse problem using the far-field
pattern directly, without the necessity of transforming the far field to the near field. Based on careful
singularity analysis, these indicator functions enable us to reconstruct the shape of the obstacle and
distinguish the coated from the noncoated part of the boundary. Moreover, an explicit representation
formula for the surface impedance in the coated part of the boundary is also given. Our reconstruction
scheme reveals that the coated part of the obstacle is less visible than the noncoated one, which
corresponds to the physical fact that the coated boundary absorbs some part of the scattered wave.
Numerics are presented for the reconstruction formulas, which show that both the boundary shape
and the surface impedance in the coated part of the boundary can be reconstructed accurately.
The theoretical reconstruction techniques proposed in this work can be applied in the practical
3-dimensional electromagnetic inverse scattering problems with promising numerical performance.
Such problems are of great importance in the design of nondetectable obstacles.
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Introduction and examples. Inverse scattering problems aim to identify some
properties of an obstacle such as the boundary shape and type from the information
contained in the scattered wave for given incident waves. Optimization techniques
are well known for reconstructing the obstacle, up to some accuracy, by minimizing
the objective functional for an unknown obstacle from given inversion input data by
iteration procedures. However, it seems that a good initial guess is needed.

In recent years, some new inversion methods for the reconstruction of obstacle
boundaries have been proposed. The common idea of these methods is the construc-
tion of some indicator functions from given inversion input data, which depend on
some detecting point (a parameter) varying inside or outside the obstacle. When
this point approaches the obstacle, these indicator functions blowup. The linear sam-
pling method [7], the factorization method [16], and the singular sources method [21]
construct the indicator functions from the far-field pattern directly, while the probe
method [13, 14] constructs the indicator in terms of the near field. The near field
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can be obtained from the far field by some regularization procedures [21]. However,
we can also state the natural version of the probe method directly from the far-field
data, without reducing the far field to the near field; see [11]. For a review of these
methods, the readers are referred to [22, 23], and for some relations between them, to
[11, 20].

If the scattering is caused by multiple obstacles with different types of boundary
or with mixed boundary condition, one should identify both the boundary shape,
boundary type, and surface impedance. These kinds of problems come from some
industry designs such as radar detection by electromagnetic wave scattering; see [10].
The obstacle is illuminated by an electromagnetic wave coming from an antenna. The
wave is scattered by the obstacle and received by an antenna located in a different
place. One of the objectives is to design the shape of the obstacle such that a re-
flected wave can be avoided or minimized in some directions. One possible approach
to this goal is to introduce a coating on the surface of the obstacle or on some of
its parts. This is motivated by the fact that reflections are minimized by applying
such a surface coating. The surface coating is modeled by introducing an impedance
boundary condition on a part or on the whole surface of the scatterer, which gives a
relation between the electric and the magnetic field through a coefficient called surface
impedance.

Due to this practical importance, the reconstruction of boundary impedance has
been addressed by many authors. In [1], the authors construct the inhomogeneous
boundary impedance for a cylinder obstacle with known shape using only one incident
wave, assuming that the surface impedance is distributed along the whole boundary of
the obstacle. In this case, the scattering of electromagnetic waves can be described by
the 2-dimensional Helmholtz equation. We also refer to [17], where an optimization
method is applied. After reducing the far field to the near field, a moment method
is suggested in [6] to reconstruct the surface impedance approximately in the case
of a completely coated obstacle, and the identification of different types of multiple
obstacles is given in [5] in the case where on each obstacle we have one type of
boundary condition.

The problem of whether a part of the surface of the obstacle is coated or not
is important. Answering this question and reconstructing the surface impedance,
in case of coating, from far-field measurements is our main object. In this work,
we restrict ourselves to the acoustic wave scattering governed by a 2-dimensional
Helmholtz equation, noticing that the 3-dimensional electromagnetic wave scattering
in the cylinder case can be modeled by the 2-dimensional Helmholtz equation [8].
These issues were first considered in [2, 3] by the linear sampling method, where the
authors simultaneously reconstruct the obstacle and compute the L∞-norm of the
surface impedance. This can be used to answer the question of existence or absence
of coating and to give the value of the surface impedance in case it is known to be
constant.

Motivated by these last works, our aim is to give another way to consider these
issues and give further information on the obstacle. We proceed by constructing
some indicator functions giving a direct link between the far-field pattern and the
physical parameters of the obstacle. More precisely, we establish pointwise formulas
which enable us to detect the boundary of the scatterer and distinguish and recog-
nize the coated and the noncoated parts of the obstacle surface. In addition, on the
coated part of the obstacle, the indicator functions give explicitly the pointwise val-
ues of this surface impedance as a functional of the far fields. These types of results
have been initiated in [19], where the theoretical justification of these formulas in
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3-dimensional acoustic scattering is given. Since we need more singularity analysis
in the 2-dimensional case than in 3-dimensional case, which is due to the use of a
more singular point source, we give the theoretical justification of the steps where it
is necessary, and refer to [19] for the rest of the proof. We would like to emphasize
that we are reconstructing the obstacle, localizing the eventual coated part and re-
constructing the surface impedance in one step, i.e., simultaneously; compare with
[1, 2, 3, 5, 6, 17]. Also, since the analysis is done pointwise, we can also consider
multiple obstacles and give similar results.

The validity of the theoretical reconstruction formula presented in this paper is
also checked by numerical tests with satisfactory performances. We would like to
mention the following observations from the numerics. The coated part of an obstacle
with larger impedance is less visible than the other part in terms of the value of the
indicator. This explains the practical motivation for introducing the coating, i.e., to
avoid or perturb the detection of an obstacle by applying an absorbing boundary layer.
On the other hand, for nonconvex obstacles with mixed boundary conditions, the in-
version formulas proposed in this paper also generate a satisfactory reconstruction
by combining different blowing-up criterion together. These reconstruction perfor-
mances are supported by our numerical implementations given in the last section of
this paper.

The rest of the paper is organized as follows. In section 1, we state the problem
mathematically. In section 2, we present the results, which we prove in section 3.
Section 4 is devoted to the numerical tests.

1. Statement of the problem. Let D be a bounded domain of R2 such that
R2 \ D is connected. We assume that its boundary ∂D is of class C2 and has the
following form:

∂D = ∂DI ∪ ∂DD, ∂DI ∩ ∂DD = ∅,

where ∂DD and ∂DI are open surfaces in ∂D.
The propagation of time-harmonic acoustic fields in homogeneous cylinder media

can be modeled by the Helmholtz equation

(1.1) Δu + κ2u = 0 in R2 \D,

where κ > 0 is the wave number. At the part ∂DI of the obstacle boundary, we
assume the total field u that satisfies the impedance boundary condition, while the
part ∂DD satisfies the Dirichlet boundary condition. That is,

(1.2)
∂u

∂ν
+ iκσu = 0 on ∂DI

with some impedance function σ and

(1.3) u = 0 on ∂DD,

where ν is the outward unit normal of ∂D. We assume that σ is a real valued Holder
continuous function of order β ∈ (0, 1] and has a uniform lower bound σ− > 0 on ∂DI .
The part ∂DI is referred to by the coated part of ∂D, and ∂DD is the noncoated part.

For a given incident plane wave ui(x, d) = eiκd·x with incident direction d ∈ S1,
where S1 is a unit circle in R2, we look for a solution u := ui + us of (1.1), (1.2), and
(1.3), where the scattered field us satisfies the Sommerfeld radiation condition

(1.4) lim
r→∞

√
r

(
∂us

∂r
− iκus

)
= 0
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with r = |x| and the limit is uniform for all directions x̂ ∈ S1.

The mixed problem (1.1)–(1.4) is well posed. More generally, for f ∈ H
1
2 (∂DD)

and h ∈ H− 1
2 (∂DI), there exists a unique solution of the mixed problem

(1.5)

⎧⎪⎪⎨
⎪⎪⎩

(Δ + κ2)u = 0 in R2 \D,
u = f on ∂DD,
∂u
∂ν + iκσu = h on ∂DI ,
limr→∞

√
r(∂u∂r − iκu) = 0,

and the solution satisfies

(1.6) ‖u‖H1(ΩR∩(R2\D)) ≤ CR(‖f‖H1/2(∂DD) + ‖h‖
H− 1

2 (∂DI)
),

where ΩR is a disk of radius R and CR is positive constant depending on R; see [4]
for more details.

It is well known (see [8]) that the scattered wave has the asymptotic behavior

(1.7) us(x, d) =
eiκr√

r
u∞(x̂, d) + O(r−3/2), r := |x| → ∞,

where the function u∞(·, d) defined on S1 is called the far field of the scattered wave

us corresponding to incident direction d. We introduce a constant γ2 := eiπ/4
√

8πκ
and

Φ(x, y) :=
i

4
H

(1)
0 (κ|x− y|), x �= y, x, y ∈ R2,

the fundamental solution to the Helmholtz equation in R2, where H
(1)
0 is the Hankel

function of the first kind of order zero. In this paper, we will consider the following.
Inverse scattering problem for an obstacle with mixed boundary type. Given

u∞(·, ·) on S1 × S1 for the scattering problem (1.1)–(1.4), reconstruct the shape of
obstacle D, identify ∂DI and ∂DD, and reconstruct the surface impedance σ(x) on
∂DI .

2. Presentation of the results. It is well known also (see [8]) that the scattered
field associated with the Herglotz incident field vig := vg defined by

(2.1) vg(x) :=

∫
S1

eiκx·dg(d) ds(d), x ∈ R2,

with g ∈ L2(S1) is given by

(2.2) vsg(x) :=

∫
S1

us(x, d)g(d) ds(d), x ∈ R2 \D,

and its far field is

(2.3) v∞g (x̂) :=

∫
S1

u∞(x̂, d)g(d) ds(d), x̂ ∈ S1.

We will need the identity (see [8])

(2.4) u∞(x̂, d) = −γ2

∫
∂D

{
∂us(y, d)

∂ν
e−iκx̂·y − ∂e−iκx̂·y

∂ν
us(y, d)

}
ds(y)
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Fig. 2.1. Geometric configuration.

and the representation formula for the scattered wave Φs(·, z) in R2 \D for the point
source Φ(·, z),
(2.5)

Φs(x, z) = −
∫
∂D

{
∂Φs(y, z)

∂ν(y)
Φ(x, y) − Φs(y, z)

∂Φ(x, y)

∂ν(y)

}
ds(y), x, z ∈ R2 \D.

Assume that D ⊂⊂ Ω for some known Ω with smooth boundary. For a ∈ Ω \D,
denote by {zp} ⊂ Ω \ D a sequence tending to a. For any zp, set Dp

a a C2-regular

domain such that D ⊂ Dp
a with zq ∈ Ω\Dp

a for every q = 1, 2, . . . , p and such that the
Dirichlet interior problem on Dp

a for the Helmholtz equation is uniquely solvable; see
Figure 2.1 for the configuration. In this case, the Herglotz wave operator H defined
from L2(S1) to L2(∂Dp

a) by

(2.6) H[g](x) := vg(x) =

∫
S1

eiκx·dg(d) ds(d)

is injective compact with dense range; see [8]. Let z∗p be a point on ∂Dp
a near zp such

that z∗p → a as zp → a, as chosen in Figure 2.1. Denote by ν(z∗p) the outward normal
of ∂Dp

a at z∗p . Now we consider the sequence of point sources Φ(·, zp). For every p
fixed, we construct two density sequences {gpn} and {fp

m} in L2(S1) by the Tikhonov
regularization such that

‖vgp
n
− Φ(·, zp)‖L2(∂Dp

a) → 0, n → ∞,(2.7) ∥∥∥∥vfp
m
− ∂

∂ν(z∗p)
Φ(·, zp)

∥∥∥∥
L2(∂Dp

a)

→ 0, m → ∞,(2.8)

where ∂ν(z∗
p)Φ(·, zp) := ∇xΦ(x, zp) ·ν(z∗p). Since both vgp

n
and Φ(·, zp) satisfy the same

Helmholtz equation in Dp
a, (2.7) implies that

(2.9) ‖vgp
n
− Φ(·, zp)‖

H
1
2 (∂D)

→ 0, n → ∞,

and

(2.10)

∥∥∥∥ ∂

∂ν
vgp

n
− ∂

∂ν
Φ(·, zp)

∥∥∥∥
H− 1

2 (∂D)

→ 0, n → ∞.

Similarly, it follows from (2.8) that

(2.11)

∥∥∥∥vfp
m
− ∂

∂ν(z∗p)
Φ(·, zp)

∥∥∥∥
H

1
2 (∂D)

→ 0, m → ∞,
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and

(2.12)

∥∥∥∥ ∂

∂ν
vfp

m
− ∂

∂ν

(
∂

∂ν(z∗p)
Φ(·, zp)

)∥∥∥∥
H− 1

2 (∂D)

→ 0, m → ∞.

Multiplying (2.4) by fp
m(d)gpn(x̂) and integrating over S1 × S1, we have

−
∫
S1

∫
S1

u∞(−x̂, d)fp
m(d)gpn(x̂) ds(x̂)ds(d)

= γ2

∫
∂D

{∫
S1

∂us(y, d)

∂ν
fp
m(d) ds(d) ·

∫
S1

eiκx̂·ygpn(x̂) ds(x̂)

−
∫
S1

∂eiκx̂·y

∂ν
gpn(x̂) ds(x̂) ·

∫
S1

us(y, d)fp
m(d) ds(d)

}
ds(y)

= γ2

∫
∂D

{
∂vs

fp
m

∂ν
(y)vigp

n
(y) −

∂vi
gp
n

∂ν
(y)vsfp

m
(y)

}
ds(y).(2.13)

From (2.9), (2.10), and (2.13), we have

lim
n→∞

∫
S1

∫
S1

u∞(−x̂, d) fp
m(d) gpn(x̂) ds(x̂)ds(d)

= γ2

∫
∂D

{
vsfp

m

∂Φ(y, zp)

∂ν(y)
−

∂vs
fp
m

∂ν(y)
Φ(y, zp)

}
ds(y)

= γ2v
s
fp
m

(zp)(2.14)

from the Green formula, where vs
fp
m

(·) is the scattered wave corresponding to incident

wave vi
fp
m

(x) = H[fp
m](x).

Denote by Es(x, zp) the scattered wave corresponding to the incident wave
∂Φ(x,zp)
∂ν(z∗

p) ,

which is well defined for every x ∈ R2 \ D. Then it follows from (2.11), (2.12), the
well-posedness of the direct scattering problem, and the use of interior estimate that

(2.15) Es(x, zp) = lim
m→∞

vsfp
m

(x), x ∈ R2 \D.

Finally, it follows from (2.14) that

(2.16) lim
m→∞

lim
n→∞

∫
S1

∫
S1

u∞(−x̂, d) fp
m(d) gpn(x̂) ds(x̂)ds(d) = γ2E

s(zp, zp).

The reconstruction of ∂D as well as its surface impedance in the coating part can
be established based on (2.16). For this purpose, an analysis of Es(x, z) near ∂D is the
key point. We need the natural C2 smoothness assumption on the regularity of ∂D.
Precisely, for every point a ∈ ∂D, there exists a rigid transformation of coordinates
under which the image of a is 0 and a function f ∈ C2(−r, r) such that

(2.17) f(0) =
df

dx
(0) = 0, D ∩B(0, r) = {(x, y) ∈ B(0, r); y > f(x)}

in terms of the new coordinates, where B(0, r) is the 2-dimensional ball of center 0
with radius r.

For the points a ∈ ∂D, we choose the sequence {zp}p∈N included in Ca,θ, where
Ca,θ is a cone with center a, angle θ ∈ [0, π

2 ), and axis ν(a). The main theoretical
result of this paper is as follows.
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Theorem 2.1. Assume that the boundary ∂D is of class C2 and that σ is a
real valued Holder continuous function with positive lower bound. Then the boundary
properties of the obstacle D can be identified by the following indicator functions:

1. The obstacle boundary ∂D can be constructed from the following property:

lim
p→∞

lim
m,n→∞

∣∣∣∣Re

[
γ−1
2

∫
S1

∫
S1

u∞(−x̂, d)fp
m(d)gpn(x̂) ds(x̂)ds(d)

]∣∣∣∣(2.18)

=

{
+∞, a ∈ ∂D,
< +∞, a ∈ Ω \D.

Precisely, we have the blowup rate

lim
m,n→∞

Re

[
γ−1
2

∫
S1

∫
S1

u∞(−x̂, d)fp
m(d)gpn(x̂) ds(x̂)ds(d)

]
=

±1

4π|(zp − a) · ν(a)|

(2.19)

+ O(| ln |zp − a||2),

where zp := (zp,1, zp,2) and a = (a1, a2). The sign (+) is for a ∈ ∂DD, while the sign
(−) is for a ∈ ∂DI .

2. The coated and the noncoated parts of ∂D can also be distinguished from the
following properties
(2.20)

lim
p→∞

lim
m,n→∞

Im
[
γ−1
2

∫
S1

∫
S1 u

∞(−x̂, d)fp
m(d)gpn(x̂) ds(x̂)ds(d)

]
| ln |(zp − a) · ν(a)||s =

{
+∞, a ∈ ∂DI ,
0, a ∈ ∂DD,

by choosing any fixed s ∈ (0, 1).
3. The impedance coefficient on ∂DI can be detected by the following formula:

(2.21)

lim
p→∞

lim
m,n→∞

Im
[
γ−1
2

∫
S1

∫
S1 u

∞(−x̂, d)fp
m(d)gpn(x̂) ds(x̂)ds(d)

]
| ln |(zp − a) · ν(a)|| =

κ

π
σ(a), a ∈ ∂DI .

Remark 2.2. The formula (2.18) is also true if fp
m is replaced by gpn. That is,

the singularity of Φ(x, zp) is theoretically enough for identifying ∂D. However, as
the blowup rate in this 2-dimensional case is of logarithmic order, it is not suitable
to localize the obstacle clearly in the numerical experiments. For this reason, we
introduced the density fp

m, which is related to a stronger singularity ∂
∂ν(z∗

p)Φ(·, zp), to

get a blowup rate of order |zp−a|−1. For the formulas (2.20) and (2.21), the stronger
singularity of ∂

∂ν(z∗
p)Φ(·, zp) is necessary. Moreover, we can in fact use ν(a) instead

of ν(z∗p), since ∂D has been determined in terms of (2.18). The formula (2.19) can
also be used to distinguish the coated part ∂DI from the noncoated ∂DI .

Remark 2.3. Theorem 2.1 is stated for the case of a single obstacle. However,
these results are still true for the multiple obstacle case with coated and noncoated
parts.

Remark 2.4. If a ∈ D, then the limit in (2.18) is conjectured to be ∞; see [11].
However, up to now, we do not have the full answer. The approach in [15] can be
used to justify it in the case where the frequency κ is small enough.

3. Proof of Theorem 2.1. For any given point a ∈ ∂D, we first take the
rotation Ra and the translation Ma such that

Ra(ν(a)) = (0, 1), Ra(a) + Ma = 0
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in the new coordinate system x̃. Under the transform x̃ := T(x) := Ra(x) + Ma, it
follows that

T(ν(a)) = (0, 1), T(a) = 0.

Define σ̃(x̃) := σ(x) and consider the following two problems in the coordinate
x̃ = (x̃1, x̃2) for any given z̃ = (z̃1, z̃2) ∈ R2

+. We set w̃+
σ̃(0)(x̃, z̃) and w̃+

D(x̃, z̃) to be

two functions satisfying{
Δw̃+

σ̃(0) = 0, x̃ ∈ R2
+,

( ∂
∂x̃2

w̃+
σ̃(0) + iκσ̃(0)w̃+

σ̃(0))(x̃, z̃)|x̃2=0 = −( ∂
∂x̃2

+ iκσ̃(0)) ∂
∂x2

Γ(x̃, z̃)|x̃2=0,
(3.1)

{
Δw̃+

D = 0, x̃ ∈ R2
+,

w̃+
D(x̃, z̃)|x̃2=0 = − ∂

∂x2
Γ(x̃, z̃)|x̃2=0,

(3.2)

respectively, where Γ(x̃, z̃) = 1
2π ln 1

|x̃−z̃| and the subscript D in w̃+
D(x̃, z̃) refers to the

Dirichlet boundary condition in (3.2).
We give explicit solutions to these two problems in the following proposition.
Proposition 3.1. We have the explicit form of w+

σ̃(0)(x̃, z̃),

(3.3) w̃+
σ̃(0)(x̃, z̃) =

1

4π

∫
R

ei(x̃1−z̃1)ξ1e−(x̃2+z̃2)|ξ1| |ξ1| + iκσ̃(0)

|ξ1| − iκσ̃(0)
dξ1,

while w̃+
D(x̃, z̃) has the form

(3.4) w̃+
D(x̃, z̃) = − 1

4π

∫
R

ei(x̃1−z̃1)ξ1e−(x̃2+z̃2)|ξ1|dξ1.

This proposition can be proven by expressing

w̃+
σ̃(0)(x̃, z̃) = (U+[x̃2]φ+)(x̃1), w̃+

D(x̃, z̃) = (U+[x̃2]φ−)(x̃1)

in R2
+ with (U±[x̃2]φ)(x̃1) := 1

2π

∫
R
eix̃1ξ1∓x̃2|ξ1|φ̂(ξ1, z̃)dξ1 and computing the den-

sity functions φ± from the boundary value problems (3.1), (3.2), where φ̂ is the
1-dimensional Fourier transform of φ; see [19] for explicit computations.

Define

w+
σ(a)(x, z) = w̃+

σ̃(0)(Tx,Tz), w+
D(x, z) = w̃+

D(Tx,Tz)

for x, z ∈ R2 \D near a, which is well defined by the definition of T.
The next proposition gives the relation between Es(x, z) and w+

σ(a)(x, z), w
+
D(x, z)

near the point a.
Proposition 3.2. If a ∈ ∂DI , then there exist δ(a) > 0 and C > 0 such that

|Im Es(x, z) − Im w+
σ(a)(x, z)| ≤ C for (x, z) ∈ B+(a, δ(a)) ∩ Ca,θ,(3.5)

|Re Es(x, z) − Re w+
σ(a)(x, z)| ≤ C| ln |x− a|| · | ln |zp − a||(3.6)

for (x, z) ∈ B+(a, δ(a)) ∩ Ca,θ,

where B+(a, δ(a)) := B(a, δ(a)) ∩ (R2 \D) and B(a, δ(a)) is the ball of center a and
radius δ(a).
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Similarly, if a ∈ ∂DD, we obtain (3.5) and (3.6) by replacing w+
σ(a) by w+

D.

Remark 3.3. The estimate of |Re Es(x, z) − Re w+
σ(a)(x, z)| is not optimal.

We do not need the term | ln |x − a||. The upper bound in (3.6) can be replaced by
Cα|z − a|−α for any α > 0, where Cα depends on α. But to prove Theorem 2.1 the
estimate given in (3.6) is enough.

Now we can prove Theorem 2.1 based on these propositions.
Proof of Theorem 2.1.
Step A: It follows from Proposition 3.2 that

(3.7) |Re Es(x, zp) − Re w+(x, zp)| ≤ C ln
1

|zp − a|

uniformly for all x, zp near any fixed point a ∈ ∂D, where w+(zp, zp) may be w+
σ(a)(zp, zp)

or w+
D(zp, zp), depending on the position of a. For w+(zp, zp) = w+

D(zp, zp), it follows
from (3.4) that

Re w+(zp, zp) = − 1

4π

∫
R

e−2|zp,2−a2||ξ1|dξ1 =
1

4π|zp,2 − a2|
,

while for w+(zp, zp) = w+
σ(a)(zp, zp) it holds from (3.3) that

Re w+(zp, zp) =
1

4π

∫
R

e−2|zp,2−a2||ξ1| |ξ1|
2 − κ2σ2(a)

|ξ1|2 + κ2σ2(a)
dξ1 = − 1

4π|zp,2 − a2|
+ O(1),

where zp = (zp,1, zp,2) → a = (a1, a2) ∈ ∂D as p → ∞. The application of the above
relations in (3.7) leads to (2.19) and then limp→∞ |Re Es(zp, zp)| = +∞. Now (2.18)
is proven for a ∈ ∂D.

Suppose that a is outside D. We can construct z∗p , zp tending to a as we did for
a ∈ ∂D. Recall that Es(x, zp) satisfies⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(Δ + κ2)Es(x, zp) = 0 in R2 \D,
Es(·, zp) = − ∂Φ

∂ν(z∗
p) (x, zp) on ∂DD,

( ∂
∂ν + iκσ(x))Es(x, zp) = −(∂ν + iκσ(x)) ∂Φ

∂ν(z∗
p) (x, zp) on ∂DI ,

Es(·, zp) satisfies the Sommerfeld radiation conditions,

where ν(z∗p) is the unit outward normal on ∂Dp
a at the point z∗p . Hence the boundary

condition is bounded with respect to x in H1/2(∂DD) and H− 1
2 (∂DI), respectively,

for z∗p , zp near a. It follows from the well-posedness of the direct problem and interior
estimates near a (i.e., away from ∂D) that Es(x, zp), and then Es(zp, zp), is bounded.

Step B. Let a ∈ ∂DI . From (3.3) we have

(3.8) w̃+
σ̃(0)(z̃, z̃) =

1

4π

∫
R

e−2z̃2|ξ1| |ξ1| + iκσ̃(0)

|ξ1| − iκσ̃(0)
dξ1.

By taking the imaginary part and setting z̃ = (z̃1, z̃2) = Ra(z) + Ma for z ∈ C(a, θ),
we get

Im(4πw+
σ(a)(z, z)) = 4κσ(a)

∫ +∞

0

e−2(z−a)·ν(a)rr

r2 + κ2σ(a)2
dr

= 4κσ(a)

[
− ln(κσ(a)) − ln((z − a) · ν(a))

+ 2

∫ +∞

0

ln(r2 + κ2|(z − a) · ν(a)|2σ2(a))e−2rdr

]
,(3.9)
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which leads to the first relation in (2.20) by dividing by | ln((z − a) · ν(a))|s for
0 < (z−a) ·ν(a) < 1 with 0 < s < 1 using (3.5) and (2.16). The representation (2.21)
for σ(a) can be gotten from the above relation by dividing by | ln((z − a) · ν(a))| for
0 < (z − a) · ν(a) < 1.

Step C. Let a ∈ ∂DD. Proposition 3.2 for w+
D(x, z) and (2.14) imply the second

relation in (2.20), noticing the fact that Imw+
D(z, z) = 0.

The rest of this section is devoted to the proof of Proposition 3.2. As we said in
the introduction, in the 2-dimensional case, we need more singularity analysis than
in [19]. This is due to the use of the more singular point source ∂

∂ν(z∗
p)Φ(·, zp). We

give the detailed analysis and refer to [19] for the steps which do not need important
changes.

3.1. Proof of Proposition 3.2. We give the proof for a ∈ ∂DI . The proof for
a ∈ ∂DD is similar.

Let Ẽs(x, zp) be the solution of

(3.10)

⎧⎪⎨
⎪⎩

(Δ + κ2)Ẽs(x, zp) = 0 in R2 \D,

( ∂
∂ν + iκσ(x))Ẽs(x, zp) = −(∂ν + iσ(x)) ∂

∂ν(z∗
p)Φ(x, zp) on ∂D,

Ẽs(·, z) satisfies the Sommerfeld radiation condition.

Hence (Es − Ẽs)(x, zp) satisfies

(3.11)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Δ + κ2)(Es − Ẽs)(x, zp) = 0 in R2 \D,

( ∂
∂ν + iκσ(x))(Es − Ẽs)(x, zp) = 0 on ∂DI ,

(Es − Ẽs)(·, zp) = − ∂
∂ν(z∗

p)Φ(x, zp) − Ẽs on ∂DD,

(Es − Ẽs)(·, z) satisfies the Sommerfeld radiation condition.

We state Hσ(x, z) := Ẽ(x, z) + ∂ν(z∗
p)Φ(x, z). Hence H satisfies

(3.12)

⎧⎨
⎩

(Δ + κ2)Hσ(x, z) = −∇δ(x, z) · ν(z∗p) in R2 \D,

( ∂
∂ν + iκσ(x))Hσ(x, z) = 0 on ∂D,

Hσ(·, z) satisfies the Sommerfeld radiation condition.

We have the following estimates:

(3.13)

⎧⎪⎪⎨
⎪⎪⎩

|Gσ(x, z)| ≤ c| ln |x− z||
|∇Gσ(x, z)| ≤ c|x− z|−1

|Hσ(x, z)| ≤ c|x− z|−1

|∇Hσ(x, z)| ≤ c|x− z|−2

in R2 \D, where c is a positive constant.

The justification of these properties can be derived following, for instance, the ap-
proach of [24] and [25] since an explicit form of a local fundamental solution for the
half-space case can be derived as we did in Proposition 3.1. See also [18] and [12] for
the case of elliptic problems with rough coefficients.

From these estimates, we deduce that Ẽ(·, zp) and its derivatives are bounded
for x ∈ ∂DD and zp near a ∈ ∂DI . The well-posedness of (3.11) implies that (Es −
Ẽs)(·, zp) is bounded in H1

loc(R
2 \D) for zp near a. Introducing a cutoff function near

the point a and using (3.11), we deduce that (Es − Ẽs)(·, zp) is bounded for x near
∂DI and zp near a.

This means that we can replace Es by Ẽs in Proposition 3.2.
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We introduce ws
σ(·, zp) as the solution of

(3.14)

⎧⎨
⎩

(Δ + κ2)ws
σ(x, zp) = 0 in R2 \D,

( ∂
∂ν + iκσ(x))ws

σ(x, zp) = −(∂ν + iσ(x)) ∂
∂ν(a)Φ(·, zp) on ∂D,

ws
σ(·, z) satisfies the Sommerfeld radiation condition,

and denote by ws
σ(a)(·, zp) the solution of (3.14) replacing σ(x) by σ(a). Then we have

the following result.
Lemma 3.4. There exist δ(a) > 0 and C(R) > 0 such that

|(Ẽs − ws
σ)(x, zp)| ≤ C(R)| ln d(x, ∂D)| · |ln d(zp, ∂D)|,

|Im(Ẽs − ws
σ)(x, zp)| ≤ C(R), |(ws

σ − ws
σ(a))(x, zp)| ≤ C(R)

for zp ∈ B(a, δ(a)) ∩ Ca,θ and x ∈ (R2 \D) ∩B(0, R), for any R > 0 fixed.
Let ws

σ(a),Φ(·, z) be the solution of

(3.15)

⎧⎪⎨
⎪⎩

(Δ + κ2)ws
σ(a),Φ(x, z) = 0 in Ω \D,

( ∂
∂ν + iκσ(a))ws

σ(a),Φ(x, z) = −( ∂
∂ν + iκσ(a)) ∂

∂ν(a)Φ(x, zp) on ∂D,

ws
σ(a),Φ(·, z) = − ∂

∂ν(a)Φ(x, zp) on ∂Ω

and ws
σ(a),Γ(·, z) be the solution of (3.15) replacing Φ by Γ. Then we have the following

claim.
Lemma 3.5. There exists C > 0 such that

|(ws
σ(a) − ws

σ(a),Φ)(x, z)| ≤ C, |(ws
σ(a),Φ − ws

σ(a),Γ)(x, z)| ≤ C

for z ∈ Ω \D near D and x ∈ Ω \D.
We define ws,0

σ(a) to be the solution of (3.15) replacing Φ by Γ and the Helmholtz

equation by the Laplace equation. Then we have the next claim.
Lemma 3.6. There exists C > 0 such that |(ws

σ(a),Γ − ws,0
σ(a))(x, z)| ≤ C, for

z ∈ Ω \D near D and x ∈ Ω \D.
Finally, we have the next claim.
Lemma 3.7. There exist C > 0, δ(a) > 0 such that
1. |(Im ws,0

σ(a) − Im w+
σ(a))(x, z)| ≤ C for (x, z) ∈ B(a, δ(a)) ∩ Ca,θ;

2. |(Rews,0
σ(a) − Rew+

σ(a))(x, z)| ≤ C| ln d(zp, ∂D)| for (x, z) ∈ B(a, δ(a)) ∩ Ca,θ.

By combining all the lemmas stated above, we end the proof of Proposition
3.2.

In the proofs of these lemmas we do not, in general, specify the interdependency
of the constants appearing in the estimates. However, we distinguish the constants
that do or do not depend on the angle θ.

Proof of Lemma 3.4. The function Ẽs(x, zp) − ws
σ(x, zp) satisfies

(3.16)

⎧⎨
⎩

(Δ + κ2)(Ẽs − ws
σ)(x, zp) = 0 in R2 \D,

( ∂
∂ν + iκσ)(Ẽs − ws

σ)(x, zp) = −( ∂
∂ν + iκσ)∇Φ · [ν(z∗p) − ν(a)] on ∂D,

(Ẽs − ws
σ)(·, zp) satisfies the Sommerfeld radiation condition.

We need the following lemma.
Lemma 3.8. We have the estimate

|ν(z∗p) − ν(a)| ≤ C|z∗p − a|
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for z∗p near a, where C is a positive constant.
Proof of Lemma 3.8. Take a point b ∈ ∂Ω and connect it to a by a C3 smooth

curve l such that l(0) = a, l(1) = b, l(s) ∈ Ω \D (s ∈ (0, 1)). By Theorem 7.1 of [11],

there is a C2 strict deformation family {Dl(s)
a } of a and ∂Ω. That is, each ∂D

l(s)
a is

C2 diffeomorphic to the unit circle and {Dl(s)
a } satisfies the following properties:

(i) a ∈ ∂D
l(0)
a , D ⊂ D

l(0)
a ⊂ Ω.

(ii) ∂D
l(1)
a = ∂Ω, D

l(s)
a ⊂ D

l(s′)
a (0 ≤ s < s′ ≤ 1).

(iii) l intersects ∂D
l(s)
a at l(s).

(iv) ∂D
l(s)
a depends C2 smoothly on s ∈ [0, 1].

For every s ∈ [0, 1] we define ν(l(s)) to be the unit normal of ∂D
l(s)
a at l(s). From (iv),

the map s ∈ [0, 1] → ν(l(s)) is C1. Choosing l to be a one-to-one curve near a, we
deduce that the map l(s) ∈ l([0, 1]) → ν(l(s)) is also C1 near l(0). Now let {sp} ⊂ [0, 1]
be such that sp → 0 (p → ∞) and let l be a C3 smooth curve such that z∗p := l(sp)

and {zp}p∈N ⊂ l([0, 1]). Since for every p, zp and z∗p are in Ω \D, then we can always

choose l such that l(s) ∈ Ω \D, (s ∈ [0, 1]). We set Dp
a := D

l(sp)
a . Hence the sequence

ν(z∗p) satisfies Lemma 3.8.

The function Im(Ẽs − ws
σ) satisfies

(3.17)⎧⎨
⎩

(Δ + κ2)Im(Ẽs − ws
σ)(x, z) = 0 in R2 \D,

∂
∂ν Im(Ẽ−ws

σ)(x, z) = [κσRe(Ẽs − ws
σ) − [ ∂

∂ν Im∇Φ + κσRe∇Φ] · [ν(z∗p) − ν(a)]](x, z)
on ∂D.

Hence we have

−Im(Ẽs − ws
σ)(x, zp) =

∫
∂D

F (y, zp)GN (y, x)ds(y)

+

∫
∂BR

Im(Ẽs − ws
σ)(y, zp)

∂

∂ν
GN (y, x)ds(y),(3.18)

where

F (x, zp) := κσ(x)Re(Ẽs − ws
σ)(x, z) +

[
− ∂

∂ν
Im∇Φ − κσ(x)Re∇Φ

]
(x, z)

·[ν(z∗p) − ν(a)],

and GN (x, y) is the Green’s function of the problem given by the Helmholtz equation
in BR\D with Neumann boundary condition on ∂D and Dirichlet boundary condition
on ∂BR. The normal ν is oriented outside B \D.

From (3.16), we have

−(Ẽs − ws
σ)(x, zp) =

∫
∂D

Gσ(x, y)

(
∂

∂ν
+ iκσ(y)

)
[∇Φ · (ν(z∗p) − ν(a))](y, zp)ds(y).

Hence

|(Ẽs − ws
σ)(x, zp)| ≤ c

∫
∂D

(ln |x− y|)|y − zp|−2|z∗p − a|ds(y).

For y ∈ ∂D and zp ∈ Ca,θ we have the inequality |zp − a| ≤ C(θ)|zp − y|. Applying
this inequality to z∗p , enlarging θ if necessary, we have

(3.19) |(Ẽs − ws
σ)(x, zp)| ≤ c

∫
∂D

(ln |x− y|)|y − zp|−1ds(y)
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since |z∗p − y| ≤ |zp − y|, for y ∈ ∂D and zp near a. Hence for every α > 0 there exists
Cα > 0 such that

|(Ẽs − ws
σ)(x, zp)| ≤ Cα|x− zp|−α.

From the explicit form of Φ, we have | ∂
∂ν Im∇Φ(x, zp)| · |ν(z∗p) − ν(a)| ≤ c|x − zp|−1·

|z∗p − a| and Re∇Φ(x, zp)| · |ν(z∗p) − ν(a)| ≤ c|x − zp|−1|z∗p − a|. Hence F (y, zp) ≤
Cα|y − zp|−α for y ∈ ∂D. Using the estimate |GN (x, y)| ≤ Cα ln |x− y| and choosing
α < 1, we deduce from (3.18) that

|Im(Ẽs − ws
σ)(x, zp)| ≤ Cα.

We have the first estimate of Lemma 3.4 from (3.19), i.e.,

|(Ẽs − ws
σ)(x, zp)| ≤ C ln d(x, ∂D)| · | ln d(zp, ∂D)|.

Now consider the third estimate of Lemma 3.4. We set R(x, z) := ws
σ(x, z)−ws

σ(a)(x, z).
Then it satisfies
(3.20)⎧⎨
⎩

(Δ + κ2)R(x, z) = 0 in R2 \D,
∂R(x,z)

∂ν + iκσ(a)R(x, z) = −iκ(σ(x) − σ(a))(ws
λ(x, z) + ∂

∂ν(a)Φ(x, z)) on ∂D,

R(·, z) satisfies the Sommerfeld radiation condition.

From (3.20), we have the representation

R(x, z) = −
∫
∂D

iκ(σ(y) − σ(a))Gσ(a)(y, x)

(
ws

σ +
∂

∂ν(a)
Φ

)
(y, z)ds(y)(3.21)

for (x, z) ∈ R2 \D.

We define K(x, z) := −( ∂
∂ν + iκσ(x)) ∂

∂ν(a)Φ(x, z). From (3.14) we have the represen-
tation

ws
σ(x, z) =

∫
∂D

Gσ(a)(y, x)K(y, z)ds(y);

hence, due to the estimates of the Green’s function Gσ(a)(x, y) and Φ(x, y), we have

|ws
σ(x, z)| ≤

∫
∂D

| ln(|y − x|)||z − y|−2ds(y) ≤ c

|x− z| .

From (3.21) and the Holder regularity of σ(x), we deduce that

|R(x, z)| ≤ c

∫
∂D

|y − a|β ln(|y − x|)||z − y|−1ds(y).

From the inequality |y−a| ≤ c(θ)|y− z| for y ∈ ∂D and z ∈ Ca,θ ∩B(a, δ(a)) we have

|y − a|β
|y − z| ≤ c(θ)βC

|y − z|1−β
,

which implies

|R(x, z)| ≤
∫
∂D

c(θ)βC| ln |y − x||
|y − z|1−β

dy
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and therefore |R(x, z)| = O(1) for x ∈ R2 \D and z ∈ Ca,θ ∩B(0, R).
Proof of Lemmas 3.5 and 3.6. Similarly to the proof of Lemma 3.4, these proofs

are based on the use of integral representations and the pointwise estimates of the
Green’s functions of the corresponding problems. We omit the details.

Proof of Lemma 3.7. Since ws,0
σ(a) satisfies

(3.22)

⎧⎪⎨
⎪⎩

Δws,0
σ(a)(x, z) = 0 in Ω \D,

( ∂
∂ν + iκσ(a))(ws,0

σ(a)(·, z)) = −( ∂
∂ν + iκσ(a)) ∂

∂ν(a)Γ on ∂D,

ws,0
σ(a)(·, z) = − ∂

∂ν(a) (Γ) on ∂Ω,

then it is clear that G0
σ(a) := ws,0

σ(a)(x, y) + ∂ν(a)Γ(x, y) satisfies

(3.23)

⎧⎪⎨
⎪⎩

Δ(G0
σ(a))(x, z) = − ∂

∂ν(a)δ(x− y) in Ω \D,

( ∂
∂ν + iκσ(a))(G0

σ(a))(·, z) = 0 on ∂D,

(G0
σ(a))(·, z) = 0 on ∂Ω.

We can assume without loss of generality that a = (0, 0) and ν(a) = (0, 1) by using
the rigid transformation of coordinates [Ra(ν(a)) + Ma]. Let ξ = F (x) be the local
change of variables

(3.24) ξ1 = x1, ξ2 = x2 − f(x1),

where f is the function defined in the introduction. We have the following properties:

(3.25)

⎧⎨
⎩

c1|x− z| ≤ |F (x) − F (z)| ≤ c2|x− z|,
|F (x) − x| ≤ c3|x|2,
|DF (x) − I| ≤ c4|x|

for x, z near the point a, where ci (i = 1, 2, 3, 4) are positive constants, which is due
to hypothesis on the regularity of ∂D.

Let x, z be points near a. From (3.23), we deduce that G̃0
σ(a)(ξ, η) = G0

σ(a)(x, z)
satisfies

(3.26)

{
∇ξ ·B(ξ)∇ξG̃

0
σ(a) = −JT (ξ)∇ξδ(ξ − η) · (0, 1) near F (a),

|J−T ν|B(ξ)∇ξG̃
0
σ(a) · ν̃ + iκσ(a)G̃0

σ(a) = 0 on ∂R2
+ near F (a),

where ξ := F (x) and η := F (z), B := JJT and J := ∂ξ
∂x (F−1(ξ)), and ν̃ := (0, 1)

is the unit normal to ∂R2
+. We denoted by J−T the adjoint of J−1. We have from

(3.25) that

|JT (ξ) − JT (0)| ≤ c|ξ|, |B(ξ) −B(0)| ≤ c|ξ|

and J(0) = B(0) = I.
We set Γσ(a)(x, z) := (w+

σ(a) + ∂
∂x2

Γ)(x, z) and write R̃(ξ, η) := G̃0
σ(a)(ξ, η) −

Γσ(a)(ξ, η). Then the function R̃(·, η) satisfies
(3.27) {

∇ξ ·B(ξ)∇ξR̃ = ∇ξ · (I −B)∇ξΓσ(a) + (I − JT (ξ))∇ξδ(ξ − η) · (0, 1),

B(ξ)∇ξR̃ · ν̃ + iκσ(a)R̃ = (I −B)∇ξΓσ(a) · ν̃ + iκσ(a)(1 − |J−T ν|−1)R̃,

where the first relation holds in R2
+ near F (a), while the second one is satisfied on

∂R2
+ near F (a).
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We remark that (I − JT (ξ)) is equal to the matrix given by the two line vectors
(0,−f(ξ)) and (0, 0). Hence we have

(I − JT (ξ))∇ξImΓσ(a)(ξ, η) · (0, 1) = 0.

With this remark, the problem (3.27) is exactly the one studied in [19]. We write
∂B+

r = Sr ∪ Sc
r with Sr := ∂B+

r ∩ ∂F (D). Arguing as in [19], we obtain the estimate

|Im R̃(ξ, η)| < c for ξ ∈ Sr and η ∈ CF (a),θ

and

|Re R̃(ξ, η)| < c| ln |ξ − η|| for ξ ∈ Sr and η ∈ CF (a),θ.

We go back to R(x, z) := G0
σ(a)(x, z) − Γσ(a)(x, z). We have

R(x, z) = G0
σ(a)(x, z) − Γσ(a)(F (x), F (z)) + Γσ(a)(F (x), F (z)) − Γσ(a)(x, z),

which can be rewritten as

R(x, z) = R̃(F (x), F (z)) + [Γσ(a)(F (x), F (z)) − Γσ(a)(F (x), z)]

+ [Γσ(a)(F (x), z) − Γσ(a)(x, z)].(3.28)

By the same argument as in [19], we end up with the estimate

(3.29) |Im R(x, z)| ≤ c(θ)

for x ∈ B(a, δ(a)) such that F (x) ∈ Sr and z ∈ Ca,θ ∩B(a, δ(a)).

For z ∈ Ca,θ ∩B(a, δ(a)
2 ) and x ∈ [∂B(a, δ(a))] ∩R2 \D, we have

(3.30) |Im R(x, z)| ≤ c

with some positive constant c, because Ca,θ ∩ B(a, δ(a)
2 ) and [∂B(a, δ(a))] ∩ R2 \ D

are separated sets. Since in B(a, δ(a)) ∩ (R2 \D), we have ΔxIm R(x, z) = 0; then,
using (3.29) and (3.30), we have |Im R(x, z)| ≤ c(θ) for x ∈ [R2 \D] ∩B(a, δ(a)) and

z ∈ Ca,θ ∩B(a, δ(a)
2 ), by the maximum principle.

Similarly we have |ReR(x, z)| ≤ C| ln |x− z|| for x ∈ B(a, δ(a)) such that F (x) ∈
Sr and z ∈ Ca,θ ∩ B(a, δ(a)). Hence |ReR(x, z)| ≤ C| ln d(z, ∂D)| for x ∈ B(a, δ(a))
such that F (x) ∈ Sr and z ∈ Ca,θ ∩B(a, δ(a)), which is the counterpart of (3.30) for

ReR̃. The rest of the proof is the same as that for the imaginary part.

4. Numerical tests. In this section, we consider two reconstruction model prob-
lems for numerical tests based on Theorem 2.1. In the first model we take the obstacle
to be a disc, and on its whole boundary we impose the impedance boundary condition.
The purpose of considering such a model is to show the influence of wave number κ
and singularity strength on the inversion scheme. In the second model, we consider a
nonconvex obstacle with mixed boundary conditions. We check our inversion formulas
fully, especially for the identification of a different type of boundary. Also we show
the effect of the nonconvex part on the inversion performance.

In the reconstruction scheme, the approximation of Φ(x, zp) and Φν(a)(x, zp) by
the Herglotz wave function plays a key role. To do this, we need to construct the
approximate domain Dp

a in the way mentioned in section 2. Then its density functions
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can be determined by the standard argument of a minimum norm solution of the
integral equation of the first kind. In this way the numerators in (2.18), (2.20), and
(2.21) can be computed for every sequence of points (zp)p∈N approaching ∂D in terms
of the far-field pattern.

In testing our inversion scheme, we simulate the inversion input data (far-field
pattern) by solving the direct problem using the combined single- and double-layer
potential method; see [8] and [9].

In subsections 4.1 and 4.2, we consider the first model, while subsection 4.3 is
dedicated to a nonconvex obstacle with mixed boundary conditions, from which we
can test our theoretical results.

4.1. Reconstruction of ∂D. For the numerical test we take ∂D = {x =
(x1(t), x2(t)) = 1.2(cos t, sin t) : t ∈ [0, 2π]}. We can construct Dp

a in a special way by

∂Dp
a = {(x̃1(t), x̃2(t)) = (1.2 + δ0(p))(cos t, sin t) : t ∈ [0, 2π]}

and take zp = (x̃1(t0), x̃2(t0))+δ1(p)(cos t0, sin t0) outside of D
p

a for a = 1.2(cos t0, sin t0)
in ∂D. The smallness of δ1(p) determines the singularity of Φ(x, zp),Φν(a)(x, zp) on
∂Dp

a near zp.
Example 1. Construction of ∂D with unknown impedance σ(x) for given far-field

data.
It follows from the first point of Theorem 2.1 that the boundary ∂D can be

reconstructed from the blowup behavior of the approximate values of the indicator
function:

(4.1) Im,n(zp) :≈
( π

N

)2

∣∣∣∣∣∣
2N−1∑
i,j=1

Re
(
γ−1
2 U∞(i, j)F p

m(j)Gp
m(i)

)∣∣∣∣∣∣
for large m,n, where Gp

n(i) := gpn(x̂i), F p
m(j) := fp

m(d̂j), and U∞(i, j) represents
u∞(−x̂i, dj).

Therefore, we can test the numerical performance of this formula by taking zp
approaching ∂D. If Im,n(zp) is greater than some a priori given large value, for fixed
m,n large enough, we consider zp to be almost in ∂D. Notice that only the singularity
in Φν(z̃p)(x, zp) is needed in this procedure; we do not need the boundary ∂D.

In our numerical implementations, we take κ = 0.6, N = 32 and keep the sin-
gularity of Φ(·, zp) unchanged near ∂Dp

a by fixing δ1 = 0.015. When zp approaches
∂D by decreasing δ0 from different directions t0, we get different values of Im,n(zp).
We choose the same constant CB as the criterion for the blowing-up of the indicator
Im,n(zp(t0)) at different direction t0. That is, we choose zp(t0) as the approximation
of the point a ∈ ∂D in the direction t0 when Im,n(zp(t0)) is larger than CB. Then
the constructed approximate position of ∂D is given by interpolating those points.
In this way, we can draw the approximate shape of ∂D by choosing all directions t0
using the same given CB. As obtained in the theoretical result, the larger the value
CB is, the better the approximation of ∂D should be.

Consider the boundary reconstruction problem with nonconstant impedance

σ(x) =
2 + x1x2

(3 + x2)2
, x ∈ ∂D.

Under this configuration, the reconstructions for different blowup criteria are shown
in Figure 4.1(left), while the distribution of indicator value is given in the right panel.
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Fig. 4.1. Reconstruction of ∂D for variable impedance with κ = 0.6 with different blowup con-
stants CB; the values of the indicator are small in the directions corresponding to large impedance.

There is an interesting phenomenon in the numerics. For a reasonable indicator
value CB = 2, we can see the whole rough shape of ∂D. However, for larger values,
i.e., CB = 3, most of the part of ∂D can be seen with more satisfactory accuracy,
but some part, i.e., (ÂB), is not visible. In this part the indicator value is less than 3
(but, of course, bigger than 2). This numerical performance is closely related to the
impedance distribution in ∂D. It can be seen from the right-hand part of Figure 4.1
that the indicator value is obviously smaller in the narrow domain at each radius layer.
Therefore as r decreases, the part of ∂D related to these angles cannot be detected
with the same accuracy. Considering the distribution of boundary impedance, this
part corresponds to σ(x) with large value, so it cannot be seen as clearly as the other
part by using the same criterion values CB. This may be explained by the fact
that the scattered wave along these directions will be much absorbed. Another, but
related, reason is the property (2.19), i.e.,

lim
m,n→∞

Re

[
γ−1
2

∫
S1

∫
S1

u∞(−x̂, d)fp
m(d)gpn(x̂) ds(x̂)ds(d)

]
=

±1

4π|(zp − a) · ν(a)|

+ O(| ln |zp − a||),

where O(| ln |zp − a||) may be large if σ is large near the point a. Hence numerically
the second term can weaken the blowup of the first term.

Physically, this is the reason why we introduce the coated part of an obstacle,
i.e., to avoid or perturb the detection of the obstacle.

The other special property of this example is that the whole boundary shape
can be reconstructed well using only one blowup criterion CB. This comes from the
special geometric shape and the fact that we have a complete impedance boundary
condition. However, in the case of general problems, as for a nonconvex obstacle,
with a mixed boundary condition we need to use multiple blowup values to get a
satisfactory reconstruction; see subsection 4.3.

4.2. Reconstruction of σ(x) for known ∂D. For a given a ∈ ∂D, we take
zp ∈ R2 \Dp

a with D ⊂⊂ Dp
a.

By the theoretical result given in (2.21), the approximate formula for σ(a) is

(4.2)
κ

π
σ(a) ≈ 1

| ln((zp − a) · ν(a))|

(π
n

)2 2n−1∑
i,j=1

Im
(
γ−1
2 U∞(i, j)F p

m(j)Gp
n(i)

)
for large m,n and small |zp − a|.
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wave numbers κ = 0.6 (left) and κ = 0.7 (right), where we fix δ1 = 0.015.
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Fig. 4.3. Reconstruction of σ(x) = 2+x1x2
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for δ1 = 0.010, 0.015, 0.025, 0.035 with two different

wave numbers κ = 0.6 (left) and κ = 1.0 (right), where we fix δ0 = 0.002.

Example 2. Consider the variable impedance distribution given in Example 1.

We take n = 32. First, let us keep the singularity unchanged by fixing δ1 and
shrink the radius of ∂Dp

a such that zp → a ∈ ∂D. The computed values of σ(x(t))
with fixed δ1 = 0.015 and different δ0 = 1.22, 0.82, 0.12, 0.02 for two wave numbers
κ = 0.6, κ = 0.7 are shown in Figure 4.2. It can be seen from this figure that when
δ0 → 0 (δ0 = 0.02), the reconstruction results are satisfactory for both wave numbers.

It is interesting to see that when δ0 is large enough (δ0 = 1.22), the reconstruction
is invalid, even if here we use a strong singularity δ1 = 0.015. This is reasonable since
the approximation to the strong singularity of the fundamental solution contains much
error.

Finally, we fix ∂Dp
a near ∂D and take zp tending to ∂Dp

a. In our configuration,
this means δ1 → 0 for fixed small δ0. The tests with δ0 = 0.002 for two wave
numbers κ = 0.6, 1.0 at different δ1 = 0.025, 0.020, 0.015, 0.010 are given in Figure 4.3,
which shows the influence of the singularity. It can be seen that the approximation
is sensitive to the wave number κ. The reason is that we ignore the remaining term
C/| ln |(zp−a)·ν(a)||, where the constant C comes from (3.5). Theoretically, this term
tends to 0 as zp → a. However, this procedure causes a difficulty in approximating
the fundamental solution. We expect that the constant C becomes large as κ becomes
small. This is naturally related to the following relation, in the 2-dimensional case,
between the fundamental solution to the Helmholtz and Laplace equations:

H
(1)
0 (κ|x− y|) = − 1

2π
ln(|x− y|) − lnκ + O(1)
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Fig. 4.4. Reconstruction of ∂D with CB = 3.0 (left) and four CBs (right) by concave-hull.

locally for x, y ∈ R2 and κ small enough; see [8]. This implies that the difference
between the fundamental solution behaves as lnκ. So the constant C should have a
similar behavior with respect to κ. These remarks on the dependency on wave number
κ are also observed in the tests for detecting ∂D. However, we think that this is just
a 2-dimensional phenomenon.

4.3. Reconstruction of an obstacle with mixed-type boundary. Since
the main advantage of our inversion method is its ability to identify the full complex
obstacle simultaneously, here we consider the numerical behavior of our inversion
method acting on a nonconvex obstacle with mixed boundary condition.

Example 3. Consider a nonconvex obstacle D with the boundary

∂D = {x : x(t) = (x1(t), x2(t)) = (cos t + 0.65 cos 2t− 0.65, 1.5 sin t), t ∈ [0, 2π]}.

Let ∂D be composed of sound-soft part ∂DD for t ∈ [0, 1.42π], and impedance part
∂DI for t ∈ [1.42π, 2π]. In ∂DI , we assume the impedance coefficient σ(x(t)) ≡ 3.

We also choose ∂Dp
a and zp in a special way. For two small constants δ0, δ1 > 0,

we take

(4.3)

{
∂Dp

a = {y(t) := x(t) + δ0 × (cos t, sin t) : x(t) ∈ ∂D, t ∈ [0, 2π]},
zp(t) = y(t) + δ1 × (cos t, sin t) for t ∈ [0, 2π].

In terms of Theorem 2.1, the inversion schemes contain the following three steps:
Step 1. Identify the location of ∂D using (2.18);
Step 2. Distinguish the different parts of ∂D in terms of (2.20);
Step 3. Reconstruct σ(x) in ∂DI from (2.21).
We present the numerical results with fixed wave number κ = 0.9 and δ1 = 0.01.
Step 1. we take n = 16 and decrease δ0 = l × 0.05 by taking l from 20 to 2.

The indicator values in (2.18) for ∂D are computed for zp(t) and ∂Dp
a specified here

for every direction tj and different δ0. Then we draw the contour line to obtain an
approximation of ∂D. As for Examples 1 and 2, we choose some appropriate value
CB for the stopping rule of l. In the case when the indicator is always less than CB
in some direction, we take zp for the initial guess (the largest l) as an approximate
location of points in ∂D.

In this case, the situation is different from the examples given in the previous
subsections; the reconstruction of the boundary using only one blowup value CB
is not sufficient. See the left-hand picture in Figure 4.4 for the reconstruction of
CB = 3.0, where the kite-shape in red color is the exact obstacle. Enlarging CB
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Fig. 4.5. Reconstruction of ∂D by concave-hull using eight CBs (left) and twelve CBs (right).

can improve the reconstruction along some directions, but the approximation to the
whole boundary is still not satisfactory. The reason for this phenomenon is that our
theoretical results do not guarantee the uniform blowup property for all directions.

0 0.2 0.4 0.6 0.8 1
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4
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C 

Fig. 4.6. The indicator values for boundary shape.

To overcome this difficulty and apply our reconstruction formula, we propose to
combine the reconstruction results for different CB together and take the concave
hull. Then ∂D can be approximated very well; see Figure 4.4, where we compare the
shape given by using one CB only and the one obtained by using four CB values. In
Figure 4.5, we show the reconstruction results by using eight and twelve CB values.
Precisely, the reconstructions in Figures 4.4 and 4.5 correspond to the following CB
values:

Figure 4.4 (right): four values–CB = 0.8, 2.5, 3.0, 3.5;
Figure 4.5 (left): eight values–CB = 0.8, 2.5, 3.0, 3.5, 1.2, 1.5, 5.5, 6.5;
Figure 4.5 (right): twelve values–CB = 0.8, 2.5, 3.0, 3.5, 1.2, 1.5, 5.5, , 6.5, 2.0, 3.2,

4.5, 6.0.
It can be seen that the reconstruction is satisfactory. This means that, using the

technique of combining several CB’s, the theoretical formulas provide good recon-
structions.

We give the indicator value distribution in Figure 4.6 for all directions t with
different l at each direction. We can see how the indicator near t = 0.58π, π, 1.42π
has some special property, which explains the difficulty of reconstructing these parts
shown in Figures 4.4 and 4.5.

Next we consider Steps 2 and 3 by using (2.20) and (2.21), that is, we test
the numerical behavior in distinguishing the boundary type and impedance in ∂DI .
Different from the formula (2.18), these two formulas need the boundary shape ∂D,
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which is theoretically obtained from (2.18). Since we can get some approximation
to ∂D only numerically in terms of (2.18), it is necessary to check the approximate
versions of (2.20) and (2.21) for distinguishing the boundary type and recovering σ(x)
on the coating part.

Step 2. We express the quantitative behavior for distinguishing ∂DD and ∂DI by
giving the indicator distribution. As explained in Step 1, by using different blowup
criteria in the shape reconstruction, we can get a good approximation to ∂D. In this
step, we specify ∂D̃ ≈ ∂D with an explicit expression given by

(4.4) ∂D̃ =

(
cos δ∗ − sin δ∗

sin δ∗ cos δ∗

)
[∂D + {δ∗ × (cos t, sin t) : t ∈ [0, 2π]}]

with small constant δ∗ > 0, for simplicity. In this way, D̃ is no longer symmetric with
respect to x1, and the location for the corner part also differs from that of ∂D. To
check the effect of this domain approximation on (2.20) and (2.21), we also evaluate
them using the exact ∂D.

We generate (∂D̃p
a, ∂D

p
a) from (∂D̃, ∂D) and therefore the sequences ({z̃p}, {zp})

as in (4.3). In this way, we have z̃p → ã ∈ ∂D̃, zp → a ∈ ∂D, and δ0, δ1 → 0. In
the computation, we take n = 32 and decrease δ0 = l × 0.05 → 0 by taking l from
10 to 2. The indicator behavior using the same far-field pattern for ∂D and ∂D̃ with
δ∗ = 0.05 is given in Figure 4.7.

Noticing the fact that the sound-soft part corresponds to the parameter t ∈
[0, 1.42π], while the impedance part is related to t ∈ [1.42π, 2π], the above numerical
behavior supports (2.21) strongly with a large difference in [0, 1.42π] and [1.42π, 2π];
that is, we can distinguish the boundary type in terms of the obvious difference of
indicator values when zp approaches the boundary (for small l), even if the boundary
shape is known with a relative error.

Step 3. We compute the impedance coefficient on ∂DI by applying the formulas
for ∂D and also for its approximation ∂D̃. The reconstruction behavior for exact
∂D as well as its approximation ∂D̃ with δ∗ = 0.05 is shown in Figure 4.8. It can
be seen that, for a given exact boundary shape ∂D, the theoretical result (2.21) for
the impedance is valid (left figure), except near the end points of ∂DI . The rough
approximation in this part is reasonable, since this part is near to the sound-soft
boundary. Using the approximate domain ∂D̃, the impedance can still be captured
(right figure). Of course, the reconstruction is less accurate. Due to the nonconvex
property of the obstacle and the mixed boundary condition, we think these results
are satisfactory.
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Fig. 4.8. Recovery of σ using exact ∂D (left) and approximate ∂D̃ with δ∗ = 0.05 (right).
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However, if the perturbation for ∂D is very large, then the reconstruction of
σ(x(t)) is much contaminated. This is due to the sensitivity of the approximate
reconstruction to the boundary shape, especially for the corner part of the nonconvex
domain, noticing that in the formula (2.21), the normal direction ν(a) appears. The
perturbation scheme (4.4) moves the position of the corner part by rotation. An
inversion result for the impedance with δ∗ = 0.1 is shown in Figure 4.9. From the left
picture of this figure, we see how the corner part of ∂D̃ with δ∗ = 0.1 has been much
moved from that of ∂D with a relative error almost 10%.

We conclude that the theoretical results (2.20) and (2.21) are well supported by
our numerical tests even for nonconvex domains. If the approximate domain ∂D̃ is
used in these two formulas, then we can still distinguish the boundary type in terms of
the obvious blowup property of the indicator. However, the quantitative identification
of impedance depends on the error level of ∂D.
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DIFFUSION LIMITED REACTIONS∗

BYRON GOLDSTEIN† , HAROLD LEVINE‡ , AND DAVID TORNEY†§

Abstract. Changes to the relative separation of molecules or other interacting species on account
of diffusion accompany their associative or dissociative reaction. The molecules are symbolized, for
two distinct types, A,B, by the relations A + B AB, and, if [A], [B], and [AB] denote the
corresponding densities, the equation d

dt
[AB] = k+[A][B] specifies an associative process with forward

rate constant k+. An approximate version of the preceding takes the form of a linear differential
equation, which can be employed to obtain significant estimates for both k+ and the flux function
d[AB]/dt. Such estimates are presented in different circumstances, including the localization of A,B
on a common planar surface or their distribution in space, and also when the domain of A is a half
space whereas that of B is a bounding planar surface. It proves advantageous to reformulate the
last, a mixed boundary value problem, in terms of a linear integral equation. Biological applications
are discussed, including the mechanism for the observed phosphorylation of proteins in resting cells
and the incipience of phototransduction in rod photoreceptors.

Key words. Beltrami, Bessel function, cell membrane, cell signalling, chemical reaction, diffu-
sion controlled, elliptic, equilibrium, integral equation, kinetics, ODE, PDE, rat basophilic leukemia
(RBL) cell, rhodopsin, Smoluchowski, surface reaction, transducin, virial expansion
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1. Introduction.

1.1. Diffusion limited reaction. Recall that diffusion limited reactions are
those in which diffusion transports the reactants to “reaction range,” where reac-
tion takes place instantaneously. Diffusion and reaction introduce spatial correlations
between molecules, which influence the rate of reaction. Nonequilibrium thermody-
namics has been applied to the irreversible diffusion limited kinetics A + B → AB
(cf. [8]); here the latter is encompassed as a special case of the following reversible
reaction:

A + B
k+

�
k−

AB,

where k+ and k− denote the intrinsic forward and reverse rate constants associated,
respectively, with molecular association, for which d[AB]/dt equals k+[A][B], with
reaction occurring at range r = a, and molecular dissociation, for which d[AB]/dt =
−k−[AB], with dissociation occurring at range r = d (> a). (The [A], [B], etc.,
notations denote respective macroscopic concentrations, i.e., expected numbers of
molecules inside a “unit measure.”)
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Note that at equilibrium, k+[A][B] = k−[AB]. The obvious advantage of consid-
ering a system at equilibrium is that time is expunged from consideration. The cost
is the introduction of the parameter d, but the latter will be seen to be advantageous
in applications.

k+ is expressible primarily in terms of the range parameters a and d and the diffu-
sion coefficients, denoted DA and DB , respectively, with the sum DA +DB hereafter
denoted D. As will be seen, k+ is obtainable from a pair density function, �(r): the
density of A times the density of B at an arbitrary pair of respective points, lying
at range r from one another. Differential equations for �(r) comprise triple-density
functions [21]. However, using the independent-pairs approximation for triple densi-
ties, these equations become effectively linear in �(r), with dissociation modeled by a
Dirac delta-function source.

�(r) is obtained for reactions occurring in R
2 and in R

3 (see sections 2 and 3). The
inclusion of triple densities affords improvement upon the Smoluchowski theory [13].
This pioneering theory is based on an oversimplified model, but its shortcomings
obtrude only when the theory is applied in challenging settings. The theory yields,
for instance, the quandary that k+ = 0 for reactions in R

2. Our approach affords direct
resolution thereof (cf. [8]) and, furthermore, yields two (or more) terms of asymptotic
virial expansions for k+. Section 4 addresses an interfacial reaction, combining aspects
of reactions in R

2 and R
3. Biological applications of our results are described in

section 5, and section 6 collects the k+’s derived herein.

1.2. Biological motivations. Mobile receptors diffusing over the surface of a
biological cell allow the cell to sense its environment and to respond to it. For many
types of receptors, including growth-factor receptors, cytokine receptors, and immune
recognition receptors, the aggregation of these receptors is required for the turning on
or off of a cellular response. Therefore, for these receptors, the binding of the ligand
to the receptor is insufficient to trigger a cellular response. Instead, the ligand induces
the receptors to aggregate, holding the receptors in proximity for times long enough
for various chemical modifications to occur on their cytoplasmic domains.

For example, growth-factor receptors are protein tyrosine kinases (PTKs), en-
zymes that can add a phosphate group to tyrosine residues. Growth-factor receptors
also contain tyrosines in their cytoplasmic domains—whose phosphorylation induces
specific functions, such as controlling the PTK’s enzymatic activity and determining
which cytoplasmic proteins (adapters and other participating enzymes) it can asso-
ciate with. When a growth factor induces two receptors to aggregate, a change occurs
inside the cell: the cytoplasmic domains of the receptors become phosphorylated, cre-
ating binding sites for proteins participating in the chemical cascade that leads to a
cellular response. This is the mechanism for conveying to the inside of the cell the
information that a hormone is present outside the cell, initiating what is referred to
as cell signalling.

Quantitative insights into the kinetics of the primary events in receptor-initiated
cell signalling require estimates for the forward and reverse rate constants for the
steps that lead to receptor aggregation. Here, by means of a straightforward theory,
we obtain the diffusion limited forward rate constant for a reaction between two species
diffusing in a plane: a model applicable to reactions in cell membranes. This constant,
which is related to the mean first passage time for two reactants to approach within
a given distance, puts an upper bound on the rate at which (irreversible) receptor
aggregation can occur. Furthermore, in section 5.1 we point out the importance of
this rate constant, and of the corresponding reverse rate constant, for understanding
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the background phosphorylation of receptors that is observed in the absence of any
ligand-induced receptor aggregation.

Many cellular responses to hormones, e.g., growth factors, are mediated by cyclic
nucleotides. Somewhat analogously, in photoreceptors, photons substitute for hor-
mones as the effectors. Diffusion limited reactions taking place on phospholipid
membranes—the discs of photoreceptors—are involved in phototransduction, and, in
section 5.2, we quantitatively analyze the kinetics of its first reaction, the activation
of the protein transducin, via the theoretical rate constant.

Although our main motivation is reactions on cell surfaces, we also present results
for diffusion limited reactions in three space to verify that our theory reproduces
an expression previously obtained by other means [3] and to intimate the range of
applicability of our approach. Also, in section 4, we generalize a result concerning
the diffusion limited forward rate constant for an interfacial reaction with ligands in
solution binding to stationary receptors on a planar surface [2]. By means of a PDE
with mixed boundary conditions, the receptors are also allowed to diffuse; we obtain
the dependence of the diffusion limited forward rate constant upon both the diffusion
coefficient of ligands in solution and the diffusion coefficient of receptors in the plane.

1.3. Fundamentals. For the present aims, the desideratum is the “reaction
flux,” Φ, whose dimensions are those of a concentration divided by time, and whose
interpretation is the rate of creation of [AB]; whence, from the foregoing kinetic
formulae,

Φ = k+[A][B].

As will be seen, Φ is obtained from the A B pair-density �(r), r = a. The lat-
ter function satisfies an equation comprising triple-density functions τα(r, s, θ) and
τβ(r, s, θ) [21], having dimensions of the cube of a concentration. These subscripts
distinguish two types of triples—B A B and A B A, respectively. These triples are
viewed as being spatially centered on the sandwiched molecule, with their subscript
connoting the latter, i.e., α for A and β for B. Furthermore, r and s denote the dis-
tances between the (centers of the) first and middle and between the middle and last
molecules of the foregoing triples, and θ denotes the angle, at the central molecule,
between the displacement vectors to the first and last, 0 ≤ θ ≤ π.

Similarly, an equation for τ includes quadruple-density functions, etc. How-
ever, as will be seen, the (unformulated) hierarchy may be pruned back by using
the “independent-pairs” approximation for triple densities, yielding an equation in-
volving only �(r) [21]. The additional natural assumption of constant pair densities
for like-molecule pairs yields the following expressions for the τ ’s as a product of two
�’s divided by a concentration:

(1) τα(r, s, θ) � �(r)�(s)/[A], τβ(r, s, θ) � �(r)�(s)/[B], a ≤ r, s.

These constitute our independent-pairs approximations.

2. Reactions in planar surfaces. Here molecular trajectories are restricted
to a plane. �(r) has the dimensions of L−4 and satisfies the following equation. For
a ≤ r < ∞,

D

r

d

dr
r
d

dr
�(r) +

[
2Da

∫ π

0

{
∂

∂s
τα(R, s, θ)

∣∣∣∣
s=a

+
∂

∂s
τβ(R, s, θ)

∣∣∣∣
s=a

}
dθ

]∣∣∣∣R=∞

R=r

(2)

= −Φδ(r − d)

2πd
,
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with boundary conditions �(a) = 0 and �(∞) = [A][B], and where Φ, with the
dimensions of L−2T−1, is given by

(3) Φ = 2πaD
d�(r)

dr

∣∣∣∣
r=a

.

The foregoing equation is exact, which may be seen as follows.
The rate at which A B pairs react, at R = a, given in (3), is balanced by a

dissociative flux, at R = b, which is the rate of creation of such pairs at range d,
implementing microscopic balance. (For a physical interpretation of delta-function
sources, see [11, p. 6]). Triples may be used to model the reaction of either molecule
of such pairs with a suitable third molecule [21]. Thus, triple densities contribute
an inhomogeneous term: the one contained in square brackets. The R = r term
reproduces the (net) rate of diminution of �(r) due to reaction of either member
of the corresponding pair with appropriate third molecules, and the corresponding
R = ∞ term is a constant, included so that the Laplacian of �(r) vanishes as r → ∞,
to reproduce the Smoluchowski theory at long range.

Thus, spatial correlations among triples of molecules influence �(r) and thereby Φ.
Substituting the independent-pairs approximations (1) and performing the integrals
in (2), using (3), gives

(4)
D

r

d

dr
r
d

dr
�(r) + Φ([A][B] − �(r))

(
1

[A]
+

1

[B]

)
= −Φδ(r − d)

2πd
.

The leftmost term is the cylindrically symmetric Laplacian. The boundary conditions
are as above. The weak nonlinearity of (4) poses no impediment to its solution.

Let χ(r) = [A][B] − �(r); let ā = a/�, d̄ = d/�, and r̄ = r/�, where

(5) �
def
=

[
Φ

D

(
1

[A]
+

1

[B]

)]−1/2

.

Adopting these notations, (4) becomes

(6)
1

r̄

d

dr̄
r̄
d

dr̄
χ(r̄) − χ(r̄) =

Φδ(r̄ − d̄)

2πDd̄
,

with χ(ā) = [A][B] and χ(∞) = 0. Thus,

χ(r̄) =

{
C1I0(r̄) + C2K0(r̄), ā ≤ r̄ ≤ d̄,

C3K0(r̄), d̄ ≤ r̄,

where I0 and K0 denote modified Bessel functions of index zero. The constants C1,
C2, and C3 are to be obtained using three conditions, namely, χ(ā) = [A][B], the
continuity of χ at r̄ = d̄, and the jump condition required by (6), namely,

r̄
dχ

dr̄

∣∣∣∣d̄+0

d̄−0

=
Φ

2πD
.

These conditions yield

C1 = −ΦK0(d̄)

2πD
,
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C2 =
[A][B]

K0(ā)
+

ΦI0(ā)K0(d̄)

2πDK0(ā)
, and

C3 =
[A][B]

K0(ā)
+

Φ(I0(ā)K0(d̄) − I0(d̄)K0(ā))

2πDK0(ā)
.

Thus, from (3),

Φ = −2πDā
dχ(r̄)

dr̄

∣∣∣∣
r̄=ā

= 2πD

{
āK1(ā)[A][B]

K0(ā)
+

ΦK0(d̄)

2πDK0(ā)

}
or

(7) Φ =
2πDāK1(ā)[A][B]

K0(ā) −K0(d̄)
.

With reference to (5), the foregoing may be regarded as implicit equations in Φ, but
it simplifies matters and suffices for the present aims to focus on two limiting cases,
(i) ā < d̄ → 0 and (ii) ā → 0, d̄ → ∞, germane to irreversible reactions. Successive
approximations yield, for (i),

Φ ∼
2πD[A][B]

log d/a
,

where the omitted terms are O(ā2 log ā+ d̄ 2 log d̄), establishing that corrections to Φ
are substantially smaller than the given term. Similarly, for (ii), these approximations
yield

(8) Φ ∼
2πD[A][B]

− log
√
ψ

(
1 +

log
√

− log
√
ψ + 1

2 log 2 − γ

log
√
ψ

+ · · ·
)
,

where ψ is the expected number of A molecules plus B molecules within a circle
of radius a, ψ = πa2([A] + [B]) � 1, and where γ

.
= 0.577 . . . denotes the Euler–

Mascheroni constant. One may note, to leading order, that the functional dependence
of k+ upon a (via ψ) was previously obtained from nonequilibrium thermodynamics
[8, (121)–(122)].

3. Bulk reactions. Here the molecular trajectories are in Euclidean three space,
and the notations and definitions of section 2 are also adopted. In analogy to (4), the
differential equation is

(9)
D

r2

d

dr
r2 d

dr
�(r) + Φ([A][B] − �(r))

(
1

[A]
+

1

[B]

)
= −Φδ(r − d)

4πd2
,

with the previous boundary conditions. This �(r) has the dimensions of L−6. The left-
hand term of (9) is the spherically symmetric Laplacian. Here Φ, with the dimensions
of L−3T−1, is given by

(10) Φ = 4πa2D
d�(r)

dr

∣∣∣∣
r=a

.

As above, (9) may be written

1

r̄2

d

dr̄
r̄2 d

dr̄
χ(r̄) − χ(r̄) =

Φδ(r̄ − d̄)

4πDd̄2�
,
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with χ(ā) = [A][B] and χ(∞) = 0. Thus,

χ(r̄) =

⎧⎪⎨
⎪⎩

C1
er̄

r̄
+ C2

e−r̄

r̄
, ā ≤ r̄ ≤ d̄,

C3
e−r̄

r̄
, d̄ ≤ r̄.

C1, C2, and C3 are obtainable as before; here the jump condition is

r̄2 dχ

dr̄

∣∣∣∣d̄+0

d̄−0

=
Φ

4πD�

def
= Φ3/2Γ,

where reference to (5) yields

(11) Γ =
1

4πD�
√

Φ
=

1

4πD3/2

√
1

[A]
+

1

[B]
.

It follows that

C1 = −Φ3/2Γe−d̄

2d̄
,

C2 = āeā[A][B] +
Φ3/2Γe2ā−d̄

2d̄
, and

C3 = āeā[A][B] +
Φ3/2Γ(e2ā−d̄ − ed̄)

2d̄
.

Thus, from (10), using (11),

Φ = −4πDa2

�

dχ(r̄)

dr̄

∣∣∣∣
r̄=ā

= 4πDa

{
[A][B](1 + ā) +

Φeā−d̄

4πDd

}
.

As before, we address the limits (i) ā < d̄ → 0 and (ii) ā → 0, d̄ → ∞. For (i),

Φ ∼
4πDa[A][B](1 + o(

√
φ))

1 − a/d
;

i.e., the first correction is O(φ), where φ is the expected number of A molecules plus
B molecules within a sphere of radius a: φ = 4

3πa
3([A] + [B]) � 1. Similarly, for (ii),

Φ ∼ 4πDa[A][B](1 +
√

3φ + · · · ).

The leading-order behavior reproduces the Smoluchowski rate, and the first-order
correction agrees, for the case [A] � [B], with that of [3, (1.3)].

4. Reaction on an interface. Here the B’s and the AB’s diffuse in the plane
z = 0, whereas the A’s diffuse in the half space z ≥ 0. Alternative interfacial diffusion
limited reactions have been considered (cf. [2, 5]).
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4.1. Partial differential equation. The A B pair density is denoted �(r, z),

with r =
√
x2 + y2 and with r and z denoting the magnitudes of perpendicular

components of displacement. This density is the product of the concentrations of A
and B. Thus, �(r, z) has the dimensions of L−5. Here it is taken to be the solution
of the Smoluchowski differential equation

(12)

(
D

r

∂

∂r
r
∂

∂r
+

DA∂
2

∂z2

)
�(r, z) = −Φδ(z)δ(r − d)

2πd
,

with boundary conditions �(r, 0) = 0; 0 < r < a, ∂�(r, 0)/∂z = 0; a < r < ∞,
�(r, z) → [A][B] as r2 + z2 → ∞. Here

(13) Φ = 2πDA

∫ a

0

∂�(r, 0)

∂z
rdr.

Note that Φ has the dimensions of L−2T−1: the rate of generation of [AB], in the
plane z = 0. As before, the source term of (12) is distinguished from one which
characterizes a fixed-source Green’s function of potential theory by the appearance of
the factor Φ, a quantity related to �(r, z) via (13).

The simplifications leading to (12) include planar sources and sinks, furnishing
a half-space problem with mixed boundary conditions. Furthermore, because the
current aim is exploratory, the term derived from triple densities and (1),

(14) Φ([A][B] − �(r, z))

(
δ(z)

[A]
+

1

[B]

)
,

is omitted from the left-hand side of (12). We conjecture that the k+ obtained from
the solution of (12) is nevertheless correct to leading order (in the concentrations).
(Note that (14) might require modification, for instance, at r = a, z = 0, for well-
posedness.)

Let

(15) r =
√
DR, z =

√
DAZ;

then (12) takes the form(
1

R

∂

∂R
R

∂

∂R
+

∂2

∂Z2

)
�(R,Z) = −Φδ(Z)δ(R− d/

√
D)

2πd
√
DAD

.

Let

�(R,Z) = [A][B] − β(R,Z),

and the system defining β(R,Z) comprises

∇2β(R,Z) =

(
1

R

∂

∂R
R

∂

∂R
+

∂2

∂Z2

)
β(R,Z) =

Φδ(Z)δ(R− d/
√
D)

2πd
√
DAD

,(16)

β(R, 0) = [A][B], 0 < R ≤ a/
√
D,(17)

∂

∂Z
β(R, 0) = 0, a/

√
D < R,(18)

β → 0, R2 + Z2 → ∞.(19)



1154 BYRON GOLDSTEIN, HAROLD LEVINE, AND DAVID TORNEY

4.2. An associated integral equation. To recast the boundary value problem
defined by (16)–(19) in terms of an integral equation, introduce a Green’s function
G(R,Z;R′, Z ′) specified by

∇2G =

(
1

R

∂

∂R
R

∂

∂R
+

∂2

∂Z2

)
G

= −δ(R−R′)δ(Z − Z ′)

2πR
, 0 < R,R′, Z, Z ′ < ∞,

(20)

∂

∂Z
G = 0, Z = 0, R > 0, and G → 0, R2 + Z2 → ∞.

If

(21) Ḡ(ζ, Z;R′, Z ′) =

∫ ∞

0

RJ0(ζR)G(R,Z;R′, Z ′)dR,

where J0 denotes the Bessel function of the first kind of order zero, then it follows
from (20) that (

∂2

∂Z2
− ζ2

)
Ḡ(ζ, Z;R′, Z ′) = −J0(ζR

′)δ(Z − Z ′)

2π
,

and explicitly

Ḡ(ζ, Z;R′, Z ′) =
J0(ζR

′)

2π|ζ| cosh ζZ< exp−|ζ|Z> ,

with Z< and Z> denoting the smaller and larger of Z and Z ′, respectively. The
inverse of the transform (21) thus yields the Green’s function representation

G(R,Z;R′, Z ′) =

∫ ∞

0

ζJ0(ζR)Ḡ(ζ, Z;R′, Z ′)dζ(22)

=
1

2π

∫ ∞

0

J0(ζR)J0(ζR
′) cosh ζZ< exp−ζZ> dζ.

Apply Green’s integral relation∫
(G∇2β − β∇2G)dV =

∫ (
G

∂

∂n
β − β

∂

∂n
G

)
dS

in the half space Z ≥ 0, where the surface integral consists of a hemispherical portion
and a plane circular domain where Z = 0. Invoking the various conditions obeyed by
β and G, it follows that

(23)
Φ

D
√
DA

G(d/
√
D, 0;R′, Z ′) + β(R′, Z ′) =

∫ a/
√
D

0

G(R, 0;R′, Z ′)2πRσ(R)dR,

with

(24) σ(R) = − ∂β

∂Z

∣∣∣∣
Z=0

, 0 < R < a/
√
D.
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After changing variables in (23) (with regard for the argument symmetry of G),
one obtains, for Z ≥ 0,

β(R,Z) = − Φ

D
√
DA

G(R,Z; d/
√
D, 0) + 2π

∫ a/
√
D

0

G(R,Z;R′, 0)σ(R′)R′dR′

= − Φ

2πD
√
DA

∫ ∞

0

J0(ζR)J0(ζd/
√
D) exp−ζZ dζ

+

∫ a/
√
D

0

R′σ(R′)dR′
∫ ∞

0

J0(ζR)J0(ζR
′) exp−ζZ dζ.(25)

The representation (25) for β(R,Z) implies [11, (6.3.62)] that

(26)
∂

∂Z
β(R,Z)

∣∣∣∣
Z=0

= −σ(R), R < a/
√
D,

and

∂

∂Z
β(R,Z)

∣∣∣∣
Z=0

= 0, a/
√
D < R (	= d/

√
D),

in accord with (24).
An integral equation for σ(R) is next secured on imposing the condition (17),

namely, for R < a/
√
D,

[A][B] = − Φ

2πD
√
DA

∫ ∞

0

J0(ζR)J0(ζd/
√
D)dζ(27)

+

∫ a/
√
D

0

σ(R′)R′dR′
∫ ∞

0

J0(ζR)J0(ζR
′)dζ.

From (13), (15), and (26),

(28) Φ = 2πD
√
DAF, F

def
=

∫ a/
√
D

0

σ(R)RdR,

enabling (27) to be rewritten in the forms

[A][B] + F

∫ ∞

0

J0(ζR)J0(ζd/
√
D)dζ(29)

=

∫ a/
√
D

0

σ(R′)R′dR′
∫ ∞

0

J0(ζR)J0(ζR
′)dζ, R ≤ a/

√
D,

or

V (R) =

∫ a/
√
D

0

σ(R′)R′dR′
∫ ∞

0

J0(ζR)J0(ζR
′)dζ

=

∫ ∞

0

J0(ζR)ϕ(ζ)dζ, R < a/
√
D,

where

(30) V (R) = [A][B] + F

∫ ∞

0

J0(ηR)J0(ηd/
√
D)dη



1156 BYRON GOLDSTEIN, HAROLD LEVINE, AND DAVID TORNEY

and

ϕ(ζ) =

∫ ∞

0

R′σ(R′)J0(ζR
′)dR′,

σ(R) = 0, R > a/
√
D,

σ(R) =

∫ ∞

0

ζϕ(ζ)J0(ζR)dζ.(31)

Beltrami established the representation

(32) ϕ(ζ) =
2

π
V (0)

sin ζa/
√
D

ζ
+

2

π

∫ a/
√
D

0

R̄ cos ζR̄dR̄

∫ R̄

0

V ′(R′)√
R̄2 −R′2

dR′

(cf. [1, 12]). In accordance with (30),

dV

dR
= V ′(R) = −F

∫ ∞

0

ηJ1(ηR)J0(ηd/
√
D)dη,

whence ∫ R̄

0

V ′(R′)√
R̄2 −R′2

dR′ = −F

∫ ∞

0

ηJ0(ηd/
√
D)dη

∫ R̄

0

J1(ηR
′)√

R̄2 −R′2
dR′

= −F

R̄

∫ ∞

0

J0(ηd/
√
D)(1 − cos ηR̄)dη

= −F

R̄

{√
D

d
− 1√

d2/D − R̄2

}
, R̄ < d/

√
D.(33)

Also,

(34) V (0) = [A][B] + F

√
D

d
.

Thus, inasmuch as ϕ(0) = F , (32) implies

F =
2a

π
√
D

[
[A][B] + F

√
D

d

]
− 2F

π

∫ a/
√
D

0

(√
D

d
− 1√

d2/D − R̄2

)
dR̄

=
2a

π

[A][B]√
D

+
2F

π
sin−1 a

d

or

(35) F

{
1 − 2

π
sin−1 a

d

}
=

2a

π

[A][B]√
D

.

From (28) and (35), taken together, the specification

(36) Φ =
4a

√
DDA[A][B]

1 − 2
π sin−1 a

d

follows.
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4.3. Explicit form for σ(R). From (32), via (31), there follows

σ(R) =
2

π

∫ ∞

0

ζJ0(ζR)

{
V (0)

sin ζa/
√
D

ζ

+

∫ a/
√
D

0

R̄ cos ζR̄dR̄

∫ R̄

0

V ′(R′)√
R̄2 −R′2

dR′

}
dζ.

Using (33) and (34), it is found that

∫ ∞

0

ζJ0(ζR)
2

π
V (0)

sin ζa/
√
D

ζ
dζ

=
2

π

(
[A][B] + F

√
D

d

)∫ ∞

0

J0(ζR) sin ζa/
√
Ddζ

=
2

π

(
[A][B] + F

√
D

d

)
1√

a2/D −R2
, R < a/

√
D.

Further,

2

π

∫ a/
√
D

0

R̄ cos ζR̄

∫ R̄

0

V ′(R′)√
R̄2 −R′2

dR′dR̄

= −2F

π

∫ a/
√
D

0

cos ζR̄

{√
D

d
− 1√

d2/D − R̄2

}
dR̄

=
2F

π

{
−
√
D

d

sin ζa/
√
D

ζ
+

∫ a/
√
D

0

cos ζR̄√
d2/D − R̄2

dR̄

}
,

and thus

σ(R) =
2

π

∫ ∞

0

ζJ0(ζR)

{(
[A][B] + F

√
D

d

)
sin ζa/

√
D

ζ
− F

√
D

d

sin ζa/
√
D

ζ

+ F

∫ a/
√
D

0

cos ζR̄√
d2/D − R̄2

dR̄

}
dζ

=
2

π

[A][B]√
a2/D −R2

+
2F

π

∫ ∞

0

ζJ0(ζR)

∫ a/
√
D

0

cos ζR̄√
d2/D − R̄2

dR̄dζ, R < a/
√
D.

Write

∫ a/
√
D

0

cos ζR̄

(d2/D − R̄2)1/2
dR̄ =

∫ a/
√
D

0

1

(d2/D − R̄2)1/2
dR̄

(
sin ζR̄

ζ

)

=
sin ζa/

√
D

ζ
√

(d2 − a2)/D
− 1

ζ

∫ a/
√
D

0

R̄ sin ζR̄

(d2/D − R̄2)3/2
dR̄,

and then
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σ(R) =
2

π

[A][B]√
a2/D −R2

(37)

+
2F

π

{
1√

(d2 − a2)/D
√
a2/D −R2

−
∫ a/

√
D

R

R̄dR̄

(d2/D − R̄2)3/2(R̄2 −R2)1/2

}
.

In accordance with the appendix,

(38)

∫ a/
√
D

R

R̄dR̄

(d2/D − R̄2)3/2(R̄2 −R2)1/2
=

1

(d2/D −R2)

√
a2 −DR2

d2 − a2

(a result which can be checked by considering R = 0), it follows from (37) that

σ(R) =
2

π

[A][B]√
a2/D −R2

+
2F

π

{
1√

(d2 − a2)/D
√
a2/D −R2

− 1

(d2/D −R2)

√
a2 −DR2

d2 − a2

}
,

whence the explicit determination

σ(R) =
2

π

[A][B]√
a2/D −R2

+
2F

π
√
D

√
d2 − a2√

a2/D −R2

1

(d2/D −R2)
,(39)

0 < R < a/
√
D < d/

√
D,

follows.
A final check is called for: multiply by R in (39) and integrate over 0 < R <

a/
√
D, which yields

F =
2

π
[A][B]

a√
D

+
2F

π

√
d2 − a2

D

∫ a/
√
D

0

RdR√
a2/D −R2(d2/D −R2)

.

Since ∫ a/
√
D

0

RdR√
a2/D −R2(d2/D −R2)

=
a

2
√
D

∫ 1

0

dx√
1 − x(d2/D − a2x/D)

=
a
√
D

2d2

∫ 1

0

dx√
1 − x(1 − a2

d2 x)
=

a
√
D

2d2

2

a
d

√
1 − a2

d2

tan−1

⎛
⎝−a2

d2

√
1 − x

a
d

√
1 − a2

d2

⎞
⎠
∣∣∣∣∣∣
x=1

x=0

=

√
D√

d2 − a2
tan−1

⎛
⎝a

d

1√
1 − a2

d2

⎞
⎠ =

√
D√

d2 − a2
sin−1 a

d
,

equation (35) follows.

4.4. Irreversible reaction. One may directly obtain the limit d → ∞ of (36)
by omitting the “source” term on the right-hand side of (12). This implies the setting
aside of the first term on the left-hand side of (27), yielding the integral equation

[A][B] =

∫ a/
√
D

0

σ(R′)R′dR′
∫ ∞

0

J0(ζR)J0(ζR
′)dζ, R < a/

√
D.
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This equation applies to a classical mixed boundary value problem for an axially
symmetric potential/harmonic function in the half space Z > 0. Write

(40) [A][B] =

∫ ∞

0

J0(ζR)ϕ(ζ)dζ, R < a/
√
D,

where

ϕ(ζ) =

∫ ∞

0

R′σ(R′)J0(ζR
′)dR′,

σ(R) = 0, R > a/
√
D;

then,

(41) σ(R) =

∫ ∞

0

ζϕ(ζ)J0(ζR)dζ = 0, R > a/
√
D.

The dual equations (40), (41) are satisfied with the specification

ϕ(ζ) =
2[A][B]

π

sin ζa/
√
D

ζ

because ∫ ∞

0

J0(ζR)
sin ζa/

√
D

ζ
dζ =

π

2
, R < a/

√
D,

and

σ(R) ∝
∫ ∞

0

J0(ζR) sin(ζa/
√
D)dζ = 0, R > a/

√
D.

Furthermore,

σ(R) =
2

π
[A][B]

∫ ∞

0

J0(ζR) sin(ζa/
√
D)dζ =

2

π

[A][B]√
a2/D −R2

, R < a/
√
D,

the limit d → ∞ of (39). From (28), one obtains

Φ = 4a
√
DDA[A][B],

the corresponding limit of (36).

5. Applications to biological cell signalling.

5.1. Basal level of receptor phosphorylation. As described in the introduc-
tion, for a number of receptor families, ligand-induced receptor aggregation is rapidly
followed by phosphorylation of sites on cytoplasmic and membrane-associated pro-
teins. Even in the absence of an outside stimulus, cells show basal levels of protein
phosphorylation (e.g., [15, 18]). In the cell there is a constant competition between
enzymes that phosphorylate their substrates (kinases) and enzymes that reverse this
phosphorylation and dephosphorylate their substrates (phosphatases). In the ab-
sence of a ligand which binds to receptors and induces them to aggregate, diffusion
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will nonetheless bring them into proximity, although these aggregates will be short-
lived, as diffusion will also lead to their separation. If these receptors are kinases
(growth-factor receptors) or are associated with kinases (immune recognition and cy-
tokine receptors), then they may phosphorylate their neighbor, leading to the observed
basal phosphorylation.

These adjacent pairs, referred to as dimers, are modeled by the homogeneous
reaction A+A � A2. Linearization of a corresponding formula suggests that, subject
to the following proviso, the forward rate constants derived for the heterogeneous
reaction analyzed herein are also applicable to the homogeneous reaction (at least to
leading order): based on combinatorial considerations, the forward rate constant for
the homogeneous reaction is taken to be half that of the heterogeneous reaction, given
by (8).

Given k+, the easiest way to obtain an expression for k−, the reverse rate con-
stant governing dissociation of these dimers, is from the diffusion limited equilibrium
constant

K =
k+

k−
.

For the situation of interest, the dilute limit where the typical distance between re-
ceptors is much larger than a, K

.
= πa2, provided that the receptors are treated as

point particles [4]. When the receptors are treated instead as hard discs of diameter
b, so that their centers must be at least a distance b apart, then [22]

(42) K = πa2(1 − (b/a)2).

To derive (42), focus on a “reference receptor.” Because of the assumption of
diluteness, the centers of other receptors are distributed approximately as a spatial
Poisson process with density ρT outside a disc of diameter b centered on the reference
receptor. Recall that the “distance between receptors” is the distance between their
centers. Thus, for another receptor to be within a distance a of the reference receptor,
its center must lie within an annulus of inner radius b and outer radius a. From the
Poisson distribution for the number of points in a given area in a spatial Poisson
process, the probability P0 that the reference receptor has no other receptors within
a, and the probability P1 that there is exactly one other receptor, are given by

P0 = e−ρTπ(a2−b2) = e−ψ(1−(b/a)2),

P1 = ρTπ(a2 − b2)e−ρTπ(a2−b2) = ρTπa
2(1 − (b/a)2))e−ψ(1−(b/a)2).

Multiplying the above equations by ρT gives us the equilibrium concentrations of
isolated receptors, [A], and dimers, [D]. When these equations are expanded, to
leading order in ψ

(43) [D] ≈ [A]2πa2(1 − (b/a)2),

and because K ≈ [D]/[A]2, (42) follows. Thus

(44) k− =
k+

πa2(1 − (b/a)2)
.
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5.1.1. Estimates for k+ and k−. We estimate the values of the rate constants
for a well-studied receptor system: the high affinity receptor, FcεRI, that binds IgE
antibody on the surface of rat basophilic leukemia (RBL) cells. This receptor plays
a central role in allergic reactions, as its activation leads to the release of histamine
and other mediators of allergic reactions.

An RBL cell has approximately 3 × 105 FcεRIs on its cell surface and has a
surface area of about 5× 10−6 cm2, so that ρT = 6× 1010 cm−2. Unlike, for example,
growth-factor receptors, FcεRI is not an intrinsic kinase. However, it associates with
a tyrosine kinase called Lyn, and when Lyn is bound to a receptor it phosphorylates
other receptors in its proximity.

We will take a to be the maximum distance that a receptor associated with Lyn
can be from its neighbor and still phosphorylate it. Experiments from another receptor
system suggest a ≈ 40 Å [14]. With this value of a, ψ = πa2ρT = 0.03. A reasonable
range for b is 10–20 Å. Taking b = 10 Å, from (42), K = 5.4 × 10−13 cm2. The
diffusion coefficient of FcεRI on RBL, DA = 2–3 × 10−10 cm2/s (see [10, 17]). The
last parameter requiring estimation is d: the separation distance which two receptors,
initially a dimer, must achieve before they are deemed dissociated. We take d to be
the average nearest-neighbor distance so that d =

√
ρT /2 = 2×10−6 cm. Rather than

solving the implicit equation (7) for Φ, since ψ is small, (8) may be used to obtain an
estimate for k+. For the parameters given, k+ = 8.7 × 10−10 cm2/s, and from (44),
k− = 1.85 × 103 s−1. Thus, the average lifetime of an FcεRI dimer on an RBL cell,
which aggregates and dissociates purely by diffusion, is 1/k− = 5.4 × 10−4 s.

The obvious question this result poses is, For such short dimer lifetimes can
phosphorylation occur at the levels seen? By using these rate constants in the FcεRI
signalling model of [6], this question may be further investigated.

5.2. Phototransduction. Diffusion limited reactions in R
2 are thought to oc-

cur in the primary amplification steps of phototransduction, which accrue high levels
of photosensitivity in the dark-adapted rod photoreceptor. When a photon is ab-
sorbed by the retinal moiety of a rhodopsin molecule, R, photoisomerization ensues,
inducing a conformational change in rhodopsin: R → R∗. Then R∗, diffusing in the
phospholipid membrane of “discs,” catalytically activates the G-protein transducin,
T . This reaction,

R∗ + T → R∗ + T ∗,

is one which is thought to be diffusion limited. In the time scale of interest, the
decay R∗ → R may be ignored, and R∗ effectively acts as a catalyst. The method of
section 2 is readily adapted to encompass this reaction. As before, the reagents, R∗

and T , may not coexist at a separation a. The novelty lies in the triple-density terms.
Instead of including two terms, there is only the one pertaining to R∗ T R∗, because
it is not possible for two T ’s to interfere with one another in reacting with one R∗:
this reaction is catalytic. This results in the substitution of 1/[T ] for the coefficient
(1/[R∗] + 1/[T ]), obtaining a k+ in the form (8) but with a ψ = πa2[R∗].

We estimate the parameter a of this k+, using the stochastic-simulation data
of [9], whose parameters arise from experimental data from amphibian rods. We have
DR∗ = 0.7 × 10−8cm2/s, DT = 1.2 × 10−8cm2/s, and the (initial) concentrations
are [R∗] = 2.5 × 107/cm2 and [T ] = 2.5 × 1011/cm2 (molecules/cm2) [9, Figure 3].
Using k+ ∼ −2πD/ log

√
ψ and the initial rate of concentration change d[T ∗]/dt =

k+[R∗][T ] = 1.75 × 1011/cm2 s [9], it follows that

log
√
ψ

.
= −4π × 6.25/17.5

.
= −4.5.
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Whence, from ψ = πa2[R∗]
.
= e−9 .

= 1.2×10−4, a
.
= 100 Å. Because this is a plausible

distance for interaction between the reactants, this result corroborates the hypothesis
of diffusion limitation.

This a enters into the pair densities of this reaction. πa2 is interpretable as a
“cross section” for reaction. However, the length scale of this reaction, analogous to �
(see (5)) with 1/[T ] for the parenthetic term, is approximately equal to 2× 10−4 cm.
Because this length is comparable to the linear dimension of a disc, the detailed shape
of the latter could influence these kinetics—as would also be expected to be the case
when a disc contains a single R∗.

A related analysis could be applied to the subsequent reaction, in which T ∗ ac-
tivates cGMP phosphodiesterase, the enzyme which cleaves cGMP. This requires an
appropriate treatment for the nonuniform distribution of T ∗, which traces the path
of R∗s. The latter may best be comprised via Monte Carlo simulations [9].

6. k+’s. In this section, to facilitate the application of our theoretical results,
we collect the rate constants derived herein, derived to be used with “concentrations”
given as numbers of molecules per unit volume (or area). In practice, one may employ
molar concentrations, obtained by dividing the number of molecules per unit volume
(or area) by Avogadro’s number N0

.
= 6.02 × 1023. Therefore, to obtain a k+ ap-

propriate for molar concentrations, multiply the following k+’s by N0. For reactions
in R

2,

k+ ∼
2πD

log d/a
,

and correspondingly, in R
3,

k+ ∼
4πDa(1 + o(

√
φ))

1 − a/d
,

where φ denotes the expected number of A molecules plus B molecules within a sphere
of radius a. For an interfacial reaction, with A’s diffusing in a half space and B’s (and
AB’s) diffusing in a plane bounding the half space,

k+ ∼
4a

√
DDA

1 − 2
π sin−1 a

d

.

Letting d → ∞ in the differential equation corresponds to irreversible reaction
because, when a � d, �(r) becomes uninfluenced by dissociation. The related k+

is therefore obtainable by omitting the “source” term modeling dissociation from
the equation (see section 4.4). For irreversible reactions d[AB]/dt = −d[A]/dt =
−d[B]dt = k+[A][B], and, in R

2,

k+ ∼
2πD

− log
√
ψ

(
1 +

log
√

− log
√
ψ + 1

2 log 2 − γ

log
√
ψ

+ · · ·
)
,

recalling that ψ = πa2([A] + [B]) (� 1), and where γ denotes Euler’s constant.
Recall from section 5.2 that for the catalytic reaction A+B → A+C, one needs only
substitute ψ = πa2[A] in the foregoing formula for k+ (with an analogous substitution
for spatial reactions). Correspondingly, in R

3,

k+ ∼ 4πaD(1 +
√

3φ + · · · ),
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recalling that φ = 4
3πa

3([A] + [B]) (� 1). Agreement with previous results [3, (1.3)],
[8, (121)–(122)] suggests that the independent-pair approximation for the triple den-
sity imparts negligible errors to these terms. Furthermore, for irreversible interfacial
reactions,

k+ ∼ 4a
√
DDA.

For the latter, when a protein A in solution reacts with a protein B in a cell membrane,
DA � DB , and D ≈ DA, the above equation reduces to that obtained in [2], under
the assumption that DB = 0. Even when a protein in the cytosol, where the viscosity
is 1.5 times larger than in solution, reacts with a lipid diffusing in a cell membrane, the
required correction to the result of [2] will be negligible for most proteins. In detail,
lipids have diffusion coefficients ∼ 10−8 cm2/s, two orders of magnitude larger than
the coefficient of FCεR1 on the cell surface. Furthermore, as the enzyme ribonuclease
has a diffusion coefficient ∼ 10−6 cm2/s in solution, only for massive proteins would
our enhancement be nonnegligible.

7. Discussion. As may be surmised from section 5, the present results are prac-
ticable; they constitute extensions to the Smoluchowski theory. The applications
presented above required adaptation of our theory, perhaps unsurprisingly, but they
kindle the expectation that our approach can facilitate the modeling of a cornucopia of
diffusion limited reactions, including irreversible reactions—exclusive of kinetic aber-
rations such as those attributable to reaction-induced concentration “archipelagoes”
of A and B [16, 19, 20]. The forward reaction rate constant may be obtained from
abridged solution of the respective differential equation, fostering the analysis of com-
plex reactions [7].

It follows that the types of criticisms that can be leveled at the Smoluchowski
theory may also apply to ours. We have sidestepped the complicated problem of esti-
mating the error of our theory. For example, for A+B → AB, although the use of the
independent-pairs approximation for triple densities (1) did not, apparently, compro-
mise the accuracy of the given results, the determination of the first decommissioned
term (in the virial expansion) remains to be investigated, as do alternative reactions,
such as A + A → A2, for which the independent-pairs approximation is likely to be
less propitious. Thus, many challenges lie ahead.

Appendix. Consider the integral

I(α, β) =

∫ α

R

R̄dR̄

(β2 − R̄2)1/2(R̄2 −R2)1/2

=
R

2

∫ α2/R2

1

dx√
β2 −R2x

√
x− 1

=
R

2

∫ α2/R2

1

dx√
−β2 + (β2 + R2)x−R2x2

=
R

2

(
− 1

R

)
sin−1 −2R2x + β2 + R2

β2 −R2

∣∣∣∣x=α2/R2

x=1

=
π

4
− 1

2
sin−1 β2 − 2α2 + R2

β2 −R2
,

α < β, R̄ < α,

Now

dI

dβ
= −β

∫ α

R

R̄dR̄

(β2 − R̄2)3/2(R̄2 −R2)1/2
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= −1

2

1√
1 −

(
β2−2α2+R2

β2−R2

)2

{
2β

β2 −R2
− 2β(β2 − 2α2 + R2)

(β2 −R2)2

}

= − β

β2 −R2

√
1 − λ

1 + λ
, λ =

β2 − α2 − (α2 −R2)

β2 −R2
,

1 − λ = 2
α2 −R2

β2 −R2
, 1 + λ = 2

β2 − α2

β2 −R2
,

√
1 − λ

1 + λ
=

√
α2 −R2

β2 − α2
.

Thus,∫ α

R

R̄dR̄

(β2 − R̄2)3/2(R̄2 −R2)1/2
=

1

β2 −R2

√
1 − λ

1 + λ
=

1

β2 −R2

√
α2 −R2

β2 − α2
,

whence (38).
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COMPUTATION OF EXTENSIONAL FALL OF SLENDER VISCOUS
DROPS BY A ONE-DIMENSIONAL EULERIAN METHOD∗

B. H. BRADSHAW-HAJEK† , Y. M. STOKES† , AND E. O. TUCK†

Abstract. We develop a one-dimensional Eulerian model suitable for analyzing the behavior
of viscous fluid drops falling from rest from an upper boundary. The method allows examination of
development and behavior from early time, when a drop and filament begin to form, out to large
times when the bulk of the fluid forms a drop at the bottom of a long thin filament which connects
it with the upper boundary. This model overcomes problems seen in Lagrangian models, caused by
excessive stretching of grid elements, and enables a better examination of the thin fluid filament.
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1. Introduction. Formation of drops via extensional flow and break-off has
been much studied (see the review article by Eggers [6]), motivated by a wide range
of applications such as ink-jet printing, spinning and drawing of polymer or glass
fibers, glass blowing and blow-molding in the manufacture of containers, light bulbs
and glass tubing, rheological measurement by fiber extension, and fiber spinning for
polymers and glasses [3, 4, 9, 13]. Considerable progress has been made towards an
understanding of the breakup of a thin filament into drops, although the exact details
of the final stages of breakup are yet to be resolved. However, the evolution of the drop
and filament from some initial configuration, and the influence of initial conditions
on the final breakup, are still relatively unexplored and have been the focus of our
attention for some time [15, 14]. Some work by others on this topic includes [20, 18].

The problem of interest is a drop of very viscous fluid hanging beneath a solid
wall/boundary and extending under gravity, similar to honey dripping from an up-
turned spoon. Analyses with and without inertia have been done and compared by
the present authors [15, 14]. Surface tension was neglected in those studies, on the
basis that a mean diameter � =

√
R0L0 of the drop is large compared to the meniscus

scale
√
γ/(ρg), or equivalently that the Bond number Bo = ρg�2/γ is large. Here g

is the gravitational acceleration, ρ, γ are respectively the density and surface tension
coefficient of the fluid, R0 is a length scale for the drop’s cross section (e.g., the radius
of the drop at the wall), and L0 is the initial length of the drop. As the fluid filament
extends and gets thinner, this neglect of surface tension may become less justifiable,
and an examination of the effect of surface tension is desirable.

Because of the slender geometries involved, one-dimensional models are common
in analysis of filament breakup [8, 1, 19, 5, 7, 17, 11]. However, the development of
a drop and filament may also involve nonslender geometries at early times, requiring
numerical solution of the full Navier–Stokes equations. Our previous work [15, 14] has
involved both one-dimensional models and numerical solution of the Navier–Stokes
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equations for axisymmetric drops and two-dimensional sheets.
For all of our work, a Lagrangian reference frame has been used, with grids that

move with moving fluid elements. However, as the filament thins and surface tension
potentially becomes important, Lagrangian numerics begin to fail due to the stretch-
ing of the grid. For example, in finite-element simulations of the full Navier–Stokes
equations [14], mesh elements in and near the filament region become excessively elon-
gated or distorted, leading to loss of accuracy. Similarly, in one-dimensional models
the grid points become sparse in the filament region while congregating in the main
drop, so that we lose the ability to examine the development of the filament. Hence, if
we are to better investigate the filament evolution, including possible effects of surface
tension, we must modify our methods.

A number of techniques are available to address the resolution problem in the
filament region. First, we can begin with an irregular mesh that has a concentration
of grid points in the section of the drop that will develop into the filament region.
This, however, will only be successful until that section of the mesh becomes very
stretched. Another option is to remesh when grid points become too sparse in the
filament. This method becomes difficult (although not impossible) with the inclusion
of inertia (see, for example, [18]), as all unknowns and their time derivatives must be
interpolated from the old mesh onto the new mesh. In this paper, we wish to present
a further alternative in which the congregation of mesh points does not occur.

We have therefore developed a one-dimensional model in an Eulerian reference
frame, where the Lagrangian coordinate (a fluid particle label equal to the initial
distance ξ from the wall) is sought as a function of time t and that particle’s physical
distance x from the wall. This model may be derived directly from the Navier–Stokes
and continuity equations, as described below. It may also be obtained (in the absence
of surface tension) by a transformation of our previous one-dimensional Lagrangian
model [14] for the cross-sectional area A as a function of time t and Lagrangian
coordinate ξ, which will also be outlined here.

The resulting PDE for ξ = Z(x, t) is formally of higher order in space than the
original PDE for A(ξ, t). Also, while the original problem could be solved in a fixed
spatial domain 0 < ξ < L0, where L0 is the initial drop length, the transformation
results in a moving boundary problem in the domain 0 < x < L(t), where the actual
drop length L(t) must be determined as part of the problem. Both of these aspects
mean that the problem in physical coordinates is considerably harder to solve than
that in Lagrangian coordinates, but it has the major benefit that grid elements do
not become stretched over time and is therefore worth pursuing in order to better
understand the filament behavior.

The increased complexity of the problem is partly a result of the transformation
employed, with a further element of difficulty added by the inclusion of surface tension.
In the absence of surface tension, the equations may be directly integrated, simplifying
the numerical problem. In this paper we explore the new model and its solution in
the absence of surface tension, which will be considered in a future paper. We will,
however, derive here the equations with surface tension included.

2. A one-dimensional Eulerian model. For an axisymmetric column of in-
compressible fluid, a one-dimensional lubrication approximation to the Navier–Stokes
equations yields (see, for example, [5, 11, 10])

(2.1)
∂u

∂t
+ u

∂u

∂x
= g − γ

ρ

∂K

∂x
+

ν∗

h2

∂

∂x

(
h2 ∂u

∂x

)
,
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while the continuity equation becomes

(2.2) (h2)t + (uh2)x = 0,

where subscripts denote derivatives, ν∗ = 3μ/ρ is the elongational (Trouton) kine-
matic viscosity [16] of a fluid with shear viscosity μ and density ρ, g is gravitational
acceleration in the downward (positive) direction, γ is the coefficient of surface ten-
sion, u(x, t) is the downward velocity of the fluid at position x and time t, h(x, t) is
the radius of the drop, and K(x, t) is the curvature of the drop, given by

(2.3) K =
1√

1 + (hx)2

[
1

h
− hxx

1 + (hx)2

]
.

The cross-sectional area of the drop is given by A = πh2, so (2.2) can be rewritten
as

(2.4) At + uAx = −Aux

and substituted into (2.1) to obtain

ut + uux = g − γ

ρ
Kx − ν∗

A

∂

∂x

(
∂A

∂t
+ u

∂A

∂x

)
or

(2.5)
Du

Dt
= g − γ

ρ
Kx − ν∗

A

∂

∂x

DA

Dt
,

where D/Dt = ∂/∂t + u ∂/∂x denotes the material time derivative.
In a Lagrangian reference frame [15, 14, 19] we let x = X(ξ, t), where ξ is a

fluid-particle label such that x = ξ at t = 0. The initial drop geometry is assumed
to have a cross-sectional area distribution given by some function A0(ξ). That is,
A(ξ, 0) = A0(ξ), 0 ≤ ξ ≤ L0, where A(ξ, t) is the cross-sectional area at label ξ and
time t, and L0 is the initial drop length. Conservation of mass demands [14]

A
∂X

∂ξ
= A0

or, on integration,

(2.6) X(ξ, t) =

∫ ξ

0

A0(ξ1)

A(ξ1, t)
dξ1.

Now, defining ξ = Z(x, t), we have

A = A0Zx, u = Xt = −Zt

Zx
, and

∂A0

∂x
= A′

0Zx,

where primes denote differentiation with respect to ξ. Substituting for A and u in
(2.5) gives

− D

Dt

(
Zt

Zx

)
= g − γ

ρ
Kx − ν∗

A0Zx

∂

∂x

[
A0

D

Dt
(Zx)

]

= g − γ

ρ
Kx − ν∗

[
A′

0

A0

D

Dt
(Zx) +

1

Zx

∂

∂x

(
D

Dt
(Zx)

)]

= g − γ

ρ
Kx − ν∗

D

Dt

(
A′

0

A0
Zx +

Zxx

Zx

)
,(2.7)
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with

D

Dt
=

∂

∂t
− Zt

Zx

∂

∂x
.

The transformation to the dependent variable Z(x, t) has yielded a PDE (2.7) that
is second order in time and third order in space, whereas the Navier–Stokes equation
(2.1) is first order in time and second order in space. The main reason for this increase
in order is that the dependant variable is a position rather than a velocity (as in the
Navier–Stokes equations). In order to solve (2.7), we must also solve for the length
of the drop L(t) = X(L0, t), which is increasing with time. Thus, we need two initial
conditions and four boundary conditions. One initial condition is obtained from the
definition of the Lagrangian coordinate such that ξ = x at t = 0, so that

(2.8) Z(x, 0) = x.

The other comes from the condition that the flow starts from rest, so u(x, 0) = 0 or

(2.9) Zt(x, 0) = 0.

With respect to boundary conditions, two (one at each end) come from the definition
of the Lagrangian coordinate such that x = 0 at ξ = 0 and x = L(t) at ξ = L0, giving

Z(0, t) = 0,(2.10)

Z(L(t), t) = L0.(2.11)

Since the drop is falling from under a solid plane boundary where the normal velocity
is zero for all time, i.e., u = 0 at x = 0, then Du/Dt = 0 at x = 0, and hence, from
(2.7),

(2.12) 0 = g − γ

ρ
Kx − ν∗

D

Dt

(
A′

0

A0
Zx +

Zxx

Zx

)
at x = 0.

We require a further boundary condition which comes from a balance between viscous
stresses and surface tension at the bottom of the drop x = L(t). One-dimensional
theory yields

(2.13)
∂

∂x

(
Zt

Zx

)
= − γ

ρν∗
K, or, equivalently,

D

Dt
(Zx) = − γ

ρν∗
ZxK.

Equation (2.7) subject to initial and boundary conditions (2.8)–(2.13) describes
the fall of a drop of viscous fluid from underneath a solid boundary, starting from
a known initial configuration. Gravitational, viscous, inertial, and surface tension
effects are all included. The model derived involves the fluid-particle label ξ = Z(x, t)
as the dependent variable, with the physical space coordinate x and time t as the
independent variables.

For zero surface tension (γ = 0), (2.7) simplifies considerably, by integration with
respect to the material time derivative. With nonzero surface tension (γ �= 0), such
a procedure is computationally problematic due to the necessity of time-integrating
the surface-tension term while holding the particle label ξ = Z(x, t) constant. We
leave consideration of this matter to a future paper and, from here on, neglect surface
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tension (i.e., set γ = 0). Integration with respect to t at fixed ξ = Z, subject to Z = x
and Zt = 0 at t = 0, then yields

−Zt

Zx
= gt− ν∗

(
A′

0

A0
(Zx − 1) +

Zxx

Zx

)
or

(2.14) Zt = ν∗Zxx − gtZx − ν∗
A′

0(Z)

A0(Z)
Zx(1 − Zx).

Equation (2.14) is in general a nonlinear PDE which, like the Navier–Stokes equation
(2.1), is first order in time and second order in space. It is worth noting in passing that
in the special case of an initially cylindrical drop where A0 = constant, it becomes
linear, and in the further special case where gravity can be neglected (such as in a
liquid bridge problem [2]), it reduces to the ordinary linear heat-conduction equation,
with diffusivity ν∗.

The appropriate initial and boundary conditions are

Z(x, 0) = x at t = 0,

Z(0, t) = 0 at x = 0,

Z(L(t), t) = L0 at x = L(t),

Zx(L(t), t) = 1 at x = L(t).

(2.15)

Note that we no longer need boundary condition (2.12), which in integrated form is
equivalent to u = 0 at x = 0, and which is automatically satisfied by demanding
Z(0, t) = 0. Also, with γ = 0, (2.13) can be integrated with respect to the material
time derivative to give Zx = 1 at x = L(t) as we have in (2.15).

The Lagrangian equivalent to (2.14) in terms of the cross-sectional area A(ξ, t)
as a function of Lagrangian coordinate ξ and time t is readily (by manipulation of
(2.14)) shown to be

u = gt− ν∗

A0

∂

∂ξ
(A−A0).

Differentiating with respect to ξ, using (2.6), and rearranging gives

(2.16)
∂A

∂t
= ν∗

A2

A0

∂

∂ξ

(
1

A0

∂

∂ξ
(A−A0)

)
, 0 ≤ ξ ≤ L0.

The corresponding initial and boundary conditions are

(2.17) A(ξ, 0) = A0(ξ),
∂

∂ξ
(A−A0)(0, t) =

gt

ν∗
A0(0), A(L0, t) = A0(L0).

The Lagrangian model given by (2.16) and (2.17) was derived directly in [14] by bal-
ancing viscous and gravitational forces; the inertialess version was considered in [15].
Comparison between solutions to these models and those for the new Eulerian model
of present interest, (2.14) and (2.15), will be given below. We note that the Eulerian
model involves gravity explicitly in the PDE (2.14), whereas the Lagrangian model
involves gravity only in a boundary condition at ξ = 0 (2.17).
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3. Eulerian-model solution. For the remainder of this paper, we will be pri-
marily interested in initially paraboloidal slender drops, given in Lagrangian coordi-
nates by A0(ξ) = A0(0)(1 − ξ/L0) with small aspect ratio αr =

√
A0(0)/L0 � 1, as

considered in [14].
Defining dimensionless variables (denoted by bars)

(3.1) A0(ξ) =
A0(ξ)

A0(0)
, ξ = Z =

ξ

L0
=

Z

L0
, x =

x

L0
, t =

gL0

ν∗
t,

the dimensionless form of (2.14) for the initially paraboloidal drop A0(Z) = 1 − Z is
(after removing the bars)

(3.2) ReZt = Zxx − tZx +
Zx

1 − Z
[1 − Zx],

with the Reynolds number Re given by

Re =
gL3

0

ν∗2
.

The initial and boundary conditions (2.15) become

(3.3) Z(x, 0) = x, Z(0, t) = 0, Z(L(t), t) = 1, and Zx(L(t), t) = 1.

Equation (3.2) subject to (3.3) is most easily solved using the explicit forward-
time-centered-space finite difference method. Setting the time step Δt and spatial
step Δx, we approximate (3.2) in the usual manner by

Re
Zj+1
i − Zj

i

Δt
=

Zj
i+1 − 2Zj

i + Zj
i−1

Δx2
− t

Zj
i+1 − Zj

i−1

2Δx

+
1

1 − Zj
i

Zj
i+1 − Zj

i−1

2Δx

[
1 −

Zj
i+1 − Zj

i−1

2Δx

]
,(3.4)

where Zj
i = Z(xi, tj) is the value of Z(x, t) at the jth time step and the ith grid point.

For numerical stability, we must ensure that the diffusion number Δt/Re(Δx)2 < 0.5.
The initial and wall boundary conditions are easily specified by setting Z0

i = iΔx

and Zj
0 = 0. However, the boundary conditions at the free end are not quite so

straightforward to implement, due to the moving boundary. At each time step, the
drop becomes longer and some of the drop (at the bottom) will move beyond the
current computational domain. Hence we need to extend the grid to the new position
of the bottom of the drop.

Specifically, having computed Zj+1
i , i = 1, . . . , Nj − 1, using (3.4), we seek an

extrapolation procedure that approximates the bottom of the drop, satisfying the
boundary conditions Z = Zx = 1 at the (as yet unknown) drop bottom x = L(tj+1),
and that matches our already computed solution above the bottom. The most obvious
choice is a linear polynomial extrapolation, but this can only be first order accurate,
and we prefer to preserve the second order accuracy of the finite difference scheme.
To achieve this, we could seek a quadratic polynomial extrapolation

Z(x, tj+1) = aj+1(x− xNj−1)
2 + bj+1(x− xNj−1) + cj+1,

where the unknown coefficients aj+1, bj+1, cj+1 and the unknown length L(tj+1) of
the drop are determined by satisfying the two boundary conditions at x = L(t) and
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matching the already computed solution at xNj−2 and xNj−1. An equally good second
order extrapolation is to use the exponential approximation

(3.5) Z(x, tj+1) = ex−L(tj+1), where e−L(tj+1) = Zj+1
Nj−1e

−xNj−1 .

In fact, (3.5) is just the local form of the solution from the corresponding Lagrangian
model neglecting inertia as in [15], and hence has a stronger physical motivation than
the quadratic extrapolant.

Earlier work [15, 14] has shown that, with neglect of surface tension, the drop
shape very near to the bottom is given quite accurately by the inertialess solution.
This is because at early times, accelerations are very small and Stokes flow solutions
are applicable; at later times, the main drop is essentially in free fall and (with
neglect of surface tension) does not change in shape. Furthermore, for some initial
configurations, including the initially paraboloidal drop considered here, we can obtain
an exact analytic solution to the Lagrangian model neglecting inertia and use this to
assign appropriate values of Z(x, t) to the new grid points. Specifically, using (3.1),
the dimensionless form of the Lagrangian PDE (2.16) is (after removing the bars)

(3.6) Re
∂A

∂t
=

A2

A0

∂

∂ξ

(
1

A0

∂

∂ξ
(A−A0)

)
, 0 ≤ ξ ≤ 1,

with initial and boundary conditions

(3.7) A(ξ, 0) = A0(ξ),
∂

∂ξ
(A−A0)(0, t) = t, A(1, t) = A0(1, t).

In the inertialess limit (Re = 0) this has the explicit solution

(3.8) A(ξ, t) = A0(ξ) − tV (ξ), V (ξ) =

∫ 1

ξ

A0(ξ1) dξ1.

As discussed by Stokes, Tuck, and Schwartz [15], the cross-sectional area of the drop
vanishes at the position ξ = ξ∗ such that t = t∗ = A0(ξ∗)/V (ξ∗) is a minimum, so
that the drop formally breaks with A(ξ∗, t∗) = 0. The time t∗ is the “crisis” time; at
this time the length of the drop, given by (2.6) with ξ = 1, formally becomes infinite
in this inertialess approximation. No solution exists for t > t∗; i.e., we have a finite-
time blow up at the crisis time t∗. However, for larger times t > t∗ the main drop is
effectively falling as a solid body, and in the absence of surface tension it retains the
same shape given by (3.8) with t = t∗.

For the initially paraboloidal drop A0(ξ) = 1 − ξ, (3.8) becomes

(3.9) A(ξ, t) = (1 − ξ)

(
1 − 1

2
t(1 − ξ)

)
,

from which we see that ξ∗ = 0 and t∗ = 2; i.e., the drop breaks at the wall at the
crisis time t = 2. Hence, for all t ≥ 2,

(3.10) A(ξ) = ξ(1 − ξ),

which is a solution to (3.6). It is readily verified using Zx = A/A0 that (3.9) satisfies
the condition Zx = 1 at x = L(t) (i.e., ξ = 1) for all t ≤ 2.
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Fig. 3.1. (a) Drop shape as a function of distance L(t) − x from the bottom of the drop.
Inertialess solution (3.9) at t = 1.5 (solid); solution to the Lagrangian PDE (3.6) at t = 1.5 (dotted)
and t = 4.0 (dashed); the inertialess large-time solution (3.10) is indistinguishable from the dashed
curve. (b) Percentage relative difference between the solution to the Lagrangian PDE (3.6) and
the inertialess solution (3.9) for t < 2 or (3.10) for t ≥ 2. The percentage relative difference
is calculated as 100 × (AL − AI)/AI , where AL is the calculated solution to (3.6) and AI is the
inertialess solution (3.9) or (3.10). Here (3.6) was solved using implicit backward differencing with
Re = 0.1, Δξ = 10−3, Δt = 10−3.

The extrapolant for Z(x, t) is obtained by substituting A0 = 1 − Z, and A(Z, t)
given by (3.9) for t < 2 or (3.10) for t ≥ 2, into Zx = A/A0. Integrating then yields

(3.11) Z(x, t) =

⎧⎨
⎩ 1 − 2

t
+ c(t) ext/2 for 0 < t < 2,

c(t) ex for t ≥ 2.

We solve for the value of the unknown function of time c(t) at time tj+1 using the
already computed value of Z at xNj−1. The expression so obtained for t ≥ 2 is (3.5)
exactly. It is also readily seen that the expression obtained for t < 2 is second-order
accurate. Thus, we use (3.11) to calculate values of Zj+1

Nj+k, k = 0, 1, . . . , stopping

when Zj+1
Nj+k > 1, and thus extending the computational domain to Nj+1 grid points.

The actual position of the bottom of the drop is given by solving Z(L(tj+1), tj+1) = 1.
The accuracy of this procedure is demonstrated for Re = 0.1 in Figure 3.1. Figure

3.1(a) compares the drop shape at t = 1.5 given by the inertialess solution (3.9) and
as found by solving (3.6); also shown is the large- (i.e., crisis) time inertialess solution
(3.10), which is indistinguishable from the solution to (3.6) at Re = 0.1, t = 4. Figure
3.1(b) shows the percentage relative difference between solutions to (3.6) at Reynolds
number Re = 0.1 and the inertialess solution at different times. At the very bottom
of the drop, the relative difference is much less than 1%. As the Reynolds number
increases, the inertialess solution becomes less accurate as a global approximation for
the drop shape, but each (dimensionless) time step represents a decreasing physical
time interval so that still only very few grid points are extrapolated. Even for Reynolds
numbers as high as Re = 10, it gives a good approximation for the local region near
the bottom of the drop. Thus the method remains (second-order) accurate. In fact,
because only a very few grid points are ever extrapolated, the choice of extrapolation
procedure has only a minor effect on the solution.
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Having determined the Lagrangian coordinate Z(x, t) over the new, extended,
computational domain, the actual shape of the drop can be calculated via R =

√
A =√

A0Zx.

4. Results and comparison between Eulerian and Lagrangian models.
The numerical solution to (3.2) for the particle label Z(x, t) as a function of physical
space and time is shown, for Reynolds number Re = 0.1, in Figure 4.1. The growth
of the computational domain as a result of the moving boundary at Z = 1 can be
clearly seen.

The axisymmetric drop shape is shown in Figure 4.2(a), alongside drop shapes
from the numerical solution to the Lagrangian equation (3.6), in Figure 4.2(b). The
solution to (3.6) was calculated using the implicit backward-time-centered-space finite
difference method. The two different models produce the same drop shapes with the
same overall length; however, there are some differences to be highlighted.

First, for times t � 2.6 the computed solutions to the Lagrangian model (Figure
4.2(b)) appear to move away from the wall. This is due to stretching of the grid and
a consequent loss of grid points in the filament region and accumulation of grid points
in the main drop below the filament, as seen in Figure 4.3(b). The fluid particle that
is initially a distance x = Δξ from the wall (i.e., the closest point to the wall for which
we calculate A(ξ, t)) falls ever downwards, so that there is a continually lengthening
region in physical space, which is essentially the fluid filament connecting the drop to
the wall, about which we know virtually nothing. Unfortunately, it is in this filament
region that our greatest interest lies, since this is where the drop will eventually
break. While decreasing the grid spacing near the wall will extend the time over
which we have near complete information, there will always come a time (soon after
the crisis time t∗ of the inertialess theory, when accelerations approach gravitational
acceleration) when the grid becomes too stretched in the filament region. This loss
of information in the filament region is completely overcome with the Eulerian model
(Figure 4.2) because gridpoints are fixed in space and the grid constantly extended as
the drop length increases. This leads to a uniform spacing of grid points over the full
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Fig. 4.1. Solution to PDE (3.2) for Z(x, t), with Re = 0.1, at times t = 0, 0.1, . . . , 3.9, 4.0.
Here Δx = 10−2, Δt = 4 × 10−6.
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Fig. 4.2. Drop shapes for Re = 0.1 at times t = 0, 0.2, . . . , 3.8, 4.0. (a) Shape calculated using
Eulerian framework (3.2) (Δx = 10−2, Δt = 4. × 10−6). (b) Shape calculated using Lagrangian
framework (3.6) (Δξ = 10−3, Δt = 10−3).

length of the drop, as seen in Figure 4.3(a). The greater knowledge of the filament
region that results from the Eulerian model will better enable a future study of the
effect of surface tension on filament breakup and drop pinch-off.

A second point of difference between the Eulerian and Lagrangian models is with
respect to the behavior near the wall boundary at x = ξ = 0. At this boundary, the
Lagrangian boundary condition (3.7) for the initially paraboloidal drop is

(4.1)
∂A

∂ξ
(0, t) + 1 = t.

For the Lagrangian model it is a simple matter to check that this boundary condition
is indeed satisfied, by computing Aξ(0, t) using the forward-space finite difference
formula, i.e.,

Aξ(0, t) =
A(Δξ, t) −A(0, t)

Δξ
.

The value of Aξ(0, t) + 1 so computed is plotted against time t in Figure 4.4 (solid
curve). The wall boundary condition is satisfied until t ≈ 2.0 and then Aξ(i, t) begins
to move away from t. At t ≈ 2.4 there is a rapid deviation from the correct solution
as the value of Aξ(0, t) decreases and appears to approach a constant unit value. This
highlights the fact that the Lagrangian solution cannot be relied upon at large times
when the grid becomes excessively stretched in physical space.

The equivalent condition on Aξ(0, t) for the Eulerian model is obtained by differ-
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Fig. 4.3. Comparison of Lagrangian and Eulerian solution methods at t = 3.4. Each figure
has approximately 260 grid points. (a) Drop shape calculated using the Eulerian model (3.2), (3.3)
(Δx = 5 × 10−2, Δt = 10−4). (b) Drop shape calculated using the Lagrangian model (3.6), (3.7)
(Δx = 1/260, Δt = 10−3). The extra grid points in the filament region of the Eulerian model can
be clearly seen.
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Fig. 4.4. The accuracy of the Lagrangian and Eulerian models as indicated by the wall boundary
condition (3.7)2. For an initially paraboloidal drop we require Aξ +1 ∼ t. This condition is satisfied
by the Eulerian model but not the Lagrangian model.
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Fig. 4.5. Percentage relative differences at t = 1.5 between the inertialess radius
√
AI with AI

given by (3.9), and Lagrangian and Eulerian solutions with Re = 0.1. The difference is given by
100 × (

√
A −

√
AI)/

√
AI , where A denotes the Lagrangian solution (solid), the Eulerian solution

with extension of the computational domain using the inertialess solution at crisis time (dashed),
and the Eulerian solution with extension of the computational domain using the forward-difference
representation of Zx(L(t), t) = 1 (dotted).

entiating A = A0Zx with respect to ξ, i.e. (for the initially paraboloidal drop),

Aξ = A′
0Zx +

A0Zxx

Zx

= −Zx + (1 − Z)
Zxx

Zx
.

The slope, Aξ at the wall can thus be found from the calculated values of Z(0, t),
Z(Δx, t), and Z(2Δx, t) using first order forward-space finite difference formulae for
Zx and Zxx, i.e.,

Zx(0, t) =
Z(Δx, t) − Z(0, t)

Δx
and Zxx(0, t) =

Z(2Δx, t) − 2Z(Δx, t) + Z(0, t)

Δx2
.

Figure 4.4 (dashed line) shows that Aξ + 1 ∼ t for times well beyond t = 2.4; i.e.,
the wall boundary condition (4.1) is satisfied. Thus, we see that, for large times, the
solution obtained from the Eulerian model is more reliable than that obtained from
the Lagrangian model, especially in the filament region.

This is also shown by Figures 4.5 and 4.6. Figure 4.5 shows the relative differences
between the inertialess prediction (3.9) of the drop/filament radius (R =

√
A) and

solutions at Re = 0.1 to the Lagrangian and Eulerian models, as a function of physical
distance x from the upper wall boundary, at time t = 1.5 before the crisis time of
inertialess theory. There is excellent agreement between the Lagrangian and Eulerian
models at this time, with a difference visible only at the very bottom of the drop.
Figure 4.6 gives the same comparisons but at time t = 4, well after the crisis time of
inertialess theory. Now we see considerably more difference between the Lagrangian
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Fig. 4.6. As for Figure 4.5 but at time t = 4, with AI given by the inertialess large-time
solution (3.10).

and Eulerian solutions, which is due to error in the Lagrangian solution resulting from
an excessively stretched grid. Note also that grid stretching limits our comparison to
the bottom third of the drop where the Lagrangian solution is available; in the region
0 ≤ x < 16 no information is available from the Lagrangian solution due to a lack of
grid points.

For interest, Figures 4.5 and 4.6 also show results for the Eulerian solution ob-
tained using the finite difference approximation to the boundary condition Zx = 1 at
x = L(t), discussed earlier as an alternative to pasting of the inertialess solution to the
bottom of the drop. This differs from the other curves by only about 0.1% over most
of the drop length, with the difference increasing to about 1% at the very bottom;
note that the overall drop length is slightly less, as mentioned earlier, although it is
not noticable with the grid size used here or at the scales shown.

It is interesting to note that at small Reynolds number the time at which the
numerical solution to (3.6) begins to become inaccurate in the filament region (as
indicated by Figure 4.4) is approximately equal to the crisis time of inertialess theory,
as predicted in [15] (t∗ = 2), when accelerations increase rapidly up to gravitational
acceleration. This correlation between the inertialess crisis time and the time at which
the small-Reynolds-number Lagrangian solution becomes inaccurate is also observed
with other initial drop shapes.

5. Discussion and conclusions. The major benefit of reformulating the ex-
tensional flow problem using an Eulerian framework is that, in contrast to other
one-dimensional Lagrangian models, we now include many grid points in the filament
region. The Eulerian scheme is computationally more costly, as there is a rapid in-
crease in the number of grid points as the computational domain extends with the
falling drop. However, this method provides us with information about the filament
region which we cannot obtain using a Lagrangian method. Accuracies such as those
achieved in Figure 4.2 can still be obtained in a matter of minutes. This greater res-
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olution in the filament region enables us to better study the dynamics and behavior
of the developing filament. In particular we are now much better equipped to inves-
tigate the effects of surface tension on the filament, the drop shape, and pinch-off of
the main drop by solving (2.7) with γ �= 0. This will be considered in a future paper.

Meanwhile, reformulating the problem also enables us to address a question pre-
viously posed in Stokes and Tuck [14]. In that paper, we saw that at small Reynolds
numbers and large times, the main part of the drop is indistinguishable from a solid
object that fell from rest at an apparent time t0. Identification of this apparent time
with the crisis time of inertialess theory leads to the conclusion that the large-time
drop shape is the drop shape obtained at the crisis time when neglecting inertia. Con-
versely, it can be shown that equating the large-time drop shape at small Reynolds
numbers with the drop shape at the crisis time of inertialess theory, which is strongly
supported by the numerical solutions (both here and in [14]), implies that the apparent
time t0 and the crisis time t∗ are identical. This relationship between the inertialess
theory and the large-time limit of the flow with inertia implies the expected large-time
shape for an initially paraboloidal drop [14]

(5.1) A(x, t) = e−(L−x)
[
1 − e−(L−x)

]
,

where L = L(t) is the length of the drop at time t. However, the asymptotic theory
described in [14] did not provide an estimate of the actual length L(t) of the drop.
We can now supply that estimate.

In the physical coordinate system, the cross-sectional area of the drop is given by
A(x, t) = A0Zx. The expected large-time drop shape obtained from the inertialess
theory, for the initially paraboloidal drop, is given by (3.11)2 as Z(x, t) = c(t)ex, so
that

A(x, t) = (1 − Z)Zx

= (1 − c(t) ex)c(t) ex.(5.2)

Comparing this with (5.1), we see that

(5.3) c(t) = e−L(t) or L(t) = − ln c(t).

Furthermore, since (3.11)2 must be a solution to the PDE in physical coordinates,
we may substitute it into (3.2) to obtain a first order differential equation for c(t).
Upon solving this, we find

(5.4) c(t) = exp

[
− 1

2Re
(t− 2)2 − L̃0

]
,

where L̃0 is a constant. The length of the drop at large times is then given by

(5.5) L(t) =
1

2Re
(t− 2)2 + L̃0,

and the velocity of the bottom of the drop can be found by differentiating to get

(5.6) L′(t) =
1

Re
(t− 2).

The constant L̃0 is seen to be the apparent initial length of the drop at the crisis time
t∗ = 2 of inertialess theory when the main drop essentially enters free fall from rest.
That is, at later times, the bottom of the drop falls as if it were dropped from rest at
time t∗ with apparent initial length L̃0.
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Fig. 5.1. Plot of the function −(t − 2)2/(2Re) − ln c(t) for Re = 0.1, 1.0, 10, which at large

time t gives the apparent initial length L̃0 of an initially paraboloidal drop. We obtain L̃0 ≈ 3.3 for
Re = 0.1, L̃0 ≈ 2.6 for Re = 1.0, and L̃0 ≈ 2.0 for Re = 10.

Our solution of the Eulerian model for initially paraboloidal slender drops involves
computation of the function c(t) for extension of the computational domain. Then,
at large time, an approximate value for the apparent initial length is given by

L̃0 = − 1

2Re
(t− 2)2 − ln c(t).

With Reynolds numbers Re = 0.1, 1.0, 10, we find L̃0 ≈ 3.3, 2.6, 2.0 (see Figure 5.1).
As the Reynolds number increases we must compute to (dimensionless) times well

beyond the crisis time t∗ = 2 of inertialess theory to determine L̃0. Figure 5.2 shows
Re

(
L(t) − L̃0

)
, Re = 0.1, 1, 10, versus time t, where L(t) is the length of the drop

found by solving (3.2) as described above. At large time this approaches (t − 2)2/2,
as predicted by (5.5), although, again, as the Reynolds number increases we must
compute to times increasingly larger than the crisis time of the inertialess limit to see
the agreement.

Another point of interest is that the large-time drop (5.1) (Lagrangian coordi-
nates) or (5.2) (Eulerian coordinates), which derives from the inertialess large-time
drop shape (3.10) is observed to be a good representation for the main body of the
drop and the lower portion of the filament, as seen by a comparison of Figures 4.6
and 4.2(a); the inertialess large- (crisis) time solution is accurate to within 1% over
x > 15 (see Figure 4.6), which we see from Figure 4.2(a) is over the bottom third
of the drop and filament at this time. The inertialess solution is less accurate in the
upper filament region, which is to be expected since inertia and viscous fluid flow are
significant in this region of transition from rigid body motion (at increasing velocity)
back to zero velocity at the wall; the inertialess solution can be justified only at early
time when accelerations are much smaller than gravity, or at larger times in the main
drop region which is falling as a rigid body.
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Fig. 5.3. Dripping golden syrup from a knife. The drop shape is paraboloidal, in contrast to
the globular shape of glycerine dripping from a capillary tube as in [12]. Note that the scale is in
inches.

Finally we consider the extent to which our computed drop shapes agree with
observation. Typically, photographs of viscous fluid drops in the literature (e.g., as
in [12]) are of liquids like glycerine dripping from a capillary tube. These drops
appear to be considerably more globular in shape than those computed here, but this
is essentially a matter of initial conditions. For glycerine-like drops, the initial drop
shape is determined by (essentially static) capillarity, as the drop forms slowly at
the bottom of the capillary, so that it begins its fall with an already quite globular
shape. On the other hand, in the present paper we are assuming an initial shape
which is paraboloidal, which is quite like that seen for larger and more viscous drops
of liquids like honey falling from a knife or upturned spoon (Figure 5.3). The initial
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shape of such rapidly formed drops is influenced very little by surface tension, and
their subsequent shape in fall is then quite like those presented here.
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Abstract. The Shockley–Read–Hall model for generation-recombination of electron-hole pairs
in semiconductors based on a quasi-stationary approximation for electrons in a trapped state is
generalized to distributed trapped states in the forbidden band and to kinetic transport models for
electrons and holes. The quasi-stationary limit is rigorously justified both for the drift-diffusion and
for the kinetic model.
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1. Introduction. The Shockley–Read–Hall (SRH) model was introduced in
1952 [15], [9] to describe the statistics of recombination and generation of holes and
electrons in semiconductors occurring through the mechanism of trapping.

The transfer of electrons from the valence band to the conduction band is referred
to as the generation of electron-hole pairs (or pair-generation process), since not only
is a free electron created in the conduction band, but also a hole in the valence band
which can contribute to the charge current. The inverse process is termed recombina-
tion of electron-hole pairs. The bandgap between the upper edge of the valence band
and the lower edge of the conduction band is very large in semiconductors, which
means that a big amount of energy is needed for a direct band-to-band generation
event. The presence of trap levels within the forbidden band caused by crystal im-
purities facilitates this process, since the jump can be split into two parts, each of
them “cheaper” in terms of energy. The basic mechanisms are illustrated in Figure 1:
(a) hole emission (an electron jumps from the valence band to the trapped level),
(b) hole capture (an electron moves from an occupied trap to the valence band, and
a hole disappears), (c) electron emission (an electron jumps from the trapped level to
the conduction band), (d) electron capture (an electron moves from the conduction
band to an unoccupied trap).

Models for this process involve equations for the densities of electrons in the
conduction band, holes in the valence band, and trapped electrons. Basic for the
SRH model are the drift-diffusion assumption for the transport of electrons and holes,
the assumption of one trap level in the forbidden band, and the assumption that
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Fig. 1. The four basic processes of electron-hole recombination.

the dynamics of the trapped electrons is quasi-stationary, which can be motivated by
the smallness of the density of trapped states compared to typical carrier densities.
This last assumption leads to the elimination of the density of trapped electrons from
the system and to a nonlinear effective recombination-generation rate, reminiscent
of Michaelis–Menten kinetics in chemistry. This model is an important ingredient of
simulation models for semiconductor devices (see, e.g., [10], [14]).

In this work, two generalizations of the classical SRH model are considered: In-
stead of a single trapped state, a distribution of trapped states across the forbidden
band is allowed, and, in a second step, a semiclassical kinetic model including the
fermion nature of the charge carriers is introduced. Although direct band-to-band
recombination-generation (see, e.g., [13]) and impact ionization (e.g., [2], [3]) have
been modelled on the kinetic level before, this is (to the best of the authors’ knowl-
edge) the first attempt to derive a “kinetic SRH model.” (We also mention the
modelling discussions and numerical simulations in [7], [8].)

For both the drift-diffusion and the kinetic models with self-consistent electric
fields existence results and rigorous results concerning the quasi-stationary limit are
proven. For the drift-diffusion problem, the essential estimate is derived similarly
to [6], where the quasi-neutral limit has been carried out. For the kinetic model
Degond’s approach [4] for the existence of solutions of the Vlasov–Poisson problem
is extended. Actually, the existence theory already provides the uniform estimates
necessary for passing to the quasi-stationary limit.

In the following section, the drift-diffusion based model is formulated and nondi-
mensionalized, and the SRH model is formally derived. Section 3 contains the rigorous
justification of the passage to the quasi-stationary limit. Section 4 corresponds to sec-
tion 2, dealing with the kinetic model, and in section 5 existence of global solutions
for the kinetic model is proven, and the quasi-stationary limit is justified.

2. The drift-diffusion Shockley–Read–Hall model. We consider a semi-
conductor crystal with a forbidden band represented by the energy interval (Ev, Ec)
with the valence band edge Ev and the conduction band edge Ec. The constant (in
space) number density Ntr of trapped states is obtained by summing up contributions
across the forbidden band:

Ntr =

∫ Ec

Ev

Mtr(E) dE.
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Here Mtr(E) is the energy dependent density of available trapped states. The position
density of occupied traps is given by

ntr(ftr)(x, t) =

∫ Ec

Ev

Mtr(E)ftr(x,E, t) dE,

where ftr(x,E, t) is the fraction of occupied trapped states at position x ∈ Ω, energy
E ∈ (Ev, Ec), and time t ≥ 0. Note that 0 ≤ ftr ≤ 1 should hold from a physical
point of view.

The evolution of ftr is coupled to those of the density of electrons in the con-
duction band, denoted by n(x, t) ≥ 0, and the density of holes in the valence band,
denoted by p(x, t) ≥ 0. Electrons and holes are oppositely charged. The coupling is
expressed through the following quantities:

Sn =
1

τnNtr

[
n0ftr − n(1 − ftr)

]
, Sp =

1

τpNtr

[
p0(1 − ftr) − pftr

]
,(1)

Rn =

∫ Ec

Ev

SnMtr dE, Rp =

∫ Ec

Ev

SpMtr dE.(2)

Indeed, the governing equations are given by

∂tftr = Sp − Sn =
p0

τpNtr
+

n

τnNtr
− ftr

(
p0 + p

τpNtr
+

n0 + n

τnNtr

)
,(3)

∂tn = ∇ · Jn + Rn, Jn = μn(UT∇n− n∇V ),(4)

∂tp = −∇ · Jp + Rp, Jp = −μp(UT∇p + p∇V ),(5)

εsΔV = q(n + ntr(ftr) − p− C).(6)

For the current densities Jn, Jp we use the simplest possible model, the drift diffu-
sion ansatz, with constant mobilities μn, μp, and with thermal voltage UT . Moreover,
since the trapped states have fixed positions, no flux appears in (3).

By Rn and Rp we denote the recombination-generation rates for n and p, respec-
tively. The rate constants are τn(E), τp(E), n0(E), p0(E), where n0(E)p0(E) = ni

2

with the energy independent intrinsic density ni.
Integration of (3) yields

(7) ∂tntr = Rp −Rn.

By adding (4), (5), (7), we obtain the continuity equation

(8) ∂t(p− n− ntr) + ∇ · (Jn + Jp) = 0,

with the total charge density p− n− ntr and the total current density Jn + Jp.
In the Poisson equation (6), V (x, t) is the electrostatic potential, εs the permittiv-

ity of the semiconductor material, q the elementary charge, and C = C(x) the given
doping profile.

Note that if τn, τp, n0, p0 are independent of E, or if there exists only one trap
level Etr with Mtr(E) = Ntrδ(E − Etr), then Rn = 1

τn
[n0

ntr

Ntr
− n(1 − ntr

Ntr
)], Rp =

1
τp

[p0(1 − ntr

Ntr
) − p ntr

Ntr
], and (4), (5) together with (7) are a closed system governing

the evolution of n, p, and ntr.
We now introduce a scaling of n, p, and ftr in order to render (4)–(6) dimension-

less:
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Scaling of parameters:
i. Mtr → Ntr

Ec−Ev
Mtr.

ii. τn,p → τ̄ τn,p, where τ̄ is a typical value for τn and τp.
iii. μn,p → μ̄μn,p, where μ̄ is a typical value for μn,p.
iv. (n0, p0, ni, C) → C̄(n0, p0, ni, C), where C̄ is a typical value of C.

Scaling of unknowns:
v. (n, p) → C̄(n, p).
vi. ntr → Ntrntr.
vii. V → UTV .
viii. ftr → ftr.

Scaling of independent variables:
ix. E → Ev + (Ec − Ev)E.
x. x →

√
μ̄UT τ̄ x, where the reference length is a typical diffusion length before

recombination.
xi. t → τ̄ t, where the reference time is a typical carrier life time.

Dimensionless parameters:

xii. λ =
√

εs
qC̄μ̄τ̄

= 1
x̄

√
εsUT

qC̄
is the scaled Debye length.

xiii. ε = Ntr

C̄
is the ratio of the density of traps to the typical doping density, and

will be assumed to be small: ε � 1.
The scaled system reads as follows:

(9)

ε∂tftr = Sp(p, ftr) − Sn(n, ftr), Sp =
1

τp

[
p0(1 − ftr) − pftr

]
,

Sn =
1

τn

[
n0ftr − n(1 − ftr)

]
,

(10)

∂tn = ∇ · Jn + Rn(n, ftr), Jn = μn(∇n− n∇V ), Rn =

∫ 1

0

SnMtr dE,

(11)

∂tp = −∇ · Jp + Rp(p, ftr), Jp = −μp(∇p + p∇V ), Rp =

∫ 1

0

SpMtr dE,

(12)

λ2ΔV = n + εntr − p− C, ntr(ftr) =

∫ 1

0

ftrMtr dE,

with n0(E)p0(E) = n2
i and

∫ 1

0
Mtr dE = 1.

By letting ε → 0 in (9) formally, we obtain ftr =
τnp0+τpn

τn(p+p0)+τp(n+n0)
, and the

reduced system has the following form:

∂tn = ∇ · Jn + R(n, p),(13)

∂tp = −∇ · Jp + R(n, p),(14)

R(n, p) = (ni
2 − np)

∫ 1

0

Mtr(E)

τn(E)(p + p0(E)) + τp(E)(n + n0(E)) dE
,(15)

λ2ΔV = n− p− C.(16)
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Note that if τn, τp, n0, p0 are independent of E or if there exists only one trap level,

then we would have the standard SRH model, with R = ni
2−np

τn(p+p0)+τp(n+n0)
. Exis-

tence and uniqueness of solutions of the limiting system (13)–(16) under assumptions
(21)–(25) stated below is a standard result in semiconductor modelling. A proof can
be found in, e.g., [10].

3. Rigorous derivation of the drift-diffusion Shockley–Read–Hall mod-
el. We consider the system (9)–(12) with the position x varying in a bounded domain
Ω ∈ R

3 (all our results are easily extended to the one- and two-dimensional situations),
the energy E ∈ (0, 1), and time t > 0, subject to initial conditions

(17) n(x, 0) = nI(x), p(x, 0) = pI(x), ftr(x,E, 0) = ftr,I(x,E)

and mixed Dirichlet–Neumann boundary conditions

(18) n(x, t) = nD(x, t), p(x, t) = pD(x, t), V (x, t) = VD(x, t), x ∈ ∂ΩD ⊂ ∂Ω,

and

(19)
∂n

∂ν
(x, t) =

∂p

∂ν
(x, t) =

∂V

∂ν
(x, t) = 0, x ∈ ∂ΩN := ∂Ω \ ∂ΩD,

where ν is the unit outward normal vector along ∂ΩN . We permit the special case
that either ∂ΩD or ∂ΩN is empty. More precisely, we assume that either ∂ΩD has
positive (d − 1)-dimensional measure, or it is empty. In the second situation (∂ΩD

empty) we have to assume total charge neutrality; i.e.,

(20)

∫
Ω

(n + εntr − p− C) dx = 0 if ∂Ω = ∂ΩN .

The potential is then determined only up to a (physically irrelevant) additive constant.
The following assumptions on the data will be used: For the boundary data, given

any 0 < T < ∞,

(21) nD, pD ∈ W 1,∞(0, T ;W 1,∞
loc (Ω)), VD ∈ L∞(0, T ;W 1,6(Ω));

for the initial data

nI , pI ∈ H1(Ω) ∩ L∞(Ω), 0 ≤ ftr,I ≤ 1,(22) ∫
Ω

(nI + εntr(ftr,I) − pI − C) dx = 0 if ∂Ω = ∂ΩN ;(23)

for the doping profile

(24) C ∈ L∞(Ω);

and for the recombination-generation rate constants

(25) n0, p0, τn, τp ∈ L∞((0, 1)), τn, τp ≥ τmin > 0.

With these assumptions, a local existence and uniqueness result for the problem
(9)–(12), (17)–(19) for fixed positive ε can be proven by a straightforward extension
of the approach in [5] (see also [10]). In the following, local existence will be assumed,
and we shall concentrate on obtaining bounds which guarantee global existence and
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which are uniform in ε as ε → 0. For the sake of simplicity, we consider that the data
in (21), (22), and (24) do not depend on ε; of course, our strategy works when dealing
with sequences of data bounded in the mentioned spaces.

The following result is a generalization of [6, Lemma 3.1], where the case of ho-
mogeneous Neumann boundary conditions and vanishing recombination was treated.
Our proof uses a similar approach.

Lemma 3.1. Let the assumptions (21)–(25) be satisfied. Then, the solution
of (9)–(12), (17)–(19) exists for all times and satisfies n, p ∈ L∞(0, T ;L∞(Ω)) ∩
L2(0, T ;H1(Ω)) uniformly in ε as ε → 0 as well as 0 ≤ ftr ≤ 1.

Proof. Global existence will be a consequence of the following estimates. Intro-
ducing the new variables ñ = n−nD, p̃ = p− pD, C̃ = C− εntr −nD + pD, (10)–(12)
take the following form:

∂tñ = ∇ · Jn + Rn − ∂tnD, Jn = μn

[
∇ñ + ∇nD − (ñ + nD)∇V

]
,(26)

∂tp̃ = −∇Jp + Rp − ∂tpD, Jp = −μp

[
∇p̃ + ∇pD + (p̃ + pD)∇V

]
,(27)

λ2ΔV = ñ− p̃− C̃.(28)

As a consequence of 0 ≤ ftr ≤ 1, C̃ ∈ L∞((0,∞) × Ω) holds. For q ≥ 2 and even, we
multiply (26) by ñq−1/μn and (27) by p̃q−1/μp, and add:

d

dt

∫
Ω

[
ñq

qμn
+

p̃q

qμp

]
dx = −(q − 1)

∫
Ω

ñq−2∇ñ∇ndx− (q − 1)

∫
Ω

p̃q−2∇p̃∇p dx

+ (q − 1)

∫
Ω

[
ñq−2n∇ñ− p̃q−2p∇p̃

]
∇V dx

+

∫
Ω

ñq−1

μn
(Rn − ∂tnD) +

∫
Ω

p̃q−1

μp
(Rp − ∂tpD)

=: I1 + I2 + I3 + I4 + I5.

(29)

Using the assumptions on nD, pD and |Rn| ≤ C(n+ 1), |Rp| ≤ C(p+ 1), we estimate

I4 ≤ C

∫
Ω

|ñ|q−1(n + 1) dx ≤ C

(∫
Ω

ñq dx + 1

)
, I5 ≤ C

(∫
Ω

p̃q dx + 1

)
.

The term I3 can be rewritten as follows:

I3 =

∫
Ω

[
ñq−1∇ñ− p̃q−1∇p̃

]
∇V dx

+

∫
Ω

[
ñq−2∇ñ

]
(nD∇V ) dx−

∫
Ω

[
p̃q−2∇p̃

]
(pD∇V ) dx

= − 1

λ2q

∫
Ω

[ñq − p̃q] (ñ− p̃− C̃) dx

− 1

λ2(q − 1)

∫
Ω

ñq−1
(
∇nD∇V + nD(ñ− p̃− C̃)

)
dx

+
1

λ2(q − 1)

∫
Ω

p̃q−1
(
∇pD∇V + pD(ñ− p̃− C̃)

)
dx.

The second equality uses integration by parts and (28). The first term on the right-
hand side is the only term of degree q + 1. It reflects the quadratic nonlinearity of
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the problem. Fortunately, it can be written as the sum of a term of degree q and a
nonnegative term. By estimation of the terms of degree q using the assumptions on

nD and pD as well as ‖∇V ‖Lq(Ω) ≤ C(‖ñ‖Lq(Ω) + ‖p̃‖Lq(Ω) + ‖C̃‖Lq(Ω)), we obtain

I3 ≤ − 1

λ2q

∫
Ω

[ñq − p̃q] (ñ− p̃) dx + C

(∫
Ω

(ñq + p̃q) dx + 1

)

≤ C

(∫
Ω

(ñq + p̃q) dx + 1

)
.

The integral I1 can be written as

(30) I1 = −
∫

Ω

ñq−2|∇n|2 dx +

∫
Ω

ñq−2∇nD∇ndx.

By rewriting the integrand in the second integral as

ñq−2∇nD∇n = ñ
q−2
2 ∇nñ

q−2
2 ∇nD

and applying the Cauchy–Schwarz inequality, we have the following estimate for (30):

I1 ≤ −
∫

Ω

ñq−2|∇n|2 dx +

√∫
Ω

ñq−2|∇n|2 dx
∫

Ω

ñq−2|∇nD|2 dx

≤ −1

2

∫
Ω

ñq−2|∇n|2 dx + C‖ñ‖q−2
Lq ≤ −1

2

∫
Ω

ñq−2|∇n|2 dx + C

(∫
Ω

ñq dx + 1

)
.

For I2, the same reasoning (with n and nD replaced by p and pD, respectively) yields
an analogous estimate. Collecting our results, we obtain

d

dt

∫
Ω

[
ñq

qμn
+

p̃q

qμp

]
dx ≤ −1

2

∫
Ω

ñq−2|∇n|2 dx− 1

2

∫
Ω

p̃q−2|∇p|2 dx

+ C

(∫
Ω

(ñq + p̃q) dx + 1

)
.

(31)

Since q ≥ 2 is even, the first two terms on the right-hand side are nonpositive, and
the Gronwall lemma gives∫

Ω

(ñq + p̃q) dx ≤ eqCt

(∫
Ω

(ñ(t = 0)q + p̃(t = 0)q) dx + 1

)
.

A uniform-in-q-and-ε estimate for ‖n‖Lq , ‖p‖Lq follows, and the uniform-in-ε bound
in L∞(0, T ;L∞(Ω)) is obtained in the limit q → ∞. The estimate in L2(0, T ;H1(Ω))
is then derived by returning to (31) with q = 2.

Now we are ready to prove the main result of this section.
Theorem 3.2. Let the assumptions of Theorem 3.1 be satisfied. Then, as ε → 0,

for every T > 0, the solution (ftr, n, p, V ) of (9)–(12), (17)–(19) converges with
convergence of ftr in L∞((0, T ) × Ω × (0, 1)) weak*, n and p in L2((0, T ) × Ω), and
V in L2(0, T ;H1(Ω)). The limits of n, p, and V satisfy (13)–(19).

Proof. The L∞-bounds for ftr, n, and p, which are uniform with respect to
ε, and the Poisson equation (12) imply ∇V is bounded in L2((0, T ) × Ω). From the
definition of Jn, Jp (see (4), (5)), it then follows that Jn, Jp ∈ L2((0, T )×Ω). Then (10)
and (11) together with Rn, Rp ∈ L∞((0, T ) × Ω) imply ∂tn, ∂tp ∈ L2(0, T ;H−1(Ω)).
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The previous result and the Aubin lemma (see, e.g., Simon [16, Corollary 4, p. 85])
give compactness of n and p in L2((0, T ) × Ω).

We already know from the Poisson equation that ∇V ∈ L∞(0, T ;H1(Ω)). By
taking the time derivative of (12), one obtains

∂tΔV = ∇ · (Jn + Jp),

with the consequence that ∂t∇V is bounded (uniformly with respect to ε) in L2((0, T )×
Ω). Therefore, the Aubin lemma can again be applied as above to prove compactness
of ∇V in L2((0, T ) × Ω).

These results and the weak compactness of ftr are sufficient for passing to the limit
in the nonlinear terms n∇V , p∇V , nftr, and pftr. Let us also remark that ∂tn and ∂tp
are bounded in L2(0, T ;H−1(Ω)), so that n, p are compact in C0([0, T ];L2(Ω) weak).
With this remark the initial data for the limit equation make sense. By the uniqueness
result for the limiting problem (mentioned at the end of section 2), the convergence
is not restricted to subsequences.

4. A kinetic Shockley–Read–Hall model. In this section we replace the
drift-diffusion model for electrons and holes by a semiclassical kinetic transport model.
It is governed by the system

∂tfn + vn(k) · ∇xfn +
q

�
∇xV · ∇kfn = Qn(fn) + Qn,r(fn, ftr),(32)

∂tfp + vp(k) · ∇xfp −
q

�
∇xV · ∇kfp = Qp(fp) + Qp,r(fp, ftr),(33)

∂tftr = Sp(fp, ftr) − Sn(fn, ftr),(34)

εsΔxV = q(n + ntr − p− C),(35)

where fi(x, k, t) represents the particle distribution function (with i = n for electrons
and i = p for holes) at time t ≥ 0, at the position x ∈ R

3, and at the wave vector
(or generalized momentum) k ∈ R

3. All functions of k have the periodicity of the
reciprocal lattice of the semiconductor crystal. Equivalently, we shall consider only
k ∈ B, where B is the Brillouin zone, i.e., the set of all k which are closer to the origin
than to any other lattice point, with periodic boundary conditions on ∂B.

The coefficient functions vn(k) and vp(k) denote the electron and hole velocities,
respectively, which are related to the electron and hole band diagrams by

vn(k) = ∇kεn(k)/�, vp(k) = −∇kεp(k)/�,

where � is the reduced Planck constant. The elementary charge is still denoted by q.
The collision operators Qn and Qp describe the interactions between the particles

and the crystal lattice. They involve several physical phenomena and can be written
in the general form

Qn(fn) =

∫
B

Φ̃n(k, k′)[Mnf
′
n(1 − fn) −M ′

nfn(1 − f ′
n)] dk′,(36)

Qp(fp) =

∫
B

Φ̃p(k, k
′)[Mpf

′
p(1 − fp) −M ′

pfp(1 − f ′
p)] dk

′,(37)

with the primes denoting evaluation at k′, with the nonnegative, symmetric scattering
cross sections Φ̃n(k, k′) and Φ̃p(k, k

′), and with the Maxwellians

Mn(k) = cn exp(−εn(k)/kBT ), Mp(k) = cp exp(−εp(k)/kBT ),
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where kBT is the thermal energy of the semiconductor crystal lattice and the constants
cn, cp are chosen such that ∫

B

Mn dk =

∫
B

Mp dk = 1.

The remaining collision operators Qn,r(fn, ftr) and Qp,r(fp, ftr) model the generation
and recombination processes and are given by

(38) Qn,r(fn, ftr) =

∫ Ec

Ev

Ŝn(fn, ftr)Mtr dE,

with

Ŝn(fn, ftr) =
Φn(k,E)

Ntr
[n0Mnftr(1 − fn) − fn(1 − ftr)] ,

and

(39) Qp,r(fp, ftr) =

∫ Ec

Ev

Ŝp(fp, ftr)Mtr dE,

with

Ŝp(fp, ftr) =
Φp(k,E)

Ntr
[p0Mp(1 − fp)(1 − ftr) − fpftr] ,

and where Φn,p are nonnegative and Mtr(x,E) is the same density of available trapped
states as for the drift-diffusion model, except that we allow for a position dependence
now. This will be commented on below. The parameter Ntr is now determined as

Ntr = supx∈R3

∫ 1

0
Mtr(x,E) dE.

The right-hand side in the equation for the occupancy ftr(x,E, t) of the trapped
states is defined by

(40) Sn(fn, ftr) =

∫
B

Ŝn dk = λn[n0Mn(1 − fn)]ftr − λn[fn](1 − ftr),

with λn[g] =
∫
B

Φng dk, and

(41) Sp(fp, ftr) =

∫
B

Ŝp dk = λp[p0Mp(1 − fp)](1 − ftr) − λp[fp]ftr,

with λp[g] =
∫
B

Φpg dk.
The factors (1− fn) and (1− fp) take into account the Pauli exclusion principle,

which therefore manifests itself in the requirement that the values of the distribution
function have to respect the bounds 0 ≤ fn, fp ≤ 1.

The position densities on the right-hand side of the Poisson equation (35) are
given by

n(x, t) =

∫
B

fn dk, p(x, t) =

∫
B

fp dk, ntr(x, t) =

∫ Ec

Ev

ftrMtr dE.

The following scaling, which is strongly related to the one used for the drift-diffusion
model, will render (32)–(35) dimensionless:
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Scaling of parameters:
i. Mtr → Ntr

Ev−Ec
Mtr.

ii. (εn, εp) → kBT (εn, εp), with the thermal energy kBT .
iii. (Φn,Φp) → τ−1

rg (Φn,Φp), where τrg is a typical carrier life time.

iv. (Φ̃n, Φ̃p) → τ−1
coll(Φ̃n, Φ̃p).

v. (n0, p0, C) → C(n0, p0, C), where C is a typical value of |C|.
vi. (Mn,Mp) → C

−1
(Mn,Mp).

Scaling of independent variables:

vii. x → kBT
√
τrgτcollC

−1/3
�
−1 x.

viii. t → τrgt.

ix. k → C
1/3

k.
x. E → Ev + (Ec − Ev)E.

Scaling of unknowns:
xi. (fn, fp, ftr) → (fn, fp, ftr).
xii. V → UTV , with the thermal voltage UT = kBT/q.

Dimensionless parameters:
xiii. α2 = τcoll

τrg
.

xiv. λ = �

q
√
τrgτcollC

1/6

√
εs

kBT .

xv. ε = Ntr

C
, where again we shall study the situation ε � 1.

Finally, the scaled system reads as follows:

α2∂tfn + αvn(k) · ∇xfn + α∇xV · ∇kfn = Qn(fn) + α2Qn,r(fn, ftr),(42)

α2∂tfp + αvp(k) · ∇xfp − α∇xV · ∇kfp = Qp(fp) + α2Qp,r(fp, ftr),(43)

ε∂tftr = Sp(fp, ftr) − Sn(fn, ftr),(44)

λ2ΔxV = n + εntr − p− C = −ρ,(45)

with vn = ∇kεn, vp = −∇kεp, with Qn and Qp still having the form (36) and (37),
respectively, with the scaled Maxwellians

(46) Mn(k) = cn exp(−εn(k)), Mp(k) = cp exp(−εp(k)),

and with the recombination-generation terms

(47) Qn,r(fn, ftr) =

∫ 1

0

ŜnMtr dE, Qp,r(fp, ftr) =

∫ 1

0

ŜpMtr dE,

with

(48) Ŝn = Φn[n0Mnftr(1−fn)−fn(1−ftr)], Ŝp = Φp[p0Mp(1−ftr)(1−fp)−fpftr].

The right-hand side of (44) still has the form (40), (41). The position densities are
given by

(49) n =

∫
B

fn dk, p =

∫
B

fp dk, ntr =

∫ 1

0

ftrMtr dE.

The system (42)–(44) conserves the total charge ρ = p + C − n − εntr. With the
definition

Jn = − 1

α

∫
B

vnfn dk, Jp =
1

α

∫
B

vpfp dk
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of the current densities, the following continuity equation holds formally:

∂tρ + ∇x · (Jn + Jp) = 0.

Formally setting ε = 0 in (44), we obtain

f tr(fn, fp) =
p0λp[Mp(1 − fp)] + λn[fn]

p0λp[Mp(1 − fp)] + λp[fp] + λn[fn] + n0λn[Mn(1 − fn)]
.

Substituting f tr into (47) leads to the kinetic SRH recombination-generation operators

Qn,r(fn, fp) = gn[fn, fp](1 − fn) − rn[fn, fp]fn,

Qp,r(fn, fp) = gp[fn, fp](1 − fp) − rp[fn, fp]fp,
(50)

with

gn =

∫ 1

0

ΦnMnn0

(
p0λp[Mp(1 − fp)] + λn[fn]

)
Mtr

p0λp[Mp(1 − fp)] + λp[fp] + λn[fn] + n0λn[Mn(1 − fn)]
dE,

rn =

∫ 1

0

Φn

(
λp[fp] + n0λn[Mn(1 − fn)]

)
Mtr

p0λp[Mp(1 − fp)] + λp[fp] + λn[fn] + n0λn[Mn(1 − fn)]
dE,

gp =

∫ 1

0

ΦpMpp0

(
n0λn[Mn(1 − fn)] + λp[fp]

)
Mtr

p0λp[Mp(1 − fp)] + λp[fp] + λn[fn] + n0λn[Mn(1 − fn)]
dE,

rp =

∫ 1

0

Φp

(
λn[fn] + p0λp[Mp(1 − fp)]

)
Mtr

p0λp[Mp(1 − fp)] + λp[fp] + λn[fn] + n0λn[Mn(1 − fn)]
dE.

Of course, the limiting model still conserves charge, which is expressed by the identity∫
B

Qn,r dk =

∫
B

Qp,r dk.

Pairs of electrons and holes are generated or recombine, however, generally not with
the same wave vector. This absence of momentum conservation is reasonable since
the process involves an interaction with the trapped states fixed within the crystal
lattice.

5. Rigorous derivation of the kinetic Shockley–Read–Hall model. The
limit ε → 0 will be carried out rigorously in an initial value problem for the kinetic
model: From now on we work with x ∈ R

3 (and we avoid any discussion on boundary
conditions and possible boundary layers). Concerning the behavior for |x| → ∞, we
shall require the densities to be in L1 and use the Newtonian potential solution of the
Poisson equation; i.e., (45) will be replaced by

(51) E(x, t) = −∇xV = λ−2

∫
R3

x− y

|x− y|3 ρ(y, t) dy.

We define Problem (K) as the system (42)–(44), (51) with (36), (37), (47)–(49), (40),
and (41), subject to the initial conditions

fn(x, k, 0) = fn,I(x, k), fp(x, k, 0) = fp,I(x, k), ftr(x,E, 0) = ftr,I(x,E).
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We start by stating our assumptions on the data. For the velocities we assume

(52) vn, vp ∈ W 1,∞
per (B),

where here and in the following, the subscript per denotes Sobolev spaces of functions
of k satisfying periodic boundary conditions on ∂B. Further we assume that the cross
sections satisfy

(53) Φ̃n, Φ̃p ≥ 0, Φ̃n, Φ̃p ∈ W 1,∞
per (B ×B),

and

(54) Φn,Φp ≥ 0, Φn,Φp ∈ W 1,∞
per (B × (0, 1)).

A finite total number of trapped states is assumed:

Mtr ≥ 0, Mtr ∈ W 1,∞(R3 × (0, 1)) ∩W 1,1(R3 × (0, 1)).

The L1-assumption with respect to x is needed for controlling the total number of
generated particles. For the initial data we assume

0 ≤ fn,I , fp,I ≤ 1, fn,I , fp,I ∈ W 1,∞
per (R3 ×B) ∩W 1,1

per(R
3 ×B),

0 ≤ ftr,I ≤ 1, ftr,I ∈ W 1,∞
per (R3 × (0, 1)).

(55)

We also assume

(56) n0, p0 ∈ L∞((0, 1)), C ∈ W 1,∞(R3) ∩W 1,1(R3).

Finally, we need an upper bound for the life time of trapped electrons:

(57)

∫
B

(Φn min{1, n0Mn} + Φp min{1, p0Mp}) dk ≥ γ > 0.

The reason for the various differentiability assumptions above is that we shall con-
struct smooth solutions by an approach along the lines of [13], which goes back to [4].

An essential tool relies on the following potential theory estimates:

‖E‖L∞(R3) ≤ C‖ρ‖1/2
L1(R3)‖ρ‖

1/2
L∞(R3),(58)

‖∇xE‖L∞(R3) ≤ C
(
1 + ‖ρ‖L1(R3) + ‖ρ‖L∞(R3)

[
1 + log(1 + ‖∇xρ‖L∞(R3))

])
.(59)

This kind of estimate was already crucial in [17]; for the sake of completeness, we recall
the proof in the appendix. We start by rewriting the collision and recombination-
generation operators as

Qi(fi) = ai[fi](1 − fi) − bi[fi]fi, i = n, p,

and

Qi,r(fi, ftr) = gi[ftr](1 − fi) − ri[ftr]fi, i = n, p,

with

ai[fi] =

∫
B

Φ̃iMif
′
i dk

′, bi[fi] =

∫
B

Φ̃iM
′
i(1 − f ′

i) dk
′, i = n, p,

gn[ftr] =

∫ 1

0

Φnn0MnftrMtr dE, gp[ftr] =

∫ 1

0

Φpp0Mp(1 − ftr)Mtr dE,

rn[ftr] =

∫ 1

0

Φn(1 − ftr)Mtr dE, rp[ftr] =

∫ 1

0

ΦpftrMtr dE.
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In order to construct an approximating sequence (f j
n, f

j
p , f

j
tr, Ej) we begin with

(60) f0
i (x, k, t) = fi,I(x, k), i = n, p, f0

tr(x,E, t) = ftr,I(x,E).

The field always satisfies

(61) Ej(x, t) =

∫
R3

x− y

|x− y|3 ρ
j(y, t) dy.

Let (f j
n, f

j
p , f

j
tr, Ej) be given. Then the fi

j+1 are defined as the solutions of the
following problem:

α2∂tf
j+1
n + αvn(k) · ∇xf

j+1
n − αEj · ∇kf

j+1
n

= (an[f j
n] + α2gn[f j

tr])(1 − f j+1
n ) − (bn[f j

n] + α2rn[f j
tr])f

j+1
n ,

α2∂tf
j+1
p + αvp(k) · ∇xf

j+1
p + αEj · ∇kf

j+1
p

= (ap[f
j
p ] + α2gp[f

j
tr])(1 − f j+1

p ) − (bp[f
j
p ] + α2rp[f

j
tr])f

j+1
p ,

ε∂tf
j+1
tr = (p0λp[Mp(1 − f j

p )] + λn[f j
n])(1 − f j+1

tr ) − (n0λn[Mn(1 − f j
n)] + λp[f

j
p ])f j+1

tr ,

(62)

subject to the initial conditions
(63)
f j+1
n (x, k, 0) = fn,I(x, k), f j+1

p (x, k, 0) = fp,I(x, k), f j+1
tr (x,E, 0) = ftr,I(x,E).

For the iterative sequence we state the following lemma, which is very similar to
Proposition 3.1 from [13].

Lemma 5.1. Let the assumptions (52)–(56) be satisfied. Then the sequence
(f j

n, f
j
p , f

j
tr, Ej) defined by (60)–(63) satisfies the following for any time T > 0:

(a) 0 ≤ fi
j ≤ 1, i = n, p, tr.

(b) f j
n and f j

p are uniformly bounded with respect to j → ∞ and ε → 0 in
L∞(0, T ;L1(R3 ×B)).

(c) Ej is uniformly bounded with respect to j and ε in L∞((0, T ) × R
3).

Proof. The first two equations in (62) are standard linear transport equations,
and the third equation is a linear ODE. Existence and uniqueness for the initial value
problems is therefore a standard result.

Note that the ai, bi, gi, ri, and λi in (62) are nonnegative if we assume that (a)
holds for j. Then (a) for j+1 is an immediate consequence of the maximum principle.

To estimate the L1-norms of the distributions, we integrate the first equation
in (62) and obtain

(64) ‖f j+1
n ‖L1(R3×B) ≤ ‖fn,I‖L1(R3×B) +

∫ t

0

∥∥∥∥an[f j
n]

1

α2
+ gn[f j

tr]

∥∥∥∥
L1(R3×B)

(s) ds.

The boundedness of Φ̃n, Φn, and f j
tr and the integrability of Mtr imply

(65) ‖an[f j
n]‖L1(R3×B) ≤ C‖f j

n‖L1(R3×B), ‖gn[f j
tr]‖L1(R3×B) ≤ C.

This is now used in (64). Then an estimate is derived for f j
n by replacing j + 1 by

j and using the Gronwall inequality. Finally, it is easily seen that this estimate is
passed from j to j + 1 by (64). An analogous argument for f j

p completes the proof
of (b).
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A uniform-in-ε (L1∩L∞)-bound for the total charge density ρj = nj+εnj
tr−pj−C

follows from (b) and from the integrability of Mtr. Statement (c) of the lemma is now
a consequence of (58).

For passing to the limit in the nonlinear terms some compactness is needed.
Therefore we prove uniform smoothness of the approximating sequence.

Lemma 5.2. Let the assumptions (52)–(57) be satisfied. Then for any time T > 0
the following hold:

(a) f j
n and f j

p are uniformly bounded with respect to j and ε in L∞(0, T ;W 1,1
per(R

3×
B) ∩W 1,∞

per (R3 ×B)).

(b) f j
tr is uniformly bounded with respect to j and ε in L∞(0, T ;W 1,∞(R3 ×

(0, 1))).
(c) Ej is uniformly bounded with respect to j and ε in L∞(0, T ;W 1,∞(R3)).
Proof. We start by introducing νj = ∇x,kf

j
n = (νjx, ν

j
k), π

j = ∇x,kf
j
p = (πj

x, π
j
k),

φj = ∇xf
j
tr, and by differentiating the last equation in (62) with respect to x:

ε∂tφ
j+1 = (−p0λp[Mpπ

j
x] + λn[νjx])(1 − f j+1

tr ) − (−n0λn[Mnν
j
x] + λp[π

j
x])f j+1

tr

− (p0λp[Mp(1 − f j
p )] + λn[f j

n] + n0λn[Mn(1 − f j
n)] + λp[f

j
p ])φj+1.

The coefficient of φj+1 on the right-hand side is bounded from below by the term
appearing in assumption (57) and, thus, bounded away from zero. The maximum
principle implies

sup
(0,t)

‖φj+1‖∞ ≤ C

(
sup
(0,t)

‖νjx‖∞ + sup
(0,t)

‖πj
x‖∞ + 1

)
,

where here and in the following we use the symbol ‖ · ‖∞ for the L∞-norm on R
3, on

R
3 ×B, and on R

3 × (0, 1). The gradient of the first equation in (62) with respect to
x and k can be written as

α2∂tν
j+1 + αvn · ∇xν

j+1 − αEj · ∇kν
j+1 + (an + bn + α2gn + α2rn)νj+1 = Sj

n,

where it is easily seen that, using our assumptions,

‖Sj
n‖∞ ≤ C

(
1 + ‖νj‖∞ + ‖φj‖∞ + ‖νj+1‖∞(1 + ‖∇xEj‖∞)

)
holds. The analogous treatment of the second equation in (62), the potential theory
inequality (59), and the definition

γj(t) = sup
(0,t)

(‖νj‖∞ + ‖πj‖∞ + ‖φj‖∞)

lead to

γj+1 ≤ C

(
1 +

∫ t

0

(γj + γj+1(1 + log(1 + γj))) ds

)
,

implying boundedness of γj on arbitrary bounded time intervals (as in [4]). This
proves (c) and the L∞-part of (a). The equation for ∂Ef

j+1
tr can be treated as above,

completing the proof of (b).
By

∫
R3 ntr dx ≤

∫
R3 Mtr dx, it is trivial that the total number of trapped electrons

is bounded. Therefore, the L1-estimates in (a) follow the line of [13] since no coupling
with the equation for the trapped electrons is necessary.
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With the previous results, the first two equations in (62) also give uniform bounds
for the time derivatives of f j

n and f j
p . Thus, subsequences converge strongly locally

in x and t. In the same way, the right-hand side of the time derivative of the Pois-
son equation is bounded in L1 and in L∞, and (58) implies boundedness of the time
derivative of the field. So the field also converges strongly. This and the (obvious)
weak convergence of f j

tr are sufficient for passing to the limit in the quadratic nonlin-
earities. Note also that we have enough bounds on the time derivative to define the
trace at time t = 0. Existence of a global solution of Problem (K) follows. By the
same argument, the limit ε → 0 can be justified, since all estimates are also uniform
in ε.

Theorem 5.3. Let the assumptions (52)–(57) be satisfied. Then Problem (K)
has a global solution (fn, fp, ftr, E) with fn, fp ∈ L∞(0, T ;W 1,∞

per (R3 × B)), ftr ∈
L∞(0, T ;W 1,∞(R3 × (0, 1))), E ∈ L∞(0, T ;W 1,∞(R3)). For ε → 0, a subsequence of
solutions converges to the formal limit problem. The convergence of fn and fp is in
L∞((0,∞)× R

3 ×B), that of E in L∞((0,∞)× R
3), and that of ftr in L∞((0,∞)×

R
3 × (0, 1)) weak*.

6. Relation between macroscopic and kinetic models. In this section the
relation between the two models in sections 2 and 4 is clarified on a formal level. The
drift-diffusion model of section 2 can be derived from the kinetic model of section 4
by two simplification steps: a macroscopic and a low density limit.

Starting with the macroscopic limit, i.e., the limit when the Knudsen number α
tends to zero in (42), (43), the solutions are expanded in terms of powers of α:

fn = f0
n + αf1

n + O(α2), fp = f0
p + αf1

p + O(α2),(66)

ftr = f0
tr + O(α), V = V 0 + O(α).(67)

The limit of (42), (43) as α → 0 leads to Qn(f0
n) = Qp(f

0
p ) = 0. With the (frequently

used) simplifying assumption that the cross sections Φ̃n and Φ̃p are strictly positive,
the limiting distributions are of Fermi–Dirac type (see [13]):

f0
n(x, k, t) =

1

1 + e−μn(x,t)/Mn(k)
, f0

p (x, k, t) =
1

1 + eμp(x,t)/Mp(k)
,

where the scaled Maxwellians Mn,Mp are given by (46) and the chemical potentials
μn and μp are yet to be specified. Note the one-to-one relations between the chemical
potentials and the macroscopic electron and hole densities:

n(μn) =

∫
B

dk

1 + e−μn/Mn(k)
, p(μp) =

∫
B

dk

1 + eμp/Mp(k)
.

Now (42) is divided by α, and then again the limit α → 0 is carried out (formally):

(68) vn · ∇xf
0
n + ∇xV

0 · ∇kf
0
n = LQn(f0

n)f1
n,

where LQn is the linearization of Qn:

LQn(f0
n)f1

n =

∫
B

Φ̃n

[
(Mn(1 − f0

n) + M ′
nf

0
n)f1′

n − (Mnf
0′

n + M ′
n(1 − f0′

n ))f1
n

]
dk′.

For the following we shall need two facts about the linearized collision operator
LQn(f0

n) (see, e.g., [1]): It has a one-dimensional kernel spanned by f0
n(1 − f0

n), and
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its range consists of functions whose integral with respect to k vanishes. Therefore,
for solvability of (68), seen as an equation for f1

n, the integral with respect to k of the
left-hand side has to vanish. This is obvious for the second term ∇xV

0 · ∇kf
0
n by the

periodicity with respect to k. Since the first term can be written as

vn · ∇xf
0
n = ∇kεn · ∇x

Mn

Mn + e−μn
= −∇k · ∇x log

(
Mn + e−μn

)
,

it also satisfies the solvability condition. Now (68) is written as

(69)
Mne

−μn

(Mn + e−μn)2
∇kεn · (∇xV

0 −∇xμn) = LQn(f0
n)f1

n.

Note that the factor in parentheses is independent of k. Thus, choosing a solution
hn(k, μn) of

(70) LQn(f0
n)hn = − Mne

−μn

(Mn + e−μn)2
∇kεn,

the solution of (69) can be written as

f1
n = hn(k, μn) · (∇xV

0 −∇xμn) + μ1
nf

0
n(1 − f0

n).

Analogously,

(71) f1
p = hp(k, μp) · (∇xV

0 + ∇xμp) + μ1
pf

0
p (1 − f0

p )

is obtained (with μ1
n(x, t) and μ1

p(x, t) not specified, and not needed in the following).
Finally, (42), (43) are divided by α2 and integrated with respect to k, and the limit
α → 0 is carried out:

∂tn + ∇x ·
∫
B

vnf
1
n dk =

∫
B

Qn,r(f
0
n, f

0
tr) dk =

∫ 1

0

Sn(f0
n, f

0
tr) dE,(72)

∂tp + ∇x ·
∫
B

vpf
1
p dk =

∫
B

Qp,r(f
0
p , f

0
tr) dk =

∫ 1

0

Sp(f
0
p , f

0
tr) dE.(73)

With the formulas for f1
n and f1

p , we obtain the drift-diffusion fluxes∫
B

vnf
1
n dk = Dn(μn)(∇xV

0 −∇xμn),

∫
B

vpf
1
p dk = Dp(μp)(∇xV

0 + ∇xμp),

with the diffusion matrices

Dn =

∫
B

vn ⊗ hn dk, Dp =

∫
B

vp ⊗ hp dk.

For the recombination-generation terms, we obtain

Sn(f0
n, f

0
tr) = λn

[
e−μn

1 + e−μn/Mn

]
(n0f

0
tr − eμn(1 − f0

tr)),

Sp(f
0
p , f

0
tr) = λp

[
eμp

1 + eμp/Mp

]
(p0(1 − f0

tr) − e−μpf0
tr).
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Finally, we consider the small densities situation, when μn is large and negative
and μp large and positive. This gives n(μn) ≈ eμn and p(μp) ≈ e−μp . The above
recombination-generation terms can then be approximated by the terms in (9) with
1/τn = λn[Mn] and 1/τp = λp[Mp].

Equation (70) for hn can be approximated by∫
B

Φ̃n

[
Mnh

′
n −M ′

nhn

]
dk′ = −nMn∇kεn,

implying hn = nh̃n(k) and, thus, Dn = nD̃n. With this and the analogous ap-
proximation for holes, the macroscopic model becomes the drift-diffusion model from
section 2.

It is worth pointing out that the drift-diffusion SRH model has been obtained from
the kinetic model by a two-step approximation procedure: At first, the hydrodynamic
limit leads to a more nonlinear system, and we perform additionally the small densities
asymptotics. This remark appeals to further mathematical questions:

• It could be interesting to investigate the intermediate macroscopic model that
comes directly from the Fermi–Dirac statistics.

• It could be tempting to reverse the limits. Roughly speaking, it means that
we do not take into account the Pauli exclusion principle in the kinetic equations,
and the collision operator is replaced by a linear Boltzmann operator which relaxes
to a Maxwellian (instead of a Fermi–Dirac distribution). Mathematically, this leads
to additional difficulties since we lose the natural L∞-estimate given for free with the
exclusion terms. Rigorous derivation of the diffusion regime for the corresponding
Boltzmann–Poisson system in a bounded domain, with only one species of charged
particles, has been obtained only very recently by using a tricky renormalization
argument; see [11] (and [12] for an earlier work on renormalized solutions).

Appendix. Proof of (58) and (59). We recall that the fundamental solution
of −Δ in R

N , N ≥ 3, reads E(x) = CN |x|2−N . For a given function ρ : R
N → R

+,
we set

Φ = E ∗ ρ, ∇xΦ(x) = CN (2 −N)

∫
RN

x− y

|x− y|
ρ(y)

|x− y|N−1
dy.

For any 0 < R < ∞, we have∫
RN

ρ(y)

|x− y|N−1
dy =

∫
|x−y|≤R

. . . dy +

∫
|x−y|≥R

. . . dy ≤ ‖ρ‖∞
ΩNR2

2
+

1

RN−1
‖ρ‖1,

where ΩN stands for the surface of the N -dimensional sphere. Optimizing with respect
to R yields

‖∇Φ‖∞ ≤ KN‖ρ‖(N−1)/(N+1)
∞ ‖ρ‖2/(N+1)

1 ,

where KN is the constant depending only on the dimension.
Since |x|N−1 is locally integrable, we compute the second derivatives of the po-

tential as follows. For any ϕ ∈ C∞
c (RN ), we have〈

∂2
ijΦ;ϕ

〉
= CN (2 −N)

∫
RN

xj

|x|N ∂jϕ(x) dx = CN (2 −N) lim
η→0

∫
|x|≥η

xj

|x|N ∂jϕ(x) dx

= CN (N − 2) lim
η→0

(∫
|x|≥η

(
δij
|x|N −N

xixj

|x|N+2

)
ϕ(x) dx +

∫
|x|=η

xj

|x|N
xi

|x|ϕ(x) dσ(x)

)
.
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The second integral in the right-hand side can be recast as∫
SN−1

ϕ(ηω)ωiωj dω,

and therefore it converges to

ΩN

N
δij ϕ(0).

Let us introduce the matrix

Kij(x) = CN
N − 2

|x|N

(
δij −N

xixj

|x|2

)
.

Then, in the sense of distribution the Hessian matrix of E satisfies

D2E(x) = CN (2 −N)
ΩN

N
I δ(x = 0) + lim

η→0
K(x)χ|x|≥η.

In particular we remark that

(74)

∫
SN−1

K(rω) dω = 0, Tr K = 0.

Accordingly, the Hessian matrix of the potential Φ is given by

D2Φ(x) = CN (2 −N)
ΩN

N
I ρ(x) + lim

η→0

∫
|x−y|≥η

K(x− y)ρ(y) dy.

Let us discuss the last term. Consider 0 < η < R1 < R2 < ∞. Using the notation C
to stand for any constant depending only on the dimension, we get∣∣∣∣∣
∫
|x−y|≥η

K(x− y)ρ(y) dy

∣∣∣∣∣ ≤ C

(∫
|x−y|≥R2

ρ(y)

|x− y|N dy +

∫
R1≤|x−y|≤R2

ρ(y)

|x− y|N dy

+

∣∣∣∣∣
∫
η≤|x−y|≤R1

K(x− y)ρ(y) dy

∣∣∣∣∣
)

≤ C
1

RN
2

‖ρ‖1 + C‖ρ‖∞ ln

(
R2

R1

)
+ C

∣∣∣∣∣
∫
η≤|x−y|≤R1

K(x− y)
(
ρ(y) − ρ(x)

)
dy

∣∣∣∣∣
where we used (74). We deduce the following estimate:∣∣∣∣∣

∫
|x−y|≥η

K(x− y)ρ(y) dy

∣∣∣∣∣ ≤ C

(
1

RN
2

‖ρ‖1 + ‖ρ‖∞ ln

(
R2

R1

)
+ ‖∇xρ‖∞R1

)
.

Then, we choose R2 = 1 > R1 = (1 + ‖∇xρ‖∞)−1 and conclude that

|D2Φ(x)| ≤ C
(
1 + ‖ρ‖1 + ‖ρ‖∞

(
1 + ln(1 + ‖∇xρ‖∞)

))
holds. A similar analysis can be done in dimension two; see [17].
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ROLL-WAVES IN GENERAL HYPERBOLIC SYSTEMS WITH
SOURCE TERMS∗
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Abstract. The purpose of this article is to prove the existence of particular nonlinear waves,
so-called roll-waves, in general hyperbolic systems with a source term: these are periodic and dis-
continuous traveling waves, the discontinuities satisfying entropy conditions. We show that roll-wave
solutions can be seen as zeros of a suitably chosen map. In the vanishing amplitude limit, a partic-
ular solution exists, and we prove that this solution persists to small amplitudes, which yields the
existence of small amplitude roll-waves. The shock conditions (Rankine–Hugoniot conditions and
Lax entropy conditions) are treated as nonlinear boundary conditions.

Key words. nonlinear waves, hyperbolic systems, roll-waves, relaxation
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1. Introduction. Roll-waves are hydrodynamic instabilities appearing in shal-
low water flows downstream from an open inclined channel. This type of flow is
described by the Saint Venant equation, which reads in its adimensional form as:

(1)

ht + (hu)x = 0,

(hu)t +

(
h2

2F
+ hu2

)
x

= h− u2,

where h is the height of the water, u its velocity, and F is the Froude number.
This system is hyperbolic, the hyperbolic part being similar to the isentropic Euler
equations, with a source term taking into account the gravity effects and the rugosity
of the channel (through the friction term −u2). When the uniform flow is unstable
F > 4, it is proved that roll-waves appear as mathematical solutions of (1). More
precisely, Dressler [4] proved the existence of periodic traveling waves, which are
necessarily discontinuous. The discontinuities satisfy the Rankine–Hugoniot jump
conditions and a Lax entropy condition.

In this paper, we consider a general hyperbolic system with a source term

(2) ut + Df(u)ux = g(u), u ∈ R
n, n ≥ 2.

For this general class of equations, we study the existence of roll-wave solutions, i.e.,
discontinuous periodic traveling waves, the discontinuities satisfying the Rankine–
Hugoniot jump conditions and the Lax shock conditions.

There are many mathematical studies of the system (2) in the relaxation case,
where equation (2) has the particular form

(3) ut + Df(u)ux =
1

ε
g(u),
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with ε � 1, and the set of equilibrium g(u) = 0 forms a j-dimensional manifold,
j < n. This type of system appears in many physical situations, for example, in
kinetic theory [2], gases not in local equilibrium [7], multiphase and phase transition
[17], or linear and nonlinear waves [19]. Let us mention a few mathematical results out
of a huge literature on the topic. For relaxation equations, reduced systems, inviscid
and viscous local conservation laws, and weakly nonlinear limits can be computed
through asymptotic expansions. These computations can be justified rigorously for
2 × 2 systems [3], and in the general case an entropy condition on the full system
ensures the hyperbolicity of the reduced inviscid system. For 2 × 2 systems, this
condition is nothing but the stability condition of the equilibrium states. In that
case, the first order correction is shown to be dissipative. More recently, the existence
and the stability of relaxation shocks have been established in general hyperbolic
systems with relaxation [18, 15].

Less studied is the system (2) when the uniform flow is unstable: let us just
mention the paper of Jin and Katsoulakis [6], where 2 × 2 hyperbolic systems with
supercharacteristic relaxations are considered: a weakly nonlinear limit is identified
which is a Burgers equation with a source term, and this equation possesses roll-
wave solutions. Such a limit is justified in the presence of artificial viscosity, using
the energy method [6]. For the Saint Venant system (1), when the uniform flow is
unstable F > 4, roll-waves appear and are proved to be stable. This is done formally
in [1] for roll-waves of large spatial period, and rigorously in [10], where it is proved
that roll-waves are spectrally stable. The nonlinear stability of roll-waves shall be
treated in a forthcoming paper [11]. The notion of nonlinear stability of solutions of
hyperbolic equations that contain shocks means that for any initial data close to the
solution and with the same structure of shocks, the solution of the Cauchy problem
exists on a sufficiently small interval and keeps the structure of the initial data; see
[14, 16] and the references therein for more details.

In this paper we are going to prove that under suitable conditions system (2) pos-
sesses small amplitude roll-wave solutions. For that purpose, we follow the approach
of Dressler and search for discontinuous periodic traveling waves, the discontinuities
satisfying the Rankine–Hugoniot conditions and the Lax shock entropy condition. We
shall see that this is equivalent to proving the existence of a special regular solution
of the differential system(

Df(u) − c
)
u′ = g(u) ∀x ∈ (0, L),

where c is the wave speed and L the wavelength of the roll-wave, satisfying nonlinear
boundary conditions. This approach has already been used successfully to prove the
existence of pulsating roll-waves in Saint Venant equations with a periodic bottom [12].

In order to prove the existence of roll-waves, we show that they are zeros of a
suitably chosen map. Then, searching for small amplitude roll-waves, we introduce
the scaling used by Jin and Katsoulakis to derive a Burgers equation from 2 × 2
hyperbolic systems with supercharacteristic relaxation [6]. In the vanishing amplitude
limit ε → 0 and L = 2ετ → 0, we prove that the map considered has a zero. Then
we show that the differential of this map is invertible and, using the implicit function
theorem, deduce the existence of small amplitude roll-waves. The plan of the paper is
as follows. In section 2, we reduce the problem of finding roll-waves to finding zeros of
a particular map. These zeros satisfy a differential system and the Rankine–Hugoniot
conditions. The Lax shock condition is treated separately. In section 3, we show that
the map has a zero in the limit ε → 0 and L = 2ετ → 0. In section 4, we prove that
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under suitable conditions, this particular solution persists when 0 < ε � 1. We shall
separate two cases. We first consider the “artificial” case where dg(u0) is invertible,
u0 being a stationary solution of (2) (i.e., such that g(u0) = 0): we obtain a family
of roll-waves parametrized by the rescaled wavelength 2τ > 0. Then we consider
the “real” case where g(u) =t (0, h(u)) with h : R

n → R
n−j . Then assuming that

dh(u0) is surjective, we can prove that the particular solution persists when ε �= 0 and,
if the rescaled period is fixed, belongs to a j-dimensional manifold. Under suitable
conditions, we show that this family can be parametrized by j-conserved quantities of
the motion. Then we draw a conclusion and present some perspectives on this paper.

2. Formulation of the problem. Let us consider the first order system of
partial differential equations

(4) ut + Df(u)ux = g(u).

The left-hand side of system (4) is supposed to be hyperbolic in a neighborhood V(u0)
of a constant solution u = u0 of (4), i.e., so that g(u0) = 0. That is, Df(u) has n real
eigenvalues

(
λk(u)

)
k=1,...,n

so that

(5) λ1(u) < · · · < λk(u) < · · · < λn(u) ∀u ∈ V(u0).

We shall consider in what follows that f and g both have a power series expansion at
the point u = u0 with a domain of convergence D containing B(u0, r), r > 0.

The purpose of the paper is to prove the existence of periodic traveling waves
with admissible discontinuities given by the Rankine–Hugoniot conditions and a Lax
entropy shock condition. Following the approach developed by Dressler [4], we search
for a periodic traveling wave with wave speed c and wavelength 2L in the form u(x, t) =
U(x − ct), with U a 2L periodic function with discontinuities at points xj = (2j +
1)L, j ∈ Z, which satisfies the differential system

(6)
(
Df(U(x)) − c

)
U ′ = g(U(x)) ∀x ∈ (−L,L).

The discontinuities verify the admissible conditions

(7)
[f(U)](2j+1)L = c[U ](2j+1)L ∀j ∈ Z,

λk(U
+
j ) < c < λk(U

−
j ), λk−1(U

−
j ) < c < λk+1(U

+
j ),

for some k, 1 ≤ k ≤ n, and U±
j denotes U((2j+1)L)± ∀j ∈ Z. Due to the translational

invariance of (6), the problem (6)–(7) is equivalent to finding a smooth solution U
defined on (−L,L) satisfying the system (6) with the nonlinear boundary conditions

(8)
f
(
U(L)

)
− f

(
U(−L)

)
= c

(
U(L) − U(−L)

)
,

λk

(
U(−L)

)
< c < λk

(
U(L)

)
, λk−1

(
U(L)

)
< c < λk+1

(
U(−L)

)
,

for some k, 1 ≤ k ≤ n. Now let us take U as the solution of (6) and integrate this
system on (−L,L): this yields

(9) f
(
U(L)

)
− f

(
U(−L)

)
− c

(
U(L) − U(−L)

)
=

∫ L

−L

g(U(x))dx.
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As a consequence, the Rankine–Hugoniot jump conditions for solutions in the class
of roll-waves are satisfied if and only if∫ L

−L

g(U(x))dx = 0.

In what follows we are going to prove the existence of a small amplitude roll-wave
with a small spatial period. For that purpose, we use the scaling introduced by Jin
and Katsoulakis to derive a Burgers equation from 2 × 2 hyperbolic systems with
supercharacteristic relaxation [6]. Denote by ε the amplitude of the roll-wave and by
L = 2ετ , with τ > 0, its spatial wavelength. Let us write u in the form

(10) u(x) = u + εv

(
x− ct

2ετ

)
,

with v a smooth function defined on (−1, 1). The resulting roll-wave is a traveling wave
with wave speed c and spatial period 2ετ for some τ > 0. Note that the amplitude of
the roll-wave and its spatial period are of the same order. Inserting (10) into (6), (8)
yields

(11)
(
Df(u + εv(x)) − c

)
v′(x) = τ g(u + εv(x)) ∀x ∈ (−1, 1).

The nonlinear boundary conditions are given by

(12)

f(u + εv(1) − f(u + εv(−1))

ε
= c(v(1) − v(−1),

λk(u + εv(−1)) < c < λk(u + εv(1)),

λk−1(u + εv(1)) < c < λk+1(u + εv(−1)),

for some k, 1 ≤ k ≤ n. It is a classical result that the Lax entropy shock conditions
for small amplitude shocks reduce to the single condition

(13) λk(u + εv(−1)) < c < λk(u + εv(1)),

the other condition being automatically satisfied when ε is sufficiently small. More-
over, letting ε → 0 in the shock conditions yields

Df(u)
(
v(1) − v(−1)

)
= c(v(1) − v(−1)).

Thus c = λk(u) is necessarily one of the eigenvalues of Df(u). In what follows, we
suppose that c = λk(u).

We are going to prove that there exists a solution (u, v) of (11,12) for 0 < ε � 1.
For that purpose, let us consider the map Fε,τ defined by

Fε,τ : X × R
n → Y × R

n,

Fε,τ (v, u)1 = Πk(u)

(
Df(u + εv) −Df(u)

ε
v′ − τ

g(u + εv) − 〈g(u + εv)〉
ε

)
+ (1 − Πk(u))

((
Df(u + εv) − λk(u)

)
v′
)

+ τ(1 − Πk(u))
(
〈g(u + εv)〉 − g(u + εv)

)
,

Fε,τ (v, u)2 =

∫ 1

−1

g(u + εv(x)) dx,
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where 〈u〉 denotes the spatial mean 〈u〉 = 1
2

∫ 1

−1
u(x)dx and Πk(u) is the projection

on the eigenspace Ker(Df(u) − λk(u)I) with respect to Im(Df(u) − λk(u)I). The
functional spaces X,Y are given by

(14)

X0 =

⎧⎨
⎩f ∈ C1(−1, 1)/ f(x) =

∑
n≥0

an x
n,

∑
n≥0

(n + 1)|an| < +∞

⎫⎬
⎭ ,

X = {f ∈ X0/ (1 − Πk(u0))〈f〉 = 0},

Y =

⎧⎨
⎩f ∈ C(−1, 1)/ f(x) =

∑
n≥0

an x
n,

∑
n≥0

|an| < +∞

⎫⎬
⎭ ,

endowed with the norms ‖f‖X =
∑

n≥0(n + 1)|an| and ‖f‖X =
∑

n≥0 |an|. The
mapping Fε,τ is well defined, provided that v, τ > 0 are in a bounded subset of
X × R

+
∗ , ε is sufficiently small, and u is close enough to u0. Moreover, the eigenvalue

λk(u) of Df(u) is isolated in a sufficiently small neighbourhood V(u0) of u0: it is
standard perturbation theory to prove that the application u → Πk(u) is C1 (see [5]
for more details). Consequently, since we have supposed that f, g have power series
expansions, the map F is C1 for u ∈ V(u0), v, and τ > 0 in a bounded subset of
X × R

+
∗ and ε sufficiently small. Since Ker(Df(u) − λk(u)I) is one-dimensional, we

can identify, for any v ∈ R
n, Πk(u)v with a real number.

The following proposition relates the zeros of Fε,τ with the roll-wave solutions.
Proposition 1. Let (u, v) ∈ R

n × X be a zero of Fε,τ ; then

(15)

(
Df(u + εv(x)) − c

)
v′(x) = τ g(u + εv(x)) ∀x ∈ (−1, 1),

f(u + εv(1) − f(u + εv(−1))

ε
= c

(
v(1) − v(−1)

)
,

with c = λk(u).
Then a zero of Fε,τ is a solution of (11) and the Rankine–Hugoniot jump con-

ditions. In what follows, given any τ0 > 0, we are going to prove that F0,τ0 has a
particular solution (u0, v

0) and that the derivative at this point DF0,τ0 is invertible
with a bounded inverse. Using the implicit function theorem, this particular solution
persists as a zero of Fε,τ , provided that ε ≈ 0 and τ ≈ τ0.

Let us deal with the Lax shock condition: this condition is equivalent to

(16)
λk(u + εv(−1)) − λk(u)

ε
< 0 <

λk(u + εv(1)) − λk(u)

ε
.

Let ε → 0; then

(17) dλk(u).v(−1) ≤ 0 ≤ dλk(u).v(1).

It is easy to prove the following lemma
Lemma 1. Suppose that (u0, v

0) satisfies the “asymptotic” Lax shock condition

(18) dλk(u0).v
0(−1) < 0 < dλk(u0).v

0(1);

then (u, v), a zero of Fε,τ , which lies in a sufficiently small neighborhood of (u0, v
0),

corresponds to a roll-wave solution of (4).
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As a conclusion, we clearly see that the task is two-fold: first we have to prove
the existence of a particular zero (u0, v

0) of F0,τ0 , which satisfies the “asymptotic”
Lax shock condition (18). Then we show that DF0,τ0 is invertible at point (u0, v

0).
Shrinking the neighborhood of (u0, v

0) if necessary, the Lax shock conditions will be
automatically satisfied, and this will establish the existence of roll-waves.

3. Roll-wave solutions in the limit ε → 0. In this section we are going to
compute a zero (u0, v

0) of F0,τ0 which satisfies the “asymptotic” Lax shock condition

(19) dλk(u).v(−1) < 0 < dλk(u).v(1).

It is easy to see that (u, v) as a zero of F0,τ0 satisfies

(20)
g(u) = 0,
Πk(u)D2f(u).v(x).v′(x) − Πk(u) dg(u)

(
v(x) − 〈v〉

)
= 0,

(1 − Πk(u))(Df(u) − λk(u))v′(x) = 0 ∀x ∈ (−1, 1).

Let us choose u = u0: then g(u) = g(u0) = 0. The last equation of (20) implies that
v is given by

(21)
v(x) = Πk(u0)v(x) + V 0

k ∀x ∈ (−1, 1),

v(x) = λ(x)rk(u0) + V 0
k ∀x ∈ (−1, 1),

where V 0
k ∈ (1 − Πk(u0))R

n is a constant vector. Since v ∈ X, it is clear that
necessarily V 0

k = 0. In order to compute λ, insert (21) into the second equation of
(20): this yields

(22) λ′(x) =
Πk(u0)dg(u0).rk(u0)

(
λ(x) − 〈λ〉

)
Πk(u0)D2f(u0).rk(u0).rk(u0)λ(x)

∀x ∈ (−1, 1).

The equation has a smooth solution if we choose 〈λ〉 = 0. In that case, we find that

(23) λ(x) = αx, with α = τ0
Πk(u0)dg(u0).rk(u0)

Πk(u0)D2f(u0).rk(u0).rk(u0)
.

Hence we have proved the following proposition.
Proposition 2. Assume that

Πk(u0)D
2f(u0).rk(u0).rk(u0) �= 0, Πk(u0) dg(u0).rk(u0) �= 0.

Then there exists a zero (u0, v
0) of F0,τ0 with v0 defined by

(24) v0(x) = αx rk(u0), with α = τ0
Πk(u0)dg(u0).rk(u0)

Πk(u0)D2f(u0).rk(u0).rk(u0)
.

Let us check the “asymptotic” Lax shock condition: this is done in the following
lemma.

Lemma 2. Under the assumption dλk(u0).rk(u0) > 0, the particular solution
(u0, α x rk(u0)) satisfies the “asymptotic” Lax shock condition.

Thus we have proved the existence of a zero (u0, v
0) of F0,τ0 , which satisfies the

asymptotic Lax shock condition. Let us prove that the particular solution (u0, v
0)

persists for ε �= 0 and τ ≈ τ0 as an “admissible” zero of Fε,τ , (in the sense that they
satisfy the Lax shock condition and are zeros of Fε,τ ). This is done in the next section.
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4. Persistence of the “asymptotic” roll-waves. In this section, we prove
that DF0,τ0 is invertible at point (u0, v

0). The expression for DF0,τ0 is given in the
following lemma.

Lemma 3. The differential of F0,τ0 at the point (u0, α x rk(u0)) is given by

DF0,τ0 : X × R
n → Y × R

n

(v, u) →
Πk(u0)L1(x).v + (1 − Πk(u0))L2.v + M(x).u

dg(u0).u,

with

L1(x).v = αxD2f(u0).rk(u0).v
′ + D2f(u0).v.rk(u0) − dg(u0).(v − 〈v〉),

L2.v =
(
Df(u0) − λk(u0)

)
.v′,

M(x).u = α2x(dA(u0).u
)
.rk(u0).rk(u0)

−αxdB(u0).u.rk(u0) + αdC(u0).u.rk(u0)(25)

and

(26)
A(u) = Πk(u)D2f(u),
B(u) = Πk(u) dg(u),
C(u) = (1 − Πk(u))

(
Df(u) − λk(u)

)
,
∀u ∈ V(u0).

Now we prove that DF0,τ0 is invertible with bounded inverse at the point
(u0, αxrk(u0)): choose (w, f) ∈ R

n × Y and make the following assumption.
Hypothesis 1. The operator dg(u0) : R

n → R
n is invertible.

As a consequence, there exists a unique u so that

dg(u0).u = w.

Now that u is determined, we prove that there exists a unique v so that

(27) DF0,τ0(u, v)1(x) = f(x) ∀x ∈ (−1, 1).

Projecting the system (27) onto (1 − Πk(u0))R
n yields

(28) (1 − Πk(u0))
((

Df(u0) − λk(u0)
)
v′ + M(x).u

)
= (1 − Πk(u0))f(x).

Integrating (28) yields

(29) v(x) = λ(x)rk(u0) + V 0
k + L(u, f)(x),

with V 0
k ∈ (1−Πk(u0))R

n a constant vector, and L(u, f)(x) ∈ (1−Πk(u0))R
n satisfies

(
Df(u0) − λk(u0)

)
L(u, f)(x) = (1 − Πk(u0))

∫ x

0

M(t).u + f(t)dt.

Since M(x).u is polynomial in x and f lies in Y, it is easily seen that

L(u, f) ∈ X.

Using the fact that v ∈ X, V 0
k is uniquely defined and is given by

(30) V 0
k = 〈L(u, f)〉.
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Now let us determine λ. Inserting (29) into the system (27) and projecting onto
Πk(u0)R

n yields the equation on λ:

(31) xλ′(x) + 〈λ〉 = A(u, f)(x) ∀x ∈ (−1, 1)

with

βA(u, f)(x) = Πk(u0)f(x) − Πk(u0)M(x).u

+ Πk(u0)
(
dg(u0)

(
L(u, f)(x) − 〈L(u, f)〉

))
−αΠk(u0)D

2f(u0)
(
L(u, f)(x) − 〈L(u, f)〉

)
rk(u0)

−αxΠk(u0)D
2f(u0).rk(u0).L(u, f)′(x),(32)

and β = Πk(u0)dg(u0).rk(u0). Clearly A(u, f) lies in Y. We prove that (31) has a
unique solution in X. Taking x = 0 in (31) yields

〈λ〉 = A(u, f)(0).

Then we find that

(33) λ′(x) =
A(u, f)(x) −A(u, f)(0)

x
∀x ∈ (−, 1).

The right-hand side of (33) lies in Y: thus there exists a unique λ ∈ X which satisfies
(33) and

〈λ〉 = A(u, f)(0).

Thus we have proved that DF0,τ0 : X × R
n → Y × R

n is invertible. It is an easy
computation to prove that this inverse is bounded from R

n × Y to R
n × X, and we

have proved the following proposition.
Proposition 3. Under the Hypothesis 1, the operator DF0,τ0 is invertible at the

point (u0, αxrk(u0)). This particular solution persists as a zero of Fε,τ to ε ≈ 0 and
τ ≈ τ0 > 0.

Using Lemma 2, we have proved that there exist roll-wave solutions of (4) in the
case of “artificial” source terms for 0 < ε � 1, and they belong to a curve of roll-waves
parametrized by the rescaled wavelength τ > 0. Indeed, in most of the applications
in physics, “real” source terms have the form

(34) g(u) =

(
0

h(u)

)
,

with h : R
n → R

n−j for some j ≥ 1. We employ here a terminology similar to the one
employed in the case of viscous approximation of conservation laws (we then deal with
“artificial” and “real” viscosity). In the case of “real” source terms, the hypothesis (1)
is not satisfied. Nevertheless, it is still possible to prove the existence of roll-waves.
More precisely, we show the next theorem.

Theorem 1. Assume that dh(u0) : R
n → R

n−j is surjective. Then under the
hypothesis

Πk(u0)D
2f(u0).rk(u0).rk(u0) �= 0, Πk(u0)dg(u0).rk(u0) �= 0,

and αdλk(u0).rk(u0) > 0, there exists a family of roll-wave solutions of (4) which
belongs to a j-dimensional manifold.
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Proof. In the case g(u) =t (0, h(u)), we consider the mapping Gε,τ defined by

Gε,τ : X × R
n → Y × R

n−j

(v, u) →
Fε,τ (u, v)1,∫ 1

−1

h(u + εv(x))dx,

Then a zero (u, v) of Gε,τ clearly satisfies the differential system (11) and the Rankine–
Hugoniot conditions (12). Under the assumptions

Πk(u0)D
2f(u0).rk(u0).rk(u0) �= 0, Πk(u0)dg(u0).rk(u0) �= 0,

and αdλk(u0).rk(u0) > 0, we construct a zero (u0, v
0 = αx rk(u0)) of G0,τ0 (for any

τ0 > 0 fixed). Then it is easily proved that DG0,τ0(u0, v
0) is a submersion, and its

kernel is j-dimensional with

(35) KerDG0,τ0(u0, v
0) = Ker dh(u0) × {0}.

Consequently, the zeros of G0,τ0 form a j-dimensional manifold. Moreover, since Gε,τ

is a C1 perturbation of G0,τ0 , the zero set G−1
ε,τ (0) is locally a j-dimensional manifold

for 0 < ε � 1 and τ ≈ τ0. This completes the proof of the theorem.
The question is now to find parameters that describes this j-dimensional family

of solutions (the rescaled spatial period τ being fixed): indeed, since g(u) =t (0, h(u)),
we find that

(36)
(
fi(u + εv(x)) − λk(u)vi

)′
= 0 ∀i = 1, . . . , j.

Then there exist q1, . . . , qj so that

(37) fi(u + εv(x)) − λk(u)vi(x) = qi ∀i = 1, . . . , j.

The question arises whether we can use the conserved quantities (qi)i=1,...,j and the
adimensioned period τ to parametrize the solution. For that purpose, let us consider
the mapping Hε,τ,q, where q =t (q1, . . . , qj) is defined by

Hε,τ,q : X × R
n → Y × R

n

(v, u) →

Fε,τ (u, v)1
πj

(
f(u + εv(1)) − ελk(u)v(1)

)
− q,∫ 1

−1

h(u + εv(x))dx,

where πj : R
n → R

j denotes the projection on the j first coordinates. Let us make
the following assumption.

Hypothesis 2. The matrix A0 ∈ Mn(R) defined by

(38) A0 =

(
πj df(u0)
dh(u0)

)
is invertible.

Then it is easy to prove that at point (u0, v
0) and for q0 = πj(f(u0)), the operator

DH0,τ0,q0 is invertible with a bounded inverse. Then applying the implicit function
theorem, we see that for any fixed period τ ≈ τ0 and for ε ≈ 0, the j-dimensional
manifold of roll-wave solutions is parametrized by the j conserved quantities q ≈ q0.
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5. Conclusion. In this paper we have proved the existence of small amplitude
roll-wave solutions for general hyperbolic systems with a “real” or “artificial” source
term. These are periodic traveling waves, piecewise regular with discontinuities peri-
odically distributed, which satisfy the Rankine–Hugoniot and a Lax shock condition
(the shocks are indeed k-shocks). We have proved that when the zeros of the source
term form a (n− j)-manifold, the roll-wave solutions, when they exist, form a (j+1)-
manifold and are parametrized by their spatial period and j conserved quantities of
the motion. This result generalizes the existence result obtained by Dressler in [4] for
the Saint Venant equations, which reads in its adimensioned form as

(39)

ht + (hu)x = 0,

(hu)t +

(
h2

2F
+ hu2

)
x

= h− u2.

In that case, the relative discharge rate q = h(c−u) is a conserved quantity: Dressler
proved in that case the existence of roll-waves parametrized by the spatial period
0 < L < ∞ and the relative discharge rate q > 0. The question of the existence of
large amplitude roll-waves for a general hyperbolic system with source term is still
open.

Similarly to the study of Dressler roll-waves, several questions arise for inviscid
roll-waves in hyperbolic systems with source term. On the one hand, considering
artificial or real viscous perturbations of the system (4), one could address the ques-
tion of the existence of continuous roll-waves. For a fixed size of the viscosity, we
shall expect that, under suitable assumptions, one can show the existence of small
amplitude roll-waves through a Hopf bifurcation argument. A more interesting ques-
tion would be the “persistence” of inviscid roll-waves under viscous perturbation al-
ready addressed in [8] for Dressler roll-waves: given any inviscid roll-wave solution
of (4), is there a viscous roll-wave solution if the viscous system in the vanishing
viscosity limit converges to the inviscid roll-wave? This problem seems to be out of
reach for general systems but should be possible to treat in low-dimensional systems
n = 2, 3.

On the other hand, one could ask whether this type of solution is stable. In
the viscous case, the question of the linear stability of roll-waves in Saint Venant
systems has been treated in [9] using the approach initiated by Oh and Zumbrun
[13] for periodic traveling waves in viscous conservation laws: it should be possi-
ble to prove for “general” viscous roll-waves that spectral stability implies the linear
stability of viscous roll-waves. In the inviscid case, the question of the spectral sta-
bility is quite a hard problem but is treated in [10] for the Dressler roll-waves. The
question of the nonlinear stability of inviscid roll-waves is also an open problem:
this task will be completed for Dressler roll-waves in a forthcoming paper [11] us-
ing the framework introduced by Majda [14] for multidimensional compact shocks
and generalized by Métivier and co workers [16]. In this case we prove the “per-
sistence” result: more precisely, given any initial data which is close to a roll-wave
and satisfies suitable compatibility conditions, one can show that the solution of the
Cauchy problem exists on a sufficiently small interval and has a structure analogous
to the roll-wave. This question shall be also addressed in a multidimensional frame-
work.
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Abstract. We propose a novel multiphase segmentation model built upon the celebrated phase
transition model of Modica and Mortola in material sciences and a properly synchronized fitting term
that complements it. The proposed sine-sinc model outputs a single multiphase distribution from
which each individual segment or phase can be easily extracted. Theoretical analysis is developed
for the Γ-convergence behavior of the proposed model and the existence of its minimizers. Since
the model is not quadratic nor convex, for computation we adopted the convex-concave procedure
(CCCP) that has been developed in the literatures of both computational nonlinear PDEs and neural
computation. Numerical details and experiments on both synthetic and natural images are presented.
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1. Introduction. The literature on segmentation has been the most wealthy
and inspiring. From Geman and Geman’s mixture random-field models [23] to Mum-
ford and Shah’s piecewise smooth variational image models [36], segmentation has
been extensively studied by several major stochastic and deterministic machineries of
modeling, analysis, and computation. New segmentation models incorporating more
complexities or flexibilities have been further proposed by a number of authors in
recent years, e.g., the data-driven Monte Carlo Markov chain (DDMCMC) model of
Tu and Zhu [52], the graph-cutting and spectral method of Shi and Malik [47], and
the variational texture segmentation models by Sandberg, Chan, and Vese [42], and
Shen [45] (based on the texture models of Meyer [32] and Osher, Solé, and Vese [40]),
just to name a few.

In this paper, we focus on the variational-PDE approach that is closely connected
to the Mumford–Shah type of model. Computationally, such models have been im-
plemented in various approaches: the finite-difference or finite-element methods, e.g.,
by Bourdin and Chambolle [5], Chambolle [8, 9], and Morel and Solimini [35], as well
as the influential level-set approach by Chan and Vese [15, 13] (based on the level-set
technology of Osher and Fedkiw [38], Osher and Sethian [39], and Sethian [43]). In
the level-set approach, in particular, several multiphase computational models have
been recently designed by Chan and Vese [16], Chung and Vese [17], as well as Lie,
Lysaker, and Tai [26] and Tai and Chan [49]. We emphasize that the current work is
more or less related to those ideas explored in [17] and [26], but it is carried out in a
completely different framework.
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An alternative approach to modeling and computing segmentation is via the the-
ory of Γ-convergence elliptic approximations, as first developed by Ambrosio and
Tortorelli [2, 3] for the Mumford–Shah model. This method has been extensively
studied and extended for segmentation, inpainting, and several other applications in
image analysis and processing (see, e.g., [20, 21, 30, 29, 46]). We propose a new mul-
tiphase segmentation model in the framework of Γ-convergence and phase transition,
and develop the relevant mathematical analysis and computational strategies. More
specifically, we propose to adopt the celebrated phase transition model of Modica and
Mortola [33] with a sinusoidal potential. The new model is a self-contained segmen-
tation model, and is different from Ambrosio and Tortorelli’s formulation [2], which
approximates and computes the Mumford–Shah model.

We hereby emphasize that the similarities are inherent between image segmen-
tation and the phase transition problem in material sciences and fluid mechanics.
First, different phases in material sciences are characterized by densities and tensions
(e.g., ice versus water), while in image and vision analysis, distinct “object” segments
are similarly characterized by some visual features such as intensities, orientations, or
more general Gabor features (e.g., in texture segmentation [42, 14]). Second, the diffi-
culties in dealing with sharp interfaces emerging from both material phase transitions
and image segmentation share the very same roots—the characteristic complexities in
handling free boundaries and their geometry. Under such observations, it is beneficial
for the imaging community to borrow the successful ideas in contemporary material
sciences, e.g., the diffuse-interface model of Cahn and Hilliard [7], and its rigorous
mathematical analysis in the framework of Γ-convergence approximation by Modica
and Mortola [33] (as initially conjectured by De Giorgi).

Finally, as for all the major segmentation efforts in existence, the phase field based
segmentation model proposed herein is also nonlinear and nonconvex, and its robust
computation (for local minima) is nontrivial. In the current work, we employ the
so-called convex-concave (splitting) procedure (CCCP) as in the literatures of both
computational nonlinear PDEs [4, 22, 54] and neural computation [55], and develop
the corresponding computational schemes for the proposed energy functional.

The paper has been organized as follows. The new model is developed in section 2.
The relevant Mumford–Shah segmentation model and its related literature are briefly
reviewed in subsection 2.1, and the proposed Modica–Mortola sine-sinc model is estab-
lished in subsection 2.2. We analyze the major mathematical properties of the model
in section 3, including the Γ-convergence behavior in subsection 3.2 and the existence
and compactness theorems in subsection 3.3. Computational schemes are presented
in section 4, where we develop the convex-splitting or the CCCP algorithm in subsec-
tion 4.2, and demonstrate the numerical performance on generic image examples in
subsection 4.3. The conclusion is drawn in section 5.

2. Multiphase segmentation via Modica–Mortola phase transition. In
this section, we first motivate and develop the new model based upon the phase tran-
sition model of Modica and Mortola in material sciences and fluid dynamics [33], and
discuss its connections to the Mumford–Shah segmentation model and some related
works. Mathematical analysis will be further developed in the next section.

Let Ω be a bounded Lipschitz domain, and uo : Ω −→ R+∪{0} be a given image.
Recall that the classical Mumford–Shah segmentation is to minimize

(2.1) Ems[u,Γ|uo] = H1(Γ) + α

∫
Ω\Γ

|∇u|2dx + λ

∫
Ω

(u− uo)
2dx,
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where Γ ∈ Ω denotes the edge set of the ideal image u, and H1 represents the 1-
dimensional Hausdorff measure. This functional is well defined on

Ams = {(u,Γ) : u ∈ H1(Ω \ Γ),H1(Γ) < ∞,Γ is relatively closed in Ω},

provided that the given image uo ∈ L2(Ω). In machine learning [18, 41], Ams repre-
sents the hypothesis space (model space) of all piecewise smooth functions on Ω.

2.1. Piecewise constant segmentation model. In order to identify indi-
vidual objects, conceptually one has to carry out a postprocessing step after the
Mumford–Shah model outputs the edge set Γ. That is, one has to identify the indi-
vidual connected components Ωi’s of Ω \ Γ. If each patch Ωi is to be called a phase,
then segmentation automatically bears the nature of multiple phases, since a generic
image often contains multiple objects projected from the 3-dimensional world.

On the other hand, there also exist attempts to directly represent and compute
different phases. Normally phase separation or identification relies upon the cluster-
ing of certain visual features such as frequency, local orientation, and local density,
etc. A simple but commonly adopted phase feature is the image intensity value of a
pixel. In the Mumford–Shah setting (2.1), this leads to the piecewise constant reduced
Mumford–Shah (RMS) model,

Erms[u,Γ|uo] = H1(Γ) + λ

∫
Ω

(u− uo)
2dx,

defined on the following admissible space:

Arms = {(u,Γ) : Du
∣∣
Ω\Γ = 0, H1(Γ) < ∞, Γ is relatively closed in Ω} ⊆ Ams.

Here Du denotes the vectorial Radon measure of the total variation (TV) of u.
The TV constraint requires any admissible u to be constant on any connected

component of Ω\Γ. For practical convenience, we assume that there are finitely many
such patches, say K number of different patches. Then the entire image domain is
partitioned into

Ω \ Γ =
K−1⋃
k=0

Ωk.

On each patch Ωk, one must have u|Ωk
:= Ck, k = 0, . . . ,K − 1, for a set of distinct

intensity values C = (C0, . . . , CK−1). Then the RMS energy can be rewritten as

Erms[C,Γ|uo] =
1

2

K−1∑
k=0

H1(∂Ωk) + λ

K−1∑
k=0

∫
Ωk

(Ck − uo)
2dx.

Notice that the factor 1
2 is due to the double counting of any two adjacent patches.

With successful level-set implementation, the RMS model is also frequently referred to
as the Chan–Vese model for two phases, honoring its rediscovery from the viewpoint
of robust active contours [15]. This particular multiphase model was first used in [26]
and has shown that it can keep symmetry for triple junctions.

The main mechanism of the proposed model is to identify multiple phases by
piecewise constant values, similar to those considered in [17, 26, 49]. However, there
are two major differences:
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(i) All the aforementioned prior works are in essence still built upon the frame-
work of Mumford and Shah (or its reduced form as discussed above), while
our proposed model is not strictly a Mumford–Shah-type model (though some
equivalence will be established immediately below).

(ii) All the aforementioned prior works have employed the celebrated level-set
technology of Osher and Sethian [39], while our new model adopts the phase
field framework in material sciences and fluid mechanics. A level-set function
offers remarkable efficiency and robustness for representing and computing
free boundaries, yet (strictly speaking) does not participate in the modeling
process, while a phase field function is indispensably part of the model itself.

To proceed, we label each phase component with an integer and define a signature
function z by

z(x) = k if x ∈ Ωk, k = 0, . . . ,K − 1.

In practice, phase extraction is of course the very opposite process from getting the
signature function z. That is, one has to first obtain the signature function z before
different phase patches Ωk can be identified and extracted. For convenience, we shall
also call z a phase field. We then propose the multiphase segmentation model in this
ideal scenario by minimizing

E[C, z|uo] =

∫
Ω

|Dz(x)| + λ

K−1∑
k=0

∫
Ω

(Ck − uo)
2χ{z=k}dx.

As in the RMS or the Chan–Vese model [13, 36], the intensity distribution variable
C can be conditionally solved by the following: from any given phase field z,

(2.2) Ck = 〈uo〉Ωk
=

1

|Ωk|

∫
Ωk

uo(x) dx, i = 0, . . . ,K − 1.

Then the ideal model depends only on the phase field z:

(2.3) E[z|uo] =

∫
Ω

|Dz(x)| + λ

K−1∑
k=0

∫
Ω

(Ck − uo)
2χ{z=k}dx.

The admissible class is simply A = {z ∈ BV (Ω) : z(x) ∈ Z a.e.}.
The main challenge of the proposed model arises from its mixture of the contin-

uous TV Radon measure and the discrete constraint. Thus in the next subsection,
this ideal model will be further polished in the framework of phase transitions and
Γ-convergence.

Here we first emphasize that this ideal energy is somewhat equivalent to the
piecewise constant Mumford–Shah functional. With the help of the signature function
and the formulae for Ck’s, Erms depends only on Γ or z and can be rewritten as

(2.4) Erms[Γ|uo] =
1

2

K−1∑
k=0

H1(∂{z = k}) + λ

K−1∑
k=0

∫
Ω

(Ck − uo)
2χ{z=k}dx.

For any fixed number of phases K, the two functionals (2.3) and (2.4) are then equiv-
alent, in the sense of

Erms[Γ|uo] ≤ E[z|uo] ≤ KErms[Γ|uo],
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since ∫
Ω

|Dz| =

∫
Γ

∣∣[z]∣∣dH1 and 1 ≤
∣∣[z]∣∣ < K.

In most applications (especially in medical imaging), for instance, K ≤ 5.
The difference between the two functionals (2.3) and (2.4) is also obvious, since

the former weighs the jumps, while the latter does not. For example, consider a
rectangular domain Ω and two disjoint disks Ω1,Ω2 in Ω with radius 1/2. If we assign

z = 0 on Ω0 = Ω \ (Ω1 ∪ Ω2), z = 1 on Ω1, and z = 2 on Ω2, then
∑2

k=0 H1(∂Ωk) =
1
2

∑2
k=0 H1(∂{z = k}) = 1

2 (2π + π + π) = 2π, but
∫
Ω
|Dz(x)| = 1π + 2π = 3π.

Thus,
∫
Ω
|Dz| is a weighted length of Γ. Recall that the TV Radon measure can be

decomposed into

Dz = ∇z + [z]
∣∣∣
Sz

H1�Sz + Cz,

corresponding to the Lebesgue continuous gradient, the jump set Sz = Γ (or reduced
boundary) with [z] = z+−z−, and the singular Cantor measure. Now if the signature z
is ideally piecewise constant, both the Lebesgue and Cantor components must vanish,∫

Ω

|Dz| =

∫
Sz

∣∣[z]∣∣dH1,

which clearly shows the weighing nature of
∫
Ω
|Dz|.

Weighing the object boundaries certainly makes the proposed ideal model depend-
ing upon the labels. But for a fixed number K of phases, the energies are more or less
equivalent as just discussed. More importantly, it allows us to invoke the celebrated
phase transition approach in material sciences and fluid dynamics, in order to success-
fully overcome the major challenge in reconciling the two very opposite characteristics
of the segmentation problem: continuum vs. discreteness.

2.2. The sine-sinc model via Modica–Mortola phase transition. The
objective functional (2.3)

E[z|uo] =

∫
Ω

|Dz(x)| + λ

K−1∑
k=0

∫
Ω

(Ck − uo)
2χ{z=k}dx

itself does not appear too complicated but becomes immensely baffling under the
discrete constraint z ∈ Z. This is a very common scenario in integer or discrete
programming. For example, it is difficult to minimize this functional by any ordinary
PDE approaches such as Euler–Lagrange equations or gradient-descent time marching.

We thus introduce its relaxed version via the celebrated model of Modica and
Mortola [33] on phase transitions in material sciences and fluid mechanics. Recall
that in the classical literature on phase transitions, the mixture of two immiscible
and incompressible fluids are often modelled so that in equilibrium they separate into
two phases with a minimal interface area. Cahn and Hilliard [7] first proposed to use
a thin layer of continuous interface (i.e., diffuse interface) to model this separation.
Later on Modica [34] proved that the Cahn–Hilliard model Γ-converges to the classical
model. In another well-known paper [33], Modica and Mortola established that the
diffuse-interface energy

Fε[z] =

∫
Ω

[
ε|∇z|2 +

1

ε
sin2 πz

]
dx Γ-converges to

4

π

∫
Ω

|Dz(x)|

for phase fields that ultimately take only integer values.
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Notice that in the Modica–Mortola model, the discrete constraint z ∈ Z has
been softly enforced due to the sine potential regulated by the transition bandwidth
ε in the denominator. In the present work, we adopt this Modica–Mortola diffuse-
interface energy Fε to approximate the ideal TV energy in E[z|uo]. This model thus
well integrates both the TV regularity and the integer constraint z ∈ Z.

For the data-fitting term, instead of the ideal indicator χ{z=k} or Kronecker’s
delta, we also propose to use a properly relaxed version to facilitate model analysis
and computing. More specifically, we choose sinc2(z − k) to match the sine potential
in Modica and Mortola’s phase transition energy,

G[z|uo] =

K−1∑
k=0

∫
Ω

|Ck − uo|2sinc2(z − k) dx.

Recall that the sinc function is defined as sinc(z) = sinπz
πz for z ∈ R. For a phase

field z that takes almost only integer values, sinc leads to desirable approximations to
the indicator functions of integer phases and is more appealing computationally. This
is because (i) sinc(k) = δk (Kronecker’s delta) for k ∈ Z, the so-called interpolating
property in the celebrated theorem of Shannon interpolation [11, 19, 48]; and (ii)
sinc(z) is an entire function for z ∈ C, and when z ∈ R,

d

dz
sinc(z) = O

(
1

|z|

)
as z → ±∞.

Thus in particular, sinc (z) ∈ W 1,∞(R) and is Lipschitz continuous. As a result, the
sinc-approximation will facilitate both analysis and computation later on.

In combination, we have arrived at the relaxed version of the ideal multiphase
segmentation model (2.3) with a given number K of phases:

(2.5)

Eε[z|uo] = Fε[z] + λG[z|uo]

=

∫
Ω

[
ε|∇z|2 +

1

ε
sin2 πz

]
dx + λ

K−1∑
k=0

∫
Ω

|Ck − uo|2sinc2(z − k) dx.

Here the values Ck’s have been conditionally optimized by the following equation with
any given phase field z (under the least-square principle):

(2.6) Ck = Ck[z] =

⎧⎪⎨
⎪⎩

∫
Ω
uo sinc2(z − k) dx∫
Ω

sinc2(z − k) dx
if

∫
Ω

sinc2(z − k) dx > 0,

0 otherwise.

When z(x) takes only integer values, this Ck indeed reproduces the value introduced
in (2.2). If the denominator in (2.6) vanishes, since∫

Ω

sinc2(z − k) dx = 0 ⇐⇒ sinc(z(x) − k) = 0 a.e x ∈ Ω ⇐⇒ z(x) ∈ Z \ {k},

we observe that the phase k is empty and redundant. Also in this case the particular
value of Ck[z] is unimportant, since the integral

∫
Ω
|u−Ck|2sinc2(z − k) dx vanishes.

This relaxed functional (2.5) is our proposed model, and there are essential dif-
ferences between our model and the closely related work by Lie, Lysaker, and Tai [26]
on the piecewise constant level-set method (PCLSM).



MULTIPHASE SEGMENTATION VIA MODICA–MORTOLA MODEL 1219

• We utilize sin(z(x)π) = 0 as our constraints, while, in [26], Πk
i=1(z − i) = 0 is

used to get integer value. In our model, we do not need to predetermine the
number of phase k, and sin(z) synchronizes well with sinc(z) function. The
sinc(z) function is used in place of the usual Heaviside and delta functions.

• The PCLSM gives sharp edges by directly using
∫
|∇u|, while one may have

to resolve singular layer issues related to renormalization of level sets. This
proposed relaxed functional does not have any singular layer issues, and the
boundary is identified as a transition band determined by the size of ε.

3. Γ-convergence of the model and existence of minimizers. In this sec-
tion, we develop the necessary analysis of the proposed model. Following a brief review
of the Γ-convergence theory, we first show that the relaxed model (2.5) converges to
the original piecewise constant model (2.3) and then prove that optimal segmentation
does exist for any fixed ε. Compactness of the minimizers for all ε’s is also discussed
in the end.

3.1. Brief review of Γ-convergence. Γ-convergence was first introduced by
De Giorgi and Franzoni in [24] to facilitate analysis and approximation of PDEs and
variational problems. Since then it has been widely applied to phase transition models
in material sciences, the modeling of thin films or plates, homogenization of variational
problems, and free discontinuity problems (see, e.g., [6, 31]). In image processing, the
most influential application is Ambrosio–Tortorelli’s Γ-convergence approximation to
the Mumford–Shah functional [2]. The definition of Γ-convergence is as follows.

Definition 3.1 (Γ-convergence). Let X be a metric space and Fε : X → R̄ for

ε > 0. We say that Fε Γ-converges to F in X as ε → 0 and write Fε
Γ−→ F if the

following two conditions hold for all u ∈ X:
(i) (liminf inequality) for every sequence (uε) converging to u,

F(u) ≤ lim inf
ε→0

Fε(uε);

(ii) (limsup inequality) there exists a sequence (uε) converging to u such that

F(u) ≥ lim sup
ε→0

Fε(uε).

The most important properties of Γ-convergence are summarized by the following
theorem. We refer the reader to [1, 6, 31] for further discussion.

Theorem 3.2. Γ-convergence has the following properties:
(i) (spatial stability of the limit) the Γ-limit F is lower semicontinuous;

(ii) (stability under continuous perturbations) if Fε
Γ−→ F and G is continuous,

then Fε + G Γ−→ F + G;

(iii) (stability of minimizing sequences) if Fε
Γ−→ F and vε minimizes Fε, then

every cluster point of (vε) minimizes F .
Let us briefly comment on these three properties. Property (i) reveals the nec-

essary condition for designing Γ-convergence approximation to a target functional.
Property (ii) paves the way to extending existing Γ-convergence schemes, which is
particularly helpful in the current work. Property (iii) reveals the real essence of the
entire machinery of Γ-convergence, by which the minimization of a touchy objective
F is tamed or relaxed by a family of better behaved objectives Fε.

Directly benefiting the current work is the following remarkable theorem in the
original paper of Modica and Mortola [33], which historically has played significant
roles in the theories of Γ-convergence, phase transitions, and the Cahn–Hilliard model.
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Theorem 3.3 (Modica and Mortola [33]). Define S = {z ∈ BV (Rn) : z(x) ∈
Z a.e. x}, and

Fε(z) :=

⎧⎨
⎩

∫
Rn

[
ε|∇z(x)|2 +

1

ε
sin2(πz(x))

]
dx for z ∈ H1(Rn) ∩ L1(Rn),

+∞ for z ∈ L1(Rn) \H1(Rn),

F (z) :=

⎧⎨
⎩

4

π

∫
Rn

|Dz(x)| for z ∈ S(Rn),

+ ∞ for z ∈ L1(Rn), but z /∈ S(Rn).

Then the functional Fε Γ-converges to F as ε → 0 in L1(Rn).
We note that the domain R

n can be replaced by any regular open bounded domain
Ω, which is the case in the current application. Theorem 3.3 was originally conjectured
by De Giorgi and then proven by Modica and Mortola [33] in 1977, shortly after the
notion of Γ-convergence was introduced in [24]. The connection with the Cahn–
Hilliard model was established in Modica [34].

3.2. Γ-convergence of the sine-sinc model. In image processing, the image
range is often bounded by uo ∈ [0, 1] in the analog setting and uo ∈ [0, 255] in the
digital setting with 8 bits. Therefore, we assume uo ∈ L∞(Ω) for technical clarity.

In the Modica–Mortola sine-sinc model proposed in (2.5),

Eε[z|uo] = Fε[z] + λG[z|uo]

=

∫
Ω

[
ε|∇z|2 +

1

ε
sin2 πz

]
dx + λ

K−1∑
k=0

∫
Ω

|Ck − uo|2sinc2(z − k) dx,

the first term Fε has already been proven to Γ-converge to F in [33]. In this subsection,
we show that the fitting term G is continuous in L1(Ω).

In what follows, we shall use the notation ω(x|z) to denote a spatial function
ω(·|z) that depends on the given phase field z = z(x). Such dependence could be
local in the form of g(x, z(x)), or global in the form of g(x, J [z]), where J [z] is a
functional on z. The following general theorem gives a unified foundation for the
proof of Γ-convergence of the proposed model.

Theorem 3.4. Suppose that
(i) ϕ : R → R is Lipschitz continuous with |ϕ(x) − ϕ(y)| ≤ L|x− y|,
(ii) ‖w(·|zn) − w(·|z)‖L∞(Ω) → 0 as ‖zn − z‖L1(Ω) → 0,
(iii) ‖w(·|z)‖L∞(Ω) ≤ M for some positive M and for all z ∈ L1(Ω);

then g[z] =
∫
Ω
w(x|z)ϕ(z) dx is continuous for z ∈ L1(Ω).

Proof. Let {zn} be a sequence converging to z: zn → z in L1(Ω). Then

|g[zn]−g[z]|

≤
∣∣∣∣
∫

Ω

w(x|zn)ϕ(zn) − w(x|z)ϕ(zn)dx

∣∣∣∣ +

∣∣∣∣
∫

Ω

w(x|z)ϕ(zn) − w(x|z)ϕ(z)dx

∣∣∣∣
≤ ‖w(x|zn) − w(x|z)‖L∞(Ω)‖ϕ(zn)‖L1(Ω) + M

∫
Ω

|ϕ(zn) − ϕ(z)|dx

≤ L‖zn‖L1(Ω)‖ω(x|zn) − w(x|z)‖L∞(Ω) + ML‖zn − z‖L1(Ω).

Both terms tend to zero as ‖zn − z‖L1(Ω) → 0 by assumption (ii).
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This theorem can be applied to establish that Ck[z]’s are continuous, and even-
tually that G[z|uo] is continuous as well.

Corollary 3.5. Suppose zn → z in L1 and
∫
Ω

sinc2(z(x) − k)dx �= 0. Then
Ck(z) defined in (2.6) is continuous in z, i.e., Ck[zn] → Ck[z].

This is directly proven by Theorem 3.4 with w(x) = uo(x) (for the denominator)
and w(x) = 1 (for the numerator), as well as ϕ(z) = sin2(z(x) − k).

Corollary 3.6 (degenerate case). If ϕ(z(x)) = 0 a.e., then g[z] = 0 and
condition (ii) in Theorem 3.4 can be dropped.

It simply comes from the definition of g[z] and conditions (i) and (iii):

|g[zn]| ≤ M

∫
Ω

|ϕ(zn)| = M

∫
Ω

|ϕ(zn) − ϕ(z)|dx ≤ ML

∫
Ω

|zn − z|dx → 0.

Proposition 3.7. The fitting functional G is continuous in L1(Ω):

G[z|uo] =

K−1∑
k=0

∫
Ω

|Ck − uo|2sinc2(z − k) dx

with

Ck = Ck[z] =

{ ∫
Ω
uo sinc2(z−k) dx∫
Ω

sinc2(z−k) dx
if

∫
Ω

sinc2(z − k) dx > 0,

0 otherwise.

Proof. Let w(x|z) = (uo(x) − Ck[z])
2 and ϕ(z) = sinc2(z − k) for z ∈ L1(Ω). We

now show that G[z|uo] indeed satisfies all three conditions of Theorem 3.4. Condition
(i) is clear, since ϕ is Lipschitz continuous. For (ii), let {zn} be a converging sequence
zn → z in L1(Ω). Then

|w(x|zn) − w(x|z)| = |(Ck[zn] − uo(x))2 − (Ck[z] − uo(x))2|
≤ |Ck[zn] + Ck[z] − 2uo(x)||Ck[zn] − Ck[z]|
≤ 4‖uo‖L∞(Ω)|Ck[zn] − Ck[z]|,

and |Ck[zn]−Ck[z]| → 0 from the continuity of Ck in Corollary 3.5. Thus |w(x|zn)−
w(x|z)| → 0. For (iii), notice that |Ck[z]| ≤ ‖uo‖L∞(Ω) for all z. Then

w(x|z) ≤ (‖u‖L∞(Ω) + |Ck[z]|)2 ≤ (2‖uo‖L∞(Ω))
2 for all x ∈ Ω.

Therefore, by Theorem 3.4, G[z|uo] is continuous in L1(Ω).
Finally, the Γ-convergence of the Modica–Mortola sine-sinc model becomes evi-

dent from the combination of Proposition 3.7, Theorem 3.3, and Theorem 3.2.
Theorem 3.8 (Γ-convergence). Eε Γ-converges to E w.r.t. L1(Ω) topology.

3.3. Existence of minimizers of Eε. In this subsection we show that for each
ε, a minimizer to Eε does exist. We shall also briefly discuss the compactness of a
sequence of minimizers for all ε’s.

Theorem 3.9 (existence of minimizers). Suppose the given image uo ∈ L2(Ω)
and denote the admissible space for K-phase segmentation by

AK = {z ∈ H1(Ω) : −1/2 < z < K − 1/2}.

Then for each ε > 0, there exists a minimizer of Eε in AK .
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Proof. We first show that the infimum is finite. Consider the uniform phase z ≡
0 ∈ AK . Then the Modica–Mortola energy Fε[z] = 0, and C0 = 1

|Ω|
∫
Ω
uo(x)dx < ∞,

while Ck = 0 for k = 1, . . . ,K − 1. Therefore,

(3.1) Eε[0|uo] = λ

∫
Ω

|C0 − uo(x)|2 dx < ∞,

and since Eε[ · |uo] ≥ 0, the claim is proved.
Let {zn} be a minimizing sequence for Eε in AK . Since supn

∫
Ω
|∇zn|2 dx < ∞

from the Modica–Mortola energy, as well as −1/2 < zn < K−1/2, the sequence {zn}
must be precompact in L1(Ω) by Rellich and Kondrachov’s compactness theorem.
There thus exists a subsequence of {zn}, which is still denoted by {zn} after relabelling
to simplify notations, such that

zn → z∗ in L2(Ω) for some z∗ ∈ L2(Ω).

As a result, one has the weak convergence for the gradient fields:

∇zn → ∇z∗ weakly in L2(Ω).

Then, by the lower semicontinuity of the L2-norm under the weak topology,

(3.2)

∫
Ω

|∇z∗|2 dx ≤ lim inf
n→∞

∫
Ω

|∇zn|2 dx.

For the other two terms with sine and sinc functions, convergence follows from
Lebesgue’s dominated convergence theorem (LDCT) as shown below. First, possibly
with another round of subsequence refinement and relabelling, one can further assume
that zn → z∗ a.e. Then sin2 πzn → sin2 πz∗ a.e., and by LDCT,

(3.3)

∫
Ω

sin2 πzn dx →
∫

Ω

sin2 πz∗ dx.

Similarly, sinc2π(zn − k) → sinc2π(z∗ − k) a.e. for k = 0, . . . ,K − 1. By LDCT, one
has

∫
Ω

sinc2π(zn − k) dx →
∫
Ω

sinc2π(z∗ − k) dx, and∫
Ω

uo(x)sinc2π(zn − k) dx →
∫

Ω

uo(x)sinc2π(z∗ − k) dx,

since uo ∈ L2(Ω) ⊂ L1(Ω). Consequently, if
∫
Ω

sinc2π(z∗ − k) dx > 0 for kth phase,
then (Ck[zn])n must be a bounded sequence. Since uo ∈ L2(Ω), by LDCT, as n → ∞,

(3.4)

∫
Ω

|uo − Ck[zn]|2sinc2π(zn − k) dx →
∫

Ω

|uo − Ck[z
∗]|2sinc2π(z∗ − k) dx.

If, on the other hand, sinc2π(z∗ − k) = 0 a.e., then

(3.5)

∫
Ω

|uo−Ck[z
∗]|2sinc2(z∗−k) dx = 0 ≤ lim inf

n→∞

∫
Ω

|uo−Ck[zn]|2sinc2(z∗−k) dx.

Finally, in combination of (3.2), (3.3), (3.4), and (3.5), we have

Eε[z
∗|uo] ≤ lim inf

n→∞
Eε[zn|uo] ≤ inf

z∈AK

Eε[z|uo],

and the limit z∗ has to be a minimizer of Eε. This completes the proof.
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Notice that in this theorem, we have even allowed the given image uo ∈ L2(Ω),
instead of uo ∈ L∞(Ω), which is the default assumption throughout the work.

Finally, we briefly comment on the compactness or stability of the sequence of
minimizers from the Γ-convergence approximation.

Theorem 3.10 (compactness of the sequence of minimizers). Let zε minimize
Eε for each ε > 0. Then there exist a subsequence (zε′) of (zε) and some z ∈ L1(Ω)
such that zε′ −→ z in L1(Ω) as ε′ → 0, and z minimizes E.

Proof. By the Cauchy–Schwarz inequality,

(3.6)

Eε[z|uo] ≥ Fε[z] =

∫
Ω

[
ε|∇z|2 +

1

ε
sin2 πz

]
dx

≥ 2

∫
Ω

|∇z|| sinπz|dx =

∫
Ω

|∇(H(z))|dx.

Here H : (− 1
2 ,K − 1

2 ) → R satisfies H ′(r) = 2| sinπr| and H(0) = 0. By (3.1),
there exists M > 0 such that Eε[zε|uo] ≤ M for all ε. By (3.6), the sequence of
functions (hε(x) = H(zε(x)))ε must be bounded in BV (Ω), and thus precompact in
L1(Ω). By subsequence refinement, one can assume that there exists a subsequence
hε′ → h a.e. for some h ∈ L1(Ω). Since H(r) is continuous and strictly monotone, it
admits a continuous inverse. Thus one has zε′(x) −→ z(x) = H−1(h(x)) a.e. Since
zε ∈ (− 1

2 ,K − 1
2 ) is uniformly bounded for ε, one must have zε′ → z in L1(Ω) by

LDCT. Then the rest of the theorem follows from Theorem 3.2.

4. Computation and experiments. In this section, we develop the compu-
tational schemes for the proposed model. The major difficulty arises from the fact
that the Modica–Mortola sine-sinc functional is nonconvex. In this paper, we apply
the method of convex splitting or the concave-convex procedure (CCCP) for robustly
computing the local minima of the model. After a brief review on the CCCP method,
we detail our computational strategies, and test the schemes on some generic examples
involving both synthetic and natural images.

4.1. Review of the CCCP. There are growing interests in how to solve non-
convex functions efficiently. In [22] in the setting of gradient flows, Eyre proposed to
split nonconvex functions into two functions, contractive and expansive. It included
computational examples of the Cahn–Hilliard equation with different time steps. More
analysis on the numerical algorithms for the Cahn–Hilliard or Allen–Cahn equations
were studied by Vollmayr-Lee and Rutenberg in [54], where unconditionally stable
time step was explored. The idea of convex splitting is also applied to the Cahn–
Hilliard inpainting by Bertozzi, Esedoglu, and Gilette [4].

Independent of the computational PDE literature, on the other hand, the similar
idea of convex splitting was also explored by Yuille and Rangarajan [55] in a more
general setting of neural computation, where the method has been termed the CCCP.
The method has found many important applications in computer vision and neural
computation.

Theorem 4.1 (Yuille and Rangarajan [55]). Let E(�x) with �x ∈ R
n be an energy

function with a bounded Hessian. Then it can be decomposed into the sum of a convex
function and a concave function.

Theorem 4.2 (Yuille and Rangarajan [55]). Consider an energy function which
is bounded below and is an addition of convex and concave functions:

E(�x) = Econvex(�x) + Econcave(�x).
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Then the discrete iterative CCCP algorithm given by

(4.1) ∇Econvex(�xn+1) = −∇Econcave(�xn), n = 0, 1, . . . ,

is guaranteed to monotonically decrease the energy E(�x) as a function of time and to
converge to a local minimum or a saddle point of E(�x).

We briefly comment on these results for our application. First, notice that (4.1)
is solvable only when

(4.2) Range(−∇Econcave) ⊆ Range(∇Econvex).

In particular, the condition holds when Range(Econvex) = R
n, the entire space. The

solvability condition (4.2) implies that, in some sense, the convex part must be stronger
than or dominant over the concave part, which is often (practically) true for energy
minimization problems when the function f is bounded below and f → ∞ as |�x| → ∞.

Second, in the present context, the CCCP should be applied to the functional
setting instead of the function in R

n. Therefore, the gradients in (4.1) should be
naturally replaced by the Fréchet derivatives of the functionals. In our application,
the functional is indeed Fréchet differentiable. (In general, the CCCP iteration (4.1)
can also be based upon the subgradients of convex function(al)s, since the splitting
yields convex components.)

4.2. Details of the computational scheme. To numerically solve (2.5),

Eε[z|uo] = Fε[z] + λG[z|uo]

=

∫
Ω

[
ε|∇z|2 +

1

ε
sin2 πz

]
dx + λ

K−1∑
k=0

∫
Ω

|Ck − uo|2sinc2(z − k) dx,

we compute Eε[z,C|uo] regarding z and C as independent variables. This allows
the application of the alternating minimization (AM) scheme, i.e., to alternatingly
optimize the two conditional energies Eε[z|C, uo] and Eε[C|z, uo], under the iterations
of zn → Cn → zn+1 given by

(4.3) Cn = argminEε[C|zn, uo],

(4.4) zn+1 = argminEε[z|Cn, uo].

It is well known (i.e., Vogel [53] or Shen [44]) that the AM scheme is monotone:

Eε[z
n+1,Cn+1|uo] ≤ Eε[z

n,Cn|uo].

To minimize (4.3), one simply computes at the pixel level,

(4.5) Ck =

∑
i

∑
j ui,j sinc2(zni,j − k)∑

i

∑
j sinc2(zni,j − k)

, k = 0, . . . ,K − 1,

where zni,j denotes computational phase field on the Cartesian image domain. There
is a study on treating Ck as an independent variable in image segmentation [50].
However, we update Ck in every alternating step, as in any usual AM schemes.

We apply the CCCP to minimize Eε[z|Cn, uo] in (4.4). For convenience, we shall
omit the superscript n of Cn hereafter. First, we add simple convex functionals to
express Eε as the difference of two convex functionals. By noticing that if f is a
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convex function from R to R, then the functional F (u) =
∫
Ω
f(u(x))dx is a convex

functional, we have the following proposition.
Proposition 4.3. Let F (u) =

∫
Ω
f(u(x))dx, where f ∈ C2(R) and f ′′ ≥ −γ for

some γ ≥ 0. Define the splitting

F (u) =

∫
Ω

(
f(u) +

γ

2
u2

)
dx−

∫
Ω

γ

2
u2dx := F 1(u) − F 2(u).

Then both F 1 and F 2 are convex.
The proof is trivial, since f ′′

1 (u) ≥ 0 if f1(u) = f(u) + γ
2u

2. We now apply this
splitting technique to the proposed model Eε in (2.5).

We shall add two sets of terms, one for the nonconvex Modica–Mortola functional
Fε and the other for the nonconvex fitting term G. For the functional Fε, we add
π2

ε

∫
Ω
|z|2 dx by noticing that d2

dz2 sin2 πz ≥ −2π2:

Fε[z] =

(
Fε[z] +

π2

ε

∫
Ω

|z|2 dx
)
− π2

ε

∫
Ω

|z|2 dx := F 1
ε [z] − F 2

ε [z].

Similarly, the fitting term G in (2.5) can be split into G[z|C, uo] = G1[z|C, uo] −
G2[z|C, uo], where

G1[z|C, uo] = G[z|C, uo] +
π2

3

K−1∑
k=0

∫
Ω

|uo − Ck|2|z − k|2 dx,

G2[z|C, uo] =
π2

3

K−1∑
k=0

∫
Ω

|uo − Ck|2|z − k|2 dx,

since d2

dz2 sinc2z ≥ −2π2

3 .
Thus, the functional (2.5) becomes Eε = E1

ε − E2
ε = (F 1

ε + λG1) − (F 2
ε + λG2).

We then apply the CCCP algorithm (4.1) via the Fréchet derivative:

(4.6) (F 1
ε + λG1)′(zn+1) = (F 2

ε + λG2)′(zn).

Under integration by parts, (4.6) is equivalent to the PDE

(4.7)[
−2εΔzn+1 +

π

ε
sin 2πzn+1

]
+

2π2

ε
zn+1

+

[
λ

K−1∑
k=0

|uo − Ck|2
d

dz
sinc2(zn+1 − k)

]
+ λ

K−1∑
k=0

|uo − Ck|2
2π2

3
(zn+1 − k)

=
2π2

ε
zn + λ

K−1∑
k=0

|uo − Ck|2
2π2

3
(zn − k).

Here the terms in the square brackets come from the Euler–Lagrange equation of Eε.
Numerically, the Laplacian term Δzn+1 is computed by the standard 5-pixel

stencil, i.e., with h denoting the grid size,

h2Δz = zi−1,j + zi,j−1 + zi+1,j + zi,j+1 − 4zi,j .

This could further lead to the Jacobi-type iteration when the central pixel zi,j is
assigned to the time step n+1, while the other four neighbors still stay at the step n.
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We now elaborate on how to develop proper linearization schemes for the non-
linear terms that involve sine and sinc. For the second term with sin 2πzn+1

i,j , we use
sin 2πzn

i,j

zn zn+1
i,j = 2πzn+1

i,j sinc(2zni,j) for linearization. This is inspired by the closely
related problem of finding a solution to the nonlinear equation sinx = a for a given
a ∈ (0, 1) and on [0, π/2]. An effective iteration scheme is given by the same lineariza-
tion technique:

sinxn

xn
xn+1 = a, or equivalently, xn+1 = a

xn

sinxn
= Φ(xn),

where Φ(x) = ax
sin x . A remarkable property is that for x ∈ [0, π/2] and any given

a ∈ (0, 1), Φ is a contractive mapping, i.e., maxx∈[0,π/2] |Φ′(x)| ≤ a < 1. In particular,

the linearization iteration indeed leads to a unique fixed point x∗, ax∗

sin x∗ = x∗, by
Picard’s fixed point theorem. In addition, to avoid singularities in the denominators,
small value δ, δ � 1 (e.g., δ = 10−16, the MATLAB constant), is often added for
numerical robustness.

For the fourth term on the left that involves the derivative of the sinc function,
we similarly linearize it to

d

dz
sinc2(zn+1

i,j − k) = 2 sinc(zni,j − k)

[
πz cosπz − sinπz

πz3

]
z=zn

i,j−k

(zn+1
i,j − k).

Combining all the above steps of finite-difference discretization and function lineariza-
tion, in the case when the Jacobi iteration is adopted for the Laplacian, we attain the
following iteration scheme: at each step n,

(4.8)

{
8ε +

π

ε

(
sin 2πzni,j

zni,j
+ 2π

)

+ λ

K−1∑
k=0

|ui,j − Ck|2
(

2π2

3
+ 2sinc(zni,j − k)

d
dz sinc(zni,j − k)

zni,j − k

)}
zn+1
i,j

= 2ε(zni−1,j + zni,j−1 + zni+1,j + zni,j+1) +
2π2

ε
zni,j

+ λ

K−1∑
k=0

|ui,j − Ck|2
(

2π2

3
zni,j + 2ksinc(zni,j − k)

d
dz sinc(zni,j − k)

zni,j − k

)
.

The Neumann natural boundary condition is imposed along the boundary of the
image domain. The detailed numerical analysis on the CCCP method augmented
with all the above linearization techniques is interesting but foreseeably involved.
This offers an intriguing open problem to the numerical analysis community.

Finally, once the phase field z is solved from the system, in order to extract each
phase or segment, we apply the hard thresholding decision rule: k− 1

2 ≤ z < k+ 1
2 for

each individual kth phase. A simple morphological transformation (opening) is also
employed to remove any spurious dots due to the hard thresholding. Instead of hard
thresholding, it is also possible to adopt a slightly more complex local decision rule
based on windowing, which will then make the morphological operation obsolete.

4.3. Numerical experiments. In this subsection, we present some generic ex-
perimental results based on the theories and computational schemes developed above.
In all the experiments, a given image is always normalized to the canonical gray in-
terval [0, 1], and the bandwidth parameter (or the diffuse scale) ε is in the order of a
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uo z z

z = 0 z = 1

z = 2 z = 3 z = 4

Fig. 4.1. A complex synthetic image uo with multiple objects and several generic visual struc-
tures. Image size is 240 × 240, ε = 2 (pixels), and λ = 15 (scaled by the grid size). The calculated
Ck values are 0, 0.16, 0.50, 0.74, 0.97, respectively.

few pixels. Furthermore, inspired by the simulated annealing technique in stochastic
image processing (see, e.g., Geman and Geman [23]) and Gibbs’ random fields, we
have also experimented with dynamically decreasing ε’s to speed up convergence, for
example, adopting ε1 in the first 50 iterations, while ε2 = ε1/2 for the rest.

Regarding the initial guess for the phase field z, we have typically adopted ran-
dom values between −0.5 to K + 0.5 as mentioned in the theory (the set AK). For
complex images with large variances in homogeneous regions or with many phases,
weak supervision can be used for the initial values; i.e., initial Ck values can be es-
timated from the assigned supervised “seed” regions. For more discussion on weak
supervision and automated stochastic supervision (based on patch statistics), we refer
the reader to the recent works of Shen [46], Li et al. [28], and Li and Perona [27].

The first example, Figure 4.1, shows a complex synthetic image that contains
several generic visual structures, including an internal hole, occlusion and stacked
objects, T-junctions, singular junctions where multiple objects (or phases) meet, as
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uo z

z = 0 z = 1 z = 2

Fig. 4.2. The performance of the proposed Modica–Mortola sine-sinc model to the segmentation
of an MRI brain image. Shown on top of the original image (upper left) are the three “seed” phase
patches which are often easily supervised by a radiologist. The resolution details in the segmented
phases depend upon the bandwidth parameter ε (ε = 2 (pixels) for this particular output).

well as thin passages that reveal the bottleneck effect (see the recent work of Kohn
and Slastikov [25] in material sciences for asymptotic bottleneck analysis in phase
transitions). In this case, with K = 5 phases, initial condition is weakly supervised.

Figure 4.2 shows the application of the proposed model to an MRI brain image.
Even though the intensities fluctuate severely and the boundaries are complex, the
proposed method has done a satisfactory job in separating the major different phases.
Shown on top of the original image are the three small patches that are in practice
easily supervised by a radiologist.

In Figure 4.3, it is shown that the proposed model works well with a noisy image
containing a generic T-junction, a universal singular structure crucial in visual percep-
tion (see, e.g., Nitzberg, Mumford, and Shiota [37]). The level of noise is exaggerated
to show the stability of the proposed method.

The next couple of examples, Figures 4.4 and 4.5, involve color images for which
the RGB color space has been employed. We have adopted the Euclidean metric of
three color channels as in [51]:

|uR
o − CR

k |2 + |uG
o − CG

k |2 + |uB
o − CB

k |2,

where uR
o , uG

o , uB
o correspond to the red, green, and blue channels of the given color

image uo. (This may not be optimal for color perception; see, e.g., [10, 12]). In
addition, the following two examples deal with either blurry edges or the absence of
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uo z z

Fig. 4.3. A noisy synthetic image uo containing a generic T-junction (left); the phase field z
computed by the proposed sine-sinc model (middle and right). The example shows that the model is
robust to noise and reconstructs well the geometry.

uo z

Fig. 4.4. Example of image with blurry edges. The image of Helix nebula has blurry edges, and
the proposed model captures each different level clearly: three phases z = 0, 1, and 2.

uo z z = 1

Fig. 4.5. Example of cluster segmentation. The original (left) and z with three phases (middle)
are shown. The z = 1 contour is superposed over the original to show the accuracy (right).

edges. Figure 4.4 is an example of blurring image. The edges are not clearly defined;
however, the proposed Modica–Mortola sine-sinc model captures each different level
clearly. Figure 4.5 shows an example of cluster segmentation. It is an image of the
night light of England and correctly segments three different phases. These two exam-
ples further demonstrate the flexibility of the proposed model and its computational
algorithm.
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Fig. 4.6. Effect of different ε values. From the same original image uo, two different ε values
are used to show the effect of ε. In the top row, segmented results z2 and z10 are superposed with
black and white contours identifying each segment’s z = 0, z = 1, and z = 2. The second row plots
show the profile (solid) of the diagonal of z2 and z10 compared to the ideal segmentation (dotted).

As a final example, we present the effect of using different ε in Figure 4.6. From the
original image uo, two different ε values are used to show the effect of having different
transition bands: as ε gets bigger, the transition band gets wider. In Figure 4.6,
except for the sharp corner, z2 and z10 show little differences.

5. Conclusion. In this paper, we propose a new multiphase segmentation model
based on the celebrated phase transition model of Modica and Mortola [33] in ma-
terial sciences, fluid mechanics, and the Γ-convergence theory. The sine-sinc model
properly synchronizes the fitting term for the given image with the regularity term for
the diffuse interfaces. Mathematical analysis is developed for the Γ-convergence be-
havior of the model and the existence of its minimizers. We also develop in detail the
convex-splitting or the CCCP algorithm for minimizing the nonconvex energy func-
tional. Several numerical experiments on both generic synthetic and natural images
demonstrate the satisfying performance of the proposed model and its algorithm.

It is our belief that the interplay and integration between physics and information
technologies will further blossom in the near future. The current work is a typical
example that has substantially benefited from numerous existing contributions in
these two fields.
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EXCITATION OF SURFACE WAVES∗
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Abstract. The two-dimensional problem of acoustic scattering of an incident plane wave by a
semi-infinite array of either rigid or soft circular scatterers is solved. Solutions to the corresponding
infinite array problems are used, together with a novel filtering approach, to enable accurate solutions
to be computed efficiently. Particular attention is focused on the determination of the amplitude of
the Rayleigh–Bloch waves that can be excited along the array. In general, the far field away from
the array consists of the sum of a finite number of plane waves propagating in different directions
(the number depending on the observation angle) and a circular wave emanating from the edge of
the array. In certain resonant cases (characterized by one of the scattered plane waves propagating
parallel to the array), a different far field pattern occurs, involving contributions that are neither
circular waves nor plane waves. Uniform asymptotic expansions that vary continuously across all of
the shadow boundaries that exist are given for both cases.
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1. Introduction. Large array scattering problems are of considerable current
interest in many different areas and present significant theoretical and computational
challenges. Whereas wave scattering by a small number of scatterers, or by an infi-
nite periodic array, is fairly well understood, scattering by large but finite arrays has
received much less attention. Scattering by large finite arrays is of considerable im-
portance in the theory of array antennas and the fabrication of electromagnetic band
gap materials [1], [2], [3]; in water waves [4], [5], where offshore structures supported
by thousands of cylindrical columns are being designed; and in acoustics, where large
periodic arrays continue to be the subject of numerous studies—applications include
acoustic filters, noise control, and the design of transducers.

It has long been recognized that one way to approach large finite array scattering is
to analyze the effects of each edge of the array in isolation—in other words, to study
arrays with just one edge—and this leads to problems formulated on semi-infinite
arrays. On the assumption that opposite edges of a finite array are well separated,
results from analyses of semi-infinite arrays can then be combined to provide results
for finite arrays. Unfortunately, such problems are difficult to analyze and little work
has been done on the subject since the pioneering studies of Hills and Karp [6] and
Millar [7].

For the case of a semi-infinite periodic array of isotropic point scatterers, it has
been shown [8] that progress can be made if the problem is formulated for the differ-
ence between unknowns relevant to the infinite and semi-infinite array problems. The
situation considered was appropriate to acoustic diffraction by sound-soft scatterers
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in the limit as the ratio of wavelength to body size tends to infinity and also to the
scattering of an E-polarized electromagnetic wave by an array of perfectly conducting
wires. Important as these applications are, they do not cover many of the cases in
which large array scattering is a serious issue.

As a significant extension we consider here two-dimensional scattering by a semi-
infinite row of periodically spaced, identical circular cylinders and show how the
diffracted field can be efficiently computed. We extend the techniques developed in
[8] so as to investigate the effects of the size of scatterers and the boundary conditions
applied on them. Neumann boundary conditions appropriate for rigid bodies give rise
to a major complication since diffraction gratings of rigid structures are known to
support pure Rayleigh–Bloch surface waves at low frequencies [9], [10] and these may
be excited by the edge of the array.

The excitation of surface waves by array edges is a virtually unexplored area,
partly because there are very few geometries for which the range of possible Rayleigh–
Bloch modes (also called array guided surface waves) is completely understood. They
have been observed numerically in arrays of dipoles [2] and are akin to the edge waves
that can be excited by the edge of a semi-infinite crack in a thin plate [11]. It is
common practice in many applications to assume that the behavior of a large finite
array can be approximated well by an infinite array, at least away from the edges.
One of the consequences of the presence of Rayleigh–Bloch surface waves is that this
is no longer valid. For example, Maniar and Newman [12] showed that the effect of
these modes (especially those which are close to standing modes) can be extremely
important, giving rise to enormous amplification of the wave field close to the center
of a large array. It is thus important to have a good understanding of when and to
what extent array guided surface waves are excited.

The structure of the paper is as follows. We begin in section 2 by formulating the
scattering problems for both an infinite and a semi-infinite array of circular scatterers
using separation of variables. Details of the Rayleigh–Bloch surface waves that can be
supported by an infinite array are given. In section 3 the solution to the infinite array
problem is used to reformulate the semi-infinite array problem in such a way that the
unknown coefficients associated with each cylinder decay to zero as one moves away
from the array edge. A number of different approaches are considered, and they are
used to compute the amplitude of the Rayleigh–Bloch waves that are excited. The
nature of the far field is analyzed in section 4, and a uniform asymptotic approxi-
mation is derived. A special treatment is required when the parameters correspond
to resonance in the infinite array (when one of the scattered waves propagates along
the array), and this is given in section 5. In particular, this allows us to solve the
semi-infinite problem in the case of head-on incidence.

2. Formulation. We consider a two-dimensional scattering problem which has
application in a number of physical contexts. We will refer primarily to the acoustic
setting in which we look for time-harmonic solutions Re[φ(x, y) exp(−iωt)] so that the
acoustic potential φ satisfies the two-dimensional Helmholtz equation (∇2 + k2)φ = 0
in the region exterior to the scatterers, where k = ω/c and c is the speed of sound.
The scatterers can be taken as either rigid (in which case the normal derivative of φ
must vanish on the boundary; we call this the Neumann problem) or acoustically soft
(in which case the appropriate boundary condition is φ = 0; we call this the Dirichlet
problem). Exactly the same boundary-value problem can be used to study electro-
magnetic diffraction by an array of perfect conductors or, once the depth variation
has been factored out, the scattering of water waves by vertical circular cylinders. In



SCATTERING BY SEMI-INFINITE ARRAYS 1235

ψ0

θ

y

x

r rm

θm

Fig. 2.1. Definition sketch.

the latter case, k is the positive solution to the dispersion relation k tanh kh = ω2/g, h
being the water depth and g the acceleration due to gravity; the appropriate boundary
condition is ∂φ/∂n = 0. The geometry under consideration is sketched in Figure 2.1.

We are concerned with the scattering of a plane wave

(2.1) φinc = ei(λx+μy),

where μ = k sinψ0 and λ = k cosψ0, by a semi-infinite row of identical circular
cylinders of radius a, located at (x, y) = (j, 0), j = 0, 1, 2, . . . . The spacing between
the cylinders has been set to unity for convenience, and hence 0 < a ≤ 0.5. We will
use polar coordinates (rj , θj), centered on the jth scatterer and defined by

(2.2) x− j = rj cos θj , y = rj sin θj ,

and we will usually write (r, θ) for (r0, θ0). In terms of (rj , θj) the incident wave is
given by

(2.3) φinc = eiλjeikrj cos(θj−ψ0).

This problem can be formulated using separation of variables. If we write the
total field as φ = φinc + φsc with

(2.4) φsc =

∞∑
j=0

∞∑
n=−∞

Aj
nZn Hn(krj)e

inθj ,

where Hn(·) is a Hankel function of the first kind and Zn = Jn(ka)/Hn(ka) if the
Dirichlet problem is being studied, or Zn = J ′

n(ka)/H ′
n(ka) for the Neumann problem,

then the unknowns Aj
n are solutions to ([13, eq. (2.11)])

(2.5) Ap
m +

∞∑
n=−∞

Zn

∞∑
j=0
�=p

Aj
nX

jp
n−m Hn−m(k|j − p|) = −eiλpeim( 1

2π−ψ0),

p = 0, 1, 2, . . . ,m ∈ Z, where Xjp
n = 1 if p > j and Xjp

n = (−1)n if p < j.
This system of equations could, in principle, be solved numerically by truncation,

but the infinite spatial sum (over j) converges extremely slowly. (The coefficients Aj
n

do not decay to zero as j → ∞, and so the terms in this sum decay like j−1/2 exp(ijδ)
for some δ.) By contrast, the order summation (over n) converges exponentially. The
strategy that is followed here is to make use of known properties of the diffraction
problem when the array extends to both plus and minus infinity to allow us to sum
up the slowly convergent spatial series analytically.
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2.1. The infinite array. For the infinite grating problem, with cylinders at
(j, 0), j ∈ Z, we can seek a solution of the form

(2.6) φinf
sc =

∞∑
j=−∞

∞∑
n=−∞

Bj
nZn Hn(krj)e

inθj .

The periodicity of the geometry and of the incident wave allows us to look for a
solution which satisfies

(2.7) Bj
n = eiλjB0

n = eiλjBn,

say, and then we need only solve for Bn. These coefficients are solutions to the infinite
system of equations

(2.8) Bm +

∞∑
n=−∞

BnZnσn−m(λ) = −eim( 1
2π−ψ0), m ∈ Z,

where

(2.9) σn(λ) =

∞∑
j=1

[
(−1)neiλj + e−iλj

]
Hn(kj).

The quantities σn are easily evaluated (though not from the above expression); see
[14], [15]. The system (2.8) is straightforward to solve numerically by truncation, the
convergence of Bn with |n| being exponential.

The far field for the infinite array problem can be determined as follows. First
we define the scattering angles ψm(λ) by

(2.10) ψm = arccos(λm/k), λm = λ + 2mπ.

If |λm| < k, i.e.,

(2.11) −1 < cosψ0 +
2mπ

k
< 1,

then we say that m ∈ M and we have 0 < ψm < π. If |λm| > k, then ψm is no longer
real and the appropriate branch of the arccos function is given by

(2.12) arccos t =

{
i arccosh t, t > 1,

π − i arccosh(−t), t < −1,

with arccosh t = ln
(
t +

√
t2 − 1

)
for t > 1. Next we use the integral representation

(2.13) Hn(kr) einθ =
(−i)n+1

π

∫ ∞

−∞

e−kγ(t)|y|

γ(t)
eikxt (t− γ(t))

n sgn(y)
dt,

in which γ(t) = (t2 − 1)1/2 with γ(0) = −i and the path of integration is indented
so as to pass above the branch point at t = −1 and below that at t = 1 (for n = 0,
see [8, Appendix A]; for the extension to all n we use [16, Theorem 2.7]). If this is
inserted into (2.6), we can apply the Poisson summation formula to obtain

(2.14) φinf
sc =

∞∑
m=−∞

F±
meikr cos(θ∓ψm),
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in which

(2.15) F±
m =

2

k

∞∑
n=−∞

(−i)nBnZn
e±inψm

sinψm

and the superscripts + and − correspond to y > 0 and y < 0, respectively. The
integral representation (2.13) with n �= 0 is valid except on y = 0, and thus this
expression for the field is valid everywhere outside the scatterers except on y = 0,
provided that sinψm �= 0 for any m. If there is a value of m for which sinψm = 0,
then the scattering problem is described as resonant and requires a separate treatment.
This is discussed elsewhere [17]. As y → ±∞, the only contribution comes from those
m for which ψm is real, i.e., m ∈ M. Hence the far field consists of a set of plane
waves propagating in the directions θ = ψm and θ = 2π − ψm:

(2.16) φinf
sc ∼

∑
m∈M

F±
meikr cos(θ∓ψm) as y → ±∞.

2.2. Rayleigh–Bloch surface waves. Crucial to what follows is the fact that
in the Neumann problem the solution to the scattering problem described above may
not be unique. If we relax the quasi-periodicity condition (2.7) and replace it with
another with a different phase, it may be possible to find a value β (maybe more than
one), dependent on k, such that the homogeneous infinite system

(2.17) Bm +

∞∑
n=−∞

BnZnσn−m(β) = 0, m ∈ Z,

has a nontrivial solution. The resulting potential

(2.18) φrb =

∞∑
j=−∞

∞∑
n=−∞

eiβjBnZn Hn(krj)e
inθj

does not share the same periodicity as the incident wave, but nevertheless satisfies
all the boundary conditions of the full problem. Such potentials are referred to as
Rayleigh–Bloch surface waves (or array guided surface waves), and for the geometry
under consideration here the dispersion relation connecting β and k has been com-
puted in [18] and [19] (the existence of these surface waves was proved in [10]). Since
exp(iβm) = exp(i(β + 2π)m), we can restrict our attention to 0 ≤ β < 2π. It follows
from (2.17) that if there is a solution for a given β, then there is also a solution with
β replaced by 2π − β (representing a wave whose energy is travelling in the opposite
direction). If we insist that energy is propagating in the positive x-direction, as it will
be in the semi-infinite array problem considered below, then we can restrict attention
to 0 < β < π. The numerical results in [18] and [19] show that Rayleigh–Bloch surface
waves exist at discrete values of k for any β < π and that they satisfy k < β. The
fact that no such modes exist in the Dirichlet problem is proved in [20].

Computations show that a mode which is symmetric about y = 0 (for which
B−n = (−1)nBn) exists for all scatterer sizes, and a mode antisymmetric about
y = 0 (for which B−n = −(−1)nBn, with B0 = 0) exists for 0.403 � a ≤ 0.5.
For a given value of a, Rayleigh–Bloch waves exist only for a range of values of k:
symmetric modes in the range 0 < k < ks

max < π and antisymmetric modes in the
range ka

min < k < ka
max < π. It turns out that there are three distinct regimes:
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Fig. 2.2. kmin and kmax for symmetric and antisymmetric Rayleigh–Bloch modes.

for a � 0.403, only symmetric modes are possible; for 0.403 � a � 0.459, we have
ks
max < ka

min, and thus it is possible to have symmetric and antisymmetric modes, but
not for the same value of k; and finally, when 0.459 � a < 0.5, we have ks

max > ka
min,

and hence it is only in this parameter range that it is possible to excite both symmetric
and antisymmetric modes at the same time. Figure 2.2 shows values of ks

max, k
a
min, and

ka
max for varying scatterer radius a. When a = 0.5, the symmetric and antisymmetric

Rayleigh–Bloch modes are essentially the same since the cylinders are touching and
there is no connection between the two sides of the array.

3. Infinite array subtraction. We will formulate the problem allowing for the
excitation of a single Rayleigh–Bloch mode. If both symmetric and antisymmetric
modes are present, then this is easily accommodated by first splitting the problem
into parts symmetric and antisymmetric about y = 0 and treating each of them
separately. In fact it is numerically efficient to make this decomposition irrespective
of the parameter values, and this was done in all the computations presented below.
For the semi-infinite grating we would like to construct an infinite system of equations
in which, unlike in (2.5), the unknowns decay to zero as one moves along the array.
To this end we first introduce new unknowns which are the differences between the
solutions to the infinite and semi-infinite array problems (as in [8], [21]). There are
then a number of different ways in which the Rayleigh–Bloch waves can be handled.
These fall into two broad categories: filtering methods, in which knowledge about
the phase of the unknown coefficients is used to filter out unwanted terms (used for
a simpler quasi–one-dimensional scattering problem in [22]), and explicit methods,
where the amplitude of the Rayleigh–Bloch waves that are excited is introduced as
an extra unknown and an extra equation is therefore required. We will consider the
latter type first.

3.1. Explicit methods. We define a new set of unknowns, Ĉp
m, as follows:

(3.1) Ap
m = Ĉp

m + eiλpBm + α eiβ̃pB̃m.
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Here Bm is the solution to the infinite array problem (2.8), B̃m is a solution to the

homogeneous system (2.17) with β ≡ β̃, normalized so that

(3.2)
∞∑

m=−∞
|ZmB̃m|2 = 1,

and α is an unknown constant representing the (complex) amplitude of the Rayleigh–
Bloch mode. We expect that as p → ∞ (i.e., as we move away from the edge)
the coefficients Ap

m will tend to the values appropriate to a fully infinite array, plus
possibly the effect of any Rayleigh–Bloch waves, and hence that Ĉp

m → 0 as p → ∞
provided that α is chosen appropriately.

If we substitute from (3.1) into (2.5) and use (2.8) and (2.17), we get a system
of equations for the coefficients Ĉp

m which is the same as (2.5) except with a different
right-hand side:

(3.3) Ĉp
m +

∞∑
n=−∞

Zn

∞∑
j=0
�=p

Ĉj
nX

jp
n−m Hn−m(k|j − p|)

=

∞∑
n=−∞

Zn

(
BnS

p
n−m(λ) + αB̃nS

p
n−m(β̃)

)
, p = 0, 1, 2, . . . ,m ∈ Z,

where

(3.4) Sp
n(β) =

∞∑
j=p+1

eiβ(p−j)
Hn(kj).

The slowly convergent series (3.4) does not contain unknown coefficients and thus
can be treated analytically and computed efficiently; see [23]. It can be shown that
(see [8, Appendix D] for the method though the final result in that paper is in error),
provided that θ is not an integer multiple of 2π,

(3.5)
∞∑

j=p+1

eijθ

j1/2
∼ −p−1/2eiθp

1 − e−iθ
as p → ∞.

Hence

(3.6) Sp
n(β) ∼ −

√
2

πkp

(−i)n e−
1
4 iπ eikp(

1 − e−i(k−β)
) .

It follows that the right-hand side of (3.3) decays as p → ∞; therefore the behavior
of the coefficients Ĉp

n in this limit must be such that the sum on the left-hand side
converges. In fact, it turns out that (see section 4), as p → ∞,

(3.7) Ĉp
n ∼ Cnp

−3/2eikp.

The simplest way to determine α is to set ĈP
N = 0, treat α as an unknown, and

solve (3.3) for Ĉ0
n, . . . , Ĉ

P
n , |n| ≤ N , by truncation, a procedure which was used for

a related problem in [24]. This works, in that as P gets large, the value obtained
for α converges, but the convergence is slow, and very large values of P are therefore
required in order to obtain accurate results. We will refer to this approach to the
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determination of α as the direct method. We can also make use of a subsequent result
from the analysis of the far field as a means of obtaining an additional equation. Thus,
the asymptotic behavior of the coefficients Ĉp

n given by (3.7) means that we must take
g(0) = 0 in (4.7) (see section 4.2), and thus

(3.8)

∞∑
n=−∞

(−i)nZn

⎛
⎝ Bn

1 − ei(λ−k)
+

αB̃n

1 − ei(β̃−k)
+

∞∑
j=0

Ĉj
ne−ikj

⎞
⎠ = 0.

Note that this is not an explicit formula for α since the coefficients Ĉj
n are the solutions

to (3.3), which contains α on the right-hand side. For the antisymmetric part of the
field this identity is trivially satisfied; thus it is of use only for the symmetric part.
The use of (3.3) combined with (3.8) will be referred to as the far field method for
the determination of α. Unfortunately, the sum involving Ĉj

n converges too slowly for
this approach to work well. In cases where there is no Rayleigh–Bloch wave (i.e., in
the Neumann problem with k > ks

max or in the Dirichlet case), α = 0, and equation
(3.8) is an identity that can be used as a check on the results. It can also be used as
a numerical check in cases where Rayleigh–Bloch waves do exist if α is calculated by
some other means.

In order to make the best use of (3.8) we use a simple acceleration procedure.
This procedure has been used wherever possible in what follows and we will refer
to it as asymptotic acceleration. Thus, we substitute the asymptotic form for the
coefficients Ĉj

n for all values of j greater than the truncation parameter j = J , giving

(3.9)
∞∑
j=0

Ĉj
ne−ikj =

J∑
j=0

Ĉj
ne−ikj + Cn

∞∑
j=J+1

j−3/2,

the coefficient Cn being determined from the computed value of ĈJ
n ≈ CnJ

−3/2 exp(ikJ)
and the final sum being a generalized zeta function which can easily be computed from
standard packages.

3.2. Filtering. We have found that filtering methods yield the best results in
terms of accuracy and efficiency, and these are described next. This time we define
new unknowns Cp

m via

(3.10) Ap
m = Cp

m + eiλpBm

(so that Cp
m = Ĉp

m + α eiβ̃pB̃m). Instead of (3.3) we now have

(3.11) Cp
m +

∞∑
n=−∞

Zn

∞∑
j=0
�=p

Cj
nX

jp
n−m Hn−m(k|j − p|) = Γp

m,

p = 0, 1, 2, . . . ,m ∈ Z, where for future convenience we have defined

(3.12) Γp
m =

∞∑
n=−∞

ZnBnS
p
n−m(λ).

If Rayleigh–Bloch modes are excited, then the coefficients Cp
m will not decay to zero

as p → ∞. Instead, we expect that Cp
m ∼ eiβ̃Cp−1

m in this limit. We thus introduce

(3.13) Dp
m =

{
Cp

m − eiβ̃Cp−1
m , p = 1, 2, . . . ,

C0
m, p = 0,
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so that Dp
m decays to zero as p → ∞. This recurrence relation can be solved for Cp

m

to give

(3.14) Cp
m =

p∑
j=0

eiβ̃(p−j)Dj
m, p = 0, 1, 2, . . . .

A system of equations for Dp
m can then be derived in more than one way. If (3.14)

is substituted into (3.11), we get

(3.15)

p∑
j=0

eiβ̃(p−j)Dj
m +

∞∑
n=−∞

Zn

∞∑
j=0

Dj
n

∞∑
l=j
�=p

eiβ̃(l−j)X lp
n−m Hn−m(k|l − p|) = Γp

m,

p = 0, 1, 2, . . . ,m ∈ Z. Alternatively we can combine equations in (3.11) in the obvious
way so that

(3.16) Dp
m +

∞∑
n=−∞

Zn

∞∑
j=0
�=p

Dj
nX

jp
n−m Hn−m(k|j − p|) = Γp

m − eiβ̃Γp−1
m ,

p = 1, 2, . . . ,m ∈ Z. The system (3.16) then needs to be supplemented by an equation
for D0

m which can be obtained from (3.11) with p = 0 by substituting for Cj
n from

(3.14). This yields

(3.17) D0
m +

∞∑
n=−∞

(−1)n−mZn

∞∑
j=0

Dj
n

∞∑
l=max(j,1)

eiβ̃(l−j)
Hn−m(kl) = Γ0

m.

The sums over l in either of the formulations can be expressed in terms of the sums Sp
n

defined in (3.4) and can be computed efficiently and accurately using results from [23].
The two formulations are equivalent, but we have found that the second (i.e., using
(3.16) and (3.17)) is easier to implement. In either case, the finite sum in (3.14)
has been interchanged with the (infinite) spatial sum in (3.11). This crucial step has
the effect of continuing the filtered term (in this case the Rayleigh–Bloch mode) to
infinity, so that it is unaffected by spatial truncation. This is the essence and great
advantage of infinite array subtraction and filtering methods: only the part of the
solution which decays as one moves along the array is subject to errors caused by
spatial truncation.

Once the coefficients Dp
m have been computed via truncation, the coefficients Cp

m

can be reconstructed from (3.14). If we truncate at p = P , a value for α can then be
deduced from

(3.18) CP
me−iβ̃P =

P∑
p=0

e−iβ̃pDp
m → α B̃m as P → ∞.

The coefficients Dp
m have the asymptotic behavior Dp

m ∼ Dmp−3/2 exp(ikp) exactly
as for Ĉp

m because they both model the behavior of the scattered field once the
Rayleigh–Bloch wave has been removed. Thus asymptotic acceleration can be used
in (3.18).

It is possible to use the known asymptotic behavior of Dp
m to create a set of

coefficients which decay like p−5/2 by filtering again. In other words we define a new



1242 C. M. LINTON, R. PORTER, AND I. THOMPSON

Table 3.1

Convergence of different methods for the determination of |α| for the symmetric Rayleigh–Bloch
mode that is excited when a = 0.25, ψ0 = π/10, and k = 2. The numbers in parentheses are the
results when asymptotic acceleration is not used (note that this is not available when using the direct
method). Eleven modes have been used in the order summations.

Spatial Direct Far field Single Double
truncation filtering filtering

50 (0.0938) (0.1148) 0.1022 (0.0940) 0.1007 (0.1015) 0.1014
100 (0.1015) (0.1213) 0.0991 (0.1017) 0.1017 (0.0999) 0.1014
150 (0.1035) (0.1022) 0.1016 (0.1035) 0.1016 (0.1014) 0.1015
200 (0.1020) (0.0869) 0.1023 (0.1019) 0.1015 (0.1018) 0.1015
250 (0.1007) (0.0972) 0.1016 (0.1007) 0.1014 (0.1016) 0.1015
300 (0.1010) (0.1117) 0.1011 (0.1010) 0.1015 (0.1014) 0.1015

set of coefficients via

(3.19) Ep
m =

{
Dp

m − eikDp−1
m , p = 1, 2, . . . ,

D0
m, p = 0.

Details of the resulting equations can be found in the appendix. In most situations
there is very limited gain from this second filtering. However, there are certain situ-
ations (which we will mention below) where it is absolutely essential.

3.3. Numerical results. We have described four methods which can be used
to determine α: the direct method, the far field method, single filtering, and double
filtering. The final three can all be improved via asymptotic acceleration. Table 3.1
shows the relative performance of these different approaches for a typical, rather than
an extreme, case. We have taken a = 0.25, ψ0 = π/10, and k = 2. For these

parameters, there is a symmetric Rayleigh–Bloch mode with β̃ ≈ 2.0268. The table,
which lists values of |α|, clearly demonstrates the superiority of the filtering methods,
and also the increased convergence that results from using asymptotic acceleration.
An important caveat to note is that double filtering does not work well when k and
β̃ are too close together. This happens for symmetric Rayleigh–Bloch waves when k
is small. However, this is mitigated against by the fact that in long waves smaller
truncations in the order summations are necessary for a given accuracy, and hence
large spatial truncations can easily be used.

When antisymmetric surface waves are excited, computing α accurately is more
of a challenge. One factor is that such modes exist only for large values of a when
the cylinders are close together, and this entails the use of many more terms in the
order summations so as to accurately model the interactions. The second is that
the problematic case k ≈ β̃ occurs not for very long waves but when k is near ka

min.
Table 3.2 shows the relative performance of the different approaches for computing
α for the case a = 0.49, ψ0 = π/10, and k = 2.5. For these parameters, there is an

antisymmetric Rayleigh–Bloch mode with β̃ ≈ 2.5096. (There is also a symmetric

mode excited with β̃ ≈ 2.5644, and thus the problem must be decomposed into
its symmetric and antisymmetric parts before the Rayleigh–Bloch amplitudes are
calculated.) Note that the far field method cannot be used in the antisymmetric case.
Again, the filtering methods are seen to converge fastest as the spatial truncation is
increased. It is also evident that the convergence is not as good as in the symmetric
case presented in Table 3.1.
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Table 3.2

Convergence of different methods for the determination of |α| for the antisymmetric Rayleigh–
Bloch mode that is excited when a = 0.49, ψ0 = π/10, and k = 2.5. The numbers in parentheses are
the results when asymptotic acceleration is not used (note that this is not available when using the
direct method). Twenty-one modes have been used in the order summations.

Spatial Direct Single Double
truncation filtering filtering

50 (0.2212) (0.2212) 0.2400 (0.3236) 0.2597
100 (0.2197) (0.2198) 0.2380 (0.2571) 0.2445
150 (0.2258) (0.2259) 0.2384 (0.2418) 0.2413
200 (0.2325) (0.2325) 0.2392 (0.2375) 0.2404
250 (0.2379) (0.2380) 0.2400 (0.2369) 0.2402
300 (0.2418) (0.2418) 0.2405 (0.2377) 0.2402
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Fig. 3.1. Left: variation with k of |α| for the excited symmetric surface wave, for three different
angles of incidence, when a = 0.25. Right: variation with ψ0 of |α| for the excited symmetric surface
wave, for three different values of k, when a = 0.25.

Figure 3.1 shows the variation in the amplitude of the excited symmetric surface
wave with k for three different angles of incidence and with ψ0, for three different
wavenumbers, when a = 0.25. For this value of a, symmetric Rayleigh–Bloch waves
are excited for all k in the range 0 < k < ks

max ≈ 2.783 (and antisymmetric Rayleigh–
Bloch waves are never excited). For 0 < k < 1 (not shown in the figure), |α| is
essentially zero. This corresponds to wavelength-to-spacing ratios greater than 2π.
As k increases so the amplitude increases, reaching a maximum at ks

max (at which

point β̃ = π). The variation in |α| with ψ0 is not monotonic, and this is illustrated
clearly in Figure 3.1. For a given k, the amplitude is greatest at head-on incidence
(note that this case requires special treatment as described in section 5 below). It
then reduces to approximately zero at an angle somewhere near π/3 (independently
of the value of k) before increasing and then getting smaller again as the incident
wave grazes the array.

Figure 3.2 shows the variation in the amplitude of the excited antisymmetric
surface wave with k for three different angles of incidence and with ψ0, for three
different wavenumbers, when a = 0.49. For this value of a, antisymmetric Rayleigh–
Bloch waves are excited for all k in the range 1.796 � k � 2.969 (and symmetric
Rayleigh–Bloch waves are also excited). For k just above 1.796 we have problems

computing α accurately caused by the closeness of k and β̃. The qualitative behavior
of the amplitude as a function of k is very similar to that for the symmetric mode
shown in Figure 3.1. At head-on incidence the problem is entirely symmetric about
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Fig. 3.2. Left: variation with k of |α| for the excited antisymmetric surface wave, for three
different angles of incidence, when a = 0.49. Right: variation with ψ0 of |α| for the excited anti-
symmetric surface wave, for three different values of k, when a = 0.49.

the line of the array, and thus the amplitude of the antisymmetric mode tends to zero
as the incidence angle tends to zero. The amplitude rises sharply as ψ0 increases from
zero, and the maximum amplitude occurs for quite small angles.

Figures 3.1–3.2 clearly show that the amplitude of the surface waves that are
excited are greatest when the frequency parameter k is close to its maximum possible
value for the modes to exist. When k is just less than kmax, β̃ is just less than π,
and as β̃ → π from below, the Rayleigh–Bloch mode approaches a standing wave
and its group velocity, cg, tends to zero. The energy in the Rayleigh–Bloch wave is
proportional to |α|2, and thus the rate of energy transport is proportional to |α|2cg,
which tends to zero as k → kmax. Hence the large amplitudes correspond to situations
where the energy is transported slowly away from the array edge.

4. The far field. From (2.4), (2.13), and (3.1), the scattered field can be written
as

(4.1) φsc =

∞∑
j=0

∞∑
n=−∞

(
eiλjBn + α eiβ̃jB̃n + Ĉj

n

)
Zn

× (−i)n+1

π

∫ ∞

−∞

e−kγ(t)|y|

γ(t)
eik(x−j)t (t− γ(t))

n sgn(y)
dt.

The spatial sums involving Bn and B̃n can be evaluated using the result

(4.2)

∞∑
j=0

∫ ∞

−∞
f(u) e−iju du =

∫ ∞

−∞
�

f(u)

1 − e−iu
du

(see [8], [25]). Thus

(4.3)

φsc =

∞∑
n=−∞

Zn
(−i)n+1

π

∫ ∞

−∞

[
bn(t)+ b̃n(t)+ ĉn(t)

]
(t− γ(t))

n sgn(y)
e−kγ(t)|y|+ikxt dt

γ(t)
,
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in which

bn(t) =
Bn

1 − ei(λ−kt)
, b̃n(t) =

αB̃n

1 − ei(β̃−kt)
,(4.4)

ĉn(t) =

∞∑
j=0

Ĉj
ne−ikjt, Im(t) ≤ 0.(4.5)

The path of integration passes below all of the singularities, apart from the branch
point at t = −1.

In general the far field asymptotics of (4.3) can be obtained via a straightforward
application of the method of steepest descents, provided that the point of observation
is not close to the array. The function ĉn(t) is analytic in Im(t) < 0 by definition,
and from (3.7) and [26, section 3.4] the only singularities on R are branch points, on
approach to which ĉn(t) remains bounded; these do not contribute to the leading order
far field behavior of φsc. For Im(t) > 0, ĉn(t) represents the meromorphic continuation
of (4.5) into some cut upper half-plane. While ĉn(t) may possess singularities in this
region, these will yield an exponentially small contribution to the far field should they
be encountered in the process of making the steepest descents deformation. Also,
the poles of b̃n(t) lie outside the interval [−1, 1], so that their contribution is also
exponentially small. Thus, only the term involving bn(t) requires special treatment.
First, assume that the saddle point t = cos θ does not coincide with any of the poles
of bn(t). Ignoring evanescent contributions, we find that as kr → ∞ with θ ∈ (0, 2π)
(provided ψm �= 0 for any m),

(4.6) φsc ∼ H̃(kr)g(θ) +
∑
m∈M
ψm>θ

F+
meikr cos(θ−ψm) +

∑
m∈M

2π−ψm<θ

F−
meikr cos(θ+ψm).

Here, F±
m is defined in (2.15), H̃(kr) =

√
2

πkr exp(i(kr − 1
4π)), and

(4.7) g(θ) =

∞∑
n=−∞

(−i)neinθZn

(
bn(cos θ) + b̃n(cos θ) + ĉn(cos θ)

)
.

The diffracted field takes the form of a circular wave of directivity g(θ) plus a sum
of plane waves which propagate in the same directions as in the infinite grating case.
However, unlike in the grating problem, the plane waves do not exist everywhere, and
the wave making an angle ψm (resp., −ψm) with the x-axis is found only in the sector
0 < θ < ψm (resp., 2π > θ > 2π − ψm). Crucially, the coefficients Ĉm

n affect only
the circular wave. The plane wave field is determined entirely from the solution to
the infinite grating problem; in fact, where the plane waves exist, their amplitude is
precisely as in the infinite grating problem. Thus it is only the circular wave which
causes any computational difficulties.

4.1. Uniform asymptotics. The approximation (4.6) is nonuniform in the
sense that bn(cos θ) is singular at the shadow boundaries where θ = ψp or θ = 2π−ψp

(a case which corresponds to a pole of bn(t) coinciding with the saddle point). This
limitation can be overcome by adding correction terms, each of which includes an er-
ror function which rapidly but continuously activates and deactivates the appropriate
plane wave as the shadow boundary is crossed. These correction terms have appeared
in the literature in numerous forms and with various regions of validity. The appro-
priate form for use here is that given by Thompson [27], since this accounts for limits
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in which a shadow boundary in y > 0 approaches its counterpart in y < 0. Thus, the
uniform approximation to φsc is

(4.8) φsc ∼ H̃(kr)g(θ) + 1
2eikr

∑
m∈M

[
F+

m

(
w
(
ζ−meiπ/4

)
− eiπ/4

ζ−m
√
π

)

+ F−
m

(
w
(
ζ+
meiπ/4

)
− eiπ/4

ζ+
m
√
π

)]
,

where ζ±m =
√

2kr sin 1
2 (θ±ψm) and w(z) = exp(−z2) erfc(−iz) is the scaled complex

error function. It is not difficult to show that (4.8) is continuous at all of the shadow

boundaries, as the singularities in H̃(kr)g(θ) are cancelled by those in the series (note
that w(0) = 1). Now, if ζ±m > 0, we can use the result [28, equation (7.1.23)]

(4.9) w(z) ∼ i/(z
√
π) + O(z−3/2), z → ∞, −π/4 < arg(z) < 5π/4,

to show that the correction term vanishes to leading order as kr → ∞. On the other
hand, for ζp < 0, we must first apply the identity

(4.10) w(z) + w(−z) = 2e−z2

and then use (4.9) to deduce that

(4.11)
eikr

2

(
w
(
ζ±p eiπ/4

)
− eiπ/4

ζ±p
√
π

)
∼ eikr cos(θ±ψp) + O((kr)−3/2)

as kr → ∞. Thus each error function term in (4.8) (which is an exact solution to the
Helmholtz equation) includes a plane wave in the appropriate region.

Note that the limit y → 0 of (4.3) can be taken directly, provided that x < 0,
since then convergence can be maintained by deforming the path of integration into
the lower half-plane. The value taken for sgn(0) is immaterial. To see this, subtract
(4.3) with y = 0+ from the same equation with y = 0−. The resulting integrand
has no branch point at t = −1, in view of the identity (t − γ(t))n = (t + γ(t))−n,
and therefore evaluates to zero. This shows that (4.6) and (4.8) are valid at θ = π.
For x > 0, the required upwards deformation cannot be performed since the sums of
residues from b(t) and b̃(t) and of branch point contributions from ĉn(t) all diverge
when y = 0. Consequently, (4.8) represents only a part of the far field at θ = 0 and
θ = 2π, and not necessarily the most significant.

Figure 4.1 shows a contour plot of the real part of the scattered field, with a =
0.25, ψ0 = 0.25π, and k = 5.0, using Dirichlet boundary conditions. Table 4.1
contains the amplitudes of the propagating modes for this case, and the real part of
the leading order contribution to the far field given by (4.8) is plotted in Figure 4.2,
with r = 5. The imaginary part exhibits qualitatively similar behavior and is not
shown. The black disks indicate the locations of the shadow boundaries. The data
from which the dashed line is plotted includes contributions from plane waves and
is therefore continuous. The solid line represents the same uniform approximation,
but with the plane waves removed via (4.10). The two lines coincide in the region
0.69π < θ < 1.25π where no plane waves exist; here the circular wave is clearly visible
in Figure 4.1. The sizes of the discontinuities in the solid line are consistent with
the mode amplitudes in Table 4.1; all of the associated shadow boundaries are clearly
evident in Figure 4.1.
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Fig. 4.1. Contour plot of Re[φsc], with a = 0.25, ψ0 = 0.25π, and k = 5.0, using Dirichlet
boundary conditions.

Table 4.1

Propagating mode amplitudes and directions for the contour plot shown in Figure 4.1.

j ψj |F+

j | |F−
j |

−1 0.69π 0.177 0.578
0 0.25π 0.170 0.734

Fig. 4.2. Far field plots for the parameters used in Figure 4.1. Correction terms are included
for all shadow boundaries; the dashed line includes plane wave contributions, whereas the solid line
does not.

4.2. Behavior of Ĉp
n as p → ∞. Finally, we give some justification for (3.7),

though this will not amount to a rigorous proof. The total field in the region rp < 1/2
(i.e., local to scatterer p) can be written in the form [13]

(4.12) φ =

∞∑
n=−∞

Ap
n [Zn Hn(krp) − Jn(krp)] e

inθp .
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If we write similar expressions for φinf and φrb (see section 2) and introduce φ̂ =
φ− (φinf + φrb), then from (3.1) we have

(4.13) φ̂ =

∞∑
n=−∞

Ĉp
n [Zn Hn(krp) − Jn(krp)] e

inθp .

For sufficiently large p, φ̂ represents the field due to end effects other than the
Rayleigh–Bloch wave, and its asymptotic behavior is evidently determined by that
of Ĉp

n. It is not difficult to show that φ̂ can also be represented by (4.3), but with the
path of integration now passing above the poles. Nevertheless, we cannot set y = 0,
since then the sum of contributions from the branch points of ĉn(t) would diverge.
Instead, we can impose the restriction y < a, so that letting x → ∞ causes θ to
approach zero. Then, we deform the contour into the upper half-plane and deduce
the leading order behavior of φ̂ as x → ∞. The phase dependence and rate of decay
of Ĉp

n as p → ∞ must be such that the result of this calculation is consistent with
(4.13). Now we introduce the ansatz

(4.14) Ĉp
n ∼ Cneipξp−u,

in which Cn is a constant, u > 0, and ξ > 0, and substitute this into (4.5). Clearly,
the critical points will be those at which the phase disappears; therefore we define

(4.15) tm = (ξ + 2mπ)/k.

The behavior of ĉn(t) in the vicinity of t = tm now follows from [26, section 3.4].

Thus, as (tm − t) → 0
+

, we have

(4.16) ĉn(t) = CnΓ(1 − u)eiπ(1−u)/2ξu−1(tm − t)u−1 + fn(t), u �= 1,

where fn(t) is regular at t = tm and the terms with exponent u − 1 are positive
real. If u = 1, then the integrand in (4.3) possesses logarithmic singularities whose
contribution cannot be consistent with (4.13). There are now two cases to consider.
If ξ �= k, then the leading order behavior must be due to a singularity of the function
ĉn(t), since the contribution from the branch point at t = 1 (which in general is
O((kr)−1/2)) has the wrong phase, according to (4.13). Consequently, we must have
u < 1/2 in this case. On the other hand, if ξ = k, then the singularity at t = 1 yields
a contribution whose rate of decay is slower than that predicted by (4.13), unless a
sufficient number of terms vanish as θ → 0 (or 2π) so as to achieve consistency. Note
that we must have u > 1/2, or else the sum from j = 0 to j = p− 1 on the left-hand
side of (3.3) would diverge as p → ∞ due to phase cancellation. If u = 3/2, only the
leading order term must disappear, that is, g(0) = g(2π) = 0, and now both (4.3) and

(4.13) predict that the leading order far field behavior of φ̂ on the array is O((kr)−3/2).
This is borne out by numerical computations and is also the behavior proved in [8]
using the discrete Wiener–Hopf technique for a semi-infinite array of point scatterers
(which is equivalent to taking only the monopole terms in the Dirichlet problem here).

5. Resonance. Resonance occurs when one of the modes in (4.6) propagates in
a direction parallel to the array. This requires that either ψm = 0 or ψm = π for some
m; see (2.10). In general, resonances can occur only if k > π, thereby precluding the
possibility of simultaneous occurrence with Rayleigh–Bloch waves. The special case
of head-on incidence (ψ0 = 0) is resonant for all k; symmetric Rayleigh–Bloch waves
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may be excited if k < π. We will take (3.11) as the starting point for solving resonant
problems. Now, in order to use the infinite array subtraction technique we must first
compute the coefficients Bn in the resonant case; this is complicated by the fact that
the Schlömilch series in (2.9) are now divergent. However, it can be achieved using
the method developed in [17]. The form for the mode amplitude F±

m in the limit
sinψm → 0 is also given in [17]. It was noted in [6, 29] that for point scatterers all the
nonresonant scattered modes disappear at resonance. To see this, one need only note
that the solution for point scatterers is retrieved by truncating all order summations
at zero. Then, at a resonance, the divergence of the Schlömilch series in (2.8) requires
that B0 = 0, which in turn implies that F±

p = 0, unless mode p is resonant in which
case we have F±

p = −1; see [17]. For finite size scatterers, however, singular behavior
in the Schlömilch series requires that the coefficients Bn satisfy a modified system of
equations which permits nonzero values (except in the case of head-on incidence), and
thus all the modes are present in the scattered field.

5.1. Outward resonance. The case in which ψm = π is known as outward
resonance, since now mode m has the form F±

me−ikx. This can occur only if k > π;
therefore no Rayleigh–Bloch waves are excited. Outward resonant modes exist in all
space; however, in general they have different amplitudes in regions y < 0 and y > 0.
Once the resonant solution to the infinite array problem has been obtained, no further
special treatment is required, and the coefficients Cp

m can be computed from (3.11).
Note that, in the case of point scatterers, in which B0 = 0, the right-hand side of
(3.11) vanishes, so that Cp

0 = 0 for all p, and therefore the circular wave term in
(4.6) also disappears. For finite sized scatterers, this is not the case, since Bn �= 0 in
general.

Figure 5.1 shows a contour plot of the real part of the scattered field, with a =
0.25, ψ0 = 0.6π, and the wavenumber chosen so that mode −1 is outward resonant
(k ≈ 9.1). Including the resonant mode, there are three propagating plane waves; the
amplitudes above and below the array are shown in Table 5.1. Since the amplitude
of mode 1 is relatively small, its shadow boundaries are not visible in Figure 5.1;
however, those at θ = 0.6π, θ = π, and θ = 1.4π are clearly evident. The presence of
mode 0 when θ < 0.6π and θ > 1.4π accounts for the interference in this region. The
real part of the leading order contribution to the far field given by (4.8) is plotted in
Figure 5.2, with r = 5. As before, the black disks indicate the locations of the shadow
boundaries, and the dashed line includes contributions from plane waves, whereas
the solid line does not. Notice in particular the smooth transition that occurs in the
amplitude of the resonant mode across θ = π. This effect is due to the coincidence
of two shadow boundaries directly opposite the array; thus, as the observer moves
from the region where θ < π to that where θ > π, the mode F+e−ikx is deactivated,
and F−e−ikx is activated in its place. The sizes of the discontinuities that occur at
the shadow boundaries are consistent with the mode amplitudes shown in Table 5.1.
Note that the plane wave terms are, in general, of greater amplitude than the circular
wave; this is why the latter is not particularly visible in Figure 5.1.

5.2. Inward resonance. The inward resonance case in which ψm = 0 is more
interesting and presents more of a challenge. The extra difficulty in handling inward
resonance was noted by Hills [29], who attempted to analyze this case for a semi-
infinite array of isotropic point scatterers. As before, we require the coefficients Bn

from the infinite array problem, and these can be obtained using the method in [17].
There is now an additional obstacle, caused by the divergence of the series in the
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Fig. 5.1. Contour plot of Re[φsc], with a = 0.25, ψ0 = 0.6π, and the wavenumber chosen so
that mode −1 is (outward) resonant (k ≈ 9.1).

Table 5.1

Propagating mode directions and amplitudes for the contour plot shown in Figure 5.1.

j ψj |F+
j | |F−

j |
−1 π 1.46 0.680

0 0.6π 0.620 0.589
1 0.38π 0.180 0.336

Fig. 5.2. Far field plots for the parameters used in Figure 5.1, with r = 5. Correction terms
are included for all shadow boundaries; the dashed line includes plane wave contributions, whereas
the solid line does not.

right-hand side of (3.11). In fact, it can be deduced from equations in [23] that

(5.1) Sp
n(λ) = Ŝp

n(λ) + 2(−i)neipk/(kψm),

where Ŝp
n(λ) remains bounded as ψm → 0, and we have used the fact that, since mode

m is resonant, cosψ0 = (1 − 2mπ)/k. In order for the solution to remain bounded,
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we must have

(5.2)
2

k

∞∑
n=−∞

(−i)nZnBn = a1ψm + O(ψ2
m),

and the value of the constant a1 is obtained as a by-product of the procedure used in
computing Bn; see [17]. Equation (3.11) now becomes

(5.3) Cp
m+

∞∑
n=−∞

Zn

∞∑
j=0
�=p

Cj
nX

jp
n−m Hn−m(k|j−p|) = a1i

meipk+

∞∑
n=−∞

ZnBnŜ
p
n−m(λ).

The solution to this linear system for an inward resonant case is composed of a sum
of two components, each corresponding to one of the terms on the right-hand side
of (5.3). The first component is a constant multiple of the solution to the head-
on incidence problem; therefore the case where ψ0 = 0 is canonical to all inward
resonances at the same frequency. In particular, this means that the most interesting
features of the scattered field at inward resonance are purely symmetric, and this is
a significant simplification, as we shall see. The second component is akin to the
solution of an ordinary (nonresonant) scattering problem; its computation presents
no special difficulty beyond those already discussed.

5.3. Head-on incidence (ψ0 = 0). We now consider the head-on incidence
case in detail. Note that subtraction of the infinite array solution is not required here,
since Bn = 0 for all n [17]. Indeed, we also have a1 = −1; therefore (5.3) is identical
to (2.5). Also, the integrand in (4.3) no longer has poles at the points t = cosψm,
m �= 0, and therefore the scattered plane waves disappear in this case.

It turns out that the coefficients Ĉp
n decay more slowly as p increases than in

the nonresonant cases discussed above. To see this, we must consider the boundary
condition on the surface of the scatterers for large p. Therefore, we may leave aside for
the present the possibility of Rayleigh–Bloch waves, since these independently satisfy
the boundary conditions in the far field. Next, we impose the restriction y < a and
take the limit x → ∞. Since the incident wave eikx is present everywhere, it follows
that there must be a simple pole above the path of integration in (4.3); otherwise
φsc → 0 and the boundary condition cannot be satisfied. In order for its contribution
to possess the correct x dependence, this singularity must be located at t = 1. Indeed,
from (4.14)–(4.16), we must have

(5.4) Ĉp
n = Cp

n ∼ Cnp
−1/2eikp

as p → ∞, so that ĉn(t) has a branch point at t = 1 and the ratio ĉn(t)/γ(t) has the
required simple pole. The residue can also be deduced; thus from (4.3), (4.16), and
(5.4),

(5.5)
∞∑

n=−∞
(−i)nZnCn = −

√
k/(2π)eiπ/4,

so that

(5.6) φ ∼ eikx − eikr cos θ → 0

as x → ∞.
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If the frequency is sufficiently low to permit the excitation of Rayleigh–Bloch
waves, double filtering can be applied to (5.3); only the right-hand side differs from
(3.11). Indeed, of the methods described in section 3, only double filtering yields
accurate results in the head-on incidence case. This is due to the rate of decay of the
coefficients Ĉp

n as p → ∞ given by (5.4) being slower than that which occurs in other
cases (cf. (3.7)).

Results in the appendix show that the coefficients Cn can be approximated via

(5.7) Cn = lim
p→∞

e−ikpCp
n;

the computed values can then be checked using (5.5). At higher frequencies, i.e., for
k > π, single filtering can be used with k in place of β̃. The values for Cn can then
be approximated using the limit

(5.8) Cn = lim
p→∞

√
p

p∑
j=0

e−ikjDj
n.

Since ĉn(t) is 2π/k periodic, it is evident that there are now branch points located at

(5.9) t = cosψm = 1 + 2mπ/k, m �= 0.

The path of integration in (4.3) is indented so as to pass below these singularities.
We can deduce from (4.16) and (5.4) that

(5.10) ĉn(t) =
Cne−iπ/4

√
π/k

(t− cosψm)1/2
+ fn(t),

where fn(t) is regular in the vicinity of the point t = cosψm and the branch of the
fractional power is chosen so that (t− cosψm)1/2 =

√
t− cosψm for t > cosψm. Now

the asymptotic behavior of an integral with branch points (that are not branch points
of the exponent) is far more complicated than that of an integral with poles. The
essential reason for this is that a rational function can easily be split into partial frac-
tions, whereas a product of square roots cannot. Therefore we make the assumption
that the neighborhood of the point t = cosψm in which fn(t) is analytic is of sufficient
size to permit the branch points of ĉn(t) to be treated separately. This is valid if k is
not too large. Of course, if k < π, the branch points of ĉn(t) given by (5.9) lie outside
the interval [−1, 1] and are of no concern since their contribution to the far field is
evanescent. Otherwise, if cosψm ∈ (−1, 1), then we shall write m ∈ M, as before.
Note that this requires m < 0 and k > −mπ.

When the saddle point in (4.3) lies to the right of a branch point (other than
t = −1), then the steepest descent path is diverted in a counterclockwise loop around
the cut, and an extra contribution must be included in the far field. The contribution
from t = cosψm is therefore present only in the regions where θ < ψm and θ > 2π−ψm,
which is the behavior exhibited by the scattered plane waves in the nonresonant case.
Since the field is symmetric at head-on incidence, we give results for y ≥ 0 only.
Provided that we are not close to the array, we have, from (4.3) and (5.10),

(5.11) φsc ∼
√

2

πkr
e−iπ/4

⎡
⎢⎣h(θ)eikr +

∑
m∈M
ψm>θ

G(ψm)eikr cos(θ−ψm)√
sin(ψm − θ)

⎤
⎥⎦ ,
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in which

h(θ) =

∞∑
n=−∞

(−i)nZnĉn(cos θ)einθ,(5.12)

and

G(ψ) =

√
2π

k sinψ
eiπ/4

∞∑
n=−∞

ZnCn(−i)neinψ.(5.13)

Thus, the branch point contribution is not a circular wave, as its crests are linear,
perpendicular to the line θ = ψm. Noting from (5.9) that einψm = 1+O(k−1), it then
follows from (5.5) that a multiplicative factor G(ψm) has no bearing on the asymptotic
dependence upon k, to leading order.

5.4. Uniform asymptotics. The approximation (5.11) is nonuniform in the
sense that it is singular at the shadow boundaries, where ψm = θ. The uniform
counterpart to (5.11) is given by

(5.14)

φsc ∼ eikr

{
e−iπ/4

√
2

πkr
h(θ)−w

(
eiπ/4ζ0

)
+

eiπ/4

ζ0
√
π
−

∑
m∈M

G(ψm)eiπ/4

√
π 4
√
kr

√
sec

ψm − θ

2

×
[
ei(3π/8−ζ2

m/2)D−1/2

(√
2e−iπ/4ζm

)
− 1

4
√

2(−ζm)1/2

]}
,

in which ζm =
√

2kr sin( 1
2 (θ − ψm)). Here, the term involving ζ0 removes the sin-

gularity at θ = 0. Note that the resonant mode actually has no region of existence,
since ζ0 ≥ 0. Nevertheless, its influence can be felt as θ → 0, since for small z,
w(z) = e−z2

[1 + O(z)]. As in the nonresonant case, in the limit θ → 0, (5.14) ac-
curately represents a contribution to the far field, though this is not necessarily the
most significant. The final term involves the parabolic cylinder function D−1/2(·) and
can be obtained using methods outlined in [30], although this is by no means an easy
procedure. However, it is relatively straightforward to check that (5.14) is correct.
First, it is continuous across all of the shadow boundaries. To see this, we use (5.10)
and (5.12) to show that the singular behavior of the term involving h(θ) at θ = ψm

is cancelled by the series. Also, for large |ζ|, we have from [31, section 9.246]

(5.15) ei(3π/8−ζ2/2)D−1/2(
√

2e−iπ/4ζ) =
1 + i

√
2 H(−ζ)e−iζ2

4
√

2(−ζ)1/2
+ O(ζ−5/2),

where H(·) is the Heaviside unit function and (−ζm)1/2 is either positive real or
negative imaginary. If we now use this expansion, along with (4.9), in (5.14), we
retrieve (5.11), as we should expect. Note that D−1/2(0) ≈ 1.216; therefore in the

vicinity of the shadow boundary, the scattered field is O((kr)−1/4), as in the case of
point scatterers [29].

Figure 5.3 shows a contour plot of the real part of the total field, at head-on
incidence with a = 0.25 and k = 2.0. The cancellation of the incident field close to
the array is clearly apparent, so that the symmetric Rayleigh–Bloch wave (for which
|α| ≈ 0.542) is clearly visible.
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Fig. 5.3. Contour plot of the real part of the total field, Re[φ] at head-on incidence with a = 0.25
and k = 2.0.

Fig. 5.4. Contour plot of Re[φsc], at head-on incidence with a = 0.25 and k = 8.0, using
Dirichlet boundary conditions.

The branch point contributions that are significant at higher frequencies can most
easily be observed in a plot of the scattered field. Thus, Figure 5.4 shows a contour
plot of Re[φsc], with a = 0.25 and k = 8.0, using Dirichlet boundary conditions.
Values of ψm for which m ∈ M and the associated values of |G(ψm)| are shown in
Table 5.2. Far field plots with r = 8 are shown in Figure 5.5, with shadow boundaries
indicated by black disks. The dashed line is computed from (5.14), whereas for the
solid line, D−1/2(

√
2e−iπ/4ζ) is replaced by −iD−1/2(

√
2e−iπ/4|ζ|) for ζ < 0 so as to

deactivate the branch point contributions. This plot is therefore discontinuous at the
shadow boundaries, and the sizes of the discontinuities are consistent with the values
of |G(ψm)| in Table 5.2. There are three regions to consider. For θ � 0.69π, no
branch point contributions are present in the field, and the circular wave dominates.
For smaller observation angles, a branch point contribution is activated, causing in-
terference. Notice in particular the strong field close to the shadow boundary, where
(5.14) predicts O((kr)−1/4) behavior. A second branch point contribution is active
when θ � 0.43π. This is somewhat weaker and has a more limited effect on the field
pattern.
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Table 5.2

Shadow boundary locations and values of G(ψm) for the plot shown in Figure 5.1.

m ψm |G(ψm)|
−2 0.69π 0.39
−1 0.43π 0.12

Fig. 5.5. Far field plots for the parameters used in Figure 5.4, with r = 8. Correction terms are
included for both shadow boundaries; the dashed line includes branch point contributions, whereas
the solid line does not.

A final possibility is that of double resonance, which requires that k = nπ, n ∈
N. In this case, if cosψm = 1, then cosψm−n = −1, so that modes m and m −
n are inward and outward resonant, respectively. Once the coefficients Bn for the
infinite array problem have been obtained using the method in [17], the computation
of the coefficients Cp

m for this case presents no special difficulty beyond those already
discussed. However, the determination of the far field pattern involves a significant
additional complication and will therefore appear in a future paper.

6. Conclusion. Problems involving semi-infinite arrays are notoriously difficult
to solve accurately because the inevitable spatial truncation that has to be made can
introduce significant errors. We have shown how infinite array subtraction, together
with a novel filtering approach, can be used to obtain accurate solutions which can be
computed efficiently for two-dimensional acoustic scattering of a plane wave by a semi-
infinite array of rigid or soft circles. Unlike the case of isotropic point scatterers solved
previously by one of the authors [8], this case is made considerably more complicated
by the presence of Rayleigh–Bloch surface waves which can be excited along the
array. We have presented methods which enable the amplitude of these modes to be
computed accurately for the first time.

In nonresonant and outward resonant cases, the far field away from the array has
been shown to be composed of the sum of a finite number of plane waves propagating
in different directions and a circular wave emanating from the edge of the array.
At inward resonance, the field can include additional terms that are neither circular
waves nor plane waves. Uniform asymptotic expansions that vary continuously across
all shadow boundaries have been derived.

If the incident field is generated by a line source rather than a plane wave, then the
problem is much easier from a computational point of view. There is now no need to
subtract an infinite array solution, since the decay of the source potential with distance
means that the errors introduced by spatial truncation are small, and there is no need
for double filtering because there are no resonances. Once the Rayleigh–Bloch waves
are removed by single filtering, the remaining contribution in the coefficients Dp

n will
decay like p−3/2 as p → ∞. The solution to the source-excitation problem has been
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implemented by the authors; the results offer no extra insight, though the problem
may be important for practical applications.

One of the main reasons for studying semi-infinite arrays is that they provide a
tool with which to analyze large finite arrays. Thus we intend to use the techniques
presented in this paper to study scattering by a long finite array under the assumption
that the ends of the array are far enough apart to be treated separately.

Appendix. If we define

(A.1) Δp
m = Γp

m − eiβ̃Γp−1
m , p = 2, 3, . . . ,

then from (3.16) and (3.19) we obtain

(A.2) Ep
m +

∞∑
n=−∞

Zn

∞∑
j=0
�=p

Ej
nX

jp
n−m Hn−m(k|j − p|) = Δp

m − eikΔp−1
m ,

p = 2, 3, . . . ,m ∈ Z. The equations in which p = 0 and p = 1 now require special
treatment. From (3.19), we have

(A.3) Dp
m =

p∑
j=0

ei(p−j)kEj
m, p = 0, 1, 2, . . . .

Setting p = 1 in (3.16) we find that

(A.4) eikE0
m + E1

m +

∞∑
n=−∞

E0
nZn Hn−m(k)

+
∞∑

n=−∞
(−1)n−mZn

∞∑
j=0

Ej
n ei(1−j)k

∞∑
l=max(j−1,1)

eikl
Hn−m(kl) = Δ1

m.

Finally from (3.17), for p = 0,

(A.5) E0
m +

∞∑
n=−∞

Zn(−1)n−mTnm = Γ0
m,

where

(A.6) Tnm =

∞∑
j=0

j∑
q=0

Eq
nei(j−q)k

∞∑
l=max(j,1)

eiβ̃(l−j)
Hn−m(kl).

This expression can be rearranged so that the sum over j becomes innermost. After
evaluating the finite geometric series that appears, we obtain

(A.7) Tnm =
1

eiβ̃ − eik

∞∑
q=0

Eq
n

∞∑
l=max(q,1)

(
eiβ̃(1+l−q) − eik(1+l−q)

)
Hn−m(kl).

The sum over l is again easily expressed in terms of the sums Sp
n defined in (3.4).
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To reconstruct the coefficients Cp
m, we substitute (A.3) into (3.14), reverse the

order of the summations, and evaluate the resulting geometric series to obtain

Cp
m =

eipβ̃

1 − ei(k−β̃)

p∑
q=0

Eq
me−iqβ̃ +

eipk

1 − e−i(k−β̃)

p∑
q=0

Eq
me−iqk(A.8)

=
eipβ̃

1 − ei(k−β̃)

p∑
q=0

Eq
me−iqβ̃ +

Dp
m

1 − e−i(k−β̃)
,(A.9)

where we have used (3.19) to evaluate the second (telescopic) series.
The Rayleigh–Bloch amplitude α can then be retrieved by letting p → ∞ and

using (3.18):

(A.10) αB̃m =
1

1 − ei(k−β̃)

∞∑
q=0

Eq
me−iqβ̃ .

Once again, asymptotic acceleration can be used in the approximate evaluation of
this series, once spatial truncation has been applied.
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Anal., 8 (1961), pp. 323–332.

[15] C. M. Linton, The Green’s function for the two-dimensional Helmholtz equation in periodic
domains, J. Engrg. Math., 33 (1998), pp. 377–402.

[16] P. A. Martin, Multiple Scattering. Interaction of Time-Harmonic Waves with N Obstacles,
Cambridge University Press, Cambridge, UK, 2006.

[17] C. M. Linton and I. Thompson, Resonant effects in scattering by periodic arrays, Wave
Motion, 44 (2007), pp. 167–175.



1258 C. M. LINTON, R. PORTER, AND I. THOMPSON

[18] P. McIver, C. M. Linton, and M. McIver, Construction of trapped modes for wave guides
and diffraction gratings, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 454 (1998),
pp. 2593–2616.

[19] D. V. Evans and R. Porter, Trapping and near-trapping by arrays of cylinders in waves,
J. Engrg. Math., 35 (1999), pp. 149–179.

[20] A.-S. Bonnet-Bendhia and F. Starling, Guided waves by electromagnetic gratings and non-
uniqueness examples for the diffraction problem, Math. Methods Appl. Sci., 17 (1994),
pp. 305–338.

[21] M. Nishimoto and H. Ikuno, Space-wavenumber analysis of field scattered from a semi-infinite
strip grating, Electr. Eng. Japan, 132 (2000), pp. 1–8.

[22] R. Porter and D. V. Evans, Scattering of flexural waves by multiple narrow cracks in ice
sheets floating on water, Wave Motion, 43 (2006), pp. 425–443.
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ON THE CONVERGENCE OF THE HARMONIC BZ ALGORITHM
IN MAGNETIC RESONANCE ELECTRICAL IMPEDANCE

TOMOGRAPHY∗

J. J. LIU† , J. K. SEO‡ , M. SINI§ , AND E. J. WOO¶

Abstract. Magnetic resonance electrical impedance tomography (MREIT) is a new medical
imaging technique that aims to provide electrical conductivity images with sufficiently high spatial
resolution and accuracy. A new MREIT image reconstruction method called the harmonic Bz algo-
rithm was proposed in 2002, and it is based on the measurement of Bz that is a single component
of an induced magnetic flux density B = (Bx, By , Bz) subject to an injection current. Since then,
MREIT imaging techniques have made significant progress, and recent published numerical simula-
tions and phantom experiments show that we can produce high-quality conductivity images when
the conductivity contrast is not very high. Though numerical simulations can explain why we could
successfully distinguish different tissues with small conductivity differences, a rigorous mathematical
analysis is required to better understand the underlying physical and mathematical principle. The
purpose of this paper is to provide such a mathematical analysis of those numerical simulations and
experimental results. By using a uniform a priori estimate for the solution of the elliptic equation
in the divergent form and an induction argument, we show that, for a relatively small contrast of
the target conductivity, the iterative harmonic Bz algorithm with a good initial guess is stable and
exponentially convergent in the continuous norm. Both two- and three-dimensional versions of the al-
gorithm are considered, and the difference in the convergence property of these two cases is analyzed.
Some numerical results are also given to show the expected exponential convergence behavior.

Key words. MREIT, conductivity, image reconstruction, convergence
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1. Introduction. Magnetic resonance electrical impedance tomography
(MREIT) is an electrical conductivity imaging technique using a magnetic resonance
imaging (MRI) scanner with a current injection apparatus. Since the early 1980s,
there have been significant efforts to produce cross-sectional images of a conductiv-
ity distribution σ inside a three-dimensional body Ω using boundary measurements
of current-voltage data (Neumann-to-Dirichlet data) satisfying the elliptic equation
∇· (σ∇u) = 0 in Ω, and this technique has been called electrical impedance tomogra-
phy (EIT) [4, 14, 21]. Here u denotes the electric potential inside Ω. It is well known
that EIT has suffered from the ill-posedness of the corresponding inverse problem re-
lated with the insensitivity of Cauchy data on the boundary ∂Ω to any internal local
change of σ. Acquisition of accurate Cauchy data on ∂Ω requires a sophisticated EIT
instrument and a large number of surface electrodes. In practice, however, the cum-
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Imaging Objects

MRI Scanner

Current Source Pulse Sequence Image Reconstruction Software

Fig. 1. MREIT system at Impedance Imaging Research Center in Korea and image reconstruc-
tion software.

bersome procedure to attach many electrodes is prone to increase measurement errors
in addition to electronic noise and various artifacts. Furthermore, there exist uncer-
tainties in terms of electrode positions and boundary shape of an imaging subject.
Due to the ill-posedness and the errors originating from these practical difficulties,
the spatial resolution and accuracy of EIT images are relatively poor, and therefore
its applicability has been limited in the clinical environment.

On the other hand, MREIT takes advantage of the internal information of Bz,
the z-component of the magnetic flux density distribution B = (Bx, By, Bz) induced
by the internal current density J = −σ∇u subject to an injection current through a
pair of surface electrodes. The Bz data can be measured by using an MRI scanner as
illustrated in Figure 1. Here the z-axis is the direction of the main magnetic field of
the MRI scanner. MREIT utilizes the fact that the data Bz convey the information
about any local change of σ via the Biot–Savart law:

Bz(x, y, z) =
μ0

4π

∫
Ω

σ(r) [(x− x′)∂u∂y (r′) − (y − y′)∂u∂x (r′)]

|r − r′|3 dr′, r = (x, y, z) ∈ Ω.

This supplementary use of the internal Bz data enables MREIT to bypass the ill-
posedness problem in EIT. In early 2002, the first constructive Bz-based MREIT
algorithm called the harmonic Bz algorithm was proposed in [18]. Since then, MREIT
has advanced rapidly and now is at the stage of animal experiments [13].

The harmonic Bz algorithm is based on the following curl of the Ampere law:

1

μ0
ΔBz =

〈
∇σ ,

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠∇u

〉
,(1.1)

where μ0 is the magnetic permeability of the free space, 〈·, ·〉 is the inner product,
and Δ denotes the Laplacian. Recent published numerical simulations and phantom
experiments show that conductivity images with high spatial resolution are achievable
[9, 10, 15, 16, 17, 19]. Figure 2 shows a schematic diagram of the harmonic Bz algo-
rithm and typical MREIT images of a conductivity phantom including three chunks of
biological tissues having different conductivity values inside a cylindrical container Ω.
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Current Injections
Measured Magnetic 

Flux Density
Harmonic Bz Algorithm

Reconstructed
Conductivity Images

Fig. 2. Overview of the harmonic Bz algorithm.

Although the harmonic Bz algorithm shows a remarkable performance in various
numerical simulations and phantom experiments, rigorous mathematical theories re-
garding its convergence behavior have not been supported yet. The purpose of this
paper is to deal with this convergence analysis rigorously. For a suitably constructed
admissible iteration set in terms of a priori information about the target conductivity,
we can prove that the sequence {σn} is uniformly bounded by a uniform estimate on
the solution to the elliptic equation in the divergent form. Using this a priori estimate
and an induction argument, we show that, in both two- and three-dimensional cases,
the harmonic Bz algorithm is stable and exponentially convergent, provided that the
contrast of the target conductivity distribution is not very high. It is impossible to
get the C1 convergence in the three-dimensional problem even when the harmonic
Bz algorithm is applied to a target conductivity distribution with a small contrast.
This mathematical difficulty comes from the algorithm itself. With this theoretical
result, we partially answer the question on the applicable scope of the harmonic Bz

algorithm and explain the fast convergent phenomena arising in numerical tests. We
refer to our recent article [12], which briefly discusses this convergence issue using
special examples of two-dimensional conductivity distributions.

It seems that the small contrast in the target conductivity is necessary for the
convergence of the harmonic Bz iteration scheme, provided that the input current is
not so large. This phenomenon can be explained physically. For a given input current
from the boundary, if the conductivity has a large jump inside the medium, then the
current going through will be small, and therefore the magnetic flux density will also
be weak. For a relatively high contrast of the conductivity distribution, the algorithm
needs to be adapted to control the representation of this contrast in the iteration
process. This issue should be considered in the future.

2. Exact mathematical model of MREIT. Since our goal is to use the
MREIT technique in practical clinical applications, we must set up an exact math-
ematical model of MREIT that agrees with a planned medical imaging system. To
simplify our study, let us make several assumptions which should not go astray from
the practical model. Let the subject to be imaged occupy a three-dimensional bounded
domain Ω ⊂ R

3 with a smooth connected boundary ∂Ω, and each Ωz0 := Ω ∩ {z =
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z0} ⊂ R
2, the slice of Ω cut by the plane {z = z0}, has a smooth connected boundary.

We assume that the conductivity distribution σ of the subject Ω is isotropic, C1(Ω),
and 0 < σ− < σ < σ+ with two known constants σ±. Though σ is usually piecewise-
smooth in practice, this can be approximated by the C1(Ω) function, and so it is a
matter of how big ‖σ‖C1(Ω) is. We attach a pair of copper electrodes E+ and E− on
∂Ω in order to inject current, and let E+ ∪E− be the portion of the surface ∂Ω where
electrodes are attached; see Figure 2.

The injection current I produces an internal current density J = (Jx, Jy, Jz) inside
the subject Ω satisfying the following problem:

(2.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇ · J = 0 in Ω,

I = −
∫
E+

J · nds =

∫
E−

J · nds, J × n = 0 on E+ ∪ E−,

J · n = 0 on ∂Ω \ E+ ∪ E−,

where n is the outward unit normal vector on ∂Ω and ds the surface area element.
The condition of J × n = 0 on E+ ∪ E− comes from the fact that copper electrodes
are considered as perfect conductors. Since J is expressed as J = −σ∇u, where u is
the corresponding electrical potential, (2.1) can be converted to

(2.2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ · (σ∇u) = 0 in Ω,

I =

∫
E+

σ
∂u

∂n
ds = −

∫
E−

σ
∂u

∂n
ds, ∇u× n = 0 on E+ ∪ E−,

σ
∂u

∂n
= 0 on ∂Ω \ E+ ∪ E−,

where ∂u
∂n = ∇u·n. The above nonstandard boundary value problem (2.2) is well-posed

and has a unique solution up to a constant. We omit the proof of the uniqueness (up
to a constant) within the class W 1,2(Ω) since it follows from the standard argument
in the PDE.

Let us briefly discuss the boundary conditions that are essentially related with
the size of electrodes. The condition ∇u × n|E± = 0 ensures that each of u|E+ and
u|E− is a constant, since ∇u is normal to its level surface. The term ±I =

∫
E± σ ∂u

∂n ds
means that the total amount of injection current through the electrodes is I mA.
Let us denote g := −σ ∂u

∂n |∂Ω. In practice, it is difficult to specify the Neumann
data g in a pointwise sense because only the total amount of injection current I is
known. It should be noticed that the boundary condition in (2.2) leads to |g| = ∞ on
∂E±, singularity along the boundary of electrodes, and g /∈ L2(∂Ω). But fortunately
g ∈ H−1/2(∂Ω), which also can be proven by the standard regularity theory in the
PDE.

The exact model (2.2) can be converted into the following standard problem of
an elliptic equation with mixed boundary conditions.

Lemma 2.1. Assume that ũ solves

(2.3)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇ · (σ∇ũ) = 0 in Ω,

ũ|E+ = 1, ũ|E− = 0,

−σ
∂ũ

∂n
= 0 on ∂Ω \ (E+

⋃
E−).
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If u is a solution of the mixed boundary value problem (2.2), then

(2.4) u =
I∫

∂E+ σ ∂ũ
∂n ds

ũ in Ω (up to a constant).

Proof. The proof is elementary by looking at the energy of w = u − cũ for a
constant c:∫

Ω

σ|∇w|2 dr =

∫
∂Ω

σ
∂w

∂n
w ds

=

∫
E+

σ
∂w

∂n
ds (u|E+ − c) +

(∫
E−

σ
∂w

∂n
ds

)
u|E−

= (u|E+ − u|E− − c)

(
I − c

∫
∂E+

σ
∂ũ

∂n
ds

)
.

Hence, for c = I∫
∂E+ σ ∂ũ

∂n ds
, the above relation generates |∇w| = 0 in Ω, which means

w is a constant in Ω.
Now we explain the inverse problem for the MREIT model, in which we try to

reconstruct σ. The presence of the internal current density J = −σ∇u generates a
magnetic flux density B = (Bx, By, Bz) such that the Ampere law J = ∇ × B/μ0

holds in Ω. With the z-axis pointing to the direction of the main magnetic field of
the MRI scanner, the relation between the measurable quantity Bz and the unknown
σ is governed by the Biot–Savart law:

(2.5) Bz(r) =
μ0

4π

∫
Ω

〈r − r′ , σ(r′)L∇u(r′)〉
|r − r′|3 dr′ for r ∈ Ω,

where

L =

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠ .

Here we must read u as a nonlinear function of σ. The following lemma is crucial to
understand why we need at least two injection currents with the requirement (2.11)
in what follows.

Lemma 2.2. Suppose u is a solution of (2.2) and the pair (σ, u) satisfies (2.5).
Then Bz in (2.5) can be expressed as

(2.6) Bz =
μ0

4π

∫
Ω

−1

|r − r′|

∣∣∣∣∣
∂σ
∂x

∂σ
∂y

∂u
∂x

∂u
∂y

∣∣∣∣∣ dr′ +
μ0

4π

∫
∂Ω

1

|r − r′| n · (σL∇u) ds.

Moreover, there exist infinitely many pairs (σ̃, ũ) such that∣∣∣∣∣
∂σ
∂x

∂σ
∂y

∂u
∂x

∂u
∂y

∣∣∣∣∣ =

∣∣∣∣∣
∂σ̃
∂x

∂σ̃
∂y

∂ũ
∂x

∂ũ
∂y

∣∣∣∣∣
in Ω and n · (σL∇u) = n · (σ̃L∇ũ) on ∂Ω.

Proof. From (2.5), we have

Bz =
μ0

4π

∫
Ω

∇r′
1

|r − r′| · (σ(r′)L∇u(r′)) dr′

=
μ0

4π

∫
Ω

−1

|r − r′|∇ · (σL∇u) dr′ +
μ0

4π

∫
∂Ω

1

|r − r′| n · (σL∇u) ds.
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Then (2.6) follows from

∇ · (σL∇u) = ez · [∇σ ×∇u] =

∣∣∣∣∣
∂σ
∂x

∂σ
∂y

∂u
∂x

∂u
∂y

∣∣∣∣∣ ,
where ez = (0, 0, 1).

Now we will show that there are infinitely many pairs (σ̃, ũ) such that ez · [∇σ ×
∇u] = ez · [∇σ̃ × ∇ũ] and ũ is a solution of (2.2) with σ replaced by σ̃. Indeed,
we can construct infinitely many pairs (σ̃, ũ) satisfying the much stronger condition
σ∇u = σ̃∇ũ. From the maximum-minimum principle for an elliptic equation, u|E+

and u|E− are the maximum and minimum values of u in Ω, respectively. Choose a
and b such that infΩ u = u|E− < a < b < u|E+ = supΩ u. For any increasing function
φ ∈ C2([a, b]) satisfying

(2.7) φ′(a) = φ′(b) = 1, φ′′(a) = φ′′(b) = 0, φ(a) = a, φ(b) = b,

we define

ũ(r) =

{
φ(u(r)) if r ∈ Ω̂,

u(r) if r ∈ Ω \ Ω̂,
σ̃(r) =

{
σ(r)

φ′(u(r)) if r ∈ Ω̂,

σ(r) if r ∈ Ω \ Ω̂,

where Ω̂ := {r ∈ Ω : a ≤ u(r) ≤ b}. The conditions of φ guarantee σ̃ ∈ C1(Ω) and
σ̃ > 0 in Ω. Since ∇ũ = φ′(u)∇u, we have σ̃∇ũ = σ

φ′(u)∇û = σ∇u. So it is clear that∣∣∣∣∣
∂σ
∂x

∂σ
∂y

∂u
∂x

∂u
∂y

∣∣∣∣∣ =

∣∣∣∣∣
∂σ̂
∂x

∂σ̂
∂y

∂û
∂x

∂û
∂y

∣∣∣∣∣
and n · (σL∇u) = n · (σ̃L∇ũ) on ∂Ω. Since ũ = u near the electrodes E+ and E−, ũ
has the same boundary condition on the electrodes as u. Therefore, ũ is a solution of
(2.2) with σ replaced by σ̃. This completes the proof since φ can be chosen arbitrarily
under the constraint (2.7).

According to Lemma 2.2, the unique determination of σ requires us to inject at
least two input currents I1 and I2. Now we are ready to explain the exact MREIT
model. We inject electrical currents I1 and I2 through two pairs of surface electrodes
E±
1 and E±

2 , respectively. Let uj and Bj
z be the potential and magnetic flux density,

respectively, corresponding to Ij , with j = 1, 2.
For the measured data B1

z , B
2
z corresponding to two input currents I1, I2 and a

given constant α > 0, we try to reconstruct σ satisfying the following conditions for
j = 1, 2:

(2.8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (σ∇uj) = 0 in Ω,

Ij =

∫
E+
j

σ
∂uj

∂n
ds = −

∫
E−
j

σ
∂uj

∂n
, ∇uj × n|E+

j ∪E−
j

= 0,

σ
∂uj

∂n
= 0 on ∂Ω \ E+

j ∪ E−
j ,

Bj
z(r) =

μ0

4π

∫
Ω

〈r − r′ , σL∇uj〉
|r − r′|3 dr′, r ∈ Ω,∣∣∣u1|E+

2
− u1|E−

2

∣∣∣ = α.
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Remark 2.3. The last condition regarding α is necessary for fixing the scaling
uncertainty of σ. Without this condition, whenever σ and uj satisfy the other four
relations in (2.8), so do cσ and

uj

c for any positive constant c. Here we should avoid
measuring the voltage difference between the pair of electrodes used for current injec-
tion since any electrode contact impedance may cause measurement errors. Therefore,
in practice, we usually use the other pair of electrodes for the voltage measurement.

To explain the MREIT image reconstruction algorithm, we define

(2.9) Lz0σ(x, y) := σ(x, y, z0)+
1

2π

∫
∂Ωz0

(x− x′ , y − y′) · ν(x′, y′)

|x− x′|2 + |y − y′|2 σ(x′, y′, z0) dl,

where ν is the unit outward normal vector to ∂Ωz0 and Ωz0 := Ω ∩ {z = z0} ⊂ R
2.

For a vector-valued function F = (F1, F2) defined on Ω, we define

(2.10) Gz0 ∗ F (x, y) :=
1

2πμ0

∫
Ωz0

(x− x′ , y − y′)

|x− x′|2 + |y − y′|2 · F (x′, y′, z0) dx
′dy′.

Let each uj [σ] be a solution to the direct problem (2.2) corresponding to Ij satisfying

(2.11)

∣∣∣∣∣
∂u1

∂x
∂u1

∂y

∂u2

∂x
∂u2

∂y

∣∣∣∣∣ = 0 in Ω,

and set

(2.12) A[σ] :=

[
∂u1[σ]
∂y −∂u1[σ]

∂x

∂u2[σ]
∂y −∂u2[σ]

∂x

]
.

Now let us state the implicit relation between σ and Bj
z , on which the harmonic

Bz algorithm is based.
Lemma 2.4. Suppose that |∇σ| is compactly supported in Ω and uj [σ] for j = 1, 2

satisfy (2.11). Then the following identity:

(2.13) Lzσ(x, y) = Gz ∗
(

A[σ]−1

[ ∇2B1
z

∇2B2
z

])
(x, y), (x, y) ∈ Ωz

holds for each z. Moreover, Lz : H
1/2
∗ (Ωz) → H

1/2
∗ (Ωz) is invertible where H

1/2
∗ (Ωz) :=

{η ∈ H1/2(Ωz) :
∫
∂Ωz

η = 0}.
Proof. The proof of (2.13) is based on the fact that ∇ · B = 0 and the Ampere

law J = 1
μ0
∇× B. Direct computation yields ∇uj ×∇σ = 1

μ0
ΔBj , and we have

(2.14)

[
∂σ
∂x

∂σ
∂y

]
=

1

μ0
A[σ]−1

[
ΔB1

z

ΔB2
z

]
.

Since ∇σ = 0 near ∂Ω, so does ΔBz = 0. Hence, the right-hand side of (2.13) is well
defined. Now the result follows from the formal identity

σ(x, y, z) =

∫
Ωz

1

2π

(
∂2

∂x2
+

∂2

∂y2

)
log

√
(x− x′)2 + (y − y′)2σ(x′, y′, z)dx′dy′

and integration by parts.
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The invertibility of L can be proved by the standard layer potential theory [7, 20].

Let w ∈ H
1/2
∗ (Ωz). We will find v ∈ H

1/2
∗ (Ωz) such that Lzv = w. Note that

w|∂Ωz ∈ L2
∗(∂Ωz) := {φ ∈ L2(Ωz) :

∫
∂Ωz

φ = 0}. It is well known that there exists

a unique ψ ∈ L2
∗(∂Ωz) such that 1

2ψ − Kψ = w|∂Ωz on ∂Ωz, where Kψ(x, y) =
−1
2π

∫
∂Ωz0

(x−x′ , y−y′) · ν
|x−x′|2+|y−y′|2 ψ(x′, y′) dl for (x, y) ∈ ∂Ωz. Now we define

(2.15) v(x, y) = w(x, y) − 1

2π

∫
∂Ωz0

(x− x′ , y − y′) · ν(x′, y′)

|x− x′|2 + |y − y′|2 ψ(x′, y′) dl

for (x, y) ∈ Ωz. Due to the trace formula of the double layer potential, v = ψ on ∂Ωz.
By replacing ψ in (2.15) with v, we have w = Lzv, and this completes the proof.

Remark 2.5. The condition (2.11) is necessary for the harmonic Bz algorithm.
However, we still do not have a rigorous theory for the issue related to (2.11) in
a three-dimensional domain. In the two-dimensional case, the validity of condition
(2.11), under suitably chosen boundary data, is proved in [2] when σ is smooth. When
σ is just measurable, (2.11) holds in the a.e. sense [1]. In the three-dimensional case,
there are examples [3, 11] which suggest that it may be difficult, if not impossible,
to find boundary data such that (2.11) holds independently of σ, even assuming
smoothness of σ.

In this paper, we will consider the convergence result for the harmonic Bz method
based on the governing problem (2.3), since the solution u to the standard governing
problem (2.2) can be expressed as a constant multiple in terms of Lemma 2.1. Let σ∗

be the target conductivity to be determined. Based on Lemma 2.4, the harmonic Bz

algorithm approximating σ∗ at each slice Ωz0 , for given σ∗ on ∂Ωz0 , can be stated as
follows. Notice here that we also use σ∗ to represent the known boundary value of un-
known conductivity σ∗ defined in the whole domain, which can be distinguished from
the context. Given an initial guess σ0(x, y, z) in Ω with exact boundary values, the
harmonic Bz iteration algorithm constructs an approximation sequence {σn(x, y, z0)}
by

(2.16)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇σn+1(x, y, z0) :=
1

μ0
A[σn]−1

[
ΔB1

z

ΔB2
z

]
,

σn+1(x, y, z0) := H(σ∗) − 1

2π

∫
Ωz0

(x− x′ , y − y′)

|x− x′|2 + |y − y′|2 · ∇σn+1(x′, y′, z0)dx
′dy′

for n = 0, 1, 2, . . . at each slice Ωz0 , where A[σ] is defined in (2.12) and

H(σ∗) :=
1

2π

∫
∂Ωz0

(x− x′ , y − y′) · ν(x′, y′)

|x− x′|2 + |y − y′|2 σ∗(x′, y′, z0) dl.

Notice that, to compute A[σn]−1 at each slice Ωz0 ⊂ R
2, we need the value σn in the

whole domain Ω ⊂ R
3. This fact will cause some difficulties when we do the iteration

for the full three-dimensional model (see the convergence proof in subsection 3.2 of
this paper). On the other hand, in the above scheme, the value of σn on the boundary
of the slice Ωz0 is specified as the exact value σ∗(x, y, z0) for all n.

3. Convergence for the harmonic Bz algorithm. It should be noticed that
A[σn]−1(x, y, z) may be large near ∂Ω due to the fact that two induced current den-
sities σn∇un

1 , σ
n∇un

2 are probably almost parallel for some configuration. To avoid
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this case, let us assume that σ∗ is constant in Ω\ Ω̃ for some interior domain Ω̃. Then
it is easy to show that ∇2B1

z ≡ ∇2B2
z ≡ 0 in Ω \ Ω̃. So the original iteration scheme

(2.16) at each slice becomes

(3.1)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇σn+1(x, y, z0) :=
1

μ0
A[σn]−1

[
ΔB1

z

ΔB2
z

]
,

σn+1(x, y, z0) := H̃(σ∗) − 1

2π

∫
Ω̃z0

(x− x′ , y − y′)

|x− x′|2 + |y − y′|2 · ∇σn+1(x′, y′, z0)dx
′dy′

for (x, y) ∈ Ω̃z0 , where Ω̃z0 = Ω̃
⋂
{(x, y, z) : z = z0} ⊂ R

2 and H̃(σ∗) is H(σ∗)
with ∂Ωz0 replaced by ∂Ω̃z0 . For (x, y) ∈ Ωz0 \ Ω̃z0 , it is obvious that σn(x, y, z0) ≡
σ∗(x, y, z0) from this iteration since ∇σn ≡ 0 in Ωz0 \ Ω̃z0 .

The major difficulty dealing with the convergence comes from the uniform upper
bound of the inverse matrix A[σn]−1 in the iteration procedure. Without some uni-
form bound on the iteration conductivity σn, it is quite difficult to estimate A[σn]−1.
The key ideas taken in this paper to overcome this difficulty are some assumptions
on the target conductivity and the initial guess. With these conditions, we can estab-
lish the convergence. Rather than the general way of the convergence proof, which
sets the uniform bound for the sequence {σn} and then obtains the convergence of
the sequence, we should establish the uniform bound on σn and estimate the error
‖σn − σ∗‖ at each step simultaneously by the induction argument.

We first give the following estimates, which will be used in the convergence proof.
Lemma 3.1. Denote by E any regular open subsurface of the boundary ∂Ω of

Ω ⊂ R
m, with m = 2, 3. Then for the boundary value problem⎧⎪⎨

⎪⎩
∇ · (σ∇u) = ∇ · f in Ω,

u|E = h on E ,
−σ∇u · n = g on ∂Ω \ E ,

(3.2)

with σ ∈ L∞(Ω) satisfying infΩ σ > 0, h ∈ H1/2(E), and g ∈ H−1/2(∂Ω \ E), the
following estimates hold:

If f ∈ (L2(Ω))m and σ ∈ C(Ω), then u ∈ H1(Ω) and

(3.3) ‖u‖H1(Ω) ≤ C1(σ)[‖f‖L2(Ω) + ‖h‖H1/2(E) + ‖g‖H−1/2(∂Ω\E)];

if f ∈ (H1(Ω))m and σ ∈ C1(Ω), then u ∈ H2(Ω̃) and

(3.4) ‖u‖H2(Ω̃) ≤ C2(σ)[‖u‖H1(Ω) + ‖∇ · f‖L2(Ω)];

if f ∈ (C0,α(Ω))m, with α ∈ (0, 1) and σ ∈ C1(Ω), then u ∈ C1,α( ˜̃Ω) and

(3.5) ‖∇u‖C0,α(Ω̃) ≤ C3(σ)[‖u‖
C0,α( ˜̃Ω)

+ ‖f‖
C0,α( ˜̃Ω)

];

if f ∈ (Lp(Ω))m, with p > 1 and σ ∈ C(Ω), then u ∈ W 1,p( ˜̃Ω) and

(3.6) ‖∇u‖Lp(Ω̃) ≤ C4(σ)[‖u‖
Lp( ˜̃Ω)

+ ‖f‖
Lp( ˜̃Ω)

],
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Fig. 3. Axially symmetric cylindrical configuration.

where Ω̃ ⊂⊂ ˜̃Ω ⊂⊂ Ω are regular domains, and the functions Ci(σ) have the following
forms:

(3.7) Ci(σ) = Fi

(
‖σ‖C(Ω) , ‖∇σ‖C(Ω) ,

1

infΩ σ

)
, i = 2, 3,

(3.8) Ci(σ) = Fi

(
‖σ‖C(Ω),

1

infΩ σ

)
, i = 1, 4.

The functions Fi (i = 1, 2, 3, 4) are known bounded functions with respect to the
arguments.

For the proof of these estimates, we refer to [6] and Theorems 8.8 and 8.32 and
Corollary 8.36 in [8]. The form of the constant Ci(σ) is of importance in our conver-
gence proof.

3.1. Convergence in axially symmetric cylindrical sections. Let Ω :=
D × R

1 ⊂ R
3 be a cylinder along the z direction with infinite length and the fixed

cross section D ⊂ R
2. We assume that the conductivity σ∗ in Ω does not change

along the z direction. That is, σ∗(x, y, z) ≡ σ∗(x, y), (x, y) ∈ D.
Consider the electrodes E± on ∂Ω where the input currents are specified. For an

ideal electrode pair E± parallel to the z direction with infinite length, we assume that
the current density is independent of z; see Figure 3. In this case, it follows from (2.2)
that the potential u is also independent of z in Ω due to the causality, and u(x, y)
meets

(3.9)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇ · (σ∇u) = 0 in D,

Ĩ =

∫
E+

σ
∂u

∂n
ds = −

∫
E−

σ
∂u

∂n
ds, ∇u× n = 0 on E+ ∪ E−,

σ
∂u

∂n
= 0 on ∂Ω \ E+ ∪ E−,

where E± := E±⋂D ⊂ ∂D, Ĩ is the total input current in E±, and n ∈ R
2 is

the outward normal direction of ∂D. The equation (3.9) is the governing model for
potential u(x, y), which is in fact defined in the two-dimensional domain D.
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To unify the notations in our proof for convergence in both the axially cylindrical
case and the three-dimensional case, we will use Ω, E± to represent the geometry in
(3.9) instead of D,E± in this subsection. Now we can state our convergence result of
the harmonic Bz method based on the model (3.9) for the two-dimensional domain
Ω ⊂ R

2.
Theorem 3.2. Assume that the target conductivity σ∗(x, y) ∈ C1(Ω) meets the

following:
H1. 0 < σ∗

− ≤ σ∗(x) ≤ σ∗
+ for known constants σ∗

±;

H2. there exists Ω̃ ⊂⊂ Ω such that σ∗ is a known constant in Ω \ Ω̃;
H3. |detA[σ∗](x, y)| ≥ d∗− > 0 in Ω̃, where d∗− is a known constant.

Under these hypotheses, there exist constants ε = ε(σ∗
±, d

∗
−) > 0 small enough and

θ = θ(ε, σ∗
±, d

∗
−) ∈ (0, 1) such that if we take the initial guess σ0 as the constant

σ∗|Ω\Ω̃, then the sequence {σn} given by the harmonic Bz iteration scheme holds for

‖∇σ∗‖C(Ω̃) ≤ ε that

(3.10) σn ≡ σ∗ in Ω \ Ω̃, ‖σn − σ∗‖C1(Ω̃) ≤ Kθnε, n = 1, 2, . . . ,

where K := diam(Ω) + 1.
Remark 3.3. We obtain a local convergence for the target conductivity σ∗ with

a small contrast. At the present stage, we do not know how to remove the smallness
requirement on ε.

Remark 3.4. The convergence property holds only in the interior domain Ω̃.
The reason is as follows. First, the regularity property of an elliptic equation with
the mixed boundary condition will fail at the boundary. Second, for some geometry
configuration, the induced internal current densities near the boundary should be
almost parallel, so it is very hard to get the uniform bound on A[σn]−1 near the
boundary.

Proof. Let us take 0 < ε < 1
2Kσ∗

−. Denote by un
j and u∗

j the solutions of the
direct problem

(3.11)

⎧⎪⎨
⎪⎩

∇ · (σ∇uj) = 0 in Ω,

uj |E+
j

= 1, uj |E−
j

= 0,

−σ∇uj · n = 0 on ∂Ω \ E+
j ∪ E−

j ,

with σ = σn and σ∗, respectively. This is a special case of (3.2) with E := E+
j

⋃
E−
j

in Lemma 3.1. For a given interior domain Ω̃, there exists a constant C∗ = C∗(σ
∗
±)

such that

(3.12)
∥∥∇u∗

j

∥∥
C(Ω̃)

+
∥∥u∗

j

∥∥
H2(Ω̃)

≤ C∗.

This fact can be deduced from Lemma 3.1 as follows. Indeed, from the first and
second points of this Lemma, we have

∥∥u∗
j

∥∥
H2( ˜̃Ω)

≤ C1(σ
∗)C2(σ

∗). By the Sobolev

imbedding theorem, we have
∥∥u∗

j

∥∥
C0,α( ˜̃Ω)

≤ Cs

∥∥u∗
j

∥∥
H2( ˜̃Ω)

for every α ∈ (0, 1). Finally,

combining these last two estimates with the third point of Lemma 3.1, we have∥∥∇u∗
j

∥∥
C(Ω̃)

+
∥∥u∗

j

∥∥
H2(Ω̃)

≤ CsC1(σ
∗)C2(σ

∗)C3(σ
∗),

which leads to (3.12) with

(3.13) C∗ := Cs sup
(t1,t2,t3)∈S1

F1(t1, t3)F2(t1, t2, t3)F3(t1, t2, t3),
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where S1 := [σ∗
−, σ

∗
+] × [0, 1

2Kσ∗
−] × [ 1

σ∗
+
, 1
σ∗
−

], and each Fi is uniformly bounded with

respect to their arguments.
Step 1. Expand the initial guess σ0 at σ∗.
Expand σ0 as σ0 = σ∗ + e0. Since ‖∇σ∗‖C(Ω) < ε and σ∗ = σ0 in Ω \ Ω̃,∥∥e0

∥∥
C(Ω)

≤ diam(Ω)|
∥∥∇e0

∥∥
C(Ω)

≤ diam(Ω)ε.

Hence,
∥∥e0

∥∥
C1(Ω)

≤ (diam(Ω) + 1)ε = Kε. We expand u0
j at u∗

j as

(3.14) u0
j = u∗

j + εw0
j .

Noticing that σ0 = σ∗ in Ω \ Ω̃, εw0
j meets

(3.15)

⎧⎪⎨
⎪⎩

∇ ·
(
σ0∇εw0

j

)
= −∇ · (e0∇u∗

j ) in Ω,

εw0
j |E+

j
= 0, εw0

j |E−
j

= 0,

−σ0∇εw0
j · n = (σ0 − σ∗)∇u∗

j · n = 0 on ∂Ω \ E+
j ∪ E−

j .

Since ‖e0‖C1(Ω̃) ≤ Kε and e0 = 0 in Ω \ Ω̃, it follows from (3.12) that the right-hand

side of the first equation in (3.15) satisfies

(3.16)
∥∥∇ · (e0∇u∗

j )
∥∥
L2(Ω)

≤ C∗
∥∥e0

∥∥
C1(Ω̃)

.

Therefore it follows from Lemma 3.1 and the Sobolev imbedding theorem that∥∥εw0
j

∥∥
C( ˜̃Ω)

≤ Cs

∥∥εw0
j

∥∥
H2( ˜̃Ω)

≤ CsC2(σ
0)[
∥∥εw0

j

∥∥
H1(Ω̃)

+
∥∥∇ · e0∇u∗

j

∥∥
L2(Ω̃)

]

≤ CsC2(σ
0)[C1(σ

0)
∥∥e0∇u∗

j

∥∥
L2(Ω)

+ C∗
∥∥e0

∥∥
C1(Ω)

]

≤ CsC2(σ
0)[C1(σ

0)C1(σ
∗) + C∗]

∥∥e0
∥∥
C1(Ω)

.

Hence ∥∥ε∇w0
j

∥∥
C(Ω̃)

≤ C3(σ
0)[
∥∥εw0

j

∥∥
C( ˜̃Ω)

+
∥∥e0∇u∗

j

∥∥
C(Ω̃)

]

≤ C3(σ
0)[CsC2(σ

0)[C1(σ
0)C1(σ

∗) + C∗] + C∗]
∥∥e0

∥∥
C1(Ω)

.(3.17)

We denote by

(3.18) F (σ) := C3(σ)

⎡
⎣CsC2(σ)

⎛
⎝C1(σ) sup

[σ∗
−,σ∗

+]×[ 1
σ∗
+
, 1
σ∗
−

]

F1(t1, t3) + C∗

⎞
⎠+ C∗

⎤
⎦

a known function due to the Lemma 3.1. For ε ∈ (0, 1
2Kσ∗

−), we introduce the constant

(3.19) Cε(σ
∗) := sup

‖σ−σ∗‖C1(Ω)≤Kε

F (σ),

which is well defined. Noticing that ‖σ − σ∗‖C1(Ω) ≤ Kε, we have σ > 1
2σ

∗
− > 0 for

0 < ε < 1
2Kσ∗

− due to H1. Moreover, this constant can be estimated by a known
constant as

(3.20) Cε(σ
∗) ≤ sup

S2

F (σ) =: G(σ∗
±)
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for ε ∈ (0, 1
2Kσ∗

−) from the a priori information about σ∗, where

S2 :=

{
σ(x, y) :

1

2
σ∗
− < σ <

1

2
σ∗
− + σ∗

+, ‖∇σ‖C ≤ K + 1

2K
σ∗
−

}
.

Now it follows from (3.17)–(3.20) that

(3.21)
∥∥ε∇w0

j

∥∥
C(Ω̃)

≤ G(σ∗
±)
∥∥e0

∥∥
C1(Ω)

.

Since ‖e0‖C1(Ω̃) ≤ Kε, it follows that

(3.22)
∥∥∇w0

j

∥∥
C(Ω̃)

≤ KG(σ∗
±).

Step 2. Estimate
∥∥σ1 − σ∗∥∥

C1(Ω̃)
.

First, A[σ∗]−1 exists from H3. From the definition, we know that ∇σ1 satisfies

A[σ0]∇σ1 =
1

μ0

[
ΔB1

z

ΔB2
z

]
,

which can be written as⎛
⎝I + εA[σ∗]−1

⎡
⎣ ∂w0

1

∂y , −∂w0
1

∂x

∂w0
2

∂y , −∂w0
2

∂x

⎤
⎦
⎞
⎠∇σ1 =

1

μ0
A[σ∗]−1

[
ΔB1

z

ΔB2
z

]
= ∇σ∗

due to the definition of the matrix A[σ0] and (3.14). So we have

(3.23)⎛
⎝I + εA[σ∗]−1

⎡
⎣ ∂w0

1

∂y , −∂w0
1

∂x

∂w0
2

∂y , −∂w0
2

∂x

⎤
⎦
⎞
⎠∇(σ1 − σ∗) = −εA[σ∗]−1

⎡
⎣ ∂w0

1

∂y , −∂w0
1

∂x

∂w0
2

∂y , −∂w0
2

∂x

⎤
⎦∇σ∗.

On the other hand, it is obvious from (3.22) that∥∥∥∥∥∥εA[σ∗]−1

⎡
⎣ ∂w0

1

∂y , −∂w0
1

∂x

∂w0
2

∂y , −∂w0
2

∂x

⎤
⎦
∥∥∥∥∥∥
C(Ω̃)

≤ ε
∥∥A[σ∗]−1

∥∥
C(Ω̃)

√
2 max
j=1,2

∥∥∇w0
j

∥∥
C(Ω̃)

≤ ε
∥∥A[σ∗]−1

∥∥
C(Ω̃)

√
2G(σ∗

±)K.(3.24)

A direct computation leads to
∥∥A[σ∗]−1

∥∥
C(Ω̃)

≤
√

2
d∗
−

maxj=1,2 ‖∇uj(σ
∗)‖C(Ω̃), from

which we deduce

(3.25)
∥∥A[σ∗]−1

∥∥
C(Ω̃)

≤
√

2

d∗−
C∗

due to (3.12). Now we take ε ∈ (0, 1
2Kσ∗

−) small enough such that

(3.26) ε
2

d∗−
G(σ∗

±)C∗K <
1

2
;

then it follows from (3.25) that

(3.27) ε
∥∥A[σ∗]−1

∥∥
C(Ω̃)

√
2G(σ∗

±)K <
1

2
.
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It follows from (3.22), (3.23), and (3.27) that∥∥∇(σ1 − σ∗)
∥∥
C(Ω̃)

≤ 2ε
∥∥A[σ∗]−1

∥∥
C(Ω̃)

√
2 max
j=1,2

∥∥∇w0
j

∥∥ ‖∇σ∗‖C(Ω̃)

≤ 2
√

2
∥∥A[σ∗]−1

∥∥
C(Ω̃)

G(σ∗
±)Kε2.(3.28)

This last estimate generates∥∥σ1 − σ∗∥∥
C1(Ω̃)

≤ K
∥∥∇(σ1 − σ∗)

∥∥
C(Ω̃)

≤ K2
√

2
∥∥A[σ∗]−1

∥∥
C(Ω̃)

G(σ∗
±)Kε2.

Introducing a new constant

(3.29) D∗ := K
4

d∗−
C∗,

the above estimate becomes

(3.30)
∥∥σ1 − σ∗∥∥

C1(Ω̃)
≤ D∗G(σ∗

±)Kε2

due to (3.25). For ε ∈ (0, 1
2Kσ∗

−) satisfying (3.26), it follows from the definition of D∗
that

(3.31) εD∗G(σ∗
±) := θ ∈ (0, 1)

and then

(3.32)
∥∥σ1 − σ∗∥∥

C1(Ω̃)
≤ Kθε,

which implies via (3.19) that

(3.33) F (σ1) ≤ Cε(σ
∗).

From (3.26) and (3.31), we assert that ε := ε(σ∗
±, d

∗
−) and θ := θ(ε, σ∗

±, d
∗
−). Since σ∗

is constant in Ω \ Ω̃, we deduce from (2.14) that ∇2Bj
z = 0 in Ω \ Ω̃, j = 1, 2. Hence

from (2.16) we deduce that ∇σ1 = 0 in Ω \ Ω̃, and therefore σ1 = σ∗ in Ω \ Ω̃, since
σ1 = σ∗ on ∂Ω. Now we can apply the induction argument to prove the theorem.
That is, assume that the following properties:

(3.34)
∥∥σk − σ∗∥∥

C1(Ω̃)
≤ Kθkε and σk = σ∗ in Ω \ Ω̃

are true for k = n. We shall prove that it is also true for k = n + 1.
Step 3. Expand σn at σ∗.
For the expansion σn = σ∗ + en, it follows that

(3.35) ‖en‖C1(Ω̃) ≤ (D∗G(σ∗
±))nKεn+1

from (3.34) with k = n. Correspondingly, we expand the solution un
j at u∗

j as

(3.36) un
j = u∗

j + εn+1wn
j .

Noticing σn = σ∗ in Ω \ Ω̃, it is easy to see that εn+1wn
j satisfies

(3.37)

⎧⎪⎪⎨
⎪⎪⎩

∇ ·
(
σn∇εn+1wn

j

)
= −∇ · (en∇u∗

j ) in Ω,

εn+1wn
j |E+

j
= 0, εn+1wn

j |E−
j

= 0,

−σn∇εn+1wn
j · n = (σn − σ∗)∇u∗

j · n = 0 on ∂Ω \ E+
j ∪ E−

j .
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Similarly as in (3.21), we have∥∥∇εn+1wn
j

∥∥
C(Ω̃)

≤ F (σn) ‖en‖C1(Ω) ≤ F (σn)(D∗G(σ∗
±))nKεn+1.

That is,

(3.38)
∥∥∇wn

j

∥∥
C(Ω̃)

≤ F (σn)(D∗G(σ∗
±))nK ≤ D

n

∗ (G(σ∗
±))n+1K,

since F (σn) ≤ Cε(σ
∗) ≤ G(σ∗

±) due to the fact that ‖σn − σ∗‖C1(Ω̃) ≤ Kθnε < Kε.

Step 4. Estimate
∥∥σn+1 − σ∗∥∥

C1 .

From (2.16) we get ∇σn+1 = 0 in Ω \ Ω̃ and then σn+1 = σ∗ in Ω \ Ω̃. By the
same argument as in Step 2, we have

(3.39)(
I + εn+1

A[σ∗]−1

[∂wn
1

∂y −∂wn
1

∂x

∂wn
2

∂y −∂wn
2

∂x

])
∇(σn+1−σ∗) = −εn+1

A[σ∗]−1

[∂wn
1

∂y −∂wn
1

∂x

∂wn
2

∂y −∂wn
2

∂x

]
∇σ∗.

With the condition (3.26) for ε, we have∥∥∥∥∥εn+1
A[σ∗]−1

[ ∂wn
1

∂y , −∂wn
1

∂x

∂wn
2

∂y , −∂wn
2

∂x

]∥∥∥∥∥
C(Ω̃)

≤ εn+1
∥∥A[σ∗]−1

∥∥
C(Ω̃)

√
2 max
j=1,2

∥∥∇wn
j

∥∥
C(Ω̃)

≤ εn+1
∥∥A[σ∗]−1

∥∥
C(Ω)

√
2D

n

∗ (G(σ∗
±))n+1K

≤ 1

2
(εD∗G(σ∗

±))n <
1

2
(3.40)

due to (3.26), (3.31), and (3.38). So it follows from (3.38)–(3.40) that∥∥∇(σn+1 − σ∗)
∥∥
C(Ω̃)

≤ 2εn+1
∥∥A[σ∗]−1

∥∥
C(Ω̃)

√
2 max
j=1,2

∥∥∇wn
j

∥∥
C(Ω̃)

‖∇σ∗‖C(Ω̃)

≤ 2
√

2Kεn+1
∥∥A[σ∗]−1

∥∥
C(Ω̃)

D
n

∗ (G(σ∗
±))n+1ε.(3.41)

This estimate together with
∥∥σn+1 − σ∗∥∥

C1(Ω)
≤ K

∥∥∇σn+1 −∇σ∗∥∥
C(Ω)

generates

∥∥σn+1 − σ∗∥∥
C1(Ω̃)

≤ K2
∥∥A

−1[σ∗]
∥∥
C(Ω̃)

√
2D

n

∗ (G(σ∗
±))n+1εn+1Kε ≤ (D∗G(σ∗

±)ε)n+1Kε

from (3.25) and (3.29). Now under (3.31) for ε, the above estimate leads to

(3.42)
∥∥σn+1 − σ∗∥∥

C1(Ω̃)
≤ θn+1Kε.

It is obvious that σn+1 = σ∗ in Ω \ Ω̃. So (3.34) is also true for k = n+ 1. The proof
is complete.

3.2. Convergence for a three-dimensional medium. Now we consider the
convergence in the three-dimensional case. The essence of the proof is almost the
same as that in the two-dimensional case, but we need some modifications due to the
fact that the harmonic Bz algorithm computes a conductivity distribution in each
two-dimensional slice of the three-dimensional medium. More explanations are given
in Remark 3.6.

Theorem 3.5. Assume the target conductivity σ∗ ∈ C1(Ω), with Ω ⊂ R
3, which

satisfies the following conditions:
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A1. 0 < σ∗
− ≤ σ∗ ≤ σ∗

+ with known constants σ∗
±;

A2. there exists Ω̃ ⊂⊂ Ω such that σ∗ is a known constant in Ω \ Ω̃;
A3. |det A[σ∗](x, y, z)| ≥ d∗− > 0 in Ω, where d∗− is a known constant.

Under these hypotheses, there exist constants ε = ε(σ∗
±, d

∗
−) > 0 small enough and

θ = θ(ε, σ∗
±, d

∗
−) ∈ (0, 1) such that if we take the initial guess σ0 as the constant

σ∗|Ω\Ω̃, then it holds that the sequence {σn := σn(x, y, z0) for all z0} defined in Ω,

where σn(x, y, z0) is constructed by the harmonic Bz iteration (2.16) for every z0,
converges to the true conductivity σ∗ in Ω for σ∗ satisfying

(3.43) ‖∇σ∗‖C(Ω̃) ≤ ε.

More precisely, it holds that

(3.44) σn = σ∗ in Ω \ Ω̃,

(3.45) ‖σn − σ∗‖C(Ω̃) ≤ Kθnε, ‖∇x,y(σ
n − σ∗)‖C(Ω̃) ≤ Kθnε, n = 1, 2, . . . ,

where K := diam(Ω) + 1.
Remark 3.6. In this three-dimensional setting, the estimate (3.45) is given by

the C-norm, while the one in the two-dimensional case in Theorem 3.2 is given by
the C1-norm. We cannot improve the derivative estimate ∇x,y(σ

n − σ∗) in (3.45)
by ∇(σn − σ∗) since we do not know ∂z(σ

n − σ∗), although we have the full three
gradient estimates (3.43) for σ∗. The main difficulty in this case is due to the fact
that, in the iteration process (2.16), we get ∇x,yσ

n+1 at each slice with no information
about ∂zσ

n+1. That is, the harmonic Bz method approximates the three-dimensional
conductivity function σ∗(x, y, z) in Ω ⊂ R

3 at each two-dimensional slice Ωz0 :=
Ω
⋂
{(x, y, z) : z = z0} ⊂ R

2. Then σn in Ω ⊂ R
3, at each iteration, is constructed as

σn :=
⋃

z0
σn(x, y, z0).

Proof. We also take ε ∈ (0, 1
2Kσ∗

−). Similarly to the two-dimensional case, we
denote by un

j and u∗
j the solutions to

(3.46)

⎧⎪⎨
⎪⎩

∇ · (σ∇uj) = 0 in Ω,

uj |E+
j

= 1, uj |E−
j

= 0,

−σ∇uj · n = 0 on ∂Ω \ E+
j ∪ E−

j ,

with σ = σn and σ∗, respectively, and we write σ0 as σ0 = σ∗ + e0.
In every slice Ωz0 , we have

|e0(x, y, z0)| ≤ diam(Ωz0)
∥∥∇x,ye

0
∥∥
C(Ωz0 )

≤ diam(Ω)ε;

hence
∥∥e0

∥∥
C(Ω̃)

≤ Kε. Correspondingly, we expand u0
j at u∗

j as

(3.47) u0
j = u∗

j + εw0
j .

Hence εw0
j satisfies

(3.48)

⎧⎪⎨
⎪⎩

∇ ·
(
σ0∇εw0

j

)
= −∇ · (e0∇u∗

j ) in Ω,

εw0
j |E+

j
= 0, εw0

j |E−
j

= 0,

−σ0∇εw0
j · n = (σ0 − σ∗)∇u∗

j · n = 0 on ∂Ω \ E+
j ∪ E−

j .



ON THE CONVERGENCE OF HARMONIC ALGORITHM IN MREIT 1275

In the two-dimensional case, we can estimate the L2-norm of (∇ · en∇u∗
j ) by (3.16).

This is due to the fact that we can estimate ‖∇en‖C(Ω). But in the three-dimensional

case, it is impossible to estimate ‖∂zen‖C(Ω). To overcome this difficulty, instead of

using the L2 and the Holder estimates of elliptic problems, we use the Lp estimate
with p > 1.

First, by applying Lemma 3.1 to (3.46) with σ = σ∗ and the Sobolev imbedding
theorem, we deduce that

(3.49)
∥∥u∗

j

∥∥
H2( ˜̃Ω)

+
∥∥∇u∗

j

∥∥
C(Ω̃)

≤ C∗ = C∗(σ
∗
±)

due to (3.43) for ε ∈ (0, 1
2Kσ∗

−), where Ω̃ ⊂ ˜̃Ω ⊂ Ω and C∗ in this three-dimensional

case is constructed in the same way as constant C∗ in (3.13), which implies that the
right-hand side of the equation in (3.48) satisfies

(3.50) ‖e0∇u∗
j‖Lp(Ω) ≤ C∗

∥∥e0
∥∥
C(Ω̃)

∀p > 1

due to σ0 = σ1 on Ω \ Ω̃. The Lp interior estimates of the problem (3.48) give

(3.51) ‖∇εw0
j‖Lp( ˜̃Ω)

≤ C4(σ
0)[‖εw0

j‖Lp(Ω) + ‖e0∇u∗
j‖Lp(Ω)].

Again by the Sobolev imbedding theorem H1(Ω) ⊂ Lp(Ω), with 1 < p ≤ 6, we have

‖εw0
j‖Lp(Ω) ≤ Cs‖εw0

j‖H1(Ω) ≤ CsC1(σ
0)‖e0∇u∗

j‖L2(Ω) ≤ CsC1(σ
0)C∗

∥∥e0
∥∥
C(Ω̃)

.

Hence combining this last estimate with (3.49) and (3.51) gives

(3.52) ‖∇εw0
j‖Lp( ˜̃Ω)

≤ C4(σ
0)[CsC4(σ

0)C∗ + C∗]
∥∥e0

∥∥
C(Ω̃)

.

Using Nirenberg’s difference quotient method with respect to x in (3.48) in ˜̃Ω yields

(3.53) ∇·σ0∇εDx,hw
0
j = −∇· e0∇Dx,hu

∗
j −∇·Dx,he

0∇u∗
j,x,h−∇·Dx,hσ

0∇εw0
j,x,h,

where Dx,hu := u(x+h,y,z)−u(x,y,z)
h , ux,h(x, y, z) := u(x+h, y, z), with h < dist(∂Ω, ˜̃Ω).

The term in the right-hand side of (3.53) satisfies

(3.54)

⎧⎪⎪⎨
⎪⎪⎩

‖e0∇Dx,hu
∗
j‖Lp( ˜̃Ω)

≤ (1 + ε)C4(σ
∗)C∗

∥∥e0
∥∥
C(Ω̃)

,

‖Dx,he
0∇u∗

j,x,h‖Lp( ˜̃Ω)
≤ C∗

∥∥Dx,he
0
∥∥
C(Ω̃)

,

‖Dx,hσ
0∇εw0

j,x,h‖Lp( ˜̃Ω)
≤
∥∥Dx,hσ

0
∥∥
C( ˜̃Ω)

‖∇εw0
j‖Lp( ˜̃Ω)

.

Indeed, Dx,hu
∗
j satisfies ∇ · σ∗∇(Dx,hu

∗
j ) = −∇ · (Dx,hσ

∗)∇u∗
j,x,h in ˜̃Ω from (3.46).

Applying point 4 of Lemma 3.1, we deduce

‖∇(Dx,hu
∗
j )‖Lp(Ω̃) ≤ C4(σ

∗)[‖Dx,hu
∗
j‖Lp( ˜̃Ω)

+ ‖(Dx,hσ
∗)u∗

j,x,h‖Lp( ˜̃Ω)
].

The estimate ‖Dx,hu
∗
j‖Lp( ˜̃Ω)

≤ ‖∇u∗
j‖Lp( ˜̃Ω)

and (3.50) give

‖∇(Dx,hu
∗
j )‖Lp(Ω̃) ≤ (1 + ε)C4(σ

∗)C∗,

which is the first estimate in (3.54). The second term in (3.54) comes from (3.49).
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Again from the interior Lp estimates applied for (3.53), we deduce that Dx,hw
0
j

is in W 1,p
loc (Ω̃) and∥∥εDx,hw

0
j

∥∥
W 1,p(Ω̃)

≤ (1 + C4(σ
0))[

∥∥εDx,hw
0
j

∥∥
Lp( ˜̃Ω)

+
∥∥e0∇Dx,hu

∗
j

∥∥
Lp( ˜̃Ω)

+
∥∥Dx,he

0∇u∗
j,x,h

∥∥
Lp( ˜̃Ω)

+ ‖Dx,hσ
0∇εw0

j,x,h‖Lp( ˜̃Ω)
].

(3.55)

Notice that
∥∥εDx,hw

0
j

∥∥
Lp( ˜̃Ω)

≤
∥∥∇εw0

j

∥∥
Lp( ˜̃Ω)

and

(3.56)
∥∥Dx,hσ

0
∥∥
C( ˜̃Ω)

≤
∥∥∂xσ0

∥∥
C( ˜̃Ω)

≤
∥∥∇x,yσ

0
∥∥
C(Ω̃)

.

The estimate (3.56) is trivial for σ0 since it is a constant. However, we need this kind

of estimate for the iterated sequence {σn} with ∇x,yσ
n continuous in ˜̃Ω. Hence the

estimate (3.55) generates from (3.52), (3.54), and (3.56) that

‖εDx,hw
0
j‖W 1,p(Ω̃) ≤ G(σ0)[

∥∥e0
∥∥
C(Ω̃)

+
∥∥Dx,he

0
∥∥
C(Ω̃)

]

for ε ∈ (0, 1
2Kσ∗

−), where

G(σ) := (1 + C4(σ))C∗ ×

max

⎧⎨
⎩[1 + ‖∇x,yσ‖C(Ω̃)]C4(σ)[CsC4(σ) + 1] +

(
1 +

σ∗
−

2K

)
sup

[σ∗
−,σ∗

+]×[ 1
σ∗
+
, 1
σ∗
−

]

F4(t1, t3), 1

⎫⎬
⎭.

(3.57)

Similarly, we know that Dy,hw
0
j ∈ W 1,p

loc (Ω̃) and also have the estimate

‖εDy,hw
0
j‖W 1,p(Ω̃) ≤ G(σ0)[

∥∥e0
∥∥
C(Ω̃)

+
∥∥Dy,he

0
∥∥
C(Ω̃)

].

Taking the limit with respect to h → 0, we deduce that ∂xw
0
j , ∂yw

0
j ∈ W 1,p

loc (Ω̃) and

‖ε∂xw0
j‖W 1,p(Ω̃), ‖ε∂yw0

j‖W 1,p(Ω̃) ≤ G(σ0)[
∥∥e0

∥∥
C(Ω̃)

+
∥∥∇x,ye

0
∥∥
C(Ω̃)

],

from which the Sobolev imbedding theorem W 1,p(Ω̃) ⊂ C(Ω̃) for p > 3 implies

‖ε∂xw0
j‖C(Ω̃), ‖ε∂yw0

j‖C(Ω̃) ≤ CsG(σ0)[
∥∥e0

∥∥
C(Ω̃)

+
∥∥∇x,ye

0
∥∥
C(Ω̃)

].

We set F (σ) := CsG(σ), with G(σ) defined in (3.57) and the constant Cε(σ
∗) :=

sup
S3
F (σ), with

S3 := {σ(x, y, z) : ‖σ − σ∗‖C(Ω) ≤ Kε, ‖∇x,yσ‖C(Ω̃) ≤ (K + 1)ε}.

Again, noticing that F (σ) contains only F1 and F4, the constant Cε(σ
∗) can be esti-

mated by

(3.58) Cε(σ
∗) ≤ sup

S4

F (σ) =: G(σ∗
±)

for ε ∈ (0, 1
2Kσ∗

−), where

S4 :=

{
σ(x, y, z) :

1

2
σ∗
− < σ <

1

2
σ∗
− + σ∗

+, ‖∇x,yσ‖C(Ω̃) ≤
K + 1

2K
σ∗
−

}
.
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In particular, we have CsG(σ0) ≤ G(σ∗
±). Then the above estimate reads as

(3.59) ‖ε∂xw0
j‖C(Ω̃), ‖ε∂yw

0
j‖C(Ω̃) ≤ G(σ∗

±)[
∥∥e0

∥∥
C(Ω̃)

+
∥∥∇x,ye

0
∥∥
C(Ω̃)

].

Obviously, (3.59) is also true in Ω̃z0 := Ω̃
⋂
{(x, y, z) : z = z0} ⊂ R

2 for any z0, that
is,

‖ε∂xw0
j‖C(Ω̃z0 ), ‖ε∂yw

0
j‖C(Ω̃z0 ) ≤ G(σ∗

±)[
∥∥e0

∥∥
C(Ω̃)

+
∥∥∇x,ye

0
∥∥
C(Ω̃)

],

which corresponds to (3.21) in the two-dimensional case. As for (3.25) in the two-
dimensional case, we have

(3.60)
∥∥A[σ∗]−1

∥∥
C(Ω̃z0

)
≤
∥∥A[σ∗]−1

∥∥
C(Ω̃)

≤
√

2

d∗−
C∗

for any z0 due to A2. We choose ε ∈ (0, 1
2Kσ∗

−) small enough such that

(3.61) ε
∥∥A[σ∗]−1

∥∥
C(Ω̃)

√
2G(σ∗

±)K ≤
2εC∗G(σ∗

±)K

d∗−
<

1

2
;

then we get from the same argument as that in subsection 3.1 that

‖∇x,y(σ
∗ − σ1)‖C(Ω̃z0 ) ≤ 2‖A[σ∗]−1‖C(Ω̃z0 )

√
2‖ε∇x,ywj‖C(Ω̃z0 )‖∇x,yσ

∗‖C(Ω̃z0 )

≤ 2
√

2‖A[σ∗]−1‖C(Ω̃)G(σ∗
±)Kε2.(3.62)

As for σ1 − σ∗, we have the estimate
∥∥σ1 − σ∗∥∥

C(Ω̃z0 )
≤ K

∥∥∇x,y(σ
1 − σ∗)

∥∥
C(Ω̃z0 )

,

and hence ∥∥σ1 − σ∗∥∥
C(Ω̃)

≤ K2
√

2
∥∥A[σ∗]−1

∥∥
C(Ω̃)

G(σ∗
±)Kε2.(3.63)

For each σ1(x, y, z0) generated by the harmonic Bz method at each slice Ω̃z0 , we
generate σ1 in Ω̃ ⊂ R

3 by σ1 :=
⋃

z0
σ1(x, y, z0). Now for ε ∈ (0, 1

2Kσ∗
−) satisfying

(3.61),

(3.64) K2
√

2‖A[σ∗]−1‖C(Ω̃)G(σ∗
±)ε ≤ 4

d∗−
C∗KG(σ∗

±)ε := D∗G(σ∗
±)ε := θ ∈ (0, 1);

then it follows that

‖∇x,y(σ
1 − σ∗)‖C(Ω̃),

∥∥σ1 − σ∗∥∥
C(Ω̃)

≤ Kθε,

which means F (σ1) ≤ Cε(σ
∗) ≤ G(σ∗

±). As in the two-dimensional case, we have

σ1 = σ∗ in Ω \ Ω̃. So the theorem is true for n = 1. It follows from (3.61) and (3.64)
that ε = ε(σ∗

±, d
∗
−), θ = θ(ε, σ∗

±, d
∗
−).

Now we can apply the induction argument to prove the theorem. That is, assume
that σk ≡ σ∗ in Ω \ Ω̃ and the following estimates:

‖∇x,y(σ
k − σ∗)‖C(Ω̃),

∥∥σk − σ∗∥∥
C(Ω̃)

≤ K(D∗G(σ∗
±)ε)kε = Kθkε

are true for k = n. We shall prove that this is also true for k = n + 1.
This can be done by the same way as in the two-dimensional case, with the same

modifications for the three-dimensional case as given in the proof of this theorem for
the step n = 1. Indeed, ∇x,yσ

n is continuous in every slice Ωz0 from its definition
(2.16) for σ∗ ∈ C1. This fact implies that (3.56) is true with σ0 replaced by σn.
Moreover, we have CsG(σn) ≤ Cε(σ

∗) ≤ G(σ∗
±) from the assumption of the induction

argument. So we omit the details.
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4. Numerical performance. We present some numerics to show our theoret-
ical convergence property. For simplicity, we deal with the axially symmetric case
where input current densities in the electrodes are specified. That is, we consider the
following two-dimensional problem for potential u = u(x, y):{

∇ · (σ∇u) = 0 in Ω,

−σ∇u · n = g(x, y) on ∂Ω,
(4.1)

with u(0, 0) = 0 at the reference point (0, 0). Consider the target conductivity in
Ω := [−1, 1] × [−2, 2] of the form

σ∗(r) =

⎧⎪⎨
⎪⎩

3 if 0 ≤ r ≤ 0.4,

−10r2 + 4.6 if 0.4 ≤ r ≤ 0.6,

1 otherwise,

(4.2)

where r =
√
x2 + y2. Electrodes are specified as E±

1 := {(±1, y) : |y| < 0.1} and
E±
2 := {(x,±2) : |x| < 0.1} on ∂Ω. The input current densities gj , j = 1, 2 are given

by

(4.3) gj |E±
j

= ±1 and gj = 0 on ∂Ω \ [E+
j ∪ E−

j ].

The corresponding ∇2Bj
z = μ0(σxu

j,∗
y − σyu

j,∗
x ) are shown in Figure 4, where uj,∗ is

the solution corresponding to (σ∗, gj) for j = 1, 2.
We introduce Φ(r, r′) = 1

2π ln |r − r′| and divide Ω into N × M small rectan-
gles. Denote by rk,l the center of each rectangle e(k, l). Then a simple computation
generates the following discrete iteration formula:

(4.4) σn+1(rk,l) = f(rk,l) −
1

μ0

N,M∑
i,j=1

∫
e(i,j)

∇Φ(r′, rk,l) · A[σn]−1

(
∇2B1

z

∇2B2
z

)
(r′)dr′,

where f(r) =
∫
∂Ω

∇r′Φ(r, r′) · nr′ σ
∗(r′)ds(r′).

For the integrals in the elements, where we take A[σn]−1,∇2Bz as constants at
each element, they are zero for (i, j) = (k, l) due to the symmetric property (noticing
that rk,l is the center of e(k, l)) and regular for (i, j) = (k, l). So we can construct
the sequence {σn} inside Ω for a given initial guess σ0(r).

In our numerical test, the finite element method with bilinear base functions
φi,j(x, y) = (a + by)(c + dy) at each nodal point are used to solve the direct problem
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for u[σn] at each iteration step. Then ∇u[σn] at the center of each element can be
computed by the difference method. We also use this scheme to simulate ∇2Bz from
(4.1)–(4.3) for our inversion input. To avoid the well-known inverse crime in the
numerical tests [5], we use different grids in simulating the input data from those
used in the inversion algorithm.

First, we take N = 40,M = 80 (case 1) and the initial guess function σ0(x, y) ≡ 1.
The recovering result after six iterations as well as the exact one are shown in Figure
5. Now we choose a finer mesh with N = 80,M = 160 (case 2). Denote by E(n) the
relative L2-error between the target conductivity and the reconstructed one after the
nth iteration. The numerical values of E(n) in these two cases are given in Table 4.1,
while curves are plotted in Figure 6 for a bigger iteration number n = 10.

From the error distributions in Figure 6 and Table 4.1, we can observe that the
iteration algorithm converges very quickly. In fact, the error is almost unchanged
after six iterations. This phenomenon matches very well with our theoretical result,
which assumes a convergence rate of the order θn, with θ ∈ (0, 1). The excellent
convergence performance comes from our good initial guess σ0 ≡ 1. This means that
the error of ε for the initial guess is not so large, and θ will be also small for small
ε. We can also observe that the finer mesh can improve the inversion result at the
expense of an increased number of computations.

Now let us consider an inferior initial guess function

(4.5) σ0(x, y) =
4

5
− 1

5
cos

(x2 + y2)π

5
,
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Table 4.1

Relative L2-error E(n) in two cases.

n Case 1 Case 2 n Case 1 Case 2
0 0.449118 0.449185 4 0.035278 0.028515
1 0.226044 0.224892 5 0.024009 0.015632
2 0.114281 0.111283 6 0.019200 0.009711
3 0.060467 0.055545 7 0.017172 0.007149
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Fig. 7. Inferior initial guess σ0 (left) and the exact σ∗ (right).
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Fig. 9. Reconstruction for n = 3 (left) and n = 6 (right) using the inferior initial guess.

which is quite different from the exact σ∗(x, y); see Figure 7. The reconstruction
results for n = 1, 2, 3, 6 are given in Figures 8 and 9 with its error distribution illus-
trated in Figure 10. Even for this case with the undesirable initial guess, we can see
that the algorithm still catches the target σ∗ in the whole domain.
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It should be noticed that we used the simulation data ∇2Bj
z , j = 1, 2, directly for

the harmonic Bz algorithm rather than computing ∇2Bj
z from Bj

z . Obviously, if we
use noisy measured Bz data as the inversion input, a suitable denoising technique must
be used. Noticing the expression of the iteration (2.16), the harmonic Bz algorithm
uses in fact the first derivative of Bz. A similar inversion scheme using the first
derivative of Bz named the gradient Bz method can be found in [16, 17].

Acknowledgment. We thank a referee for pointing out results about the con-
dition (2.11) in Remark 2.5.
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ASYMPTOTIC PROFILES OF THE STEADY STATES
FOR AN SIS EPIDEMIC PATCH MODEL∗

L. J. S. ALLEN† , B. M. BOLKER‡ , Y. LOU§ , AND A. L. NEVAI¶

Abstract. Spatial heterogeneity, habitat connectivity, and rates of movement can have large
impacts on the persistence and extinction of infectious diseases. These factors are shown to deter-
mine the asymptotic profile of the steady states in a frequency-dependent SIS (susceptible-infected-
susceptible) epidemic model with n patches in which susceptible and infected individuals can both
move between patches. Patch differences in local disease transmission and recovery rates character-
ize whether patches are low-risk or high-risk, and these differences collectively determine whether
the spatial domain, or habitat, is low-risk or high-risk. The basic reproduction number R0 for the
model is determined. It is then shown that when the disease-free equilibrium is stable (R0 < 1) it
is globally asymptotically stable, and that when the disease-free equilibrium is unstable (R0 > 1)
there exists a unique endemic equilibrium. Two main theorems link spatial heterogeneity, habitat
connectivity, and rates of movement to disease persistence and extinction. The first theorem relates
the basic reproduction number to the heterogeneity of the spatial domain. For low-risk domains,
the disease-free equilibrium is stable (R0 < 1) if and only if the mobility of infected individuals
lies above a threshold value, but for high-risk domains, the disease-free equilibrium is always unsta-
ble (R0 > 1). The second theorem states that when the endemic equilibrium exists, it tends to a
spatially inhomogeneous disease-free equilibrium as the mobility of susceptible individuals tends to
zero. This limiting disease-free equilibrium has a positive number of susceptible individuals on all
low-risk patches and can also have a positive number of susceptible individuals on some, but not
all, high-risk patches. Sufficient conditions for whether high-risk patches in the limiting disease-free
equilibrium have susceptible individuals or not are given in terms of habitat connectivity, and these
conditions are illustrated using numerical examples. These results have important implications for
disease control.

Key words. spatial heterogeneity, dispersal, habitat connectivity, basic reproduction number,
disease-free equilibrium, endemic equilibrium
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1. Introduction. Spatial heterogeneity, habitat connectivity, and rates of move-
ment play important roles in disease persistence and extinction. Movement of sus-
ceptible or infected individuals can enhance or suppress the spread of disease, de-
pending on the heterogeneity and connectivity of the spatial environment (see, e.g.,
Castillo-Chavez and Yakubu (2001, 2002); Bolker and Grenfell (1995); Hess (1996);
Lloyd and May (1996); Salmani and van den Driessche (2006); Ruan (2006); Allen
et al. (2007)). For example, the compartmental patch model of Ruan, Wang, and
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Levin (2006) demonstrates that diseases such as SARS can be contained by screen-
ing for infection at borders and barring residents of disease hot spots from travel.
Spatial heterogeneity can also give rise to complex and surprising disease dynamics
(Allen, Kirupaharan, and Wilson (2004); Castillo-Chavez and Yakubu (2001, 2002);
Hess (1996); Lloyd and Jansen (2004); Wang and Zhao (2004)). In numerical inves-
tigations of a discrete-time two-patch SIS (susceptible-infected-susceptible) epidemic
model, Allen, Kirupaharan, and Wilson (2004) considered a case where, in the absence
of movement, the disease persists in only one of the two patches—a high-risk patch,
where the patch reproduction number is greater than one. When the patches are
connected by susceptible and infective movement, an endemic equilibrium is reached
in both patches. But if the movement pattern is changed so that only infected in-
dividuals disperse between the two patches, a surprising result occurs. The disease
does not persist in either patch; the high-risk patch becomes empty, and all suscepti-
ble individuals eventually reside in the low-risk patch, where the patch reproduction
number is less than one. We investigate this latter phenomenon in a continuous-time
SIS metapopulation model with n patches that includes both high-risk and low-risk
patches.

Disease spread in metapopulation models involving discrete patches has been
investigated in a variety of settings (Arino and van den Driessche (2006, 2003a, 2003b);
Arino et al. (2005); Jin and Wang (2005); Rvachev and Longini (1985); Salmani and
van den Driessche (2006); Sattenspiel and Dietz (1995); Wang and Mulone (2003);
Wang and Zhao (2004)). In a review article, Arino and van den Driessche (2006)
summarize some known results on disease dynamics in metapopulation models with
regard to existence and stability of disease-free and endemic equilibria. They develop
a general framework for movement of susceptible, exposed, infected, and recovered
individuals (SEIRS model) and define a mobility matrix, an irreducible matrix that
defines the spatial arrangement of patches and rates of movement between patches
(see also Arino and van den Driessche (2003a, 2003b)). Wang and colleagues studied
uniform persistence and global stability of disease-free and endemic equilibria in SIS
metapopulation models (Jin and Wang (2005); Wang and Mulone (2003); Wang and
Zhao (2004)).

Here, we formulate a frequency-dependent SIS metapopulation model consisting
of n patches. The spatial arrangement of patches, and rates of movement between
patches, are defined by an irreducible matrix. The spatial domain is characterized as
low-risk or high-risk if the spatial average of the patch transmission rates is less than
or greater than, respectively, the spatial average of the recovery rates. Individual
patches are also characterized as low-risk or high-risk if the patch transmission rate
is less than or greater than the patch recovery rate, which is equivalent to the patch
reproduction number being less than or greater than one, respectively. A unique
disease-free equilibrium is shown to exist, and a basic reproduction number R0 is
determined. If R0 < 1, the disease-free equilibrium is shown to be globally asymp-
totically stable, and if R0 > 1, a unique endemic equilibrium is shown to exist.

Our two main theorems link spatial heterogeneity, habitat connectivity, and rates
of movement to disease persistence and extinction. The first theorem relates the
basic reproduction number to the heterogeneity of the spatial domain. It is shown
that for low-risk domains, the disease-free equilibrium is stable (R0 < 1) if and
only if the mobility of infected individuals lies above a threshold value. For high-
risk domains the disease-free equilibrium is always unstable (R0 > 1). The second
theorem concerns the spatial heterogeneity in the limiting case where the mobility of
susceptible individuals approaches zero. We show that if R0 > 1, then the endemic
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equilibrium approaches a spatially inhomogeneous disease-free equilibrium which has
a positive number of susceptible individuals on all low-risk patches and no susceptibles
on at least one of the high-risk patches. These results have important implications
for disease control. If the spatial environment can be modified to include low-risk
patches (i.e., low transmission rates or high recovery rates) and if the movement of
susceptible individuals can be restricted (e.g., quarantine), then it may be possible to
eliminate the disease.

1.1. The model. Let n ≥ 2 be the number of patches and Ω = {1, 2, . . . , n}.
Consider the SIS patch model

dS̄j

dt
= dS

∑
k∈Ω

(LjkS̄k − LkjS̄j) −
βjS̄j Īj
S̄j + Īj

+ γj Īj , j ∈ Ω,(1.1a)

dĪj
dt

= dI
∑
k∈Ω

(Ljk Īk − Lkj Īj) +
βjS̄j Īj
S̄j + Īj

− γj Īj , j ∈ Ω,(1.1b)

where S̄j(t) and Īj(t) denote the number of susceptible and infected individuals in
patch j at time t ≥ 0; dS and dI are positive diffusion coefficients for the susceptible
and infected subpopulations; Ljk represents the degree of movement from patch k
into patch j; and βj and γj are nonnegative constants that express the rate of disease
transmission and recovery in patch j. Because S̄j Īj/(S̄j + Īj) is a Lipschitz continuous
function of S̄j and Īj in the open first quadrant, we extend its definition to the entire
first quadrant by defining it to be zero when at least one of S̄j = 0 or Īj = 0 holds.
We assume that

(A1) S̄j(0) ≥ 0 and Īj(0) ≥ 0 for j ∈ Ω, and
∑

j∈Ω

[
S̄j(0) + Īj(0)

]
> 0.

Let S̄ = (S̄j) and Ī = (Īj). Brauer and Nohel’s work (1989) implies that a unique
solution (S̄, Ī) of (1.1) exists for all time. Let

(1.2) N =
∑
j∈Ω

[
S̄j(0) + Īj(0)

]

be the total number of individuals in all patches at t = 0. By (A1), N is positive.
Summing the 2n equations in (1.1) makes it clear that

(1.3)
∑
j∈Ω

[
S̄j(t) + Īj(t)

]
= N, t ≥ 0.

We will assume that the connectivity matrix L = (Ljk) satisfies
(A2) L is nonnegative, irreducible, and symmetric.

We shall say that a matrix A = (Ajk) is nonnegative (or positive) if all its elements
are nonnegative (or positive), in which case we will write A ≥ 0 (or A > 0). Similar
comments apply to vectors u = (uj). The symmetry assumption ensures that the
per capita rates of susceptible and infected individuals entering patch j from patch
k (dSLjk and dILjk) are equal to the per capita rates of individuals moving in the
other direction (dSLkj and dILkj). Hence, in (1.1)

LjkS̄k − LkjS̄j = Ljk(S̄k − S̄j) and Ljk Īk − Lkj Īj = Ljk(Īk − Īj).

The irreducibility assumption implies that the system of patches considered as a
directed graph with patches as the vertices is strongly connected (Ortega (1987)).
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Other characterizations of irreducibility are given in Appendix A, and we will make
use of these additional facts as needed.

We say that in a low-risk patch disease transmission occurs at a lower rate than
disease recovery when the number of infected individuals in that patch is very small.
A high-risk patch is defined in a similar manner. Let

H− = {j ∈ Ω : βj < γj} and H+ = {j ∈ Ω : βj > γj}

denote the set of these low-risk and high-risk patches, respectively. We assume that

(A3) H− and H+ are nonempty and H− ∪H+ = Ω.

Let R[j]
0 = βj/γj be the patch reproduction number for patch j ∈ Ω (we set

R[j]
0 = ∞ when γj = 0). Then R[j]

0 < 1 for low-risk patches (j ∈ H−), and R[j]
0 > 1

for high-risk patches (j ∈ H+). It is well known that the disease can persist in isolated
high-risk patches but not in isolated low-risk patches.

Let

Σβ =
∑
j∈Ω

βj and Σγ =
∑
j∈Ω

γj .

We say that Ω is a low-risk domain if Σβ < Σγ , but a high-risk domain if Σβ ≥ Σγ .

For an arbitrary patch j ∈ Ω, it will be convenient to define

Lj =
∑
k∈Ω

Ljk, L−
j =

∑
k∈H−

Ljk, and L+
j =

∑
k∈H+

Ljk.

These sums denote the connectivity between patch j and all patches, all low-risk
patches, and all high-risk patches, respectively. The irreducibility of L implies that
Lj > 0 for all j ∈ Ω.

1.2. The equilibrium problem. We will be primarily interested in equilibrium
solutions of (1.1), i.e., solutions of

dS
∑
k∈Ω

Ljk(S̃k − S̃j) −
βjS̃j Ĩj

S̃j + Ĩj
+ γj Ĩj = 0, j ∈ Ω,(1.4a)

dI
∑
k∈Ω

Ljk(Ĩk − Ĩj) +
βjS̃j Ĩj

S̃j + Ĩj
− γj Ĩj = 0, j ∈ Ω,(1.4b)

where S̃j and Ĩj denote the number of susceptible and infected individuals, respec-
tively, in patch j ∈ Ω at equilibrium. In view of (1.3), we impose the condition

(1.4c)
∑
j∈Ω

(
S̃j + Ĩj

)
= N.

Let S̃ = (S̃j) and Ĩ = (Ĩj). We are interested only in solutions (S̃, Ĩ) of (1.4) which

satisfy S̃ ≥ 0 and Ĩ ≥ 0. A disease-free equilibrium (DFE) is a solution in which
Ĩj = 0 for all j ∈ Ω. An endemic equilibrium (EE) is a solution in which Ĩj > 0
for some j ∈ Ω. To distinguish between these two types of equilibria, we will for
notational convenience denote a DFE by (Ŝ, 0) and an EE by (S̃, Ĩ).
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1.3. Statement of the main results. We consider in section 2 properties of the
DFE, including its existence, uniqueness, and stability. We first show that there exists
a unique DFE (Ŝ, 0), and it is given by Ŝj = N/n for j ∈ Ω. We then calculate the
basic reproduction number R0 for (1.1) using the next generation approach (Diek-
mann, Heesterbeek, and Metz (1990); Diekmann and Heesterbeek (2000); van den
Driessche and Watmough (2002)) for which it is known that if R0 < 1, then the DFE
is locally asymptotically stable, but if R0 > 1, then it is unstable. Our calculation
will show that R0 does not depend on the diffusion coefficient dS . Finally, we show
that if R0 < 1, then the DFE is globally asymptotically stable.

In section 3, we find an equivalent characterization for the stability of the DFE
in terms of dI rather than R0. In particular, we show that the DFE in a low-risk
domain is stable if and only if the diffusion coefficient for infected individuals lies above
a certain threshold value, but in a high-risk domain, the DFE is always unstable. We
also show that when the DFE is unstable, then there exists a unique EE. Moreover,
the disease persists in every patch.

Theorem 1. Suppose that (A1)–(A3) hold and N is fixed.
(a) In a low-risk domain (Σβ < Σγ), there exists a threshold value d∗I ∈ (0,∞)

such that R0 > 1 for dI < d∗I and R0 < 1 for dI > d∗I .
(b) In a high-risk domain (Σβ ≥ Σγ), we have R0 > 1 for all dI .

(c) If R0 > 1, then an EE exists, it is unique, and Ĩ > 0.
Observe from (1.4) that in the limiting case dS = 0 there also exists a family of

infinitely many spatially inhomogeneous DFEs (Ŝ, 0), each of which satisfies

(1.5) Ŝ ≥ 0 and
∑
j∈Ω

Ŝj = N.

In section 4, we show that if R0 > 1, then the EE approaches such a spatially
inhomogeneous DFE as the mobility of susceptible individuals becomes very small.
We write this limiting DFE as (S∗, 0) and also consider the distribution of patches
for which S∗ is either positive or zero.

Theorem 2. Suppose that (A1)–(A3) hold, N is fixed, and R0 > 1.
(a) (S̃, Ĩ) → (S∗, 0) as dS → 0 for some S∗ satisfying (1.5);
(b) S∗ > 0 on H− and S∗

j = 0 for some j ∈ H+;
(c) if

(1.6)
1

dI
> max

k∈H+

[
L−
k

βk − γk

]
+ max

k∈H−

[
L+
k

βk − γk

]
,

then S∗ ≡ 0 on H+;
(d) if

(1.7)
1

dI
<

L−
j

βj − γj
+ min

k∈H−

[
L+
k

βk − γk

]
for some j ∈ H+, then S∗

j > 0.
We now make several remarks concerning Theorem 2, which connects spatial

heterogeneity, habitat connectivity, and rates of movement. First, condition (1.6) will
be satisfied whenever dI is sufficiently small.

Second, Theorem 2(c) immediately implies that if

(1.8)
1

dI
> max

k∈H+

[
L−
k

βk − γk

]
,
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then S∗ ≡ 0 on H+ because L+
k /(βk − γk) is nonpositive for every k ∈ H−. Although

condition (1.6) is more inclusive than condition (1.8), the latter is usually easier to
verify. Furthermore, if some low-risk patch (k ∈ H−) is not directly connected to any
high-risk patches (L+

k = 0), then conditions (1.6) and (1.8) are in fact equivalent.
Third, Theorem 2(d) implies that if

(1.9)
1

dI
< max

k∈H+

[
L−
k

βk − γk

]
+ min

k∈H−

[
L+
k

βk − γk

]
,

then S∗ �≡ 0 on H+.

1.4. Examples. Before proving Theorems 1 and 2, we first illustrate the second
theorem with some examples of metapopulations occupying different distributions of
low-risk and high-risk patches.

Example 1. If H− = {1, 2, . . . , n− 1} and H+ = {n}, then Theorem 2(b) implies
that S∗ > 0 on H− and S∗ = 0 on H+. For this case, condition (1.6) in Theorem 2 (c)
may or may not hold, but condition (1.7) in Theorem 2(d) cannot. That is, for this
particular configuration of patches, the assumption that R0 > 1 in Theorem 2 excludes
the possibility that condition (1.7) can be satisfied.

Example 2. If H− = {1} and H+ = {2, 3, . . . , n}, then

max
k∈H−

[
L+
k

βk − γk

]
= min

k∈H−

[
L+
k

βk − γk

]
=

L+
1

β1 − γ1
.

Theorem 2(b) implies that S∗ > 0 on H−, and Theorem 2(c), (d) provide necessary
and sufficient conditions (except in the case of equality) for determining whether
S∗ ≡ 0 or S∗ �≡ 0 on H+. For example, suppose that there are n = 3 patches with
H− = {1} and H+ = {2, 3}. If

1

dI
> max

{
L21

β2 − γ2
,

L31

β3 − γ3

}
+

L12 + L13

β1 − γ1
,

then S∗ ≡ 0 on H+, but if

1

dI
< max

{
L21

β2 − γ2
,

L31

β3 − γ3

}
+

L12 + L13

β1 − γ1
,

then either S∗
2 = 0 and S∗

3 > 0 or S∗
2 > 0 and S∗

3 = 0.
Example 3. Suppose there are n = 9 patches arranged and connected as in

Figure 1. We assume that Lij ∈ {0, 1} with Lij = 1 whenever patches i and j are
connected by an arrow. In addition, γj = 1 and S̄j(0) + Īj(0) = 100 for j ∈ Ω, so

that R[j]
0 = βj and N = 900. Four numerical examples (see Figure 2) illustrate the

values of S∗
j for j ∈ Ω. Low-risk patches (R[j]

0 < 1) are gray, and high-risk patches

(R[j]
0 > 1) are white. For R0 > 1 (dI < d∗I), the value of S∗

j was approximated by S̃j ,

which was calculated using the iterative method (3.11) with dS ≤ 10−5, dI = 1, and∑
j∈Ω Ĩj < 0.005.

For the limiting DFE in Figure 2(a), susceptibles can persist only on low-risk
patches. In this case, condition (1.6) of Theorem 2(c) is satisfied:

1 =
1

dI
> max

k∈H+

{
L−
k

βk − γk

}
+ max

k∈H−

{
L+
k

βk − γk

}
=

2

0.5
− 2

0.5
= 0.
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Fig. 1. Nine patches connected at their boundaries.

For the limiting DFE in Figure 2(b), susceptibles can persist on several high-risk
patches. In this case, condition (1.7) of Theorem 2(d) is satisfied for j = 2, 5, 6,

1 =
1

dI
<

L−
j

βj − γj
+ min

k∈H−

{
L+
k

βk − γk

}
=

{2 or 1}
0.25

− 1

0.5
= {6 or 2},

but not for j = 3:

1 =
1

dI
>

L−
3

β3 − γ3
+ min

k∈H−

{
L+
k

βk − γk

}
=

0

0.25
− 1

0.5
= −2.

We consider Figure 2(c), (d) in the Discussion.

2. The disease-free equilibrium. Throughout this section, we assume that
(A1)–(A3) hold and that N is fixed.

2.1. Existence and uniqueness of the DFE. Equation (1.4) has a unique
disease-free solution, and it is spatially homogeneous.

Lemma 2.1. A DFE (Ŝ, 0) exists, it is unique, and it is given by Ŝj = N/n for
j ∈ Ω.

Proof. It is clear from (1.4) that (Ŝ, 0), with Ŝj = N/n for j ∈ Ω, is a DFE. Now,

let (S̃, 0) be any DFE. Choose m ∈ Ω such that S̃m = min{S̃j : j ∈ Ω}. Setting

Ĩ = 0 in (1.4a) with j = m leads to
∑

k∈Ω Lmk(S̃k − S̃m) = 0. The minimality of S̃m

implies that S̃k = S̃m whenever Lmk > 0. Let j ∈ Ω with j �= m. The irreducibility
of L implies that there exists a chain from j to m, i.e., a sequence j1, j2, . . . , js ∈ Ω
with j1 = j and js = m such that Ljpjp+1 > 0 for 1 ≤ p ≤ s− 1. Thus S̃jp = S̃jp+1 for

1 ≤ p ≤ s−1. We conclude that S̃j = S̃m. Since j is arbitrary, we must have S̃j = S̃m

for all j ∈ Ω. In view of (1.4c) with Ĩ = 0, we obtain S̃j = N/n for j ∈ Ω.
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(a) (b)

(c) (d)

Fig. 2. The limiting DFE under four parameter conditions. (a) R0 = 1.20, R[5]
0 = 2, R[j]

0 =

1.5, and R[k]
0 = 0.5 for j = 2, 4, 6, 8 and k = 1, 3, 7, 9; (b) R0 = 1.51, R[3]

0 = 3, R[j]
0 = 1.25, and

R[k]
0 = 0.5 for j = 2, 5, 6 and k = 1, 4, 7, 8, 9; (c) R0 = 1.58, R[3]

0 = 3, R[j]
0 = 1.5, and R[k]

0 = 0.5

for j = 2, 5, 6 and k = 1, 4, 7, 8, 9; (d) R0 = 1.03, R[5]
0 = 3, and R[j]

0 = 0.5 for j �= 5.

2.2. Stability of the DFE. Applying Lemma 2.1, we can calculate the basic
reproduction number R0 for (1.1) using the next generation approach (Diekmann,
Heesterbeek, and Metz (1990); Diekmann and Heesterbeek (2000); van den Driessche
and Watmough (2002)). Since there are n patches, the basic reproduction number
will be the spectral radius of an n×n nonnegative matrix. It is known that if R0 < 1,
then the DFE is locally asymptotically stable, and if R0 > 1, then the DFE is unstable
(van den Driessche and Watmough (2002)).

Lemma 2.2. The basic reproduction number for (1.1) is the spectral radius of the
next generation matrix,

R0 = ρ(FV −1),
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where F = diag(βj) and V = diag(γj + dILj) − dIL.
Proof. We can write (1.1b) as

dĪ

dt
= F − V,

where F is the vector of new infections and V is the vector of transitions in the n
infected states. Linearization of this system about the DFE yields

dx

dt
= (F − V )x,

where F and V are the Jacobian matrices of F and V, respectively, evaluated at
the DFE. The eigenvalues of (F − V ) have negative real part if and only if R0 =
ρ(FV −1) < 1 (van den Driessche and Watmough (2002)).

We now show that if R0 < 1, then the disease always becomes extinct; i.e., the
DFE is globally asymptotically stable.

Lemma 2.3. If R0 < 1, then (S̄, Ī) → (Ŝ, 0) as t → ∞.
Proof. Suppose that R0 < 1. We will use the comparison principle to show that

Ī(t) → 0 as t → ∞. To begin, observe from (1.1b) that

dĪj
dt

≤ dI
∑
k∈Ω

Ljk Īk + (βj − γj − dILj)Īj , j ∈ Ω,

or equivalently

dĪ

dt
≤ (F − V )Ī ,

where F and V are as in Lemma 2.2. The linear comparison system

dx

dt
= (F − V )x, x(0) = Ī(0),

which is monotone, has eigenvalues with negative real part because R0 < 1 (van den
Driessche and Watmough (2002)). Consequently, x(t) → 0 as t → ∞. By comparison,
Ī(t) → 0 as t → ∞.

The global asymptotic stability of the DFE when R0 < 1 implies that there can
be no EE in this case. In section 3, we consider what happens when R0 > 1.

3. The endemic equilibrium. Throughout this section, we again assume that
(A1)–(A3) hold and that N is fixed.

3.1. Equivalent problems. It will be useful to consider several alternative
statements of the equilibrium problem. We present here the first such equivalent
problem.

Lemma 3.1. The pair (S̃, Ĩ) is a solution of (1.4) if and only if (S̃, Ĩ) is a
solution of

κ = dSS̃j + dI Ĩj , j ∈ Ω,(3.1a)

0 = dI
∑
k∈Ω

Ljk(Ĩk − Ĩj) + Ĩj

(
βj − γj −

βj Ĩj

S̃j + Ĩj

)
, j ∈ Ω,(3.1b)

N =
∑
j∈Ω

(
S̃j + Ĩj

)
,(3.1c)
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where κ is some positive constant that is independent of j ∈ Ω.
Proof. Suppose first that (S̃, Ĩ) is a solution of (1.4). We will show that there

exists some κ > 0 such that (S̃, Ĩ) satisfies (3.1a). Summing (1.4a) and (1.4b) produces
the relation

dS
∑
k∈Ω

Ljk(S̃k − S̃j) + dI
∑
k∈Ω

Ljk(Ĩk − Ĩj) = 0, j ∈ Ω.

We rearrange to get∑
k∈Ω

(Ljk/Lj)
(
dSS̃k + dI Ĩk

)
= dSS̃j + dI Ĩj , j ∈ Ω.

We can express this system of equations in matrix-vector form as

A
(
dSS̃ + dI Ĩ

)
= dSS̃ + dI Ĩ ,

where A = (Ljk/Lj). Clearly, A ≥ 0 because L ≥ 0 and Lj > 0 for j ∈ Ω. Moreover,
since A and L are associated with the same adjacency matrix, it follows that A is
irreducible. According to the Frobenius theorem (Gantmacher (1960), Theorem 2,
p. 53), A has a largest (or principal) eigenvalue μ which is real, and μ has a one-
dimensional eigenspace 〈ψ〉 for some positive eigenvector ψ. No other eigenvalue of A
has a positive corresponding eigenvector. Since A is a stochastic matrix, the positive
vector x = (1, 1, . . . , 1)t is an eigenvector for A belonging to the eigenvalue 1. It
follows from the remarks above that μ = 1 and we may take ψ = x. As the vector
dSS̃+dI Ĩ is also an eigenvector for A belonging to the eigenvalue 1, we conclude that
dSS̃+dI Ĩ = κψ for some κ ∈ R. Since dSS̃j +dI Ĩj > 0 for at least one j ∈ Ω (because

N > 0) it must be that κ > 0. Therefore (S̃, Ĩ) satisfies (3.1a) for some κ > 0. The
fact that (S̃, Ĩ) satisfies (3.1b) and (3.1c) is clear by inspection. If (S̃, Ĩ) is a solution
of (3.1) for some κ > 0, then it follows from a direct calculation that (S̃, Ĩ) satisfies
(1.4).

For our second equivalent formulation of the equilibrium problem, let

(3.2) Sj =
S̃j

κ
and Ij =

dI Ĩj
κ

,

where κ is as in Lemma 3.1. Let S = (Sj), I = (Ij), and

(3.3) fj(u) = βj

(
1 − dSu

dI + (dS − dI)u

)
− γj , u ∈ [0, 1] and j ∈ Ω.

Observe that if βj > 0, then fj decreases from βj − γj to −γj as u increases from 0
to 1. The next result follows from a direct calculation.

Lemma 3.2. The pair (S̃, Ĩ) is a solution of (3.1) if and only if (S, I) is a
solution of

1 = dSSj + Ij , j ∈ Ω,(3.4a)

0 = dI
∑
k∈Ω

Ljk(Ik − Ij) + Ijfj(Ij), j ∈ Ω,(3.4b)

κ =
dIN∑

j∈Ω (dISj + Ij)
.(3.4c)

The benefit of this second formulation is that (3.4b) depends on I but not S.
Thus, once I is determined, it is then a simple matter to determine S from (3.4a) and
κ from (3.4c). Observe that κ is in a one-to-one correspondence with N .
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3.2. An eigenvalue problem. The linear eigenvalue problem associated with
(3.1b) at the DFE is

(3.5) dI
∑
k∈Ω

Ljk(ψk − ψj) + (βj − γj)ψj + λψj = 0, j ∈ Ω.

Observe that (3.5) can be written as

dI
∑
k∈Ω

Ljkψk + (βj + θ − γj − dILj)ψj = (θ − λ)ψj , j ∈ Ω,

where θ = max{γj +dILj : j ∈ Ω}, and this equation can be written in the equivalent
matrix-vector form (dIL+D)ψ = (θ− λ)ψ, where D = diag(βj + θ− γj − dILj) and
ψ = (ψj). Thus, (λ, ψ) is a solution of (3.5) if and only if (μ, ψ) = (θ − λ, ψ) is a
solution of

(3.6) Qψ = μψ,

where Q = dIL + D.

Lemma 3.3. The matrix Q has all real eigenvalues, and it has a largest eigenvalue
μ∗ = μ∗(dI), which is positive. This eigenvalue μ∗ has a one-dimensional eigenspace
〈φ〉, where φ > 0. Furthermore, no other eigenvalue of Q has a positive corresponding
eigenvector.

Proof. By construction, Qjk = dILjk ≥ 0 for j, k ∈ Ω with j �= k, and Qjj ≥
dILjj + βj ≥ 0 for j ∈ Ω. Therefore, Q is nonnegative. Moreover, Q is irreducible
because Q and L are associated with adjacency matrices whose off-diagonal entries
are the same. The stated properties of Q now follow from the symmetry of L (which
implies that the eigenvalues of Q are real) and the Frobenius theorem (Gantmacher
(1960)).

Lemma 3.4. Define λ∗ = λ∗(dI) = θ−μ∗(dI) and let φ > 0 be as in Lemma 3.3.
Then

(a) λ∗ is real and (λ∗, φ) satisfies (3.5), i.e.,

(3.7) dI
∑
k∈Ω

Ljk(φk − φj) + (βj − γj)φj + λ∗φj = 0, j ∈ Ω.

Moreover, (λ∗, ψ) satisfies (3.5) if and only if ψ ∈ 〈φ〉. Finally, if (λ, ψ)
satisfies (3.5) with λ �= λ∗, then λ > λ∗ and ψj ≤ 0 for some j ∈ Ω.

(b) λ∗ is a strictly monotone increasing function of dI > 0.
(c) λ∗ → min{γj − βj : j ∈ Ω} as dI → 0.

(d) λ∗ → Σγ−Σβ

n as dI → ∞.
(e) If Σβ ≥ Σγ , then λ∗ < 0 for all dI > 0.
(f) If Σβ < Σγ , then the equation λ∗(dI) = 0 has a unique positive root denoted

by d∗I . Furthermore, if dI < d∗I , then λ∗ < 0, and if dI > d∗I , then λ∗ > 0.

The proof of Lemma 3.4 appears in Appendix B. In view of Lemma 3.4(e), (f),
let us define d∗I = ∞ when Σβ ≥ Σγ . We now connect λ∗ to the basic reproduction
number R0.

Lemma 3.5. Let R0 and λ∗ be as in Lemmas 2.2 and 3.4, respectively. Then

(a) R0 < 1 if and only if λ∗ > 0;
(b) R0 > 1 if and only if λ∗ < 0.
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Proof. Observe from (3.7) that

(3.8) (F − V )φ + λ∗φ = 0,

where F and V are defined as in Lemma 2.2. Also, since F − V is symmetric, its
eigenvalues are all real. Finally, recall from van den Driessche and Watmough (2002)
that (i) R0 < 1 if and only if F − V has all negative eigenvalues, and (ii) R0 > 1 if
and only if F − V has a positive eigenvalue.

(a) Suppose first that R0 < 1. We see from (3.8) that (−λ∗) is an eigenvalue of
F − V . Since F − V has all negative eigenvalues, we obtain λ∗ > 0. Now
suppose that λ∗ > 0. Equation (3.8) and Lemma 3.4(a) imply that (−λ∗)
is the largest eigenvalue of F − V . Thus, all the eigenvalues of F − V are
negative, and consequently R0 < 1.

(b) Suppose first that R0 > 1. Then F −V has a positive eigenvalue μ. Equation
(3.8) and Lemma 3.4(a) imply that λ∗ ≤ −μ < 0, i.e., λ∗ < 0. Now suppose
that λ∗ < 0. We see from (3.8) that μ = −λ∗ is a positive eigenvalue of
F − V , and hence that R0 > 1.

In the next section, we use λ∗ and φ, rather than R0, to obtain the existence of
an EE when the DFE is unstable.

3.3. Existence of an EE.
Lemma 3.6. Suppose that R0 > 1. Then (3.4) has a nonnegative solution (S, I),

which can be chosen to satisfy I �≡ 0. Furthermore, this solution with I �≡ 0 is unique,
S > 0, and 0 < Ij < 1 for every j ∈ Ω.

Here we prove the existence of such an (S, I), and in the next section we will
demonstrate that it is unique. Suppose that R0 > 1. In view of (3.4b), consider the
related system of differential equations

(3.9)
dIj
dt

= Gj(I)
def
= dI

∑
k∈Ω

Ljk(Ik − Ij) + Ijfj(Ij), j ∈ Ω.

First, I is a solution of (3.4b) if and only if G(I) = 0, where G = (Gj). Second, (3.9)
defines a monotone dynamical system because Ljk is nonnegative when j �= k. It
follows that if I and I are ordered (i.e., I ≤ I), and they are sub- and supersolutions
of (3.9), respectively, i.e., G(I) ≥ 0 ≥ G(I), then there must exist some I ∈ [I, I] such
that G(I) = 0, where [I, I] = {I ∈ R

n : I ≤ I ≤ I} (Smith (1995)).
With φ > 0 defined as in Lemma 3.3, we now show that I = εφ and I =

(1, 1, . . . , 1)t can be chosen as sub- and supersolutions for (3.9) if ε is chosen to be
positive and sufficiently small. We may assume that φ is chosen so that

∑
j∈Ω φ2

j = 1.
Lemma 3.5(b) implies that λ∗ < 0. In view of (3.3), define

g(u) =
dSu

dI + (dS − dI)u
, u ∈ [0, 1].

We remark that g increases from 0 to 1 as u increases from 0 to 1. Observe from (3.3)
and (3.7) that

Gj(I) = dI
∑
k∈Ω

Ljk(εφk − εφj) + εφjfj(εφj)

= ε

[
dI

∑
k∈Ω

Ljk(φk − φj) + (βj − γj)φj − βjφjg(εφj)

]

= εφj [−λ∗ − βjg(εφj)]
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is positive for j ∈ Ω when 0 < ε � 1. Therefore, I is a subsolution of (3.9) for ε
positive and sufficiently small. Next, since Gj(I) = fj(1) = −γj is nonpositive for
j ∈ Ω, it follows that I is a supersolution of (3.9). Also, it is obvious that I ≤ I if
ε is chosen sufficiently small. We conclude from the remarks above that there must
be an I ∈ [I, I] with G(I) = 0. That is, there exists some I satisfying (3.4b) with
0 < Ij ≤ 1 for j ∈ Ω. We argue by contradiction to show that Ij cannot be equal
to 1 for any j ∈ Ω. If Ij = 1 for all j ∈ Ω, then Gj(I) = −γj < 0 for j ∈ H−, a
contradiction. If Ij = 1 and Im < 1 for some j,m ∈ Ω, then there exists a chain
from j to m, i.e., a sequence j1, j2, . . . , js ∈ Ω with j1 = j and js = m such that
Ljpjp+1 > 0 for 1 ≤ p ≤ s − 1. Thus, there exists some k ∈ Ω for which Ijk = 1,
Ijk+1

< 1, and Ljkjk+1
> 0. But then Gjk(I) ≤ dILjkjk+1

(Ijk+1
− Ijk)−γjk < 0, again

a contradiction. We conclude that 0 < Ij < 1 for j ∈ Ω. In view of (3.4a), let us
define S by 1 = dSS + I. Then S > 0. Consequently, (S, I) is a positive solution of
(3.4) with Ij < 1 for j ∈ Ω.

For sake of completeness, and also for the purpose of proving uniqueness in the
next section, we now proceed to construct an iteration algorithm to find I. This
algorithm is also used to generate the numerical plots appearing in Figure 2. Equation
(3.4b) can be written equivalently as

(3.10) −dI
∑
k∈Ω

Ljk(Ik − Ij) = Fj(Ij), j ∈ Ω,

where Fj(u) = ufj(u). Let j ∈ Ω. By inspection, the function fj in (3.3) and its
derivative f ′

j are bounded for u ∈ [0, 1]. We conclude that there exists some M > 0
(which can be chosen to be independent of j) such that |F ′

j(u)| < M for u ∈ [0, 1].
It follows that F ′

j(u) + M > 0 for u ∈ [0, 1]. That is, Fj(u) + Mu is a monotone
increasing function of u ∈ [0, 1]. Since F ′

j(u) = fj(u) + uf ′
j(u) ≤ fj(u) for u ∈ [0, 1],

it follows that fj(u) + M > 0 for u ∈ [0, 1].
We now add MIj to both sides of (3.10) to get

−dI
∑
k∈Ω

Ljk(Ik − Ij) + MIj = Fj(Ij) + MIj , j ∈ Ω.

This equation inspires the vector iteration

(3.11) −dI
∑
k∈Ω

Ljk

(
I
(l+1)
k − I

(l+1)
j

)
+ MI

(l+1)
j = Fj

(
I
(l)
j

)
+ MI

(l)
j , j ∈ Ω,

with the index l ≥ 0. This implicit scheme can be made explicit because the left-
hand operator, which takes the form A + MIn = M [(1/M)A + In], is invertible for

M sufficiently large. Let I(l) =
(
I
(l)
j

)
. For our purposes, we will set I(0) = I = εφ

with ε taken to be sufficiently small so that I is a subsolution of (3.9) satisfying
I < I = (1, 1, . . . , 1)t. Similarly, we define the iteration

(3.12) −dI
∑
k∈Ω

Ljk

(
I
[l+1]
k − I

[l+1]
j

)
+ MI

[l+1]
j = Fj

(
I
[l]
j

)
+ MI

[l]
j , j ∈ Ω,

for l ≥ 0 with I [0] = I, a supersolution of (3.9). We want to show that

I = I(0) ≤ I(1) ≤ · · · ≤ I(n) ≤ · · · ≤ I [n] ≤ · · · ≤ I [1] ≤ I [0] = I,

where the symbols surrounding the iteration index indicate the initial condition for
the sequence. For convenience, we will refer to the sequences I(l) and I [l] as the lower
and upper sequences, respectively.
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It can be shown that all components of both sequences remain within the interval
[0, 1], that the lower sequence is nondecreasing, that the upper sequence is nonincreas-
ing, and that an iterate of the lower sequence is always less than or equal to the corre-
sponding iterate of the upper sequence. Let ΔI(l) = I(l+1) − I(l), ΔI [l] = I [l+1] − I [l],
and ΔI{l} = I [l] − I(l).

Lemma 3.7. The following statements hold:

(a) I
(l)
j , I

[l]
j ∈ [0, 1] for l ≥ 0 and j ∈ Ω;

(b) ΔI(l) ≥ 0, ΔI [l] ≤ 0, and ΔI{l} ≥ 0 for l ≥ 0.

The proof of this result appears in Appendix C. According to Lemma 3.7, the
lower and upper sequences are both monotone and bounded. They also satisfy I ≤
I(l) ≤ I [l] ≤ I for l ≥ 0. Therefore, there exist Imin and Imax such that I(l) → Imin

and I [l] → Imax as l → ∞. Clearly, I ≤ Imin ≤ Imax ≤ I. Furthermore, since Imin

is a fixed point for (3.11), and Imax is a fixed point for (3.12), each is a solution to
(3.4b) with the property that 0 < Imin

j ≤ Imax
j ≤ 1 for j ∈ Ω. By an argument similar

to the one given above, we obtain the stronger result that 0 < Imin
j ≤ Imax

j < 1 for

j ∈ Ω. In the next section, we show that Imin
j = Imax

j .

3.4. Uniqueness of the EE. Because we are interested only in those (S, I)
that satisfy (3.4) with S ≥ 0 and I ≥ 0, we will assume throughout this section that
if I is a solution to (3.4b), then 0 ≤ Ij ≤ 1 for j ∈ Ω.

Lemma 3.8. If I is a solution to (3.4b), then either I ≡ 0 or I > 0.

Proof. We argue by contradiction. Suppose that I is a solution of (3.4b) with
I �≡ 0 and I �> 0. Then there exist nonempty subsets K− and K+ of Ω with Ij = 0
for j ∈ K−, Ij > 0 for j ∈ K+, and K− ∪ K+ = Ω. Equation (3.4b) implies that∑

k∈Ω LjkIk = 0 for j ∈ K−. The nonnegativity of L and I implies that LjkIk = 0
for j ∈ K− and k ∈ Ω. Since Ik > 0 when k ∈ K+, we must have Ljk = 0 when
j ∈ K− and k ∈ K+. But this contradicts the irreducibility of L. We conclude that
either I ≡ 0 or I > 0.

The following lemma justifies our referring to Imin and Imax as minimal and
maximal solutions, respectively.

Lemma 3.9. If I is a positive solution to (3.4b), then I ∈ [Imin, Imax].

Proof. Choose ε small enough so that I = I(0) ≤ I ≤ I [0] = I. Arguments similar
to the one used in the proof of Lemma 3.7(b) show that I(l) ≤ I ≤ I [l] for l ≥ 0. The
conclusion follows by letting l → ∞.

We now show that if two positive solutions of (3.4b) are ordered, then they are
either strictly ordered or they are equal.

Lemma 3.10. If I− and I+ are positive solutions to (3.4b) with I− ≤ I+, then
either I− < I+ or I− ≡ I+.

Proof. We argue by contradiction. Suppose that I− = (I−j ) and I+ = (I+
j ) are

positive solutions to (3.4b) with I− ≤ I+, and that neither I− < I+ nor I− ≡ I+.
Then there exist nonempty and disjoint subsets K− and K+ of Ω, whose union forms
all of Ω, and with the property that I−j < I+

j for j ∈ K− and I−j = I+
j for j ∈ K+. We

subtract (3.4b) with I = I− from (3.4b) with I = I+, and use the fact that I−j = I+
j

for j ∈ K+, to get
∑

k∈K− Ljk(I
+
k − I−k ) = 0 for j ∈ K+. We sum only over k ∈ K−

because I+
k = I−k for k ∈ K+. By definition, the expression I+

k − I−k is positive for
k ∈ K−. Consequently, Ljk = 0 for j ∈ K+ and k ∈ K−. But this contradicts the
irreducibility of L. We conclude that either I− < I+ or I− ≡ I+.

Lemma 3.11. If I∗ and I∗∗ are positive solutions to (3.4b), then I∗ ≡ I∗∗.
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Proof. We argue by contradiction. Suppose that I∗ and I∗∗ are positive solutions
to (3.4b) with I∗ �≡ I∗∗. Then I∗, I∗∗ ∈ [Imin, Imax], by Lemma 3.9. Since I∗ �≡ I∗∗, it
follows that Imin �≡ Imax. We conclude from the relation Imin ≤ Imax and Lemma 3.10
that Imin < Imax. So, without loss of generality, we may assume that I∗ < I∗∗, for
otherwise we may replace I∗ with Imin and I∗∗ with Imax. We substitute I∗ = (I∗j )
and I∗∗ = (I∗∗j ) individually into (3.4b) to get

dI
∑
k∈Ω

Ljk(I
∗
k − I∗j ) + I∗j fj(I

∗
j ) = 0, j ∈ Ω,

dI
∑
k∈Ω

Ljk(I
∗∗
k − I∗∗j ) + I∗∗j fj(I

∗∗
j ) = 0, j ∈ Ω.

We multiply both sides of the first equation by I∗∗j and both sides of the second
equation by I∗j , subtract the resulting equations, and then sum over all j ∈ Ω to get

dI
∑
j,k∈Ω

Ljk

[
I∗∗j I∗k − I∗j I

∗∗
k

]
+

∑
j∈Ω

I∗j I
∗∗
j

[
fj(I

∗
j ) − fj(I

∗∗
j )

]
= 0.

The symmetry of L implies that the first sum vanishes, and the second sum is non-
negative because I∗j I

∗∗
j > 0 and fj(I

∗
j ) ≥ fj(I

∗∗
j ) for j ∈ Ω. The fact that βk > 0 for

k ∈ H+ implies that fk(I
∗
k) > fk(I

∗∗
k ), and thus the second sum is in fact positive, a

contradiction. We conclude that I∗ ≡ I∗∗.
Lemmas 3.9 and 3.11 imply that (3.4b) has a unique positive solution given by

I
def
= Imin = Imax. We conclude from Lemma 3.8 that I is the only nonnegative

solution of (3.4b) satisfying I �≡ 0. We have completed the proof of Lemma 3.6. The
next result follows from Lemmas 3.2 and 3.6 and (3.2).

Lemma 3.12. Suppose that R0 > 1. Then (1.4) has a nonnegative solution
(S̃, Ĩ) which satisfies Ĩ �≡ 0. Furthermore, this solution is unique; it is given by
(S̃, Ĩ) = (κS, κI/dI), where κ is as in (3.4c); and Ĩ > 0.

We have shown that a unique EE exists when R0 > 1 and that it satisfies Ĩ > 0.
In the next section, we consider the asymptotic behavior of the EE as dS → 0.

4. Asymptotic behavior of the endemic equilibrium. Throughout this sec-
tion, we still assume that (A1)–(A3) hold and that N is fixed. We also assume that
R0 > 1, so that Lemma 3.6 for (S, I) and Lemma 3.12 for (S̃, Ĩ) always apply.

4.1. The limiting DFE. Observe that S̃, Ĩ, and κ are all functions of dS in
(1.4) and (3.1). First, we determine the asymptotic behavior of Ĩ and κ.

Lemma 4.1. As dS → 0, κ → 0 and Ĩ → 0.
Proof. We first show that κ → 0 as dS → 0. Let j ∈ H− and Îj be a limit point

of Ĩj as dS → 0. Equation (1.4a) and the nonnegativity of βj , S̃j , and Ĩj imply that

dS
∑
k∈Ω

Ljk(S̃k − S̃j) ≤ Ĩj (βj − γj) .

Since S̃k ∈ [0, N ] for k ∈ Ω, it follows that the left-hand side vanishes as dS → 0.
Since βj < γj , it must be that Îj ≤ 0. But Îj ≥ 0 because Ĩj > 0 for dS > 0. We

conclude that Îj = 0. Thus, Ĩj → 0 as dS → 0 for all j ∈ H−. Let k ∈ H− be fixed.

Equation (3.1a) implies that κ = dSS̃k + dI Ĩk. The product dSS̃k → 0 as dS → 0
because S̃k ∈ [0, N ], and dI Ĩk → 0 as dS → 0 by the argument above. Therefore,
κ → 0 as dS → 0.
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We now show that Ĩ → 0. Let j ∈ Ω. Again, (3.1a) specifies that κ = dSS̃j +dI Ĩj .

The left-hand side vanishes as dS → 0 by part (a). The product dSS̃j → 0 as dS → 0

because S̃j ∈ [0, N ]. We conclude that Ĩj → 0 as dS → 0.

So that we may determine the asymptotic behavior of S̃, we first consider I in
(3.2) as a function of dS .

Lemma 4.2. Ij is a monotone decreasing function of dS for each j ∈ Ω.
Proof. Suppose that 0 < dS1

< dS2
, and let I1 and I2 be corresponding solutions

to (3.4b) with 0 < I1
j , I

2
j < 1 for j ∈ Ω. Then

dI
∑
k∈Ω

Ljk(I
1
k − I1

j ) + I1
j fj(I

1
j , dS1

) = 0, j ∈ Ω,(4.1a)

dI
∑
k∈Ω

Ljk(I
2
k − I2

j ) + I2
j fj(I

2
j , dS2

) = 0, j ∈ Ω,(4.1b)

where

fj(u, dS) = βj

(
1 − dSu

dSu + dI(1 − u)

)
− γj , u ∈ [0, 1] and j ∈ Ω.

It is easy to see that ∂fj/∂dS ≤ 0. It follows from this fact and (4.1b), with dS1 in
place of dS2

, that

dI
∑
k∈Ω

Ljk(I
2
k − I2

j ) + I2
j fj(I

2
j , dS1) ≥ 0, j ∈ Ω.

Thus, I2 is a subsolution of (4.1a). Again, I = (1, 1, . . . , 1)t is a supersolution of
(4.1a). Also, I2 < I. By the iteration method presented in sections 3.3 and 3.4,
(4.1a) has a unique solution I1 ∈ [I2, I]. We conclude that I1 ≥ I2.

Recall that 0 < Ij < 1 for each j ∈ Ω. The above lemma implies that for every
j ∈ Ω there exists some I∗j such that as dS → 0,

(4.2) Ij → I∗j and 0 < I∗j ≤ 1.

Let I∗ = (I∗j ). It remains to establish conditions under which 0 < I∗j < 1 or I∗j = 1.
Let

J− = {j ∈ Ω : 0 < I∗j < 1} and J+ = {j ∈ Ω : I∗j = 1}.

Observe that J− ∪ J+ = Ω. We will need to know that J− is nonempty.
Lemma 4.3. H− ⊆ J−.
Proof. We argue by contradiction. Suppose that there exists some j ∈ H− with

j ∈ J+. Then βj < γj and I∗j = 1. In view of (3.2), we multiply both sides of (3.1b)

by dI/κ and drop the nonnegative term βj Ĩj/(S̃j + Ĩj) to get

dI
∑
k∈Ω

Ljk(Ik − Ij) + Ij(βj − γj) ≥ 0.

Letting dS → 0 on both sides yields

dI
∑
k∈Ω

Ljk(I
∗
k − 1) + βj − γj ≥ 0.
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The negativity of βj − γj implies that∑
k∈Ω

Ljk(I
∗
k − 1) > 0.

But this inequality contradicts (4.2). We conclude that if j ∈ H−, then j ∈ J−.
We are now in a position to determine the asymptotic behavior of S̃j .
Lemma 4.4. The following statements hold:

(a) κ/dS → N∗ def
= N/

∑
j∈Ω(1 − I∗j ) as dS → 0;

(b) S̃ → S∗ as dS → 0, where S∗
j

def
= (1 − I∗j )N∗;

(c) S∗ ≥ 0 and
∑

j∈Ω S∗
j = N .

Proof.
(a) Equations (3.1a), (3.1c), and (3.2) imply that

N =
∑
j∈Ω

(
κ− dI Ĩj

dS

)
+

∑
j∈Ω

Ĩj =
κ

dS

∑
j∈Ω

(1 − Ij) +
∑
j∈Ω

Ĩj .

Lemma 4.1 and (4.2) imply that

κ

dS
→ N∑

j∈Ω(1 − I∗j )
as dS → 0.

This limit is well defined because J− is nonempty.
(b) Again, (3.1a) and (3.2) imply that

S̃j =
κ− dI Ĩj

dS
= (1 − Ij)

κ

dS
.

Equation (4.2) and part (a) imply that S̃j → (1 − I∗j )N∗ as dS → 0.
(c) This part follows immediately from parts (a) and (b), the positivity of N ,

and (4.2).

4.2. The limiting DFE on high-risk patches. Observe from Lemma 4.4(b)
that S∗ > 0 on J− and S∗ ≡ 0 on J+. We know from Lemma 4.3 that J− is
nonempty because it contains H−. Next we show that J+, which is a subset of H+,
is also nonempty.

Lemma 4.5. J+ is nonempty.
Proof. We argue by contradiction. Suppose that J+ is empty, i.e., J− = Ω.

Multiply both sides of (3.1b) by dI/κ to get

(4.3) dI
∑
k∈Ω

Ljk(Ik − Ij) + Ij

(
βj − γj −

βj Ĩj

S̃j + Ĩj

)
= 0, j ∈ Ω.

Since I∗j ∈ (0, 1) for j ∈ Ω, we have from (3.4a) and (4.2) that Sj = (1− Ij)/dS → ∞
as dS → 0 for j ∈ Ω. It follows from this fact and (3.2) that

βj Ĩj

S̃j + Ĩj
=

βjIj
dISj + Ij

→ 0

as dS → 0 for j ∈ Ω. Letting dS → 0 in (4.3), we get

dI
∑
k∈Ω

Ljk(I
∗
k − I∗j ) + I∗j (βj − γj) = 0, j ∈ Ω.
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Thus (λ, ψ) = (0, I∗) satisfies (3.5). Since I∗ > 0, we obtain from Lemma 3.4(a) that
λ∗ = 0. But this contradicts Lemma 3.5(a). We conclude that J+ is nonempty.

Next, we determine a condition under which J+ is as large as it can be.
Lemma 4.6. If condition (1.6) holds, then J+ = H+.
Proof. Recall that J+ ⊆ H+. We argue by contradiction to show that if condition

(1.6) holds, then H+ ⊆ J+. Suppose that condition (1.6) holds and that there exists
some j ∈ H+ with the property that j ∈ J−. Without loss of generality, we may
assume that I∗j = min{I∗k : k ∈ H+}. Choose m ∈ H− so that I∗m = min{I∗k :
k ∈ H−}. Letting dS → 0 in (3.4b) implies that

dI
∑
k∈Ω

Ljk(I
∗
k − I∗j ) + I∗j (βj − γj) = 0.

Here we used the fact that 0 < I∗j < 1. Since Ω = H− ∪H+, we obtain

dI
∑

k∈H+

Ljk(I
∗
k − I∗j ) + dI

∑
k∈H−

LjkI
∗
k + I∗j (βj − γj − dIL

−
j ) = 0.

The minimality of I∗j over H+ and I∗m over H− implies that

(4.4) (dIL
−
j )I∗m ≤ I∗j (γj − βj + dIL

−
j ).

A similar argument shows that

(4.5) (dIL
+
m)I∗j ≤ I∗m(γm − βm + dIL

+
m).

We multiply corresponding sides of (4.4) and (4.5) together and simplify to get

(γj − βj)(γm − βm) + (γj − βj)dIL
+
m + (γm − βm)dIL

−
j ≥ 0.

We divide both sides by dI(γj − βj)(γm − βm), which is negative, and rearrange to
get

1

dI
≤

L−
j

βj − γj
+

L+
m

βm − γm
≤ max

j∈H+

[
L−
j

βj − γj

]
+ max

k∈H−

[
L+
k

βk − γk

]
.

This contradicts (1.6). We conclude that H+ ⊆ J+, and therefore that H+ =
J+.

Finally, we determine a condition under which J+ is a proper subset of H+.
Lemma 4.7. If condition (1.7) holds for some j ∈ H+, then j ∈ J−.
Proof. We argue by contradiction. Suppose that condition (1.7) holds for some

p ∈ H+, and that p ∈ J+. Choose m ∈ H− such that I∗m = max{I∗k : k ∈ H−} < 1.
We let dS → 0 in (3.4b) with j = m to get

0 = dI
∑
k∈Ω

Lmk(I
∗
k − I∗m) + I∗m(βm − γm).

We rearrange to get

0 = dI
∑

k∈H+

LmkI
∗
k + dI

∑
k∈H−

LmkI
∗
k + I∗m(βm − γm − dILm).
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The upper bound of 1 on I∗k and the maximality of I∗m imply that

0 ≤ dIL
+
m + I∗m(βm − γm + dIL

−
m − dILm).

The relation L+
m + L−

m = Lm implies that

I∗m(γm − βm + dIL
+
m) ≤ dIL

+
m.

The positivity of γm − βm implies that

(4.6) I∗m ≤ dIL
+
m

γm − βm + dIL
+
m
.

Letting dS → 0 in (3.4b), we get

0 ≤ dI
∑
k∈Ω

Ljk(I
∗
k − I∗j ) + I∗j (βj − γj), j ∈ Ω.

Again, we rearrange to get

0 ≤ dI
∑

k∈H+

LjkI
∗
k + dI

∑
k∈H−

LjkI
∗
k + I∗j (βj − γj − dILj), j ∈ Ω.

In particular, if j = p, then

0 ≤ dIL
+
p + dI

∑
k∈H−

LpkI
∗
k + (βp − γp − dILp).

The relation L+
p + L−

p = Lp and the maximality of I∗m imply that

0 ≤ dI(I
∗
m − 1)L−

p + βp − γp.

Equation (4.6) implies that

0 ≤ dI

(
dIL

+
m

γm − βm + dIL
+
m

− 1

)
L−
p + βp − γp.

We rearrange to get

βp − γp
dI

≥
(

γm − βm

γm − βm + dIL
+
m

)
L−
p .

The positivity of γm − βm and βp − γp implies that

1

dI
≥

L−
p

βp − γp
+

L+
m

βm − γm
≥

L−
p

βp − γp
+ min

k∈H−

[
L+
k

βk − γk

]
.

But this contradicts (1.7) with j = p. We conclude that if (1.7) holds for some
p ∈ H+, then p ∈ J−.

5. Discussion. We first mention some limiting cases for which we can simplify
the expression for the basic reproduction number R0. We next state some open
problems that relate to our work, and then finish with some concluding remarks.
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5.1. Limiting cases. In the general case, we will not be able to obtain a simple
expression for R0. However, we can compute an explicit expression for R0 in special
cases.

In two limiting cases for n patches, the expression for R0 can be simplified.
The basic reproduction number tends to the maximum ratio of the transmission
rate to the recovery rate as infected movement becomes arbitrarily small (R0 →
max {βj/γj : j ∈ Ω} as dI → 0), and it tends to the average transmission rate di-
vided by the average recovery rate as infected movement becomes arbitrarily large
(R0 → Σβ/Σγ as dI → ∞). The latter limit can be verified for a given value of n by
calculating the limit V −1

∞ of V −1 as dI → ∞ (McCormack (2006)). For example, if
n = 2 patches, then F =

( β1 0
0 β2

)
and V −1

∞ = 1
γ1+γ2

(
1 1
1 1

)
, so that the limiting value

of R0 is ρ(FV −1
∞ ) = β1+β2

γ1+γ2
.

In the general case that n = 2, then R0 in Lemma 2.2 becomes

R0 =
β2γ1 + β1γ2 + dI�(β1 + β2) +

√
[β2γ1 − β1γ2 + dI�(β2 − β1)]2 + (2dI�)2β1β2

2[γ1γ2 + dI�(γ1 + γ2)]
,

where � = L12 = L21. In this case, the condition R0 < 1 is equivalent to the following
conditions:

(β1 − γ1 − dI�) + (β2 − γ2 − dI�) < 0,

(β1 − γ1 − dI�)(β2 − γ2 − dI�) − (dI�)
2 > 0.

That is, the eigenvalues of F − V are negative if and only if the conditions above are
satisfied.

5.2. Open problems. Some open mathematical questions remain in connection
with this research.

• We conjecture that the basic reproductive number R0 is a monotone decreas-
ing function of dI . The difficulty in showing this directly is that, although
V −1 is a function of dI , a general expression for V −1 is not simple. If this
conjecture is true, then max {βj/γj : j ∈ Ω} and Σβ/Σγ are upper and lower
bounds, respectively, on R0.

• We did not prove stability of the EE in Theorem 1. We conjecture that
the EE globally attracts all solutions of (1.1) satisfying (1.2), and numerical
simulations suggest that this is indeed the case. The uniform persistence of
Ī = (Īj) in (1.1) when the DFE is unstable has recently been established by
Dhirasakdanon, Thieme, and van den Driessche (2007).

• We do not yet fully understand the asymptotic behavior of the EE as dS → 0.
For example, condition (1.6) is not necessary for S∗

j to be zero on a patch. In
Figure 2(c) susceptibles can persist on only one of four high-risk patches. In
this case, condition (1.7) is satisfied for j = 5,

1 =
1

dI
<

L−
5

β5 − γ5
+ min

k∈H−

{
L+
k

βk − γk

}
=

2

0.5
− 1

0.5
= 2,

but neither condition (1.6) nor (1.7) is satisfied for j = 2, 3, 6. Similarly,
condition (1.7) is probably not necessary for S∗

j to be positive on a patch. It
is easy to see that if some high-risk patch (j ∈ H+) is not directly connected
to any low-risk patches (L−

j = 0), then condition (1.7) cannot be satisfied

because L+
k /(βk − γk) is nonpositive for k ∈ H−. However, this does not rule
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out the possibility that S∗
j > 0. In general, an open problem is to determine

the distribution of high-risk patches for which S∗ is either positive or zero
when neither condition (1.6) nor (1.7) is satisfied. In Figure 2(d), susceptibles
cannot persist on the single high-risk patch, and neither condition (1.6) nor
(1.7) is satisfied:

max
j∈H+

{
L−
j

βj − γj

}
=

L−
5

β5 − γ5
=

4

2
= 2,

min
j∈H−

{
L+
j

βj − γj

}
= − 1

0.5
= −2, and max

j∈H−

{
L+
j

βj − γj

}
= 0.

As always, there are biological realities that we did not take into account, but
which ecologists have suggested are important determinants of community dynamics.

• We neglect population dynamics (births or deaths) within the patches. At
a very crude level, we can either ignore these dynamics on the grounds that
epidemic dynamics often occur on a faster time scale than host demography,
or we can say heuristically that death of an infected individual and subse-
quent replacement by a susceptible (in the absence of vertical transmission)
is equivalent to a recovery event. Of course, either of these claims is an ap-
proximation, and it remains to be seen whether the results would be sensitive
to such details.

• Death during movement may occur, especially if patches are separated by
hostile “matrix” habitat. Adding this phenomenon might simply mean that
some component of mortality (corresponding to a loss of infective potential,
as argued in the previous point) scaled with dI .

• Density-dependent movement—typically increasing rates of movement at high-
er population density, by organisms seeking to avoid competition—is gener-
ally an important factor in determining the behavior of spatial population
dynamics models (Amarasekare (2004)).

These factors suggest possible directions for future exploration.

5.3. Mathematical and biological conclusions. Some of the relationships
and techniques applied here have been applied by others. The relationship between
the high rate of movement for infectives (dI > d∗I) and the basic reproduction number
(R0 < 1) was noted by Salmani and van den Driessche (2006) in a two-patch SIS
epidemic model. In addition, global stability of the DFE using comparison or mono-
tone techniques has been applied by others (Arino et al. (2005); Arino and van den
Driessche (2006); Wang and Mulone (2003); Wang and Zhao (2004)).

Our new results relate spatial heterogeneity, habitat connectivity, and rates of
movement to disease persistence and extinction. We showed for populations with low
mobility of susceptibles (dS ≈ 0) and moderate mobility of infectives (0 � dI < d∗I)
that disease prevalence is very low (Ĩ ≈ 0) in a spatial environment that includes
both low-risk and high-risk patches. These results may have implications for disease
control. If the environment is low-risk, but infectives move a lot, the disease may die
out; conversely, restricting movement of infectives among patches (e.g., by habitat
fragmentation) may allow the disease to persist and/or reemerge. In contrast, if a
high-risk spatial environment can be modified to include low-risk patches (i.e., low
transmission rates or high recovery rates) and if the mobility of susceptible individuals
can be restricted, then it may be possible to eliminate the disease. In epidemiology,
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quarantine attempts to prevent infected individuals from moving into a patch with
a susceptible population; a cordon sanitaire attempts to restrict the movement of
infected individuals out of a restricted area. The control strategy suggested by these
results most closely resembles the movement restrictions imposed on all individuals
(susceptible as well as infective) during the 2001 foot-and-mouth disease virus epi-
demic in Britain.

In a broader sense, these results fall under the ecological rubric of source-sink dy-
namics—population dynamics in heterogeneous environments with both “good” and
“bad” patches (in our terminology, high- or low-risk patches, depending on whether
we mean “good for the host” or “good for the disease”). The initially counterin-
tuitive result that movement of infectives leads to disease extinction in a high-risk
environment, which seems at odds with the idea of preventing disease from spread-
ing between high-risk core groups and the general population (Jacquez, Simon, and
Koopman (1995)), or between patches in a metapopulation (Hess (1996)), makes sense
when we consider that (unlike in the core-group example), high infection rates are a
property of the environment rather than of the individual. Ecologists usually want
to prevent the extinction of threatened species; in contrast, epidemiologists want to
promote the extinction of disease. However, ecologists have explored a broad range of
questions, including evolutionary dynamics (Gomulkiewicz, Holt, and Barfield (1995))
and community structure (Namba and Hashimoto (2004)), in the context of source-
sink dynamics. In the long run, linking the mathematical analyses of theoretical epi-
demiological and ecological models in heterogeneous landscapes can lead to broader
mathematical and biological insights.

Appendix A. The irreducibility of L implies that, given any j, k ∈ Ω with
j �= k, there exists a distinct sequence j1, j2, . . . , js ∈ Ω, with j1 = j and js = k,
such that Ljpjp+1

> 0 for 1 ≤ p ≤ s− 1 (Seneta (1973), Exercise 1.3). We call such a
sequence a chain from j to k. Second, the irreducibility of L implies that there exists
no nonempty proper subset K of Ω with the property that Ljk = 0 for j ∈ K and
k �∈ K (Bapat and Raghavan (1997), Lemma 1.1.1). Finally, L is associated with an
adjacency matrix B = (Bjk) for which Bjk = 1 if Ljk > 0 and Bjk = 0 if Ljk = 0. If
the corresponding adjacency matrix for another nonnegative matrix A has the same
off-diagonal entries as B, then A is also irreducible (Ortega (1987)).

Appendix B.

Proof of Lemma 3.4.

(a) As θ and μ∗ are both real, so is λ∗. The fact that (μ∗, φ) is a solution of (3.6)
implies that (λ∗, φ) is a solution of (3.5). Since (λ∗, ψ) satisfies (3.5) if and
only if (μ∗, ψ) satisfies (3.6), and (μ∗, ψ) is a solution of (3.6) if and only if
ψ ∈ 〈φ〉, it follows that (λ∗, ψ) is a solution of (3.5) if and only if ψ ∈ 〈φ〉.
Suppose that (λ, ψ) satisfies (3.5) with λ �= λ∗. Then (μ, ψ) satisfies (3.6)
with μ = θ − λ �= θ − λ∗ = μ∗. Lemma 3.3 implies that μ < μ∗ and ψj ≤ 0
for some j ∈ Ω. We conclude that λ = θ − μ > θ − μ∗ = λ∗.

(b) Observe from (3.7) that both φ and λ∗ are functions of dI . Both φ and λ∗

are, in fact, differentiable functions of dI by the implicit function theorem.
We differentiate both sides of (3.7) by dI to obtain∑
k∈Ω

Ljk(φk − φj) + dI
∑
k∈Ω

Ljk

(
φ′
k − φ′

j

)
+ (βj − γj + λ∗)φ′

j + (λ∗)′φj = 0,

j ∈ Ω.
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It suffices to show that (λ∗)′ > 0. We multiply both sides of the equation
above by φj and sum over all j ∈ Ω to get∑

j,k∈Ω

Ljk(φk − φj)φj + dI
∑
j,k∈Ω

Ljk

(
φ′
k − φ′

j

)
φj

+
∑
j∈Ω

(βj − γj + λ∗)φjφ
′
j + (λ∗)′

∑
j∈Ω

φ2
j = 0.

Equation (3.7) and the symmetry of L imply that the second and third sums
on the left-hand side cancel:∑

j∈Ω

(βj − γj + λ∗)φjφ
′
j = dI

∑
j,k∈Ω

Ljk(φj − φk)φ
′
j

= dI
∑
j,k∈Ω

Ljk(φ
′
j − φ′

k)φj .

Therefore, ∑
j,k∈Ω

Ljk(φk − φj)φj + (λ∗)′
∑
j∈Ω

φ2
j = 0.

The symmetry of L implies that

(B.1) (λ∗)′
∑
j∈Ω

φ2
j =

1

2

∑
j,k∈Ω

Ljk(φj − φk)
2.

Clearly, the right-hand side is nonnegative. We now show that it is in fact
positive. We argue by contradiction. Suppose that

(B.2)
∑
j,k∈Ω

Ljk(φj − φk)
2 = 0.

If φj = φ1 for all j ∈ Ω, then (3.7) and the positivity of φ imply that
βj − γj + λ∗ = 0 for all j ∈ Ω. But this is impossible, because H− and H+

are both nonempty. Therefore, it must be that φm �= φ1 for some m ∈ Ω.
The irreducibility of L implies that there exists a chain from 1 to m, i.e., a
sequence j1, j2, . . . , js ∈ Ω with j1 = 1 and js = m such that Ljpjp+1 > 0 for
1 ≤ p ≤ s − 1. Equation (B.2) implies that φjp = φjp+1

for 1 ≤ p ≤ s − 1.
Hence, φ1 = φm, another contradiction. We conclude that the right-hand
side of (B.1) is positive, and thus that (λ∗)′ is also positive.

(c) A variational characterization of λ∗ is given by

(B.3) λ∗ = inf∑
j∈Ω

ϕ2
j=1

⎧⎨
⎩dI

2

∑
j,k∈Ω

Ljk(ϕj − ϕk)
2 +

∑
j∈Ω

(γj − βj)ϕ
2
j

⎫⎬
⎭ ,

and (3.7) is its corresponding Euler–Lagrange equation. Thus,

lim
dI→0

λ∗ = inf∑
j∈Ω

ϕ2
j=1

⎧⎨
⎩∑

j∈Ω

(γj − βj)ϕ
2
j

⎫⎬
⎭ .

The right-hand side is minimized by setting ϕj = 1 for a single j ∈ Ω with the
property that γj − βj = min{γk − βk : k ∈ Ω} and letting ϕj = 0 otherwise.
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(d) Parts (b) and (c) show that λ∗ is a strictly monotone increasing function of
dI > 0 that is bounded from below, and substituting φj = 1/

√
n for j ∈ Ω

into (B.3) shows that λ∗ is bounded from above. Therefore, λ∗ has a limit
λ∗
∞ ∈ (min{γk − βk : k ∈ Ω},∞) as dI → ∞. We divide both sides of (3.7)

by dI to get

(B.4)
∑
k∈Ω

Ljk(φk − φj) +
(βj − γj)φj

dI
+

λ∗φj

dI
= 0, j ∈ Ω.

Without loss of generality, we may assume that φ = (φj) is a unit vector,
i.e.,

∑
j∈Ω φ2

j = 1. It follows from the positivity of φ and compactness that

φ → φ̄, where φ̄j ≥ 0 for j ∈ Ω and
∑

j∈Ω φ̄2
j = 1, for some positive sequence

of values dI → ∞. Let this sequence be denoted by d
(l)
I . Taking such a limit

in (B.4) produces ∑
k∈Ω

Ljk(φ̄k − φ̄j) = 0, j ∈ Ω.

We can write this equation in matrix-vector form as Aφ̄ = φ̄, where A =
(Ljk/Lj). The nonnegativity and irreducibility of A implies that φ̄ is pro-
portional to (1, 1, . . . , 1)t, as both vectors belong to the principal eigenvalue
μ = 1. The fact that φ̄ is a nonnegative unit vector implies that φ̄j = 1/

√
n

for j ∈ Ω. Observe from the symmetry of L that
∑

j,k∈Ω Ljk(φk − φj) = 0.

Therefore, summing (3.7) with dI = d
(l)
I over all j ∈ Ω yields

(B.5)
∑
j∈Ω

(βj − γj)φj + λ∗(d(l)
I

)∑
j∈Ω

φj = 0.

We let d
(l)
I → ∞ to get∑

j∈Ω

(βj − γj)φ̄j + λ∗
∞

∑
j∈Ω

φ̄j = 0.

Since φ̄j = 1/
√
n for j ∈ Ω, we obtain

λ∗
∞ =

1

n

∑
j∈Ω

(γj − βj) =
Σγ − Σβ

n
.

Finally, parts (e) and (f) follow directly from parts (b), (c), and (d) together with the
fact that H+ is nonempty.

Appendix C.
Proof of Lemma 3.7.
(a) We argue by induction on l for I(l). If l = 0, then the result is immediate

because I
(0)
j = Ij = εφj ∈ [0, 1] for j ∈ Ω. Suppose now that I

(l)
j ∈ [0, 1] for

0 ≤ l ≤ s and j ∈ Ω, where s ≥ 0, but that I
(s+1)
m �∈ [0, 1] for some m ∈ Ω.

Suppose first that I
(s+1)
m < 0. Without loss of generality, we may assume that

I
(s+1)
m = min{I(s+1)

j : j ∈ Ω}. Equation (3.11) with l = s and j = m implies
that

−dI
∑
k∈Ω

Lmk

(
I
(s+1)
k − I(s+1)

m

)
+ MI(s+1)

m =
[
fm

(
I(s)
m

)
+ M

]
I(s)
m .
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Since I
(s)
m ∈ [0, 1], we have, by the properties of M ,

−dI
∑
k∈Ω

Lmk

(
I
(s+1)
k − I(s+1)

m

)
+ MI(s+1)

m ≥ 0.

Since MI
(s+1)
m < 0, it follows that

dI
∑
k∈Ω

Lmk

(
I
(s+1)
k − I(s+1)

m

)
< 0.

However, this result contradicts the minimality of I
(s+1)
m . Suppose now that

I
(s+1)
m > 1, and without loss of generality that I

(s+1)
m = max{I(s+1)

j : j ∈ Ω}.
Again, (3.11) with l = s and j = m implies that

−dI
∑
k∈Ω

Lmk

(
I
(s+1)
k − I(s+1)

m

)
+ MI(s+1)

m = Fm

(
I(s)
m

)
+ MI(s)

m .

Since I
(s)
m ∈ [0, 1], and Fm(u) + Mu is a monotone increasing function of

u ∈ [0, 1], we have

Fm

(
I(s)
m

)
+ MI(s)

m ≤ Fm(1) + M ≤ M,

where the last inequality follows from Fm(1) = fm(1) = −γm ≤ 0. Hence

−dI
∑
k∈Ω

Lmk

(
I
(s+1)
k − I(s+1)

m

)
+ MI(s+1)

m ≤ M.

Since I
(s+1)
m > 1, we have

−dI
∑
k∈Ω

Lmk

(
I
(s+1)
k − I(s+1)

m

)
< 0.

However, this result contradicts the maximality of I
(s+1)
m . We conclude that

I
(s+1)
j ∈ [0, 1] for all j ∈ Ω, and, by induction, I

(l)
j ∈ [0, 1] for l ≥ 0 and j ∈ Ω.

The argument for I [l] is similar.
(b) We argue by induction on l for ΔI(l). To show that ΔI(0) ≥ 0, we suppose

otherwise and obtain a contradiction. If ΔI(0) �≥ 0, then there exists some

m ∈ Ω such that ΔI
(0)
m < 0. We may assume that ΔI

(0)
m = min{ΔI

(0)
j :

j ∈ Ω}. Recall that ε was chosen so that G(I) = G(εφ) ≥ 0. Equation (3.9)
with j = m and I = I(0) = I implies that

Gm

(
I(0)

)
= dI

∑
k∈Ω

Lmk

(
I
(0)
k − I(0)

m

)
+ Fm

(
I(0)
m

)
≥ 0.

It follows from this inequality and (3.11) with l = 0 and j = m that

−dI
∑
k∈Ω

Lmk

(
I
(1)
k − I(1)

m

)
+ MI(1)

m ≥ dI
∑
k∈Ω

Lmk

(
I(0)
m − I

(0)
k

)
+ MI(0)

m .

Therefore,

dI
∑
k∈Ω

Lmk

(
ΔI

(0)
k − ΔI(0)

m

)
≤ MΔI(0)

m < 0.
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However, this result contradicts the minimality of ΔI
(0)
m . We conclude that

ΔI(0) ≥ 0.
Suppose now that ΔI(l) ≥ 0 for 0 ≤ l ≤ s, where s ≥ 0, but that ΔI(s+1) �≥ 0.

Then there exists some m ∈ Ω such that ΔI
(s+1)
m < 0. We may assume that

ΔI
(s+1)
m = min{ΔI

(s+1)
j : j ∈ Ω}. We subtract (3.11) with l = s and j = m

from (3.11) with l = s + 1 and j = m to get

−dI
∑
k∈Ω

Lmk

(
ΔI

(s+1)
k − ΔI(s+1)

m

)
+ MΔI(s+1)

m

= Fm

(
I(s+1)
m

)
− Fm

(
I(s)
m

)
+ MΔI(s)

m .

Recall from part (a) that I
(s)
m and I

(s+1)
m both lie within the interval [0, 1].

There exists ζ between I
(s)
m and I

(s+1)
m such that

−dI
∑
k∈Ω

Lmk

(
ΔI

(s+1)
k − ΔI(s+1)

m

)
+ MΔI(s+1)

m =
[
F ′
m(ζ) + M

]
ΔI(s)

m .

The right-hand side is nonnegative because F ′
m(ζ) + M > 0 and ΔI

(s)
m ≥ 0.

Therefore,

dI
∑
k∈Ω

Lmk

(
ΔI

(s+1)
k − ΔI(s+1)

m

)
≤ MΔI(s+1)

m < 0.

However, this result contradicts the minimality of ΔI
(s+1)
m . We conclude that

ΔI(s+1) ≥ 0, and, by induction, ΔI(l) ≥ 0 for l ≥ 0. The arguments for ΔI [l]

and ΔI{l} are similar, except that ΔI [1] = I [1] − I [0] ≤ 0 by part (a) and
ΔI{0} = I [0] − I(0) ≥ 0 is immediately clear.
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NONLINEAR DYNAMICS OF ELECTRIFIED THIN LIQUID FILMS∗

DMITRI TSELUIKO† AND DEMETRIOS T. PAPAGEORGIOU†

Abstract. We study a nonlinear nonlocal evolution equation describing the hydrodynamics
of thin films in the presence of normal electric fields. The liquid film is assumed to be perfectly
conducting and to completely wet the upper or lower surface of a horizontal flat plate. The flat plate
is held at constant voltage, and a vertical electric field is generated by a second parallel electrode
kept at a different constant voltage and placed at a large vertical distance from the bottom plate.
The fluid is viscous, and gravity and surface tension act. The equation is derived using lubrication
theory and contains an additional nonlinear nonlocal term representing the electric field. The electric
field is linearly destabilizing and is particularly important in producing nontrivial dynamics in the
case when the film rests on the upper side of the plate. We give rigorous results on the global
boundedness of positive periodic smooth solutions, using an appropriate energy functional. We also
implement a fully implicit numerical scheme and perform extensive numerical experiments. Through
a combination of analysis and numerical experiments we present evidence for the global existence of
positive smooth solutions. This means, in turn, that the film does not touch the wall in finite time
but asymptotically at infinite time. Numerical solutions are presented to support such phenomena,
which are also observed in hanging films when electric fields are absent.

Key words. thin film, electrohydrodynamics, nonlocal evolution equation
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1. Introduction. A viscous liquid film wetting the upper surface of a flat hor-
izontal substrate is expected to be stable, under normal conditions, and eventually
returns to its uniform undisturbed value of the film thickness. If the film is hanging
(i.e., it wets the underside of the substrate), then gravity is destabilizing. This paper
is concerned with the addition of electric fields normal to the substrate. Using exper-
iments and linear theory, Taylor and McEwan [26] observed that a sufficiently strong
field can overcome viscous forces in overlying films and induce wavy perturbations.
We aim to model and analyze the nonlinear stages of this phenomenon for overlying
and hanging films.

In the absence of electric fields the problem was studied by Ehrhard and Davis [9],
who considered spreading of viscous drops on smooth horizontal surfaces which are
uniformly heated or cooled. Their isothermal evolution equation for the interface co-
incides with ours when there is no electric field. Yiantsios and Higgins [30] considered
the behavior of a viscous film bounded below by a wall and above by an unbounded
second heavier immiscible fluid. For the case when the Bond number B � 1 (it mea-
sures the ratio between gravitational and interfacial forces) and the viscosity ratio
m = μ1/μ2 is O(1), where μ2 is the film viscosity, they obtained the same evolution
equation for the interface as did Ehrhard and Davis [9]. Ehrhard [8] used the model
derived by Erhard and Davis [9] to describe the quasi-steady evolution of a viscous
drop hanging on the earth-facing side of a smooth horizontal plate, which is either uni-
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formly heated or cooled. Also, other similar equations arising in the modeling of thin
liquid films have been derived and studied by Bertozzi [1], Dussan [7], Greenspan [13],
Haley and Miksis [14], Hocking [16], Myers [18], and Oron, Davis, and Bankoff [19].

Here we consider the problem of a perfectly conducting liquid film on a horizontal
plane with the upper electrode placed far from the grounded substrate. There has
been considerable interest in electrically induced instabilities and their use in pattern
formation and transfer in photolithographic applications. Demonstrations of such
instabilities in this context have been made by Schaffer et al. [23], [24] and Lin et
al. [17], for example. Theoretical works have focused on linear theory, as in Pease and
Russel [21] and references therein, as well as long wave theories in the thin film and
small gap approximation (i.e., the second electrode is placed close to the grounded
bottom plate) in Shankar and Sharma [25], and the more recent leaky dielectric study
of Craster and Matar [5]. The present work is related to but different from those
cited above, but we expect that the mathematical tools developed here can be used
in those problems also.

A long wave theory leads to a nonlocal nonlinear evolution equation at the lead-
ing order, which by a change of the sign of the gravitational parameter also describes
hanging films. (Nonlocal equations have also been derived in related problems by Pa-
pageorgiou and Vanden-Broeck [20], Savettaseranee et al. [22], and Tilley, Petropoulos,
and Papageorgiou [27].) If H(x, t) denotes the scaled interfacial position, then the
equation takes the form

Ht +
1

3

[
H3

(
1

C
Hxxx −GHx + 2WeH[Hxx]

)]
x

= 0, (x, t) ∈ R × R+,(1.1)

H(x, t) = H(x + 2L, t),

where C > 0, We > 0, and G can be positive or negative for overlying or hanging
films, respectively. In the absence of an electric field the film is linearly stable or
unstable, depending on whether G > 0 or G < 0. The addition of an electric field can
always make the film unstable irrespective of the sign of G.

We prove that positive smooth solutions of (1.1) do not blow up and are uni-
formly bounded for all time in the Sobolev H1-norm. This is done by constructing
an appropriate energy functional E [H] having the steady-state solutions as extrema.
Our analysis extends that of Bertozzi and Pugh [3] to the nonlocal equation (1.1). We
also note that Hocherman and Rosenau [15] considered a class of thin film equations
with the coefficients in front of the spatial derivatives being polynomials of higher or
lower degree of the unknown function (it is unclear whether such equations arise in
physical applications). They were interested in identifying equations whose solutions
blow up in finite time, and they made a conjecture regarding this. This possibility
was also recently studied by Bertozzi and Pugh [3], [4], and Witelski, Bernoff, and
Bertozzi [29] based on both rigorous analysis and numerical computations.

For (1.1) we also establish analytically that for positive solutions the integral∫ L

−L
(1/H)dx is bounded on each time interval. Extensive numerical experiments

indicate that max |Hxx| is bounded on each time interval; if we assume this, then we

can use the observation on the evolution of
∫ L

−L
(1/H)dx to prove global existence of

positive smooth solutions (i.e., that the film does not touch down in finite time). A
rigorous proof of boundedness of max |Hxx| is under investigation. Results of extensive
computations and their relation to the analytical results are also reported.

The outline of the paper is as follows. In section 2 we describe the physical
problem and give the governing equations. Section 3 develops the asymptotic long
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wave theory that leads to the scaled evolution equation (1.1). Section 4 is devoted
to rigorous analytical results, and section 5 describes the numerical method used to
solve (1.1). Section 6 contains the numerical results, and finally, in section 7 we give
our conclusions.

2. Physical model and governing equations. Consider a viscous liquid film
completely wetting a solid horizontal substrate. Two related configurations are of
interest: overlying two-dimensional films with the liquid layer resting on the substrate,
and overhanging two-dimensional films with the liquid layer wetting the underside of
the horizontal substrate. A schematic is provided in Figure 1 for the overlying film
with a normal electric field present.

E0

�

x

z
gh x t( , ) h0

�

Perfectly conducting
viscous fluid

Permittivity �
a

Region I

Region II

Fig. 1. Schematic of the problem.

The fluid is Newtonian of a constant density ρ and dynamic viscosity μ and is
assumed to be a perfect conductor. The surface tension coefficient between the liquid
and the surrounding medium is σ. We denote by h(x, t) the local film thickness,
which is a function of space and time, and the unperturbed thickness of the liquid
layer is h0. The gravitational acceleration g acts in the vertical direction. The plate
is a grounded infinite electrode held at zero voltage. Another flat parallel electrode
is placed infinitely far from the wetted substrate, so that a uniform vertical electric
field is set up at infinity; i.e., at infinity the electric field E approaches a constant
value E0 which is normal to the plate. The surrounding medium is assumed to be
a perfect dielectric with permittivity εa, and the corresponding voltage potential in
it is denoted by V . Since the liquid is a perfect electric conductor, the potential is
zero on the interface, and there is no electric field inside the liquid layer. We use a
rectangular coordinate system (x, z) with the x-axis pointing along the plate and the
z-axis pointing up and being perpendicular to the plate. The associated velocity field
is denoted by u = (u, v), the liquid layer is denoted by Region I, and the surrounding
medium by Region II.

The hydrodynamics in Region I is governed by the Navier–Stokes equations. In
Region II the electric field can be written as E = −∇V , with V satisfying the Laplace
equation. The equations are made dimensionless by scaling lengths with h0, velocities
with a typical velocity U0, time with h0/U0, pressure with μU0/h0, and voltages by
E0h0. This leads to the following equations in Region I:

ut + uux + vuz =
1

R
(−px + uxx + uzz),(2.1)

vt + uvx + vvz =
1

R
(−pz + vxx + vzz −G),(2.2)

ux + vz = 0,(2.3)
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and in Region II we obtain

(2.4) Vxx + Vzz = 0.

The dimensionless boundary conditions of no slip at the wall and the far field condition
in Region II for the voltage become

(2.5) u|z=0 = 0, v|z=0 = 0,

(2.6) Vx → 0, Vz → −1 as z → ∞.

At the interface z = h(x, t) we have

V = 0,(2.7)

v = ht + uhx,(2.8)

(1 − h2
x)(uz + vx) + 4hxvz = 0,(2.9)

−We

2
(1 + h2

x)V 2
z +

1 + h2
x

1 − h2
x

vz +
1

2
(p̄atm − p) =

hxx

2C(1 + h2
x)3/2

,(2.10)

where p̄atm = patmh0/μU0, with patm a constant, is the nondimensional constant
pressure in Region II. The boundary condition (2.7) reflects the fact that z = h(x, t)
is an equipotential surface, (2.8) is the kinematic condition, and (2.9) and (2.10) follow
from the balance of tangential and normal stresses at the interface. The parameters

R =
U0h0

ν
, C =

U0μ

σ
, We =

εaE
2
0h0

2μU0
, G =

ρgh2
0

μU0
(2.11)

are a Reynolds number, a Capillary number measuring the ratio of inertial to capillary
forces, an electric Weber number measuring the ratio of electrical to fluid pressures,
and a gravity number G measuring the ratio of gravitational to viscous forces.

It is useful to use the following exact solution to (2.1)–(2.10),

ū = 0, v̄ = 0, p̄ = p̄atm −We −G(z − 1), V = 1 − z,(2.12)

and introduce new unknown functions ũ, ṽ, p̃, Ṽ by u = ū + ũ, etc., and drop
tildes from the transformed equations and boundary conditions. The resulting fully
nonlinear dimensionless system is exact and presents a formidable computational and
analytical task. In what follows we make analytical progress by studying the physically
relevant case of thin films using a long wave nonlinear theory.

3. Long wave asymptotics. In the asymptotic analysis presented next we as-
sume that the typical length λ of the interface deformation is long compared to the
undisturbed thickness; that is, δ = h0/λ � 1 is a small parameter. In Region I, we
introduce the lubrication scalings

(3.1) x =
1

δ
ξ, t =

1

δ
τ, v = δw, p =

1

δ
P.

The conditions at the interface z = h(ξ, t) become

w = hτ + uhξ,(3.2)

(1 − δ2h2
ξ)(uz + δ2wξ) + 4δ2hξwz = 0,(3.3)
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−We

2

[
(Vz − 1)2(1 + δ2h2

ξ) − 1
]
+ δ

1 + δ2h2
x

1 − δ2h2
x

wz

− G

2
(1 − h) − P

2δ
=

δ2hξξ

2C(1 + δ2h2
ξ)

3/2
.(3.4)

The last boundary condition contains a nonlocal contribution since V satisfies the
Laplace equation in the potential region above the fluid layer. This is obtained by
considering the problem in Region II. The analysis is the same as in Tseluiko and Pa-
pageorgiou [28] and results in the following expression for Vz in terms of the interfacial
position (keeping the O(δ) term and dropping the higher order terms):

(3.5) Vz(ξ, 0) = −δH[hξ],

where H is the Hilbert transform operator defined by

(3.6) H[g](ξ) =
1

π
PV

∫ ∞

−∞

g(ξ′)

ξ − ξ′
dξ′,

where PV denotes the principal value. Using (3.5) in (3.4) yields

(3.7) −δWeH[hξ] + δwz −
G

2
(1 − h) − P

2δ
=

δ2hξξ

2C
+ O(δ2),

from which we deduce the following canonical scalings that retain the effects of the
electric field, gravity, and surface tension (bar quantities are of order one):

(3.8) C = δ3C, We =
W e

δ2
, G =

1

δ
G.

The Reynolds number R is assumed to be o(δ−1) throughout. Expanding in powers
of δ, e.g., u = u0 + δu1 + · · · , etc., gives the following leading order solutions:

u0 =
P0ξ

2
z2 − P0ξH0z,(3.9)

w0 = −
P0ξξz

3

6
+

P0ξξH0z
2

2
+

P0ξH0ξz
2

2
,(3.10)

P0 = −2W eH[H0ξ] −G(1 −H0) −
1

C
H0ξξ.(3.11)

Using the velocities (3.9) and (3.10) in the kinematic condition (3.2) gives H0τ =
1
3 [H3

0P0ξ]ξ; using (3.11) for P0, the evolution equation becomes

(3.12) Ht +
1

3

[
H3

(
1

C
Hxxx −GHx + 2WeH[Hxx]

)]
x

= 0,

where for simplicity we write t and x for τ and ξ, H for H0, and drop the bars
from C, G, W e. There are several noteworthy features of (3.12). The electric field
enters through a nonlocal term and is destabilizing as in falling films; see Tseluiko and
Papageorgiou [28]. Gravity is present, and if we allow G to be negative, we obtain
the long wave thin film dynamics of hanging films. In the absence of an electric field
(We = 0) and if G > 0, the flow is linearly stable; instability is possible if G < 0, as
is intuitive for hanging films (this case has been considered by Bertozzi and Pugh [3],
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Fig. 2. The effect of the electric field on linear growth rates s(k). The left panel has G = 1
(overlying film) and the right panel G = −1 (under-hanging film). In both cases C = 1, and the
values of We are shown in the figures.

Ehrhard [8], Ehrhard and Davis [9], Yiantsios and Higgins [30], [31]). The electric
field, however, can be utilized to destabilize liquid films lying on top of a substrate
electrode (G > 0), and the novel equation (3.12) enables a quantitative study of such
phenomena. To quantify some of these observations we perform a linear stability
analysis to identify stable and unstable regimes when We �= 0. Writing H = 1 + εη,
linearizing with respect to ε, and seeking solutions proportional to η = η̂ exp(st+ikx),
where η̂ is a complex constant, leads to the following linear dispersion relation:

(3.13) s(k) = − 1

3C
k4 +

2We

3
k2|k| − G

3
k2.

(We have used the Fourier transform property F
[
H[u]

]
(k) = −i sign(Rek)û(k).)

When G > 0 (the film is resting on a substrate), we see that for We < (G/C)1/2 all
modes are stable; i.e., s(k) < 0 for all k. For We > (G/C)1/2, however, there is a band
of unstable waves with wavenumbers extending from kL = CWe −

√
(CWe)2 − CG

to kR = CWe +
√

(CWe)2 − CG, and the electric field is destabilizing. The most

unstable mode has wavenumber k = (3CWe +
√

9(CWe)2 − 8CG)/4. Also, kL > 0
for all We, and hence all waves in the immediate vicinity of k = 0 are stable—for
large We, for example, all waves longer that 4πWe/G are stable. Typical results are
depicted in Figure 2 (the left panel), for the particular values C = 1, G = 1 for which
We > 1 yields instability, as is clear from the figure.

When G < 0, there is always a band of unstable waves extending from kL = 0
to kR = CWe +

√
(CWe)2 − CG; see Figure 2 (the right panel) for typical results

for the case C = 1, G = 1. For large We we have kR ∼ 2CWe, and so increasingly
shorter wavelengths become linearly unstable as We increases. Damping of sufficiently
high wavenumbers (and, hence, well-posedness) is provided by the presence of surface
tension which is extremely important in this case.

The linear results set the stage for nonlinear computations and analysis, and
we can expect nontrivial behavior in parameter regimes that support unstable linear
waves. We concentrate on such calculations next.

4. Analytical results. In this section we prove the global boundedness of posi-
tive classical solutions of the evolution equation (3.12). This is achieved by construct-
ing an energy functional whose extrema are steady state solutions of (3.12) and using
it to estimate the H1-norm of the solution and show that it is uniformly bounded.
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The main result is Proposition 4.2 in section 4.2. The results extend those of Bertozzi
and Pugh [3] to a class of physically meaningful nonlocal equations.

4.1. The energy functional. We consider the generalized equation

(4.1) Ht +
[
f(H)A[H]x

]
x

= 0,

where f is a function which takes positive values for positive arguments and is zero only
at zero, and A[H] is some integro-differential operator, which involves the function
H, its first and second spatial derivatives, and the Hilbert transform operator. The
additional condition that is satisfied by this operator will be given below. We consider
(4.1) on a periodic interval [−L, L] with positive initial data H(x, 0) = H0(x).

Steady state solutions of (4.1) are found by integrating once to obtain

(4.2) f(H)A[H]x = C1,

where C1 is some constant. If H vanishes at some point, then C1 = 0. Otherwise

A[H]x = C1/f(H); integration gives C1

∫ L

−L
(1/f(H))dx = 0, which in turn implies

that C1 = 0. So, for steady state solutions, A[H]x = 0, i.e.,

(4.3) A[H] = C2,

where C2 is some constant.
Let E [H] be the energy functional having the form

(4.4) E [H] =

∫ L

−L

L
(
H, Hx, H[H]

)
dx,

and whose extrema are the steady state solutions of (4.1). More precisely, we assume
that the following generalized Euler–Lagrange equation,

(4.5)
∂L
∂H

− d

dx

[
∂L
∂Hx

]
−H

[
∂L

∂H[H]

]
= 0,

coincides with the equation C2 −A[H] = 0. Then

(4.6)
dE [H]

dt
=

∫ L

−L

(
∂L
∂H

Ht +
∂L
∂Hx

Hxt +
∂L

∂H[H]
H[Ht]

)
dx.

Integrating the second term by parts and applying the property
∫
I
u(x)H[v](x)dx =

−
∫
I
v(x)H[u](x)dx to the third term gives

dE [H]

dt
=

∫ L

−L

(
∂L
∂H

− d

dx

[
∂L
∂Hx

]
−H

[
∂L

∂H[H]

])
Htdx(4.7)

= −
∫ L

−L

(C2 −A[H])
[
f(H)A[H]x

]
x
dx = −

∫ L

−L

f(H)A[H]2xdx.(4.8)

Therefore, dE [H]/dt ≤ 0 for nonnegative H i.e., E [H] is bounded above.
For (3.12) we have f(H) = H3/3 and A[H] = (1/C)Hxx−GH +2WeH[Hx]. The

steady state solutions are determined by the equation

(4.9)
1

C
Hxx −GH + 2WeH[Hx] = C2,
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which on integration yields

(4.10) C2 = − G

2L

∫ L

−L

Hdx.

It follows that the functional L
(
H, Hx, H[H]

)
can be chosen in the following form:

(4.11) L
(
H, Hx, H[H]

)
=

1

2C
H2

x +
G

2
H2 + WeHxH[H] + C2H.

Thus, the energy functional

(4.12) E [H] =

∫ L

−L

(
1

2C
H2

x +
G

2
H2 + WeHxH[H] + C2H

)
dx

is a nonincreasing function of time for a nonnegative solution H.

4.2. Uniform boundedness of positive smooth solutions. In the previous
section we have shown that the energy functional E [H] is bounded above by its initial
value for a nonnegative solution H of (3.12). In this section we will show uniform
boundedness of solutions. We will restrict our consideration to positive solutions,
since, given upper and lower bounds for positive solutions, the equation is uniformly
parabolic, which implies small time smoothness of the solutions (see Eidelman [10],
Friedman [11]).

We begin with the following lemma.

Lemma 4.1. Let E [H] be the functional defined on H1(−L, L) by (4.12). Then
there exist constants α > 0, β > 0, and γ such that (s.t.)

(4.13) ‖H‖2
H1 ≤ αE [H] + β‖H‖2

1 + γ‖H‖1

for all nonnegative H ∈ H1
per. (Here and everywhere else we denote by L2

per, Hk
per,

k = 1, 2, . . . , the subspaces of the Sobolev spaces L2(−L, L), Hk(−L, L) consisting of
periodic functions with period 2L.)

Proof. First, using the Cauchy–Schwartz and Young’s inequalities and the prop-
erty ‖H[u]‖ = ‖u‖ of the Hilbert transform gives

∫ L

−L

HxH[H]dx ≥ −‖Hx‖2‖H[H]‖2 = −‖Hx‖2‖H‖2

≥ −ε1

2
‖Hx‖2

2 −
1

2ε1
‖H‖2

2,(4.14)

where ε1 is some positive number. Hence,

E [H] ≥
∫ L

−L

(
1

2C
H2

x +
G

2
H2 + C2H

)
dx− ε1We

2
‖Hx‖2

2 −
We

2ε1
‖H‖2

2

=

(
1

2C
− ε1We

2

)
‖Hx‖2

2 +

(
G

2
− We

2ε1

)
‖H‖2

2 + C2

∫ L

−L

Hdx

=

(
1

2C
− ε1We

2

)
‖H‖2

H1 +

(
G

2
− We

2ε1
− 1

2C
+

ε1We

2

)
‖H‖2

2 + C2

∫ L

−L

Hdx.(4.15)
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Note that
∫ L

−L
Hdx = ‖H‖1 for nonnegative H. We define A = 1/2C − ε1We/2 and

B = −G/2 + We/2ε1 + 1/2C − ε1We/2. Choosing ε1 sufficiently small gives A > 0,
B > 0. Also, using the interpolation inequality

(4.16) ‖H‖2 ≤ C3‖H‖1/3
H1 ‖H‖2/3

1

and applying Young’s inequality for the right-hand side of the expression above gives

(4.17) ‖H‖2 ≤ C3

(
ε2

3
‖H‖H1 +

2

3ε
1/2
2

‖H‖1

)
,

where ε2 is some positive number. Therefore,

(4.18) ‖H‖2
2 ≤ 2ε2

2C
2
3

9
‖H‖2

H1 +
8C2

3

9ε2
‖H‖2

1,

and we get

E [H] ≥ A‖H‖2
H1 −B‖H‖2

2 + C2‖H‖1(4.19)

≥ A‖H‖2
H1 −B

(
2ε2

2C
2
3

9
‖H‖2

H1 +
8C2

3

9ε2
‖H‖2

1

)
+ C2‖H‖1(4.20)

=

(
A− 2ε2

2BC2
3

9

)
‖H‖2

H1 −
8BC2

3

9ε2
‖H‖2

1 + C2‖H‖1.(4.21)

We define Ã = A − 2ε2
2BC2

3/9 and B̃ = 8BC2
3/9ε2. Note that B̃ is positive and

choosing ε2 small enough makes Ã also positive. Thus,

(4.22) E [H] ≥ Ã‖H‖2
H1 − B̃‖H‖2

1 + C2‖H‖1,

i.e.,

(4.23) ‖H‖2
H1 ≤ αE [H] + β‖H‖2

1 + γ‖H‖1,

where α = 1/Ã, β = B̃/Ã, γ = −C2/Ã, as required.
We can now prove uniform boundedness of positive smooth solutions to (3.12).
Proposition 4.2. Let H(x, t) be a positive smooth solution of (3.12) with peri-

odic boundary conditions on some time interval [0, T ]. If H(x, 0) = H0(x) ∈ H1
per,

then ‖H‖H1 is uniformly bounded.
Proof. First, note that (3.12) is a conservation law. The spatial integral of the

solution is conserved. Indeed, integrating over [−L, L] gives (d/dt)
∫ L

−L
Hdx = 0 and

hence ‖H‖1 = ‖H0‖1. Also, since E [H] is a nonincreasing function of time, (4.13)
implies

‖H‖2
H1 ≤ αE [H] + β‖H‖2

1 + γ‖H‖1(4.24)

= αE [H] + β‖H0‖2
1 + γ‖H0‖1(4.25)

≤ αE [H0] + β‖H0‖2
1 + γ‖H0‖1,(4.26)

which was to be proved.
Remark. Proposition 4.2 is essentially a no-blow-up theorem for the solution

H. The result does not prevent a touchdown (the numerics predicts a touchdown in
infinite time—see Figures 3–6).
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4.3. Evolution of
∫ L

−L
H−1dx. In this section we show that the spatial integral

of H−1 is bounded on each finite time interval. Indeed,

(4.27)
d

dt

∫ L

−L

dx

H
= −

∫ L

−L

Ht

H2
dx.

Substituting the expression for Ht from (3.12) into (4.27) gives

d

dt

∫ L

−L

dx

H
=

1

3

∫ L

−L

1

H2

[
H3

(
1

C
Hxxx −GHx + 2WeH[Hxx]

)]
x

dx

=
1

3

∫ L

−L

1

H2
(3H2Hx)

(
1

C
Hxxx −GHx + 2WeH[Hxx]

)
dx

+
1

3

∫ L

−L

1

H2
H3

(
1

C
Hxxx −GHx + 2WeH[Hxx]

)
x

dx

=
1

C

∫ L

−L

HxHxxxdx−G

∫ L

−L

H2
xdx + 2We

∫ L

−L

HxH[Hxx]dx

+
1

3C

∫ L

−L

HHxxxxdx− G

3

∫ L

−L

HHxxdx +
2We

3

∫ L

−L

HH[Hxxx]dx.(4.28)

Integration by parts then gives

d

dt

∫ L

−L

dx

H
= − 1

C

∫ L

−L

H2
xxdx−G

∫ L

−L

H2
xdx + 2We

∫ L

−L

HxH[Hxx]dx

+
1

3C

∫ L

−L

H2
xxdx +

G

3

∫ L

−L

H2
xdx− 2We

3

∫ L

−L

HxH[Hxx]dx.(4.29)

Therefore,

(4.30)
d

dt

∫ L

−L

dx

H
= − 2

3C

∫ L

−L

H2
xxdx− 2G

3

∫ L

−L

H2
xdx +

4We

3

∫ L

−L

HxH[Hxx]dx.

Using the Cauchy–Schwartz and Young’s inequalities and the property ‖H[u]‖ = ‖u‖
gives ∫ L

−L

HxH[Hxx]dx ≤ ‖Hx‖2‖H[Hxx]‖2 = ‖Hx‖2‖Hxx]‖2

≤ 1

2ε
‖Hx‖2

2 +
ε

2
‖Hxx‖2

2,(4.31)

where ε is some positive number. Hence,

d

dt

∫ L

−L

dx

H
≤ − 2

3C
‖Hxx‖2

2 −
2G

3
‖Hx‖2

2 +
4We

3

(
1

2ε
‖Hx‖2

2 +
ε

2
‖Hxx‖2

2

)
= A‖Hxx‖2

2 + B‖Hx‖2
2,(4.32)

where A = −2/3C + 2Weε/3, B = −2G/3 + 2We/3ε. Choosing ε small enough (s.t.
A < 0) implies

(4.33)
d

dt

∫ L

−L

dx

H
≤ B‖Hx‖2

2.
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Since the H1-norm of the positive solution H is uniformly bounded (as was shown in
the previous section), we obtain the desired boundedness result since there exists a

constant D s.t. (d/dt)
∫ L

−L
(1/H)dx ≤ D.

It was proved in section 4.2 that the H1-norm of a positive solution is bounded for
all time. Due to Agmon’s inequality this also implies boundedness of the maximum
of the solution. Hence, if the solution is positive for all time, then it is also uniformly
bounded above; i.e., it does not blow up in finite or infinite time. In this section we
have shown that the spatial integral of 1/H is bounded on each finite time interval;
i.e., it does not blow up in finite time (though this can happen in infinite time). This
result can be used to show that as long as max |Hxx| remains bounded on each finite
time interval, an initially positive solution will remain positive for all time; that is, the
interface does not touch down in finite time. We prove this below. (The boundedness
of max |Hxx| comes from extensive computations (see section 6) and is used as an
assumption in what follows. A rigorous proof has not yet been found.)

Proposition 4.3. Let H(x, t) be a positive smooth solution of (3.12) with pe-
riodic boundary conditions on some time interval [0, T ). In addition, assume that
max |Hxx| is bounded above on each finite time interval. Then the solution H re-
mains positive for all time, i.e., T = ∞.

Proof. Suppose that T is finite and the solution becomes zero at some point
x = x0 in finite time t = T , and seek a contradiction. This means that at t = T the
solution obtains a minimum at x = x0. Denote by ξ(t) the point at which the solution
has a (local) minimum at a given time t s.t. ξ(t) is a continuous function of t and
ξ(T ) = x0. Also, let max |Hxx| = A, where A is a function of time which is bounded
on [0, T ). At each time t < T we expand the function H into a Taylor series about
x = ξ(t) and use the fact that Hx(ξ(t), t) = 0,

(4.34) H(x, t) = H(ξ(t), t) +
1

2
(x− ξ(t))2Hxx(ζ, t),

where ζ = ζ(x, t) is some point between x and ξ(t). We get∫ L

−L

dx

H(x, t)
=

∫ L

−L

dx

H(ξ(t), t) + 1
2 (x− ξ(t))2Hxx(ζ, t)

≥
∫ L

−L

dx

H(ξ(t), t) + A
2 (x− ξ(t))2

= −
√

2

AH(ξ(t), t)
tan−1

(√
A

2H(ξ(t), t)
(ξ(t) − x)

)∣∣∣∣∣
L

−L

.(4.35)

It follows that the right-hand side of (4.35) blows up when t → T , since then

H(ξ(t), t) → 0 by the assumption. This contradicts the boundedness of
∫ L

−L
(1/H)dx

on each finite time interval. Thus, if max |Hxx| is bounded on each finite time interval,
then the solution cannot become zero in finite time; i.e., it remains positive for all
time.

5. Numerical method. We use a fully implicit two-level scheme with Newton
iterations for (3.12) on a finite periodic interval [−L, L]. The method was developed
for the following more general equation (this also includes the falling film equation
derived in Tseluiko and Papageorgiou [28]):

(5.1) Ht +
[
f1(H)Hxxx

]
x

+
[
f2(H)

]
xx

+
[
f3(H)H[Hxx]

]
x

+
[
f4(H)

]
x

= 0,
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with f1, . . . , f4 polynomials in H. We incorporate the ideas of Bertozzi and Pugh [2],
Diez, Kondic, and Bertozzi [6] into nonlocal problems. The equation is solved on
a uniform spatial grid xm = (m − M)Δx, m = 1, 2, . . . , 2M , where Δx = L/M ,
and spatial derivatives are discretized using central differences; Hm denote the val-
ues of a 2L-periodic function H at the mesh points. We also set H0 = H2M ,
H−1 = H2M−1, etc., and H2M+1 = H1, H2M+2 = H2, etc., which follow by the
periodicity of H. For m = 1, 2, . . . , 2M − 1, we introduce the midpoints xm+1/2 =
(xm + xm+1)/2 with x1/2 = (−L + x1)/2 and define Hm+1/2 = (Hm + Hm+1)/2.
Second order accurate central differences are used to approximate odd derivatives
at xm+1/2 and even derivatives at xm. To approximate the Hilbert transform of
Hxx at x = xm+1/2 we use trapezoidal quadrature in the periodic representation

H[g](x) = (1/2L)PV
∫ L

−L
g(ξ) cot

(
π(x− ξ)/2L

)
dξ,

(5.2) H[Hxx](xm+1/2) ≈ H̃[∂2(H)]m+1/2 ≡ Δx

2L

2M∑
k=1

∂2(H)k cot

(
π(xm+1/2 − xk)

2L

)
.

This leads to the system of ordinary differential equations for H1, H2, . . . , H2M :

dHm

dt
= −

f1(Hm+1/2)∂3(H)m+1/2 − f1(Hm−1/2)∂3(H)m−1/2

Δx
− ∂2(f2(H))m

−
f3(Hm+1/2)H̃[∂2(H)]m+1/2 − f3(Hm−1/2)H̃[∂2(H)]m−1/2

Δx

−
f4(Hm+1/2) − f4(Hm−1/2)

Δx
,(5.3)

where the grid operators ∂2 and ∂3 correspond to the second- and third order spatial
derivatives, respectively. We write (5.3) in the following compact form:

(5.4)
dH

dt
= F (H),

where H = (H1, H2, . . . , H2M )T , F (H) = (F1(H), F2(H), . . . , F2M (H))T are given
by the right-hand side of (5.3). Note that, unlike similar thin film problems that
have been studied previously, Fm(H) depends on all the components of H due to the
presence of the nonlocal Hilbert transform.

This semidiscrete scheme preserves the discrete approximation of the volume.
We show this by multiplying (5.3) by Δx and summing over m = 1, 2, . . . , 2M

to obtain
∑2M

m=1(dHm/dt)Δx = 0. A time integration yields
∑2M

m=1 Hm(t)Δx =∑2M
m=1 Hm(0)Δx, as desired.

For the time discretization of (5.4) we use the usual implicit two-level scheme,

(5.5)
Hn+1 −Hn

Δtn
= F (θHn+1 + (1 − θ)Hn),

where Hn = (Hn
1 , H

n
2 , . . . , H

n
2M )T is the numerical solution for H at t = tn, Δtn =

tn+1−tn, and θ is some real number between 0 and 1 (the scheme is first order accurate
in time). To advance from the time level n to the time level n + 1, the algebraic
system of nonlinear equations (5.5) for Hn+1 is solved iteratively using Newton’s
method. The time step is chosen dynamically for each time level by requiring several
constraints to be satisfied as described below (see also Bertozzi and Pugh [2] and Diez,
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Kondic, and Bertozzi [6]). If the numerical solution violates one of the constraints,
then the time step is reduced and the calculation is repeated until all the constraints
are met. On the other hand, if all the constraints are met after the first application
of Newton’s method, the time step is increased at the next time level in order to
prevent using unnecessarily small time steps. The constraints are the following: (a)
the minimum of the solution should change by no more than 10%, (b) the local
relative error should be small (10−3, say). The local relative error em approximates
((Δtn−1)

2/Hn
m)(d2Hn

m/dt2) and is computed as follows (see [2], [6]):

em =
2Δtn−1

Δtn−2

Δtn−2H
n+1
m + Δtn−1H

n−1
m − (Δtn−2 + Δtn−1)H

n
m

(Δtn−2 + Δtn−1)Hn
m

.(5.6)

In addition, the spatial grid is refined during the calculation to get better resolution of
the solution. This is done by doubling the number of mesh points when the magnitude
of more than 2/3 of the Fourier modes is larger than a set tolerance of 10−13. (The
fast Fourier transform is used as an accuracy diagnostic.)

The numerical method has been described and implemented for solutions without
any assumed symmetry. If f4 ≡ 0, however, as is the case here, and the initial
condition is an even function, then H remains even for all time. In this case we can
consider 2L-periodic even solutions and discretize the equation on the interval [0, L]
alone, thus halving the number of unknowns. The appropriate boundary conditions
are

Hx(0, t) = Hxxx(0, t) = 0, Hx(L, t) = Hxxx(L, t) = 0,(5.7)

with periodicity used as needed in calculating difference formulas.

6. Numerical results. The code was validated by reproducing the results of
Yiantsios and Higgins [30], who solved (3.12) with C = 1, G = −1, We = 0, on
periodic intervals of lengths 2

√
2π, 4

√
2π, 6

√
2π, 5π. We also reproduced the results

of Bertozzi and Pugh [3]. Part of their work involved the numerical solution of (3.12)
on the interval [−1, 1], with C = 1, G = −80, We = 0. Our code has reproduced
these results with indistinguishable differences at t = 100, which is the largest time
that Bertozzi and Pugh [3] report.

For the results presented here we take C = 1, G = −1 or G = 1, and increase We

to enhance the instability. We take L = 10 and an initial condition

(6.1) H(x, 0) = 1 + 0.1 cos(πx/L).

Thus, without loss of generality the mean value of H(x, 0) over a period is taken to
be 1. If it were d > 0, then the change of time scale, t → d−3t, leaves the evolution
equation (3.12) unchanged but normalizes the initial condition to have unit mean.

6.1. Films wetting the underside of the plate, G < 0. As explained pre-
viously, when G < 0 the flat film state is long-wave unstable even when We = 0.
We present results for fixed G = −1 and C = 1 as the electric field parameter We

increases. For these parameters with We = 0 and L = 10, the first two harmonics are
linearly unstable modes of the flat state, as can be seen from the linear result (6.2)
below. We aim to systematically quantify the dynamics in the nonlinear regime as
We increases.

The first set of results is presented in Figure 3 for We = 0. There are eight
panels in the figure depicting the evolution over 1000 time units. The plots of the
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Fig. 3. Evolution of the spatially periodic interface for C = 1, G = −1, We = 0. The equation
was integrated for 0 ≤ t ≤ 1000. The upper-left panel shows the evolution of the profile H (the
time interval between the plots is 10). The upper-right panel shows the profile H (thin line) and the
pressure P given by (3.11) (solid line) at t = 1000. Also, the evolution of ‖H‖2

2, ‖Hx‖2
2, ‖Hxx‖2

2,

as well as the evolution of
∫ 10
−10(1/H)dx and the maximum and minimum of H are shown. (For the

minimum we use a log-linear plot.)

interface are reflected about the x-axis to emphasize that we are dealing with hanging
films. The interface evolution is shown in the top-left panel, and the top-right panel
shows the solution at the last computed time t = 1000; the thin line curve represents
the interface H(x, 1000), and the thick line curve the corresponding perturbation
pressure distribution P (x, 1000) given by (3.11) (note that the subscript zero has
been dropped). It can be seen that the pressure is essentially uniform and negative
in the regions where large drops are forming (the pressure has different values in
different-sized drops), and uniform and positive in the thinning regions between large
drops. The resulting pressure gradient acts to push fluid out of the thinning regions
and into the larger drops. This mechanism is at play for all computed results presented
here and is responsible for the asymptotic thinning of the regions between the larger
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Fig. 4. Evolution for C = 1, G = −1. The top row shows the interface evolution for We = 0.5
(left) and 1 (right); the bottom row shows the corresponding profiles H (thin line) and the pressures
P (solid line) at the final times.

quasi-static drops. The other six panels contain information on the evolution of
different norms of H, namely ‖H‖2

2, ‖Hx‖2
2, and ‖Hxx‖2

2 (labeled in the figure); the

evolution of
∫ L

−L
(1/H)dx; and the evolution of the maximum and minimum of H over

the spatial domain, max(H) and min(H), respectively (the latter is plotted using
log-linear scales). The boundedness of ‖H‖2

2 and ‖Hx‖2
2 (equivalently of the L2- and

H1-norms) is in line with the rigorous results of section 4, as is the at most linear

growth of the integral
∫ L

−L
(1/H)dx. The evolution of ‖Hxx‖2

2 (equivalently the H2-
norm) indicates that it is bounded (moreover, from numerics it can be seen that
max |Hxx| is bounded as well)—this is used as an assumption in producing a proof
that the interface cannot touch down in finite time but can do so asymptotically in
infinite time (see section 4.3). The log-linear evolution of min(H) also provides strong
evidence of an asymptotic touchdown after infinite time in line with the conjecture in
section 4.3. Finally, we note that the profile at large time contains two large drops (see
the top-right panel), and this number coincides with the number of linearly unstable
modes. Nonlinearity produces small daughter drops between the main mother drops
that cannot be predicted by linear theory. This phenomenon is generic and holds
when We is nonzero also (see Figures 4, 5, 6 also).

Figure 4 contains results for nonzero electric fields with We = 0.5 and 1. The
top row shows the evolution of the interface for We = 0.5 (left) and We = 1 (right),
and the bottom row shows the corresponding final computed interfacial profiles and
pressure distributions. The calculations were carried out to 100 and 30 time units for
We = 0.5 and 1, respectively, and profiles in the top row are depicted at intervals of 4
time units. Once more we see main drops forming at large times with thinning regions
between them containing smaller humps. The pressure distribution is uniform in the
larger drops with maxima in the thinning regions, producing the draining mechanism
discussed earlier. The main difference between the two cases is that for We = 0.5
we ultimately have four drops forming, while for We = 1 we have six. This can be
explained using linear theory and (3.13). The wavenumber of the maximally unstable
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mode on 2π-periodic domains is kmax = (3CWe +
√

9(CWe)2 − 8CG)/4. Modifying
this to 2L-periodic domains gives

(6.2) kmax =

(
L

π

)
3CWe +

√
9(CWe)2 − 8CG

4
.

The value of kmax provides a qualitative estimate of the main features of the interface
at large times; for example, in the results of Figure 3 we have kmax = 2.25, which
explains the two large drops that form. For the parameters of Figure 4 we have
kmax = 3.74 and kmax = 5.67, which explain the four and six drops formed. The
smaller drops forming in the thinning regions are due to nonlinearity and cannot be
explained using a simple linear theory. We have also monitored norms and other
diagnostics as in Figure 3 and have found similar behavior. Most notably, max |Hxx|
remains bounded in time.

6.2. Films wetting the upper side of the plate, G > 0. Here we present
results for G = 1, C = 1, and increasing values of We. As noted earlier, if We = 0,
the flat state is stable—the solutions to the initial value problem are damped and
produce the uniform trivial state at large times (this has been confirmed numerically
also). Support for this is also provided by the linear result (3.13), since s(k) < 0
for all k �= 0. If We exceeds the critical value Wec = (G/C)1/2, instability sets in
over a band of wavenumbers kL < k < kR, using the notation of section 3. For our
parameters, Wec = 1, and in what follows we present results for increasing We > 1.

The first set of results has We = 1.02, which is just above critical. According to
(6.2), kmax = 3.37, and so we may expect three drops to form at large times. The
results are shown in Figure 5; the integration was carried out to t = 5000. The format
of the figure is the same as that of Figure 3, and the results are qualitatively similar.
The top-right panel shows an enlargement of the solution and the corresponding
pressure distribution in the vicinity of the first thinning region to the left of the origin.
Again we see essentially uniform negative pressure in the main drops and a pressure
maximum in the thinning region in between, so that the fluid draining mechanism
described earlier is seen to operate. The other diagnostics are in agreement with the
analytical results.

In Figure 6 we present results for We = 1.1, 1.5, and 2.0, respectively. The top
row shows the time evolution of H as We increases from the left to the right, and the
bottom row shows the corresponding final computed profiles and pressure distributions
(thin and thick solid lines, respectively)—for We = 1.1 this is enlarged accordingly.
The computations were carried out to 1000, 75, and 20 time units for We = 1.1, 1.5,
and 2, respectively, and profiles are plotted every 10, 1, and 1 time units, respectively.
The pressure gradient draining mechanism is operational throughout, and uniform
but different negative pressures are attained inside the large drops. The number of
drops formed at large times is again in excellent agreement with linear theory (linear
theory cannot provide the volumes of the drops or the formation of smaller daughter
droplets in the thinning regions). For example, the values of kmax given by (6.2) are
3.98, 6.37, and 8.99 for We = 1.1, 1.5, and 2.0, respectively, while the numbers of the
main computed drops are 4, 6, and 9, respectively. It can be concluded, therefore,
that linear theory can be used in a very simple way to predict how many drops will
form at large time. Details, including drop volumes, must be calculated numerically
by solving the nonlinear problem.

7. Conclusions. We have derived and studied analytically and numerically a
nonlinear nonlocal evolution equation that describes the evolution of thin films wetting
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Fig. 5. Evolution of the spatially periodic interface for C = 1, G = 1, We = 1.02. The equation
was integrated for 0 ≤ t ≤ 5000. The upper-left panel shows the evolution of the profile H (the
time interval between the plots is 100). The upper-right panel shows the profile H (thin line) and
the pressure P given by (3.11) (solid line) at the final time. Also, the evolution of ‖H‖2

2, ‖Hx‖2
2,

‖Hxx‖2
2, as well as the evolution of

∫ 10
−10(1/H)dx and the maximum and minimum of H, are shown

(for the minimum we use a log-linear plot).

a horizontal plate in the presence of a vertical electric field. The field introduces the
instability when G > 0 (films wetting the upper side of the plate) and enhances the
instability when G < 0 (films wetting the underside side of the plate).

By extending previous analytical studies to incorporate nonlocal terms, we have
proved a no-blow-up theorem of positive smooth solutions of the evolution equation.
Using an estimate of the integral of the reciprocal of the solution and assuming that
max |Hxx| is uniformly bounded (this is suggested by extensive numerical work), we
have also presented a conjecture that the film cannot touch down in finite time but
can do so only asymptotically in infinite time. This also holds in the absence of the
field. All rigorous results are seen in the numerical solutions, thus providing additional
accuracy checks for the latter.

Extensive numerical experiments have been carried out to describe the salient
features of thin electrified film dynamics. Initially, the evolution follows the predic-
tions of linear theory, and the solution grows exponentially. As time increases, higher
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Fig. 6. Evolution for C = 1, G = 1. The top row shows the interface evolution for We = 1.1,
1.5, and 2, from left to right; the bottom row shows the corresponding profiles H (thin line) and the
pressures P (solid line) at the final times.

harmonics are generated due to the nonlinearities, and the most dominant mode ap-
pears to be the most unstable mode predicted by linear theory; note that this mode
corresponds to the number of the drops which appear at large times. The qualitative
features of the solutions for G < 0 and We zero or nonzero are similar to those with
G > 0 and We > 0 (in the latter case a nonzero electric field is required to destabilize
the flow and to produce nontrivial dynamics). An increase in We for fixed G and C
(or equivalently a decrease of a negative G with fixed We and C), produces increas-
ingly more drops at large times, whose number is predicted by linear theory. This
drop-formation behavior is one of the main features of the dynamics as additional un-
stable modes enter. In all computed cases, as the time increases the evolution slows
down (this can be seen in any of the different computational panels in the figures,
but is most clearly evidenced by the evolution of min(H)). The spatial features at
large times are also quite intricate: First, as the interface reaches the vicinity of the
wall it tends to flatten, and after that the solution tends to bulge near the ends of
the flat regions forming a secondary hump in between—see Figure 3, for example.
All the results indicate that the solution remains positive—the film does not touch
down within finite time. Also, the solution is bounded for all time (this has been
proven rigorously), despite the fact that the electric field increases the instability and
promotes the process of the formation of the increasingly larger numbers of drops.

Finally, we comment on the possibility of coarsening dynamics, as seen in other
thin film studies by Glasner and Witelski [12], for example. Even though it is not clear
a priori whether neighboring drops communicate with each other in order to trigger
merging and coarsening, the numerical solutions with electric fields present suggest
that such dynamics is not seen. Our results suggest that the thinning of the interdrop
regions feeds fluid into main drops and that the large time dynamics of the latter
remain independent from each other, drops remaining fixed and not moving. It would
be interesting to add a disjoining pressure in the manner of Glasner and Witelski [12]
that prevents asymptotic thinning and allows communication between main drops. It
is also interesting to revisit the calculations of Yiantsios and Higgins [30] for We = 0,
where they do not impose symmetry and see that drops move (slowly) with the larger
drop moving more. The calculations failed to see merging, however, due to a critical
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Fig. 7. Nonsymmetric initial conditions for hanging drops, C = 1, G = −1. Left panel,
We = 0, and right panel, We = 0.1. The domain length is 5π, and the initial condition in both
runs is H(x, 0) = 1 + 0.1 sin(2x/5) + 0.1 sin(4x/5). As time increases, the minimum film thickness
decreases.

slow-down of drop motion as thinning of interdrop regions takes place. Following [30],
we take C = 1, G = −1, and We = 0 and 0.1 with the length L = 2.5π and the initial
condition H(x, 0) = 1+0.1 sin(2x/5)+0.1 sin(4x/5). The results are shown in Figure
7, with We = 0 for the left panel and We = 0.1 for the right panel. For We = 0 two
drops are formed and are approaching each other, with the larger drop being more
mobile and moving from the right to the left, while the smaller drop moves from the
left to the right. The rate of approach slows down critically (the integration is carried
out to 2000 time units, and the profiles are shown every 400 units). For We = 0.1,
two drops are formed but move in the same direction (from the right to the left)
with the electric field present. The electric field significantly increases the mobility of
the drops. The velocity of the larger drop is slowing down, while the velocity of the
smaller drop is increasing with time, and the distance between the drops is decreasing
with increasing time. We did not see merging again due to a critical slow-down of
drop motion (the integration is carried out to 500 time units, and the profiles are
shown every 100 units).
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ELASTIC SCATTERER RECONSTRUCTION VIA THE ADJOINT
SAMPLING METHOD∗

S. NINTCHEU FATA† AND B. B. GUZINA‡

Abstract. An inverse problem dealing with the reconstruction of voids in a uniform semi-infinite
solid from near-field elastodynamic waveforms is investigated via the linear sampling method. To
cater to active imaging applications that are characterized by a limited density of illuminating sources,
existing formulation of the linear sampling method is advanced in terms of its adjoint statement
that features integration over the receiver surface rather than its source counterpart. To deal with
an ill-posedness of the integral equation that is used to reconstruct the obstacle, the problem is
solved by alternative means of Tikhonov regularization and a preconditioned conjugate gradient
method. Through a set of numerical examples, it is shown (i) that the adjoint statement elevates the
performance of the linear sampling method when dealing with scarce illuminating sources, and (ii)
that a combined use of the existing formulation together with its adjoint counterpart represents an
effective tool for exposing an undersampling of the experimental input, e.g., in terms of the density
of source points used to illuminate the obstacle.
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1. Introduction. Remote sensing of internal defects or obstacles using elastic
waves with “long” wavelengths, i.e., those inside the so-called resonance region [8], is
an inverse scattering problem relevant to a variety of applications such as nondestruc-
tive material testing, hydrocarbon prospecting, and medical diagnosis. In the context
of seismic inversion, such low-frequency waveforms are often interpreted by means of
the full waveform tomography [36], which typically couples gradient-based nonlinear
minimization with a finite-difference (forward) simulation of elastic wave propagation
[4, 35]. For simple (e.g., homogeneous) background media, the waveform tomography
approach to seismic imaging can be alternatively established within the framework of
elastodynamic boundary integral equation methods, especially when equipped by the
analytical sensitivity estimates [2, 19] (see also [6] for acoustic problems). Irrespective
of the type of forward model, however, the high resolution of full waveform inversion
is commonly balanced by its lack of robustness, manifest in the “trapping” of iterative
solution within local minima [31, 36].

Over the past decade, Colton and coworkers [7, 9, 11] introduced an alternative,
point-probing technique for solving inverse scattering problems in acoustics and elec-
tromagnetism, the so-called linear sampling method (LSM), that circumvents many of
the foregoing impediments. This minimization-free approach to waveform tomography
makes use of an ill-posed integral equation, written with reference to the obstacle-free
domain, whose kernel is constructed from the observed waveforms and whose solution
norm (used as an obstacle indicator) remains bounded only for sampling points strik-
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ing the support of the scatterer. Owing to its computational efficiency and relative
robustness (stemming from the circumvention of nonlinear optimization), the LSM
has since been adapted to both far-field [1, 5, 34] and near-field [32] elastic scattering
problems. Despite its inherent appeal, however, the existing formulation of the LSM
for active imaging configurations in near-field elastodynamics [32], which postulates
integration over the source region, may not be applicable to testing arrangements
that are characterized by a limited density of “illuminating” sources (e.g., magnetic
resonance elastography [23, 12, 39]). Beyond the issue of source density, the existing
algorithm in [32], which makes use of the singular value decomposition, may face an
additional set of difficulties related to significant computational cost and inaccurate
singular values when dealing with large amounts of experimental data (e.g., large
numbers of sources and receivers, regardless of their density) as in three-dimensional
(3D) seismic imaging [38].

To transcend the foregoing impediments, the focus of this study is two-fold and
includes (i) a reformulation of the LSM for near-field elastodynamics, to cater for ac-
tive imaging configurations with only a limited density of excitation sources, and (ii)
computational treatment of ill-conditioned linear systems, which establishes an alter-
native to singular value decomposition in situations involving significant amounts of
experimental data. To this end, an adjoint statement of the so-called direct sampling
method in [32] is proposed, wherein the inverse problem is formulated as a linear
integral equation of the first kind, involving integration over the measurement (as op-
posed to the source) surface, whose solution becomes unbounded in the exterior of a
hidden scatterer. A preconditioned conjugate gradient algorithm for solving ill-posed
linear systems, established earlier for X-ray computed tomography [37], is adapted to
provide an alternative computational treatment of the LSM in dealing with extensive
data sets. A set of numerical examples is included to illustrate the performance of
the proposed developments.

2. Problem formulation. This investigation deals with time-harmonic elastic
wave imaging of an obstacle ΩC that is strictly embedded in a uniform, isotropic, semi-
infinite solid; see Figure 2.1. With reference to the Cartesian frame {O; ξ1, ξ2, ξ3} set
at the top of the half-space, the background domain Ω =
{(ξ1, ξ2, ξ3)| ξ3 > 0} is characterized by the Lamé constants λ and μ and the mass
density ρ; its free surface {(ξ1, ξ2, ξ3)| ξ3 = 0} is denoted by Σ. Adopting further
the hypothesis of an “impenetrable” scatterer, ΩC is taken to be in the form of a
cavity with smooth boundary Γ of class C1,α, α ∈ (0, 1]. For further reference, let

O

ξ3

ρ, ,λ μ
Ωc

1Γ 2Γ

ΓR
ΩR

ξ

Γ
n

n

x

Fig. 2.1. Illumination of an impenetrable obstacle in the semi-infinite solid by elastic waves.
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Ω−= Ω\ (ΩC ∪ Γ) denote the unbounded region surrounding the obstacle, and let
ΓR ⊂ Ω be a hemisphere of radius R centered at the origin. The respective subsets of
Ω and Ω− that are bounded by ΓR are denoted by ΩR and Ω−

R , with an implicit as-
sumption that R is sufficiently large such that ΩC⊂Ω−

R . As implied by the figure, the
scatterer ΩC is exposed by time-harmonic sources acting on the source surface Γ1⊂Σ,
with the induced solid motion monitored over the measurement area Γ2⊂Σ. In what
follows, the frequency of excitation is denoted by ω, with the implicit time-harmonic
factor eiωt omitted for brevity.

2.1. Direct scattering problem. In situations where the excitation source
used to illuminate the obstacle is a point force of unit magnitude acting at x∈Γ1 in the
kth coordinate direction, the elastodynamic displacement response of the perturbed
reference solid Ω− can be conveniently decomposed as

uk(ξ,x) =
o
uk(ξ,x) + ũk(ξ,x), ξ∈Ω−, x∈Γ1,(2.1)

where ũk represents the scattered field (ũk≡0 in the absence of a scatterer) and
o
uk

denotes the free field, i.e., the response of the obstacle-free solid Ω due to prescribed
excitation. With such definitions, one has

o
uk(ξ,x) = ûk(ξ,x), ξ �= x, ξ∈Ω, x∈Γ1,(2.2)

where ûk(ξ,x) is the elastodynamic (displacement) Green’s function for a homoge-
neous semi-infinite solid [18] at ξ∈Ω due to a unit time-harmonic point force acting
at x∈Γ1 in the kth direction.

With reference to any smooth surface S ⊂ Ω with unit normal n, it is further
useful to introduce the traction vector

t(ξ;u) = n(ξ) · C:∇u(ξ), ξ∈S,(2.3)

associated with the displacement field u, where C = λ I2 ⊗ I2 + 2μ I4 denotes the
isotropic elasticity tensor and Ik (k=2, 4) is the symmetric kth order identity tensor.

On the basis of (2.1)–(2.3), the forward problem associated with Figure 2.1 can
be specified as a task of resolving the scattered field ũk from the knowledge of the
free field

o
uk and the exact geometry of (impenetrable) scatterer ΩC. More precisely,

one is to find a ũk ∈ C2(Ω−) ∩ C1(Ω− ∪ Γ ∪ Σ) satisfying the homogeneous Navier
equation

Lũk(ξ,x) + ρω2ũk(ξ,x) = 0, ξ∈Ω−, x∈Γ1,(2.4)

and Neumann boundary conditions

t̃k(ξ,x) =

{
0, ξ∈Σ,

−
o

tk(ξ,x), ξ∈Γ,
x∈Γ1,(2.5)

where
o

tk =t(ξ;
o
uk); t̃k =t(ξ; ũk) is understood in the sense of the trace [28, 30], and

L = μ∇2 + (λ + μ)∇∇· is the Lamé operator (see also [15]). To ensure the well-
posedness of the forward scattering problem, the scattered field ũk must also satisfy
the generalized radiation condition

(2.6) R(ũk) := lim
R→∞

∫
ΓR

{
ûj(ξ,y) · t̃k(ξ,x) − t̂j(ξ,y) · ũk(ξ,x)

}
dSξ = 0,

y ∈ Ω, j=1, 2, 3,
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common to all radiating solutions in a semi-infinite elastic solid [27]. In (2.6), t̂j(ξ,y)
=t(ξ; ûj) is the traction vector associated with ûj(ξ,y), i.e., the elastodynamic trac-
tion Green’s function for the reference half-space Ω. As shown in [19], the generalized
radiation condition applies equally when ûj and t̂j in (2.6) are superseded by the
respective displacements and tractions corresponding to any radiating elastodynamic
state in Ω−. To facilitate the ensuing presentation, this result can be applied to
establish the equality

(2.7) lim
R→∞

∫
ΓR

{
ũj(ξ,y) · t̃k(ξ,x) − t̃j(ξ,y) · ũk(ξ,x)

}
dSξ = 0, x,y ∈ Ω−.

For completeness, it is also noted that the Green’s functions featured in (2.6) satisfy

Lûj(ξ,y) + ρω2ûj(ξ,y) + δ(ξ−y)ej = 0, ξ,y ∈ Ω,

t̂j(ξ,y) = 0, ξ∈Σ, y∈Ω,(2.8)

R(ûj) = 0, ξ,y ∈ Ω,

where ej is the unit vector in the jth coordinate direction and t̂j on Σ is understood
in the sense of the trace. In this setting, the Green’s functions due to a “surface”
point load as in (2.2) are interpreted in the limit as Ω 	 y → Σ. Throughout this
investigation, it is assumed that the forward scattering problem for the semi-infinite
solid Ω− given by (2.4), (2.5), and (2.6) admits a unique solution ũk∈H1

loc(Ω
−).

2.2. Inverse scattering problem. To formulate the reconstruction method, it
is next instructive to introduce the Green’s tensor Û(ξ,x) and the scattered tensor

Ũ(ξ,x), both associated with a unit point source acting at x∈Γ1. In the reference

Cartesian frame, the components of Û(ξ,x) can be arranged in a 3×3 matrix

Û(ξ,x)=

⎛
⎝ û1

1(ξ,x) û2
1(ξ,x) û3

1(ξ,x)
û1

2(ξ,x) û2
2(ξ,x) û3

2(ξ,x)
û1

3(ξ,x) û2
3(ξ,x) û3

3(ξ,x)

⎞
⎠, ξ∈Ω \{x}, x ∈ Γ1,(2.9)

where ûk = (ûk
1 , û

k
2 , û

k
3) is the elastodynamic displacement Green’s function for the

semi-infinite solid Ω as examined before. Here it is useful to note that Û is character-
ized by the reciprocity property [19], i.e., that Û(ξ,x)=[Û(x, ξ)]T (x �= ξ,x, ξ∈Ω),
where superscript “T” denotes the matrix transpose.

By analogy to (2.9), the perturbation of Û due to the presence of an obstacle can
be written in the form of the scattered tensor

Ũ(ξ,x) =

⎛
⎝ ũ1

1(ξ,x) ũ2
1(ξ,x) ũ3

1(ξ,x)
ũ1

2(ξ,x) ũ2
2(ξ,x) ũ3

2(ξ,x)
ũ1

3(ξ,x) ũ2
3(ξ,x) ũ3

3(ξ,x)

⎞
⎠, ξ∈Ω−, x ∈ Γ1,(2.10)

where ũk
j is the jth Cartesian component of the scattered field at ξ∈Ω− due to a unit

point source acting at x∈Γ1 in the kth coordinate direction so that ũk =(ũk
1 , ũ

k
2 , ũ

k
3).

With reference to (2.3) and (2.9), one may further introduce the traction Green’s
tensor

T̂ (ξ,x) = n(ξ) · C:∇ξÛ(ξ,x), ξ∈S\{x}, x ∈ Γ1,(2.11)

for any smooth surface S⊂Ω with unit normal n.
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With the above definitions, the inverse problem of interest can be specified as a
task of reconstructing an impenetrable obstacle ΩC from the knowledge of the scat-
tered tensor Ũ(ξ,x) for all observation points ξ ∈ Γ2 ⊂ Σ and all source points
x ∈ Γ1⊂ Σ. In what follows, this problem will be solved by generalizing upon the
LSM for near-field elastodynamics proposed in [32], which assumes a continuous rep-

resentation of Ũ(ξ,x) over Γ1 ×Γ2 as an experimental input. In practice, however, Ũ
is constructed using spatially discrete measurements, which necessitates a sufficient
density of the source and observation points. One of the key objectives in this study is
to relax the former requirement in terms of the density of excitation sources through
a rigorous mathematical reformulation of the existing technique.

3. Preliminaries. Initially developed by Colton and Kirsch [7] in the context
of far-field acoustics, the LSM for the full waveform (i.e., near-field) obstacle iden-
tification in elastodynamics was shown in [32] to revolve around the linear integral
equation

(Fgz,d)(ξ) = Û(ξ,z) · d, ξ∈Γ2, z∈Ω, d∈R
3,(3.1)

of the first kind, where the near-field operator F : L2(Γ1) → L2(Γ2) is defined as

(Fgz,d)(ξ) :=

∫
Γ1

Ũ(ξ,x) · gz,d(x) dSx, ξ∈Γ2;(3.2)

Ũ synthesizes the experimental observations, gz,d(·) ≡ g(·;z,d) ∈ L2(Γ1) is the un-
known vector density, and d is a unit vector (‖d‖= 1) signifying the polarization of
a “fictitious” point source on the right-hand side of (3.1) acting at sampling point z.
Here L2(S) denotes the Hilbert space of square-integrable vector fields equipped with
the inner product

(g,h)L2(S) =

∫
S

g(x) · h(x) dSx,(3.3)

the overbar implies complex conjugation, and S ⊂ Σ is a generic planar surface of
finite extent. In what follows, it is assumed that d∈R

3 and ‖d‖=1.
For sampling points inside the support of the obstacle, i.e., z ∈ ΩC, it can be

shown under certain restrictions on ω as in [32] that (i) the near-field operator F is
injective, (ii) F has a dense range so that (3.1) can be solved at least approximately,
and (iii) the solution norm ‖gz,d‖L2(Γ1) becomes unbounded as the sampling point
z∈ΩC approaches boundary Γ of the scatterer ΩC from its interior. Using the concept
of topological derivative [20], it is also shown that ‖gz,d‖L2(Γ1) can be made arbitrarily
large when z lies outside of the support of the scatterer, i.e., z∈Ω−. This unbounded
behavior of gz,d has prompted the use of 1/‖gz,d‖L2(Γ1), z ∈ Ω, as a characteristic
function of the hidden obstacle ΩC.

Unfortunately, integral representation (3.2) and thus (3.1) do not make much
sense if the density of source points on the source surface Γ1 is insufficient, a situation
that is common to many physical testing configurations. To mitigate the problem,
it is useful to consider an alternative statement of the LSM wherein the integrals
involved are taken over the observation surface Γ2 rather than the source surface Γ1.

For the ensuing developments, it is useful to recall Betti’s integral identities of
linear elasticity (see [26]). To this end, let D be a finite homogeneous elastic body
with boundary ∂D of class C1,α, and let n denote the unit outward normal on ∂D.
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With such a premise Betti’s third formula for vector fields u,v∈C2(D) ∩C1(D) can
be written as∫

D

[v(ξ) ·Lu(ξ)−u(ξ) ·Lv(ξ)]dVξ =

∫
∂D

[v(ξ) · t(ξ;u)−u(ξ) · t(ξ;v)]dSξ,(3.4)

where t(ξ;u) is given by (2.3) and L is the Lamé operator as examined before.
To formulate the counterpart of (3.1) in terms of an alternative near-field operator

that entails integration over the receiver surface, it is essential to show that the
scattered tensor in (2.10) is reciprocal. This result is established next.

Theorem 3.1 (reciprocity). For the scattering by a cavity, the following sym-
metry holds:

Ũ(ξ,x) = [Ũ(x, ξ)]T, x, ξ∈Ω−.(3.5)

Proof. Let ΩC be fixed, and let ũk(ζ,x) and ũj(ζ, ξ) be the scattered fields at
ζ∈Ω− due to point forces acting respectively at x∈Ω− in the kth coordinate direction
and ξ ∈ Ω− in the jth coordinate direction. Next, select R so that ζ,x, ξ ∈ Ω−

R as
well. On the basis of Betti’s third formula (3.4) applied to Ω−

R , homogeneous Navier
equations in terms of ũk and ũj over Ω−, the homogeneous Neumann condition
in (2.5), and the radiation condition (2.7), it can be shown in the limit as R → ∞
that ∫

Γ

[ũj(ζ, ξ) · t̃k(ζ,x) − ũk(ζ,x) · t̃j(ζ, ξ)]dSζ = 0, x, ξ∈Ω−.(3.6)

Similarly, application of Betti’s third formula and the use of the homogeneous Navier
equations in terms of Green’s functions ûk(ζ,x) and ûj(ζ, ξ) over the interior domain
ΩC yield the identity∫

Γ

[ûj(ζ, ξ) · t̂k(ζ,x) − ûk(ζ,x) · t̂j(ζ, ξ)]dSζ = 0, x, ξ∈Ω−,(3.7)

where, owing to the vanishing right-hand side, the boundary normal n (implicit to t̂j

and t̂k) can be taken as oriented toward the interior of ΩC for consistency with (3.6).
For x, ξ∈Ω−, one can next write the boundary integral representations

ũk
j (ξ,x) =

∫
Γ

[ûj(ζ, ξ) · t̃k(ζ,x) − t̂j(ζ, ξ) · ũk(ζ,x)]dSζ ,

ũj
k(x, ξ) =

∫
Γ

[ûk(ζ,x) · t̃j(ζ, ξ) − t̂k(ζ,x) · ũj(ζ, ξ)]dSζ , x, ξ∈Ω−,(3.8)

of the scattered field; see, e.g., [2]. On subtracting (3.8b) from the sum of (3.6), (3.7),
and (3.8a), one finds that

ũk
j (ξ,x) − ũj

k(x, ξ) =

∫
Γ

[uj(ζ, ξ) · tk(ζ,x) − uk(ζ,x) · tj(ζ, ξ)]dSζ ,(3.9)

x, ξ∈Ω−,

where uj(ζ, ξ)= ûj+ũj and tj(ζ, ξ)= t̂j+ t̃j denote respectively the total displace-
ment and traction vectors at ζ ∈Γ due to a point source acting at ξ∈Ω− in the jth
coordinate direction. By virtue of the fact that tj(ζ, ·)=tk(ζ, ·)≡0 for ζ∈Γ accord-
ing to (2.5), the right-hand side of (3.9) vanishes identically, which, through (2.10),
completes the proof.
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One of the key steps in establishing the rationale for (3.1) is the proof that (3.2)
represents a scattered field in Ω−. The following theorem and its lemma aim to
establish an analogous result for the sought “source-friendly” variant of (3.1).

Theorem 3.2. Let Γ2⊂Σ be a surface of finite extent, and let h∈L2(Γ2). Then
the single-layer potential

v(x) =

∫
Γ2

[Û(ξ,x)]T · h(ξ) dSξ =

∫
Γ2

ûk(x, ξ)hk(ξ) dSξ, x∈Ω,(3.10)

is a radiating solution of the homogeneous Navier equation in Ω so that

Lv(x) + ρω2v(x) = 0, x∈Ω,

t(x;v) = 0, x∈Σ\Γ2, R(v) = 0, x ∈ Ω,(3.11)

where t(x;v) = n(x) · C:∇v(x) is the traction vector associated with v, understood
in the sense of the trace.

Proof. For x ∈ Ω and ξ ∈ Γ2, uk(x, ξ) are regular since Ω ∩ Γ2 = ∅, and (3.10)
accordingly permits differentiation under the integral sign. With such a result, (3.11)
follows directly from the fact that ûk (k = 1, 2, 3) satisfies the homogeneous Navier
equation away from the source surface Γ2. In a similar fashion, the homogeneous
Neumann condition in (3.11) can be obtained by means of (3.10) and the limit of (2.8b)
when the source point y → Γ2. On the basis of (2.3) and (3.10), on the other hand,
one finds that for any y ∈ Ω∫

ΓR

{
ûj(x,y) · t(x;v) − t̂j(x,y) · v(x)

}
dSx

=

∫
Γ2

hk(η)

∫
ΓR

{
ûj(x,y) · t̂k(x,η) − t̂j(x,y) · ûk(x,η)

}
dSx dSη(3.12)

over a hemispherical surface ΓR, where R is taken sufficiently large so that Γ2⊂∂ΩR and
y ∈ ΩR. By virtue of (3.12), statement R(v)= 0 in (3.11) immediately follows from
the fact that the displacement Green’s function ûk(·,z) is a radiating elastodynamic
solution in Ω\{z}; see [19].

Lemma 3.3. For a given vector density h∈L2(Γ2), the radiating solution to the
scattering problem for a cavity ΩC in the semi-infinite reference solid Ω illuminated
by the free field

o
v(x) = (Eh)(x) ≡

∫
Γ2

[Û(ξ,x)]T · h(ξ) dSξ, x∈Ω,(3.13)

is given by the scattered field

ṽ(x) =

∫
Γ2

[Ũ(ξ,x)]T · h(ξ) dSξ, x∈Ω−,(3.14)

where Û and Ũ are given respectively by (2.9) and (2.10).
Proof. With the aid of (2.10) and the reciprocity property (3.5) established in

Theorem 3.1, formula (3.14) can be rewritten as

ṽj(x) =

∫
Γ2

ũk
j (x, ξ)hk(ξ) dSξ, x∈Ω−, j = 1, 2, 3.(3.15)
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By virtue of (2.5), integral representation of the scattered field ũk in Ω− in terms of
the total field uk over the cavity boundary Γ can be written as

ũk
j (x, ξ) =−

∫
Γ

t̂j(η,x) · uk(η, ξ) dSη, x∈Ω−, ξ∈Γ2;(3.16)

see, e.g., [21]. By use of (3.16) in (3.15) and interchanging the order of integration,
one finds

ṽj(x) =−
∫

Γ

t̂j(η,x) · v(η) dSη, x∈Ω−,(3.17)

where

v(η) =

∫
Γ2

uk(η, ξ)hk(ξ) dSξ, η∈Γ.(3.18)

From (3.17), it is seen that ṽ(x) admits a representation in terms of a double-
layer potential similar to that in (3.16). Since x∈Ω−, it can be shown [27] using the
radiating property of ûk that the right-hand side of (3.17) is itself a radiating solution
of the homogeneous Navier equation in Ω− so that

Lṽ(x) + ρω2ṽ(x) = 0, x∈Ω−,

R(ṽ) = 0, x∈Ω−.(3.19)

On applying (2.3) to (3.13) and (3.15) and interchanging the order of integral and
differential operators, one finds from (2.5) that

t(y; ṽ) =

∫
Γ2

t̃k(y, ξ)hk(ξ) dSξ =

{
0, y∈Σ,

−t(y;
o
v), y∈Γ,

(3.20)

in the limits as x → y ∈ Σ and x → y ∈ Γ, respectively. Given the fact that
Γ = ∂ΩC and Ω− = Ω \ (ΩC ∪Γ), equations (3.19) and (3.20) indeed demonstrate
that ṽ is a radiating solution to the scattering problem for a cavity ΩC due to free
field (3.13).

4. Adjoint formulation of the LSM. With the foregoing developments, linear
sampling equation (3.1) aiding the full waveform tomography of semi-infinite elastic
solids can now be reformulated so that the featured integration is performed over the
receiver surface Γ2 in lieu of Γ1. To this end, let the sampling point z ∈Ω be fixed.
The idea is to establish an alternative near-field operator G : L2(Γ2) → L2(Γ1) that

synthesizes experimental observations in terms of the scattered tensor Ũ , and to seek
the vector density hz,d(·) ≡ h(·;z,d)∈L2(Γ2) as a solution to the integral equation
of the first kind

(Ghz,d)(x) = Û(x,z) · d, x∈Γ1, z∈Ω, d∈R
3,(4.1)

where d is a fixed polarization vector (‖d‖=1) as examined earlier. Adopting funda-
mental hypotheses of the LSM, G must be designed so that, under certain restrictions
on the excitation frequency ω, the following statements apply:

• For z ∈ ΩC, operator G is injective and has a dense range. The solution
of (4.1) further has the property limz→y∈Γ ‖hz,d‖L2(Γ2) = ∞.
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ΩC ΩC,τ
~

τ
z

τ2

b)

z

a)

Fig. 4.1. Sampling cases: (a) z∈ΩC, “true” obstacle; (b) z∈Ω\ΩC, perturbed obstacle.

• For z ∈ Ω \ (ΩC ∪ Γ), there exists an approximate solution hτ
z,d to (4.1)

such that limτ→0 ‖hτ
z,d‖L2(Γ2) = ∞, where τ is the approximation parameter.

With reference to Figure 4.1, approximate solution hτ
z,d is understood in the

sense of a perturbed scatterer domain Ω̃C,τ 	 z [32].
With such prerequisites, the unboundedness property of the sought vector density

hz,d can then be used to reconstruct a hidden cavity ΩC by probing the subsurface
volume of interest through an array of sampling points z, and identifying ΩC via
an assembly of points where ‖hz,d‖L2(Γ2) is bounded. As elucidated earlier, such an
identification procedure would make sense even when the density of source points on
Γ1, used to illuminate the cavity, is limited.

To facilitate the ensuing developments, it is useful to make reference to the near-
field operator F in (3.2) and introduce its adjoint counterpart F ∗ : L2(Γ2)→L2(Γ1)
by the ensuing proposition.

Lemma 4.1. For all g∈L2(Γ1) and e∈L2(Γ2),

(Fg, e)L2(Γ2) = (g,F ∗e)L2(Γ1),(4.2)

where F is defined by (3.2) and

(F ∗e)(x) :=

∫
Γ2

[Ũ(ξ,x)]T · e(ξ) dSξ, x∈Γ1,(4.3)

where an overbar symbol denotes complex conjugation.
Proof. The statement of the lemma in terms of (4.2) and (4.3) can be established

using (3.2) and (3.3) and interchanging the order of integration.
To arrive at a form of G that yields the required solvability and unboundedness

properties in terms of hz,d, one is tempted to employ the result of Lemma 4.1 and
postulate the integral equation∫

Γ2

[Ũ(ξ,x)]T · e(ξ) dSξ = [Û(z,x)]T· d, x∈Γ1, z∈Ω,(4.4)

as a basis for the “source-friendly”alternative to (3.1). On employing the symmetry
of the elastodynamic displacement Green’s tensor (2.9) and letting h = e, integral
equation (4.4) can be conveniently rewritten as (4.1), where

(Ghz,d)(x) :=

∫
Γ2

[Ũ(ξ,x)]T · hz,d(ξ) dSξ, x∈Γ1.(4.5)

With reference to Lemma 3.3, the conjugation of (4.4) represents a key step in estab-
lishing (4.1) that features the near-field operator (4.5) as a radiating elastodynamic
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field in the sense of (2.6) and thus enables a direct use of the results obtained in

section 3. It is also useful to note that, for Ũ ∈L2(Γ1×Γ2), the near-field operator G
is well defined, linear, and bounded from L2(Γ2) into L2(Γ1). The latter property can
be demonstrated via the Cauchy-Schwarz inequality

‖Gh‖2
L2(Γ1)

≤ ‖h‖2
L2(Γ2)

⎛
⎝ 3∑

k=1

3∑
j=1

∫
Γ1

∫
Γ2

∣∣ũk
j (ξ,x)

∣∣2 dSx dSξ

⎞
⎠ ,(4.6)

where | · | denotes the complex modulus. It can also be shown (see, e.g., [25]) that
the linear integral operator G is compact from L2(Γ2) into L2(Γ1), thus rendering the
linear equation (4.1) ill-posed.

4.1. Mathematical justification of the adjoint method. To validate the
proposed developments, it is next necessary to establish the injectivity, denseness, and
unboundedness theorems characterizing the solution of (4.1). For brevity, attention
is herein focused on the “default” case when z ∈ΩC. Following the approach taken
in [32], situations with z /∈ΩC can be effectively treated by considering the perturbed

scatterer Ω̃C,τ with a vanishing appendage (see Figure 4.1(b)) so that z ∈ Ω̃C,τ and
investigating the behavior of such perturbed (4.1) as τ → 0.

Theorem 4.2 (solvability). Let ΩC be a cavity. Then the equation

(Ghz,d)(x) = Û(x,z) · d, x∈Γ1, z∈ΩC,(4.7)

where G is given by (4.5), possesses a solution hz,d∈L2(Γ2) if and only if there exists
an elastodynamic solution

o
v to the interior Neumann problem

L
o
v(x) + ρω2 o

v(x) = 0, x∈ΩC,

t(x;
o
v) + T̂ (x,z) · d = 0, x∈Γ,(4.8)

that permits a representation in the form of the single-layer potential (3.13).
Proof. Let hz,d ∈L2(Γ2) be a solution to the integral equation (4.7). From the

results of Theorem 3.2 and Lemma 3.3, it follows directly that the free field
o
v = Eh

and the induced scattered field ṽ = Gh are both radiating solutions in Ω−. In
addition, the single-layer potential (3.13) satisfies the homogeneous Navier equation
in ΩC, owing to the fact that Γ2∩ΩC =∅. Accordingly, (4.8) is obtained from (4.7), the
Holmgren’s uniqueness theorem [17], and the Neumann boundary conditions (2.5) on
Γ. Conversely let

o
v = Eh, which solves the interior Neumann problem (4.8), be taken

as a free field for the scattering by a cavity ΩC. By virtue of Lemma 3.3 and the fact
that z∈ΩC, both the (induced) scattered field ṽ and the Green’s function Û(·,z) · d
are radiating solutions in Ω− satisfying the homogeneous Navier equation. Owing to
(2.5), (4.8b), and the uniqueness of the solution to the scattering problem (2.4)–(2.6)

(see [27]), the induced scattered field (Gh)(x) = Û(x) · d in Ω− and (4.7) follows in
the limit as x → y∈Γ1.

Unfortunately, the solution of the interior Neumann problem (4.8) may not per-
mit representation

o
v = Eh with h ∈ L2(Γ2) in many situations. To examine the

approximating characteristics of (3.13), assume that D⊂Ω is a bounded domain with
boundary ∂D of class C1,α, and let H1(D) be a Sobolev space of vector fields equipped
with the inner product

(v,u)H1(D) = θ

∫
D

v(ξ) · u(ξ) dVξ +

∫
D

∇v(ξ) :C:∇u(ξ) dVξ,(4.9)
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where R	 θ>0. With such definitions, one may introduce H(D) as a set of classical
solutions to the homogeneous Navier equation

H(D) =
{
u∈C2(D) ∩ C1(D) : Lu + ρω2u = 0 in D

}
,

whose closure, H(D), is defined with respect to the norm ‖u‖H1(D) =
√

(u,u)H1(D).

Next, consider the single-layer integral operator S : L2(Γ2) → H(D) given by

(Sh)(ξ) :=

∫
Γ2

[Û(x, ξ)]T · h(x) dSx, ξ∈D.(4.10)

For Γ2∩D= ∅, assumed in this study, Sh∈C∞ (
D
)
⊂{C2(D) ∩ C1(D)}. By virtue

of this result and the fact that Sh satisfies the homogeneous Navier equation in D
according to Theorem 3.2, it immediately follows that Sh∈H(D).

Theorem 4.3 (range denseness). The space of single-layer potentials {Sh,h∈
L2(Γ2)} given by (4.10) is dense in the space of classical solutions to the homogeneous
Navier equation: Lu + ρω2u = 0 in D with respect to the H1(D) norm.

Proof. By establishing the elements of the proof as in [32], it can be shown that
(Sh,u)H1(D) = 0 for all h∈L2(Γ2) requires u ≡ 0 in D.

As examined earlier, the adjoint variant of the linear sampling method revolves
around the equation of the first kind (4.7), whose reciprocal solution norm can be
used as a characteristic function of the scatterer. The key hypotheses in this approach,
however, are that (i) (4.7) can be solved uniquely when Û·d ∈ Range(G), (ii) (4.7) can

be solved approximately (with arbitrary accuracy) when Û · d /∈ Range(G), and (iii)
the solution hz,d behaves such that limz→y∈Γ ‖hz,d‖L2(Γ2) = ∞. These requirements
are established next.

Theorem 4.4 (injectivity, approximation, and solution unboundedness). As-
sume that (i) z∈ΩC is fixed and d∈R

3 with ‖d‖=1, (ii) Γ is of class C1,α, and (iii)
ρω2 is not a Neumann eigenvalue of −L in ΩC with eigenfunction Sh given by (4.10).
Then G is one-to-one, and for every ε > 0 there exists hε(·;z,d)∈L2(Γ2) such that∥∥∥Ghε(·;z,d) − Û(·,z) · d

∥∥∥
L2(Γ1)

< ε.(4.11)

For every fixed ε>0 and hε satisfying (4.11), one further has

lim
z→y∈Γ

‖hε(·;z,d)‖L2(Γ2) = ∞.(4.12)

Proof. A detailed proof of (4.11) and (4.12), which builds on the results from
Theorems 4.2 and 4.3, is similar to that in [32] established for the treatment of (3.1)
and is omitted here for brevity.

5. Computational treatment and regularization. On the basis of the fore-
going developments, elastic-wave reconstruction of impenetrable obstacles in a semi-
infinite solid can be achieved by solving the integral equation (4.1) with the near-field
operator G given by (4.5), a format that may be especially useful in situations in-
volving a limited density of “illuminating” point sources distributed over Γ1⊂ Σ (see
Figure 2.1). In this approach, the reference semi-infinite solid is sequentially probed in
a pointwise fashion by placing a fictitious point source (acting in direction d) over an
array of sampling points z∈D⊂Ω, where D is the subsurface region of interest. With
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reference to (4.1), the unknown scatterer ΩC can thus be reconstructed by solving the
linear operator equation

Gh = b,(5.1)

where G is given by (4.5), h = h(·;z,d), and b = Û(·,z) · d. As elucidated earlier,
Fredholm integral equation of the first kind (5.1) constitutes an ill-posed mathematical
problem in the sense of Hadamard [14, 24]. On citing the solvability of (5.1) as
examined in section 4.1, a careful numerical treatment must be adopted next to obtain
a stable solution in terms of h.

5.1. Discretization. In practice the input data, herein synthesized in the form
of the scattered tensor Ũ , are monitored over a discrete set of control points located
on the measurement surface Γ2. Likewise, the time-harmonic excitation used to il-
luminate the obstacle is often provided by a finite number of “point” sources acting
sequentially on the source surface Γ1. To illustrate the physical relevance of the as-
sumed illuminating field, it is worth noting that in quantitative ultrasound imaging,
a point-like excitation of soft tissues can be achieved by way of the so-called acoustic
radiation force [13, 16].

To consistently deal with such a discrete experimental input, let {Ek}Kk=1 be
a system of closed and nonoverlapping subsets of the receiver surface Γ2 such that
Γ2 =

⋃K
k=1 Ek. On assuming that each subset Ek can be parametrized by a mapping

E → Ek that introduces local coordinates, η=(η1, η2)∈E, over Ek⊂Γ2, where E is a
polygonal domain in R

2, the interpolation formula for a Q-noded approximation Ea
k

of a generic surface element Ek⊂Γ2 can be written as

ξ(η) =

Q∑
q=1

ψq(η) ξq, ξ∈Ea
k , ξq∈Ek, η ∈ E.

Here ψq(η) are the Lagrange interpolation polynomials (shape functions) for the Q-
noded element Ea

k with parent domain E, and ξq are the nodal points on Ek. Ac-

cordingly Γa
2 =

⋃K
k=1 E

a
k is an approximation of Γ2 so that the scattered tensor Ũ and

distribution h featured in (5.1) via (4.5) can be approximated over Ea
k as

Ũ(ξ(η),x) =

Q∑
p=1

ψp(η) Ũ(ξp,x), ha(ξ(η)) =

Q∑
q=1

ψq(η)hq, ξ∈Ea
k ⊂Γa

2 ,

where hq = h(ξq) and x ∈ Γ1. In what follows, it is assumed that the values of the

scattered tensor Ũ(ξ,x) are sampled over NS source points {xi}NS
1 on Γ1, and NO

observation points {ξj}NO
1 on Γ2. In this setting, an approximation of the near-field

operator G over Γ1 can be written as

(Gaha)(x)=

K∑
k=1

Q∑
q=1

Q∑
p=1

[Ũ(ξpk,x)]T· hqk

∫
Ea

k

ψq(η)ψp(η) J dη1dη2, x∈Γ1,(5.2)

where J = J(η) is the Jacobian of transformation (5.2), while pk and qk are the
respective global indices of the pth and qth element nodes on Ea

k . On the basis

of (5.2) and a set of collocation points {xi}NS
1 ⊂Γ1, a discretized form of the near-field

integral equation (5.1) can be written as

Gaha = ba,(5.3)
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where ha = (h1,h2, . . . ,hNO)T is a vector containing the nodal values of h on Γ2,

ba = (Û(x1,z) · d, Û(x2,z) · d, . . . , Û(xNS ,z) · d)T, and Ga ∈ C
3NS×3NO is a finite-

dimensional approximation of the near-field operator G following (5.2) wherein the
surface integrals are approximated via a product Gauss–Legendre quadrature.

In view of the ill-posed nature of (5.1), a suitable regularization is necessary to
obtain a stable approximate solution of (5.3). To this end, let ε be an a priori estimate
of the measurement and numerical errors characterizing Ga so that

‖G−Ga‖L2(Γ1) ≤ ε, ε = γ ‖Ga‖L2(Γ1), γ > 0,(5.4)

and let the right-hand side b, poluted with numerical inaccuracies, be known up to
an error δ, whereby

‖b− ba‖L2(Γ1) ≤ δ, δ = β ‖ba‖L2(Γ1), β > 0.(5.5)

In the ensuing (regularized) solution of the discrete system (5.3), Euclidean norm ‖ ·‖
in C

N induced by the inner product

(u,v) =
N∑
i=1

ūivi, u,v∈C
N ,(5.6)

will be assumed, where N is an appropriate dimension.

5.2. Tikhonov regularization. The Tikhonov regularization method [14, 41]
replaces (5.3) with an equation of the second kind:

G∗
aGah

α
a + αhα

a = G∗
a ba, ha∈C

3NO ,(5.7)

where G∗
a denotes the conjugate transpose of Ga, α>0 is the regularization parameter,

and hα
a defacto minimizes the functional Jα(ha) = ‖Gaha − ba‖2 + α‖ha‖2.

On employing the singular value decomposition of Ga, it can be shown [10, 24]
that the regularized solution hα

a of (5.7) and its squared norm admit the representation

hα
a =

∑
νj>0

νj
α + ν2

j

(uj , ba)vj , ‖hα
a‖2 =

∑
νj>0

ν2
j(

α + ν2
j

)2 |(uj , ba)|2 .(5.8)

Here ui ∈ C
3NS (i = 1, 2, . . . , 3NS) and vj ∈ C

3NO (j = 1, 2, . . . , 3NO) denote re-
spectively the left and right singular vectors of Ga, and νk ∈ R, k = 1, 2, . . . , p =
min{3NS, 3NO} are the singular values of Ga ordered so that ν1 ≥ ν2 ≥ · · · ≥ νp ≥ 0.

A method for choosing an optimal regularization parameter α=α∗, for which hα
a

“closely” approximates the solution of (5.3), is given by the Morozov’s discrepancy
principle [14, 24, 29, 41]. In its most general form, the discrepancy principle due to
Morozov states that the residual ‖Gah

α
a − ba‖ should be commensurate to the errors

characterizing the estimates of G and b. With reference to (5.4)–(5.5), this implies

‖Gah
α
a − ba‖ = ε‖hα

a‖ + δ.(5.9)

On assuming that δ � ε (the right-hand side, b = Û(·,z) · d, is a known analytic
function of real variables), one can neglect numerical inaccuracies in the computation
of the right-hand side b in (5.9) and define the discrepancy function as

ζ(α) = ‖Gah
α
a − ba‖2 − ε2‖hα

a‖2, α > 0.(5.10)
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On the basis of (5.8) and decomposition ba=
∑

νj>0 uj (uj , ba), the discrepancy func-

tion (5.10) and its derivative can be respectively rewritten as

ζ(α) =
∑
νj>0

α2 − ε2ν2
j(

α + ν2
j

)2 |(uj , ba)|2 , ζ ′(α) =
∑
νj>0

2ν2
j (α + ε2)(
α + ν2

j

)3 |(uj , ba)|2 .

It is readily seen that ζ ′(α)>0 for α∈(0,∞), and hence the discrepancy function ζ(α)
is a monotonically increasing function. By virtue of the limit from above, asymptotic
behavior limα↓0 ζ(α) < 0, and the monotonicity of ζ, it follows that ζ(α) has a unique
root α�, satisfying ζ(α�) = 0, which can be computed using, e.g., a root-finding
Newton method.

5.3. Preconditioned conjugate gradient method. In situations where the
singular value decomposition of Ga is not practical, e.g., for “large” systems, the
conjugate gradient (CG) method [22, 24] can be alternatively employed to solve (5.3)
wherein the regularized iterative solution hκ

a is found by minimizing the functional
J(ha) = ‖Gaha−ba‖2. In the iteration procedure of the CG method, iteration number
κ plays the role of the regularization parameter; accordingly, its optimal value, κ=κ�,
is to be chosen by a suitable stopping rule. In this investigation, a preconditioned CG
method proposed by Santos [37] for ill-conditioned systems will be used. Rooted in [3],
this technique can be briefly described using the decomposition GaG

∗
a = T +D+T ∗,

where T is strictly lower triangular, D = diag(d1, d2, . . . , d3NS), and di ∈ R is the
diagonal element of GaG

∗
a ∈C

3NS×3NS . With such definitions, let

Cτ = (D + τ T )D−1/2(5.11)

form a basis for the preconditioner, where τ ∈ [0, 2] is a relaxation parameter. In this
setting, the regularized solution hκ

a of (5.3) can be found by minimizing the functional

JC(ha) = ‖C−1
τ (Gaha − ba)‖2, ha∈C

3NO ,

i.e., by solving the the normal equation

G∗
aC

−∗
τ C−1

τ Gaha = G∗
aC

−∗
τ C−1

τ ba,(5.12)

where C−∗
τ = (C−1

τ )∗. A modification of the CG algorithm (PCCGNR) [37] for
solving (5.12), wherein the “net” residual γκ=ba−Gah

κ
a is computed at every iterate

κ, can be written as follows
Algorithm 5.1.

Given h0
a :

Set γ0 = ba −Gah
0
a, r0 = G∗

aC
−∗
τ C−1

τ γ0, p1 = r0.

For κ = 1, 2, . . .

gκ = Ga p
κ, qκ = C−1

τ gκ,

ακ =
‖rκ−1‖2

‖qκ‖2
,

hκ
a = hκ−1

a + ακ p
κ,

γκ = γκ−1 − ακ g
κ, rκ = G∗

aC
−∗
τ C−1

τ γκ,

βκ+1 =
‖rκ‖2

‖rκ−1‖2
,

pκ+1 = rκ + βκ+1 p
κ.
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For situations involving large numbers of sampling points z, the inverse of the lower
triangular matrix, C−1

τ , and consequently G∗
aC

−∗
τ C−1

τ , can be precomputed explicitly,
as they are independent of z. In the contrary cases involving only a limited number
of sampling points, on the other hand, it may be beneficial to compute the products
C−1

τ g and C−∗
τ w without calculating the inverse of (5.11) explicitly. To this end, let

f i ∈ C
3NO denote the ith row of Ga, and let di = (f i,f i) be the ith diagonal entry

of D = diag(d1, d2, . . . , d3NS), where the inner product (·, ·) is given by (5.6). With
such definitions, the components of q=C−1

τ g can be computed in a recursive fashion
[3, 37] as

qi = d
−1/2
i (gi − τ (ai,f i)) , ai+1 = ai + d

−1/2
i qi f i, i = 1, 2, . . . , 3NS,

where C
3NO 	a1 =0 initializes the procedure. Similarly by letting C

3NO 	a3NS=0,
the components of s=C−∗

τ w can be computed as

si = d
−1/2
i wi − τ d−1

i (ai,f i), ai−1 = ai + si f i, i = 3NS, 3NS−1, . . . , 1.

The selection of an optimal iteration number (regularization parameter) κ= κ�

in Algorithm 5.1 is rather heuristic. As mentioned in [40], a generalization of the
discrepancy principle manifest in (5.10) to CG-type methods is still an open question.
Nevertheless one may, by analogy to (5.10), introduce the discrepancy function as

ζ(κ) = ‖Ga h
κ
a − ba‖2 − ε2‖hκ

a‖2, κ∈N∪{0}.(5.13)

By virtue of (5.13), one can select the optimal iteration number κ� as the number κ
that corresponds to the minimum of |ζ(κ)|, a quantity whose computation at every
iterate is facilitated by the computation of the “net” residual γκ in Algorithm 5.1.

6. Results and discussion. On the basis of the foregoing developments, the
task of reconstructing an obstacle ΩC in the semi-infinite solid Ω from near-field
elastic waveforms (Figure 2.1) can be achieved by solving either (3.1) or its adjoint
counterpart (4.1) over a sampled region D⊃ΩC by means of the featured regularization
methods. By introducing the grid of sampling points zm ∈D⊂Ω (m= 1, 2, . . . ,M)
spanning the region of interest, Ω is sequentially excited by the virtual point sources
acting at zm in direction d, and 1/‖h(·;zm,d)‖L2(Γ2) is plotted over the selected
raster.

6.1. Testing configuration. With reference to Figure 6.1, consider the problem
of reconstructing a dual cavity consisting of (i) a sphere of diameter 1.6 centered at
(−2,−2, 3), and (ii) an ellipsoid centered at (2, 1, 3) whose axes, of lengths (3, 1.6, 1.6),
are aligned with the reference Cartesian frame {O; ξ1, ξ2, ξ3}. The Lamé parameters
and mass density of the elastic solid are taken as λ = 7

3 , μ = 1, and ρ = 1, corre-
sponding to a Poisson ratio of 0.35. On assuming that the source surface Γ1 and the
observation surface Γ2 coincide, i.e., Γ1 = Γ2 = Π, synthetic observations of the scat-
tered tensor Ũ are generated via an elastodynamic boundary element method [33] by
assuming NS ∈ {8, 21, 40, 65, 96} source points and NO = 96 receiver points regularly
distributed over the square test area (dimensions 10×10). For quadrature purposes,
both the source and the receiver grid are each associated with a uniform “mesh” of
eight-node surface elements. In this setting, NS = 8, 21, 40, 65, 96 correspond respec-
tively to the k × k mesh of surface elements, k=1, 2, 3, 4, 5. From every source point
xk on the grid (k=1, 2, . . . , NS), the half-space is sequentially illuminated using time-
harmonic force of magnitude P =

√
3μa2 acting along the coordinate directions ξ1, ξ2,
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Γ  = Γ1 2

ξ3

ξ1

ξ2

Fig. 6.1. Dual cavity and testing grid (5×5 surface elements) in a semi-infinite elastic solid
with NS =NO =96.

and ξ3. For each xk, the synthetic data Ũ(ξj ,xk) are computed over NO =96 receiver
points ξj , as examined earlier. To examine the effect of measurement uncertainties,
synthetic observations Ũ in selected examples are corrupted as

Ũ(ξj ,xk) := (1 + �χ) Ũ(ξj ,xk),
j = 1, 2, . . . , NO,
k = 1, 2, . . . , NS,

where � is the noise amplitude and χ∈ [−1, 1] is a uniform random variable.
With the above problem parameters, near-field equations (3.1) and (4.1) are dis-

cretized as examined in section 5 and solved, assuming d= 1√
3
(1, 1, 1)T, for the densi-

ties gz,d and hz,d, repectively, over a grid of uniformly spaced sampling points in the
horizontal plane ξ3 =3 and vertical planes ξ2 =−2, 1. For completeness, representative
numerical results are computed using both Tikhonov regularization (TR) and the pre-
conditioned conjugate gradient (PCG) methods, assuming τ = 0.2 for the relaxation
parameter. With reference to the discrepancy functions (5.10) and (5.13), an estimate
ε of the “measurement” and numerical errors characterizing the near-field operator is
computed as ε= γ‖Ga‖, where ‖Ga‖ is given by the maximum singular value of Ga

for the TR method, and by the Frobenius norm of Ga for the PCG method.
To facilitate the comparison of results, each sectional distribution of the reciprocal

solution density norm is accompanied by (i) an intersection with the boundary of the
“true” obstacle indicated via a dark (red) solid line, and (ii) a white dashed isoline
corresponding to a fraction, R, of the peak (maximum) value in the plot. For clarity,
the selected threshold level is also featured on the color bar accompanying each graph.

6.2. Adjoint versus direct sampling method. By setting γ =10−7 in (5.4)

and assuming no extraneous noise on the measurements Ũ (i.e., �= 0), Figures 6.2
and 6.3 depict the contour plots of 1/‖g(·;z,d)‖L2(Π) (top row) and 1/‖h(·;z,d)‖L2(Π)

(bottom row) computed using the TR method for ω = 4 and NO = 96 under the
decreasing number of source points, namely NS ∈ {96, 65, 40, 21, 8}. In particular,
the top panels in each figure are computed via direct formulation (3.1), while their
bottom companions are associated with the adjoint formula (4.1). In Figure 6.2,
which compares the methods for NS ∈{96, 65, 40}, the dashed isolines are computed
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Fig. 6.2. Images of dual cavity in the ξ3 =3 plane under decreasing number of source points—
5× 5, 4× 4, and 3× 3 grids of surface elements: direct (top row) versus adjoint formulation (bottom
row) with NO =96, ω=4, and �=0.
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Fig. 6.3. Images of dual cavity in the ξ3 =3 plane under decreasing number of source points—
2 × 2 and 1 × 1 grids of surface elements: direct (top row) versus adjoint formulation (bottom row)
with NO =96, ω=4, and �=0.

assuming R= 0.25, a threshold value which was found to perform well (in terms of
obstacle reconstruction) when dealing with “high-quality” observations. Owing to the
fact that Γ1 = Γ2, the images in Figure 6.2 for NS = NO = 96 resulting respectively
from (3.1) and (4.1) should be identical. Indeed, the two distributions are similar,
and the apparent (minor) differences reflect the finite accuracy of three-dimensional
boundary element simulations used to generate the synthetic measurements. Under
reduced NS, however, the top images stemming from (3.1) became progressively more
smeared than their adjoint counterparts. In particular the inspection of results for
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NS = 40 indicates that, despite an apparent similarity of the respective isolines, the
gray tones are notably more localized inside the support of the defect for the (bottom)
“adjoint” image computed from (4.1), indicating higher quality of reconstruction. This
trend is further highlighted in Figure 6.3 dealing with “severely limited” obstacle
illumination where NS ∈ {21, 8}. As a point of reference, the two sets of results
also feature the isolines corresponding respectively to R ∈ {0.50, 0.65} (applied to
compensate for image deterioration), as well as the schematics of respective source
grids with the shear wave length plotted to scale. As can be seen from the display,
the adjoint formulation of the linear sampling method continues to outperform its
“direct” counterpart with the differences becoming more pronounced with decreasing
NS.

With reference to the results in Figures 6.2 and 6.3, it is noted that the rank of the
discretized operators Fa in (3.1) and Ga in (4.1) was found, as expected, to be (3NS)

2

for all configurations examined. Here the factor of 3 appears due to the fact that the
obstacle is sequentially illuminated by a point force in each coordinate direction from
every source location xk, k=1, 2, . . . , NS. In this sense both (3.1) and (4.1) operate on
the same data set (for a given NS), and the respective drawbacks of these two methods,
when used in the context of limited obstacle illumination, can be described as that of
underintegration versus undercollocation. From the numerical results in Figures 6.2
and 6.3, it follows that the adjoint variant (4.1) of the LSM makes better use of such

limited experimental data where the scattered tensor Ũ(ξ,x) is undersampled with
respect to its second (i.e., source) argument. This conclusion is uniformly supported
by the results from a number of other testing configurations whose results are herein
omitted for brevity. From the practical point of view, the above results further indicate
that a comparative defect reconstruction using both direct and adjoint formulation of
the LSM may provide an effective tool for exposing an apparent undersampling of the
scattered tensor Ũ with respect to either argument. As an example, such comparative
study from Figures 6.2 and 6.3 arguably indicates that, for a given testing aperture
as controlled by Γ1 and Γ2, the scattered tensor is undersampled with respect to
its second argument for NS ≤ 40. While a similar conclusion for the configuration
of interest (where Γ1 = Γ2) could be obtained using an independent argument of
spatial aliasing [38], the above heuristic approach for exposing the undersampling of

Ũ could be equally applied to more complex situations where the source and receiver
surfaces are associated with distinct “viewing” apertures, i.e., situations where the
conventional indicators of undersampling may be insufficient.

6.3. TR versus PCG. To diversify the computational treatment of the LSM,
section 5.3 describes an application of the PCG algorithm to ill-conditioned linear
systems featured in (5.3). By its nature, such an alternative method of solution, i.e.,
regularization, may be particularly useful in testing situations involving large numbers
of sources and receivers (the issue of their density set aside), as in three-dimensional
seismic imaging [38], where an application of the singular value decomposition in
terms of TR may lead to substantial computational cost and inaccurate singular
values. While the numerical simulation of such “large” sets of experimental data is
beyond the scope of this study, one may pose a question as to the relative performance
of the PCG and TR methods in the context of “small” experimental data sets such as
those in Figures 6.2 and 6.3, where the TR method is expected to have an advantage
owing to an explicit knowledge of the singular values of the system.

In the above setting, Figure 6.4 “borrows” the example with NS =40 from Figure
6.2, where NO = 96, ω = 4, and �= 0, as a platform for the comparison between the
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Fig. 6.4. Images of dual cavity stemming from the adjoint formulation in the horizontal (ξ3 =3)
and vertical (ξ2 =−2, 1) planes computed using TR (left panels) and PCG (right panels). Problem
parameters: ω=4, NS =40, NO =96, and �=0.

TR method (left panels) and the PCG method (right panels) in terms of the adjoint
formulation (4.1). Here the distributions of 1/‖h(·;z,d)‖L2(Π) are plotted both in the
horizontal (ξ3 =3) and vertical (ξ2 =−2, 1) sections. For ease of comparison, isolines
of 1/‖h‖L2(Π) corresponding to R = 0.25 are included as before. With reference to
the discussion in section 6.2, application of the TR and PCG methods to a “slightly”
undercollocated system (5.3) with NS =40 and NO =96 in Figure 6.4 yields distribu-
tions that are barely distinguishable despite the distinct computational treatments.
To examine the effect of noise in the measurements, the latter comparison is repeated
in Figure 6.5, but this time assuming �=0.04, i.e., the 4%-level of experimental errors
in (6.1). From the diagram where the isolines are computed for T = 0.5, one may
observe that (i) the sectional images are relatively stable with respect to the mea-
surement noise, and (ii) the TR and PCG methods still produce comparable results,
with the PCG-based image in the ξ2 =1 (vertical) section providing a slightly better
reconstruction of the “bottom” of the ellipsoid.

As a final illustration, the effect of diminishing NS on the performance of the two
regularization methods is illustrated in Figure 6.6 where NS =21, NO =96, �=0, and
T =0.5. In this case the edge (as expected) belongs to the TR results, even though the
PCG method still performs satisfactorily. In terms of the computational effort, it is
noted that for each horizontal section in Figure 6.5 that features 412 =1681 sampling
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Fig. 6.5. Images of dual cavity stemming from the adjoint formulation in the horizontal (ξ3 =3)
and vertical (ξ2 =−2, 1) planes computed using TR (left panels) and PCG (right panels). Problem
parameters: ω=4, NS =40, NO =96, and �=0.04.
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Fig. 6.6. Images of dual cavity stemming from the adjoint formulation in the horizontal (ξ3 =3)
and vertical (ξ2 =−2, 1) planes computed using TR (left panels) and PCG (right panels) methods.
Problem parameters: ω=4, NS =21, NO =96, and �=0.
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points, the computation of 1/‖h‖L2(Π) took approximately 19 minutes for the TR
method and 21 minutes for the PCG method on a Linux system with a 2.4 GHz
Opteron processor. Here one should bear in mind that the majority of computational
effort in each case is spent on the calculation of the half-space Green’s function [18]
featured on the right-hand side of (4.1). For significantly larger experimental systems,
however, the computational advantage is naturally expected to shift toward the PCG
method.

7. Summary. In this study, three-dimensional inverse scattering problem in-
volving near-field elastodynamic reconstruction of impenetrable obstacles in a semi-
infinite solid is examined by way of the linear sampling method (LSM). To cater
to active imaging configurations characterized by a limited density of illuminating
sources, an adjoint formulation of the near-field LSM is established that features a
linear integral equation of the first kind involving integration over the measurement
(as opposed to the source) surface. To diversify the computational treatment of ill-
posed systems involving a significant number of experimental observations, a finite-
dimensional approximation of the featured integral equation is solved by alternative
means of Tikhonov regularization and a preconditioned conjugate gradient method.
Computational details of the imaging technique, including evaluation of the featured
integrals as well as the implementation of regularization strategies, are highlighted.
Numerical results indicate that the adjoint variant of the LSM outperforms its pre-
decessor (the so-called direct formulation) in situations involving a limited density of
illuminating sources. From the practical standpoint, it is also found that a combined
defect reconstruction by alternative means of the adjoint and direct sampling methods
provides a rational basis for exposing an apparent undersampling of the experimental
input, synthesized via the so-called scattered tensor. The results further indicate that
the CG method, while designed primarily for the treatment of “large” systems in-
volving a significant amount of experimental observations, may perform satisfactorily
even for “small” systems that are characterized by a subpar number of illuminating
sources.

Acknowledgments. The support provided by University of Minnesota Super-
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Abstract. The scalar wave inverse source problem (ISP) of determining an unknown radiat-
ing source from knowledge of the field it generates outside its region of localization is investigated
for the case in which the source is embedded in a nonhomogeneous medium with known index of
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This method is applied to the special case when the nonhomogeneous background is spherically
symmetric (n(r) = n(r)), and it yields the minimum energy source in terms of a series of spherical
harmonics and radial wave functions that are solutions to a Sturm–Liouville problem. The special
case of a source embedded in a spherical region of constant index is treated in detail, and results
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1. Introduction. We consider in three-dimensional space the fundamental in-
verse source problem (ISP) of determining an unknown scalar source ρ to the inho-
mogeneous Helmholtz equation

(1.1) [∇2 + k2
0n

2(r)]U(r) = −ρ(r)

(where ∇2 denotes the Laplacian operator) that radiates a scalar field U which is
specified everywhere outside the support volume τ of the source. In this equation, k0

is a constant wavenumber, and n(r) is an index of refraction distribution that depends
on position r ∈ R3 and that is assumed to go to unity for sufficiently large r. We
will assume throughout this paper that the source volume τ is a sphere, centered at
the origin and having a radius a. The ISP then consists of computing a source ρ that
generates a prescribed exterior field U , whose value is specified for r /∈ τ .

There are a number of treatments of the scalar ISP of interest in this work as well
as of the full vector electromagnetic inverse problem for the free space case where the
index distribution n(r) is constant (equal to unity) throughout space [1, 2, 3, 4, 5, 6,
7, 8, 9, 10]. Most of these treatments make use of the fact that the source’s radiation
pattern (see below) determines, in principle, the field everywhere outside the source
volume [11]. Using this fact, the ISP can be cast in terms of the radiation pattern:
determine a source ρ that generates a prescribed radiation pattern. It is also well
known [12, 13, 14] that there exist an infinity of sources that radiate fields that vanish
identically outside their support volumes so that the ISP does not possess a unique
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solution; i.e., an infinity of solutions can be obtained by adding any one of these
nonradiating sources to any given solution [15, 16]. Thus, in order to obtain a unique
solution to the ISP it is necessary to add constraints that the source must satisfy in
addition to yielding a specified radiation pattern. An important and tractable choice
of constraint is source energy E , defined to be the L2 norm of the source over the
source volume τ :

(1.2) E =

∫
τ

d3r |ρ(r)|2.

The solution to the ISP that minimizes the source energy as defined in (1.2) is usually
termed the minimum energy solution [2, 3, 6, 7, 8, 9, 10]. It is orthogonal to the
nonradiating sources [3] and is the pseudoinverse of the ISP [5, 6]. Physically, this
source is also related to the real image field generated by a point-reference hologram
of the field recorded on a closed surface completely surrounding the source volume
[2, 3, 17].

The source energy as defined in (1.2) is an important measure of the realizability of
a source generating a given radiation pattern with the given spatial resource or source
volume τ . For the free space case one finds that the energy of the minimum energy
source depends critically on the product x = k0a of the (free space) wavenumber
k0 and the source radius a [2, 6]. For a given radiation pattern this energy E(x) is
small for x > l0, where l0 is a parameter that characterizes the radiation pattern
and that increases with increasing fine detail in the pattern. However, it is found
that E(x) increases exponentially with decreasing x below the critical value l0. This
exponential increase of source energy indicates that the given radiation pattern cannot
be physically realized by any source having that specific k0a product: it is necessary
to either decrease the wavelength (increase k0) or increase the source radius. This
is analogous to the well-known result in antenna theory that states that reactive
energy and the quality Q of an antenna increase exponentially with decreasing k0a
if one attempts to achieve superdirectivity [18, 19]. Furthermore, in the associated
full vector treatment the source energy is also a measure of the current levels of the
antenna structure, which ideally should be small to cope with ohmic losses in realistic
lossy antenna material. In particular, the ability of a source (antenna) to radiate a
prescribed field with reduced source energy or “resources” is an indication of efficiency,
so that the constraint of minimizing the source energy for a given radiation field is
of interest not only for the theoretical treatment of the inverse source problem and
of the related field realizability question but also for the practical antenna synthesis
problem (see, e.g., the antenna characterizations in [20], the sensitivity factor in [21],
and similar factors used in [22, 23, 24]).

As far as the authors of this paper know there are only two treatments of the
ISP for the case where the background index distribution n(r) in which the source
is embedded is nonhomogeneous [25, 26]. The work in [26] generalizes the main
results in [25] to lossy media. Of particular interest to the present research, which
focuses on lossless media, is [25], which shows that the minimum energy solution
satisfies an integral equation whose kernel is the imaginary part of the outgoing wave
Green function of the inhomogeneous Helmholtz equation (1.1). Using this fact, it
is shown in [25] that the minimum energy solution can be expanded into a series
of eigenfunctions of this integral equation with expansion coefficients that can be
determined from the radiation pattern. The paper shows that the formalism reduces
to the known theory of the ISP when the index n = 1 (homogeneous medium case),
but no examples of the general theory were provided.
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In this paper we consider the case of a source embedded in a known nonhomo-
geneous real background index (corresponding to a lossless medium) and solve the
minimum energy ISP using a simple method of constrained optimization. Besides
providing a simpler formulation of the problem than that used in [25], the method
yields a solution that is directly implemented without the need of first computing
a Green function for the Helmholtz equation (1.1) and then computing the eigen-
functions of the imaginary part of this quantity. The special case of a spherically
symmetric index n(r) = n(r) is treated in detail, and it is shown that the minimum
energy solution to the ISP has exactly the same mathematical form as the solution
for the constant index case, but with the spherical Bessel functions replaced by radial
wave functions that are solutions to a Sturm–Liouville problem. In particular, these
radial wave functions are the radial wave scattering functions obtained in the scat-
tering of an incident plane wave from the spherically symmetric index distribution
n(r). This latter problem has been studied extensively in quantum mechanical [27],
optical [28], and electromagnetic [29] scattering, and there exist a number of index
distributions for which the scattering wave functions have been computed and that
can be used to compute the minimum energy solution to the ISP.

Motivation for the research presented in this paper is provided in part by the pos-
sibility of optimally selecting the source region index of refraction distribution n(r)
to achieve some specified radiation pattern that would otherwise not be realistically
possible (due to prohibitive values of required current level, or other engineering con-
straints) for a source embedded in free space. This possibility has attracted research
from time to time in the antenna community, being of interest a variety of antenna-
embedding materials or substrates, including plasmas [30], nonmagnetic dielectrics
[31, 32, 33, 34, 35, 36], magneto-dielectrics [37, 38, 39, 40], and, more recently, dou-
ble negative metamaterials, which are receiving much recent attention by a number of
groups as antenna performance-enhancing substrates [41, 42, 43, 44, 45, 46, 47, 48, 49].
The envisaged property is miniaturization of antennas by controlling electric size (via
larger wavenumber), but other effects are involved, particularly when metamaterials
are used.

To arrive from first wave theoretic principles at a non–device specific under-
standing of the practical possibilities opened by antenna-embedding substrates, we
emphasize in the present work the fundamental minimum energy source yielding a
given radiation pattern, rather than particular devices, as has been the focus of the
aforementioned presentations in this area. Also, the present treatment concerns the
scalar inverse problem, which is a simplification of the full vector electromagnetic case.
Rigorous treatment of the metamaterials, which are generally bi-anisotropic media,
requires the full vector formulation [50, 51] and is left for future work. Thus in the
present work attention is restricted to the pertinent properties associated with the
index of refraction n(r) ≥ 0 of natural “positive” materials whose key aspects can be
treated within the scalar formulation, but the general approach can be extended also
to the vector case along the lines of, e.g., [52], where both source energy and reactive
power constraints have been considered in the formulation of the inverse problem for
sources embedded in free space.

The key observation is that, as outlined earlier and as shown in section 3 of this
paper, in the free space case the minimum energy source energy increases exponen-
tially with decreasing x = k0a below a critical point that is determined by the fine
detail that is desired in the radiation pattern. The question then is whether this lim-
itation can be mitigated by embedding the source in a nonhomogeneous background
medium. In effect we create a new “effective source” that consists of the actual physi-



1356 ANTHONY J. DEVANEY, EDWIN A. MARENGO, AND MEI LI

cal source interacting with the nonhomogeneous background. In the simplest case we
can consider a source embedded in a cavity with partially reflecting walls. This cavity
will, of course, have a pronounced effect on the radiated field and, possibly, can aid
in achieving desired properties of the radiation pattern.

In this paper we limit our attention, for the most part, to source regions character-
ized by a spherically symmetric index of refraction distribution n(r) = n(r), although
many of our results can be generalized to sources embedded in cavities and nonspher-
ically symmetric index distributions. The realizability of a given radiation pattern is
investigated in some detail by examining the dependence of minimum source energy
on the index of refraction profile of the source region. It is found that this energy
depends critically on the (weighted) L2 norm of the radial wave functions taken over
the source region. This fact suggests that, by proper choice of the index of refraction
profile n(r), the energy can be minimized for any given radiation pattern; i.e., an
index distribution can be selected that results in a source having minimum energy for
a given prescribed radiation pattern.

The L2 norms of the radial wave functions are found to be dependent on “reso-
nant” properties of the source index distribution and are also related in a one-to-one
fashion with the different angular modes of the radiation pattern. These facts suggest
the interesting possibility of exploiting the “resonances” of the source index distribu-
tion to selectively control the shape and form of the radiation pattern. This possibility
is briefly considered in the computer simulation study.

The final section of the paper treats the simple example of a source embedded
in a homogeneous sphere whose constant index of refraction differs from that of the
background medium. This is the simplest example of a spherically symmetric index of
refraction distribution, and the scattering wave functions are well known (the so-called
Mie scattering problem [28, 29]) and easily computed. The minimum energy source is
computed for this case, and results from a computer simulation study that examines
the dependence of the energy of the minimum energy source on the index of refraction
of the source region are presented. The source energy depends in a nonlinear manner
on the value of the source region refraction index. The examples considered reveal
that, as desired, there are values of the index of refraction for which the improvement
of the source-embedded case relative to the free space case is significant for the entire
effectively radiating multipole spectrum pertinent to the same source region in free
space.

2. Problem formulation. We introduce the scattering potential defined ac-
cording to the equation

V (r) = k2
0[1 − n2(r)]

and rewrite (1.1) in a form that we will use in the development to follow. In particular
we find that

(2.1) [∇2 + k2
0 − V (r)]U(r) = −ρ(r),

where here and in the remainder of the paper both the scattering potential V and the
source ρ are assumed to vanish outside the source region τ (thus n(r) = 1 for r /∈ τ).

The outgoing wave solution to (2.1) is the unique field radiated by the source
obeying Sommerfeld’s radiation condition (e.g., see [53, Chapter 2], [54, Chapter 3]),
which is the one having the asymptotic behavior of an outgoing spherical wave

(2.2) U(rs) = f(s)
eik0r

r
+ O

(
1

r2

)
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as k0r → ∞ uniformly in the direction specified by the unit vector s. In the above
equation, the quantity f(s) is the source’s far field radiation pattern which is seen to
correspond to the limit

(2.3) f(s) = limr→∞
[
re−ik0rU(rs)

]
.

In the following, we will bear in mind (2.2), (2.3) but will usually express the associated
far field asymptotic behavior simply as

(2.4) U(rs) ∼ f(s)
eik0r

r
as k0r → ∞,

with the understanding that throughout the paper all the far field approximations
hold to within O(1/r2). It is well known that the radiation pattern specified for all
directions s uniquely determines the field U everywhere outside the source region
τ [11]; i.e., knowledge of the radiated field everywhere outside τ is equivalent to
knowledge of the radiation pattern f(s) specified for all directions s.

The ISP consists of determining a source distribution ρ(r) that radiates a given
field U for r /∈ τ . Because the ISP requires that the field radiated by the source be
specified only outside τ , the problem does not possess a unique solution, because of
the possible presence of nonradiating sources [12, 13, 14] within τ . A nonradiating
source generates a field that vanishes identically outside τ and hence can be added to
any given solution to the ISP to yield a different solution. Also, because the radiation
pattern uniquely determines the field everywhere outside τ , the ISP is equivalent to
the problem of determining a source that generates a prescribed radiation pattern
f(s) for all observation directions s.

Most treatments of the ISP cast the problem in terms of the radiation pattern but
require only that the source generate the radiation pattern to within a given accuracy
defined by the integral squared error

(2.5) E =

∫
4π

dΩs |f̂(s) − f(s)|2,

where f is the prescribed radiation pattern and f̂ the radiation pattern actually
generated by the source, while dΩs denotes the solid-angular differential element.
More precisely, the desired radiation pattern is approximated by a finite series of
spherical harmonics Y m

l (s),

(2.6) f(s) ≈ f̂(s) =

L∑
l=0

l∑
m=−l

αl,mY m
l (s),

and the source is required only to generate the approximate radiation pattern f̂ . Here
we have used the unit vector s having polar angle θ and azimuthal angle φ to denote
the θ, φ arguments of the spherical harmonics. Because the spherical harmonics are
orthonormal and complete over the unit sphere, the approximated radiation pattern
satisfies (2.5) with an error E given by

E =

∞∑
l=L+1

l∑
m=−l

|αl,m|2,

where the expansion coefficients (multipole moments) αl,m, l > L, are the higher
order (neglected) expansion coefficients of the ideal radiation pattern.
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Besides requiring only that the source generate the radiation pattern within a
finite error, most treatments of the ISP also require that the source minimize the
source energy defined by (cf. (1.2))

(2.7) E =

∫
τ

d3r |ρ(r)|2.

We will show (see also [3]) that minimizing the source energy leads to a unique solution
of the ISP, namely, the minimum energy source, which we designate by ρME . This
solution has the distinct advantage of being the most efficient source that solves the
ISP for a given scattering potential V (r) (corresponding to a given background index
of refraction n(r)). Since the minimum energy source and, hence, the minimum source
energy depend on the scattering potential, an interesting question arises as to the de-
pendence of the source energy on the background index distribution and, in particular,
on which index distributions lead to lowest source energies. This question provides
much of the motivation for studying the ISP in nonhomogeneous backgrounds, and
the derived results shed light onto the possibility of designing very efficient sources
(e.g., antennas) that are embedded in such backgrounds.

Our goal in this paper is to develop the formalism for solving the ISP as defined
above and to evaluate the formalism in a set of computer simulations. We will first
treat the case of a source embedded in free space, and then extend the free space theory
to the general case of a source embedded in an inhomogeneous background medium.
The free space case is important in that it provides a benchmark of performance as
well as a frame of reference for the general theory.

3. Free space case. The minimum energy ISP as defined above has been solved
within both the scalar wave formulation under consideration here [1, 2, 3, 4, 5, 7]
and the electromagnetic wave formulation [6, 8, 9, 10] in the special case where the
scattering potential V (r) vanishes; i.e., when the source is embedded in free space.
We will review the scalar wave free space case here, where, however, we will employ
a solution methodology to find the minimum energy source somewhat different from
the one adopted in earlier work. We will use this same procedure for the general case
of nonvanishing scattering potentials later in the paper.

The outgoing wave solution to (2.1) is given in terms of an outgoing wave Green
function G(r, r′) (obeying (2.1) for ρ(r) = −δ(r− r′) and an asymptotic condition of
the form (2.4)) by the expression

(3.1) U(r) = −
∫
τ

d3r′ ρ(r′)G(r, r′),

where (as indicated earlier) the source volume τ is a sphere of radius a centered at
the origin. In the particular free space case where the scattering potential V = 0, the
outgoing wave Green function G is given by

(3.2) G(r, r′) = − 1

4π

eik0|r−r′|

|r − r′| ,

from which it is easy to show that

(3.3) G(rs, r′) ∼ − 1

4π
e−ik0s·r′ e

ik0r

r

as k0r → ∞ in the direction s (which has the required form (2.4)). Using the above
result, we conclude from (2.4) and (3.1) that the radiation pattern is given by
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(3.4) f(s) =
1

4π

∫
τ

d3r′ ρ(r′)e−ik0s·r′ .

We can obtain an expansion of the radiation pattern in a series of spherical
harmonics by using the well-known expansion

(3.5) e−ik0s·r′ = 4π

∞∑
l=0

l∑
m=−l

(−i)ljl(k0r
′)Y m

l
∗(r̂′)Y m

l (s),

where jl denotes the spherical Bessel function of the first kind of order l, Y m
l are

the spherical harmonics of degree l and order m, r̂′ denotes the unit vector in the r′

direction, and ∗ denotes the complex conjugate. Upon substituting (3.5) into (3.4),
we find that

(3.6) f(s) =

∞∑
l=0

l∑
m=−l

αl,mY m
l (s),

where the expansion coefficients (multipole moments) αl,m are given by

αl,m =

∫
4π

dΩs f(s)Y m
l

∗(s)

= (−i)l
∫
τ

d3r′ ρ(r′)jl(k0r
′)Y m

l
∗(r̂′).(3.7)

3.1. Minimum energy source. The minimum energy solution to the ISP is
required to satisfy (3.7) for some given set of multipole moments αl,m, l = 0, 1, . . . , L,
and also to minimize the source energy defined according to (2.7). Computing the
minimum energy source can be cast as a problem of constrained minimization, where
the generalized Lagrangian is given by

L = E +

L∑
l=0

l∑
m=−l

Cl,m

[
α∗
l,m − il

∫
τ

d3r ρ∗(r)jl(k0r)Y
m
l (r̂)

]
+ c.c.,

where E is the source energy defined in (2.7), c.c. stands for the complex conjugate of
the second term on the right-hand side (r.h.s.) of the equation, and the Cl,m are a set
of Lagrange multipliers to be determined. On expressing the source energy in terms
of ρ and ρ∗ and taking the first variation of the above Lagrangian, we obtain

δL =

∫
τ

d3r δρ∗(r)

[
ρ(r) −

L∑
l=0

l∑
m=−l

Cl,miljl(k0r)Y
m
l (r̂)

]
+ c.c.,

which, when set equal to zero, yields the solution

ρME(r) =

{ ∑L
l=0

∑l
m=−l Cl,miljl(k0r)Y

m
l (r̂) if r < a,

0 if r > a.

The Lagrange multipliers Cl,m are determined from the condition that the source
generate the multipole moments according to (3.7). We find that

(3.8) Cl,m =
αl,m

σ2
l

,
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where

(3.9) σ2
l =

∫ a

0

r2dr j2
l (k0r).

On making use of the above expression for the Lagrange multipliers, we finally con-
clude that the minimum energy solution to the free space ISP is given by

(3.10) ρME(r) =

{ ∑L
l=0

∑l
m=−l i

l αl,m

σ2
l
jl(k0r)Y

m
l (r̂) if r < a,

0 if r > a.

3.2. Source energy. The source energy E is readily computed using the mini-
mum energy source given in (3.10). We find from (2.7) that

(3.11) EME =

∫
τ

d3r |ρME(r)|2 =

L∑
l=0

l∑
m=−l

|αl,m|2
σ2
l

,

where we have added the subscript “ME” to denote the energy of the minimum
energy source. Now, it is easy to show that the quantities σ2

l depend critically on the
product k0a of the free space wavenumber with the source radius a. In particular,
these quantities can be shown to be given by

(3.12) σ2
l =

∫ a

0

r2dr |jl(k0r)|2 =
a3

2
[jl

2(k0a) − jl−1(k0a)jl+1(k0a)]

and to decrease exponentially to zero for l > k0a. It then follows that the largest
value L of the index l allowed in the approximation (2.6) is L = k0a if we want to
maintain low source energy. Values of L 
 k0a will lead to extremely high source
energy and unstable source distributions.

To illustrate the remarks made above concerning the behavior of the quantities
σ2
l on the index l and the product k0a we show in Figure 3.1 semilog plots of σ2

l as
a function the index l for various values of x = k0a. It is seen from these plots that
these quantities decay exponentially to zero for l 
 x, so that at wavenumber k0 a
source of radius a can only efficiently radiate a radiation pattern whose maximum l
value is L = k0a. Similar behavior is exhibited in Figure 3.2, which shows semilog
plots of σ2

l (x) as a function of x for values of l = 10, 20, and 30.
We computed the energy of the minimum energy source for a model radiation

pattern f(θ) having multipole coefficients αl,m given by

(3.13) αl,m =

{ 1√
L+1

if m = 0 and l ≤ L,

0 otherwise.

This radiation pattern is circularly symmetric about the z axis (is independent of
φ since the nonzero multipoles correspond to m = 0), has an effective beam width
inversely related to the cut-off value L, and has unit energy; i.e.,

∫
4π

sin θdθdφ |f(θ)|2 =

L∑
l=0

1

L + 1
= 1.

We show plots of the model radiation pattern as a function of angle θ in Figure 3.3
for values of the parameter L equal to L = 10, L = 20, and L = 30. It is clear
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Fig. 3.1. Behavior of σ2
l as a function of index l for three different values of x = k0a equal to

10, 20, and 30. Plots indicate an exponential decay of these quantities for l � x. The break points
are seen to occur when x ≈ l.

Fig. 3.2. σ2
l as a function of x = k0a for values of l0 = 10, l0 = 20, and l0 = 30. Plots indicate

an exponential growth of these quantities for x � l0. The break points are seen to occur when x ≈ l.

from these plots that the larger the value of L, the narrower the radiation pattern
and, hence, the higher the directivity of the source. Using the coefficients given in
(3.13), we computed the source energy using (3.11) with the σ2

l given by (3.12) and



1362 ANTHONY J. DEVANEY, EDWIN A. MARENGO, AND MEI LI

Fig. 3.3. Plots of the model radiation pattern for L = 10 (.), L = 20 (o), and L = 30 (*).

with three different L values of L = 10, 20, 30. It was found that, as expected, the
source energy becomes extremely large if we try to achieve an L value that exceeds
the critical value L = k0a. This is, of course, due to the fact that the quantities σ2

l

become extremely small when k0a � l, as is indicated in Figure 3.2.

4. Nonhomogeneous backgrounds. The outgoing wave solution of (2.1) for
a nonhomogeneous index distribution n(r) of support τ , which behaves as in (2.2),
(2.3), (2.4), can be expressed in terms of the outgoing wave Green function for the
background medium via (3.1) where, however, the Green function is no longer the
free space Green function defined in (3.2), but instead is the total outgoing wave
Green function corresponding to the total medium comprised of free space plus the
nonhomogeneous index distribution n(r) or its associated scattering potential V (r).
In the ISP under consideration in this paper, the field is given outside the source
region τ only; that is, the field for a source of support τ is given by (3.1), where r′ ∈ τ
and r /∈ τ . This particular situation enables us to formulate the forward mapping
pertinent here (from a masked source that is confined within τ to an exterior field that
is prescribed for r /∈ τ only) via a conceptually simple and insightful approach which
borrows from standard scattering theory and the reciprocity property of the outgoing
wave Green function, which can be readily shown for the formally self-adjoint partial
differential operator [∇2 + k2

0 − V (r)] using standard Green function theory (e.g., see
[55, Chapters 9 and 10]). Two equivalent versions of the general methodology are
outlined next. The main objective is to generalize the statement made in connection
with the free space case in the far field mapping equation (3.4) for the more general
case of nonhomogeneous backgrounds. The generalization of the derived expression
for the far field mapping will be applied to the particular spherically symmetric and
piecewise constant background cases later in the paper.

The starting point is provided by the familiar Lippmann–Schwinger integral equa-
tion (e.g., see [56, eqs. (8.4), (8.5), (10.12), (10.13)], [27, pp. 178–179, 263–265], [53,
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p. 5], [57, pp. 60–61]), which in the present formulation and notation yields

(4.1) G(r, r′) = G0(r, r
′) +

∫
τ

d3r′′ G0(r, r
′′)V (r′′)G(r′′, r′),

where G denotes the total outgoing wave Green function of the total medium com-
prised of free space plus the generally nontrivial scattering potential V , and G0 denotes
the free space Green function defined in (3.2) (corresponding to V = 0), in particular,

G0(r, r
′) = − 1

4π

eik0|r−r′|

|r − r′| ,

where (see also (3.3), where, again, the G in (3.3) corresponds to the G0 of the present
section)

(4.2) G0(rs, r
′) = − 1

4π
e−ik0s·r′ e

ik0r

r
+ O

(
1

r2

)
as k0r → ∞,

in the direction of the unit vector s, so that from the discussion in (2.2), (2.3), and
(2.4) (which holds for a general source ρ) one finds that the far field radiation pattern
of a point source −δ(r − r′) in free space is − 1

4π e
−ik0s·r′ . We shall recall this basic

result later.
Due to reciprocity, the result (4.1) can be rewritten also as

(4.3) G(r, r′) = G0(r, r
′) +

∫
τ

d3r′′ G(r, r′′)V (r′′)G0(r
′′, r′).

We will borrow from both (4.1) and (4.3) in the following.
By making use of the asymptotic result (4.2), it is not difficult to show from (4.1)

or its equivalent, (4.3), that the Green function G behaves asymptotically as

(4.4) G(rs, r′) = − 1

4π
ψ+(r′;−k0s)

eik0r

r
+ O

(
1

r2

)

as k0r → ∞, where we have introduced the quantity ψ+(r;−k0s) defined by

ψ+(r;−k0s) = e−ik0s·r +

∫
τ

d3r′ e−ik0s·r′V (r′)G(r′, r)

= e−ik0s·r +

∫
τ

d3r′ G(r, r′)V (r′)e−ik0s·r′ .(4.5)

Note from (4.4) that the Green function G(r, r′) does in fact behave as k0r → ∞, as
we have required in (2.2), (2.3), and (2.4). From the same equations one also notes
that the far field radiation pattern f(s) in (2.2), (2.3), (2.4), corresponding to the
field U obeying (2.1), applies to the general source ρ, while, on the other hand, the
far field radiation pattern − 1

4πψ
+(r′;−k0s) in (4.4) corresponds to that of the total

field produced by the particular Dirac-delta point source at r′ in the same medium.
In other words, the quantity − 1

4πψ
+(r′;−k0s) is the far field radiation pattern for the

particular case of a point source at r′. This quantity is seen from (4.5) to consist of
the sum of two terms: the first term, − 1

4π e
−ik0s·r′ , exists even if V = 0 and is the

far field radiation pattern for the point source in free space. (It will account for an
incident field in the discussion to follow.) This is, in fact, what we have discussed
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before in (4.2). On the other hand, the second term, the integral in (4.5), corresponds
to a scattered field contribution, as we shall elaborate further next.

The quantity ψ+(r;−k0s) as defined by the formulation above (i.e., (4.4), (4.5))
is customarily termed a scattering wave function (e.g., see [56, pp. 3, 4, 164, 172]).
This scattering wave function is the unique total (incident plus scattered) field for the
scattering potential V (r) under excitation by the incident plane wave e−ik0s·r in the
direction defined by the unit vector −s, under Sommerfeld’s radiation condition for
the scattered field, which translates into the requirement that the respective scattered
field, that is, the integral term in (4.5), behaves like an outgoing wave at infinity.
Thus the scattering wave function ψ+(r;−k0s) is the solution to the homogeneous
Helmholtz equation

(4.6) [∇2 + k2
0 − V (r)]ψ+(r;−k0s) = 0,

which obeys an asymptotic condition of the form

(4.7) ψ+(rr̂;−k0s) ∼ e−ik0s·r + g(r̂;−k0s)
eik0r

r

as k0r → ∞, where g is the so-called scattering amplitude associated with the scat-
tering potential V whose role in scattering problems is similar to that of the source
radiation pattern f (of (2.4)) in radiation problems (e.g., see [56, eq. (10.19)], [58]).
Note from (4.4), (4.5) that
(4.8)

ψ+(rr̂;−k0s) ∼ e−ik0s·r − 1

4π

eik0r

r

∫
τ

d3r′ ψ+(r′;−k0s)V (r′)e−ik0s·r′ as k0r → ∞,

so that from (4.7) the scattering amplitude

(4.9) g(r̂;−k0s) = − 1

4π

∫
τ

d3r′ ψ+(r′;−k0s)V (r′)e−ik0s·r′ .

Thus the scattering wave function ψ+(r;−k0s) corresponds to the total (incident
plus scattered) field that results when an incident plane wave propagating in the −s
direction scatters off the inhomogeneous index of refraction distribution n(r). Note
that in the limit when the scattering potential vanishes this scattering wave function
simply reduces to the incident plane wave.

Now, by substituting the asymptotic result (4.4) into (2.2), (2.3), (2.4), and (3.1)
we find that the radiation pattern f(s) of a general source ρ embedded in the non-
homogeneous background characterized by index of refraction n(r) or, equivalently,
scattering potential V (r), is given by

(4.10) f(s) =
1

4π

∫
τ

d3r′ ρ(r′)ψ+(r′;−k0s),

which is simply the free space result (3.3) with the plane wave exp(−ik0s ·r′) replaced
by the scattering wave function ψ+(r′;−k0s). For a given V , this scattering wave
function can be obtained by solving the scattering problem posed by (4.6), (4.7).
The ISP for given nonhomogeneous background media then reduces to determining a
source ρ that satisfies (4.10) for all observation directions s, and where the scattering
wave functions ψ+ are to be determined a priori for the pertinent scattering potential
V by addressing the scattering problem in (4.6), (4.7). Clearly, in the special case
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when V = 0 the scattering wave function reduces to the plane wave (refer to (4.5)),
and (4.10) reduces to the free space result (3.4), as expected.

Prior to engaging in the particular cases of spherically symmetric and piecewise
constant backgrounds, we wish to outline an alternative description of the formulation
above based on reciprocity; that is, for the total Green function in the total medium
characterized by the scattering potential V , G(r, r′) = G(r′, r). Such a description is
very useful in elucidating the connection between radiation and scattering problems
(e.g., see [59]), and may thus facilitate application of the present ISP research to other
areas, such as scattering and inverse scattering problems. Without loss of generality,
in the rest of this paragraph the point r′ will be taken to lie in the spherical volume
τ of radius a centered about the origin (the source region). Also, take r to be a point
in a spherical surface of radius R > a centered about the origin. The idea is that
the problem of computing the far field produced at the field point Rs (for large k0R,
and where s is a unit vector) by a point source at the point r′ in the source region
τ is, due to reciprocity considerations, equivalent to the problem of computing the
(near) field produced at point r′ due to a far zone point source at Rs, in particular,
G(Rs, r′) = G(r′, Rs). Conveniently, the latter problem essentially reduces to the
familiar scattering problem under plane wave excitation, and this is the basis of the
preceding formulation as well as of the complementary analysis to be given next. The
field generated by a given point source at r′ ∈ τ at the field point r = Rs in the
far field direction defined by the unit vector s obeys, from (2.2), (2.3), (2.4), the
asymptotic form

(4.11) G(Rs, r′) = f(s; r′)
eik0R

R
+ O

(
1

R2

)
as k0R → ∞, where the respective radiation pattern f(s; r′) of the total field radiated
by the point source at r′ depends on r′ in a way to be clarified in the following
(again, note that the radiation pattern in (4.11) is, apart from a factor − 1

4π , the
scattering wave function ψ+(r′;−k0s) of the preceding development). On the other
hand, the total field produced at the point r′ ∈ τ due to a point source at Rs can be
decomposed into the sum of an incident field, corresponding to the radiation in free
space, that is, the free space Green function component G0(r

′, Rs), plus a scattered
field corresponding to scattering of that incident field by the medium characterized
by scattering potential V . This can be expressed formally by borrowing from (4.1),
(4.3), in particular,

G(r′, Rs) = G0(r
′, Rs) +

∫
τ

d3r G0(r
′, r)V (r)G(r, Rs)

= G0(r
′, Rs) +

∫
τ

d3r G(r′, r)V (r)G0(r, Rs),(4.12)

where the integrals define the scattered field component, and where from the outgoing
wave nature of both G0 and G,

(4.13) G(r′, Rs) = − 1

4π
e−ik0s·r′ e

ik0R

R
+

eik0R

R

∫
τ

d3r G0(r
′, r)V (r)f(s; r) +O

(
1

R2

)
as k0R → ∞ (where we have used (4.11) and G(r′, Rs) = G(Rs, r′)), or, equivalently
(from the second of the equations in (4.12)), as
(4.14)

G(r′, Rs) = − 1

4π
e−ik0s·r′ e

ik0R

R
− 1

4π

eik0R

R

∫
τ

d3r G(r′, r)V (r)e−ik0s·r + O

(
1

R2

)
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as k0R → ∞; furthermore, using G(r′, Rs) = G(Rs, r′), one recovers from these
developments (4.11), where f(s; r′) = − 1

4πψ
+(r′;−k0s) obeys

(4.15)

f(s; r′) = − 1

4π
ψ+(r′;−k0s) = − 1

4π

[
e−ik0s·r′ +

∫
τ

d3r G0(r
′, r)V (r)ψ+(r;−k0s)

]
or, equivalently,

(4.16) f(s; r′) = − 1

4π
ψ+(r′;−k0s) = − 1

4π

[
e−ik0s·r′ +

∫
τ

d3r G(r′, r)V (r)e−ik0s·r
]
,

which agrees with the previous formulation ((4.4), (4.5), (4.6), (4.7)). It follows
that, as explained in connection with those results, the scattering wave function
ψ+(r′,−k0s) is the total (incident plus scattered) field at r′ due to the interaction of
an incident plane wave in the direction −s with the scattering potential V . Finally,
an alternative way of arriving at these results is via the so-called mixed reciprocity
relation [57, pp. 61–62, particularly eq. (2.2.6); see also p. 42], which states that the
value at s of the far field radiation pattern corresponding to the scattered field com-
ponent of the field generated in the nonhomogeneous medium due to a point source
excitation at r′ is, apart from a multiplicative factor (− 1

4π ), equal to the value at r′ of
the field that is scattered by the same medium due to an incident plane wave traveling
in the direction −s. In the notation of this paper, the far field radiation pattern of
the scattered field component of the field generated in the nonhomogeneous medium
due to a point source at r′ is, as has been discussed before (see (4.1), (4.2), (4.3),
(4.4), (4.5)), precisely the integration term in (4.5), (4.15), and (4.16), which is the
field scattered by a plane wave traveling in the direction −s, as expected. Thus our
findings are consistent with this standard relation from the literature [57]. Yet, we
must point out a difference in notation between [57] and the present paper. In our
notation (and without loss of generality), the Green function or fundamental solution
applicable to free space,

G0(r, r
′) = − 1

4π

eik0|r−r′|

|r − r′| ,

has a negative sign since we define the Green function (or fundamental solution) for
a point source −δ(r − r′), while [57] considers the fundamental solution for a point
source δ(r− r′). (This is explained in [57, p. 8]; see also [53, p. 16], [54, Chapter 3].)
Our entire formulation incorporates with no loss of generality this particular choice,
as is obvious in our form of the Green function integral (3.1). Thus the result (2.2.6)
in [57, p. 61] involves the factor γ3 = 1

4π (refer to [57, p. 42]), which is equivalent,
in the present usage for the fundamental solution (with the added negative sign), to
our factor − 1

4π , and this completes the picture (the two theories yield the same final
result, as desired). Let us consider special cases next.

4.1. Spherically symmetric backgrounds. In the remainder of the paper we
will restrict our attention to the case of spherically symmetric index distributions
n(r) = n(r). The scattering wave functions then satisfy (cf. (4.6))

(4.17) [∇2 + k2
0 − V (r)]ψ+(r;−k0s) = 0,

where the eigenfunctions ψ+ are required to satisfy the boundary condition (4.7).
Because of the spherical symmetry of the scattering potential V , the wavefield ψ+
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can depend only on the magnitude r of the field point vector r and the polar angle
γ formed between the direction of propagation −s of the incident plane wave and r.
If we then take the incident wave direction to be the positive z axis and express the
Helmholtz operator in spherical polar coordinates, (4.17) can be written in the form

(4.18)

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin γ

∂

∂γ

(
sin γ

∂

∂γ

)
− V (r) + k2

0

]
ψ+(r, γ) = 0,

where γ is the polar angle formed between the positive z axis and the field point
vector r and where we have used the fact that the field must be independent of the
azimuthal angle φ. The boundary condition (4.7) becomes

(4.19) ψ+(r, γ) ∼ eik0r cos γ + g(γ)
eik0r

r
,

where we have set −k0s · r = k0z = k0r cos γ and where g(γ) is the scattering ampli-
tude.

We can expand the scattering wave function ψ+(r, γ), the incident plane wave
exp(ik0r cos γ), and the scattering amplitude g(γ) into a series of Legendre polyno-
mials as follows [55, 60]:

ψ+(r, γ) =
∑
l

il(2l + 1)ψl(r)Pl(cos γ),

eik0r cos γ =
∑
l

il(2l + 1)jl(k0r)Pl(cos γ),

g(γ) =
∑
l

il(2l + 1)AlPl(cos γ),

where we have introduced the factors il(2l + 1) into the expansions for the scattering
wave function and the scattering amplitude for later notational convenience. In these
equations jl is the spherical Bessel function of the first kind of order l, and the Al are
expansion coefficients of the scattering amplitude that depend on the specific form of
the scattering potential V (r). On substituting the first of these equations into (4.18),
we find that the radially dependent coefficients ψl(r) satisfy the equation

(4.20)

[
1

r2

d

dr

(
r2 d

dr

)
− l(l + 1)

r2
− V (r) + k2

0

]
ψl(r) = 0,

where we have used the fact that

1

sin γ

∂

∂γ

(
sin γ

∂

∂γ

)
Pl(cos γ) = −l(l + 1)Pl(cos γ).

The asymptotic behavior of the radial functions ψl(r) is obtained by substituting
the expansions for the scattering wave function, the incident plane wave, and the
scattering amplitude into (4.19). We find that

(4.21) ψl(r) ∼ jl(k0r) + Al
eik0r

r
.

Besides satisfying the boundary condition (4.21), we also require that the radial func-
tions be everywhere continuous with continuous first derivatives.
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Once the radial functions ψl(r) are computed, the scattering wave function ψ+(r, γ)
corresponding to an incident plane wave propagating along the z axis is given by the
expansion in Legendre polynomials above. However, the defining equation for the
radiation pattern (4.10) requires that we have the scattering wave functions for all
directions −s of the incident plane wave. This can be easily accomplished by using
the addition theorem for spherical harmonics [55, 60],

Pl(cos γ) =
4π

2l + 1

l∑
m=−l

(−1)lY m
l

∗(r̂)Y m
l (s),

where now γ is the angle formed between the arbitrary incident wave direction −s
and the field direction r̂. On using the addition theorem, we obtain

(4.22) ψ+(r;−k0s) = 4π

∞∑
l=0

l∑
m=−l

(−i)lψl(r)Y
m
l

∗(r̂)Y m
l (s),

which is the generalization of (3.5) to spherically symmetric nonhomogeneous index
of refraction distributions.

4.2. Minimum energy source. Upon substituting the expansion (4.22) into
(4.10), we obtain (3.6) where, however, the multipole moments are now given by

αl,m =

∫
4π

dΩs f(s)Y m
l

∗(s)

= (−i)l
∫
τ

d3r ρ(r)ψl(r)Y
m
l

∗(r̂),(4.23)

which is the generalization of (3.7) to the case where the source is embedded in a
nonhomogeneous but spherically symmetric index of refraction profile. The general-
ized equation (4.23) is seen to result from (3.7) under the replacement of the spher-
ical Bessel functions jl by the radial functions ψl. The minimum energy solution to
the ISP is required to satisfy (4.23) for some given set of multipole moments αl,m,
l = 0, 1, . . . , L, and also to minimize the source energy defined according to (2.7).

As in the free space case, the problem of computing the minimum energy source
can be cast as one of constrained minimization, where the generalized Lagrangian is
now given by

L = E +
L∑

l=0

l∑
m=−l

Cl,m

[
α∗
l,m − il

∫
τ

d3r ρ∗(r)ψ∗
l (r)Y

m
l (r̂)

]
+ c.c.,

where, as before, E is the source energy defined in (2.7), c.c. stands for the complex
conjugate of the second term on the r.h.s. of the equation, and the Cl,m are a set of
Lagrange multipliers to be determined. On expressing the source energy in terms of
ρ and ρ∗ and taking the first variation of the above Lagrangian, we obtain

δL =

∫
τ

d3r δρ∗(r)

[
ρ(r) −

L∑
l=0

l∑
m=−l

Cl,milψ∗
l (r)Y

m
l (r̂)

]
+ c.c.,

which, when set equal to zero, yields the solution

ρME(r) =

{ ∑L
l=0

∑l
m=−l Cl,milψ∗

l (r)Y
m
l (r̂) if r < a,

0 if r > a.
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The Lagrange multipliers Cl,m are determined from the condition that the source
generate the multipole moments according to (4.23). We find that

(4.24) Cl,m =
αl,m

Σ2
l

,

where

(4.25) Σ2
l =

∫ a

0

r2dr |ψl(r)|2.

On making use of the above expression for the Lagrange multipliers, we finally con-
clude that the minimum energy solution to the ISP for spherically symmetric back-
ground index distributions is given by

(4.26) ρME(r) =

{ ∑L
l=0

∑l
m=−l (i)

l αl,m

Σ2
l
ψ∗
l (r)Y

m
l (r̂) if r < a,

0 if r > a.

The source energy is found to be given by the free space formula (3.11), where,
however, the σ2

l are replaced by the Σ2
l defined in (4.25). As in the free space case,

the source energy is seen to depend inversely on the Σ2
l . Although these quantities are

strictly positive they can become extremely small, leading to extremely high source
energy and associated instability in the minimum energy source. Thus, it is of inter-
est to maximize these quantities especially for large values of the index l, which is
associated with fine detail (high resolution) in the radiation pattern.

The energy of the minimum energy source is obtained by substituting (4.26) into
the source energy definition given in (1.2). We obtain the same expression as was
obtained in the free space case (3.11), where, however, the σ2

l are replaced by the Σ2
l .

It is clear that the source energy is minimized by maximizing the Σ2
l , which, in turn, is

equivalent to maximizing the weighted L2 norm of the radial functions ψl over the in-
terval [0, a]. Since the radial functions ψl are solutions to a Sturm–Liouville problem,
the energy minimization problem reduces to finding scattering potentials V (r) whose
corresponding Sturm–Liouville problem has solutions with maximum norm over this
interval. This problem, although simple to state, appears to be nontrivial, and the
authors offer no simple recipe for computing optimum potentials at this time. How-
ever, in the following section we will treat a simple class of potentials that illustrates
the dependence of source energy on selection of V .

5. Piecewise constant backgrounds. In this section we consider the special
case where the scattering potential V (r) is constant throughout the source region;
i.e.,

(5.1) V (r) =

{
k2
0 − k2 if r < a,

0 if r > a.

This is certainly a spherically symmetric scattering potential, so that the scattering
wave functions can be expanded in the form of (4.22), where the radial functions ψl(r)
satisfy (4.20) with V (r) given in (5.1) above. Thus we find that[

1

r2

d

dr

(
r2 d

dr

)
− l(l + 1)

r2
+ k2

]
ψl(r) = 0 if 0 < r < a,[

1

r2

d

dr

(
r2 d

dr

)
− l(l + 1)

r2
+ k2

0

]
ψl(r) = 0 if a < r < ∞,
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together with the boundary condition from (4.21):

(5.2) ψl(r) ∼ jl(k0r) + Al
eik0r

r
if r > a.

We also require that the radial functions be finite and continuous with a continuous
first derivative. The set of differential equations together with the boundary and
continuity conditions allow us to obtain a unique solution for the radial function.

5.0.1. Radial function. The radial function has the general form

ψl(r) = Ajl(kr) + Bhl(kr) if 0 < r < a,

ψl(r) = Cjl(k0r) + Dhl(k0r) if a < r < ∞,

where jl is the spherical Bessel function of the first kind and hl the spherical Hankel
function of the first kind. The requirement that the radial function be finite at the
origin r = 0 requires that B = 0, while the boundary condition (5.2) requires that the
constant C = 1. The remaining constants A and D are determined by the continuity
requirements applied at the boundary r = a. These conditions are

Ajl(ka) = jl(k0a) + Dhl(k0a),

Ajl
′(ka) =

k0

k
[jl

′(k0a) + Dhl
′(k0a)],

from which we obtain the solution

A =
k0

k

jl
′(k0a)hl(k0a) − jl(k0a)hl

′(k0a)

jl
′(ka)hl(k0a) − k0

k jl(ka)hl
′(k0a)

,

D = −
jl

′(ka)jl(k0a) − k0

k jl(ka)jl
′(k0a)

jl
′(ka)hl(k0a) − k0

k jl(ka)hl
′(k0a)

.

The expression for the constant A can be further simplified by using the Wronskian
relation for spherical Bessel functions

j′l(k0a)hl(k0a) − jl(k0a)h
′
l(k0a) =

−i

k2
0a

2
.

We find that

(5.3) A =
−i

k0ka2

jl
′(ka)hl(k0a) − k0

k jl(ka)hl
′(k0a)

.

5.1. Source energy. The quantities Σ2
l are found using (4.25) to be given by

Σl
2 =

∫ a

0

r2dr |ψl(r)|2

= |A|2
∫ a

0

r2dr |jl(kr)|2

= Tl(k, k0)σ
2
l (k),(5.4)

where σ2
l (k) is the free space quantity defined in (3.12) but with k0 replaced by k and

(5.5) Tl(k, k0) = |A|2 =
1

k2
0a

4|kj′l(ka)hl(k0a) − k0jl(ka)h′
l(k0a)|2

.



INVERSE PROBLEM IN NONHOMOGENEOUS MEDIA 1371

In the limit when k → k0 we have that

Tl(k, k0) → T (k0, k0) =
1

k4
0a

4|j′l(k0a)hl(k0a) − jl(k0a)h′
l(k0a)|2

= 1,

where we have used the Wronskian between the spherical Bessel and spherical Hankel
functions. It then follows that Σ2

l → σ2
l (k0) in this limit, as required.

The quantities Tl(k, k0) appearing in the expression for the Σ2
l have a simple

interpretation: they are the magnitude square of the transmission coefficients relating
the amplitudes of the outgoing multipole fields radiated by the source ρ evaluated
on the exterior of the source region to the amplitude of the outgoing wave multipole
fields radiated by the source on the interior of the source region. In particular, at the
interior of the boundary at r = a we can express the field radiated by the source in the
form of a superposition of outgoing and standing wave solutions to the homogeneous
Helmholtz equation with wavenumber k = nk0, while outside this sphere the field is a
superposition of outgoing wave solutions to the Helmholtz equation with wavenumber
k0. Because the total field and normal derivative must be continuous across the
boundary, we find that for each multipole mode we require

hl(ka) + rljl(ka) = tlhl(k0a),

h′
l(ka) + rlj

′
l(ka) =

k0

k
tlh

′
l(k0a),

where rl and tl are reflection and transmission coefficients and the primes denote
derivatives. Solving for the transmission coefficients tl, we find that

tl =
j′l(ka)hl(ka) − jl(ka)h

′
l(ka)

j′l(ka)hl(k0a) − k0

k jl(ka)h′
l(k0a)

=
−i

k2a2

j′l(ka)hl(k0a) − k0

k jl(ka)h′
l(k0a)

,(5.6)

which is seen to be identical to the coefficient A obtained earlier so that |tl|2 = |A|2 =
Tl, as indicated.

The interpretation of the quantities Tl as being the magnitude square of the
transmission coefficients from the field modes in the interior of the source region to
the field modes outside this region makes perfect sense in view of the formula (5.4)
for the quantities Σ2

l . In particular, to minimize source energy E (i.e., to obtain an
efficient source) we wish to maximize the Σ2

l , which, in turn, requires us to maximize
the Tl or, equivalently, maximize the amount of energy transmitted from the source
interior to the source exterior. As we will find in our simulations presented below, the
Tl(k, k0) vary inversely with index value n, so that low source energy is obtained by
selecting n to be small. On the other hand, the Σ2

l and hence the source energy also
depend on the free space quantities σ2

l evaluated at the source region wavenumber
k, and, as is easily confirmed from the results presented in section 3, the free space
quantities σ2

l (k) increase with k and, hence, index n, at fixed source radius a. Thus,
the two quantities entering into the expression (5.4) for Σ2

l have opposite dependencies
on source index n, and it is necessary to carefully evaluate the relative importance of
each quantity in order to select an index value that leads to small source energy.

To illustrate, we show in Figures 5.1–5.3 plots of the free space quantities σ2
l (k),

the modulus square of the transmission coefficient Tl(k, k0), and finally the Σ2
l =
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Fig. 5.1. Plots of σ2
l (k = nk0) (dash-dot), Tl(k = nk0, k0) (dotted), and Σ2

l = Tlσ
2
l (solid) for

l = 10 and n = .5 and n = 1.5. It is seen from the plots that the larger n value yields larger Σ2
l

around and below the critical point.

Fig. 5.2. Plots of σ2
l (k = nk0) (dash-dot), Tl(k = nk0, k0) (dotted), and Σ2

l = Tlσ
2
l (solid) for

l = 20 and n = .5 and n = 1.5. It is seen from the plots that the larger n value yields larger Σ2
l .

Tl(k, k0)σ
2
l (k) plotted as a function of the product x = k0a of the free space wave-

number with the source radius a = 10 and for two values of the source region index
n (n = .5, n = 1.5), for l values of l = 10, 20, 30. The following conclusions can be
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Fig. 5.3. Plots of σ2
l (k = nk0) (dash-dot), Tl(k = nk0, k0) (dotted), and Σ2

l = Tlσ
2
l (solid) for

l = 30 and n = .5 and n = 1.5. It is seen from the plots that the larger n value yields larger Σ2
l .

drawn from these plots:

• For fixed a and fixed l the free space quantities σ2
l (k = nk0) increase with

increasing index n for any given free space wavenumber k0.
• For fixed a and fixed l the quantities Tl(k = nk0, k0) oscillate with k0. The

oscillations indicate the presence of resonances of the scattering functions
within the source volume. The Tl are decreasing functions of index n at any
given free space wavenumber k0.

• The Σ2
l = Tlσ

2
l oscillate with respect to k0 due to the resonances of the

scattering states in the source region and are also dependent on the source
region index n. For k0 values below the critical point k0a = l, the growth of
the free space quantity σ2

l (k = nk0) with respect to index n tends to outweigh
the decay of Tl(k = nk0, k0) with respect to n, with the result that the product
Σ2

l is an increasing function of n.

A more in-depth look at the behavior of the Σ2
l as a function of k0, n, and l

can be obtained from Figures 5.4–5.6. These figures show composite plots of Σ2
l for

n = .5, 1, 1.5 for three different l values (l = 10, 20, 30). It is clear from these plots
that by making the source region index n > 1 it is possible to increase the Σ2

l beyond
their free space values σ2

l (k0) and thereby obtain sources which have lower energy
than those embedded in free space.

We conclude from the above results that, like the free space quantities σ2
l (k0),

the Σ2
l decay exponentially to zero for l 
 k0a. However, by proper selection of the

index n of the source region it is possible to obtain higher values of these quantities
around and below the critical point k0a = l and, hence, lower source energy than can
be obtained in the free space case for the same radiation pattern. This result follows
from the fact that the radiation pattern expansion coefficients αl,m are independent
of the source region index distribution so that minimum source energy is obtained by
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Fig. 5.4. Plots of Σ2
l = Tlσ

2
l for l = 10 and n = .5 (dotted), n = 1 (solid), and n = 1.5

(dashed). It is seen from the plots that the larger n value yields larger Σ2
l around and below the

critical point k0a = l.

Fig. 5.5. Plots of Σ2
l = Tlσ

2
l for l = 20 and n = .5 (dotted), n = 1 (solid), and n = 1.5

(dashed). It is seen from the plots that the larger n value yields larger Σ2
l around and below the

critical point k0a = l.

simply maximizing the Σ2
l .

We computed the source energy for the model radiation pattern employed in the
free space examples of section 3.2. Using the coefficients given in (3.13), we computed
the source energy using (3.11) with the Σ2

l given by (5.4). We show in Figure 5.7
plots of the source energies as a function of x = k0a for three different values of the
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Fig. 5.6. Plots of Σ2
l = Tlσ

2
l for l = 30 and n = .5 (dotted), n = 1 (solid), and n = 1.5

(dashed). It is seen from the plots that the larger n value yields larger Σ2
l around and below the

critical point k0a = l.

Fig. 5.7. Plots of source energy for a = 10, n = 1 (solid), and n = 1.5 (with asterisks) and for
L = 10, 20, 30. It is seen from the plots that the larger n value yields smaller energy and, hence, a
more efficient source up to the critical point k0a = L.

cut-off parameter L and for a source radius of a = 10 and index value of n = 1.5. We
also show for comparison the plots of the source energy for a source embedded in free
space. It is seen that, as expected, the source energy becomes extremely large if we
try to achieve an L value that exceeds the critical value L = k0a. This is, of course,
due to the fact that the quantities Σ2

l become extremely small when l > k0a.
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6. Summary and conclusions. We have developed the basic theory of the in-
verse source problem for compactly supported sources embedded in an inhomogeneous
index profile n(r). Most of our results pertain, in particular, to spherically symmetric
index distributions n(r) = n(r), although the underlying formalism is applicable to
general nonsymmetric distributions. For the class of spherically symmetric index pro-
files we showed how to construct the so-called minimum energy source that generates
a given radiation pattern subject to the constraint that the source’s L2 norm over
the source region is minimum. It was found that the energy of the minimum energy
source depended on the index profile n(r), and we examined this dependence using
computer simulations for the case of piecewise constant valued profiles that are unity
outside the (spherical) source volume and constant within the source volume and for
a “model” radiation pattern characterized by a “resolution parameter” L that was
inversely related to the effective angular width of the radiation pattern. The simu-
lations showed that, in general, the source energy increases exponentially when the
wavenumber source radius product k0a 
 L, independent of whether or not the source
is embedded in a background medium. However, it was found that by embedding the
source in a spherical region having constant index n > 1, the source energy can be
made smaller than that obtained for a source in vacuum over moderate ranges of the
wavenumber source radius product k0a in the immediate vicinity of the critical value
k0a = L. We conclude that embedding sources in “designer” background distributions
may lead to significant improvement in source efficiency, particularly for resonant an-
tennas. This conclusion has been established here from a new source-inversion point
of view, which serves as a theoretical framework of reference for ongoing efforts in
this direction within the antenna and optical communities, particularly in connection
with novel magneto-dielectrics and metamaterials for enhanced radiation. Currently
we are working on the generalization of the research reported in this work to the full
vector electromagnetic case including the practical reactive power constraints. We
plan to report this ongoing research elsewhere.
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GLOBAL DYNAMICS OF A PREDATOR-PREY MODEL WITH
STAGE STRUCTURE FOR THE PREDATOR∗

PAUL GEORGESCU† AND YING-HEN HSIEH‡

Abstract. The global properties of a predator-prey model with nonlinear functional response
and stage structure for the predator are studied using Lyapunov functions and LaSalle’s invariance
principle. It is found that, under hypotheses which ensure the uniform persistence of the system
and the existence of a unique positive steady state, a feasible a priori lower bound condition on
the abundance of the prey population ensures the global asymptotic stability of the positive steady
state. A condition which leads to the extinction of the predators is indicated. We also obtain results
on the existence and stability of periodic solutions. In particular, when (4.2) fails to hold and the
unique positive steady state E∗ becomes unstable, the coexistence of prey and predator populations
is ensured for initial populations not on the one-dimensional stable manifold of E∗, albeit with
fluctuating population sizes.

Key words. predator-prey model, stage structure, global stability, uniform persistence, Lya-
punov function
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1. Introduction. In classical models of Lotka–Volterra type it is assumed that
all individuals of a single species have largely similar capabilities to hunt or reproduce.
However, the life cycle of most, if not all, animals and insects consists of at least two
stages, immature and mature, and the individuals in the first stage often can neither
hunt nor reproduce, being raised by their mature parents. Furthermore, immediately
recognizable morphological and behavioral differences may exist between these stages
and other adaptive stages, such as dormancy stages for immediate survival purposes.

To study this situation theoretically, stage-structured models have attracted much
attention in recent decades. Fundamental work towards a systematic approach to
stage-structured model formulation has been made by Gurney, Nisbet, and Blythe
[7], Nisbet and Gurney [27], and Nisbet, Gurney, and Metz [28]. Further progress has
been made by Aiello and Freedman, who proposed and studied in their often quoted
work [1] a single species model with stage structure and discrete delay, predicting the
global attractivity of the positive steady state and thereby suggesting that the stage
structure does not generate sustained oscillations, at least for a single species model.
General consistency criteria to be satisfied by models which describe stage-structured
ecological interactions have been laid out in Kuang [18] or Arditi and Michalski [2].
See also Liu, Chen, and Agarwal [24] for a recent survey on the dynamics of stage-
structured population models with an emphasis on modeling issues.

Predator-prey models with stage structure for the predator have received consid-
erable attention in recent years. See Wang [35] and Xiao and Chen [38] for global
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stability and persistence analysis of a stage-structured predator-prey model without
delay terms. See also Wang and Chen [36], Wang et al. [37], and Gourley and Kuang
[9] for stability analyses of staged predator-prey models with time delays due to ges-
tation of the predator and crowding of the prey.

Apart from analyzing the stability of their delayed model, Gourley and Kuang [9]
also discussed its oscillatory dynamics for a linear functional response of the mature
predator and observed that sustained oscillations took place only for a limited inter-
val of maturation delays. This happens since, for small delays, their model inherits
the properties of the nondelayed (of Lotka–Volterra type) system. However, if the
maturation delay is too long, then the highest possible recruitment rate to adulthood
drops below the adult death rate and the predator population dies out.

As far as the asymptotic behavior of predator-prey systems is concerned, it is
known from Poincaré–Bendixson theory that two-dimensional continuous time models
can approach either an equilibrium state or a limit cycle with any type of chaotic
behavior being excluded, while three- and higher-dimensional models can exhibit more
complex behavior. In this regard, staged models may provide in some situations a
richer dynamics which leads to a better understanding of the interactions within the
biological system under consideration. Such models may also incorporate meaningful
biological parameters, such as different death rates for mature and immature predators
and various delay effects.

In [36], [35], [38] the following predator-prey model with stage structure for the
predator has been considered:

(1.1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x′(t) = x(t) (r − ax(t)) − bx(t)

1 + mx(t)
y2(t),

y′1(t) = k
bx(t)

1 + mx(t)
y2(t) − (D + d1)y1(t),

y′2(t) = Dy1(t) − d2y2(t).

Here x(t), y1(t), y2(t) are the densities of prey, respectively of immature and mature
predators at time t. It is assumed that in the absence of the predators the prey grows
according to a logistic law with intrinsic growth rate r and carrying capacity r/a,
while predators feed on prey only and do not count towards the carrying capacity.
It is also assumed that the immature predators are either raised by their parents or
consume a resource which is available in abundance and for which they do not have
to compete. As a consequence, neither crowding nor intraspecies competition terms
are added into the equation which models the growth of the immature predator class.
The function x �→ bx/(1 + mx) represents the Holling type 2 functional (behavioral)
response of the mature predator, which describes how the consumption rate of the
predator depends on prey density, b being the search rate and m being the search rate
multiplied by the handling time; while the function x �→ kbx/(1+mx) is the associated
numerical (reproductive) response of the mature predator which quantifies the relation
between the numerical growth of the predator class and the prey consumption, with
k representing the conversion coefficient under the assumption that the reproduction
rate of the mature predators is directly proportional to the amount of prey consumed.
The constants d1 and d2 represent the death rates of immature and mature predators,
and D denotes the rate at which immature predators become mature predators.

It was proved in Wang [35] that if the condition

(1.2) d2(D + d1) <
kbrD

a + mr
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holds, then the system (1.1) is uniformly persistent and a unique positive steady state
E∗ = (x∗, y∗1 , y

∗
2) exists. Moreover, it is shown that if, in addition to (1.2), conditions

x∗(D + d1 + d2)(a + 2max∗ −mr)

(
D + d1 + d2 +

x∗(a + 2max∗ −mr)

1 + mx∗

)
(1.3)

>
by∗2d2(D + d1)

1 + mx∗ ,

a > b +
bmy∗2

1 + mx∗ , D + d1 >
kbr

a + mr
+

kby∗2
1 + mx∗ , d2 > D,(1.4)

are also satisfied, then the positive steady state E∗ = (x∗, y∗1 , y
∗
2) is globally asymp-

totically stable. The proof uses the theory of competitive systems as developed in
Smith [33], with condition (1.3) being used to establish the local stability of E∗.

More recently, Xiao and Chen [38] noted that condition (1.4) contradicts condition
(1.2), and showed that the positive steady state E∗ is globally asymptotically stable
if (1.2) and (1.3) hold, in addition to one of the following two conditions:

(H1) D + d1 > r and x >
r

2a
; (H2) D + d1 < r and x >

r + D + d1

2a
.

Here x > 0 is the persistency constant for x, which satisfies x ≤ lim inft→∞ x(t).
The proof is again based on the theory of competitive systems and uses a result
given by Li and Muldowney in [23], which amounts to the fact that for competitive
and permanent systems which are defined on convex and bounded sets and have the
property of stability of periodic orbits, the local asymptotic stability of a unique
positive steady state implies its global asymptotic stability. Essentially, the proof in
[38] amounts to showing that the system (1.1) has the property of the stability of
periodic orbits under either (H1) or (H2), a fact which is established using a criterion
of Muldowney [26] and the theory of additive compound matrices.

Consider the conditions (1.3), (H1), and (H2). It is clear that if the inequality
x > (r+D+ d1)/(2a), which is required in (H2), can be weakened to x > r/(2a) and
either (H1) or (H2) can be modified to cover the case D+d1 = r, then (H1) and (H2)
can be combined into a single condition x > r/(2a), where r/(2a) is the prey popula-
tion size at the inflection point of the logistic curve in a prey-only system. Moreover,
condition (1.3), which a priori ensures the local stability of the positive steady state,
was motivated by specifics of the method used for the proof, which roughly inputs
local asymptotic stability and outputs global asymptotic stability under certain as-
sumptions.

However, it is clear that once the global asymptotic stability of the positive steady
state is proved, then its local asymptotic stability is superseded anyway. Moreover, we
shall indicate in section 4 that in fact (1.3) is satisfied if x∗ > r/(2a) (and consequently
if x > r/(2a)), and so there is no need to assume (1.3) separately.

In this article, we will study the global dynamics of (1.1) by constructing a suit-
able Lyapunov function and using LaSalle’s invariance principle rather than by using
the theory of competitive systems, as has been done in [35] and [38]. This will enable
us to obtain the global asymptotic stability of the positive steady state under weaker
hypotheses than those used in Xiao and Chen [38] and by a simpler method. In our
setting, the persistence condition x > r/(2a) used in [38] will appear in a natural
way as a monotonicity condition. We will also discuss in section 4 the existence of
periodic solutions, together with their stability. Finally, we will discuss the biologi-
cal significance of our results and indicate possible extensions to the study of more
comprehensive models in section 5.



1382 PAUL GEORGESCU AND YING-HEN HSIEH

2. The model and its well-posedness. In this section we analyze the global
existence of the solutions of (1.1) and their positivity properties.

Let us define n : [0,∞) → R and f : [0,∞) → [0,∞) by n(x) = x(r − ax) and
f(x) = bx/(1 +mx) for all x ∈ [0,∞). Using the newly defined functions n and f we
can rewrite (1.1) as

(2.1)

⎧⎪⎨
⎪⎩

x′ = n(x) − f(x)y2,

y′1 = kf(x)y2 − (D + d1)y1,

y′2 = Dy1 − d2y2.

Note that n is strictly decreasing on [r/(2a),+∞), while f is strictly increasing on
[0,∞).

First, it is easy to see that if x(0), y1(0), y2(0) ≥ 0, then x(t), y1(t), y2(t) ≥ 0 on
their respective intervals of existence. For this purpose, we observe that the vector
(R1, R2, R3) points inside the closed set Q1 = [0,∞)3 at all points of ∂Q1, where
R1, R2, R3 are the right-hand sides appearing in (1.1), and so Nagumo’s tangency
conditions are satisfied and Q1 is a positively invariant set for (1.1). See Pavel [29]
for further reference on flow invariance problems for ODEs and abstract ODEs.

To prove that Q2 = (0,∞)3 is also a positively invariant set for (1.1), suppose
that x(0), y1(0), y2(0) > 0 and note first that d

dt (y2e
d2t) = Dy1e

d2t ≥ 0, and so
t �→ y2(t)e

d2t is increasing. It follows that y2(t) ≥ y2(0)e−d2t for all t for which
y2(t) is well defined, and hence y2 remains strictly positive. Also, d

dt (y1e
(D+d1)t) ≥ 0,

consequently, y1(t) ≥ y1(0)e−(D+d1)t and y1 remains strictly positive. To prove that
x also remains strictly positive, suppose that x(t0) = 0 for some t0 > 0. Then one
may find ỹ1(0) and ỹ2(0) > 0 such that the solution which starts at t = 0 from
(0, ỹ1(0), ỹ2(0)) also reaches (0, y1(t0), y2(t0)) at t = t0. By the uniqueness property
of (1.1), this solution should coincide with the solution which starts at t = 0 from
(x(0), y1(0), y2(0)), which is an obvious contradiction.

We shall now show that x, y1, y2 are bounded on their intervals of existence,
which in turn will imply by a standard continuability argument that they are defined
on [0,∞). Denote M1 = max(r/a, x(0)) and d = min(d1, d2). Since x′ ≤ x(r− ax), it
follows that x(t) ≤ M1 for all t. That is, x is bounded and consequently defined on
[0,∞). Let us consider the Lyapunov function

U(x, y1, y2) = x + (1/k)y1 + (1/k)y2.

We now compute the time derivative of U along the solutions of (1.1). One then has

·
U = n(x) − d1

k
y1 −

d2

k
y2,

which implies

·
U + dU ≤ (r + d)x.

Consequently,

U(x(t), y1(t), y2(t)) ≤ U(x(0), y(0), z(0))e−dt +
M1(r + d)

d

(
1 − e−dt

)
for all t.

This implies that y1, y2 are also bounded and consequently defined on [0,∞). Finally,
we analyze the behavior of solutions which start with initial data (xi, y1i, y2i) on the
boundary of (0,∞)3.
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If xi = 0, then (x(t), y1(t), y2(t)) → (0, 0, 0) irrespective of the initial values
y1i, y2i ≥ 0. If xi > 0, then (x(t), y1(t), y2(t)) → (r/a, 0, 0) for y1i = y2i = 0, while
(x(t), y1(t), y2(t)) enters (0,∞)3 (and stays there) otherwise.

3. Global dynamics of the model. In this section we perform a global sta-
bility analysis for the system (1.1) regarding both the stability of the boundary equi-
librium (r/a, 0, 0) (i.e., the case in which the predator classes tend to extinction) and
of the positive steady state (x∗, y∗1 , y

∗
2) (i.e., the case in which the coexistence of both

species is assured for all future time). As a result, we find sufficient conditions for the
stability of the equilibria and establish the existence of a threshold parameter.

Let us denote T = d2(D+d1)/D and x0 = r/a. First, we give a condition for the
extinction of the predators.

Theorem 3.1. Suppose that T ≥ kf(x0). Then (x0, 0, 0) is globally asymptoti-
cally stable on (0,∞)3.

Proof. Let us consider the Lyapunov function

U1(x, y1, y2) =

∫ x

x0

f(τ) − f(x0)

f(τ)
dτ +

1

k
y1 +

1

k

D + d1

D
y2.

We now compute the time derivative of U1 along the solutions of (1.1). One then has

·
U1 =

f(x) − f(x0)

f(x)
(n(x) − f(x)y2) +

1

k
(kf(x)y2 − (D + d1)y1)

+
1

k

D + d1

D
(Dy1 − d2y2)

=
f(x) − f(x0)

f(x)
n(x) +

1

k

(
kf(x0) −

(D + d1)d2

D

)
y2.

Since c is strictly increasing on [0,∞) and sgnn(x) = sgn(x0 − x) for x ∈ (0,∞), it is

seen that
·
U1 ≤ 0, with equality if and only if x = x0 and either y2 = 0 or T = kf(x0).

In both cases, the only invariant subset M̃ within the set M = {(x, y1, y2);x = x0} is
M̃ = {(x0, 0, 0)}.

Since
·
U1 ≤ 0 on (0,∞)3 and the only possible ω-limit sets of (x(t), y1(t), y2(t))

on the boundary of (0,∞)3 are {(x0, 0, 0)} and {(0, 0, 0)}, our conclusion follows from
LaSalle’s invariance principle (see [22]).

We now attempt to analyze the existence of the positive steady state E∗ and the
uniform persistence of the system (1.1). We recall that the system (1.1) is said to
be uniformly persistent if there is ε0 > 0 such that any solution of (1.1) which starts
with x(0), y1(0), y2(0) > 0 satisfies

lim inf
t→∞

x(t) ≥ ε0, lim inf
t→∞

y1(t) ≥ ε0, lim inf
t→∞

y2(t) ≥ ε0.

For other (weaker) types of persistence and criteria to establish the persistence of a
given system, see Butler, Freedman, and Waltman [4], Freedman, Ruan, and Tang
[6], and Hofbauer and So [11].

Theorem 3.2. Suppose that T < kf(x0). Then the positive steady state E∗

exists, is unique, and the system (1.1) is uniformly persistent.
Proof. Let us consider the Lyapunov function

U2(x, y1, y2) =
1

k
y1 +

1

k

D + d1

D
y2.
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We now compute the time derivative of U2 along the solutions of (1.1). One then has

·
U2 =

1

k
(kf(x)y2 − (D + d1)y1) +

1

k

D + d1

D
(Dy1 − d2y2)

=

(
f(x) − (D + d1)d2

kD

)
y2.

If T < kf(x0), then
·
U2 is positive in all strictly positive points of a vicinity of (x0, 0, 0),

and so (x0, 0, 0) is unstable. Since the only invariant subsets on the boundary of
(0,∞)3 are {(x0, 0, 0)} and {(0, 0, 0)} and their stable manifolds are also contained
in the boundary of (0,∞)3, it follows from a result of Hofbauer and So [11] that the
system (1.1) is uniformly persistent. Also see Margheri and Rebelo [25] for a slightly
different approach towards showing the persistence of dynamical systems based on a
result of Fonda [5], which establishes necessary and sufficient conditions for a given
compact set S to be a uniform repeller.

To show the existence of E∗, we need to find positive solutions for the system

(3.1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x∗ (r − ax∗) − bx∗

1 + mx∗ y
∗
2 = 0,

k
bx∗

1 + mx∗ y
∗
2 − (D + d1)y

∗
1 = 0,

Dy∗1 − d2y
∗
2 = 0.

After some algebraic manipulations, one obtains

(3.2) x∗ =
(D + d1)d2

bkD −m(D + d1)d2
, y∗1 =

x∗(r − ax∗)k

(D + d1)
, y∗2 =

x∗(r − ax∗)kD

(D + d1)d2
.

Since d2(D + d1)/D < kbr/(a+mr), it follows that bkD/((D + d1)d2) > (a+mr)/r,
and so x∗ < r/a. From the above, it also follows that bkD/((D + d1)d2) > m, and
hence x∗ > 0. Consequently, x∗, y∗1 , y∗2 are all well defined and positive. We also
remark that since the system (1.1) is uniformly persistent, it follows that there is an
x > 0 such that lim inft→∞ x(t) ≥ x.

From Theorems 3.1 and 3.2, combined with the remark about the behavior of the
solutions starting on the boundary of [0,∞)3 which was made at the end of section 2, it
also follows that (0, 0, 0) is an unstable equilibrium and its stable manifold consists of
the positive quadrant {(0, y1i, y2i); y1i, y2i ≥ 0}. That is, our model predicts that the
predator and the prey cannot simultaneously face extinction, with the sole exception
of the case in which the size of the initial prey populations equals zero, justified by
the fact that the predators feed on prey only and do not consume other resource, and
therefore in the absence of prey they are condemned to extinction.

Having established the existence and uniqueness of the positive steady state E∗,
we now turn our attention to its stability. For this purpose, we employ a condition on
the persistence constant x, which ensures that the size of the prey population remains
ultimately higher than a certain value.

Theorem 3.3. Suppose that T < kf(x0) and x > r/(2a). Then the positive
steady state E∗ is globally asymptotically stable on (0,∞)3.

Proof. Since x > r/(2a), it is seen that there is t0 ≥ 0 such that x(t) > r/(2a)
for all t ≥ t0 and also that x∗ > r/(2a). Let us consider the Lyapunov function

U3(x, y1, y2) =

∫ x

x∗

f(τ) − f(x∗)

f(τ)
dτ +

1

k

∫ y1

y∗
1

τ − y∗1
τ

dτ +
1

k

D + d1

D

∫ y2

y∗
2

τ − y∗2
τ

dτ.
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It is easily seen that U3(x, y1, y2) ≥ 0 and U3(x, y1, y2) = 0 if and only if x = x∗,
y1 = y∗1 , y2 = y∗2 . We now compute the time derivative of U3 along the solutions of
(1.1). One obtains that

·
U3 =

f(x) − f(x∗)

f(x)
(n(x) − f(x)y2) +

1

k

y1 − y∗1
y1

(kf(x)y2 − (D + d1)y1)

+
1

k

D + d1

D

y2 − y∗2
y2

(Dy1 − d2y2)

= n(x)
f(x) − f(x∗)

f(x)
+ f(x∗)y2 −

D + d1

k
y∗1

(
f(x)

f(x∗)

y2

y∗2

y∗1
y1

+
y∗2
y2

y1

y∗1
+

f(x∗)

f(x)
− 3

)

+
D + d1

k
y∗1

f(x∗)

f(x)
− D + d1

k
y∗1 − D + d1

kD
d2y2.

Since f(x∗) = (D + d1)d2/(kD), this yields

·
U3 = n(x)

f(x) − f(x∗)

f(x)
− D + d1

k
y∗1

(
f(x)

f(x∗)

y2

y∗2

y∗1
y1

+
y∗2
y2

y1

y∗1
+

f(x∗)

f(x)
− 3

)

+
D + d1

k
y∗1

(
f(x∗)

f(x)
− 1

)
=

1

f(x)
(n(x) − n(x∗))(f(x) − f(x∗))

− D + d1

k
y∗1

(
f(x)

f(x∗)

y2

y∗2

y∗1
y1

+
y∗2
y2

y1

y∗1
+

f(x∗)

f(x)
− 3

)
.

From the AM -GM inequality, it is clear that

f(x)

f(x∗)

y2

y∗2

y∗1
y1

+
y∗2
y2

y1

y∗1
+

f(x∗)

f(x)
≥ 3,

with equality if and only if

f(x)

f(x∗)

y2

y∗2

y∗1
y1

=
y∗2
y2

y1

y∗1
=

f(x∗)

f(x)
= 1,

that is, x = x∗ and y1/y
∗
1 = y2/y

∗
2 .

If x(t) > r/(2a) for t ≥ t0, then since n is strictly decreasing on [r/(2a),∞) and
f is strictly increasing on [0,∞), it follows that

1

f(x)
(n(x) − n(x∗))(f(x) − f(x∗)) ≤ 0,

with equality if and only if x = x∗. This implies that
·
U3 ≤ 0, with equality if and

only if x = x∗ and y1/y
∗
1 = y2/y

∗
2 . We now find the invariant subsets M̃ within the

set

M =

{
(x, y1, y2);x = x∗,

y1

y∗1
=

y2

y∗2

}
.

Since x = x∗ on M̃ and consequently x′ = n(x∗) − f(x∗)y2, it follows that x′ =
f(x∗)(y2 − y∗2), and so y2 = y∗2 . This implies y1 = y∗1 , and consequently the only
invariant set in M is M̃ = {(x, y∗1 , y∗2)}. From LaSalle’s invariance principle one then
obtains the desired conclusion.
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4. The local stability of the positive steady state and the existence of
the periodic solutions. Suppose now that T < kf(x0) and consequently that the
system (1.1) is persistent and the positive steady state E∗ exists and is unique. As
seen in Wang [35] and Xiao and Chen [38], it is possible to study the local stability of
the positive steady state and the existence of the periodic solutions together with their
orbital stability by using a result on the behavior of three-dimensional competitive
systems established by Zhu and Smith in [39].

It is easy to see that the Jacobian of the system (1.1) at (x, y1, y2) is given by

J(1.1)(x, y1, y2) =

⎛
⎜⎝r − 2ax− b

(1+mx)2 y2 0 − bx
1+mx

k b
(1+mx)2 y2 −(D + d1)

kbx
1+mx

0 D −d2

⎞
⎟⎠ .

Using the equilibrium relations (3.1), one finds that the characteristic equation of the
system (1.1) at E∗ is given by

λ3+

[
D + d1 + d2 + x∗

(
2a− rm + a

1 + mx∗

)]
λ2(4.1)

+ x∗
(

2a− rm + a

1 + mx∗

)
(D + d1 + d2)λ +

r − ax∗

1 + mx∗ d2(D + d1) = 0.

Consequently, by the classical Routh–Hurwitz theorem, all roots of (4.1) have negative
real parts if[

D + d1 + d2 + x∗
(

2a− rm + a

1 + mx∗

)]
x∗

(
2a− rm + a

1 + mx∗

)
(D + d1 + d2)(4.2)

>
r − ax∗

1 + mx∗ d2(D + d1),

and if the reverse of the above inequality is satisfied, then two of the characteristic
roots have positive real parts. Note that since (r − ax∗)/(1 + mx∗)d2(D + d1) > 0,
there is always a negative real root of (4.1). It is also important to note that (4.2) is
satisfied if x∗ > r/(2a). Toward this goal, we remark that if x∗ > r/(2a), one has

x∗(2a(1 + mx∗) − (rm + a)) = x∗
(
2am

(
x∗ − r

2a

)
+ a

)
≥ ax∗ ≥ r − ax∗

and [
D + d1 + d2 + x∗

(
2a− rm + a

1 + mx∗

)]
(D + d1 + d2) > 4d2(D + d1),

from which (4.2) results immediately. It then follows that all equilibria E∗ with x∗ >
r/(2a) are locally asymptotically stable. Moreover, a quick inspection of our argument
shows that E∗ is also stable for some x∗ < r/(2a), provided that x∗ > r/(2a)−c̃/(2m),
where

(4.3) c̃ =

(
1 +

a

mr
−
√

1 −
(
1 − a

mr

)2

+ 4
a

mr

d2 (D + d1)

(D + d1 + d2)
2

)
mr

2a
.

In particular, this shows that the inequality (4.2), which has been a priori assumed in
Xiao and Chen [38] (stated under the equivalent form (1.3)), does actually follow if
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either (H1) or (H2) are assumed, since x > r/(2a) implies x∗ > r/(2a), and so there
is no need to assume (4.2) separately. Also, it is perhaps interesting to remark that
while the inequality x > r/(2a) ensures the global stability of E∗, a somewhat similar
but weaker estimate x∗ > r/(2a) ensures its local stability. We do not know, however,
whether or not the inequality x > r/(2a) is sharp, that is, if r/(2a) is the smallest
constant C with the property that x > C ensures the converge of the respective
solution of (1.1) to E∗, under the condition kf(r/a) > T .

Consider now

C =

⎛
⎝1 0 0

0 −1 0
0 0 1

⎞
⎠ , S = [0,∞) × (−∞, 0] × [0,∞).

One then has

CJ(1.1)(x, y1, y2)C =

⎛
⎜⎝r − 2ax− b

(1+mx)2 y2 0 − bx
1+mx

−k b
(1+mx)2 y2 −(D + d1) − kbx

1+mx

0 −D −d2

⎞
⎟⎠ .

It is then seen that the matrix CJ(1.1)(x, y1, y2)C has negative off-diagonal entries for
(x, y1, y2) ∈ S, and so the system (1.1) is competitive on S. By the previously estab-
lished persistence and boundedness results, it follows that (1.1) is point dissipative.
It is also easy to see that (1.1) is irreducible in S.

Since (1.1) has a unique equilibrium point E∗ = (x∗, y∗1 , y
∗
2) and

det J(1.1)(x
∗, y∗1 , y

∗
2) = − r − ax∗

1 + mx∗ d2(D + d1) < 0,

it follows from Theorem 1.2 in Zhu and Smith [39] that either E∗ is stable, or, if it
is unstable, there is at least one but no more than finitely many periodic orbits and
at least one of these is orbitally asymptotically stable. Also, if E∗ is stable but not
globally stable, then since (1.1) is a three-dimensional competitive system, it follows
from Theorem 4.1 in Smith [34, Chapter 3] that (1.1) has a periodic orbit which is
necessarily orbitally unstable. Moreover, if E∗ is hyperbolic and unstable with a two-
dimensional unstable manifold, it follows from Theorem 4.2 in Smith [34, Chapter 3]
that the ω-limit of any orbit of (1.1) which does not start on the stable manifold of
E∗ is a nontrivial periodic orbit. Summarizing the above discussion, one obtains the
following result.

Theorem 4.1. Suppose that T < kf(x0) and that E∗ is not globally asymptoti-
cally stable.

1. If either (4.2) or its reverse is satisfied, then E∗ is hyperbolic and there is at
least a nontrivial periodic orbit. The ω-limit of any orbit with positive initial
data is either E∗ or a nontrivial periodic orbit.

2. If (4.2) is satisfied (which happens in particular when x∗ > r/(2a)), then the
positive equilibrium E∗ is locally asymptotically stable and there is at least a
periodic orbit which is necessarily orbitally unstable.

3. If the reverse of (4.2) is satisfied, then the positive equilibrium E∗ is unstable
with a two-dimensional unstable manifold and there is at least one but no more
than finitely many periodic orbits and at least one of these is orbitally asymp-
totically stable. Any solution which does not start on the one-dimensional
stable manifold of E∗ converges to a nontrivial periodic orbit.

Unfortunately, we are not able to study analytically whether or not the periodic
solutions mentioned in parts 2 and 3 above are unique.
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5. Concluding remarks. First, we discuss the biological significance of our
results. From the above results, we know that T = d2(D + d1)/D is a threshold
parameter for the stability of the system and that the numerical response of the
mature predator plays a major role in the long-term behavior of the system (1.1). More
precisely, Theorem 3.1 indicates that if the numerical response of the mature predator
for the prey at carrying capacity is lower than the threshold value T , i.e., if few mature
predators introduced in a predator-free ambient with prey at carrying capacity cannot
reproduce fast enough, the predator classes tend to extinction. Moreover, we can
define the basic reproduction number of the system by R0 = kf(x0)

D
D+d1

1
d2

, and
then the condition T ≥ kf(x0) is equivalent to R0 ≤ 1. This basic reproduction
number has a clear biological interpretation: the first term in R0, kf(x0), gives the
mean number of newborn predators per mature predator; the second term, D

D+d1
,

gives the probability that an immature predator will survive to adulthood; and the
third term, 1

d2
, is simply the average lifespan of a mature predator. Subsequently, the

product of these three terms yields the mean number of offspring by every predator,
which is precisely the biological meaning of a basic reproduction number. A similar
threshold condition for the coexistence of a predator-prey system had previously been
formulated and explained by Pielou [30], among others, but had not been termed a
“basic reproduction number” to the best of our knowledge.

Furthermore, if the numerical response of the mature predator for the prey at
carrying capacity is higher than the threshold value T and also the prey population
ultimately remains higher than another value x > r/(2a), that is, if the prey is always
abundant enough, it is seen from Theorem 3.3 that the system tends to a positive
steady state. We also note that if the death rate d1 of the immature predator is
negligible compared to the rate D at which the immature predators become mature
predators, then the inequality T < kf(x0) becomes a very simple comparison between
the death rate of the mature predators and their reproductive rate. Moreover, the
stage structure affects the capability of the predator species to survive and become
persistent, since it is now (D+ d1)/D times easier for the predator species to become
extinct, as can be seen from Theorem 3.1. This means that if it takes too much for
the immature predators to mature, or the through-stage death rate of the immature
predator is high (that is, D is small compared to d1), then the total number of offspring
produced during the adult stage will not be enough to compensate the total loss of
immature predators and the predator classes will tend to extinction.

However, the situation where R0 > 1 (or T < kf(x0)) but x ≤ r/(2a) is more
complicated. When x∗ > r/(2a), we know that E∗ is locally asymptotically stable,
but we do not know of its global properties. This is similar for the case x∗ ≤ r/(2a),
and (4.2) holds (see Theorem 4.1). Moreover, the precise conditions for the existence
and uniqueness of the periodic orbits, namely when E∗ is not globally stable, are
unknown under part 3 of Theorem 4.1. Therefore, we proceed to investigate further
by using numerical simulations.

We use the following parameter values for all numerical simulations below: k = 1,
b = 1, m = 1, D = 1, d1 = 0.1, and d2 = 0.2. For case 1 (see Figure 5.1), we let r = 1
and a = 2, and subsequently x0 = r

a = 0.5, R0 = kbx0

1+mx0

D
d2(D+d1)

= 1.515 > 1, and

x∗ > r
2a . Since x∗ > r/(2a), the positive steady state E∗ is locally asymptotically

stable. Numerical simulations of trajectories starting at various initial populations
seem to indicate that the stability is also global for the parameter values we used.
Note that, in all the figures below, the black dot located on the x-axis is E∗

0 , while
the other black dot is E∗. For case 2 (see Figure 5.2), we let r = 1 and a = 1 so
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Fig. 5.1. Simulation for case 1 with R0 = 1.515 > 1 and x∗ > r
2a

. All trajectories approach E∗.

that x0 = r
a = 1, R0 = 2.273 > 1, x∗ < r

2a , and (4.2) holds. Since (4.2) holds, we
know that the positive equilibrium E∗ is locally asymptotically stable. Numerical
simulations indicate that its stability is global. It is interesting to note that we are
unable to find parameter values under which E∗ satisfies (4.2), and hence it is locally
asymptotically stable but not globally stable.

We also consider case 3 (see Figure 5.3), where r = 3 and a = 2, and subsequently
x0 = r

a = 1.5, R0 = 2.727 > 1, and x∗ < r
2a , but (4.2) does not hold. From part

3 of Theorem 4.1, we know the positive equilibrium E∗ is unstable and there exists
an orbitally asymptotically stable periodic orbit. Our simulation shows that this
orbitally stable periodic orbit is unique and its orbital stability appears to be global.
We summarize our stability results in Table 5.1. The three cases described by the
last three rows of the table are illustrated with Figures 5.1–5.3, respectively. We note
that, biologically, when (4.2) fails to hold and E∗ becomes unstable, the coexistence
of prey and predator populations is still ensured for initial populations not on the
one-dimensional stable manifold of E∗, albeit with fluctuating population sizes.

We now continue with a few comments regarding the a priori estimate x > r/(2a),
which was used to establish the global asymptotic stability of the positive steady state.

Let 0 < l < r/a. It is seen that

x∗ > l ⇔ bkDl < (1 + ml)(D + d1)d2,

from which it is easy to infer that

x∗ > l ⇔ kf(l) < T.

Since x > l necessarily implies that x∗ > l (though this condition is only necessary
and is not sufficient), it is seen that in order to have the inequality x > l satisfied, it
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Fig. 5.2. Simulation for case 2 where R0 = 2.273 > 1, x∗ < r
2a

, and (4.2) holds. All trajectories
approach E∗.

Fig. 5.3. Simulation for case 3 where R0 = 2.727 > 1 and x∗ < r
2a

, but (4.2) does not hold.
E∗ is unstable, and all trajectories approach an orbitally stable periodic orbit.
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Table 5.1

Asymptotic states of the system. “NE” denotes nonexistent, “NA” denotes not applicable,
“NI” denotes no influence, “OASLC” denotes orbitally asymptotically stable limit cycle, “GAS”
and “LAS” denote globally and locally asymptotically stable, respectively, and “ (1)” denotes the
conclusion from the simulation result.

R0 E0 x∗ x (4.2) E∗ (x, y1, y2) →
≤ 1 GAS NE NI NA NE E0

> 1

> r
2a > r

2a YES GAS E∗

unstable > r
2a ≤ r

2a YES LAS E∗(1)

≤ r
2a ≤ r

2a YES LAS E∗(1)

≤ r
2a ≤ r

2a NO unstable OASLC(1)

is necessary that kf(l) < T . Note that this inequality alone does not suffice to
establish that x > l. Again, this inequality has a certain biological interpretation. In
order to have the prey population ultimately staying above a certain level l, one needs
as a prerequisite that the numerical response of the predator for prey at density l be
lesser than the threshold value T . Particularizing l = r/(2a), it is seen that in order
to obtain that x > r/(2a), one needs the inequality kf(r/(2a)) < T satisfied.

Also, it is perhaps fitting to give sufficient conditions here which ensure the va-
lidity of our boundedness estimate x > r/(2a). From the first equation in (1.1), one
obtains

(1 + mx)x′(t) = x(t) [(r − ax(t))(1 + mx(t)) − by2(t)] ,

which implies

(1 + mx)x′ ≥ x
[
(r − b(M̄ + ε)) + x(rm− a) − amx2

]
for t large enough, where M̄ is an ultimate upper bound for y2 and ε > 0 is an
arbitrary constant. If r− b(M̄ + ε) > 0, it follows that lim inft→∞x(t) ≥ x2, where x2

is the positive root of

(r − b(M̄ + ε)) + x(rm− a) − amx2 = 0.

From the above relations, one may deduce that x > r/(2a) whenever the following
conditions are satisfied:

r − b(M̄ + ε) > 0, a +
√

(a− rm)2 + 4(r − b(M̄ + ε))am > 2mr.

Since ε > 0 was arbitrary, a set of conditions which ensures that x > r/(2a) is
therefore

(5.1) r > bM̄, a +
√

(a− rm)2 + 4(r − bM̄)am > 2mr.

However, it is difficult to give a clear biological interpretation of the inequalities
(5.1), and we would like to point out that our a priori estimate x > r/(2a) is easier
to interpret and represents a theoretical device readily adaptable for the study of
other systems of a certain structure, in connection with monotonicity properties. For
explicit estimations of type (5.1), this sort of adjustment may not be transparent.
Note that, from the discussions in section 2 on the boundedness of the solutions of
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system (1.1), an ultimate upper bound for y2 is M̄ = kmax(r/a, x(0))(r+d)/d, where
d = min(d1, d2). See also [38] for a numerical example regarding the feasibility of the
condition x > r/(2a).

Since the mature predator functional response f depends only on the size of the
prey population x, our model (1.1) may be called, following the terminology given
in Huisman and DeBoer [13], prey-dependent. By the same terminology, a system in
which the mature predator functional response f is a function of the prey-to-predator
ratio x/y is called ratio-dependent (or, more generally, predator-dependent). It is
also easy to see that our model can be thought as a stage-structured version of the
classical predator-prey model given below:

(5.2)

⎧⎪⎪⎨
⎪⎪⎩

x′ = rx
(
1 − x

K

)
− bx

1 + mx
y,

y′ = k
bx

1 + mx
y − dy.

It is therefore not surprising that, as is easily seen from (3.2), our model inherits
the structure which generates the so-called paradox of enrichment, formulated by
Hairston, Smith, and Slobodkin [10] and by Rosenzweig [32], which states that in-
creasing the carrying capacity of the environment will cause an increase in the sizes of
the predator classes at equilibrium but not in that of prey. Also, since the left-hand
side of (4.2) is a decreasing function of the carrying capacity r/a while the right-hand
side of (4.2) is an increasing function of the same variable, it is seen that an increase
in the carrying capacity may destabilize an otherwise stable positive equilibrium.

It has already been noted that all prey equilibria x∗ for which x∗ > r/(2a)
are locally asymptotically stable; that is, high prey equilibrium densities are stable.
Moreover, it can also be observed that low prey equilibrium densities are unstable,
since the limit of the left-hand side of (4.2) as x∗ tends to 0 is also 0, while the same
limit of the right-hand side of (4.2) is positive.

Note that, by the Rosenzweig–MacArthur graphical stability criterion, any equi-
librium of (5.2) with x∗ > r/(2a) − 1/(2m) is stable, while any equilibrium of (5.2)
with x∗ < r/(2a) − 1/(2m) is unstable. Furthermore, by Theorem 3.2 in Kuang [20],
one may prove that if x > r/(2a), then (x∗, y∗) is globally asymptotically stable. One
may then expect a stability threshold for (1.1) which is sharper than r/(2a). Unfor-
tunately, this result does not carry out nicely for our system (1.1) (see (4.3)). Note
also that the equilibria of (1.1) with x∗ close to r/(2a)− 1/(2m) are unstable, as the
left-hand side of (4.2) becomes arbitrarily small, while the right-hand side remains
above a strictly positive lower bound.

It has also been observed in this study that, for the most part of the parameter
space, the dynamical outcome does not depend on the initial population sizes and
the prey and predator species cannot face extinction simultaneously. These are hall-
marks of prey-dependent models, as opposed to ratio-dependent models; as seen, for
instance, in Jost, Arino, and Arditi [14] or in Beretta and Kuang [3], mutual extinc-
tion may occur for ratio-dependent models, together with other rich dynamics, and
the behavior of the system may depend on the initial population sizes (see also Kuang
[19]). In this regard, it is believed that prey-dependent predator-prey models are more
appropriate for situations in which predation involves a random or no search process,
while ratio-dependent predator-prey models are more appropriate for situations in
which predation involves a thorough search process. See, for instance, Kuang and
Beretta [21].
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Our considerations may be easily extended to systems of the form

(5.3)

⎧⎪⎨
⎪⎩

x′ = n(x) − f(x)g(y2),

y′1 = kf(x)g(y2) − c1h(y1),

y′2 = c2h(y1) − c3r(y2),

to encompass different types of functional responses from the mature predator and
possible nonlinearities in the behavior of species, including nonlinearity in the preda-
tion process, under appropriate monotonicity assumptions on the functions f, g, h, r.
Some examples of f and n which fit into our framework are f(x) = mxc, 0 < c ≤ 1,
f(x) = m(1 − e−cx), m, c > 0, f(x) = bxp/(1 + mxp), 0 < p ≤ 1 and n(x) =
x(r − ax)/(1 + εx), ε > 0, n(x) = rx(1 − (x/(r/a))c), 0 < c ≤ 1, provided that
the threshold value T and the minimal value r/(2a) for x are modified accordingly.
Another simple extension is to a model in which predators pass through p > 2 life
stages, as long as the consumption of prey occurs only in the last stage. Note that
the last form of n(x) given above is the Richards model, a generalized logistic-type
model (which simplifies to the logistic model when c = 1) often used to model growth
of biological populations [31] or severity of disease outbreak [12].

The function n need not be monotone on its whole domain but only on [x̃,+∞),
x̃ being the persistency constant of the prey for the system under consideration. In
this situation, condition lim inft→∞ x(t) ≥ x̃ is used to restrict n to its monotonicity
domain. See Georgescu and Hsieh [8] for a related argument concerning the global
stability of the endemic equilibrium for the propagation of a virus in vivo, with the
remark that in [8] there is no need to impose any a priori lower bound condition,
since the function which corresponds to n is monotone on the whole feasibility domain.
Finally, regarding our construction of a Lyapunov function, we mention that functions
of type V (x1, x2, x3, x4) =

∑4
i=1 ai(xi−x∗

i lnxi), to which our function U3 relates, have
also been found useful for the study of SEIR epidemiological models. See Korobeinikov
[15] and Korobeinikov and Maini [16] for details. In this regard, global stability results
for models which incorporate nonlinear incidence rates of a very general form have
recently been obtained by Korobeinikov and Maini in [17].

Acknowledgment. The authors would like to thank two anonymous referees for
their constructive comments.

REFERENCES

[1] W. G. Aiello and H. I. Freedman, A time-delay model of single species growth with stage
structure, Math. Biosci., 101 (1990), pp. 139–153.

[2] R. Arditi and J. Michalski, Nonlinear food web models and their response to increased basal
productivity, in Food Webs: Integration of Patterns and Dynamics, G. A. Polis and K. O.
Winemiller, eds., Chapman and Hall, New York, 1996, pp. 122–133.

[3] E. Beretta and Y. Kuang, Global analysis in some ratio-dependent predator-prey systems,
Nonlinear Anal., 32 (1998), pp. 381–408.

[4] G. Butler, H. I. Freedman, and P. Waltman, Uniformly persistent systems, Proc. Amer.
Math. Soc., 96 (1986), pp. 425–430.

[5] A. Fonda, Uniformly persistent dynamical systems, Proc. Amer. Math. Soc., 104 (1988),
pp. 111–116.

[6] H. I. Freedman, S. Ruan, and M. Tang, Uniform persistence near a closed positively invariant
set, J. Dynam. Differential Equations, 6 (1994), pp. 583–600.

[7] S. C. Gurney, R. M. Nisbet, and S. P. Blythe, The systematic formulation of models of
stage-structured populations, in The Dynamics of Physiologically Structured Populations,
Lecture Notes in Biomath. 68, Springer, Berlin, 1986, pp. 474–494.



1394 PAUL GEORGESCU AND YING-HEN HSIEH

[8] P. Georgescu and Y.-H. Hsieh, Global stability for a virus dynamics model with nonlinear
incidence of infection and removal, SIAM J. Appl. Math., 67 (2006), pp. 337–353.

[9] S. A. Gourley and Y. Kuang, A stage structured predator-prey model and its dependence on
maturation delay and death rate, J. Math. Biol., 49 (2004), pp. 188–200.

[10] N. G. Hairston, F. E. Smith, and L. B. Slobodkin, Community structure, population control,
and competition, Am. Naturalist, 94 (1960), pp. 421–425.

[11] J. Hofbauer and J. W. H. So, Uniform persistence and repellors for maps, Proc. Amer.
Math. Soc., 107 (1989), pp. 1137–1142.

[12] Y.-H. Hsieh, J. Y. Lee, and H. L. Chang, SARS epidemiology modeling, Emerg. Infect. Dis.,
10 (2004), pp. 1165–1167.

[13] C. Huisman and R. J. DeBoer, A formal derivation of the Beddington functional response,
J. Theoret. Biol., 185 (1997), pp. 389–400.

[14] C. Jost, O. Arino, and R. Arditi, About deterministic extinction in ratio-dependent predator-
prey models, Bull. Math. Biol., 61 (1999), pp. 19–32.

[15] A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66
(2004), pp. 879–883.

[16] A. Korobeinikov and P. K. Maini, A Lyapunov function and global properties for SIR
and SEIR epidemiological models with nonlinear incidence, Math. Biosci. Eng., 1 (2004),
pp. 57–60.

[17] A. Korobeinikov and P. K. Maini, Non-linear incidence and stability of infectious disease
models, Math. Med. Biol., 22 (2005), pp. 113–128.

[18] Y. Kuang, Basic properties of mathematical population models, J. Biomath., 17 (2002),
pp. 129–142.

[19] Y. Kuang, Rich dynamics of Gause-type ratio-dependent predator-prey system, Fields Inst.
Commun., 21 (1999), pp. 325–337.

[20] Y. Kuang, Global stability of Gause-type predator-prey systems, J. Math. Biol., 28 (1990),
pp. 463–474.

[21] Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey
system, J. Math. Biol., 36 (1998), pp. 389–406.

[22] J. P. LaSalle, The Stability of Dynamical Systems, CBMS-NSF Regional Conf. Ser. in Appl.
Math. 25, SIAM, Philadelphia, 1976.

[23] M. Y. Li and J. S. Muldowney, Global stability for the SEIR model in epidemiology, Math.
Biosci., 125 (2005), pp. 155–164.

[24] S. Liu, L. Chen, and R. Agarwal, Recent progress on stage-structured population dynamics,
Math. Comput. Modelling, 36 (2002), pp. 1319–1360.

[25] A. Margheri and C. Rebelo, Some examples of persistence in epidemiological models, J.
Math. Biol., 46 (2003), pp. 564–570.

[26] J. S. Muldowney, Compound matrices and ordinary differential equations, Rocky Mountain
J. Math., 20 (1990), pp. 857–872.

[27] R. M. Nisbet and W. S. C. Gurney, “Stage-structure” models of uniform larval competition,
in Mathematical Ecology, Lecture Notes in Biomath. 54, Springer, Berlin, 1984, pp. 97–113.

[28] R. M. Nisbet, W. S. C. Gurney, and J. A. J. Metz, Stage structure models applied in
evolutionary ecology, in Applied Mathematical Ecology, S. A. Levin, T. G. Hallam, and L.
J. Gross, eds., Springer, Berlin, 1989, pp. 428–449.

[29] N. H. Pavel, Differential Equations, Flow Invariance, and Applications, Res. Notes in
Math. 113, Pitman, London, 1984.

[30] E. C. Pielou, Introduction to Mathematical Ecology, Wiley-Interscience, New York, 1969.
[31] F. J. Richards, A flexible growth function for empirical use, J. Exp. Bot., 10 (1959), pp. 290–

300.
[32] M. R. Rosenzweig, Paradox of enrichment: Destabilization of exploitation systems in ecolog-

ical time, Science, 171 (1969), pp. 385–387.
[33] H. L. Smith, A classification theorem for three dimensional competitive systems, J. Differential

Equations, 70 (1987), pp. 325–332.
[34] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive

and Cooperative Systems, Math. Surveys Monogr. 41, AMS, Providence, RI, 1995.
[35] W. Wang, Global dynamics of a population model with stage structure for predator, in Ad-

vanced Topics in Biomathematics, L. Chen, S. Ruan, and J. Zhu, eds., World Scientific,
River Edge, NJ, 1997, pp. 253–257.

[36] W. Wang and L. Chen, A predator-prey system with stage structure for predator, Comput.
Math. Appl., 33 (1997), pp. 83–91.



GLOBAL DYNAMICS OF A PREDATOR-PREY MODEL 1395

[37] W. Wang, G. Mulone, F. Salemi, and V. Salone, Permanence and stability of a stage-
structured predator-prey model, J. Math. Anal. Appl., 262 (2001), pp. 499–528.

[38] Y. N. Xiao and L. Chen, Global stability of a predator-prey system with stage structure for
the predator, Acta Math. Sin. (Engl. Ser.), 20 (2004), pp. 63–70.

[39] H.-R. Zhu and H. L. Smith, Stable periodic orbits for a class of three-dimensional competitive
systems, J. Differential Equations, 110 (1994), pp. 143–156.



SIAM J. APPL. MATH. c© 2007 Society for Industrial and Applied Mathematics
Vol. 67, No. 5, pp. 1396–1417

SPATIOTEMPORAL SYMMETRIES IN THE DISYNAPTIC
CANAL-NECK PROJECTION∗
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Abstract. The vestibular system in almost all vertebrates, and in particular in humans, controls
balance by employing a set of six semicircular canals, three in each inner ear, to detect angular
accelerations of the head in three mutually orthogonal coordinate planes. Signals from the canals are
transmitted to eight (groups of) neck motoneurons, which activate the eight corresponding muscle
groups. These signals may be either excitatory or inhibitory, depending on the direction of head
acceleration. McCollum and Boyle have observed that in the cat the relevant network of neurons
possesses octahedral symmetry, a structure that they deduce from the known innervation patterns
(connections) from canals to muscles. We rederive the octahedral symmetry from mathematical
features of the probable network architecture, and model the movement of the head in response to
the activation patterns of the muscles concerned. We assume that connections between neck muscles
can be modeled by a “coupled cell network,” a system of coupled ODEs whose variables correspond
to the eight muscles, and that this network also has octahedral symmetry. The network and its
symmetries imply that these ODEs must be equivariant under a suitable action of the octahedral
group. It is observed that muscle motoneurons form natural “push-pull pairs” in which, for given
movements of the head, one neuron produces an excitatory signal, whereas the other produces an
inhibitory signal. By incorporating this feature into the mathematics in a natural way, we are led
to a model in which the octahedral group acts by signed permutations on muscle motoneurons.
We show that with the appropriate group actions, there are six possible spatiotemporal patterns of
time-periodic states that can arise by Hopf bifurcation from an equilibrium representing an immobile
head. Here we use results of Ashwin and Podvigina. Counting conjugate states, whose physiological
interpretations can have significantly different features, there are 15 patterns of periodic oscillation,
not counting left-right reflections or time-reversals as being different. We interpret these patterns
as motions of the head, and note that all six types of pattern appear to correspond to natural head
motions.

Key words. vestibular system, Hopf bifurcation, spatiotemporal symmetries, coupled cell sys-
tems
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1. Introduction. The human vestibular system is a system of tubes that contain
sensors for motion and orientation in space, yielding the sense of balance. There are
two main components: the otolith organs, which sense linear acceleration of the head
(translation), and the semicircular canals, which sense angular acceleration of the
head (rotation). Each ear contains three semicircular canals (henceforth “canals”)
arranged in three approximately mutually orthogonal planes; see Figure 1 below. A
similar arrangement occurs in most vertebrates. We do not discuss the otolith system
or other physiological features of the sense of balance.

In this paper we focus on two points. First, we rederive the symmetry group Γ
of the network of neurons that conveys signals from the six canals to eight principal
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muscle groups that control the position of the neck. McCollum and Boyle [12] analyzed
experimental work of Shinoda et al. [13, 14, 15] and Wilson and Maeda [16] to discover
these symmetries. Our derivation makes transparent the fact that Γ is the 48-element
symmetry group of the cube, which is called the octahedral group. This network of
connections is known as the canal-neck projection.

Second, we assume that the octahedral group Γ is also the symmetry group of
the internal dynamics of the muscles and associated neural connections, and we use
these symmetries to discuss natural rhythmic head motions. We look only for small
amplitude periodic head motions that can be sustained by the neck muscles alone. In
particular, we assume that the sensory inputs from the canals are not relevant, except
to prescribe the symmetries of the system. A similar approach has been applied previ-
ously to spatiotemporal patterns in animal locomotion; see Buono and Golubitsky [3],
Collins and Stewart [4, 5], and Golubitsky et al. [10, 11]. However, in those papers
the patterns of locomotion were used to infer the symmetry of the network of neurons
(central pattern generator) that produced them, whereas here we infer the patterns
of movement from the known symmetries of the canal-neck projection.

Our approach is straightforward but not completely standard. The work of Mc-
Collum and Boyle [12] suggests a simplest network for the motoneurons of the eight
muscle groups. Although we do not know (and perhaps cannot know) an accurate dif-
ferential equation model for the (abstracted) muscle motoneurons, we can presume the
form that such a model will take. We use the symmetries and the network structure
to answer the question: What are the spatiotemporal symmetries of small amplitude
periodic solutions that can be obtained by Hopf bifurcation from a group invariant
equilibrium in this class of possible models? (These periodic solutions are the ones
that can most naturally exist in models near a position where the head is held fixed
and upright. A more general classification of the spatiotemporal symmetries of pe-
riodic solutions, whose amplitudes are not necessarily small, can be made using the
H/K Theorem [3, 9]. However, we choose to begin our classification with the more
restricted problem of small amplitude periodic solutions near an upright head.)

Using a caricature of the physical actions of the muscle groups, we observe that
a group invariant equilibrium corresponds to one in which the head is held fixed.
Using this caricature, we can also interpret the form that the head motions will take
based only on the spatiotemporal symmetries of the associated periodic solutions. In
this sense our approach is model-independent; it does not depend on the particular
system of ODEs. Our results provide a list, or menu, of the possible head motion
types; specific models and specific parameters in the models choose from this menu
and determine which solution types exist and which are stable. We do not discuss
such model-dependent issues here.

In order to relate these spatiotemporal symmetries to characteristic head motions,
we need to make assumptions about how the eight muscle groups move the head. For
physiological and mathematical reasons we are led to classify the eight muscle groups
into four opposing pairs. When both muscles in a pair are equally activated the head
will not move. Indeed, to move the head, one muscle group must pull harder than the
opposing one; we classify only those periodic states that satisfy this constraint.

To analyze the possible dynamics we employ the theory of dynamical systems with
symmetry, which has implications for the dynamics of such a network. We restrict
ourselves to classifying those types of head motions that can be described by small
amplitude periodic states near a group invariant equilibrium. The mathematical tool
for performing this classification is the equivariant Hopf bifurcation theorem [8, 9]. In
particular, we use the results of Ashwin and Podvigina [1] on Hopf bifurcation with
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octahedral symmetry.

This classification is “model-independent” in the sense that it does not depend
upon the detailed structure of the network of neurons concerned, or on the precise
equations used to model neurons, provided that the symmetry constraints are re-
spected. Since all model equations in current use are primarily phenomenological,
and the precise architecture of the muscle group network is unknown (even in the
cat), model-independent results have a potential advantage: they depend only on the
known symmetries of the network. Any specific choice of network architecture and
model neuron dynamics (associated, for example, with particular vertebrate species)
will generate a list of spatiotemporal patterns taken from the general classification,
but with extra model-dependent restrictions on existence and stability. The model-
independent features of the problem can also help to structure existence and stability
calculations in specific models; see [9].

In order to create this menu and to make predictions about head motions, we must
determine the appropriate “phase space” variables upon which the group Γ acts, and
also specify the appropriate group action. Our approach, as in the gaits work, is to
use the network structure. We assume that each of the eight motoneurons (or more
precisely, sets of motoneurons) is identified with variables in R� so that the phase
space of the muscle motoneurons is Y = (R�)8. We also assume that the octahedral
group acts on Y by permuting the coordinates, just as that group permutes the
vertices of the cube. Next we assume that the differential equations that describe the
time evolution of this coupled system of neck motoneurons have octahedral symmetry.
Using this symmetry, we can then classify the types of spatiotemporal symmetries that
periodic states of such systems may have.

Specifically we find that there are six types of spatiotemporal symmetries for small
amplitude periodic solutions that can bifurcate from a Γ-invariant equilibrium. Each
of these symmetry types includes a reasonable pattern of periodic head motion. They
are: shaking the head (saying “no” in many cultures), which occurs in two different
ways; nodding the head (saying “yes” in those same cultures); a rotating wave in
which the head rolls in an approximate horizontal circle; a combination of “yes” and
“no,” in which the head nods alternately to left and right; and a side-to-side motion
with the head rotating to move the nose in the opposite direction (so that the nose
always points at a fixed point in the distance).

Organization of the paper. In section 2 we give a brief description of salient
features of the physiology of the vestibular system and rederive the octahedral sym-
metry of the canal-neck projection. We relate the associated network architecture to
a graph drawn on a cube and describe a simple caricature of the effects of the eight
muscle groups. Section 3 describes the octahedral group in more detail and motivates
the choice of action of this group on muscle space. This section also provides an ex-
plicit description of the permutation action of the octahedral group on muscle space,
lists the relevant subgroups, and classifies the isotropy subgroups—basic data for the
application of symmetric dynamics.

The equivariant Hopf theorem is described in section 4, and a discussion of the
irreducible representations of the octahedral group, the basic information needed for
application of the Hopf theorem, is given. (Proofs, which use character theory, are
postponed to the appendix.) Section 5 presents a classification of the possible small
amplitude spatiotemporal symmetry patterns for time-periodic motions of the head,
determined by the canal-neck projection. We find six distinct (conjugacy classes
of) patterns, or 15 distinct patterns (not distinguishing time-reversals or left-right
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Fig. 1. Location of the three planes relative to the head, and direction of rotational motion to
which canals respond. Canals are drawn schematically near the ears.

reflections in physical space). These patterns are interpreted as motions of the head
in section 6, assuming that the muscle groups act according to our caricature. We
pay attention to distinctions arising from conjugate states.

We end with a short conclusions section.

2. Symmetries in the disynaptic canal-neck projection. In this section we
rederive the symmetries in the disynaptic canal-neck projection discussed by McCol-
lum and Boyle [12], stating the results in terms of a group of permutations acting on
the associated network of neurons. In this aspect of the vestibular system there are
six canals (three in each ear) that are connected to eight muscle groups in the neck.

The three canals located in each ear are called horizontal h, anterior a, and
posterior p. We denote the six canals by lh, la, lp, rh, ra, rp, where l stands for left
and r for right. Neurons associated with canal hairs have a base firing rate. These
hairs are arranged so that fluid flow in one direction in the canal increases the firing
rate, and fluid flow in the opposite direction decreases that firing rate. Moreover,
the canals are paired ({lh,rh}, {la,rp}, {lp,ra}), so that when one member of a pair
transmits an elevated signal, then the other member of that pair transmits a reduced
one. These pairs are called polarity pairs.

The spatial arrangement of the canals is shown in Figure 1. There are three
(approximately) mutually orthogonal planes. One of these planes is horizontal; the
other two are vertical, at an angle of 45◦ to the plane of left-right symmetry of the
head. Each polarity pair consists of two canals that are parallel to one of these planes:
one canal in the left ear, one in the right. These two canals are oriented in opposite
directions in that plane and detect rotations (actually angular accelerations) of the
head about an axis perpendicular to that plane. One member of the polarity pair
detects acceleration in one orientation (clockwise or counterclockwise), and the other
member detects the opposite orientation, as illustrated by the arrows in Figure 1. The
four arrows at the corners represent rotations in the direction “along the arrow and
down.” For example, ra responds to motion in which the nose and right ear move
forward to the left and down, while lp responds to motion in which the nose and right
ear move backward to the right and up.

Connections from canals to muscles. Experiments show that each of the six
canals can transmit signals to each of the eight muscle groups. The muscles also form
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Fig. 2. Innervation patterns corresponding to eight muscle groups. Dashed lines represent
excitatory connections and solid lines inhibitory ones.

four polarity pairs; if a canal is activated by the motion of the head, then it sends
an excitatory signal to one member of each pair and an inhibitory signal to the other
member. Physiological investigations (Wilson and Maeda [16], Shinoda et al. [13, 14,
15]) suggest that each muscle group is excited by a set of three mutually orthogonal
canals (that is, one from each polarity pair) and inhibited by the complementary set
of canals (the other members of the polarity pairs).

We describe the details of this arrangement, following McCollum and Boyle, who
depict the list of signals transmitted to a given muscle group by an “asterisk,” (Fig-
ure 2). Each asterisk has three solid lines (inhibitory connections) and three dotted
lines (excitatory connections), and diametrically opposite lines have opposite polar-
ity. There are eight possible arrangements of this type. Because the asterisks are
drawn in 2-dimensional projection, in a conventional orientation with lh between la
and lp, there appear to be two kinds of asterisks: two alternating (with excitation
and inhibition alternating) and six nonalternating (with three contiguous excitatory
canals). We will shortly see that under a suitable action of the octahedral group, all
eight asterisks are equivalent.

The eight neck muscles consist of two flexors in the front (LF, RF), two extensors
in the back (LE, RE), and four side (shoulder) muscles. The side muscles are alternat-
ing (LA, RA) or directed (LD, RD). McCollum and Boyle [12] discuss the innervation
patterns between canal neurons and muscle motoneurons—how the six canal neurons
connect to the eight muscle motoneurons, and whether the connection occurs via an
excitatory synapse or an inhibitory one. The pattern of connections to each muscle
is specified by Figure 2. Each asterisk in Figure 2 is a list of the connections from all
six canals to one muscle group, and the type of signal that is transmitted along each
connection. Observe that the muscle groups also partition into four polarity pairs:

{LA,RA}, {LF,RE}, {LE,RF}, {LD,RD}.

If one muscle in a polarity pair has an excitatory connection from a canal, then the
other muscle in that polarity pair has an inhibitory connection from that canal.
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Fig. 3. Schematic of connections from vestibular nerve afferent to neck motoneuron. Solid line
shows inhibitory synapse, dotted line shows excitatory synapse. Left: Connections to a given neck
motoneuron, here LA. Right: Connections from a given vestibular nerve afferent, here lh.

It is useful to display the same information in two other ways. McCollum and
Boyle [12] consider only the disynaptic pathway from the six vestibular nerve affer-
ents (“canal nerves”) to the eight neck motoneurons (by way of the corresponding
vestibulospinal neurons). They remark that almost always “the motoneurons of each
tested muscle responded to stimulation of all six canal nerves.” The responses were
classified as either inhibitory or excitatory, as indicated by solid or dotted lines for
the relevant arm of the asterisk. This description makes it clear that their Figure 3
(and our Figure 2) is a diagram determining these connections.

We make the connection pattern explicit. Figure 3(left) shows connections to
a given neck motoneuron, here LA. The associated asterisk is drawn, and the six
connections correspond to the six arms. Figure 3(right) shows connections from a
given vestibular nerve afferent, here lh. These connections correspond to the eight lh
arms in the different asterisks, and connect to the corresponding neck motoneurons.

We do not attempt to draw the complete network since it would contain 48 lines,
24 solid and 24 dotted, and it would be too complicated to convey useful information.
However, it is convenient to employ a geometric image in which the canals are iden-
tified with the six faces of a cube, and the muscles with the eight vertices. We will
describe the network connectivity using the cube.

Octahedral symmetry of canals and muscles. The cube arises naturally
from the results of McCollum and Boyle [12], identifying the symmetry group of
the canal-neck projection as the 48-element octahedral group. To understand their
observation, we identify the canals with faces of a cube, so that polarity pairs of canals
are identified with pairs of opposite faces. Up to symmetry there is only one way to
make this identification.

To identify the muscles, we observe that every vertex of the cube is in the inter-
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Fig. 4. Identification of polarity pairs and muscle groups to the cube.
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Fig. 5. Schematic of inhibitory connections from canals to muscles drawn on the cube. Solid
lines show connections on “visible” faces, and dot/dashed lines show connections on “hidden” faces.
Canals are at centers of faces, muscles at vertices. Connections run to each vertex from the three
adjacent faces. The octahedral symmetry of the network is obvious geometrically.

section of exactly three faces. We identify a given vertex with that muscle that has
inhibitory connections from canals corresponding to the three faces adjacent to that
vertex. For example, there is a unique vertex that is in the intersection of the three
faces corresponding to the left canals lh, lp, la (see Figure 4). We identify this vertex
with the left direct muscle LD in Figure 2, since that muscle responds to inhibitory
signals from the three left canals.

In Figure 5 we show the 24 inhibitory connections on the cube diagram. The
complementary set of connections from canal neurons to muscle motoneurons consists
of excitatory connections but is omitted for clarity. The octahedral symmetry of the
network is apparent in this figure. The elements of the octahedral group act on the full
network by permuting canals, permuting muscles, and permuting the corresponding
connections.

Muscle group action: A caricature. What effect do the eight muscle groups
have on the head? For purposes of interpretation, we adopt a caricature of the
anatomy of the muscle groups, illustrated in Figure 6. Here we assume that the
principal effect of a muscle group being activated is to pull the head in the indicated
direction. Six muscle groups LF, LD, LE, RF, RD, RE effectively form a “hexagon,”
and their effect is to tilt the head in various directions. The other two, LA and RA,
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Fig. 6. Caricature of effect of activation of muscle groups.

rotate the head about the vertical axis (as sensed by the horizontal canals lh, rh).
There is some redundancy here: the hexagon includes three pairs of muscle groups,
but the three associated directions are linearly dependent. However, the use of six
muscles makes the head position more stable, so there may be physiological reasons
for this redundancy. McCollum and Boyle [12] call this hexagon the “central dial.”
This caricature exhibits the four pairs of opposing muscles (LD, RD), (LE, RF), (LF,
RE), (LA, RA), which are just the four polarity pairs.

We stress that this picture of the anatomy is a caricature. At this stage we make
no attempt to formulate a more realistic model of the physiology and the mechanics
of head movement. However, further detail of this kind could be developed without
changing the classification of possible symmetry types of time-periodic motion. What
would change would be the fine detail of the corresponding head motions and the
precise manner in which each muscle group contributes to that motion.

3. The octahedral group and its actions. We now discuss mathematical
features of the octahedral group and various actions of that group that occur in this
analysis. In particular, we introduce variables that model the state of the eight muscle
groups and discuss how the octahedral group acts on those variables.

The geometry of Figure 5, together with the corresponding figure for excita-
tory connections (which has the same symmetry), shows that the network of neurons
forming the canal-neck projection has octahedral symmetry, where now the octahe-
dral group acts by permuting the eight muscle groups, the six canal neurons, and the
connections between them. These permutation actions are distinct from, but induced
naturally by, the “standard” action as isometries of R3 that preserve the cube.

Suppose we fix the cube so that it is centered at the origin. Then the symmetries
of the cube have the form R or −R, where R is a rotation. It follows that the
octahedral group is the direct sum of the group O of rotation symmetries of the cube
and the two-element group Zc

2 generated by the inversion −I. That is, the octahedral
group is O⊕Zc

2. The “c” in the notation Zc
2 indicates that this group is the center of

the octahedral group.
We are modeling the canal-neck projection by a network of interconnecting neu-

rons, following Figures 3 and 5. This network has symmetry group O ⊕ Zc
2, which

acts on the network by permuting the set of cells and the set of arrows. This permu-
tation action preserves the type of the cell (canal neuron, shown as a circle, or muscle
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motoneuron, shown as a square), and it preserves the type of arrow (inhibitory or
excitatory).

Phase space for muscles. This permutation action can be transferred to the
dynamical variables representing the states of the cells, that is, the phase space of the
network. We now describe the effect of this action on the 8 muscle cells. In order to
do this we order the eight vertices as in (3.1). The ordering is shown on the cube in
Figure 7.

RA=2

LE=5

LA=1

RE=4

RF=6
lh

rp

ra

la

lp
LD=7

rh

RD=8

LF=3

Fig. 7. Ordering of vertices.

The simplest model for a state of the eight muscle motoneurons is a point in R8,
with coordinates

(3.1) (yLA, yRA, yLF, yRE, yLE, yRF, yLD, yRD).

Each element of O ⊕ Zc
2 permutes the eight subscripts LA, RA, LF, RE, LE, RF,

LD, RD according to the associated transformation of the vertices of the cube in
Figure 7. The overall phase space for any system of ODEs representing the dynamics
of the network, consistent with the O⊕Zc

2 symmetry, is therefore equivariant for the
permutation action of O ⊕ Zc

2 on the space R8.
Our goal is to determine the spatiotemporal symmetries of small amplitude pe-

riodic solutions that can be obtained from a synchronous equilibrium by Hopf bi-
furcation. An important step in this analysis is the computation of the irreducible
representations of the symmetry group O⊕Zc

2 on (R�)8. However, up to isomorphism
the answer for general � is identical to the case when � = 1, for the following reason.
Because the group acts by permutations (see the next subsection), the action on (R�)8

consists of � isomorphic copies of the action on R8. So the isomorphism types of the
irreducible components are the same for all �. However, their multiplicities depend
on �. We return to this point in section 4.

The action of O⊕Zc
2 is determined by that of O and that of Zc

2. A crucial feature
of the “cube” structure is that the action of −I preserves polarity pairs {LA, RA},
{LF, RE}, {LE, RF}, and {LD, RD}, because they label pairs of opposite vertices.
Their entries are interchanged by −I. That is, −I acts as the permutation

(1 2)(3 4)(5 6)(7 8).

Permutation action of O on muscle space. It remains to analyze the action
of O. We begin the discussion of the action of O on R8 by describing how it acts by
rotations on R3 in the “cube” picture. There are three types of rotation: rotations
about axes connecting centers of opposite faces, rotations about axes connecting mid-
points of opposite edges, and rotations about axes containing opposite vertices. There
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Table 1

Permutation actions on R8 of rotations in O.

I I
V1 (3 8 5)(4 7 6)
V2 (3 5 8)(4 6 7)
V3 (1 7 6)(2 8 5)
V4 (1 6 7)(2 5 8)
V5 (1 4 7)(2 3 8)
V6 (1 7 4)(2 8 3)
V7 (1 4 6)(2 3 5)
V8 (1 6 4)(2 5 3)
A1 (1 7)(2 8)(3 5)(4 6)
A2 (1 4)(2 3)(5 8)(6 7)
A3 (1 6)(2 5)(3 8)(4 7)

F1 (1 5 7 3)(2 6 8 4)
F2 (1 3 7 5)(2 4 8 6)
F3 (1 5 4 8)(2 6 3 7)
F4 (1 8 4 5)(2 7 3 6)
F5 (1 8 6 3)(2 7 5 4)
F6 (1 3 6 8)(2 4 5 7)
E13 (1 2)(3 7)(4 8)(5 6)
E14 (1 5)(2 6)(3 4)(7 8)
E15 (1 2)(3 4)(5 7)(6 8)
E16 (1 3)(2 4)(5 6)(7 8)
E35 (1 8)(2 7)(3 4)(5 6)
E45 (1 2)(3 6)(4 5)(7 8)

Table 2

The 10 nonidentity subgroups of O up to conjugacy, with generators.

Subgroup Order Generators Normalizer

ZA
2 2 A3 D4

ZE
2 2 E16 DE

2

Z3 3 V1 S3

DA
2 4 A1, A3 O

DE
2 4 E15, E16 D4

Subgroup Order Generators Normalizer
Z4 4 F3 D4

S3 6 E15, V1 S3

D4 8 A3, F3 D4

T 12 A3, V4 O

O 24 V4, F5 O

are nine rotations corresponding to faces, since there are three pairs of faces and each
pair determines three nonidentity rotations. There are six rotations corresponding to
edges, since there are six pairs of edges and each pair determines just one nonidentity
rotation. There are eight rotations corresponding to vertices, since there are four pairs
of vertices and each pair determines two nonidentity rotations.

Denote by Vj the clockwise rotation of 120◦ about the axis through vertex j for
j = 1, . . . , 8 (“clockwise” when viewed with vertex j nearest to the eye). Note that
V 2

1 = V2, V
2
3 = V4, V

2
5 = V6, V

7
1 = V8. Denote by Fj the clockwise rotation of 90◦

about the axis perpendicular to face j for j = 1, . . . , 6. Note that F 3
1 = F2, F

3
3 = F4,

F 3
5 = F6. Let Ai = F 2

2i−1 for i = 1, 2, 3. Then the Fj and the Ai are the nine rotations
about axes connecting midpoints of opposite faces. Finally, note that each edge is
uniquely the intersection of two faces. Denote by Eij the rotation by 180◦ about the
edge in the intersection of faces i and j, where i < j. There are six possibilities.

In Table 1 we list the 24 rotations and their permutation actions on R8. The
entries can be read off easily from Figure 7.

Subgroups of O. We use the following notation for groups: Zk is the cyclic
group of order k, Dk is the dihedral group of order k, Sk is the symmetric group
of degree k, and T is the tetrahedral group. This is the unique subgroup of O that
has order 12, and it fixes a tetrahedron inscribed in the cube. Table 2 lists the 11
conjugacy classes of subgroups of O. This calculation was done using the algebra
program GAP.
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4. Types of Hopf bifurcation. Hopf bifurcation is the tool for finding small
amplitude periodic states near an equilibrium. Equivariant Hopf theory [8, 9] states
that there is a different type of Hopf bifurcation from a group-invariant equilibrium
for each irreducible representation of the group. The equivariant Hopf theorem helps
classify the types of spatiotemporal symmetries of periodic states that emanate from
a given Hopf bifurcation. We apply this theory in the case of O⊕Zc

2 acting on muscle
space (R�)8, where the equilibrium is O ⊕ Zc

2-invariant. At such an equilibrium
opposing muscles act with equal strength, so that the head is fixed and upright.

As noted previously, the types of irreducible representation of O ⊕ Zc
2 acting on

(R�)8 are identical with those of O ⊕ Zc
2 acting on R8. So the first step is to find

the irreducible representations of O ⊕ Zc
2 acting on R8. We will show that there are

four different irreducible representations, only two of which can lead to periodic states
corresponding to nontrivial head motions. One of the associated Hopf bifurcations is
simple to analyze, and the other was analyzed previously by Ashwin and Podvigina [1].

Decomposition of R8 into “push-pull” and “pull-pull” subspaces. The
irreducible representations are intimately associated with the action of the inversion
−I, which plays a key role because it swaps the members of each pair of opposing
muscle motoneurons.

We can decompose R8 = Y + ⊕ Y − into two 4-dimensional O ⊕ Zc
2-invariant

subspaces, so that −I acts trivially on one subspace and changes sign on the other.
To do so, define

Y ± = {y ∈ R8 : yLA = ±yRA, yLF = ±yRE, yLE = ±yRF, yLD = ±yRD}.

Note that the coordinates corresponding to opposing muscle pairs in Y + are equal, and
the coordinates corresponding to opposing muscle pairs in Y − are equal in magnitude
but opposite in sign.

As noted previously, three polarity pairs of muscles (the central dial) pull the
head in opposite directions, and the muscles of the fourth pair (the alternating mus-
cles) twist the head in opposite directions. In states in Y + polarity pairs of muscles
act as pull-pull pairs, whereas in states in Y − these polarity pairs act as push-pull
pairs. In fact, all muscles must be under tension; thus push-pull pairs really operate
with one muscle group pulling harder than usual while the other pulls less hard. Phe-
nomenologically, we can identify the difference between the tensions of two muscles
in a polarity pair with the deviation of the tension (of either muscle, subject to sign)
from the rest tension in which the head remains upright.

Next we observe that Hopf bifurcation corresponding to an irreducible represen-
tation in Y + can only lead to periodic states in which the head is immobile. The
reason is simple: Y + = Fix(−I), which is flow-invariant. Thus, in the nonlinear
theory, any periodic state emanating from such a bifurcation must itself be fixed by
−I; consequently, the opposing muscles in each polarity pair are always pulling with
the same strength, creating a net motion of zero. As well as being inefficient, this
space of motions has no visible effect on the head. In contrast, on the space Y −,
opposing pairs of muscles cooperate to move the head in exactly the same manner, so
the muscle actions reinforce each other.

In fact, neither subspace Y + or Y − is irreducible; each subspace decomposes into
a 1-dimensional and a 3-dimensional irreducible representation. The previous remark
implies that we need focus only on the subspace Y − ∼= R4.

Decomposition of Y − into irreducible subspaces. As we have seen, the
inversion −I interchanges the muscles in each polarity pair, and the states in Y − are
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Table 3

Action of elements in O on muscle “push-pull” polarity pair space Y −.

γ Action on γ on Y −

I ( y1, y3, y5, y7)
V1 ( y1, y5,−y7,−y3)
V2 ( y1,−y7, y3,−y5)
V3 (−y5, y3,−y7, y1)
V4 ( y7, y3,−y1,−y5)
V5 ( y7,−y1, y5,−y3)
V6 (−y3,−y7, y5, y1)
V7 (−y5,−y1, y3, y7)
V8 (−y3, y5,−y1, y7)
A1 ( y7, y5, y3, y1)
A2 (−y3,−y1,−y7,−y5)
A3 (−y5,−y7,−y1,−y3)

γ Action on γ on Y −

F1 ( y3, y7, y1, y5)
F2 ( y5, y1, y7, y3)
F3 (−y7,−y5, y1, y3)
F4 ( y5, y7,−y3,−y1)
F5 ( y3,−y5, y7,−y1)
F6 (−y7, y1,−y3, y5)
E13 (−y1, y7,−y5, y3)
E14 ( y5,−y3, y1,−y7)
E15 (−y1,−y3, y7, y5)
E16 ( y3, y1,−y5,−y7)
E35 (−y7,−y3,−y5,−y1)
E45 (−y1,−y5,−y3,−y7)

ones of the form

(4.1) (yLA,−yLA, yLF,−yLF, yLE,−yLE, yLD,−yLD);

that is, we can parametrize Y − by the strengths of the four left muscle groups, which
correspond to the muscle groups numbered 1, 3, 5, 7. Thus we can rewrite (4.1) as

(y1,−y1, y3,−y3, y5,−y5, y7,−y7),

which we parametrize by (y1, y3, y5, y7).

On Y − the action of O⊕Zc
2 can now be written using signed permutations, since

this action preserves polarity pairs and introduces a minus sign when members of a
polarity pair are swapped. In particular, we can identify the action of −I on Y − with
the signed permutation (−y1,−y3,−y5,−y7); that is, −I acts by multiplication by −1
on Y −, as expected. The signed permutation action of O on Y − is given in Table 3.

The subspace Y − contains the 1-dimensional (hence irreducible) subspace

Y −
0 = R{(1,−1,−1, 1,−1, 1, 1,−1)}

upon which the elements A3 and V4, the generators of the tetrahedral group, act
trivially. In addition, (O \ T,−I) acts trivially, since both O \ T and −I act as
multiplication by −1.

Let Y −
1 be the 3-dimensional invariant complement of Y −

0 in Y −; so Y − = Y −
0 ⊕

Y −
1 . It can be shown that Y −

1 is irreducible, and the action of O on Y −
1 is isomorphic

to the standard action of the cube on R3. We do this using character theory in the
appendix.

Recall that for modeling purposes we assume that the muscle state space Y −

consists of � variables for each polarity pair of muscles. Thus Y − ∼= (R�)4. As
noted previously, the minimal phase space for any of our models occurs when � = 1.
Although the analysis of possible spatiotemporal patterns reduces to the case � = 1,
when we come to consider Hopf bifurcation, it turns out that we must require � ≥
2. (Reason: equivariant Hopf bifurcation requires certain representations to appear
twice, namely, the absolutely irreducible ones, and that multiplicity occurs only when
� ≥ 2. See [8, 9].) Since all neurons, and in particular muscle motoneurons, have
high-dimensional internal dynamics, this condition poses no difficulties.
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5. Symmetry types of periodic state. At a Γ-invariant equilibrium for a Γ-
equivariant system of ODEs, the equivariant Hopf theorem [8, 9] states (under several
genericity hypotheses) that there exists a branch of small amplitude periodic states
corresponding to every C-axial subgroup of Γ × S1 acting on the center subspace at
that equilibrium. Moreover, these periodic states have spatiotemporal symmetries
given by the C-axial subgroup. A subgroup of Γ × S1 is C-axial if it is an isotropy
subgroup, and its fixed-point subspace, within the eigenspace corresponding to the
purely imaginary eigenvalues, has dimension 2.

A complete discussion of equivariant Hopf theory is beyond the scope of this
paper; details can be found in [8, 9]. To simplify the remarks we make here, we
assume that all periodic solutions have period 1. Then S1, the group of phase shift
symmetries, is parameterized from 0 to 1. We now recall two general points from Hopf
theory. First, the phase shift by 1

2
acts as multiplication by −1 on the center subspace.

Second, the kernel of the action of Γ×S1 on the center subspace is contained in every
C-axial subgroup.

In the case at hand, we saw that −I acts as multiplication by −1 on Y −. Thus the
element (−I, 1

2
) in Zc

2 ×S1 acts trivially in any Hopf bifurcation with center subspace
in Y −. It follows that every periodic state emanating from such a bifurcation has the
property that interchanging polarity pairs is the same as making a half period phase
shift. That is,

(5.1)
y2(t + 1

2 ) = y1(t), y4(t + 1
2 ) = y3(t),

y6(t + 1
2 ) = y5(t), y8(t + 1

2 ) = y7(t).

Dividing by the subgroup Z2(−I, 1
2
) leads to the standard action of O × S1 on the

center subspace. To see this, consider the epimorphism ϕ : (O ⊕ Zc
2) × S1 → O × S1

defined by

ϕ(γ, I, θ) = (γ, θ) and ϕ(γ,−I, θ) = (γ, θ + 1
2
).

The kernel of ϕ is Z2(−I, 1
2
), and the quotient group is O × S1 with its standard

action on Y −, since ϕ(γ, I, θ) = (γ, θ). It follows that to classify the relevant types of
periodic solutions, we need analyze only those periodic solutions that occur in Hopf
bifurcations associated to O acting on Y − and then add in the constraints (5.1), if
needed.

Using the decomposition of phase space into Y + and Y − components, we can
write any periodic state in the form y(t) = y+(t)+ y−(t). When we come to interpret
the motions associated with the periodic states, factoring out the Y + component will
not change these motions in any important manner since, as discussed previously,
y+(t) by itself leaves the head immobile. Moreover, near these Hopf bifurcations
the Y + components will be small compared to the Y − components. More precisely,
suppose that a Hopf bifurcation supported in Y − leads to a periodic state of amplitude
ε. Then the theory implies that generically y−(t) will be of order ε, while y+(t) will
be of order ε2. Finally, coupling (5.1) with the definitions of Y − and Y + leads to the
conclusion that y+(t) oscillates with twice the frequency of y−(t) and that

(5.2)
y−1 (t + 1

2 ) = −y−1 (t), y−3 (t + 1
2 ) = −y−3 (t),

y−5 (t + 1
2 ) = −y−5 (t), y−7 (t + 1

2 ) = −y−7 (t).

In short, when discussing small amplitude periodic solutions of the nonlinear
ODEs on muscle phase space, the system can effectively be reduced to an O-equivariant
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system of ODEs on the reduced phase space Y − whose periodic solutions also satisfy
(5.2). It is this reduced system that we study for the remainder of this paper.

Spatiotemporal symmetries defined by H and K. In Γ-equivariant systems
we can associate two subgroups H and K of Γ to each periodic state y(t). Elements
of the subgroup K fix the periodic trajectory pointwise, whereas elements of the
subgroup H fix the periodic trajectory setwise. Uniqueness of solutions with a given
initial condition implies that each element of H couples with a phase shift to fix the
periodic state.

When � ≥ 2, periodic states can have spatiotemporal symmetry group pairs
(H,K) only if H/K is cyclic and K is an isotropy subgroup [9]. We describe the
symmetries associated with periodic states obtained by Hopf bifurcation in terms of
these (H,K) pairs.

Hopf bifurcation in Y −. Next we classify the types of periodic state that
can arise as a small amplitude motion near the steady state (in which there is no
head motion). Such states can be found using the equivariant Hopf theorem [8, 9].
This theorem states that there is a possible Hopf bifurcation corresponding to each
irreducible representation of O acting on phase space. Now, the decomposition of Y −

into irreducibles can be viewed as a decomposition R4 = W0 ⊕W1, where

W0 = R{(1,−1,−1, 1)} and W1 = R{(1, 1, 1, 1), (1, 1,−1,−1), (1,−1, 1,−1)}.

Here W0 corresponds to Y −
0 , and W1 corresponds to Y −

1 . Both are irreducible. The
kernel of the action of O on W0 is T; the representation on W1 is the standard 3-
dimensional irreducible representation, in which O acts as isometries that preserve
the cube.

Hopf bifurcation via W0 leads to periodic states with H = O and K = T. Ashwin
and Podvigina [1] classify the periodic states that arise from the standard irreducible
representation of O. This is the difficult case for Hopf bifurcation. There are five
types of periodic state, whose (H,K) pairs are (D4,Z4), (DE

2 ,Z
E
2 ), (Z4,1), (S3,Z3),

and (Z3,1). Table 4 lists these pairs, together with associated information.
We sketch the derivation of the “muscle oscillation” column of this table. Consider

the pair (H,K) = (O,T) in the first row. Here T fixes the state of each muscle group
at each time. By Table 2, the group T is generated by A3 and V4. Therefore, by
Table 3, any state y(t) with the symmetry pair (O,T) must satisfy

y1(t) ≡ −y5(t), y3(t) ≡ −y7(t), y1(t) ≡ y7(t),

so that

y(t) = (u(t),−u(t),−u(t), u(t))

for a time-periodic function u. The quotient H/K is isomorphic to Z2 and is generated
(modulo K) by the element (F5, 1

2
) ∈ O × S1. This imposes the same condition

u(t + 1
2
) = −u(t) that was previously noted using the symmetry (−I, 1

2
).

For a more complicated example, consider the pair (H,K) = (Z3,1). Since K
is trivial, no components of y(t) are forced to be synchronous. The subgroup Z3

is generated by V1, whose action on R4 fixes y1 and cycles (y3, y5,−y7). The only
possible pattern of phase shifts here is (0, 1

3
δ, 2

3
δ), where δ = ±1. So

(y3(t), y5(t), y7(t)) = (u(t), u(t + 1
3
δ),−u(t + 2

3
δ)),
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Table 4

Conjugacy classes of Hopf-type states, and the associated patterns of muscle activation, where
δ = ±1, u(t + 1

2
) = −u(t), z(t + 1

2
) = −z(t), v(t + 1

6
) = −v(t). Column “#” gives a series of

reference numbers used for identification in the text.

Type H generators K generators Muscle oscillation #

(O,T) V4, F5 V4, A3 (u(t),−u(t),−u(t), u(t)) 1

(S3,Z3) V1, E15 V1 (u(t), z(t), z(t),−z(t)) 2
V3, E14 V3 (z(t), u(t),−z(t), z(t)) 3
V5, E16 V5 (z(t),−z(t), u(t), z(t))
V7, E45 V7 (−z(t), z(t), z(t), u(t)) 4

(DE
2 ,ZE

2 ) E16, E15 E16 (u(t), u(t), 0, 0) 5
E14, E13 E14 (u(t), 0, u(t), 0)
E45, E35 E45 (0, u(t),−u(t), 0) 6
E13, E14 E13 (0, u(t), 0, u(t)) 7
E15, E16 E15 (0, 0, u(t), u(t))
E35, E45 E35 (u(t), 0, 0,−u(t)) 8

(Z4,1) F1 I (u(t), u(t + 1
4
δ), u(t + 3

4
δ), u(t + 1

2
δ)) 9

F3 I (u(t), u(t), u(t + 1
4
δ), u(t + 1

4
δ)) 10

F5 I (u(t), u(t + 1
4
δ), u(t), u(t + 1

4
δ))

(Z3,1) V1 I (v(t), u(t), u(t + 1
3
δ),−u(t + 2

3
δ)) 11

V3 I (u(t), v(t),−u(t + 1
3
δ), u(t + 2

3
δ)) 12

V5 I (u(t),−u(t + 2
3
δ), v(t), u(t + 1

3
δ))

V7 I (u(t),−u(t + 1
3
δ),−u(t + 2

3
δ), v(t)) 13

(D4,Z4) F1, A2 F1 (u(t), u(t), u(t), u(t)) 14
F3, A3 F3 (u(t),−u(t), u(t),−u(t)) 15
F5, A1 F5 (u(t), u(t),−u(t),−u(t))

while y1(t) = v(t) is independent of these. However, the same phase shifts apply to
y1, so we must have v(t) ≡ v(t + 1

3
δ). Moreover, like every periodic state arising by

Hopf bifurcation, v also satisfies v(t + 1
2
) = −v(t). These observations lead to the

condition v(t + 1
6 ) = −v(t) in the table.

Note that for phase shifts other than 0, 1
2

the states come in pairs, with plus or
minus the stated phase shift. These pairs are identical except for time-reversal. For a
given imaginary eigenspace, either one of these states occurs, or the other does, but
not both. See [9, pp. 112–114]. (When H/K ∼= Zm with m = 5 or m ≥ 7 the same
pair H/K can correspond to several distinct phase shifts, even taking the sign into
account. For example, the Z5 case can have phase shift 2

5 as well as 1
5 . However,

these cases do not occur in the group O.)
Table 4 lists (up to conjugacy) five small amplitude periodic state types that

can occur by Hopf bifurcation supported by the standard 3-dimensional irreducible
representation of O, plus a sixth supported by the 1-dimensional representation. We
interpret these motions in terms of our caricature of the muscle groups. We will see
that all six cases lead to repetitive motions that seem quite reasonable.

Conjugate states are determined by O/(N(H) ∩ N(K)). We briefly dis-
cuss the technical issue: states whose associated subgroups are conjugate.

Suppose that x(t) is a periodic state with spatiotemporal symmetry group pair
(H,K). Let γ ∈ Γ. Then γx(t) is a periodic state with spatiotemporal symmetry
group pair (H ′,K ′), where

H ′ = γHγ−1 and K ′ = γKγ−1.
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Thus the symmetry group pairs are identical if and only if γ ∈ N(H) ∩ N(K). The
number of conjugate periodic states with different spatiotemporal symmetries is

(5.3)
|Γ|

|N(H) ∩N(K)| .

When we specialize to Γ = O, the number of conjugates can be found by computing
the normalizers of the appropriate subgroups. The normalizers are found in Table 2.
In particular, N(O) ∩ N(T) = O, N(S3) ∩ N(Z3) = S3, N(DE

2 ) ∩ N(ZE
2 ) = DE

2 ,
N(Z4) = D4, N(Z3) = S3, and N(D4) ∩ N(Z4) = D4. It follows that the number
of conjugacies of the six solution types are 1, 4, 6, 3, 4, 3, respectively, yielding 21
possibilities.

6. Head motions. The standard equivariant theory classifies solution types up
to conjugacy by a symmetry element. However, conjugate states are important here,
because, with one exception, the action of O on the muscle space network does not
relate directly to motions of the head in physical space R3, and that exception is
the bilateral (left-right) symmetry of the body, which is realized in our network by
E45. So, in general, conjugate symmetry groups can correspond to head motions that
are substantially different. Counting conjugates, as we have in Table 4, leads to 21
motions to describe—28 if we include time-reversals for ± phase shifts. If we consider
solution types up to time-reversibility and bilateral symmetry, then there are 15 types
to consider. The final column (#) in Table 4 is a reference number which we will use
to identify the various patterns of oscillation.

Description of motions listed in Table 4. To explain the derivation of Ta-
ble 4, we take each conjugacy class in turn and visualize the corresponding periodic
state in the following manner. We assume, for simplicity, a 2-dimensional description
in which the head is modeled by a circle, as in Figure 6. The position of the neck is
identified with the center of this circle. The orientation of the nose (under rotation
about the neck axis) is specified by a vector based at the center of the circle with the
appropriate orientation.

We decompose the head motion into two distinct components. The spatial motion
of the head is obtained by summing the six vectors representing the muscle groups
of the central dial. As time t varies through a cycle, the resultant vector describes
a closed curve in the horizontal plane, schematically representing the motion of the
center of the circle that represents the head position.

Rotations of the neck (caused by muscle groups LA, RA) are represented as
rotations of the circle about its instantaneous center. These rotations are assumed
to act independently of the translations of the circle. This assumption is invalid
in genuine 3-dimensional motion, but it provides an adequate visualization of small
amplitude motions, bearing in mind that Figure 6 is itself a caricature.

Next, we choose specific periodic functions u, z, v with the correct symmetry prop-
erties. For the figures drawn here we take

u(t) = sin(2πt) + 0.2 sin(10πt),

z(t) = 0.75 sin(2πt) + 0.03 sin(10πt),

v(t) = 0.3 sin(6πt).

Then we use Table 4 to compute the six vectors of the central dial and the rotation
angle of the nose. We denote the center of the circle (head) as a function of time t by
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Fig. 8. Motion for pattern 1 (O,T).

Fig. 9. Motion for patterns 2–4 (S3,Z3).

the curve C(t). For a periodic state y(t) = (y1(t), y3(t), y5(t), y7(t)) the closed curve
C(t) has the form

(6.1)
C1(t) = −2y7(t) − y3(t) − y5(t),

C2(t) =
√

3(y3(t) − y5(t)).

The term sin(10πt) is included to remove some artificial regularities from the pictures,
such as motions of the head in a perfect circle. The vector representing the orientation
of the nose is drawn at times n

12 for 0 ≤ n ≤ 11, as a vector based on the appropriate
point of the curve C, of fixed length.

This representation involves some arbitrary choices, but is adequate for our present
needs. When interpreting the figures, note that C may reduce to a line segment (de-
scribed twice) or even a single point. Also, the segments representing the nose may
overlap each other or overlap C. These ambiguities can be resolved by creating a
movie.

(O,T):. Here the muscles of the central dial follow the pattern y3(t) = yLF(t) =
−u(t), y5(t) = yLE(t) = −u(t), y7(t) = yLD(t) = u(t). From (6.1) we see that the
curve C is a single point, and the center of the head does not move. The nontrivial
head motion comes from yLA and yRA, which swivel the head about its vertical axis.
The overall invariance under (−I, 1

2
) implies that this swivel motion is the same as

its left-right reflection, up to a half-period phase shift. This description corresponds
exactly, under the assumptions of the model, to the usual “shake the head” motion
indicating the word “no.” The schematic visualization of this motion is shown in
Figure 8. Here the nose vector oscillates from left to right to form the fan shape
illustrated.

(S3,Z3):. If we take H = 〈V1, E15〉 and K = 〈V1〉, then this case turns out to
be exactly like the previous one, except that the time series of the direct muscled
motoneurons u(t) is unequal to the time series of the central dial muscle motoneurons
z(t). (Here angle brackets indicate the subgroup generated by their contents.) Since
the z(t) motions cancel out, the motion again looks like “no” and is reproduced as
the first image in Figure 9.
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Fig. 10. Motion for oscillation patterns 5–8 (DE
2 ,ZE

2 ).

Fig. 11. Motion for patterns 9–10 (Z4,1).

The patterns for the other two conjugates of this motion can be deduced in a
similar manner and are visualized in Figure 9. In pattern 3 the head is inclined
alternately down to the left and up to the right, while the nose oscillates from side to
side. In pattern 4, the head tilts alternately to left and right while the nose oscillates
from side to side.

(DE
2 ,Z

E
2 ):. First, we consider the conjugate state pattern 5, for which K = 〈E16〉,

H = 〈E16, E15〉, and y(t) = (u(t), u(t), 0, 0). The phase shift action of H/K implies
that u(t + 1

2
) = −u(t). Now the muscle groups LD, RD, LE, RF are inactive, LA

and LF are in phase with each other, and RA and RE are half a period out of phase
with LA and LF. The head “nods” down and to the left, then up and to the right,
in roughly the direction of the muscle pair LF, RE, with a twist to the right as the
head moves down, a twist to the left as it moves up. Another conjugate state has
K = 〈E14〉 and H = 〈E14, E13〉. This state is just the left/right image of the previous
one.

Second, we consider pattern 6, where K = 〈E45〉 and H = 〈E45, E35〉. Such
a state has yLA = yRA = yLD = yRD = 0. The variables yLF and yLE are half a
period out of phase, and the push-pull constraint implies that yRF is in synchrony
with yLF, and similarly yRE is in synchrony with yLE. There is thus an overall left-
right symmetry, and also a front-back symmetry when combined with a half period
phase shift. This is precisely the pattern of movement observed when nodding the
head (indicating “yes”). Motions associated with patterns 7 and 8 are found similarly.
Note that pattern 8 also corresponds to a standard head motion: one where the head
rotates left as it tilts left and then rotates right as it tilts right. See Figure 10 for
diagrams of patterns 5–8.

(Z4,1):. We take H = 〈F1〉. From Table 3, and noting that F1 induces a phase
shift of ± 1

4 , we obtain the pattern listed in Table 4. (We also use the (−I, 1
2
) symmetry

of all periodic states.) The motions are visualized in Figure 11.
In pattern 9, the head moves in an ellipse with long axis pointing towards the

front. The nose oscillates from side to side, moving outwards at the front and inwards
at the back. There are two conjugates in pattern 10 that are mirror images of each
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other. The motion is much as above, but the ellipse is oriented along a different axis.

(Z3,1):. Take H = 〈V1〉. This leads to the pattern stated in Table 4. Bearing
in mind the (−I, 1

2
) symmetry, successive phases around the central dial differ by

1
6 . The head rotates in a “circle” (strictly, a closed loop with hexagonal symmetry),
combined with a swivel. Choice of plus or minus phase shifts produce clockwise or
counterclockwise rotations. Conjugates here replace V1 by V3, V5, V7, noting that V3

and V5 are mirror images. The motions are visualized in Figure 12. In pattern 11
the head rotates in a rounded hexagonal curve, while the nose oscillates slightly. The
other two patterns are more complicated and best described using the figure.

Fig. 12. Motion for patterns 11–13 (Z3,1).

(D4,Z4):. We choose H = 〈F3, A3〉, K = 〈F3〉, and y(t) = (u(t),−u(t), u(t),−u(t)).
The conjugates are as shown in Table 4. The motions are visualized in Figure 13. In
each case the head moves in one of three planes (so that C reduces to a line segment),
while the nose oscillates from side to side. In pattern 14 the head moves left and right
while the nose aims at a fixed central point.

Fig. 13. Motion for patterns 14–15 (D4,Z4).

7. Conclusions. In sections 2–4 we derived the octahedral symmetry of the
canal-neck projection first discovered by McCollum and Boyle [12]. After conjectur-
ing that the symmetry of the network of neck muscle motoneurons also has octahedral
symmetry, we classified the spatiotemporal symmetry types of small amplitude peri-
odic solutions that can be obtained by Hopf bifurcation. Finally, in section 6, we used
the caricature of muscle group actions developed in section 2 to suggest the form that
head motions might take.

On a cautionary note, the symmetries of neuronal networks need not reflect sym-
metries in the physical world. This mismatch in symmetry happens in the network
associated with orientation-tuned neurons in the primary visual cortex [2] and is also
the case in the vestibular system. Thus, periodic solutions that are symmetrically
related in the network need not be (obviously) related in physical space (actual head
movements). We believe that the issue of network structure not being directly related
to physical world structure will be an important issue in many applications.
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The next steps in the program we have described are to include in the model
the (symmetry) structure of other projections in the vestibular system, for example
the uvula-nodulus [7], to include the semicircular canals, and to make more direct
contact with the biology. Two questions arise in this last step: Do the head motions
we describe play some special role in the context of general periodic head motions
(that is, do these motions appear frequently in animals), and can the classification
of spatiotemporal symmetries of small amplitude motions near an upright head give
a method for classifying types of head tremor? Our classification, which is based on
the symmetries of a network that has been abstracted from the neurobiology of the
cat, provides a prediction for likely types of periodic head motions, much like the
predictions that were implicit in our previous work on animal gaits [10, 11].

There may exist periodic states that emanate from many types of bifurcation;
however, in this study we classify only those types that emanate from a Hopf bifur-
cation.

Appendix: Characters of the octahedral group. The most efficient way to
decompose the space Y − into irreducible representations of O or O ⊕ Zc

2 is to use
character theory; see, for example, Curtis and Reiner [6]. Recall that for a given
representation of a group Γ, the corresponding character χ is the function χ : Γ → C
for which χ(γ) is the trace of the matrix that represents the action of γ ∈ Γ. We
assume familiarity with character theory.

First, observe that any representation (space) U for O naturally determines two
distinct representations U+, U− of O⊕Zc

2 with the same underlying vector space. In
both, the elements of O have the same action as they do on U . The action of −I on
U+ is by the identity, whereas that on U− is by minus the identity. If U is irreducible
for the action of O, then the U± are irreducible for the action of O ⊕ Zc

2.

It is easy to prove that every irreducible for O ⊕ Zc
2 arises in this manner, as

follows. Every irreducible representation of O is absolutely irreducible, so by Schur’s
lemma the only commuting linear maps are scalar multiples of the identity. Since −I
commutes with O and (−I)2 = I, it follows that −I must act as plus or minus the
identity. The rest is straightforward.

Therefore we can read off the irreducible representations of O⊕Zc
2 from those of

O. It is well known (see, for example, Curtis and Reiner [6, pp. 331–333]) that O has
five distinct irreducible representations: two of dimension 1, one of dimension 2, and
two of dimension 3.

We can describe the irreducible representations of O as follows:

• ρ0: dimension 1; trivial action.
• ρ1: dimension 1; T acts trivially, O \ T acts by −1.
• ρ2: dimension 2; kernel is the Klein four-group DA

2 , modulo which O acts in
the standard representation of D3 on R2.

• ρ3: dimension 3; standard action of O as isometries of R3 preserving the
cube.

• ρ4: dimension 3; nonstandard action on R3 in which T acts as rotations but
O\T acts as rotations composed with minus the identity. In fact, ρ4 = ρ1⊗ρ3.
This representation is also isomorphic to the standard action of S4 on the
subspace of R4 consisting of points whose coordinates sum to 0.

The conjugacy classes of O are also five in number. In the notation of Table 3 they
are

{I}, {Aj}, {Vj}, {Fj}, {Ej}.
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The character table for O is shown in Table 5, and is derived in Curtis and
Reiner [6, pp. 332–333]. It is easy to compute the character χ of the O-action described
in Table 3, which is shown in Table 5 in the same format. In particular, we see that
χ = ρ1 + ρ3. Since characters determine representations uniquely, and direct sums of
representations correspond to sums of characters, we see that Y − decomposes into two
irreducible components, the nontrivial 1-dimensional representation and the standard
3-dimensional representation. This is what we claimed in section 4.

Table 5

Character table for representations of O.

{I} {Aj} {Vj} {Fj} {Ej}
ρ0 1 1 1 1 1
ρ1 1 1 1 -1 -1
ρ2 2 2 -1 0 0
ρ3 3 -1 0 1 -1
ρ4 3 -1 0 -1 1

χ 4 0 1 0 -2
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A METHOD TO COMPUTE STATISTICS OF LARGE,
NOISE-INDUCED PERTURBATIONS OF NONLINEAR

SCHRÖDINGER SOLITONS∗
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Abstract. We demonstrate in detail the application of importance sampling to the numer-
ical simulation of large noise-induced perturbations in soliton-based optical transmission systems
governed by the nonlinear Schrödinger equation. The method allows one to concentrate numerical
Monte Carlo simulations around the noise realizations that are most likely to produce the large pulse
deformations connected with errors, and yields computational speedups of several orders of magni-
tude over standard Monte Carlo simulations. We demonstrate the method by using it to calculate
the probability density functions associated with pulse amplitude, frequency, and timing fluctuations
in a prototypical soliton-based communication system.

Key words. nonlinear Schrödinger equation, optical fibers, solitons, noise, Monte Carlo simu-
lations, importance sampling

AMS subject classifications. 35Q51m, 35Q55, 65C20, 65C05, 78A40

DOI. 10.1137/060650775

1. Introduction. The development of high-bit-rate data transmission over op-
tical fibers is one of the major technological achievements of the late 20th century.
The information-carrying capacity of such systems has increased by several orders
of magnitude over the past quarter-century. There are limits imposed on capacities,
however, by various transmission impairments that distort and degrade the signal in
a number of ways [1, 2]. One common source of impairments in lightwave communi-
cation systems is the amplified spontaneous emission (ASE) noise generated by the
erbium-doped fiber amplifiers (EDFAs) used to compensate loss in the fiber [1, 2].
This additive noise perturbs the propagating pulses, producing amplitude, frequency,
timing, and phase jitter, which can then lead to bit errors [3, 4, 5].

Since ASE noise is a stochastic phenomenon, Monte Carlo simulations can be used
to determine its effects on a system. The direct calculation of bit error rates with
standard Monte Carlo simulations is impossible, however. Because data transmission
rates are so high (currently, 10 Gb/s or more per channel, with tens of channels usually
present per fiber) and errors must be handled by much slower electronic equipment,
error rates are required to be very small, typically one error per trillion bits or lower.
As a result, an exceedingly large number of Monte Carlo realizations would be needed
to observe even a single transmission error, and even more would be required to obtain
reliable error estimates.
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To overcome this limitation, one approximation is to calculate numerically the
variances of pulse amplitude and/or timing and then to extrapolate the results into
the tails of the probability density function (pdf) by assuming it to be Gaussian.
It is clear, however, that this procedure is inadequate, since nonlinearity and pulse
interactions can both contribute to make the resulting distributions non-Gaussian
[6, 7, 8]. Nonlinearity arises from several sources, such as self-phase modulation due
to the fiber’s nonlinear refractive index [9, 10] as well as the nonlinear conversion of
optical energy into electrical energy by the photodetector [8].

Various techniques have recently been proposed to address the difficulty in cal-
culating accurate statistics for rare events [8, 11, 12, 13, 14, 15, 16]. One promising
approach is a technique known as importance sampling (IS) [17, 18]. In general, IS
works by concentrating Monte Carlo samples on those configurations that are most
likely to lead to transmission errors, thus significantly speeding up the simulations.
Previously, we have successfully applied this technique to the direct simulation of
transmission impairments caused by polarization-mode dispersion [14, 15]. More re-
cently, we have presented numerical results demonstrating that IS can also be applied
to simulations of ASE-induced transmission impairments [16]. The purpose of this
paper is to describe in detail the methods used to produce these numerical simu-
lations. For simplicity, we consider the case of a soliton-based transmission system
(where, in the absence of noise, the pulse shape remains fixed), but it is anticipated
that the technique can be extended to more realistic systems and more general trans-
mission formats. The advantages of the method are substantial, allowing an increase
in efficiency of several orders of magnitude over standard Monte Carlo simulations.

2. Solitons and amplifier noise. The propagation of pulses in an optical fiber
with periodically spaced amplification is governed by the nonlinear Schrödinger (NLS)
equation [9, 10, 16], which in dimensionless units is

(2.1) i
∂u

∂z
+

1

2

∂2u

∂t2
+ |u|2u = i

Na∑
n=1

δ(z − nza)fn(t).

Here z and t are distance and retarded time, u is the pulse’s electromagnetic field
envelope, Na is the number of amplifiers, and za is the amplifier spacing. (The
nondimensionalization and our choice of units are described in detail in Appendix A.)
In this equation, the periodic power variations due to fiber loss and amplification have
been averaged out [9].

The term fn(t) is the noise added at each amplifier; when the pulse reaches
an amplifier at z = nza (where za is the dimensionless amplifier spacing and n =
1, 2, . . . , Na, with Na being the total number of amplifiers in the transmission line),
a small amount of noise fn(t) is added to u: u(nz+

a , t) = u(nz−a , t) + fn(t), as seen
by integrating (2.1) across z = nza. (Recall that we have averaged out loss and gain;
this means that the noise is the only effect remaining at the amplifiers.) The amplifier
noise fn(t) can be modeled as classical zero-mean white noise:

〈fn(t)〉 = 0,(2.2a)

〈fm(t)fn(t′)〉 = 0,(2.2b)

〈fm(t)f†
n(t′)〉 = σ2δmnδ(t− t′),(2.2c)

where 〈 · 〉 denotes ensemble average, the superscript † denotes the complex conjugate,
δmn and δ(t− t′) are the Kronecker and Dirac deltas, respectively, and σ2 is a param-
eter describing the noise power. Technically speaking, (2.2c) is not mathematically
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correct, since as written it implies an infinite noise bandwidth and thus produces in-
finite noise power. Any physical system (or any numerical computation) necessarily
has a finite noise bandwidth [19]. When calculating amplitude, frequency, and timing
fluctuations, however, the specific value of the noise bandwidth is unimportant if it
is larger than the soliton bandwidth (this is the case in practice), because only those
components of the noise within the same spectral range as the soliton will affect these
soliton parameters.

Without the noise term, (2.1) admits the well-known soliton solution

(2.3a) us(z, t) = u0(z, t) e
iΘ(z,t),

with

(2.3b) u0(z, t) = A sech[A(t− T (z))], Θ(z, t) = Ω t + Φ(z),

where T (z) = T0 + Ωz and Φ(z) = Φ0 + 1
2 (A2 − Ω2)z and where the four soliton

parameters A, Ω, T0, and Φ0 are constant. When noise is added at each amplifier,
part of the noise is incorporated into the soliton, where it produces small changes
of the soliton parameters [9, 10]. The rest of the noise propagates along with the
perturbed soliton. This process is repeated at each amplifier, resulting in a random
walk of the four quantities A, Ω, T , and Φ [4, 5]. For typical system configurations,
the noise amplitude at each amplifier is small, and thus the noise-induced changes
of the soliton parameters at each individual amplifier are also usually small. In rare
cases, however, these individual contributions combine to produce large deviations,
resulting in potential transmission errors. Because these large pulse deformations are
rare, estimating their probability is difficult.

2.1. Soliton perturbation theory. Soliton perturbation theory (SPT) is a
standard method that has been used to approximate the effect of noise upon prop-
agating pulses (e.g., see [9, 20, 21, 22, 23]). Rather than using it directly to obtain
an analytical approximation to the perturbed pulse, however, here we will use it only
as a tool to guide numerical simulations. The key information that is needed to do
this comes from the dependence of the soliton solution, equation (2.3), upon the pa-
rameters A, Ω, T0, and Φ0. Since any value of these parameters is permitted, no
resistance is encountered if the noise at an amplifier changes one of them. This lack
of resistance allows large variations to build up after many amplifiers. Furthermore,
frequency fluctuations change the group velocity of the pulse, and subsequent propa-
gation integrates this velocity shift to produce a large timing shift (as reflected in the
dependence of T on Ω).

The small noise-induced changes of the soliton parameters at a single amplifier
can be estimated by decomposing u(z, t) into its soliton and radiative (nonsoliton)
components,

(2.4) u(z, t) = [u0(z, t) + v(z, t)] eiΘ,

and by linearizing the NLS equation (2.1) around the soliton solution (2.3):

(2.5)
∂v

∂z
= Lv, L v :=

i

2

∂2v

∂t2
− i

2
A2v + 2i|u0|2v + iu2

0 v
†.

Importantly, the linearized NLS operator L is non–self-adjoint and nonnormal, and
its generalized nullspace admits four modes (localized eigenfunctions) vk(z, t) (k =
A,Ω, T,Φ) satisfying [9, 10, 24]

(2.6) LvA = AvΦ, L vΩ = vT , L vT = 0, L vΦ = 0.
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vΦ v
T

vΩ v
A

Fig. 1. The real (solid) and imaginary (dashed) parts of the four neutral modes of the linearized
NLS equation associated with the soliton solution (2.3).

Explicitly, these four modes are

vA(z, t) =
1

A

∂

∂t
[(t− T )u0],(2.7a)

vΩ(z, t) = i(t− T )u0,(2.7b)

vT (z, t) = −∂u0

∂t
,(2.7c)

vΦ(z, t) = iu0.(2.7d)

Each of these linear modes is associated with a continuous symmetry of the NLS
equation [23]: invariance with respect to scaling, Galilean boosts, translations, and
phase rotations, respectively. Note also from (2.6) that the timing and phase modes
are actual eigenfunctions, whereas the amplitude and frequency modes are generalized
eigenfunctions. This is related to two of these symmetries giving rise to modified con-
servation laws, which are directly related to a change of the pulse frequency producing
a subsequent change in its velocity or a change of the pulse amplitude producing a
change in its phase upon propagation [23]. These four modes, shown in Figure 1, are
also associated with changes of the soliton parameters:1

∂us

∂A
= vA eiΘ,(2.8a)

∂us

∂Ω
= vΩ eiΘ + TvΦ eiΘ,(2.8b)

∂us

∂T
= vT eiΘ,(2.8c)

∂us

∂Φ
= vΦ eiΘ.(2.8d)

In fact, removing secular terms from the forced linearized NLS equation obtained by
adding the right-hand side of (2.1) to (2.5), one finds the local changes of the soliton
parameters at the nth amplifier produced by the noise fn(t) [9, 10]:

ΔAn = Re
∫
v†A(z, t)e−iΘfn(t) dt,(2.9a)

ΔΩn = Re
∫
v†Ω(z, t)e−iΘfn(t) dt,(2.9b)

ΔTn = Re
∫
v†T (z, t)e−iΘfn(t) dt,(2.9c)

ΔΦn = Re
∫

(vΦ(z, t) − T vΩ(z, t))†e−iΘfn(t) dt,(2.9d)

1Note that the derivatives on the left-hand side of (2.8) are taken with respect to the variables
A, Ω, T , and Φ, with the other three variables kept constant. A different choice of parametrization
for the soliton solution in (2.3) would lead to different results.
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where the integrals are from −∞ to ∞. The functions vk(z, t) are the modes of the
adjoint linearized NLS operator, defined by Ladjv = − i

2∂
2
t v+ i

2A
2v−2i|u0|2v+ iu2

0 v
†

and the inner product 〈v, v〉 = Re
∫
v†v dt [10]. They are

(2.10) vA = −ivΦ, vΩ = ivT /A, vT = ivΩ/A, vΦ = ivA.

(The adjoint modes are easily obtained from those in (2.7), noting that Ladj(v) =
iL(iv).) Together, the modes of L and Ladj form a biorthonormal basis of the tangent
space corresponding to infinitesimal changes in the soliton parameters at a given
amplifier,2 and the source terms in (2.9) represent the projection of the noise onto
this basis.

2.2. Noise-induced amplitude, frequency, timing, and phase jitter.
Equations (2.9) establish a direct projection from the infinite-dimensional noise which
is added at each amplifier to a discrete random walk for the four soliton parameters.
In particular, the equations can be easily integrated, including the unperturbed evo-
lution in between amplifiers, to obtain the final values of amplitude A, frequency Ω,
timing T , and phase Φ:

Aout = A0 +

Na∑
n=1

ΔAn,(2.11a)

Ωout = Ω0 +

Na∑
n=1

ΔΩn,(2.11b)

Tout = T0 + NazaΩ0 +

Na∑
n=1

ΔTn +

Na∑
n=1

(Na + 1 − n) zaΔΩn,(2.11c)

Φout = Φ0 +
1

2
Naza(A

2
0 − Ω2

0) +

Na∑
n=1

ΔΦn +

Na∑
n=1

(Na + 1 − n)za(A0ΔAn − Ω0ΔΩn)

+
1

2

Na∑
n=1

Na∑
m=1

[Na − max(n,m)]za(ΔAnΔAm − ΔΩnΔΩm).(2.11d)

The fourth term in (2.11c) and the fourth and fifth terms in (2.11d) arise from the
above-mentioned Galilean invariance of the NLS equation. Whereas amplitude and
timing jitter are the most important failure mechanisms for communication lines using
standard on-off keying receivers, phase fluctuations are of critical importance when
the receivers are phase-sensitive, as is the case for phase-shift or differential phase-shift
keying [25].

Owing to (2.2) and (2.9), ΔAn, ΔTn, ΔΩn, and ΔΦn are Gaussian-distributed
random variables at each amplifier, with variances

〈ΔA2
n+1〉 = Anσ

2,(2.12a)

〈ΔΩ2
n+1〉 = σ2An/3,(2.12b)

〈ΔT 2
n+1〉 = π2σ2/(12A3

n),(2.12c)

〈ΔΦ2
n+1〉 = (1 + π2/12 + T 2

n)σ2/3An,(2.12d)

2Note that, as usual, a true linear mode of the linearized NLS operator corresponds to a gener-
alized mode of the adjoint operator, and vice-versa.
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respectively. Note that all of these variances depend on the value of the soliton
amplitude immediately prior to arrival at the amplifier, and that the phase variance
depends on the soliton position; this is because the time-dependent term in the phase
in (2.3b) is not defined to be zero at t = T (z). For small deviations of amplitude
and position, one can approximate these variances with their initial values (assuming
without loss of generality that the initial position is zero):
(2.13)
σ2
A := A0σ

2, σ2
Ω := σ2A0/3, σ2

T := π2σ2/(12A3
0), σ2

Φ := (1 + π2/12)σ2/3A0.

The variances of the final soliton amplitude, frequency, and position timing are then
easily computed to be

〈A2
out〉 � Naσ

2
A,(2.14a)

〈Ω2
out〉 � Naσ

2
Ω,(2.14b)

〈T 2
out〉 � Naσ

2
T + Na(Na + 1)(2Na + 1)σ2

Ω z2
a/6,(2.14c)

〈Φ2
out〉 � Naσ

2
Φ + Na(Na + 1)(2Na + 1)σ2

A z2
a/6,(2.14d)

respectively. The cubic dependence on Na of the growth of 〈T 2
out〉 and 〈Φ2

out〉 is a
discrete analogue to the cubic dependence on distance in a distributed noise approx-
imation, used by Gordon and Haus and by Gordon and Mollenauer, respectively, to
derive upper limits for the error-free propagation distance of a soliton transmission
system [4, 5].

These calculations, however, are not sufficient to give an accurate estimate of
noise-induced transmission penalties, for several reasons. First, the variances in (2.14)
are correct only for small deviations of the pulse amplitude. Second, even though the
noise is Gaussian-distributed, the full noise-induced changes of the soliton parameters
are not necessarily Gaussian. In particular, the variance of each amplitude shift
depends on the previous value of the amplitude, which causes the distribution of A
to deviate significantly from Gaussian. A Gaussian approximation will therefore be
valid only in the limit of exceedingly small amplitude shifts, and quite possibly only
in the core region of the pdf and not in the tails. The timing T and frequency Ω also
deviate very slightly from Gaussian due to the local dependence of their variances
on A (cf. (2.12); see also [13]). Since T , Ω, and Φ have no influence on the random
walk of A (or on T , in the case of the phase), however, their statistical behavior
is expected to be dominated by the mean value of A. Finally, even if the noise-
induced changes of the soliton parameters were approximately Gaussian-distributed,
calculating the probability densities in the tails from the (analytically or numerically
obtained) variances would require an exponential extrapolation, and any errors or
uncertainties would be magnified correspondingly.

3. Importance sampling. The main idea behind importance sampling is to
bias the probability distribution functions used to generate the random Monte Carlo
samples so that errors occur more frequently than would be the case otherwise [17, 18].
Before we delve into the implementation of importance sampling for amplifier noise,
let us briefly present the basic ideas in a general setting.

Let X denote a collection of random variables (RVs) identifying a particular
system realization. (In our case, X will be a vector or matrix which determines the
noise at all the amplifiers.) Consider a measurable quantity y(X) associated with each
system configuration and, therefore, with each value of X. (In our case, y(X) will be
the final pulse amplitude or timing.) Suppose that we are interested in calculating
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the probability P that y(X) falls in some prescribed range. This probability can
be represented as the expectation value of an indicator function I(y(X)) such that
I(y) = 1 if the random variable y falls in the prescribed range and I(y) = 0 otherwise.
That is, the probability P is represented by the multidimensional integral

(3.1) P =

∫
I(y(x))pX(x) dx = E[I(y(X))],

where pX(x) is the joint pdf of the RVs X, E[ · ] denotes the expectation value with
respect to the distribution pX(x), and the integral is over the entire configuration
space. In many cases of interest, a direct evaluation of the integral in (3.1) is impos-
sible. One can then resort to Monte Carlo simulations and write an estimator P̂ for
P , replacing the integral in (3.1) by

(3.2) P̂mc =
1

M

M∑
m=1

I(y(Xm)),

where M is the total number of Monte Carlo samples, and where each Xm is a random
sample drawn from pX(x). Equation (3.2) simply expresses the relative number of
samples falling in the range of interest. If one is interested in low probability events,
however (that is, if P � 1), an impractically large number of samples is usually
necessary in order to see even a single event, and an even larger number is required
in order to obtain an accurate estimate.

When the main contribution to P comes from regions of sample space where
pX(x) is small, IS can be used to speed up the simulations. The idea is first to rewrite
the the probability P in (3.1) as

(3.3) P =

∫
I(y(X)) r(x)p∗(x) dx = E

∗[I(y(X))r(X)],

where E
∗[ · ] denotes the expectation value with respect to the biasing distribution

p∗(x), and where r(x) = pX(x)/p∗(x) is called the likelihood ratio [17]. As before,
we then estimate the corresponding integral via Monte Carlo simulations; that is, we
write an importance-sampled Monte Carlo estimate for P as

(3.4) P̂is =
1

M

M∑
m=1

I(y(X∗
m))r(X∗

m),

where now the samples X∗
m are drawn according to the distribution p∗(x). By de-

sign, the estimator P̂is is unbiased; i.e., E
∗[P̂is] = P . If p∗(x) ≡ pX(x) (unbiased

simulations), r(x) = 1 and (3.4) agrees with (3.2) (i.e., one recovers the standard
Monte Carlo method). The use of a biasing pdf, however, allows the desired regions
of sample space to be visited much more frequently. At the same time, the likelihood
ratio automatically adjusts each contribution so that all of the different realizations
add properly to give a correct final estimate.

The crucial step when trying to apply IS is to determine a proper choice of
the biasing distribution p∗(x) in order to reduce the variance of the estimator P̂is.
Naturally, not all biasing distributions are appropriate for accomplishing this. One
might think that the simplest choice is to increase the overall noise variance, in an
attempt to increase the probability of generating errors. It is well-known, however,
that this biasing method (which is usually referred to as variance scaling) is effective
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only in low-dimensional systems [17]. In general, in order for IS to be effective, p∗(x)
should concentrate the Monte Carlo samples near the regions that are most likely to
generate rare events of interest, which in our case means determining the most likely
noise instantiations at each amplifier which produce large pulse amplitude or timing
variations at the fiber output. The proper choice of biasing distributions when one is
interested in amplitude and timing jitter will be discussed in the next section.

If one seeks to reconstruct a broad region of the pdf for the quantity of interest,
no single choice of biasing distribution can be expected to capture efficiently all the
regions of sample space that give rise to the events of interest. In this case, several
different biasing distributions p∗q(x) can be used and their results combined using a
method known as multiple importance sampling [26, 27, 28]. With this technique, a
weight wq(x) is associated with each biasing distribution. An importance-sampled
estimator for P is then written as

(3.5a) P̂mis =
1

Q

Q∑
q=1

1

Mq

Mq∑
m=1

wq(X
∗
mq)I(y(X

∗
mq))rq(X

∗
mq),

where Q is the total number of biasing distributions, Mq is the number of samples
drawn from p∗q(x), X∗

mq is the mth such sample, and rq(x) = pX(x)/p∗q(x). Several

strategies are possible for selecting the weights; the estimator P̂ will be unbiased as
long as

∑Q
q=1 wq(x) = 1 for all x. A particularly simple and effective choice is the

balance heuristic [26]:

(3.5b) wq(x) =
Mqp

∗
q(x)∑Q

q′=1 Mq′p∗q′(x)
.

Note that Mqp
∗
q(x) is proportional to the expected number of hits from the qth dis-

tribution. Thus, the weight of a sample with the balance heuristic is given by the
likelihood of realizing that sample with the qth distribution relative to the total like-
lihood of realizing the same sample with all distributions.

4. IS for amplitude, frequency, timing, and phase jitter. We now turn
our attention to the application of IS to Monte Carlo simulations of noise-induced
amplitude, frequency, timing, and phase jitter. As explained earlier, in order for IS
to be effective we need to bias the simulations towards the events that are most likely
to produce the rare events of interest. Therefore, the strategy to bias the simulations
toward predetermined target values of each soliton parameter consists of two logically
distinct steps: First, we must determine how to bias the noise at each amplifier in
order to obtain a specified change of amplitude, frequency, timing, and/or phase.
Second, we must determine how to select the individual changes at each amplifier to
obtain the desired total change at the end of the transmission line. To accomplish
these goals, we need to (i) find the most likely noise configurations that result in
a specified soliton parameter change at each amplifier, and (ii) find the most likely
combination of individual amplitude, frequency, timing, and phase changes at all of
the amplifiers that result in the desired value at the end of the transmission line. The
fact that so much is known about NLS solitons greatly simplifies these tasks. The key
information comes from the dependence of the soliton solution upon the parameters
A, Ω, T0, and Φ0. The noise-induced changes in these soliton parameters can be
calculated using SPT, as explained in section 2.1. In turn this knowledge can be used
to bias the noise at each amplifier to induce larger-than-normal changes of the soliton
parameters at the fiber output.
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To make these ideas more definite, suppose that we are interested in large devi-
ations of a quantity Y . Later on, this quantity will be identified with the amplitude
A, frequency Ω, timing T , or phase Φ of the soliton. For now, let Yin denote the value
of Y at the fiber input, and suppose that we want to direct the simulations towards
a target value Yout. As explained above, we need to (i) find the most likely noise
realization at each amplifier to produce a given shift Cn = Yn − Yn−1, and (ii) find
the most likely combination of individual contributions {Cn}Na

n=1 such that the final
value of Y is Yout. We address these two issues separately.

To solve problem (i), at each amplifier we need to find the noise instantiation
that maximizes the probability of realizing a prescribed shift in one of the soliton
parameters. In any numerical implementation of (2.1), noise is added to the propa-
gating signal by adding one independent Gaussian random variable to the real part
of the optical field, and one to the imaginary part, at each discretized time point
(when split-step spectral methods are used to solve (2.1), one can alternatively add
an independent Gaussian random variable to the real part and to the imaginary part
of every Fourier mode; this is equivalent to the above procedure in the time domain).
Maximizing the probability of this Gaussian perturbation amounts to minimizing the
sum of the squares of all of the random variables (one for the real part and one for the
imaginary part at each time point), and in a continuous-time limit this corresponds
to seeking a noise-produced perturbation f(t) that minimizes the L2-norm

(4.1) ‖f‖2 =
∫
|f(t)|2 dt.

There is no weighting of the noise because every perturbation of comparable size is
equally probable. Of course, we are interested in the noise perturbation that produces
not just the most probable change, but rather the most probable change in one of the
soliton parameters. This means that the minimization should be performed subject
to the constraint

(4.2) ΔYn = Re

∫
v†Y (zn, t)f(t) dt = Cn,

where vY (zn, t) is one of the adjoint linear modes evaluated at zn = nza, consistent
with (2.9), and Cn is for now an arbitrary constant. This constrained minimization
problem can be expressed in Lagrange multiplier form by defining the functional

(4.3) Mn =

∫
|f(t)|2 dt + λ

[ ∫
v†Y (zn, t)f(t) dt +

∫
vY (zn, t)f

†(t) dt− 2Cn

]
.

The solution to this problem, which is easily obtained using the calculus of variations,
is

(4.4) f(t) = Cn
vY (zn, t)

‖vY (zn, · )‖2
.

Here it should be noted that, even though a noise perturbation proportional to one
of the linear modes produces a “clean” change in the soliton parameters (that is, a
change without additional radiative components), (4.4) implies that the most likely
way to realize the same parameter change occurs when the noise is proportional to
the corresponding adjoint mode, a result which is not evident a priori.

Once the maximum likelihood noise configurations at each amplifier are known, it
remains to solve problem (ii), namely to find the coefficients {C1, . . . , CNa

} that lead
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with maximum probability to a prescribed change in the soliton parameter Y over Na

amplifiers. From (2.3), it is immediately apparent that (if one neglects the dependence
of the variances in (2.12) on the amplitude) the soliton amplitude A and frequency Ω
are not affected by changes to the other parameters, while the soliton timing T and
phase Φ are affected both by direct perturbations to T and Φ, respectively, and by
integrated changes to the frequency Ω and amplitude A, respectively. We therefore
consider these problems separately.

4.1. Amplitude and frequency shifts. In the case of amplitude shifts, the
problem is to find the most likely noise realization that produces a prescribed total
change in the soliton amplitude, ΔAtot = Aout − Ain. This amounts to another
constrained minimization problem, where we now need to choose the set of individual
amplitude shifts at each amplifier, {ΔAn}Na

n=1, in order to minimize the cumulative
L2-norm

(4.5)

Na∑
n=1

‖fn‖2 =

Na∑
n=1

ΔA2
n

‖vA(zn, · )‖2

(where (4.4) was used) under the constraint

(4.6)

Na∑
n=1

ΔAn = ΔAtot.

Evaluating the norm of vA using (2.9a), we can also rewrite this optimization problem
in Lagrange multiplier form as

(4.7) M =

Na∑
n=1

ΔA2
n

An
+ λ

[
ΔAtot −

Na∑
n=1

ΔAn

]
,

where, obviously, at each amplifier An = Ain +
∑n

n′=1 ΔAn′ . To find the minimum
of M we then look for zeros of the gradient of M with respect to all the individual
amplitude changes ΔAn. If the total amplitude change over the Na amplifiers is not
too large, we can write ΔAtot = εΔ and employ a perturbation expansion of ΔAn

and λ in powers of ε, namely, ΔAn = εa
(1)
n + ε2a

(2)
n + · · · and of λ = ελ0 + ε2λ2 + · · · .

Minimizing and then matching orders of ε gives

a(1)
n =

Δ

Na
,(4.8a)

a(2)
n = −1

4

Δ2

N2
a

(Na − 2n + 1),(4.8b)

and so on. These constants determine the appropriate biasing for amplitude jitter at
leading order and up to second order. Note that, at leading order, the desired average
change in amplitude over the entire span of amplifiers is simply divided evenly among
the individual amplifiers. In practice, this leading order approximation has been
found to be adequate for all cases considered, even when the actual amplitude shifts
computed were reasonably large.

The optimal biasing problem for the frequency Ω is similar but simpler, in that
the L2-norm of the associated linear mode is independent of Ω. In particular, we seek
to minimize

(4.9)

Na∑
n=1

‖fn‖2 =

Na∑
n=1

ΔΩ2
n

‖vΩ(zn, · )‖2
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under the constraint

(4.10)

Na∑
n=1

ΔΩn = ΔΩtot.

This leads to

(4.11) M =

Na∑
n=1

ΔΩ2
n

An
+ λ

[
ΔΩtot −

Na∑
n=1

ΔΩn

]
,

where, due to the orthogonality of vΩ and vA, the amplitude remains unaffected by
the biasing applied to Ω. For this reason, we assume An = 1 ∀ n = 1, . . . , Na, which
simply gives

(4.12) ΔΩn =
ΔΩtot

Na
.

Note that this assumption would need to be modified if one wished to compute the
joint distribution of amplitude and frequency (or amplitude and timing), however.

4.2. Timing and phase shifts. We next look at the most likely noise realization
resulting in a prescribed timing shift of the soliton at the fiber output. Because of the
Galilean invariance of the NLS equation, in this case we need to consider frequency
shifts as well as timing shifts. In other words, we seek to find the most likely set of
frequency and timing shifts at each amplifier, {ΔΩn,ΔTn}Na

n=1, that produce a final
value Tout = Tin + ΔTtot of timing. Because of the orthogonality of vT and vΩ, this
amounts to choosing ΔTn and ΔΩn in order to minimize the cumulative L2-norm

(4.13)

Na∑
n=1

ΔT 2
n

‖vT (zn, · )‖2
+

Na∑
n=1

ΔΩ2
n

‖vΩ(zn, · )‖2

under the constraint

(4.14) ΔTtot = NazaΩin +

Na∑
n=1

ΔTn +

Na∑
n=1

(Na + 1 − n)ΔΩnza

for a prescribed value of ΔTtot. Again, we can evaluate the norms in (4.13) and
rewrite the above problem in Lagrange multiplier form:
(4.15)

M =
6

π2

Na∑
n=1

A3
nΔT 2

n +
3

2

Na∑
n=1

ΔΩ2
n

An
+ λ

[
Na∑
n=1

ΔTn +

Na∑
n=1

(N + 1− n) ΔΩnza −ΔTtot

]
.

If the noise has components only along vT and vΩ, the soliton amplitude again remains
unaffected, so that minimizing the action M gives

ΔTn =
π2

12σ2
T,tot

ΔTtot,(4.16a)

ΔΩn =
(Na + 1 − n)za

3σ2
T,tot

ΔTtot,(4.16b)
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where

(4.16c) σ2
T,tot = Na

[
π2

12
+

z2
a

18
(Na + 1) (2Na + 1)

]
.

Note that the rule for biasing the frequency given by (4.16b) is rather different from the
rule given by (4.12). Whereas the former is designed to produce a given total change
in frequency with highest likelihood, the latter is designed to produce a given total
change in timing with highest likelihood, so that frequency shifts occurring earlier in
the propagation are weighted much more heavily. In fact, comparing (2.10), (4.14),
and (4.16), it can easily be seen that the relative weight of each term is proportional
to the variance of its term in the final result. In other words, the most probable
way of obtaining a given timing shift at the end of the fiber is to perform relatively
larger frequency shifts at the beginning of the fiber, since these are the ones that can
accumulate over the longest distances and therefore produce larger deviations for the
same “effort” (i.e., for the same contribution to the cumulative L2-norm of (4.1)).

Just as the optimal noise instantiation to obtain a given total timing shift depends
on both frequency and timing shifts at each amplifier, the most probable way of
obtaining a prescribed total phase shift requires shifting three parameters at each
amplifier: phase, amplitude, and frequency. Under the conditions that Ω0 = 0 and
that the individual amplitude shifts are kept small, however, the terms in (2.11d)
involving Ω0 and those involving products of shifts can be neglected, leaving as the
action

M =

Na∑
n=1

AnΔΦ2
n

π2/18 + 2/3
+

Na∑
n=1

ΔA2
n

2An

+ λ

[
Na∑
n=1

ΔΦn +

Na∑
n=1

(N + 1 − n)A0ΔAnza −
(

Φout −
1

2
NazaA

2
0

)]
.(4.17)

This action has markedly similar form to (4.15) and demonstrates again that the effect
of amplitude shifts on phase through self-phase modulation is completely analogous to
the effect of frequency shifts on position through Galilean invariance. Here, however,
the fact that amplitude appears in the summations is problematic, as amplitude is
one of the parameters being shifted in our biasing scheme. To resolve this, we take
an approach similar to that for direct amplitude shifting; i.e., we use a perturbation
expansion in ΔAtot. At leading order, the optimal phase and amplitude shifts take
the same form as the above optimal timing and frequency shifts:

ΔΦn =
π2/36 + 1/3

σ2
Φ,tot

(
ΔΦtot −

1

2
Naza

)
,(4.18a)

ΔAn =
(Na + 1 − n)za

σ2
Φ,tot

(
ΔΦtot −

1

2
Naza

)
,(4.18b)

where

(4.18c) σ2
Φ,tot = Na

[
π2

36
+

1

3
+

z2
a

6
(Na + 1) (2Na + 1)

]
.

4.3. Implementation issues. Having found the most probable configurations
that produce given values of amplitude, frequency, timing, and phase shifts, we now
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discuss how to use them to guide the biasing of the importance-sampled Monte Carlo
simulations.

For concreteness, suppose that we are numerically solving a discretized version of
the NLS equation (2.1). As explained earlier, at each amplifier we add random noise
fn. If J is the total number of discrete time points in the computational domain (or,
equivalently, the total number of complex Fourier modes), the noise is represented
by a vector xn = (x1, . . . , x2J)T giving the real and imaginary noise components at
each discretized time location. In the unbiased case, the xj are independent iden-
tically distributed (i.i.d.) normal RVs with mean zero and variance σ2

a = σ2/(2Δt);
explicitly, the probability distribution is px(x) = exp[−xTx/2σ2

a]/(2πσ
2
a)

J . Let X =
(x1, . . . ,xN ) be the 2J × N matrix that denotes all of the noise components at all
of the amplifiers, and suppose that we are interested in reconstructing the pdf of a
variable y(X). (Here, y will be the amplitude A, the frequency Ω, the timing T , or
the phase Φ.)

At each amplifier, we will perform the biasing by selecting a deterministic biasing
vector bn that will be added to the noise vector xn drawn from the unbiased distribu-
tion. That is, we will form a biased noise realization as x∗

n = xn+bn. This corresponds
to choosing, at each amplifier, the biasing pdf p∗x(x∗

n) = px(x∗
n−bn) = px(xn), which

therefore gives a likelihood ratio of rx(x∗
n) = px(xn + bn)/px(xn). One can then

obtain the overall likelihood ratio of the noise over Na amplifiers3 as

r(X∗) =
Na∏
n=1

px(x∗
n)

px(xn)
,

where X∗ = (x∗
1, . . . ,x

∗
Na

) and x∗
n = xn + bn, as before. Of course, in order for this

strategy to be effective, the choice of the biasing vectors bn is crucial. The means
by which we choose these biasing vectors in the case of amplitude, frequency, timing,
and phase jitter is discussed next.

In order to perform the biasing, at each amplifier we first need to find the soli-
ton parameters associated with the solution immediately before amplification (i.e., the
addition of noise). We do this either by solving the Zakharov–Shabat eigenvalue prob-
lem [9, 29] or by using the moment integrals for the soliton parameters [10]. (A more
detailed discussion of this soliton reconstruction process is contained in Appendices
B and C.) The soliton parameters uniquely determine the soliton solution, which in
turn determines the linear modes. Since the deterministic biasing term is expressed in
the form of a linear combination of modes (as determined in the previous subsection),
knowing the soliton parameters allows us to select the proper biasing of the Monte
Carlo simulations as given by (4.4) and the determination of Cn in subsections 4.1
and 4.2.

In particular, if one wants to bias the amplitude, one chooses a shift in the mean
of the noise f(t) equal to

(4.19) ΔAn
vA(zn, t)

‖vA(zn, · )‖2
= ΔAn

vA(zn, t)

2An
,

3Note that the biased noise realizations at each amplifier are not statistically independent, since
at each amplifier the choice of the biasing vector bn depends on the current state of the soliton and
therefore on the accumulated effect of the noise from the previous amplifiers. Nevertheless, it is easy
to show that the overall likelihood ratio for such a Markov process can still be written as a product
of the individual likelihood ratios (e.g., see [28]).
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where ΔAn is given by (4.8). Similarly, if one wants to bias the pulse frequency, one
chooses a shift in the mean of the noise equal to

(4.20) ΔΩn
vΩ(zn, t)

‖vΩ(zn, · )‖2
= ΔΩn

3 vΩ(zn, t)

2An
,

where ΔΩn is given by (4.12). To bias the soliton position, however, one must also
bias the frequency, and in this case one chooses a shift in the mean of the noise equal
to
(4.21)

ΔTn
vT (zn, t)

‖vT (zn, · )‖2
+ ΔΩn

vΩ(zn, t)

‖vΩ(zn, · )‖2
= ΔTn

6A3
n vT (zn, t)

π2
+ ΔΩn

3 vΩ(zn, t)

2An
,

where ΔTn and ΔΩn are now given by (4.16). Finally, to bias the phase one must
also bias the amplitude, giving a mean noise shift of

(4.22) ΔΦn
vΦ(zn, t)

‖vΦ(zn, · )‖2
+ΔAn

vA(zn, t)

‖vA(zn, · )‖2
= ΔΦn

An vΦ(zn, t)

π2/18 + 2/3
+ΔAn

vA(zn, t)

2An
.

In the discretized version of the problem, this biasing term, i.e., the shift of the
mean of the noise f(t), can also be represented as a vector, bn. Once the biasing
direction and strength have been chosen, the actual biasing is straightforward: an
unbiased noise realization xn is generated, and the biased noise realization x∗

n is
obtained by simply adding bn to xn; that is, x∗

n = xn + bn, as explained above.

5. Numerical results. To demonstrate the effectiveness of applying IS to Monte
Carlo simulations of amplitude, frequency, timing, and phase jitter, we have performed
simulations using the procedure described above. In dimensionless units, we took an
amplifier spacing of za = 0.1, a total propagation distance of Naza = 20, and a dimen-
sionless noise strength of σ2 = 6.3 × 10−5. The physical parameters generating these
values are given in Appendix A. In the simulations, we extracted the soliton param-
eters at the intermediate amplifiers using moments (see Appendix C), but computed
the values at the final distance using the more accurate Zakharov–Shabat eigenvalue
problem (see Appendix B).

Figure 2 shows the results of 50,000 importance-sampled Monte Carlo simulations,
selectively targeting amplitude fluctuations. Five biasing targets with 10,000 samples
per target were used. Different choices of biasing generate the different regions of the
pdfs shown in Figure 3, and the results from all Monte Carlo realizations are combined
using the balance heuristic described in section 3. Even with a relatively small number
of Monte Carlo samples, the method produces values of amplitude and timing jitter
far down into the tails of the probability distributions. As shown in Figure 2, these
results agree with unbiased Monte Carlo simulations in the main portion of the pdf
(the only region that can be reconstructed with unbiased simulations). For smaller
probability values, however, the deviations from Gaussian are evident.

A simple model of amplitude fluctuations can be obtained via soliton perturbation
theory [10]: An+1 = An +

√
An sn+1, where the sn are i.i.d. normal RVs with mean

zero and variance σ2. (Of course, this model cannot be correct when the noise is not
a small perturbation of the soliton; an obvious erroneous result of this is that there is
a very slight probability for negative An’s to occur. Fortunately, it will be seen that
such unphysical cases occur with extremely small probability, and therefore can be
ignored.) Note that this model reflects a prepoint approximation of the jump condi-
tions in (2.1). While this approach is closer in spirit to the Markov process created
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Fig. 2. The pdf of amplitude jitter in a soliton-based transmission system, obtained from 50,000
importance-sampled Monte Carlo simulations. Results from a simple model from perturbation theory
and an approximate Gaussian curve are also shown.
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Fig. 3. (left) Relative frequency plots showing the different ranges of amplitude generated
by biasing distributions with five different targets. From left to right, the targets are ΔAtot =
{−0.8,−0.4, 0, 0.4, 0.8}. (right) The relative contribution of each biasing distribution to the final
result of Figure 2 when weighted by the balance heuristic.

by the biased Monte Carlo simulations, it is unclear whether the physical process is
more accurately represented by this approximation or by a midpoint approximation,
given by An+1 = An + (

√
An+1 +

√
An) sn+1/2. (For example, in one interpretation

of a quantum-mechanical analysis of noise induced by loss and gain in a periodically
amplified system, half of the noise is contributed in a distributed manner by the
loss [30].) For comparison, in Figure 2 we show the pdfs obtained from both models,
using importance-sampled numerical simulations for the prepoint approximation and
simple analysis (see Appendix D) for the midpoint approximation. Although agree-
ment with the importance-sampled simulations of the full NLS equation (2.1) is very
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Fig. 5. The pdfs of frequency (left) and timing jitter (right) in a soliton-based transmission
system, each obtained from 50,000 importance-sampled Monte Carlo simulations.

good throughout the range of amplitude values considered, with a slight deviation
at small amplitudes, this agreement deteriorates significantly at both small and large
amplitudes when the amplifier spacing za is decreased, as shown in Figure 4. As za is
increased, the agreement appears to improve. It is not clear why the numerical results
disagree with SPT here; nevertheless, the biasing obtained using SPT is sufficiently
close to the correct biasing that the IS simulations accurately capture the pdf.

Figure 5 shows results similar to those of Figure 2, but for importance-sampled
Monte Carlo simulations targeting frequency and timing fluctuations. The distribu-
tions of frequency and timing jitter agree well over a larger range of probability val-
ues with Gaussian curves whose variances are calculated from the theoretical results,



1434 R. O. MOORE, G. BIONDINI, AND W. L. KATH

5 10 15 20 25

10
−10

10
−5

10
0

phase

pr
ob

ab
ili

ty
 d

en
si

ty

 

 

IS, 5x 105 samples

MC, 106 samples

SPT, 108 samples
Gaussian
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equations. In this case, the last two results disagree significantly.

(2.14b) and (2.14c). Note, however, that both for frequency and for timing jitter small
deviations from Gaussian behavior are observed in the tails, where the numerically
reconstructed pdfs are slightly but systematically larger than the predicted Gaussians.
This discrepancy is due to the amplitude dependence of the variances of frequency
and timing fluctuations [13]. Such dependence was neglected when the deterministic
biasing choices were determined. Nevertheless, because random sampling is used, the
numerical simulations access not only the deterministic biasing directions, but also
nearby points in sample space around them. If errors in the deterministic biasing
directions are not too large, a reasonably large number of random samples will find
the correct regions in sample space that contribute most significantly to the pdf.

Finally, the pdf of phase jitter obtained using 5×105 IS trials is shown in Figure 6,
along with 106 Monte Carlo runs to demonstrate the accuracy of the biased runs.
We have unwrapped the phase to better illustrate deviations in the pdf tails. As
expected, the pdf disagrees with the Gaussian obtained by linearizing the soliton per-
turbation equations. Somewhat surprising, however, is the fact that it also disagrees
with 108 Monte Carlo simulations of the full nonlinear SPT equations. This suggests
that dispersive radiation plays an important role in the case of phase jitter, rendering
the (first-order) SPT equations ineffective in reproducing the correct jitter statistics.
These equations are nevertheless still sufficiently accurate to provide effective biasing
for the IS runs.

6. Conclusion. In summary, we have presented the application of importance
sampling to numerical simulations of large noise-induced perturbations of nonlinear
Schrödinger solitons, and we have demonstrated the method by calculating the pdfs of
amplitude, frequency, timing, and phase jitter in a soliton-based transmission system.
These results show that IS can be an effective tool for assessing the impact of noise
in such systems.



COMPUTING STATISTICS OF LARGE SOLITON PERTURBATIONS 1435

Appendix A. NLS nondimensionalization and units. Here we describe
the nondimensionalization procedure and the choice of units. The NLS equation is
written in dimensional units as

(A.1) i
∂E

∂Z
+

|β′′|
2

∂2E

∂T 2
+ γ|E|2E = i

Na∑
n=1

δ(Z − nZa)Fn(T ),

where |E|2 is optical power in watts, Z and T are dimensional distance in km and
retarded time in ps, Za is the amplifier spacing, and β′′ is the group velocity dispersion
parameter in ps2/km. The nonlinear coefficient is γ = ω0n2/cAeff , where ω0 is the
carrier frequency, n2 is the Kerr nonlinear-index coefficient, c is the vacuum speed of
light, and Aeff is the effective area of the fiber core. The periodic cycle of loss and
gain introduced by the chain of amplifiers has already been averaged out of (A.1); for
details, see [30]. The delta-correlated white noise added at each amplifier then has
noise strength

(A.2) 〈Fm(T )F †
n(T ′)〉 =

�ω0ηsp(G− 1)2

G lnG
δmnδ(T − T ′),

where G is the power gain at each amplifier and ηsp is the spontaneous emission factor.
We then let z = Z/L, t = T/T0, and u = E/E0, where L = T 2

0 /|β′′| is the
dispersion length, T0 = TFWHM/1.76 is the soliton (sech) width, and E0 = 1/

√
Lγ is

the characteristic optical power for critical balance between nonlinearity and group
velocity dispersion. This reduces (A.1) and (A.2) to (2.1) and (2.2), with

(A.3) σ2 =
�ω0ηspγT0

|β′′|
(G− 1)2

G lnG
.

In the simulations we used a pulse full width at half maximum (FWHM) of 17.6 ps
(i.e., a sech width of T0 = 10 ps), an amplifier spacing of Za = 50 km and a fiber
loss of 0.2 dB/km (yielding a power gain of G = 10), a spontaneous emission factor
of ηsp of 1.4, a fiber dispersion β′′ = −0.2 ps2/km, and a total transmission distance
of 10,000 km. The nonlinear coefficient of the fiber was taken to be 2.0 km−1W−1.
The dimensionless parameters corresponding to these values are given in section 5.

Appendix B. Soliton extraction via Zakharov–Shabat eigenvalue prob-
lem. As discussed in the main text, the first step in implementing importance sam-
pling is to find the soliton part of the solution at each amplifier. One way to do this
is to solve the Zakharov–Shabat (Z-S) eigenvalue problem [31, 32]. Given a solution
u of the NLS equation at a particular value of z, one can discretize the Z-S eigenvalue
problem and solve it numerically [29, 33]. In the case of noisy solutions, which may
not be smooth, it may be more robust to use a completely integrable discrete version,
such as the Ablowitz–Ladik eigenvalue problem [29].

Unfortunately, an eigenvalue of the Z-S problem (or its discrete equivalent, the
Ablowitz–Ladik problem) gives only two of the soliton parameters, the amplitude
and the frequency, and there is apparently no way to determine the exact values of
the soliton’s position and phase. One can, however, obtain values that are relatively
unaffected by noise, even when this perturbation is large.

To do this, one makes use of the trace formula for the NLS equation [34],

u = 2i
N∑

k=1

bk
a′k

ψ2
1 − 2i

N∑
k=1

b†k
a′†k

ψ†2
2 − 1

π

∫ ∞

−∞

{
b

a
(ξ)ψ2

1(t, ξ) +
b†

a†
(ξ)ψ†2

2 (t, ξ)

}
dξ.
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Fig. 7. A noisy soliton (left) and the “clean” soliton (right) recovered from the Jost functions
of the Z-S eigenproblem. Apart from a small ripple in the imaginary component, the Jost functions
are seen to produce a reconstructed soliton that is largely free of radiation.

Essentially, this shows that one can break the solution up into two contributions,
one from the eigenfunctions of the Z-S scattering problem and the other from the
continuous spectrum. Here, ψ1(x, ζ) and ψ2(t, ζ) are the components of one set of
Jost functions, i.e., solutions of the Z-S scattering problem satisfying special boundary
conditions, namely,(

ψ1

ψ2

)
∼

(
0
1

)
eiζt as t → +∞ or

(
φ1

φ2

)
∼

(
1
0

)
e−iζt as t → −∞.

The coefficients bk, a
′
k, b(ξ), and a(ξ) are determined by the connection between these

two sets of functions,(
φ1(t, ζ)
φ2(t, ζ)

)
= a(ζ)

(
ψ†

2(t, ζ
†)

−ψ†
1(t, ζ

†)

)
+ b(ζ)

(
ψ1(t, ζ)
ψ2(t, ζ)

)
.

At an eigenvalue ζk of the Z-S scattering problem (with Im ζk > 0), one has a(ζk) = 0.
At such an eigenvalue, a′k = a′(ζk) and bk = b(ζk).

In order to extract the position and phase from a noisy soliton in a robust way,
the idea is to discard the contribution from the continuous spectrum and use only the
discrete part of the trace formula. Because of the exponential decay of the eigenfunc-
tions, this “reconstructed” or “nonlinearly filtered” solution will be smooth, and thus
definitions of position and phase using moments will not have any difficulties caused
by long noisy tails present in the solution. Of course, one must recognize that the trace
formula does not precisely partition the solution into “soliton” and “dispersive radia-
tion” components, as the discrete part of the trace formula does not produce solutions
which are exactly hyperbolic-secant shaped. Nevertheless, the solutions appear very
much like solitons, as shown in Figure 7.

As written, the trace formula is a little difficult to use, as one still needs the
coefficients bk and a′k. Fortunately, the ratio of these coefficients can be computed
more conveniently. From the orthogonality relation [32, equation A6.6e], one has∫ ∞

−∞
(ψ2kφ1k + ψ1kφ2k) dt = ia′k ⇒ 2bk

∫ ∞

−∞
ψ1kψ2k dt = ia′k,
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since φ1k = bkψ1k and φ2k = bkψ2k. Thus, the discrete part of the trace formula
becomes

u = −
N∑

k=1

(
ψ2

1k∫∞
−∞ ψ1kψ2k dt

+
ψ†

2k

2∫∞
−∞ ψ†

1kψ
†
2k dt

)
.

Because the numerator and denominator in this expression are both quadratic in
ψk, this means that one does not need to normalize the Jost eigenfunctions when
computing their contribution to the solution.

Appendix C. Soliton extraction via moments. The method of obtaining
the soliton parameters described above is very effective but computationally intensive,
requiring the numerical determination of selected eigenvalues and eigenfunctions of a
large matrix. The resolution afforded by this method is critical for the final calculation
of the soliton parameters in order to determine correct statistics; the formulation of the
biasing vectors, however, does not require the same degree of precision. In particular,
if the applied biasing vector differs from the optimal biasing vector by a small random
amount (caused, for example, by sensitivity of the parameter measurement technique
to the presence of radiation), this can be expected to produce only a small reduction
in the efficiency of generating an accurate and unbiased estimate through IS. As
long as the biased Monte Carlo simulations sample a large enough region around
the deterministic biasing direction, the method will remain efficient. Another way to
interpret this is that the Monte Carlo sampling corrects for slight inaccuracies in the
determination of the optimal biasing direction.

We have therefore used the following filtered moments to generate approximate
values for the soliton parameters at each amplifier. We first obtain an estimate for
the soliton frequency

(C.1) Ωest =

∫
ω |ũ|2 dω∫
|ũ|2 dω ,

where ũ is the Fourier transform of u. We then use this to band-pass filter the soliton
to reduce the noise,

(C.2) ũfilt = ũ e−(ω−Ωest)
2/2W 2

filt .

This filtered image of the noisy soliton is used to obtain the final parameter estimates,

A =
1

2

∫
|ufilt|2 dt, Ω =

∫
ω|ũfilt|2 dω∫
|ũfilt|2 dω

,(C.3)

T =

∫
t|ufilt|2 dt∫
|ufilt|2 dt

, Φ =

∫
arctan(Imufilt/Reufilt)|ufilt|2 dt∫

|ufilt|2 dt
.(C.4)

Appendix D. Pdf for the midpoint model. The model of the soliton ampli-
tude’s random walk obtained by applying first-order SPT and a particular midpoint
approximation to (2.1) was given in section 5 as

(D.1) An+1 = An +
1

2

(√
An+1 +

√
An

)
sn+1,

where the sn are i.i.d. normal RVs with mean zero and variance σ2. To obtain the pdf
for this process, it is convenient to introduce an =

√
An and to collect terms, noting
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that one can then complete the square by adding s2
n/16 to both sides of the resulting

equation:

(D.2)

(
an+1 −

1

4
sn+1

)2

=

(
an +

1

4
sn+1

)2

.

Taking the positive branch of this square root then gives the much simpler process
an+1 = an + sn+1/2, which is seen immediately to result in a Gaussian distribution
for an with mean a0 and variance σ2

a = nσ2/4. Finally, a simple transformation yields
the pdf for An:

(D.3) p(An) =
1

2

1√
2πAnσ2

a

exp

(
− (

√
An −

√
A0)

2

2σ2
a

)
.
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Abstract. We consider the inverse conductivity problem in a strictly convex domain whose
boundary is not known. Usually the numerical reconstruction from the measured current and voltage
data is done assuming that the domain has a known fixed geometry. However, in practical applications
the geometry of the domain is usually not known. This introduces an error, and effectively changes the
problem into an anisotropic one. The main result of this paper is a uniqueness result characterizing
the isotropic conductivities on convex domains in terms of measurements done on a different domain,
which we call the model domain, up to an affine isometry. As data for the inverse problem, we
assume the Robin-to-Neumann map and the contact impedance function on the boundary of the
model domain to be given. Also, we present a minimization algorithm based on the use of Cotton–
York tensor, which finds the push forward of the isotropic conductivity to our model domain and
also finds the boundary of the original domain up to an affine isometry. This algorithm works also
in dimensions higher than three, but then the Cotton–York tensor has to replaced with the Weyl
tensor.

Key words. inverse conductivity problem, electrical impedance tomography, unknown bound-
ary, Cotton–York tensor
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1. Introduction. We consider the electrical impedance tomography problem
(EIT for short), i.e. the determination of the unknown isotropic conductivity distri-
bution inside a domain in R

3, for example the human thorax, from voltage and current
measurements made on the boundary. Mathematically this is formulated as follows:
Let Ω be the measurement domain, and denote by γ the bounded and strictly positive
function describing the conductivity in Ω. The voltage potential u satisfies in Ω the
equation

(1.1) ∇ · γ∇u = 0.

To uniquely fix the solution u it is enough to give its value on the boundary. Let
this be f . In the idealized case, when the contact impedance of the measurement
device is zero, one measures for all voltage distributions u|∂M = f on the boundary
the corresponding current flux through the boundary, γ∂y/∂ν, where ν is the exterior
unit normal to ∂Ω. Mathematically this amounts to the knowledge of the Dirichlet–
Neumann map Λ corresponding to γ, i.e., the map taking the Dirichlet boundary
values to the corresponding Neumann boundary values of the solution to (1.1),

Λ : u|∂M �→ γ
∂u

∂ν
.
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The Calderón inverse problem is then to to reconstruct γ from Λ. The problem
was originally proposed by Calderón [5] in 1980 and then solved in dimensions three
and higher for isotropic conductivities which are C∞-smooth in [31] and [22]. The
smoothness requirements have been since relaxed, and currently the best known result
is [25] with unique determination of conductivities in W 3/2,∞; see also [10] for a
somewhat different approach to the lack of smoothness. In two dimensions the first
global result is due to Nachman [23], and later Astala and Päivärinta showed in [4] that
uniqueness holds also for general isotropic L∞-conductivities. For the corresponding
anisotropic case, see [3, 17, 18, 19], and for numerical implementations of the methods
with simulated and real data, see [13, 28, 21].

Assuming that the measured Dirichlet-to-Neumann map Λmeas is given, an often
used method to solve the EIT problem is to minimize

‖Λmeas − Λσ‖2 + α‖σ‖2
X

for σ defined in terms of some triangulation of Ω and ‖ ·‖X some regularization norm;
here Λσ is the Dirichlet–Neumann map corresponding to the conductivity σ. One then
also fixes the geometry of Ω by assuming that it is, for example, a ball or an ellipsoid.
Now, if our measurements have no error, a Bayesian interpretation of this problem as
a search of a maximum a posteriori (MAP) estimate suggests that α = 0. Usually,
the given data Λmeas does not correspond to any isotropic conductivity in the model
domain. The reason for this is that there is no conformal map deforming the original
domain to the model domain. Therefore, in solving the minimization problem we
obtain an incorrect solution σ. This means that a systematic error in modeling causes
a systematic error in the reconstruction. In particular, if we consider linearization
γ = γ0 + εγ1, where γ0 is a given known background conductivity and ε is small, it
seems that a localized perturbation γ1 gives a reconstruction σ = γ0 + εσ1, where the
reconstructed perturbation σ1 is not localized. This is clearly seen in brain-activity
measurements; see [9] and [14].

This work is continuation of [15], where the corresponding question in two dimen-
sions was studied: We proved that on the model domain there is a unique (anisotropic)
conductivity with minimal anisotropy. This follows from a result of Strebel saying
that among all quasi-conformal self-maps of the unit disk with a fixed boundary value
there is a unique one with minimal complex dilation. In higher dimensions there are
several new issues. First, the nonuniqueness due to anisotropy is not understood,
except in the case when both the domain and the conductivity function are the real
analytic [19, 20]. Also, as we already mentioned, in the plane case one could use the
theory of quasi-conformal maps to break the nonuniqueness. The higher dimensional
analogue of this is unknown. Finally, there is no analogue of the Riemann mapping
theorem that we could use.

The structure of this paper is the following. In the first part, consisting of sections
2–4, we present the uniqueness results that we have on the problem. It is worth noting
that we choose to work with the Robin-to-Neumann (RN) map instead of the Dirichlet-
to-Neumann (DN) map described above. Mathematically they are equivalent, as we
will show, but the RN map is a better model for the actual measurement configuration,
since it takes into account the contact impedances at ∂Ω [29]. Also, we assume that
the function modeling the contact impedances of the electrodes is known. This means
that we have measured the contact impedance, e.g., using a reference body. There
are two key ideas to compensate for our lack of understanding of the full anisotropic
problem. The first is to note that if an isotropic conductivity is pushed forward by
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a diffeomorphism, the resulting conductivity is still conformally flat, and in three
dimensions this is equivalent to the vanishing of the Cotton–York tensor. Second,
we assume that our original domain is strictly convex, and then the Cohn–Vossen
theorem (see [27]) can be used to determine the original boundary ∂Ω up to rigid
motions.

In the second part we develop an algorithm for finding the shape of the domain
Ω and the conductivity inside using a minimization technique. An important feature
is that we do not have to construct an embedding of the boundary to the Euclidean
space. We plan to report on the numerical implementation of our algorithm in a
separate article.

2. Measurements. Let Ω ⊂ R
n, n ≥ 3, be a strictly convex domain, and denote

by γ = (γij(x))ni,j=1 the symmetric real valued matrix describing the conductivity in
Ω. We assume that the matrix is bounded from above and from below; that is, for
some C, c > 0 we have

(2.1) c‖ξ‖2 ≤ 〈ξ, γ(x)ξ〉 ≤ C‖ξ‖2 for all x ∈ Ω.

We will state the precise smoothness of γ later. We start by considering the EIT
problem with continuous boundary data. Instead of the DN map we will use the RN
map defined below, which corresponds better to the measurements done in practice.
We discuss later in this section the relation of the continuous model and the electrode
measurements made in practice.

For the electrical potential u we write the model

∇ · γ∇u = 0, x ∈ Ω,(2.2)

(zν· γ∇u + u)|∂Ω = h,(2.3)

where h is the Robin-boundary value of the potential and z is a function describing the
contact impedance on the boundary. The contact impedance models the impedance
that is caused by electro-chemical phenomena at the interface of the skin and the
measurement electrodes in practical measurements [6].

In mathematical terms, the perfect boundary measurements are modeled by the
RN map R = Rz,γ given by

R : h �→ ν· γ∇u|∂Ω,

which maps the potential on the boundary to the current across the boundary. Next
we relate this continuous model to measurements done in practice.

The physically realistic measurements are usually modeled by the following com-
plete electrode model (see [6, 29]): Let ej ⊂ ∂Ω, j = 1, . . . , J , be disjoint open sets
of the boundary modeling the electrodes that are used for the measurements. Let u
solve the equation

∇· γ∇v = 0 in Ω,(2.4)

zjν· γ∇v + v|ej = Vj ,(2.5)

ν· γ∇v|∂Ω\∪J
j=1ej

= 0,(2.6)

where Vj are constants representing electric potentials on electrode ej . Then, one
measures the currents observed on the electrodes, given by

Ij =
1

|ej |

∫
ej

ν· γ∇v(x) ds(x), j = 1, . . . , J.
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Thus the electrode measurements are given by map E : R
J → R

J , E(V1, . . . , VJ) =
(I1, . . . , IJ). We say that E is the electrode measurement matrix for (∂Ω, γ, e1, . . . , eJ ,
z1, . . . , zJ).

The complete electrode model can alternatively be defined as follows: The RN
map Rη is given by Rηf = ν· γ∇u|∂Ω, where u is the solution of

∇· γ∇u = 0 in Ω,(2.7)

zν· γ∇v + ηv|∂Ω = h,

where z ∈ C∞(∂Ω) is such that its restriction to the electrode ej is equal to the

constant zj and η =
∑J

j=1 χej , where χej is the characteristic function of electrode ej .
We associate with the electrode measurement matrix and with the complete

electrode model also the corresponding quadratic forms E : R
J × R

J → R and
Rη : H−1/2(∂Ω) ×H−1/2(∂Ω) → R given by

(2.8) E[V, Ṽ ] =

J∑
j=1

(EV )j Ṽj |ej |, Rη[h, h̃] =

∫
∂Ω

(Rηh) h̃ ds.

These have the following simple relation to each other: Let S = span(χej : j =

1, . . . , J) ⊂ H−1/2(∂Ω) and define M : V = (Vj)
J
j=1 �→

∑J
j=1 Vjχej to be a map

M : R
J → S. Then

(2.9) E[V, Ṽ ] = Rη[MV,MṼ ].

By (2.9), the electrode measurement matrix can be viewed as the discretization of the
form Rη. By increasing the number of the electrodes and making the gaps between
them smaller, we can assume that η → 1. In this case Rη approximates the RN map
Rγ,z. Note that E(V, V ) corresponds to the power needed to maintain the voltages
V in electrodes.

In practical EIT experiments, one places a set of measurement electrodes on the
boundary ∂Ω, e.g., around the chest of the patient. All the traditional approaches to
numerical EIT reconstruction assume that the shape of the domain Ω is known and
that the only unknown is the conductivity γ. However, in most EIT experiments the
boundary of the body Ω is not known accurately, and since there are no practically
reliable measurement methods available for the determination of the boundary, the
EIT image reconstruction problem is typically solved using an approximate model
domain Ω̃, which represents our best guess for the shape of the true body Ω. However,
it has been noticed that the use of a slightly incorrect model for the body Ω in the
numerical reconstruction can lead to serious artifacts in reconstructed images [14, 1, 9].
This situation is our paradigm for the EIT problem when the boundary is unknown.
Next we analyze how the deformation of the domain affects measurements.

3. Deformations of the domain. In this section we analyze the behavior of
the electrode models under a diffeomorphism. Let’s consider first the RN map R. The
corresponding quadratic form, which we still denote by R, is given on the diagonal by

(3.1) R[h, h] =

∫
∂Ω

(u+zν· γ∇u)ν· γ∇u dSE =

∫
Ω

γ∇u· ∇u dx+

∫
∂Ω

z |ν· γ∇u|2 dSE ,

where h ∈ H−1/2(∂Ω), u solves (2.7), and dSE is the Euclidean volume form (or area)
of ∂Ω. The value R[h, h] corresponds to the power needed to maintain the current
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h on the boundary. From the mathematical viewpoint, using the (incorrect) model

domain Ω̃ instead of the original domain Ω can be viewed as a deformation of the
original domain. Thus, let us next consider what happens to the conductivity equation
when the domain Ω is deformed to Ω̃. Assume that F : Ω → Ω̃ is a sufficiently
smooth orientation-preserving map with sufficiently smooth inverse F−1 : Ω̃ → Ω.
Let f : ∂Ω → ∂Ω̃ be the restriction of F on the boundary. When u is a solution
of ∇· γ∇u = 0 in Ω, then ũ(x̃) = u(F−1(x̃)) and h̃(x) = h(f−1(x)) satisfy the
conductivity equation

∇· γ̃∇ũ = 0 in Ω̃,(3.2)

z̃ν̃· γ̃∇ũ + ũ|∂Ω̃ = h̃,

where ν̃ is the unit normal vector of ∂Ω̃, z̃ is the deformed contact impedance, and γ̃
is the conductivity

(3.3) γ̃(x) =
F ′(y) γ(y) (F ′(y))T

|detF ′(y)|

∣∣∣∣
y=F−1(x)

,

where F ′ = DF is the Jacobian of the map F . This transformation formula can be
seen from the weak definition of ∇· γ∇u = 0 in Ω; i.e., for all φ ∈ C∞

0 (Ω)

0 =

∫
Ω

γ∇u· ∇φdx =

∫
Ω̃

γ(F−1(y))(F ′(y)T∇(u(F−1(y)))) ·F ′(y)T∇(φ(F−1(y))) dy

=

∫
Ω̃

γ̃∇ũ · ∇φ̃ dy,

where φ̃(y) = φ(F−1(y)); see also [30], for more on the transformation rule (3.3) and
its relations to inverse problems. Note that even if γ is isotropic, i.e., scalar valued,
the deformed conductivity γ̃ can be anisotropic, i.e., matrix valued.

To determine the deformed contact impedance z̃, we consider the corresponding
invariant (n− 1)-form

J := ν· γ∇u dSE ∈ Ωn−1(∂Ω)

corresponding to the current flux through the boundary. Next we denote x̃ = F (x).
A straightforward application of the chain rule gives that

ν̃ · γ̃∇ũ|∂Ω̃ =
(
(detDF )−1ν · ∇u

)
◦ f−1|∂Ω̃

since F was orientation preserving and DF is the Jacobian of F in boundary normal
coordinates associated with the surface ∂Ω ⊂ R

n. In these coordinates detDF |∂Ω =
detDf , where detDf is the determinant of the differential of the the boundary map
f : ∂Ω → ∂Ω̃. We note that (detDf ◦ f−1)f∗(dSE) = dS̃E , where dSE and dS̃E are

Euclidean volume forms of ∂Ω and ∂Ω̃, respectively. Hence, zν · ∇u transforms as an
invariantly defined function when the contact impedance is interpreted as a density,
i.e.,

(3.4) z̃(x̃) = (detDf(x))z(x),

where f(x) = x̃. Now we see that the boundary measurements are invariant: When

f : ∂Ω → ∂Ω̃ is the restriction of F : Ω → Ω̃, we say that the map R̃ = f∗Rz,γ ,
defined by

((f∗Rz,γ)h)(x) = (Rz,γ(h ◦ f))(y)|y=f−1(x) , h ∈ H1/2(∂Ω̃),
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has the property that R̃ = Rz̃,γ̃ . We call R̃ the push forward of Rz,γ by f .
Is is also worth noting that in formula (3.1) the integral over Ω as well as the

integral over the boundary are invariant because of the deformation rule (3.4) for the
contact impedance z; that is, we have

R[h, h′] = R̃[h ◦ f−1, h′ ◦ f−1]

for h, h′ ∈ H−1/2(∂Ω).

4. Uniqueness results. Now we are ready to give the exact set-up of the prob-
lem we consider: We want to recover an image of the unknown conductivity γ in Ω
from the measurements of the RN map, and we assume a priori that γ is isotropic. We
assume that z, ∂Ω, and R are not known. Instead, let Ω̃, called the model domain, be
our best guess for the domain, and let fm : ∂Ω → ∂Ωm be a diffeomorphism modeling
the approximate knowledge of the boundary.

As the data for the inverse problem, we assume that we are given the boundary of
the model domain ∂Ω̃, the function z ◦f−1 corresponding to the contact impedance of
electrodes, and the RN map R̃ = (fm)∗R. Note that the discrete analogue of this data
is to know the voltage-to-power form V �→ E(V, V ) and the contact impedances of
the electrodes, but not the location of the electrodes or the boundary of the domain.
It is reasonable to assume that the contact impedance z ◦ f−1

m on the boundary of the
model domain is known since we can observe and set up the contact impedances of the
electrodes the way we want. Hence we have on the boundary of our model domain ∂Ω̃
a boundary map R̃ that does not generally correspond to any isotropic conductivity.
Furthermore, we saw above that there are many anisotropic conductivities for which
the RN map is the given map R̃. Next we show that the existence of the “underlying”
isotropic conductivity in Ω gives the uniqueness in Ω̃ up to a diffeomorphism and that
the domain Ω and the isotropic conductivity on it can be uniquely determined.

Theorem 4.1. Let Ω ⊂ R
n, n ≥ 3, be a bounded strictly convex C∞-domain.

Assume that γ ∈ C∞(Ω) is an isotropic conductivity, z ∈ C∞(∂Ω), z > 0 a contact

impedance, and Rγ,z the corresponding RN map. Let Ω̃ be a model of the domain

satisfying the same regularity assumptions as Ω, and fm : ∂Ω → ∂Ω̃ be a C∞-smooth
orientation-preserving diffeomorphism.

Assume that we are given ∂Ω̃, the values of the contact impedance z(f−1
m (x̃)),

x̃ ∈ ∂Ω̃, and the map R̃ = (fm)∗Rγ,z. Then we can determine Ω up to a rigid motion
T and the conductivity γ ◦ T−1 on the reconstructed domain T (Ω).

We recall also that rigid motion is an affine isometry T : R
n → R

n.
Proof. Assume that we are given R̃ and the values of the contact impedance,

that is, the function z(f−1
m (x̃)). Let Fm : Ω → Ω̃ be an orientation-preserving dif-

feomorphism satisfying Fm|∂Ω = fm. As noted before, R̃ = Rz̃,γ̃ , where z̃(x) =

det(Dfm)z(f−1
m (x)) is the contact impedance on ∂Ω̃ and γ̃ = (Fm)∗γ is the push

forward of γ in Fm. The RN map is a classical pseudodifferential operator of order
zero, with principal symbol 1/z̃, and hence R̃ determines z̃. Since we also assume
z ◦ f−1 known, we can determine the determinant detDfm; note that this gives the
change of boundary area under deformation fm. For the rest of the proof denote
β = detDfm. Also, this implies that we can find the DN map Λγ̃ = (R̃−1 − z̃I)−1

on ∂Ω̃, that is, the map taking the Dirichlet boundary values to Neumann boundary
values. In terms of electrostatics, this means that the impedance given by Λ−1

γ and
the contact impedance z are connected in series; i.e., the total impedance is the sum
of Λ−1

γ and z.
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The Riemannian metric corresponding to the isotropic conductivity γ = γ(x)I in
Ω is given by

gij(x) = det(γ(x)I)1/(2−n) (γ(x)I)−1 = γ(x)2/(n−2)δij .

Then, if Δg is the Laplace–Beltrami operator corresponding to the metric g, we have
Δg = |g|−1/2∇ · γ∇, where |g| = det(gij). This metric is an invariant object, and in

the deformation Fm it is transformed to the metric g̃ = (Fm)∗g in Ω̃. By [19], the
DN map Λγ̃ determines the restriction of the n-dimensional metric tensor g̃jk on the
boundary in the boundary normal coordinates, and since in these coordinates

[g̃jk]
n
j,k=1 =

(
g̃∂Ω̃ 0
0 1

)
,

where g̃∂Ω̃ = h̃ is the induced metric on ∂Ω̃, we can also recover h̃.

In particular, if we consider ∂Ω̃ as a submanifold of R
n with the metric h̃ = ĩ∗(g̃)

inherited from (Ω̃, g̃) where ĩ : ∂Ω → Ω is the identity map, we see that our boundary

data determines the metric h̃ on ∂Ω̃. Now let metric h = i∗(g) be the corresponding
metric on ∂Ω, where i : ∂Ω → Ω is the identical embedding. Then we have

(4.1) h̃ = (fm)∗h, h = γ2/(n−2)hE ,

where hE is the Euclidean metric of ∂Ω. Denote by h̃E = (fm)∗h
E the metric tensor

on ∂Ω̃, i.e., the push forward of the Euclidean metric of ∂Ω by fm. Recall that
dSE and dS̃E are the Euclidean volume forms of ∂Ω and ∂Ω̃, respectively. Then the
Riemannian volume forms dSh̃ and dSh of the metrics h̃ and h, respectively, satisfy

dSh̃ = (fm)∗(dSh) = γ(f−1
m (x̃))(fm)∗(dSE) = (γβ) ◦ f−1

m (x̃) dS̃E

on ∂̃Ω. As β was already determined, this shows that we can find γ(f−1
m (x̃)), x̃ ∈ ∂Ω̃,

and hence by (4.1) we can determine the metric

h̃E = γ(f−1
m (x̃))−2/(n−2)h̃.

In other words, if we consider ∂Ω̃ as an abstract manifold that can be embedded
to ∂Ω ⊂ R

n, we have found the metric tensor on ∂Ω̃ corresponding to the Euclidean
metric of ∂Ω. By the Cohn–Vossen rigidity theorem, intrinsically isometric C2-smooth
surfaces that are boundaries of a strictly convex body are congruent in a rigid motion.
For uniqueness, see, e.g., [27, Theorems V and VI] and also [11, 12]. This means that
the boundary data uniquely determines the map T ◦ f−1

m , where T is a rigid motion.
Hence we can find the surface T (∂Ω) and on it the map T∗Λγ̃ = T∗Λγ . Using the
uniqueness of of the isotropic inverse problem [31, 22], we see that the boundary data
determines γ ◦ T−1.

Note that the construction of the surface ∂Ω ⊂ R
3 from the intrinsic metric hE

is a more delicate issue (see [24, 26]); hence we take care to avoid it.

5. A reconstruction algorithm and the use of conformal flatness. In
this section we consider the case n = 3, even though the considerations could be
generalized for n ≥ 4 by changing the Cotton–York tensor to a Weyl tensor in our
considerations (see the appendix). As noted before, an actual construction of the
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isometric embedding of an abstract manifold to Euclidean space is complicated, and
thus we try to avoid it.

We want to find an anisotropic conductivity η such that Rz̃,η = R̃ assuming that

R̃ = (fm)∗Rz,γ , where γ is an isotropic conductivity. Clearly, when Fm : Ω → Ω̃ is
diffeomorphism satisfying Fm|∂Ω = fm, the anisotropic conductivity (Fm)∗γ is a solu-
tion of the inverse problem, but it is not unique. However, we also know that (Fm)∗γ
has a conformally flat structure, and this fact will help in solving the inverse problem
as we will see. Note that in principle, one could start to solve the inverse problem
by minimizing over all pairs (Ω, σ) of smooth domains Ω ⊂ R

n and all isotropic con-
ductivities σ in Ω. However, the minimization over domains is complicated, and our
objective is to find a reasonably simple minimization algorithm where we minimize
over conductivities in the fixed model domain Ω̃ with an appropriately chosen cost
function.

Let η = (Fm)∗γ be a possibly anisotropic conductivity in Ω̃ such that γ is

isotropic. As already noted, it defines a Riemannian metric g on Ω̃, given by

[gjk]
n
j,k=1 = ([gjk]nj,k=1)

−1, gjk = det(η)1/(n−2)ηjk.

From now on we will use the Einstein summation convention and omit the summation
symbols. As F−1

m : Ω̃ → Ω can be considered as coordinates, we see that in proper
coordinates the metric g is a scalar function times a Euclidean metric; that is, g is
conformally flat. This means that

gij(x) = e−2σ(x)gij(x),

where gij(x) is a metric with zero curvature tensor (i.e., flat metric) and σ(x) ∈ R.
By [8] (for original work, see [7]), the conformal flatness of the metric g in three dimen-
sions is equivalent to the vanishing of the Cotton–York tensor C = Cij corresponding
to g (see the appendix). Note that we can choose σ = 1

2−n log γ and g = (Fm)∗(δij).
By [8, formulae (28.18) and (14.1)], σ satisfies a differential equation (with n = 3)

(5.1) σij = − 1

n− 2
Ricij +

1

2(n− 1)(n− 2)
gijR − 1

2
gijg

lmσlσk, i, j = 1, . . . , n,

where Ricij is the Ricci curvature tensor of g, R is the scalar curvature of g, and

σk =
∂σ

∂xk
, σij = ∇eiσj − σiσj , where ei =

∂

∂xi
,

where ∇ei is the covariant derivative with respect to metric g. Thus if g is given, (5.1)
is a second order nonlinear differential equation for σ. By [8, p. 92], the equations
(5.1) satisfy the sufficient integrability conditions to be locally solvable if and only if
the Cotton–York tensor vanishes. Note that the existence of the isotropic conductivity
γ in Ω gives a solution for these equations.

Consider now the following algorithm.
Data: Assume that we are given ∂Ωm, R̃ = (fm)∗Rγ,z, and z ◦ f−1

m on ∂Ωm.
Aim: We look for a metric g̃ corresponding to the conductivity γ̃ and z̃ such that on
∂Ωm, R̃ = Rγ̃,z̃ and z̃ = (fm)∗z.

Algorithm.

1. Determine the two leading terms in the symbolic expansion of R̃. They
determine a contact impedance ẑ and a metric ĝ on ∂Ω̃ such that if R̃ = Rγ̃,z̃,

then z̃ = ẑ and ĩ∗(g̃) = ĝ.



1448 VILLE KOLEHMAINEN, MATTI LASSAS, AND PETRI OLA

2. Form the ratio of the given contact impedance, z̃, and the reconstructed
contact impedance, ẑ, that is,

r̂(x̃) :=
z(f−1

m (x̃))

ẑ(x̃)
, x̃ ∈ ∂Ω̃.

Note that then

r̂(x̃)(fm)∗(dSE) = dS̃E

since the contact impedances transformed as densities.
3. Let dSĝ be the volume form of ĝ on ∂Ω̃. Then

dSĝ = (det ĝ)1/2 dS̃E .

Define

γ̂ = (det ĝ)1/2 r̂.

With this choice γ̂ will satisfy γ̂(x̃) = γ(f−1
m (x̃)) for x̃ ∈ ∂Ω̃.

4. Define the boundary value σ̂ for the function σ by

σ̂(x̃) =
1

2 − n
log (γ̂(x̃)) , x̃ ∈ ∂Ω̃.

5. Solve the minimization problem

minFτ (z̃, σ̃, γ̃) + αH(z̃, σ̃, γ̃),

where H(z̃, γ̃) is a regularization functional, say,

H(z̃, σ̃, γ̃) = ‖z̃‖2
H8(Ω̃)

+ ‖γ̃‖2
H8(Ω̃)

+ ‖σ̃‖2
H8(Ω̃)

;

α ≥ 0 is a regularization parameter; and

Fτ (z̃, σ̃, γ̃)

=
∥∥∥R̃−Rγ̃,z̃

∥∥∥2

L(H−1/2(∂Ω̃))
+ ‖ z̃(x̃)

z(f−1
m (x̃))

− r̂(x̃)‖2
L2(∂Ω̃)

+ ‖σ̃|∂Ω̃ − σ̂‖2
L2(∂Ω̃)

+ τ‖C‖2
L2(Ω̃)

+

n∑
i,j=1

∥∥∥∥σ̃ij −
(
− 1

n− 2
Ricij +

1

2(n− 1)(n− 2)
g̃ijR − 1

2
g̃ij g̃

lmσlσk

)∥∥∥∥2

L2(Ω̃)

,

where τ ≥ 0, g̃ is the metric tensor corresponding to γ̃, C = Cij is the
Cotton–York tensor of g̃, and finally Ric and R are the Ricci curvature and
scalar curvature tensors, respectively, of g̃.

Note that step 1 above requires the use of highly oscillating boundary data, and
hence very small values of z might cause problems in practice. Also, the value of the
Cotton–York tensor at x ∈ Ω, Cij(x), the Ricci curvature tensors Rij(x), and the
scalar curvature R(x) depend on the values of the conductivity η and its three first
derivatives at x.

Proposition 5.1. Let Ω ⊂ R
3 be a bounded strictly convex C∞-domain. As-

sume that γ ∈ C∞(Ω) is an isotropic conductivity, z ∈ C∞(∂Ω), z > 0 a contact
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impedance, and Rγ,z the corresponding RN map. Let Ω̃ be a model of the domain

satisfying the same regularity assumptions as Ω, and fm : ∂Ω → ∂Ω̃ be a C∞-smooth
diffeomorphism.

Assume that we are given ∂Ω̃, the values of the contact impedance z(f−1
m (x̃)),

x̃ ∈ ∂Ω̃, and the map R̃ = (fm)∗Rγ,z.
Let τ ≥ 0. Then the minimum of Fτ (z̃, σ̃, γ̃) is zero; any minimizers z̃, σ̃, and γ̃

of Fτ (z̃, σ̃, γ̃) satisfy z̃ = (fm)∗z; and there is a diffeomorphism F̃ : Ω → Ω̃ such that

F̃ |∂Ω = fm, γ̃ = F̃∗γ, and σ̃ = − log γ̃.
Proof. Assume first that τ > 0. The minimizer exists because of the existence of

Ω, γ, z, and σ, and the minimum is zero. Let z̃, σ̃, and g̃ be some minimizers of Fτ .
As then the Cotton–York tensor is zero and the equations (5.1) are valid, it follows

from [8] that the metric gij = exp(2σ(x̃))gij(x̃), x ∈ Ω̃, is flat. Since Rz̃,γ̃ = R̃, we
have z̃ = (fm)∗z, and the metric g̃ corresponding to γ̃ has to satisfy i∗g̃ = ĝ on the
boundary. This and the vanishing of Fτ imply that

i∗g = exp(2σ̂)i∗g̃ = exp(2σ̂)ĝ = exp(2σ̂)(fm)∗(γhE)

= exp(2σ̂) γ̂ (fm)∗(hE) = (fm)∗(hE).

Consider now (Ω̃, g) as a Riemannian manifold. As g is flat, we know that (Ω̃, g) can

be embedded isometrically to domain Ω0 ⊂ R
n. Let k : Ω̃ → Ω0 be this embedding.

Since i∗g = (fm)∗(hE), it follows from the Cohn–Vossen rigidity theorem that the
boundaries ∂Ω0 and ∂Ω are congruent in a rigid motion T and k ◦ fm = T |∂Ω. Then
(T−1 ◦ k)∗γ̃ is an isotropic conductivity, the contact impedances of (T−1 ◦ k)∗z̃ and z
coincide, and the RN maps of (T−1 ◦ k)∗σ̃ and σ coincide. By the uniqueness of the
isotropic inverse conductivity problem [31], (T−1 ◦ k)∗γ̃ = γ. This proves the claim
in the case τ > 0.

Next, consider the case τ = 0. Again, a minimizer exists because of the existence
of Ω, γ, z, and σ, and the minimum is zero. Let z̃, σ̃, and g̃ be some minimizers. As
the minimum of Fτ is zero, the equations (5.1) are valid. By [8, p. 92], the solutions
σ satisfy the integrability conditions

(5.2) ∇kσij −∇jσik = σlR
l
ijk, i, j, k = 1, . . . , n,

which imply that the conformal covariant satisfying Rijk vanishes. Thus the Cotton–
York tensor Cij is zero. This means that the minimizers z̃, σ̃, and g̃ of Fτ with τ = 0
are also minimizers of Fτ with any τ > 0.

One can think of τ as a regularization parameter: In general the solvability prop-
erties of (5.1) are sensitive to the compatibility conditions, i.e., the vanishing of the
Cotton–York (or the Weyl tensor in higher dimensions).

To find the domain Ω, we can continue the above algorithm by applying the fact
that conformally Euclidean manifold of dimension n can be a conformally embedded
to R

n in a constructive way (cf. [16]).

6. In steps 1–5 we have found metric tensors g̃ and g = e2σ̃ g̃ on Ω̃ such that
g̃ = F∗(g) and g = F∗(g

E), where g is the metric corresponding to the

metric γ on Ω, gE is the Euclidean metric on Ω, and F : Ω → Ω̃ is some
diffeomorphism.
Let y ∈ Ω̃ and find geodesics μy,ξ(s) starting from y with respect to the
metric g. We parametrize these geodesics in such a way that μy,ξ(0) = y and

∂sμy,ξ(0) = ξ is a unit tangent vector of the tangent space (TyΩ̃, g). These
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geodesics correspond to the half-lines in R
3 starting from some point y0 ∈ Ω.

Let J : (TyΩ̃, g) → R
3 be a linear isometry, and define a map κ : Ω̃ → R

3 by
setting

κ(μy,ξ(s)) = s Jξ, s ≥ 0.

Then κ ◦ F : Ω → R
3 is an affine isometry that extends to a rigid motion

T : R
3 → R

3 with T (y) = 0. Thus we can find κ(Ω̃) = T (Ω), κ∗(σ̃) = T∗γ,
and κ∗(z̃) = T∗z

Thus we have shown the following reconstruction result.
Corollary 5.2. Let Ω, γ, z, Ω̃, and fm be as in Proposition 5.1. Assume

that we are given ∂Ω̃, the contact impedance z(f−1
m (x̃)), x̃ ∈ ∂Ω̃, and the RN map

R̃ = (fm)∗Rγ,z. Then the algorithm 1–6 determines Ω, γ, and z up to a rigid motion
T : R

3 → R
3.

We intend to investigate the numerical implementation of the method and give
numerical test results in part II of this paper.

Appendix. Here we define the conformal curvature tensors. We say that a metric
gij in a domain Ω ⊂ R

n is conformally flat if there is a scalar function a(x) > 0 such
that the curvature of tensor of a(x)gij(x) is identically zero.

First, let γ be an isotropic conductivity, i.e., a smooth positive function in Ω,
and let F : Ω → Ω̃ be a diffeomorphism. Let η = F∗γ be a possibly anisotropic
conductivity in Ω̃. It defines a Riemannian metric g̃ on Ω̃, given by

[g̃jk]
n
j,k=1 = ([g̃jk]nj,k=1)

−1, g̃jk = det(η)1/(n−2)ηjk.

As F−1 : Ω̃ → Ω can be considered as coordinates, we see that in proper coordinates
the metric g̃ is a scalar function times a Euclidean metric; that is, g̃ is conformally
flat.

Next we consider a general metric tensor gij and recall facts concerning its con-
formal flatness. Note that below we use the Einstein summation convention and omit
the summation symbols when possible. The following tensors are related to conformal
flatness:

(a) Assume that n = 3. Then the conformal covariant, given in terms of curvature
tensors (see the explanation on notation below) is

Rijk = ∇kRij −∇jRik +
1

2(n− 1)
(gik∇jR− gij∇kR).

In the three dimensional case, Rijk defines a tensor that can be considered as
a vector valued 2-form Rijkdx

j ∧ dxk. Operating with the Hodge operator ∗
on this 2-form, we obtain the Cotton–York tensor,

Cij = gkpglq∇k

(
Rli −

1

4
Rgli

)
εpqj ,

where εpqj is the Levi–Civita permutation symbol.
(b) Assume that n ≥ 4. Then the Weyl tensor is

Wijkl = Rijkl +
1

n− 2
(gilRkj + gjkRkj − gikRlj − gjlRki)

+
1

(n− 1)(n− 2)
(gikglj − gilgkj)R.
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The crucial fact related to our considerations is that the metric g is conformally flat
if and only if in the dimension n = 3 the Cotton–York tensor vanishes and in the
dimension n = 4 the Weyl tensor vanishes; see [8, p. 92] or [7, 32, 2].

Above, Rijkl is the Riemannian curvature tensor,

Rijkl =
∂

∂xk
Γi
jl −

∂

∂xl
Γi
jk + Γp

jlΓ
i
pk − Γp

jkΓ
i
pl, Rp

jkl = gpiRijkl,

where Γi
jk are Christoffel symbols,

Γi
jk =

1

2
gpi

(
∂gjp
∂xk

+
∂gkp
∂xj

− ∂gjk
∂xp

)
,

Rij is the Ricci curvature tensor, Rij = Rk
ijk, and R is the scalar curvature R = gijRij .

Finally, ∇k is the covariant derivative that is defined for a (0,2)-tensor Ail and a (0,1)-
tensor Bl by

∇kAli =
∂

∂xk
Ali − Γp

klApi − Γp
kiAlp, ∇kBl =

∂

∂xk
Bl − Γp

klBp.
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Abstract. The existence of a heteroclinic bifurcation for the Michaelis–Menten-type ratio-
dependent predator-prey system is rigorously established. Limit cycles related to the heteroclinic
bifurcation are also discussed. It is shown that the heteroclinic bifurcation is characterized by the
collision of a stable limit cycle with the origin, and the bifurcation triggers a catastrophic shift from
the state of large oscillations of predator and prey populations to the state of extinction of both
populations. It is also shown that the limit cycles related to the heteroclinic bifurcation originally
bifurcate from the Hopf bifurcation.
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1. Introduction. In studying the interaction between predators and their prey,
it is crucial to determine what specific form of the functional response that describes
the amount of prey consumed per predator per unit of time is biologically plausible
and provides a sound basis for theoretical development. Traditionally, dependence
on prey density has been the starting point, giving a functional response function
of the form p(x). In the simplest case, such a function is a linear function of x,
which is incorporated into the classical Lotka–Volterra predator-prey model. The
linear functional response is a limiting case of the more general and useful Michaelis–
Menten or Holling type II response function of the form p(x) = cx

m+x . Because p(x)
varies solely with prey density, it is usually labeled as “prey-dependence.”

Sole dependence of the functional response on prey density has been questioned by
several biologists (e.g., DeAngelis, Goldstein, and O’Neill [10], Arditi and Ginzburg [4],
Arditi, Ginzburg, and Akcakaya [5], Akcakaya [1], Gutierrez [12]). It has been
recognized that predators might interfere with each other’s foraging, requiring the
functional response to depend on densities of both predators and prey (DeAngelis,
Goldstein, and O’Neill [10], Arditi and Akcakaya [2], Beddington [6]). Arditi and
Ginzburg [4] have argued that a functional response depending on the ratio of prey to
predator abundance is a suitable representation of some of these phenomena. With
the Michaelis–Menten or Holling type II-type ratio-dependence functional response
p(x/y) and logistic prey growth, the predator-prey system takes the form of

x′(t) = rx
(
1 − x

K

)
− cxy

x + my
,

y′(t) = y

(
fx

x + my
− d

)
,

(1.1)
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where x(t), y(t) represent population densities of prey and predator, respectively, and
r, K, c, m, f , d are positive constants that stand for prey intrinsic growth rate,
carrying capacity, capturing rate, half saturation constant, maximal predator growth
rate, and predator mortality rate, respectively.

The ratio-dependent predator-prey system (1.1) exhibits original dynamic proper-
ties that have never been observed in the early prey-dependent predator-prey systems.
Specifically, the ratio-dependent predator-prey system (1.1) does not produce the so-
called paradox of enrichment (Hairston, Smith, and Slobodkin [13], Rosenzweig [19])
or the paradox of biological control (Arditi and Berryman [3]). It also allows the
predator population or both populations to either become extinct or coexist, depend-
ing on the initial population values. These are realistic features of predator-prey
models that have been observed experimentally (Huffaker [14], Luckinbill [17]).

The dynamics of the ratio-dependent predator-prey system (1.1) has been sys-
tematically studied by Kuang and Beretta [16], Hsu, Hwang, and Kuang [15], Bere-
zovskaya, Karev, and Arditi [7], and Xiao and Ruan [22]. These authors have shown
that system (1.1) has very rich dynamics. In particular, the origin is a complicated
equilibrium point whose characteristics determine some important properties of the
system (see [7, 22]), the limit cycle exists and is unique and stable (see [15]), and the
heteroclinic bifurcation plays an important role in understanding the dynamics of the
system (see [7, 15]). Berezovskaya, Karev, and Arditi [7] have found numerically the
heteroclinic cycle in (1.1) that corresponds to the disappearance of the limit cycle. It
is thus interesting to rigorously establish the existence of heteroclinic bifurcation and
to study the properties associated with the bifurcation. In a recent paper [20], Tang
and Zhang reduced the system to a perturbed Hamiltonian system with a Delta-shape
heteroclinic loop and computed Melnikov’s function by eliminating some complicated
terms in establishing the heteroclinic bifurcation. This is a valid and novel approach,
yet its implementation is subtle since it involves intensive steps of variable manipula-
tions and computations. The analysis presented in [20] contains a flaw that failed to
ensure a proper application of Melnikov’s method.

The objective of this paper is to rigorously establish the existence of heteroclinic
bifurcation and determine the associated dynamics in system (1.1). This paper is
organized as follows. The main results of the paper are provided in section 2. In this
section, we use Melnikov’s method to determine the existence of heteroclinic bifurca-
tion. It is shown that the heteroclinic bifurcation is characterized by the collision of
a stable limit cycle with the origin, and the bifurcation triggers a catastrophic shift
from the state of large oscillations of predator and prey populations to the state of
extinction of both populations. We also employ Melnikov’s method to study limit
cycles related to the heteroclinic bifurcation. It is shown that the limit cycles related
the heteroclinic bifurcation originally bifurcate from the Hopf bifurcation. The bio-
logical interpretations of the theoretical results are also provided. Some concluding
remarks are given in section 3.

2. Bifurcations.

2.1. Heteroclinic bifurcation. For simplicity, we nondimensionalize system
(1.1) as in Tang and Zhang [20] with the following scaling:

x → Kx, y → Ky/m, t → mt/c.
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(Throughout this paper the variable on the left-hand side of → always represents the
old variable.) With this scaling, system (1.1) takes the form

x′(t) = αx(1 − x) − xy

x + y
,

y′(t) = −βy +
κxy

x + y
,

(2.1)

where

(2.2) α =
rm

c
, β =

dm

c
, κ =

fm

c
.

As shown in [7, 20, 22], system (2.1) in the first quadrant is equivalent to the
polynomial system

x′(t) = αx(1 − x)(x + y) − xy

y′(t) = −βy(x + y) + κxy
(2.3)

obtained from (2.1) by a change of the independent variable

t → (x + y)t.

As in [7, 20, 22], one can then use Briot–Bouquet’s transformation

(2.4) x → x, y → yx, t → t/x

to convert (2.3) to

x′(t) = x[α− αx− (1 − α)y − αxy],

y′(t) = y[(κ− α− β) + αx + (1 − α− β)y + αxy].
(2.5)

Transformation (2.4) is a homomorphism in the first quadrant, and its inverse maps
the y axis to the point (0, 0).

Tang and Zhang [20] used variable changes to transform (2.5) to

v′1(t) = v1

[
μ1 + v2

1 +
1 − α

1 − α− β
v2
2

]
+ δv1

(
μ2 +

1

1 − α− β
v2
1v

2
2

)
,

v′2(t) = v2

[
−2(1 − α− β)

2 − 2α− β
μ1 − v2

1 − v2
2

]
+ δv2

(
μ2 −

1

1 − α− β
v2
1v

2
2

)
,

(2.6)

where δ, μ1, and μ2 are related to α and α + β − κ, and in particular α = −(δμ1 +
δ2μ2). In [20] the coefficient term (1 − α)/(1 − α − β) is treated as a constant when
Melnikov’s method is used to carry out bifurcation analysis with respect to parameters
δ, μ1, μ2. This is not appropriate. One needs to split this coefficient term into a term
independent of bifurcation parameters and a perturbation term in applying Melnikov’s
method.

Instead of working on (2.6), we study the following simpler system

x′(t) = x[α− x− (1 − α)y − xy],

y′(t) = y[(κ− α− β) + x + (1 − α− β)y + xy],
(2.7)

obtained from (2.5) by the change of variable

x → x/α.



1456 BINGTUAN LI AND YANG KUANG

We simply use α and ν = κ − α − β (or equivalently α and κ) as our unfolding
parameters while fixing β. In (2.7) there are two second order terms whose coefficients
depend on α. We decompose these terms and rewrite (2.7) as

x′(t) = x(α− x− y) + x(αy − xy),

y′(t) = y(ν + x + (1 − β)y) + y(−αy + xy).
(2.8)

This system can then be viewed as a perturbation of the system

x′(t) = x(α− x− y),

y′(t) = y(ν + x + (1 − β)y),
(2.9)

as α, ν, x, and y are all small. Note that the coefficients of second order terms in
(2.9) do not depend on α and ν.

We shall assume that

β < 1.

System (2.9) is integrable if

(2.10) ν = −2(1 − β)

2 − β
α < 0,

and in this case the function

(2.11) Fα(x, y) =
1

b
xayb

(
α− x− 2 − β

2
y

)
,

where

(2.12) a = 2
1 − β

β
, b =

2 − β

β
,

is constant along solution curves. In fact, when (2.10) holds, along any solution curve

(x(t), y(t)) of (2.9), dFα(x,y)
dt = ∂Fα

∂x x′(t) + ∂Fα

∂y y′(t) = 1
b [αax

a−1yb − (a + 1)xayb −
2−β

2 axa−1yb+1]x(α − x − y) + 1
b [αbx

ayb−1 − bxa+1yb−1 − 2−β
2 (b + 1)xayb]y(ν + x +

(1− β)y) = 0. The level curves of Fα take the form shown in Figure 1. Here we have

a family of periodic orbits encircling the center at (x̄, ȳ) = ( (1−β)α
2−β , α

2−β ) and limiting

on the heteroclinic cycle Fα(x, y) = 0, which is a triangle connecting the saddles at
(0, 0), (α, 0), and (0, 2α

2−β ).

Using the transformations

x → εx, y → εy, α = εν1, ν = −2(1 − β)

2 − β
εν1 + ν2ε

2

and rescaling time t → t/ε, we convert system (2.8) into

x′(t) = x[ν1 − x− y] + ε(ν1xy − x2y),

y′(t) = y

[
−2(1 − β)

2 − β
ν1 + x + (1 − β)y

]
+ ε(ν2y − ν1y

2 + xy2).
(2.13)
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Fig. 1. The level curves of Fα(x, y).

Multiplying (2.13) by the integrating factor xa−1yb−1, we obtain the “equivalent”
perturbed Hamiltonian system:

x′(t) = xayb−1{[ν1 − x− y] + ε(ν1y − xy)}

y′(t) = xa−1yb
{[

−2(1 − β)

2 − β
ν1 + x + (1 − β)y

]
+ ε(ν2 − ν1y + xy)

}
.

(2.14)

One can check that

(2.15) Fν1
(x, y) =

1

b
xayb

(
ν1 − x− 2 − β

2
y

)
is the Hamiltonian function for (2.14) when ε = 0, where a and b are given in (2.12).

We use the Melnikov theory [9, 11, 21] to locate parameter values that produce
a heteroclinic cycle for (2.14) in the case ε �= 0. The analysis that we perform here
is similar to what is carried out in section 7.5 of [11] and section 4.7 of [9]. We can
set ν1 = 1 without loss of generality. The heteroclinic cycle for ε = 0 lies on the level
curve F1(x, y) = 0, denoted by Γ0, which corresponds to a triangle formed by the
three line segments determined by x = 0, y = 0, and x + 2−β

2 y = 1. Let

G(x, y) = (xayb−1(y − xy), xa−1yb(ν2 − y + xy)).

The Melnikov function is

M(ν2) =

∫ ∫
intΓ0

traceDG(x, y)dxdy(2.16)

=

∫ ∫
intΓ0

[(a− b− 1)xa−1yb + (b− a)xayb + bxa−1yb−1ν2]dxdy,

where intΓ0 denotes the region bounded by Γ0. M(ν2) = 0 has a unique solution

(2.17) ν2 = − (a− b− 1)I(a− 1, b) + (b− a)I(a, b)

bI(a− 1, b− 1)
,

where

I(u, v) =

∫ ∫
intΓ0

xuyvdxdy, u > −1, v > −1.
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It is easy to see that

I(u, v) =

∫ 1

0

xu

∫ (1−x)
s

0

yvdydx =
1

(v + 1)sv+1

∫ 1

0

xu(1 − x)v+1dx,

where s = 2−β
2 .

We have

I(u + 1, v) =
1

(v + 1)sv+1

∫ 1

0

xu+1(1 − x)v+1dx

=
1

(v + 1)sv+1

∫ 1

0

xu(1 − x)v+1(x− 1 + 1)dx

= − 1

(v + 1)sv+1

∫ 1

0

xu(1 − x)v+2dx + I(u, v)

= −v + 2

v + 1
sI(u, v + 1) + I(u, v).

(2.18)

Using integration by parts, we obtain

I(u, v + 1) =
1

(v + 2)sv+2

∫ 1

0

xu(1 − x)v+2dx

=
1

(v + 2)sv+2

[
xu+1(1 − x)v+2

u + 1

∣∣∣∣1
0

−
∫ 1

0

xu+1

u + 1
(−1)(v + 2)(1 − x)v+1dx

]
(2.19)

=
v + 1

(u + 1)s
I(u + 1, v).

Using (2.18) and (2.19), we find

(2.20) I(u + 1, v) =
u + 1

u + v + 3
I(u, v), I(u, v + 1) =

v + 1

(u + v + 3)s
I(u, v).

It follows from (2.12), (2.17), and (2.20) that

ν2 = −
[
a− b− 1

b

I(a− 1, b)

I(a− 1, b− 1)
+

b− a

b

I(a, b)

I(a, b− 1)

I(a, b− 1)

I(a− 1, b− 1)

]

= −
[

a− b− 1

(a + b + 1)s
+

a(b− a)

(a + b + 1)(a + b + 2)s

]

=
6β

(4 − β)(2 − β)2
.

The Melnikov theory [11] shows that if

(2.21) ν = −2(1 − β)

2 − β
α +

6β

(4 − β)(2 − β)2
α2 + O(α3),

then system (2.8) has a heteroclinic cycle. It is shown in [7] that the heteroclinic cycle
is stable.

Condition (2.21) is equivalent to

(2.22) κ = β +
β

2 − β
α +

6β

(4 − β)(2 − β)2
α2 + O(α3).
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Fig. 2. Dynamics of system (2.7) if the conditions of Lemma 1 hold.

We have obtained the following result.
Lemma 1. Assume that β is fixed and β < 1. For small α, if condition (2.22)

holds, then system (2.7) has a stable heteroclinic cycle connecting saddles at (0, 0),

(α, 0), and (0, −(κ−α−β)
1−α−β ).

The dynamics of the system in the case that there exists a stable heteroclinic
cycle was discussed by Tang and Zhang [20]. For the sake of completeness, we describe
the dynamics in this case based on our analytical results. The positive coexistence
equilibrium (β+ακ−κ

κ , κ−β
β ) lies inside the heteroclinic cycle. One can check that it is

a spiral source. Conditions of Lemma 1 show that for small α

(2.23) β < κ < α + β < 1, β + ακ− κ > 0,

which implies that the condition (2.9) in Hsu, Hwang, and Kuang [15] holds. The-
orem 2.7 in [15] shows that in this case a limit cycle in the system is always stable
and unique once it exists. We therefore conclude that there is no limit cycle inside
the heteroclinic cycle since it is attracting. The dynamics of the system in this case
is depicted in Figure 2.

Lemma 1 and the transformations used to convert (2.1) to (2.7) imply the follow-
ing result.

Theorem 1. Assume that β is fixed and β < 1. If for small α condition (2.22)
holds, then system (2.1) has a stable heteroclinic cycle connecting saddles at (0, 0)
and (1, 0).

The conditions of Theorem 1 imply that

(2.24) c− rm− dm > 0, f − r − d < 0, d < f <
cd

c− rm

in the original system (1.1). In view of the properties of the heteroclinic cycle described
in Lemma 1, and after Theorem 2.3 and Theorem 2.5 of Xiao and Ruan [22], we see
that the heteroclinic cycle in Theorem 1 approaches the origin in the characteristic
direction θ = arctan((κ − α − β)/(α + β − 1)), and the topological structure of the
origin consists of a hyperbolic sector and a parabolic sector; see Figure 3.

2.2. Limit cycles near the heteroclinic bifurcation. We have used Mel-
nikov’s method to show the persistence of the heteroclinic cycle of the integrable
system (2.13) when ε = 0 under the perturbation described by (2.22). This method
can also be used to study the survival of each periodic cycle in (2.13) under an appro-
priate perturbation (see section 7.5 of Guckenheimer and Holmes [11] and section 4.7
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Fig. 3. Dynamics of system (2.1) when a stable heteroclinic cycle exists.

Fig. 4. Dynamics of system (2.1) when 0 < ν2 < 6β
(4−β)(2−β)2

, β < 1, and κ is given by (2.25).

of Chow, Li, and Wang [9]). Let Γγ be a periodic cycle in Figure 1 that represents
the level curves of F1; then this cycle survives in system (2.1) if

(2.25) κ = β +
β

2 − β
α + ν2α

2 + O(α3)

with

(2.26) ν2 = −
∫ ∫

intΓγ
[(a− b− 1)xa−1yb + (b− a)xayb]dxdy∫ ∫

intΓγ
bxa−1yb−1dxdy

,

where intΓγ denotes the region bounded by Γγ . In (2.26), ν2 represents the solution
of M(ν2) = 0, where M(ν2) is given by (2.16) with Γ0 replaced by Γγ . We first
study small cycles near the equilibrium. As Γγ shrinks to the equilibrium (x̄, ȳ) =

( (1−β)α
2−β , α

2−β ), the right-hand side of (2.26) approaches − (a−b−1)x̄a−1ȳb+(b−a)x̄aȳb

bx̄a−1ȳb−1 =

0+O(α), which shows ν2 = 0 in (2.25). In this case, standard Hopf bifurcation analysis
shows that a supercritical Hopf bifurcation occurs in (2.1). Since (2.25) implies the
condition (2.9) in [15], Theorem 2.7 in [15] shows that system (2.1) has at most one
limit cycle. Due to this fact and continuity, as Γγ moves from a circle near the
equilibrium to a circle near the heteroclinic cycle, ν2 increases from a number near 0
to a number near 6β

(4−β)(2−β)2 . This shows that as ν2 increases from 0 to 6β
(4−β)(2−β)2 ,

system (2.1) has a unique limit cycle whose size increases from 0 to the size of the
heteroclinic cycle.

One can easily check that condition (2.25) and the assumption β < 1 imply
(2.24). Using Theorem 2.3 and Theorem 2.5 of Xiao and Ruan [22] and the properties
associated with the heteroclinic cycle discussed above, we depict the dynamics of (2.1)
before and after the heteroclinic bifurcation occurs as in Figures 4 and 5.
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Fig. 5. Dynamics of system (2.1) when ν2 > 6β
(4−β)(2−β)2

, β < 1, and κ is given by (2.25).

ν6β/( (4−β)(2−β)  )2 2

Η

x

Ο

SSO
Η

SSC

Fig. 6. Bifurcation diagram of the prey population.

2.3. Interpretation of the theoretical results. Based on the above results,
the bifurcation diagram of the prey population x of system (2.1) is depicted in Figure 6.
(The bifurcation diagram of the predator population y is similar.) 0 is the first
critical value for ν2 at which the Hopf bifurcation occurs. If ν2 is slightly less than 0,
both prey and predator populations either tend to the origin (solid line labeled SS0),
becoming extinct eventually, or tend toward a stable coexistence equilibrium (solid
line labeled SSC), depending on the initial values. If ν2 is greater than 0, both prey
and predator populations either tend toward the origin or tend to a limit cycle (solid
line labeled H). In this case, the coexistence equilibrium (dashed line) is unstable.
The Hopf bifurcation marks a critical condition at which the coexistence equilibrium
becomes unstable and the prey and predator populations near the equilibrium starts
oscillating periodically. If ν2 increases from 0 to 6β

(4−β)(2−β)2 , the amplitude of the

oscillating population becomes larger. 6β
(4−β)(2−β)2 is the second critical value for ν2

at which heteroclinic bifurcation occurs. It represents the collision of a large stable
limit cycle with the origin. If ν2 is slightly greater than 6β

(4−β)(2−β)2 , the limit cycle

attractor does not exist anymore, and both prey and predator populations become
“unconditionally extinct”; i.e., the origin attracts all solutions (except the coexistence
equilibrium solution). Thus starting in the oscillating state, a small increase in ν2 may
lead to a shift to the attractor—the origin. This heteroclinic bifurcation leading to the
collapse of large oscillations of populations and extinction of populations is usually
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Fig. 7. Small and large periodic oscillations of prey population. (a) ν2 = 0.2, (b) ν2 = 0.54.
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Fig. 8. Extinction of prey population accompanied with oscillations when ν2 = 0.56.

called a “catastrophic bifurcation” (Rinaldi and Scheffer [18]).

We carry out numerical simulations to demonstrate the dynamics of (2.1) de-
scribed in the bifurcation diagram of Figure 6. We choose β = 0.6 and α = 0.02
(a relatively small number). In this case 6β

(4−β)(2−β)2 = 0.5402. Figure 7 shows pe-

riodic oscillations of the prey population when ν2 = 0.2 and ν2 = 0.54. Note that
the amplitude of the periodic solution for ν2 = 0.54 is large, whereas the amplitude
of the periodic solution for ν2 = 0.2 is very small. Figure 8 shows extinction of the
population accompanied with oscillations when ν2 = 0.56, which is slightly greater
than the critical value near 0.5402

Recall that α, β, and κ in terms of the parameters in the original system (1.1)
are given by

α =
rm

c
, β =

dm

c
, κ =

fm

c
.

Our assumption β < 1 implies dm < c. This shows that the capturing rate is relatively
large. We fix m

c so that if the prey intrinsic growth rate r is small, then α is small.
We rewrite (2.25) in the form that the maximal predator growth rate f is a function
of other parameters in (1.1) for small r. The resulting expression can then be used to
study the dynamics of (1.1) including the Hopf bifurcation and heteroclinic bifurcation
by varying f , based on the dynamics of the equivalent system (2.1). One can see that
for relatively large c and f both predator and prey populations become extinct.
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3. Concluding remarks. We have rigorously established the existence of a
heteroclinic bifurcation and studied the related dynamics for the Michaelis–Menten-
type ratio-dependent system by using Melnikov’s method. This method is often used
to obtain “small” heteroclinic cycles or limit cycles in studying local bifurcations (see
Guckenheimer and Holmes [11], Wiggins [21], and Chow, Li, and Wang [9]). The
heteroclinic cycle described in Lemma 1 is such a small heteroclinic cycle near the
origin. However, the heteroclinic cycle described in Theorem 1 that connects the
origin and the equilibrium (1, 0) is not a small one. This is essentially due to the
variable change x → x/α for small α that we have used, which together with other
variable changes converts the former heteroclinic cycle into the latter one.

Our results show that near the Hopf bifurcation, depending on the initial con-
ditions, populations of predators and prey either coexist or become extinct. These
features have not been described by early prey-dependent predator-prey systems. The
heteroclinic bifurcation triggers a shift from the state of periodic coexistence of pop-
ulations to the state of extinction of both populations, resulting in a “catastrophe”
to the predator-prey system.

Rinaldi and Scheffer [18] gave many interesting bifurcation examples in ecological
models. They pointed out that a heteroclinic bifurcation is due to the collision of a
stable limit cycle and a unstable saddle equilibrium. This is similar to what happens
in system (1.1). However, the origin, an unstable point involved in the heteroclinic
bifurcation for (1.1), is always an attractor. It is very interesting to note that the
heteroclinic bifurcation results in the global attractivity of the origin.
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tions for improving the paper. We also want to thank Professor Weinian Zhang for
valuable discussions.
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LIFT ON SLENDER BODIES WITH ELLIPTICAL CROSS SECTION
EVALUATED BY USING AN OSEEN FLOW MODEL∗

EDMUND CHADWICK† AND NINA FISHWICK†

Abstract. Consider uniform, incompressible flow past a slender body with an elliptical cross
section such that the major axis of the body is inclined slightly to the flow direction. Assume that the
flow is inviscid everywhere except in a thin boundary layer region and in the vortex core of trailing line
vortices that emanate from the body into the vortex wake. Hence, the flow is quasi-inviscid, and so
the slip (impermeability) boundary condition is applied. Further assume that outside the boundary
layer the velocity is to first order the uniform stream velocity. Then the Oseen approximation can be
applied. The resulting solution, up to the slender body approximation, is given, and the lift over the
slender body is determined. This solution is then compared with the theoretical and experimental
results for flow past a delta wing, the viscous cross-flow method and experimental results for flow
past a body with a circular cross section, and Newtonian impact theory and experimental results for
flow past a body with an elliptical cross section.

Key words. oseen flow, slender body theory

AMS subject classifications. 76D07, 76D17, 76D09
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1. Introduction. Slender body theories are used to provide efficient and accu-
rate algorithms to important fluid maneuvering applications, in particular in missile
guidance [24] and ship maneuverability [23]. The historical development began with
Munk [22] to calculate the moment on an airship. Munk used the inviscid flow model,
and for the lift on a slender delta wing Jones [15] demonstrated a high degree of agree-
ment with experiment. However, for bodies that do not have trailing edges or wings,
there are significant discrepancies in the lift calculation from the inviscid formulation.
Newman [23] notes an almost factor two increase in the experimental lift over the
theoretical result for the lift on a slender ship.

Allen and Perkins [1] modify the inviscid result for missiles with a circular cross
section by including a viscous cross-flow contribution. The lift is obtained by consid-
ering the cross-flow drag along the body, and the results agree well with experiment.
However, the moment calculation is not as accurate. Fishwick [10] has determined
the center of moment for the viscous lift for a comprehensive set of National Advisory
Committee for Aeronautics (NACA) experiments on various slender missile shapes
with Reynolds number Re = 103 − 106, aspect ratio, and slenderness parameter of
order O(10−1). All of the subsequent experimental results referred to in this paper
are in this range. For flows less than or equal to 4◦, Fishwick demonstrates that the
viscous force acts at the end section. This result has also been observed by Clarke [9],
who divides a variety of ship hulls into sections along the length and then determines
the forces on each section. The results show a large viscous lift (on top of the inviscid
lift from the pressure distribution) at the end section only. In contrast, the Allen and
Perkins method assumes a viscous cross-flow at each section along the body length,
and consequently the viscous force acts close to the midsection. Furthermore, the
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Allen and Perkins method does not work as well for bodies not having a circular cross
section, and modifications to the general theory are required.

Jorgensen modifies the viscous cross-flow method to overcome this deficiency by
using Newtonian impact theory [16]. For the case of a body with an elliptical cross
section, as the semiminor axis of the body is reduced the lift also reduces relative to a
body with a circular cross section. Jorgensen’s result gives good first order agreement
with experiment, and Jorgensen argues that the reduction in lift determined by this
theory is justified from experimental observations relating to the change in the position
and therefore the lifting effect of trailing line vortices over the slender body.

Trailing vortices emanating from the leading edge of a delta wing are known to
generate uplift at a high angle of attack [27] but not at small angles of attack. How-
ever, for slender ships the vortex strength and position of the trailing line vortices
along the length of the body have been determined experimentally, and these results
were fed into an inviscid flow model [13]. This approach gives good agreement with ex-
periment, but the calculation of the vortex strength and position has been determined
experimentally rather than from the theoretical model.

Chadwick [6] considers a slender body in Oseen flow. The theory is applicable
to large Reynolds number flows (but aerodynamically low-speed) of around Re =
kL = 103 − 106, where k = ρU/2μ and d = Lδ. (Here, the free stream velocity is
given by U ; ρ and μ are the fluid density and the dynamical coefficient of viscosity,
respectively; a typical cross-sectional length is given by d; L is the body length;
and δ is the slenderness parameter.) So near the slender body, viscous forces are
negligible, and the flow is very nearly inviscid up to a small thickness boundary layer.
This means that the slip/impermeability boundary condition can be applied to the
inviscid velocity potential. However, in the far-field downstream wake, viscous forces
cannot be neglected. Batchelor [2] states that the effect of viscosity, although small,
gives the appropriate leading order solution. To obtain the far-field representation of
the trailing vortex, Batchelor [3] retains the viscous component and linearizes about
the uniform stream, yielding the Oseen equations. Chadwick [8] determines the line
vortex in Oseen flow and demonstrates the importance of the viscous term in the
calculation of the lift force. Outside the wake, the velocity is given by the Oseen
velocity potential. The near-field inviscid potential and far-field Oseen potential are
matched. (It is further noted that the near-field inviscid flow region assumes a small
perturbation flow [18] such that the perturbed velocity is much smaller than the
uniform stream velocity. This is the Oseen approximation, and so to this level of
approximation the near-field inviscid potential is identically the Oseen potential.) In
the matching a coupled viscous term arises in the Oseen flow field which provides
an additional viscous force. In this way, the additional viscous force contribution of
Allen and Perkins is obtained without the requirement of employing a semiempirical
procedure. For flow past a slender body with a circular cross section, Chadwick [6]
demonstrates that the additional viscous lifting force is equal to, and on top of, the
inviscid lifting force from the pressure. This agrees with the experimental findings of
Newman [23], Clarke [9], and Allen and Perkins [1]. Applied to the problem of flow
past a slender delta wing [7], the theory gives a lifting force the same as that given
by the inviscid flow theory and experiment detailed by Jones [15].

In the present paper, we shall apply the slender body theory in Oseen flow pre-
sented in [6] for the case of a slender body with an elliptical cross section and in
particular derive the formula that determines the lift. This is obtained by represent-
ing the body by a far-field distribution of Oseen lifting elements over an area bounded
by the focii of each elliptical cross section. The potential velocity part of this distribu-
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tion in turn approximates to a near-field inviscid flow distribution of normal dipoles.
The two velocity potentials can be matched, and by using elliptical coordinates the
slip (impermeability) boundary condition is satisfied. This theory then enables us to
determine the lift for a delta wing which is compared with Jones’s theory and ex-
perimental results, bodies of a circular cross section which is compared with Allen’s
and Perkins’s viscous cross-flow method and experimental results, and bodies of an
elliptical cross section which is compared with Jorgensen’s Newtonian impact theory
and experimental results. The results of the comparisons are then discussed.

2. Statement of the problem. We start with the Navier–Stokes equations
[20, p. 577]

ρ(u†.∇)u† = −∇p† + μ∇2u† , ∇.u† = 0.(2.1)

u† and p† are the Navier–Stokes velocity and pressure, respectively. ρ and μ are
the fluid density and the dynamical coefficient of viscosity, respectively, and are both
assumed to be constant. ∇ denotes the gradient operator and ∇2 the Laplacian
operator.

The Navier–Stokes equations are linearized to a uniform stream U by assuming
that

u† = U x̂1 + u + O(Uδ2
Oseen) , p† = p∞ + p + O(ρU2δ2

Oseen),(2.2)

where “O” means “of the order of.” The ratio of the perturbed velocity to the uniform
stream velocity is given by δOseen and is much less than 1: |u/U | = O(δOseen) << 1.
x̂1 is the unit vector in the x1-direction for the Cartesian coordinates (x1, x2, x3). p∞
is the far-field pressure upstream from the body and so from Bernoulli’s equation is of
order O(ρU2). As the value is a constant, it is often taken to be zero. u and p are the
Oseen velocity and pressure, respectively. In the linearization about the parameter
δOseen, u is of order O(UδOseen), and p is of order O(ρU2δOseen). We note that δOseen

is independent of the Reynolds number Re, so the linearization does not imply any
restrictions on Re [2], [3], [4]. For the lifting problem at a small angle of attack,
α ∼ V/U , where V is the uniform stream in the cross-flow direction. The order for
the velocity u is given by the cross-flow order O(V ), which is O(Uα). So, δOseen is
given by the angle of attack α, unless δ > α, where δ is the slenderness parameter. In
this case, like the nonlifting problem, the order of the perturbed velocity is given by
the outflow at a cross section, and so δOseen is given by δ. The order of the error in
the velocity and pressure using this approximation is then given from (2.2). (We note
that this error is much larger than the error associated with that due to the boundary
layer thickness for this Reynolds number range, slenderness ratio, and angle of attack
range.) This yields the Oseen equations [25, pp. 30–38]

ρU
∂u

∂x1
= −∇p + (μ∇2)u , ∇.u = 0,(2.3)

∇2p = 0.(2.4)

As R =
√
x2

1 + x2
2 + x2

3 → ∞, then u, p → 0.
The force on the body is represented by a surface integral enclosing the body [5]

such that

F† =

∫ ∫
S

−p†n + μ(n.∇)u† − ρu†u†.nds.(2.5)
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n = (n1, n2, n3) denotes the normal vector to the surface, and F† is the force integral
in terms of the Navier–Stokes velocity and pressure. Therefore

F =

∫ ∫
S

−pn + μ(n.∇)u − ρUun1ds,(2.6)

where F is the force integral in terms of the Oseen velocity and pressure. The singular
force solutions are then obtained by decomposing the fluid velocity into a potential
velocity and a wake velocity [20], [11], [12], [25] such that

u = ∇Φ + w , p = −ρU
∂Φ

∂x1
.(2.7)

The wake velocity w is obtained from the wake velocity potential χ defined separately
for the drag and lift Oseenlet in the following sections 2.1 and 2.2, and the two
potentials satisfy

∇2Φ = 0 ,

(
∇2 − 2k

∂

∂x1

)
χ = 0.(2.8)

2.1. Drag Oseenlet. This gives the unit drag [25], [19], where

ud = ∇φd + ∇χd − 2kχdx̂1 , pd = −ρU
∂φd

∂x1
,(2.9)

φd =
1

4πρU

∂

∂x1
log(R− x1) , χd = − 1

4πρU
e−k(R−x1)

∂

∂x1
log(R− x1).(2.10)

2.2. Lift Oseenlet. This gives the unit lift [25], [19], where

ul = ∇φl + ∇χl − 2kχ∗lx̂2 , pl = −ρU
∂φl

∂x1
,(2.11)

φl =
1

4πρU

∂

∂x2
log(R− x1) , χl = − 1

4πρU
e−k(R−x1)

∂

∂x2
log(R− x1)(2.12)

and where ∂χ∗l

∂x2
= ∂χl

∂x1
.

Consider the limit as the Reynolds number tends to infinity, such that outside
of the boundary layer there is inviscid flow everywhere except in the core of the
viscous wake comprising of trailing line vortices in which the viscous wake velocity
term is present and such that the fluid velocity is finite there. Such a wake can be
constructed from a distribution of singular lifting solutions over an area A. This
results in a distribution of bound and free vortex lines, and the inviscid part is given
by the velocity potential for quasi-inviscid flow

φ(x1, x2, x3) =

∫ ∫
A

l(y1, y3)

4πρU

∂

∂x2
ln(R13 − x11)dy1dy3.(2.13)

A point in space is given by (x1, x2, x3); a point on the area A is given by (y1, y2, y3);
R13 =

√
(x1 − y1)2 + x2

2 + (x3 − y3)2; and x11 = x1 − y1.
The total lift is given by

L =

∫ ∫
A

l(y1, y3)dy1dy3.(2.14)
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For a slender body such that 0 ≤ x1 ≤ xe, we can define a measure of the lift
contribution from the singularities up to the station x1 by

L(x1) =

∫ x1

0

∫
y3

l(y1, y3)dy3dy1

=

∫
y3

l1(x1, y3)dy3,(2.15)

where the double integration is such that it is over the area A, and so the total lift is

L = L(xe),(2.16)

where xe is the end section of the body. The slip body boundary condition for inviscid
flow is

u.n =
∂Φ

∂n
= 0(2.17)

on the body surface, where Φ is the total velocity potential given by

Φ = φ(symm) + φ + Ux1 + V x2(2.18)

for a uniform stream velocity (U, V, 0); φ(symm) is related to terms symmetric about
the x2 axis, and φ is related to terms antisymmetric about the x2 axis. The boundary
condition is satisfied by letting

∇φ(symm).n = −Ux1.n,

∇φ.n = −V x2.n,

where the solution for the potential φ, which is related to the lift, is of primary
concern.

3. Inviscid flow theory. Inviscid flow theory gives the lift Lp determined from
the pressure distribution over the body surface. Assume at each two-dimensional
(2-D) cross section the 2-D Laplacian holds for the potential φ such that

∇2φ = 0.(3.1)

The boundary condition is then given by

∂φ

∂n
= −V x2.n.(3.2)

Consider a body with an elliptical cross section described by Figure 1. The ellipse is
described by ξ = ξ0, where (ξ, η) are the elliptic coordinates

x2 = c cos η sinh ξ,

x3 = c sin η cosh ξ.

In elliptic coordinates, the uniform stream incident potential is then

φinc = V y = V c cos η sinh ξ,(3.3)

and the boundary condition is

∂φtot

∂ξ

∣∣∣∣
ξ=ξ0

= 0,(3.4)
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V

x3

x2

Fig. 1. Elliptical cross section.

where φtot = φinc + φ. The total solution for the velocity potential is the sum of the
uniform potential and a perturbation potential that exists due to the presence of the
body in the uniform stream. This (perturbation) potential then satisfies

φ = V c cos η cosh ξ0e
−(ξ−ξ0).(3.5)

3.1. Lift force. The lift force at the station x1 from the pressure distribution
alone, which in general is a different value from the lift measure L(x1), is given by
the integral

Lp = −
∫ ∫

SB

pn.ŷ2dS

= ρU

∫ xe

0

∫
ellipse

∂φ

∂y1
n.ŷ2dqdy1,(3.6)

where ŷ2 is the unit vector in the y2 direction, dq is an element of length along the
ellipse boundary at this section, y1 = xe is the position of the end section, and

∫
ellipse

is the integral along the ellipse closed contour boundary. We then have

Lp(y1) = ρU

∫
ellipse

φn.ŷ2dq.(3.7)

Changing to elliptic coordinates, we have

Lp(y1) = ρU

∫ 2π

0

V c(y1) cos η cosh ξ0e
−(ξ−ξ0)c cos η cosh ξdη

∣∣∣∣
ξ=ξ0

,(3.8)

since n = (0, ∂y2

∂ξ ,
∂y3

∂ξ )/
√

(∂y2

∂ξ )2 + (∂y3

∂ξ )2, dq =
√

(∂y2

∂η )2 + (∂y3

∂η )2dη, and (∂y2

∂ξ )2 +

(∂y3

∂ξ )2 = (∂y2

∂η )2 + (∂y3

∂η )2, where the distance of the two focii of the ellipse from the
coordinate origin is c. This gives the standard result

Lp(y1) = ρUV (πs(y1)
2),(3.9)
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where s(y1) is the semispan of the ellipse s(x1) = c(x1) cosh ξ0 and determined using
different methods from this one in different contexts by Lighthill [21], Jones [15], and
Nielsen [24]. However, this method does not calculate the additional lift due to viscous
terms. To determine this, we consider Oseen flow and use matched asymptotics rather
than apply the Allen and Perkins method.

4. Lift from Oseen flow slender body theory. By continuing the approx-
imate 2-D near-field flow into the slender body and onto a singular sheet, we can
represent the flow by an integral distribution of normal 2-D dipoles; see the appendix.
Similarly, by using the slender body approximation, the flow near the same singular
sheet can be approximated from the integral representation of lifting elements. This
approximation is also given in terms of an integral distribution of normal 2-D dipoles,
and in this way the two flows are matched.

First, from Green’s integral theorem it can be shown that φ can be represented
by (see the appendix)

φ(x1, x2, x3) =

∫ c(x1)

−c(x1)

f(y1, y3)

2π

∂

∂y2
ln r23dy3

∣∣∣∣∣
y2=0

= −
∫ c(x1)

−c(x1)

f(y1, y3)

2π

x2

x2
2 + (x3 − y3)2

dy3,(4.1)

where r23 =
√

(x2 − y2)2 + (x3 − y3)2, c(x1) is the x3 position of the focii of the ellipse
boundary at section x1, and f(x1, x3) is the dipole strength along the singularity sheet
area A. The singular sheet is defined within the above integral limits. Therefore the
discontinuity in φ across the singular sheet is given by

φ(x1, x2 → 0±, x3) = lim
x2→0

{
∓f(x1, x3)

2π

[
tan−1 c(x1) − x3

|x2|
− tan−1 −c(x1) − x3

|x2|

]}

= ∓f(x1, x3)

2
(4.2)

for 0 ≤ x1 ≤ xe, −c(x1) ≤ x3 ≤ c(x1). So f(x1, x3) = φ(x1, x2 → 0−, x3)−φ(x1, x2 →
0+, x3) as shown in (A.9).

4.1. Normal dipole representation of the near-field 2-D flow represen-
tation. The near-field 2-D inviscid flow has been obtained in section 3 and is given
by the potential (3.5). This potential represents a distribution of singularities along
the line between the ellipse focii. Hence, we can continue (analytically in this case)
the potential up to this line, replacing the body boundary by a region of fluid. In this
way, the type and strength of the singularities that generate this flow can be deter-
mined. From the appendix, it is demonstrated that the flow can be represented by a
distribution of dipoles normal to the line connecting the ellipse focii. The appendix
also enables us to find the strength of the distribution. Continuing the flow into the
ellipse such that ξ → 0, then

φ = V c(x1) cos η cosh ξ0e
−(ξ−ξ0)

∼ ±V
√
c(x1)2 − x2

3 cosh ξ0e
ξ0(4.3)

since ξ(x1, x2 → 0±) ∼ ± x2√
c(x1)2−x2

3

. Hence, from (4.2) and (A.9), the strength is

given by

f(x1, x3) = −2V
√
c(x1)2 − x2

3 cosh ξ0e
ξ0 .(4.4)
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4.2. Normal dipole representation of the 3-D flow representation. We
use the slender body approximation given by Chadwick [6] relating a line distribution
of lifting elements to a near-field approximate distribution of normal dipoles. This
gives, using (2.13),

φ =

∫ ∫
A

l(y1, y3)

4πρU

∂

∂x2
ln(R13 − x11)dy1dy3

∼
∫ c(x1)

−c(x1)

l1(y1, y3)

2πρU

x2

x2
2 + (x3 − y3)2

dy3,(4.5)

where ∂
∂y1

l1(y1, y3) = l(y1, y3). Hence

f(y1, y3) = − l1(y1, y3)

ρU
.(4.6)

4.3. Matching the two flows to find the lift force. Matching the two flows
gives

l1(y1, y3)

ρU
= 2V

√
c(y1)2 − y2

3 cosh ξ0e
ξ0 ;

therefore,

L(y1) = 2ρUV cosh ξ0e
ξ0

∫ c(y1)

−c(y1)

√
c(y1)2 − y2

3dy3

= πρUV c(y1)
2 cosh ξ0e

ξ0 .(4.7)

Relating the potential φ to the Oseen potential then gives L(y1) =
∫ c(y1)

−c(y1)
l1(y1, y3)dy3,

which is the lift generated at each section. So,

L(y1) = πs(y1)
2ρUV

(
eξ0

cosh ξ0

)
,(4.8)

where s(y1) is the semispan of the major axis of the ellipse at station y1, and so
s(y1) = c(y1) cosh ξ0.

Hence, the total lift is given by

L = (πs2
e)ρUV

(
eξ0

cosh ξ0

)

= (πs2
e)ρUV

(
smin
e + se

se

)
,(4.9)

where the end of the slender body is at station ye, and se = s(ye). smin
e is the

semispan of the minor axis of the ellipse at station ye.
Alternatively, the total lift can be found by considering the end section only, in

the following way.

4.4. Alternative calculation for lift at the end section. We follow the
method given in [6] to find a general formula for the lift of a slender body with an
elliptical cross section.



LIFT ON SLENDER BODIES WITH ELLIPTICAL SECTION 1473

In the far field, the elliptic coordinates tend to η ∼ θ and e−ξ ∼ c
2r according to

Batchelor [4, p. 465].
Hence, the potential at the end section becomes

φ = V c(x1) cos η cosh ξ0e
−(ξ−ξ0)

∣∣∣
x1=xe

∼
(

cos θ

r

)(
1

2
c(x1)

2V cosh ξ0e
ξ0

)∣∣∣∣
x1=xe

.(4.10)

Using [6, equation (4.3)], the lift is then given by

L = πρUV c(x1)
2 cosh ξ0e

ξ0
∣∣
x1=xe

= (πs(x1)
2) ρUV

(
eξ0

cosh ξ0

)∣∣∣∣
x1=xe

= (πs2
e)ρUV

(
smin
e + se

se

)
.(4.11)

Therefore, the lift on the body L is not given by the lift calculation over the
slender body surface Lp(xe) calculated from the surface pressure. This is because,
in order to find the total lift, the contribution from the viscous term must also be
included in the lift calculation.

5. Lift on a delta wing. For a delta wing, with rounded leading edges such
that flow separation is avoided, the lift over its surface between the ends is given by

Lp = (πs2
e)ρUV.(5.1)

The Oseen lift on the body is given by

L = (πs2
e)ρUV.(5.2)

Hence the two lift evaluations agree with each other and also with the lift expression
given by Jones [15], who then verifies it by experiment.

6. Lift on a slender body with a circular cross section. The lift from
inviscid flow theory due to pressure over the surface of a body with a circular cross
section between the ends is given by

Lp = (πs2
e)ρUV.(6.1)

This is in contrast to the lift on the body due to the Oseen theory, which is given by

L = 2(πs2
e)ρUV.(6.2)

So there is a doubling of the lift force due to the viscous terms within the Oseen
representation. This is similar to the motivation of the viscous cross-flow method of
Allen and Perkins [1], who assume an additional contribution to the lift from viscous
forces. However, they determine this from empirical data related to cross-flow drag
past a circular cylinder applied at each body section. In Figure 2, we compare the
Oseen theory with the viscous cross-flow method of Allen and Perkins against the
two experiments given in their report. We see that both theories give good first
order approximations to the experiments, unlike the inviscid lift calculation from the
pressure field. Small angles only have been taken because a linear variation in the
angle of attack is assumed. Many other NACA reports give similar results, and these
are detailed in [10]. However, Figure 3 shows that, for a less conventional missile
profile, results were obtained by Jack [14] which show that the Allen-Perkins method
compares far less favorably.
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7. Comparison with experiment and other theories for slender bodies
with an elliptical cross section. Consider a slender body of an elliptical cross
section with a fixed ellipticity. In Figure 4, we plot on the y-axis the ratio of the lift
coefficient with the lift coefficent of an equivalent slender body with a circular cross
section such that the semimajor axis b equals the circular cylinder radius r. On the
x-axis we plot the ellipticity given by the ratio of the semiminor axis to the semimajor
axis a/b. A variety of such slender bodies with varying ellipticity from 0 to 1 is con-
sidered. For an ellipticity of 0, the slender body is a slender wing, and the result of
Jones [15] applies. The horizontal inviscid lift line also goes through this point, since
Lighthill’s result [21] states that the inviscid lift is dependent upon the maximum span
of the slender body only; for slender bodies with an elliptical cross section, this result
is also given by (3.9). The Oseen lift line is also plotted in the figure from the result
of (4.9). We see that, for a slender body with a circular cross section, the total lift is
twice that for a slender wing with the same maximum span. Also plotted in the figure
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Fig. 4. Ratio of lift coefficient to lift coefficient of a circular cross section slender body plotted
against ellipticity.

are the expected results from Jorgensen’s Newtonian impact theory [16]. In [17], Jor-
gensen gives the percentage reduction from the viscous cross-flow method of Allen and
Perkins (which is applied to a slender body with a circular cross section) for a slen-
der body with a particular ellipticity. Jorgensen’s theoretical results match well with
his experimental results and better than the Oseen theory presented here. However,
consider two experimental results denoted by squares plotted in the figure given by
Sigal [26] quoting the results of Spencer and Phillips [28]. Sigal gives the percentage
reduction in lift force evaluated from experiment for a slender body with an elliptical
cross section compared to a slender body with a circular cross section having the same
span. Two results for ellipticity 0.5 but with different fineness ratio are plotted, and
the Oseen theory fits these experimental results better than Jorgensen’s theory.

8. Discussion. The slender body theory in Oseen flow given by Chadwick [6]
is applied to bodies with an elliptical cross section and compared with various other
theories and methods and with experimental results. In particular, the lift on a slender
body with an elliptical cross section is given in Oseen flow by representing the flow field
by a distribution of lift Oseenlets between the focii of the ellipse at each cross section.
The potential part of this solution is then matched to the expected two-dimensional
near-field solution given in elliptic coordinates such that the slip (impermeability)
boundary condition is satisfied. This lift formula is compared against other theories
and experiment, such as Jones’s results for a delta wing [15], the Allen and Perkins
viscous cross-flow method [1], and Jorgensen’s Newtonian impact theory [16]. For a
delta wing with zero ellipticity, the Oseen theory predicts that the additional viscous
force is zero and so reduces to the standard inviscid result given by Jones [15]. In
contrast, the viscous cross-flow method of Jorgensen cannot be applied to this problem
and gives zero total force (see Figure 4). The moment depends upon the distribution
of lift, and the experimental results suggest that the additional viscous lift force (over
and above the lift force from inviscid potential flow theory) is distributed towards the
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rear of the slender body rather than close to the middle as predicted by the Allen
and Perkins viscous cross-flow method. So, for the moment calculation at angles at or
below 4◦, the experimental results agree better with the Oseen flow method. These
results are detailed extensively by Fishwick [10].

Appendix A. We start with Green’s integral theorem for 2-D potential flow in
the x2 − x3 plane, which defines the flow as an integral distribution of sources and
dipoles over a closed contour Cy such that

φ(x2, x3) = − 1

2π

∫
Cy

(
φ(y2, y3)

∂

∂n
ln r23 −

∂

∂n
φ(y2, y3) ln r23

)
dyC ,(A.1)

where (x2, x3) is a point in the fluid, (y2, y3) is a point on the contour, a length
element along the contour Cy is given by dyC , and r23 = {(x2 − y2)

2 +(x3 − y3)
2}1/2.

Consider φ such that it can be continued onto the line x3 = 0, −c ≤ x2 ≤ c. Let the
closed contour C include the two lines y3 = δ, −c ≤ y2 ≤ c and y3 = −δ, −c ≤ y2 ≤ c
and also include the two semicircular arcs r−δ = δ, 0 ≤ θ− ≤ π, y2 + c = r−δ cos θ−,
y3 = r−δ sin θ− and r+

δ = δ, −π ≤ θ+ ≤ 0, y2 − c = r+
δ cos θ+, y3 = r+

δ sin θ+.
We go around the contour in the clockwise sense, and the contour is described

pictorially in Figure 5. Letting δ → 0, we then get the expression for φ:

φ = − 1

2π

∫ c

−c

{
(φ+ − φ−)

∂

∂y2
ln r23 −

(
∂

∂y2
φ+ − ∂

∂y2
φ−

)
ln r23

}
dy3

+I+ + I−,(A.2)

where φ± = limy→0± φ and ∂φ±

∂y2
= limy→0±

∂φ
∂y2

are assumed to exist, and

I+ = lim
r+
δ
→0

{
1

2π

∫ π

0

(
φ

∂

∂r+
δ

ln r23 − ln r23
∂

∂r+
δ

φ

)
r+
δ dθ+

}
,

I− = lim
r−
δ
→0

{
1

2π

∫ −π

0

(
φ

∂

∂r−δ
ln r23 − ln r23

∂

∂r−δ
φ

)
r−δ dθ−

}
.(A.3)

In particular, consider the solution (3.5) φ = A cos ηe−ξ, where A = V c cosh ξ0e
ξ0 .

Then φ± and ∂φ±

∂y2
exist. Furthermore, ∂φ+

∂y2
= ∂φ−

∂y2
.
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δ
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−
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x

x2

3

(y ,y )

Fig. 5. The closed contour C.
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We will now show that the integrals I± are zero. Consider the first terms in the
integral expressions given for I±. The first factor in the term is φ. In the limit as
r±δ → 0, ξ → 0 and η → ±π/2. So,

lim
r±
δ
→0

φ = 0.(A.4)

The second factor in the first term is ∂ ln r23
∂rδ±

. This is

∂ ln r23
∂rδ±

=
1

r23

∂r23
∂rδ±

=
1

r23

{
∂y2

∂rδ±

∂r23
∂y2

+
∂y3

∂rδ±

∂r23
∂y3

}
= O(1/r23).(A.5)

So the first term in the integrands of the integral expressions for I± give integral
contributions O(|φ|r±δ /r23), and in the limit as r±δ → 0, these tend to zero.

The first factor in the second term of the integrand of I± is ∂φ

∂r±
δ

. We find the

order of magnitude of this term by considering∣∣∣∣ ∂φ

∂rδ±

∣∣∣∣ ≤
∣∣∣∣∂φ∂ξ

∣∣∣∣
∣∣∣∣ ∂ξ

∂rδ±

∣∣∣∣ +

∣∣∣∣∂φ∂η
∣∣∣∣
∣∣∣∣ ∂η

∂rδ±

∣∣∣∣(A.6)

as r±δ → 0. Similarly, ∣∣∣∣ ∂ξ

∂rδ±

∣∣∣∣ ≤
∣∣∣∣ ∂ξ∂y2

∂y2

∂rδ±

∣∣∣∣ +

∣∣∣∣ ∂ξ∂y3

∂y3

∂rδ±

∣∣∣∣
≤ 1

c
(A.7)

since ∂ξ
∂y2

∼ 1
c ,

∂ξ
∂y3

∼ 0, ∂η
∂y2

∼ 0, and ∂η
∂y3

∼ 1
c as r±δ → 0. Furthermore, ∂φ

∂ξ ∼ A and
∂φ
∂η ∼ 0 as r±δ → 0, since φ = A cos ηe−ξ. So the second term in the integrands of I±

gives the integral contributions of order O(A| ln r23|r±δ /c). So as r±δ → 0, then the
integral contributions tend to zero. Hence in the limit I+ = I− = 0. So

φ = − 1

2π

∫ c

−c

{
(φ+ − φ−)

∂

∂y2
ln r23 −

(
∂

∂y2
φ+ − ∂

∂y2
φ−

)
ln r23

}
dy3.(A.8)

From the symmetry of the problem, ∂φ+

∂y2
= ∂φ−

∂y2
, and so

φ = − 1

2π

∫ c

−c

{
(φ+ − φ−)

∂

∂y2
ln r23

}
dy3.(A.9)
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STATIONARY PATTERN OF A RATIO-DEPENDENT FOOD CHAIN
MODEL WITH DIFFUSION∗

RUI PENG† , JUNPING SHI‡ , AND MINGXIN WANG§

Abstract. In the paper, we investigate a three-species food chain model with diffusion and
ratio-dependent predation functional response. We mainly focus on the coexistence of the three
species. For this coupled reaction-diffusion system, we study the persistent property of the solution,
the stability of the constant positive steady state solution, and the existence and nonexistence of
nonconstant positive steady state solutions. Both the general stationary pattern and Turing pattern
are observed as a result of diffusion. Our results also exhibit some interesting effects of diffusion and
functional responses on pattern formation.

Key words. food chain model, diffusion, ratio-dependent functional response, stationary pat-
tern, Turing pattern, steady state solution
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1. Introduction. Understanding of spatial and temporal behaviors of interact-
ing species in ecological systems is a central issue in population ecology. One aspect
of great interest for a model with multispecies interactions is whether the involved
species can persist or even stabilize at a coexistence steady state. In the case where the
species are homogeneously distributed, this would be indicated by a constant positive
solution of an ordinary differential equation (ODE) system. In the spatially inhomo-
geneous case, the existence of a nonconstant time-independent positive solution, also
called stationary pattern, is an indication of the richness of the corresponding partial
differential equation (PDE) dynamics. In recent years, stationary pattern induced
by diffusion has been studied extensively, and many important phenomena have been
observed.

In particular, starting with Turing’s seminal 1952 paper [34], diffusion has been
regarded as the driving force of the spontaneous emergence of spatiotemporal structure
in a variety of nonequilibrium situations. To verify the influence of diffusion on this
aspect, in the past decades, biologists and applied mathematicians have proposed
a number of models, and much work has been devoted to the investigation of the
existence of stationary pattern in chemical and biological dynamics theoretically as
well as numerically. For example, chemical models include the activator-inhibitor
Gierer–Meinhardt model [10, 23], the Sel’kov model [7, 35], the Gray–Scott model [32,
37], the Brusselator model [3, 30], the Noyes–Field model for Belousov–Zhabotinskii
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reaction [29], and the chemotactic diffusion model [4, 18, 19, 22, 24, 37], and biological
models include the competition model [14, 20] and the predator-prey model [8, 15,
16, 27, 28, 31, 36] (see also the references therein).

In his original paper [34], Turing proposed the notion of diffusion-driven instabil-
ity (also called Turing instability) in his attempt at modeling, among other things, the
regeneration phenomenon of hydra—one of the earliest examples of morphogenesis.
That is, Turing claimed that the formation of spatial pattern during morphogenesis
could be explained in terms of the instability of a homogeneous steady state solution
to a reaction-diffusion network describing the growth and movement of a set of mor-
phogens. Turing’s original work was primarily concerned with the stability analysis
of the uniform steady state solution of the system for the interacting morphogens.

In biology and chemistry, the more interesting question, however, is whether the
spatially inhomogeneous solution may be generated by such instability. Strikingly,
in some cases, Turing instability can indeed lead to stationary pattern (also called
Turing pattern), a fascinating phenomenon in nonlinear science, which has been found
in various mechanisms [4, 18, 26, 27, 28, 30, 35, 36, 37]. While linear stability analysis
of the homogeneous steady state is a straightforward method for calculating con-
ditions for the onset of Turing instability, the analysis of the existence of resulting
nonhomogeneous steady states is mathematically challenging. In this paper, it is the
question of the existence of nonhomogeneous steady states that we focus on.

In the present work, we will investigate a coupled reaction-diffusion food chain
model with ratio-dependent functional response and analyze the coexistence of the
three species. We attempt to further understand the influences of diffusion and func-
tional responses on pattern formation. As a consequence, the existence and non-
existence results for nonconstant positive steady state solutions to this system indicate
that stationary pattern arises as the diffusion coefficients enter into certain regions.
In other words, diffusion does help to create stationary pattern. For this model, we
also show that Turing instability occurs and prove the generation of Turing pattern
in some cases.

On the other hand, our results also demonstrate that diffusion and functional
response can become determining factors in the formation of pattern. Although our
model is very different from the one considered by Lou, Martinez, and Ni in [20],
their interesting observation that the introduction of a new species may qualitatively
change the pattern structure of the original system is again present in our study. At
the same time, our work corroborates recent numerical results implemented by Alonso,
Bartumeus, and Catalan in [2]. We refer the reader to more detailed discussions in
section 6.

Our paper is organized as follows. In section 2, we propose our mathematical
model. In section 3, we discuss the persistence and stability of the unique constant
positive steady state for the ODE and PDE systems. In section 4, we consider the
nonexistence of nonconstant positive steady state solutions, while section 5 is devoted
to the existence of nonconstant positive steady state solutions. In section 6, from the
biological viewpoint we make some comments on our studies, indicating some inter-
esting influences of diffusion and functional responses on pattern formation. Finally,
in the appendix, we analyze some conditions, which are imposed in section 5 to obtain
the nonconstant positive steady state solutions to the PDE system.

2. The derivation of the mathematical model. Numerous examples from
biological control indicate that the classical prey-dependent predator-prey model is
often contrary to actual observations, such as the well-known paradox of enrichment
formulated by Rosenzweig [33]. The theory of Rosenzweig states that enriching a
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predator-prey system (increasing the prey’s carrying capacity) will cause an increase
in the equilibrium density of the predator but not in that of the prey; it will destabilize
the positive equilibrium as the prey’s carrying capacity increases, and thus will increase
the possibility of stochastic extinction of the predator. Recently there is growing
evidence that in some situations, especially when predators have to search, share, and
compete for food, a more suitable general predator-prey model should be a so-called
ratio-dependent one (namely, the functional responses are ratio-dependent). Roughly
speaking, this model states that the per capita predator growth rate should be a
function of the ratio of prey to predator abundance (see, e.g., [1]).

In the case of multiple species interaction, the prey-dependent models such as
those studied in [5, 9, 11, 17], while mathematically interesting, inherit the mechanism
that generates the factitious paradox of enrichment and fail to produce the often
observed extinction dynamics resulting in the collapse of the system. Consequently,
a ratio-dependent food chain model, which is an ODE system with three equations
whose species are hence assumed to be spatially homogeneous, was proposed by Hsu,
Hwang, and Kuang in [13] to describe the growth of plant, pest, and top predator.

More precisely, the authors of [13] considered the following three–trophic-level
food chain system with ratio-dependent functional response:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du1

dt
= ru1

(
1 − u1

k

)
− 1

η1

m1u1u2

u1 + c1u2
, t > 0,

du2

dt
=

m1u1u2

u1 + c1u2
− b1u2 −

1

η2

m2u2u3

u2 + c2u3
, t > 0,

du3

dt
=

m2u2u3

u2 + c2u3
− b2u3, t > 0,

u1(0) > 0, u2(0) > 0, u3(0) > 0,

(2.1)

where ui (i = 1, 2, 3) are the respective population densities of prey, predator, and
top predator. For i = 1, 2, ηi, mi, ci, and bi represent the yield constants, maximal
predator growth rates, half-saturation constants, and predator’s death rates, respec-
tively. Constants r and k are the prey intrinsic growth rate and carrying capacity,
respectively. As observed in [13], u3 preys on u2 and only on u2, and u2 preys on u1

and nutrient recycling is not accounted for, which produces the so-called simple food
chain. A distinct feature of the simple food chain is the domino effect: if one species
dies out, all the species at higher trophic levels die out as well.

As in [13], for simplicity, we use the following scaling to (2.1):

t → rt, u1 → u1/k, u2 → c1u2/k, u3 → c1c2u3/k,

m1 → m1/r, b1 → b1/r, m2 → m2/r, b2 → b2/r,

and (2.1) becomes the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du1

dt
= u1 (1 − u1) −

a1u1u2

u1 + u2
, t > 0,

du2

dt
=

m1u1u2

u1 + u2
− b1u2 −

a2u2u3

u2 + u3
, t > 0,

du3

dt
=

m2u2u3

u2 + u3
− b2u3, t > 0,

u1(0) > 0, u2(0) > 0, u3(0) > 0,

(2.2)
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where ai = mi/(ηicir) (i = 1, 2), can be regarded as the respective predation rate of
u2 and u3.

From [13], it is easily shown that (2.2) has a unique positive steady state solution
if and only if the following are satisfied:

m2 > b2, A > 1 and 0 < a1 < A/(A− 1),(2.3)

where

A ≡ m1/(a2(m2 − b2)/m2 + b1).

Moreover, the unique positive steady state (u1, u2, u3) = (ũ1, ũ2, ũ3) can be expressed
as

ũ1 = [a1 + A(1 − a1)]/A, ũ2 = (A− 1)ũ1, and ũ3 = (m2 − b2)ũ2/b2.

We also note that m2 > b2 and A > 1 imply m1 > b1.

In [13], the authors dealt with (2.2). In particular, they obtained the extinc-
tion conditions of certain species and discussed the local asymptotical stability of
(ũ1, ũ2, ũ3) and various scenarios where distinct solutions can be attracted to the ori-
gin, the pest-free steady state, and the positive steady state (ũ1, ũ2, ũ3). For more
detail, we refer the reader to [13]. From their results, the authors pointed out that
this ODE system is very rich in dynamics.

To take into account the inhomogeneous distribution of the predators and the prey
in different spatial locations within a fixed bounded domain Ω in RN with smooth
boundary at any given time, and the natural tendency of each species to diffuse to a
smaller population concentration, instead of (2.2), we need to consider the following
reaction-diffusion (PDE) system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1t − d1Δu1 = u1 (1 − u1) −
a1u1u2

u1 + u2
in Ω × (0,∞),

u2t − d2Δu2 =
m1u1u2

u1 + u2
− b1u2 −

a2u2u3

u2 + u3
in Ω × (0,∞),

u3t − d3Δu3 =
m2u2u3

u2 + u3
− b2u3 in Ω × (0,∞),

∂νui = 0, i = 1, 2, 3, on ∂Ω × (0,∞),

ui(x, 0) = ui0(x) ≥ 0, �≡ 0, i = 1, 2, 3, in Ω.

(2.4)

Here ν is the outward unit normal vector on the boundary ∂Ω and ∂ν = ∂/∂ν, and
di (i = 1, 2, 3) are called the diffusion coefficients of the corresponding species ui

and hence are assumed to be positive constants. The initial data ui0 (i = 1, 2, 3)
are continuous functions, and the homogeneous Neumann boundary condition means
that model (2.4) is self-contained and has no population flux across the boundary ∂Ω.

In our work here, we are mainly concerned with the effect of diffusion on stationary
pattern generated by (2.4). Hence, this leads us to study the steady state problem of
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(2.4), which satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−d1Δu1 = u1 (1 − u1) −
a1u1u2

u1 + u2
in Ω,

−d2Δu2 =
m1u1u2

u1 + u2
− b1u2 −

a2u2u3

u2 + u3
in Ω,

−d3Δu3 =
m2u2u3

u2 + u3
− b2u3 in Ω,

∂νui = 0, i = 1, 2, 3, on ∂Ω.

(2.5)

It is evident that only nonnegative solutions of (2.5) are of real interest. The
positive solution (u1, u2, u3) of (2.5) to be mentioned throughout this paper always
refers to a classical solution with ui > 0 (i = 1, 2, 3) on Ω̄. It should also be noted
that the well-known maximum principle ensures that a nonnegative classical solution
of (2.5) with ui �≡ 0 (i = 1, 2, 3) must be a positive one.

For (2.4) and the steady state problem (2.5), we will mainly concentrate on the
coexistence of the three species and consider the case of a1 < 1. In particular, some
results for the existence and nonexistence of nonconstant positive solutions to (2.5)
are derived. In establishing the existence of nonconstant positive solutions, due to the
lack of variational structure for (2.5), our mathematical tool is the topology degree
theory incorporated with the calculation of the fixed point index.

3. Persistence and stability. For simplicity of presentation, we introduce some
notation. Throughout this section, let

u(t) = (u1(t), u2(t), u3(t))
T and u(x, t) = (u1(x, t), u2(x, t), u3(x, t))

T

be the respective solutions of (2.2) and (2.4). Denote u = (u1, u2, u3)
T , ũ = (ũ1, ũ2,

ũ3)
T . From classical theories of ODEs and parabolic equations, u(t) and u(x, t) exist

globally and are positive; namely, ui(t), ui(x, t) > 0 (i = 1, 2, 3) for all t > 0 and
x ∈ Ω̄.

First we state some simple facts about the asymptotical behavior of solutions to
(2.4). The proof is similar to that of Theorem 2.5 in [28] and so is omitted here.

Proposition 3.1. The solution (u1(x, t), u2(x, t), u3(x, t)) of (2.4) satisfies the
following:

(i) If m1 ≤ b1, then (u2(x, t), u3(x, t)) → (0, 0) uniformly on Ω̄ as t → ∞.
(ii) If m2 ≤ b2, then u3(x, t) → 0 uniformly on Ω̄ as t → ∞.
(iii) If a1 ≤ 1 and m1 ≤ b1, then u1(x, t) → 1 and (u2(x, t), u3(x, t)) → (0, 0)

uniformly on Ω̄ as t → ∞. As a consequence, if m1 ≤ b1 or m2 ≤ b2, problem
(2.5) has no positive solutions.

As shown in Proposition 3.1, if m1 ≤ b1 or m2 ≤ b2, the two predators or the top
predator will become extinct, respectively. Moreover, if a1 ≤ 1 and m1 ≤ b1, then
only the plant will exist eventually.

In this paper, since our main goal is to analyze the coexistence of the three species,
from now on, unless otherwise specified, it is always assumed that (ũ1, ũ2, ũ3) exists,
which implies that m1 > b1 and m2 > b2 as indicated in section 2.

We have the following basic persistence property of the solutions u(t) and u(x, t),
which shows that the three species always coexist at any time and any location of the
habitat domain, no matter how fast or slowly they diffuse, under certain conditions
on parameters. This result is even new for the ODE system (2.2).
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Proposition 3.2. Assume that a1 < 1, a2 + b1 < m1 hold. Then, for any
0 < ε 	 1, there exists T 
 1 such that u(t) and u(x, t) satisfy

K − ε < u1(t), u1(x, t) < 1 + ε,

K(m1 − (a2 + b1))

a2 + b1
− ε < u2(t), u2(x, t) <

m1 − b1
b1

+ ε,

K(m1 − (a2 + b1))(m2 − b2)

(a2 + b1)b2
− ε < u3(t), u3(x, t) <

(m1 − b1)(m2 − b2)

b1b2
+ ε

for all x ∈ Ω̄ and t > T . Here, K is given by

K =
1

2

{
2 − m1

b1
+

√(
2 − m1

b1

)2

+ 4(1 − a1)
(m1

b1
− 1

) }
.

Proof. The proof is based on comparison principles. We first prove that the
estimates hold for u(t). For 0 < ε 	 1 and t 
 1, from the first equation in (2.2) it
is clear that u1(t) < 1 + ε by the comparison principle for ODEs.

In the following, we always consider that 0 < ε 	 1 and t ≥ T 
 1, and the
values of ε and T may be different from line to line. Since u2(t) satisfies

u′
2(t) <

(m1 − b1)(1 + ε) − b1u2

1 + ε + u2
u2,

by the comparison principle for ODEs again, we have that

u2(t) <
(m1 − b1)(1 + ε)

b1
+ ε =

m1 − b1
b1

+
m1

b1
ε.

Thus we can assume the following holds:

u2(t) <
m1 − b1

b1
+ ε.(3.1)

Combining (3.1) and the first equation in (2.2), we deduce that

u′
1(t) >

−u2
1 + (2 −m1/b1 − ε)u1 + (1 − a1)[(m1 − b1)/b1 + ε]

(m1 − b1)/b1 + ε + u1
u1.

Therefore

u1(t) >
1

2

{
2 − m1

b1
− ε +

√(
2 − m1

b1
− ε
)2

+ 4(1 − a1)
(m1

b1
− 1 + ε

) }
(3.2)

−ε > K − ε.

Similarly, applying (3.2) to the second equation in (2.2), we obtain

u2(t) >
K(m1 − (a2 + b1))

a2 + b1
− ε.(3.3)

Together with (3.1) and (3.3), the third equation in (2.2) results in

K[m1 − (a2 + b1)](m2 − b2)

(a2 + b1)b2
− ε < u3(t) <

(m1 − b1)(m2 − b2)

b1b2
+ ε.(3.4)
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To sum up, (3.1)–(3.4) deduce our result for u(t). In a similar manner, by the com-
parison principle for parabolic equations, one can establish the desired estimates for
u(x, t).

In particular Proposition 3.2 and the maximum principle imply a priori upper and
lower bounds for the positive solutions of (2.5), which will play crucial roles in the
later sections. To prove that we recall the following maximum principle (for example,
Lemma 2.1 in [21]).

Lemma 3.1. Suppose that g ∈ C(Ω̄ × R).
(i) Assume that w ∈ C2(Ω) ∩ C1(Ω̄) and satisfies

Δw(x) + g(x,w(x)) ≥ 0 in Ω, ∂νw ≤ 0 on ∂Ω.

If w(x0) = maxΩ̄ w, then g(x0, w(x0)) ≥ 0.
(ii) Assume that w ∈ C2(Ω) ∩ C1(Ω̄) and satisfies

Δw(x) + g(x,w(x)) ≤ 0 in Ω, ∂νw ≥ 0 on ∂Ω.

If w(x0) = minΩ̄ w, then g(x0, w(x0)) ≤ 0.
Now we have the following a priori estimates for steady state solutions.
Theorem 3.1. Assume that a1 < 1 and a2 + b1 < m1 hold. Let K be defined

as in Proposition 3.2. Then any positive solution (u1, u2, u3) of (2.5) satisfies the
following: for all x ∈ Ω̄,

K < u1(x) < 1,

K(m1 − (a2 + b1))

a2 + b1
< u2(x) <

m1 − b1
b1

,

K(m1 − (a2 + b1))(m2 − b2)

(a2 + b1)b2
< u3(x) <

(m1 − b1)(m2 − b2)

b1b2
.

Proof. From Proposition 3.2, stated results hold if strict inequalities are replaced
by nonstrict inequalities. Thus we only need to show the strict inequalities. Let
(u1, u2, u3) be a positive solution of (2.5) and set

ui(xi) = max
Ω̄

ui and ui(yi) = min
Ω̄

ui, i = 1, 2, 3.

Applying Lemma 3.1 to the first equation in (2.5), we find that

1 − u1(x1) −
a1u2(x1)

u1(x1) + u2(x1)
≥ 0.

Thus when a1 < 1, it follows that u1(y1) < 1. Following the same order in the
proof of Proposition 3.2, we can show that the stated results with strict inequalities
hold.

When the population persistence holds for the food chain, the constant steady
state ũ is always in the attracting region given in Proposition 3.2 and Theorem 3.1.
Next we discuss the stability of ũ with respect to (2.4). To this end, we need to collect
some known facts from [13]. For sake of simplicity, we denote

G(u) =

⎛
⎜⎜⎜⎜⎜⎝

u1 (1 − u1) −
a1u1u2

u1 + u2

m1u1u2

u1 + u2
− b1u2 −

a2u2u3

u2 + u3

m2u2u3

u2 + u3
− b2u3

⎞
⎟⎟⎟⎟⎟⎠ and Gu(ũ) =

⎛
⎜⎝ a11 a12 0

a21 a22 a23

0 a32 a33

⎞
⎟⎠ ,
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where⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a11 = ũ1

[
− 1 +

a1ũ2

(ũ1 + ũ2)2

]
, a22 = ũ2

[
− m1ũ1

(ũ1 + ũ2)2
+

a2ũ3

(ũ2 + ũ3)2

]
,

a33 = − m2ũ2ũ3

(ũ2 + ũ3)2
< 0, a12 = − a1ũ

2
1

(ũ1 + ũ2)2
< 0, a21 =

m1ũ
2
2

(ũ1 + ũ2)2
> 0,

a23 = −a2ũ
2
2/(ũ2 + ũ3)

2 < 0, a32 = m2ũ
2
3/(ũ2 + ũ3)

2 > 0.

In Proposition 3.1 in [13], it was proved that if a11 ≤ 0 and a22 ≤ 0, ũ is locally
asymptotically stable for (2.2). Indeed even with the presence of the diffusion, ũ is
uniformly asymptotically stable for (2.4) under the same conditions. More precisely,
we have the following theorem.

Theorem 3.2. Assume that a11 ≤ 0 and a22 ≤ 0 hold; then ũ is locally uniformly
asymptotically stable for (2.4) in the sense of [12]. As a consequence, (2.5) has no non-
constant positive solution in a neighborhood of ũ. Moreover, if a1 < 1 and a2 + b1 <
m1, then a11 < 0 and a22 < 0; hence ũ is locally uniformly asymptotically stable.

Proof. The proof of stability when a11 ≤ 0 and a22 ≤ 0 is similar to that of
Theorem 2 in [36], and we omit the details here. We note that if a1 < 1, then a11 < 0.
Moreover, the inequality a22 ≤ 0 is equivalent to

m1 ≥
(
b1 + a2

m2 − b2
m2

)2/(
b1 + a2

(m2 − b2
m2

)2)
.(3.5)

It is also noted that(
b1 + a2

m2 − b2
m2

)2/(
b1 + a2

(m2 − b2
m2

)2)
< a2 + b1.

Hence if a1 < 1 and a2 + b1 < m1, we have a11, a22 < 0 by (3.5).
Remark 3.1. Theorem 3.2 and the previous arguments show that no Turing

instability or diffusion-driven instability phenomenon occurs when a11 ≤ 0 and a22 ≤ 0
hold. On the other hand, if we take m1 = (b1 + a2(m2 − b2)/m2)

2
/(b1 + a2(m2 −

b2)
2/m2

2) − o(b1), and b1 → 0, a2, b2, m2 are properly chosen and either a1 → 1/2 or
a1 → 1, as in Proposition 3.1 in [13], together with some meticulous computations, the
well-known Roth–Hurwitz criterion ensures that ũ is still stable for the ODE system
(2.2). However, by fixing these parameters including d1 and d2, and then letting the
diffusion d3 be large enough, similar to the proof of Theorem 2 in [36], one can show
that ũ is unstable with respect to the PDE system (2.4). Thus Turing instability
could occur when the conditions of Theorem 3.2 are not satisfied.

From Theorem 3.2, ũ is locally uniformly asymptotically stable when a1 < 1 and
a2+b1 < m1. In this case it is unlikely that nonconstant positive solutions (stationary
pattern) of (2.5) exist. Indeed with more restrictive conditions on the parameters,
we can show the global stability of ũ for systems (2.2) and (2.4). Our result below
is independent of the diffusion rates di; that is, the constant coexistence state ũ is
globally asymptotically stable. Hence when the conditions on the parameters are
satisfied, ũ is stabilized under arbitrary spatially inhomogeneous perturbation.

Theorem 3.3. Let K be defined as in Proposition 3.2. Assume that the following
hold:

(i) a1 < 1 and a2 + b1 < m1;
(ii) a1(A− 1)/A < m1K/(a2 + b1);
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(iii) a2b2m1(m2 − b2)(a2 + b1) < b1m2K[m1 − (a2 + b1)][b1m2 + a2(m2 − b2)].
Then the constant positive steady state ũ is globally asymptotically stable for systems
(2.2) and (2.4) for all initial nonnegative conditions which are not steady states. In
particular, (2.5) has no nonconstant positive solution if conditions (i)–(iii) hold.

Proof. We use Lyapunov functionals for the proof. First, we verify the result for
system (2.2). For our purpose, we first recall the following basic Lyapunov functionals:

E(ui) = ui − ũi − ũi ln
ui

ũi
, i = 1, 2, 3.

Note that E(ui(t)) are nonnegative, and E(ui(t)) = 0 (i = 1, 2, 3) if and only if
(u1(t), u2(t), u3(t)) = (ũ1, ũ2, ũ3). Hence, letting

E(t) = E(u1(t)) +
a1ũ1

m1ũ2
E(u2(t)) +

a1a2ũ1

m1m2ũ3
E(u3(t)),

we have

dE
dt =

{
− 1 +

a1ũ2

(ũ1 + ũ2)(u1 + u2)

}
(u1 − ũ1)

2 +
a1ũ1

m1ũ2

{
− m1ũ1

(ũ1 + ũ2)(u1 + u2)

+
a2ũ3

(ũ2 + ũ3)(u2 + u3)

}
(u2 − ũ2)

2 − a1a2ũ1ũ2

m1ũ3(ũ2 + ũ3)(u2 + u3)
(u3 − ũ3)

2.

(3.6)

Under our assumptions (i)–(iii), we can claim that for t 
 1 the following hold:

a1ũ2

(ũ1 + ũ2)(u1 + u2)
≤ 1 and

a2ũ3

(ũ2 + ũ3)(u2 + u3)
≤ m1ũ1

(ũ1 + ũ2)(u1 + u2)
.(3.7)

In fact, by Proposition 3.2, to satisfy (3.7), for t 
 1 it is sufficient to require

a1ũ2

(ũ1 + ũ2)
<

m1K

a2 + b1
and

a2ũ3

(ũ2 + ũ3)
· m1

b1
<

m1ũ1

(ũ1 + ũ2)
· Km2(m1 − (a2 + b1))

(a2 + b1)b2
.

Therefore by the definition of (ũ1, ũ2, ũ3), we easily see that the above two inequalities
are equivalent to assumptions (ii) and (iii), respectively. Thus (3.6) implies that
E′(t) < 0 for t 
 1. Now for t 
 1, E(t) is a Lyapunov functional for system (2.2);
namely, for t 
 1, E′(t) < 0 along trajectories and E(t) > 0 except at ũ. Hence ũ is
globally asymptotically stable for (2.2) following the well-known theorem of Lyapunov
stability.

Based on the proof of Theorem 3.3, by Proposition 3.2, it is not hard to see that
for t 
 1

E∗(t) =

∫
Ω

{
E(u1(x, t)) +

a1ũ1

m1ũ2
E(u2(x, t)) +

a1a2ũ1

m1m2ũ3
E(u3(x, t))

}
dx

is a Lyapunov functional for system (2.4) and ũ is globally asymptotically stable for
system (2.4) under our assumptions.

Remark 3.2. Simple analysis shows that Theorem 3.3 holds if one of the following
holds: (1) a1 → 0, a2 → 0; (2) a1 < 1, m1 is large and m2 → b2; or (3) a1 < 1, m1

is large, and a2b2(m2 − b2)(a2 + b1) < (1 − a1)b1m2[b1m2 + a2(m2 − b2)]. Indeed
in case (1), K defined in Proposition 3.2 tends to 1 as a1 → 0, and the lower and
upper bounds in Proposition 3.2 and Theorem 3.1 tend to the same value as a2 → 0.
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This shows that the a priori estimate in Proposition 3.2 and Theorem 3.1 are sharp
when a1 and a2 are small.

Results in this section have interesting and significant biological implications.
Regarding the impact of the diffusion, all results in this section (Propositions 3.1
and 3.2 and Theorems 3.1, 3.2, and 3.3) are independent of diffusion coefficients
di, i = 1, 2, 3. In these parameter ranges, diffusion usually enhances the stability
of the constant steady states. Proposition 3.1 gives conditions of total extinction of
all three species and conditions of the extinction of both middle and top predators.
Comparison can be made with results in section 2 of [13], where the ODE system is
studied in more detail.

When the constant coexistence steady state ũ exists, our main persistence and
stability results are proved under the assumptions

a1 < 1 and a2 + b1 < m1.(3.8)

These conditions are evidently stronger than the conditions (2.3) under which ũ
exists. But with (3.8) satisfied, persistence holds for the whole food chain, and all
three species coexist regardless of initial conditions (see Proposition 3.2). The persis-
tence question is even open for the same ODE system, and here we prove it for the
more general reaction-diffusion system with no-flux boundary condition. This answers
an open question raised in [13] (see discussion on p. 80). Moreover, under (3.8), ũ is
also locally uniformly asymptotically stable with respect to (2.4), and under strong
conditions in Theorem 3.3, ũ is globally asymptotically stable. For the ODE systems,
these results complement those in [13] in which the main concern is successful biolog-
ical control. Indeed our results show that under (3.8), biological control of the pest
cannot be achieved.

4. Nonexistence of nonconstant positive solutions of (2.5). In Theo-
rem 3.3, the global stability of the constant coexistence steady state implies the
nonexistence of nonconstant positive solutions of (2.5) regardless of diffusions. Several
nonexistence results of nonconstant positive solutions to (2.5) will be presented in this
section, and in these results, the diffusion coefficients do play important roles. The
mathematical techniques to be employed are the implicit function theorem method
and the energy method, respectively. From now on, let 0 = μ0 < μ1 ≤ μ2 ≤ · · · be
the eigenvalues of the operator −Δ on Ω with the homogeneous Neumann boundary
condition.

4.1. The energy method. In this subsection, we apply the energy method to
establish some results on the nonexistence of nonconstant positive solutions of (2.5).
For convenience, let us denote the constants ai, bi, mi (i = 1, 2) collectively by Λ.

Theorem 4.1. Assume that a1 < 1 and a2 + b1 < m1.

(i) There exists D̂1,2 = D̂1,2(Λ) which is independent of d3 and Ω, such that (2.5)

has no nonconstant positive solution provided that min{μ1d1, μ1d2} ≥ D̂1,2.
(ii) If, in addition, a1(a2 + b1)

2(m1 − b1) ≤ (1 − a1)
2b1m

2
1, then there exists

D̂2 = D̂2(Λ) which is independent of d1, d3, and Ω, such that (2.5) has no
nonconstant positive solution provided that μ1d2 ≥ D̂2.

(iii) If, in addition, a2(a2 + b1)
2b2m1(m1 − b1)(m2 − b2) ≤ (1 − a1)

3b31m
2
2(m1 −

(a2 + b1))
2, then there exists D̂1,3 = D̂1,3(Λ) which is independent of d2

and Ω, such that (2.5) has no nonconstant positive solution provided that
min{μ1d1, μ1d3} ≥ D̂1,3.
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Proof. Let (u1, u2, u3) be a positive solution of (2.5) and let ḡ = |Ω|−1
∫
Ω
g dx.

Then, multiplying the corresponding equation in (2.5) by 1
ui

(ui − ūi), i = 1, 2, 3,
integrating over Ω, and adding the results, we get∫

Ω

{
3∑

i=1

diūi|∇(ui − ūi)|2
u2
i

}
dx

=

∫
Ω

{
(u1 − ū1)

2
(
− 1 +

a1ū2

(u1 + u2)(ū1 + ū2)

)

+ (u1 − ū1)(u2 − ū2)
−a1ū1 + m1ū2

(u1 + u2)(ū1 + ū2)

+ (u2 − ū2)
2
( −m1ū1

(u1 + u2)(ū1 + ū2)
+

a2ū3

(u2 + u3)(ū2 + ū3)

)

+ (u2 − ū2)(u3 − ū3)
−a2ū2 + m2ū3

(u2 + u3)(ū2 + ū3)
− (u3 − ū3)

2 m2ū2

(u2 + u3)(ū2 + ū3)

}
dx.(4.1)

By Theorem 3.1 and the Young inequality, from (4.1) it follows that∫
Ω

3∑
i=1

di|∇(ui − ūi)|2 dx ≤ C

∫
Ω

{
(u1 − ū1)

2

(
−1 +

a1ū2

(u1 + u2)(ū1 + ū2)
+ ε

)

+C(ε)(u2 − ū2)
2

+ (u3 − ū3)
2

(
− m2ū2

(u2 + u3)(ū2 + ū3)
+ ε

)}
dx.(4.2)

Here, C depends only on Λ, and C(ε) depends only on Λ and ε. By Theorem 3.1
again, we can choose 0 < ε 	 1 which depends only on Λ such that

− m2ū2

(u2 + u3)(ū2 + ū3)
+ ε < 0.

Thus, with (4.2) and the Poincaré inequality,

μ1

∫
Ω

(g − ḡ)2 dx ≤
∫

Ω

|∇(g − ḡ)|2 dx,

we find that

μ1

∫
Ω

3∑
i=1

di(ui − ūi)
2 dx ≤ C(ε)

∫
Ω

2∑
i=1

(ui − ūi)
2 dx.

By the above inequality, it is clear that there exists D̂1,2 depending only on Λ, such

that when min{μ1d1, μ1d2} ≥ D̂1,2, ui ≡ ūi = constant, i = 1, 2, 3, which asserts our
result (i).

If, in addition, we assume a1(a2+b1)
2(m1−b1) ≤ (1−a1)

2b1m
2
1, then Theorem 3.1

implies

−1 +
a1ū2

(u1 + u2)(ū1 + ū2)
< 0.
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Therefore, for 0 < ε 	 1 satisfying

−1 +
a1ū2

(u1 + u2)(ū1 + ū2)
+ ε < 0 and − m2ū2

(u2 + u3)(ū2 + ū3)
+ ε < 0,

as before, (4.2) implies

∫
Ω

3∑
i=1

di|∇(ui − ūi)|2 dx ≤ C(ε)

∫
Ω

(u2 − ū2)
2 dx.(4.3)

Similar to arguments above, from (4.3) and the Poincaré inequality, there exists D̂2 =
D̂2(Λ) such that (2.5) has no nonconstant positive solution if μ1d2 > D̂2. Thus (ii)
holds.

To prove (iii), as in the arguments above, it is enough to verify that

a2ū3(u1 + u2)(ū1 + ū2) < m1ū1(u2 + u3)(ū2 + ū3).(4.4)

By Theorem 3.1 again, to ensure (4.4), it suffices to require that the third condition
in (iii) holds. This completes our proof.

Theorem 4.2.

(i) Let d∗1, d
∗
3 be fixed positive constants satisfying μ1d

∗
1 > 1 and μ1d

∗
3 > m2 − b2.

Then there exists a positive constant D∗
2 = D∗

2(d∗1, d
∗
3,Λ) such that (2.5) has no non-

constant positive solution provided that μ1d2 ≥ D∗
2 , d1 ≥ d∗1, and d3 ≥ d∗3.

(ii) Let d∗2 be a fixed positive constant satisfying μ1d
∗
2 > m1−b1. Then there exists

a positive constant D∗
1,3 = D∗

1,3(d
∗
2,Λ) such that (2.5) has no nonconstant positive

solution provided that min{μ1d1, μ1d3} ≥ D∗
1,3 and d2 ≥ d∗2.

Proof. We prove only (i), and the verification of (ii) is similar. Suppose that
(u1, u2, u3) and (ū1, ū2, ū3) are the same as in the proof of Theorem 4.1. Multiplying
the corresponding equation of (2.5) by ui − ūi, i = 1, 2, 3, the analysis similar to the
proof of Theorem 4.1 deduces

μ1

3∑
i=1

∫
Ω

di(ui − ūi)
2dx ≤

∫
Ω

{(1 + ε)(u1 − ū1)
2

+C(u2 − ū2)
2 + (m2 − b2 + ε)(u3 − ū3)

2}dx

for some positive constant C = C(Λ, ε). Choose ε > 0 to be so small that d1μ1 ≥
1 + ε, d3μ1 ≥ m2 − b2 + ε; then there exists D∗

2 such that (u1, u2, u3) = (ū1, ū2, ū3)
must hold if d2 ≥ D∗

2 , and so our conclusion holds.
The results in this subsection demonstrate such a phenomenon: when all diffusion

coefficients are large, no patterns exist. Here either d1, d3, or d2 has a lower bound
(see Theorem 4.2). If, in addition, the conditions (3.8) are satisfied, then the patterns
do not exist even if only one or two diffusion coefficients are large. Such results for
general reaction-diffusion systems appeared in [6], and our results here show more
delicate dependence on the diffusion coefficients only for the food chain system (2.4)
and (2.5).

4.2. The implicit function theorem method. In this subsection, we use
the implicit function theorem to obtain some further results for the nonexistence of
nonconstant positive solutions of (2.5). We will need the following a priori estimate.
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Theorem 4.3. Let a1 < 1 and let d be a fixed positive number. Assume that for
any positive constants d̃2 and d̃3, the boundary value problem⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−d̃2Δw2 = (m1 − b1)w2 −
a2w2w3

w2 + w3
in Ω,

−d̃3Δw3 =
m2w2w3

w2 + w3
− b2w3 in Ω,

∂νw2 = ∂νw3 = 0 on ∂Ω

(4.5)

has no positive solution satisfying |w2|∞ + |w3|∞ = 1. Then there exist positive
constants C1(Λ,Ω, d) and C2(Λ,Ω, d) such that any positive solution (u1, u2, u3) of
(2.5) satisfies

C1(Λ,Ω, d) ≤ ui ≤ C2(Λ,Ω, d), i = 1, 2, 3,

provided that d1, d2, d3 ≥ d.
Proof. Since a1 < 1, from the proof of Theorem 3.1, we see that

1 − a1 < u1 < 1, u2 < (m1 − b1)/b1, and u3 < (m1 − b1)(m2 − b2)/(b1b2),(4.6)

so C2(Λ,Ω, d) has been found. Similarly to the proof of Theorem 3.4 in [28], from the
second and third equations in (2.5), the desired C1(Λ,Ω, d) can be obtained.

The assumption that (4.5) has no positive solution is satisfied in some important
parameter ranges.

Lemma 4.1. Problem (4.5) has no positive solution if one of the following holds:
(i) a2 + b1 ≤ m1; or
(ii) a2 + b1 > m1 and

√
a2 + m2 <

√
m1 − b1 +

√
b2.

In particular, if a1 < 1 and either (i) or (ii) holds, the a priori estimate in Theorem 4.3
holds.

Proof. If condition (i) holds, our conclusion is derived from (ii) of Lemma 3.1; if
condition (ii) is satisfied, the proof is the same as that of Corollary 3.5 in [28].

In this subsection, we will prove a result which considerably improves Theorem 4.2
if the estimates in Theorem 4.3 hold. We note that the conditions (i) and (ii) include
(3.8); thus the results are along the same lines as those in the last subsection. To
prove our result, we first prepare two lemmas.

Lemma 4.2. Assume that f(u) is a continuous function in [0,∞) and for some
positive constant a, f(u) > 0 in (0, a) and f(u) < 0 in (a,∞). Then the problem

−Δu = uf(u) in Ω, ∂νu = 0 on ∂Ω

has a unique positive solution u(x) ≡ a.
Proof. The above result is easily obtained by the direct application of

Lemma 3.1.
Lemma 4.3. (i) Assume that a1 < 1 and that assumptions in Theorem 4.3 hold.

Let (u1i, u2i, u3i) be a sequence of positive solutions of (2.5) with d2 = d2i and d2i → ∞
as i → ∞. Then (u1i, u2i, u3i) converges to ũ in [C(Ω̄)]3 as i → ∞.

(ii) Assume that a1<1 and that assumptions in Theorem 4.3 hold. Let (u1i, u2i, u3i)
be a sequence of positive solutions of (2.5) with (d1, d3) = (d1i, d3i) and d1i, d3i → ∞
as i → ∞. Then (u1i, u2i, u3i) converges to ũ in [C(Ω̄)]3 as i → ∞.

Proof. We prove only (i), and (ii) can be proved similarly by using Theorem 3.1
and Lemma 3.1.
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From Theorem 4.3, the sequence {(u1i, u2i, u3i)} is bounded in [C(Ω̄)]3 with the
bound independent of d2. Then some standard arguments show that there is a subse-
quence of (u1i, u2i, u3i) (still labelled by itself), such that (u1i, u2i, u3i) → (u1, u2, u3)
in [C(Ω̄)]3 as i → ∞. Furthermore, u2 ≡ c, which is a positive constant; u1, u3 > 0
on Ω̄; and (u1, c, u3) solves⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−d1Δu1 = u1(1 − u1) −
a1cu1

u1 + c
in Ω, ∂νu1 = 0 on ∂Ω,

∫
Ω

{
m1u1

u1 + c
− b1 −

a2u3

c + u3

}
dx = 0,

−d3Δu3 =
cm2u3

c + u3
− b2u3 in Ω, ∂νu3 = 0 on ∂Ω.

(4.7)

By Lemma 4.2, from the first and third equations in (4.7), we find that u1 and u3 are
both constants:

u1 ≡ 1

2

{
1 − c +

√
(1 − c)2 + 4c(1 − a1)

}
and u3 ≡ m2 − b2

b2
c.(4.8)

Substituting (4.8) into the second equation in (4.7), we find that (u1, c, u3) = ũ. This
verifies that the convergence holds for a subsequence of (u1i, u2i, u3i). But the limit is
a fixed point; thus the convergence holds for the whole sequence (u1i, u2i, u3i).

Now we state our main result in this subsection.
Theorem 4.4. Assume that a1 < 1 and that assumptions in Theorem 4.3 hold.
(i) Let ε1 be an arbitrary positive constant. Then there exists D2 = D2(ε1,Λ,Ω)

such that (2.5) has no nonconstant positive solution provided that min{d1, d3} ≥ ε1
and d2 ≥ D2.

(ii) Let ε2 be an arbitrary positive constant. Then there exists D1,3 = D1,3(ε2,Λ,Ω)
such that (2.5) has no nonconstant positive solution provided that d2 ≥ ε2 and
min{d1, d3} ≥ D1,3.

Proof. We first prove (i). By (i) of Theorem 4.2, for a fixed large constant D1,3

depending only on Λ and Ω, there exists D∗
2 = D∗

2(Λ,Ω) such that (2.1) has no
positive nonconstant solution when d1, d3 ≥ D1,3 and d2 ≥ D∗

2 . As a result, it suffices
to consider the case d1, d3 ∈ [ε1/2, D1,3].

We make a decomposition: u2 = w2 + ξ with
∫
Ω
w2 = 0 and ξ ∈ R+. We observe

that finding the positive solution of (2.5) is equivalent to solving the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1Δu1 + u1 (1 − u1) −
a1u1(w2 + ξ)

u1 + w2 + ξ
= 0 in Ω, ∂νu1 = 0 on ∂Ω,

Δw2 + ρ

{
m1u1(w2 + ξ)

u1 + w2 + ξ

−b1(w2 + ξ) − a2(w2 + ξ)u3

w2 + ξ + u3

}
= 0 in Ω, ∂νw2 = 0 on ∂Ω,

∫
Ω

{
m1u1(w2 + ξ)

u1 + w2 + ξ
− b1(w2 + ξ)

−a2(w2 + ξ)u3

w2 + ξ + u3

}
dx = 0,

d3Δu3 +
m2(w2 + ξ)u3

w2 + ξ + u3
− b2u3 = 0 in Ω, ∂νu3 = 0 on ∂Ω,

ξ > 0, u1, u3 > 0 in Ω,

(4.9)
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where ρ = d−1
2 . Clearly, (u1, w2, ξ, u3) = (ũ1, 0, ũ2, ũ3) is a solution of (4.9) for ρ > 0.

To prove our theorem, by the finite covering argument, it is sufficient to prove that,
for any fixed d̃1, d̃3 ∈ [ε1/2, D1,3], there exists δ0 > 0 such that if ρ ∈ (0, δ0), (d1, d3) ∈
(d̃1 − δ0, d̃1 + δ0)× (d̃3 − δ0, d̃3 + δ0), then (ũ1, 0, ũ2, ũ3) is the unique solution of (4.9).
To this end, we define the following Banach spaces:

W 2,2
ν (Ω) = {g ∈ W 2,2(Ω)

∣∣ ∂νg = 0 on ∂Ω}, L2
0(Ω) =

{
g ∈ L2(Ω)

∣∣ ∫
Ω

g dx = 0

}
,

and denote

F (d1, d3, ρ, u1, w2, ξ, u3) = (f1, f2, f3, f4)(d1, d3, ρ, u1, w2, ξ, u3)

with

f1(d1, d3, ρ, u1, w2, ξ, u3) = d1Δu1 + u1 (1 − u1) −
a1u1(w2 + ξ)

u1 + w2 + ξ
,

f2(d1, d3, ρ, u1, w2, ξ, u3) = Δw2 + ρ

{
m1u1(w2 + ξ)

u1 + w2 + ξ
− b1(w2 + ξ)

− a2(w2 + ξ)u3

w2 + ξ + u3

}
,

f3(d1, d3, ρ, u1, w2, ξ, u3) =

∫
Ω

{
m1u1(w2 + ξ)

u1 + w2 + ξ
− b1(w2 + ξ) − a2(w2 + ξ)u3

w2 + ξ + u3

}
dx,

f4(d1, d3, ρ, u1, w2, ξ, u3) = d3Δu3 +
m2(w2 + ξ)u3

w2 + ξ + u3
− b2u3.

Then

F : R+ × R+ × R+ ×W 2,2
ν (Ω) × (L2

0(Ω) ∩W 2,2
ν (Ω))

× R+ ×W 2,2
ν (Ω) → L2(Ω) × L2

0(Ω) × R × L2(Ω)

is a well-defined mapping. It is clear that the solutions of (4.9) satisfy F (d1, d3, ρ, u1,
w2, ξ, u3) = 0. Moreover, (4.9) has a unique solution (u1, w2, ξ, u3) = (ũ1, 0, ũ2, ũ3)
when ρ = 0 and (d1, d3) = (d̃1, d̃3) from the proof of (i) of Lemma 4.3. Obviously,
F is a differentiable mapping, and its partial derivative with respect to the last four
arguments is

Ψ ≡ D(u1, w2, ξ, u3)F (d̃1, d̃3, 0, ũ1, 0, ũ2, ũ3),

Ψ : W 2,2
ν (Ω) × (L2

0(Ω) ∩W 2,2
ν (Ω)) × R ×W 2,2

ν (Ω) → L2(Ω) × L2
0(Ω) × R × L2(Ω)

with

Ψ(v1, v2, τ, v3) =

⎛
⎜⎜⎜⎜⎜⎝

d̃1Δv1 + a11v1 + a12(v2 + τ)

Δv2∫
Ω
{a21v1 + a22(v2 + τ) + a23v3}dx

d̃3Δv3 + a32(v2 + τ) + a33v3

⎞
⎟⎟⎟⎟⎟⎠ ,

where aij are given in section 3.
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We claim that Ψ is an isomorphism operator. Assume that Ψ(v1, v2, τ, v3) =
(0, 0, 0, 0); then v2 = 0. Note that a1 < 1 implies a11 < 0. Then from the equation
of v1, it follows that v1 ≡ −a12τ/a11. Similarly, v3 ≡ −a32τ/a33 since a33 < 0 and
τ ∈ R. We substitute these results into the integral equations satisfied by (v1, v2, τ, v3)
and obtain that (

−a12a21

a11
+ a22 −

a23a32

a33

)
τ = 0.

This is equivalent to det{Gu(ũ)}τ = 0, where

det{Gu(ũ)} = −(a12a21a33 + a11a23a32 − a11a22a33) = − m1m2ũ
2
1ũ

2
2ũ3

(ũ1 + ũ2)2(ũ2 + ũ3)2
< 0

by some basic computations. Therefore τ = 0, which implies that (v1, v2, τ, v3) =
(0, 0, 0, 0) and Ψ is injective. On the other hand, for a given h2 ∈ L2

0(Ω), the problem

−Δu2 = h2 in Ω, u ∈ L2
0(Ω) ∩W 2,2

ν (Ω)

has a unique solution. By using det{Gu(ũ)} < 0 again, one can also check that Ψ is
also surjective. Consequently Ψ is an isomorphism.

By the implicit function theorem, there exist positive constants ρ0 and δ0 such
that, for each ρ ∈ [0, ρ0] and (d1, d3) ∈ (d̃1 − δ0, d̃1 + δ0) × (d̃3 − δ0, d̃3 + δ0),
(ũ1, 0, ũ2, ũ3) is the unique solution of F (d1, d3, ρ, u1, w2, ξ, u3) = 0 in Bδ0(ũ1,
0, ũ2, ũ3), where Bδ0(ũ1, 0, ũ2, ũ3) is the ball in W 2,2

ν (Ω) × (L2
0(Ω) ∩ W 2,2

ν (Ω)) ×
R ×W 2,2

ν (Ω) centered at (ũ1, 0, ũ2, ũ3) with radius δ0. Taking smaller ρ0 and δ0 if
necessary, we can conclude (i) by use of Lemma 4.3(i).

In a similar manner, (ii) can be proved. In fact, we write ui = wi + ξi with∫
Ω
wi = 0 and ξi ∈ R+ (i = 1, 3) and construct analogous operator

F (d2, ρ1, ρ3, w1, ξ1, u2, w3, ξ3) = (f1, f2, f3, f4, f5)(d2, ρ1, ρ3, w1, ξ1, u2, w3, ξ3)

with

f1(d2, ρ1, ρ3, w1, ξ1, u2, w3, ξ3) = Δw1

+ ρ1

{
(w1 + ξ1)(1 − w1 − ξ1) −

a1(w1 + ξ1)u2

w1 + ξ1 + u2

}
,

f2(d2, ρ1, ρ3, w1, ξ1, u2, w3, ξ3) =

∫
Ω

{
(w1 + ξ1)(1 − w1 − ξ1) −

a1(w1 + ξ1)u2

w1 + ξ1 + u2

}
dx,

f3(d2, ρ1, ρ3, w1, ξ1, u2, w3, ξ3) = d2Δu2 +
m1(w1 + ξ1)u2

w1 + ξ1 + u2
− b1u2 −

a2(w3 + ξ3)u2

w3 + ξ3 + u2
,

f4(d2, ρ1, ρ3, w1, ξ1, u2, w3, ξ3) = Δw3 + ρ3

{
m2(w3 + ξ3)u2

w3 + ξ3 + u2
− b2(w3 + ξ3)

}
,

f5(d2, ρ1, ρ3, w1, ξ1, u2, w3, ξ3) =

∫
Ω

{
m2(w3 + ξ3)u2

w3 + ξ3 + u2
− b2(w3 + ξ3)

}
dx,
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where ρi = d−1
i (i=1, 3). For fixed d̃2 > 0, we can verify that

D(w1, ξ1, u2, w3, ξ3)F (d̃2, 0, 0, 0, ũ1, ũ2, 0, ũ3) :

(L2
0(Ω) ∩W 2,2

ν (Ω)) × R ×W 2,2
ν (Ω) × (L2

0(Ω) ∩W 2,2
ν (Ω))

× R → L2
0(Ω) × R × L2(Ω) × L2

0(Ω) × R

is an isomorphism. As in the discussion of (i), by the implicit function theorem,
Lemma 4.3(ii) and Theorem 4.2(ii), our result is obtained. The proof of Theorem 4.4
is complete.

5. Existence of nonconstant positive solutions of (2.5). This section is
devoted to the existence of nonconstant positive solutions of (2.5) for certain val-
ues of diffusion coefficients d1 and d3, respectively, while the other parameters are
fixed. Our results will show that, if the parameters are properly chosen, both the
general stationary pattern and more interesting Turing pattern can arise as a result
of diffusion.

For our purposes, we start with some preliminary results. First we study the
linearization of (2.5) at ũ. We denote

X = {u ∈ [C2(Ω̄)]3 | ∂νu = 0 on ∂Ω}

and

X+ = {u ∈ X | ui > 0 on Ω̄, i = 1, 2, 3},

B(C) = {u ∈ X | C−1 < ui < C on Ω̄, i = 1, 2, 3}, C > 0.

With the diffusion matrix D =diag(d1, d2, d3), (2.5) can be written as{ −DΔu = G(u) in Ω,

∂νu = 0 on ∂Ω,
(5.1)

and u is a positive solution to (5.1) if and only if

F(u) ≡ u − (I − Δ)−1{D−1G(u) + u} = 0 for u ∈ X+,

where (I − Δ)−1 is the inverse of I − Δ in X. As F(·) is a compact perturbation of
the identity operator, for any B = B(C), the Leray–Schauder degree deg(F(·), 0, B)
is well defined if F(u) �= 0 on ∂B.

We also note that

DuF(ũ) = I − (I − Δ)−1{D−1Gu(ũ) + I},

and recall that if DuF(ũ) is invertible, the index of F at ũ is defined as index(F(·), ũ) =
(−1)γ , where γ is the multiplicity of negative eigenvalues of DuF(ũ) [25, Theo-
rem 2.8.1].

For the sake of convenience, we denote

H(d1, d2, d3;μ) ≡ det{μ I −D−1Gu(ũ)} =
1

d1d2d3
det{μD − Gu(ũ)},(5.2)

By arguments similar to those in [28], it can be shown that the following proposition
holds.



1496 RUI PENG, JUNPING SHI, AND MINGXIN WANG

Proposition 5.1. Suppose that, for all n ≥ 0, the matrix μn I − D−1Gu(ũ) is
nonsingular. Then

index(F(·), ũ) = (−1)γ , where γ =
∑

n≥0, H(d1,d2,d3;μn)<0

dimE(μn).

To compute index(F(·), ũ), we have to consider the sign of H(d1, d2, d3;μ). Direct
calculation gives

det{μD − Gu(ũ)} = A3(d1, d3)μ
3 + A2(d1, d3)μ

2 + A1(d1, d3)μ(5.3)

−det{Gu(ũ)} ≡ A(d1, d3; μ),

with {
A3(d1, d3) = d1d2d3, A2(d1, d3) = −{a33d1d2 + (a11d2 + a22d1)d3},

A1(d1, d3) = a11a33d2 + (a22a33 − a23a32)d1 + (a11a22 − a12a21)d3,

where aij are defined in section 3.
We first consider the dependence of A on d1. Let μ̃i(d1; d2, d3), i = 1, 2, 3, be the

three roots of A(d1, d3; μ) = 0 satisfying Re{μ̃1(d1; d2, d3)} ≤ Re{μ̃2(d1; d2, d3)} ≤
Re{μ̃3(d1; d2, d3)}. Since det{Gu(ũ)} < 0 and A3(d1, d3) > 0, one of μ̃i(d1; d2, d3) is
real and negative, and the product of the other two is positive.

In addition, we have

lim
d1→∞

A(d1, d3; μ)/d1 = μ[d2d3μ
2 − (a33d2 + a22d3)μ + a22a33 − a23a32].

Note that a22a33 − a23a32 > 0. If a22 > 0 or the reverse inequality of (3.5),

m1 <
(
b1 + a2

m2 − b2
m2

)2/(
b1 + a2

(m2 − b2
m2

)2)
,(5.4)

holds, and the parameters d2 and d3 satisfy

a33d2 + a22d3 > 0, Δ1 ≡ (a33d2 + a22d3)
2 − 4d2d3(a22a33 − a23a32) > 0,(5.5)

we can establish the following proposition.
Proposition 5.2. Assume that (5.4) holds and that d2 and d3 satisfy (5.5). Then

there exists a positive constant D∗
1 such that when d1 ≥ D∗

1, the three roots μ̃i(d1; d2,
d3), i = 1, 2, 3, of A(d1, d3; μ) = 0 are all real and satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

lim
d1→∞

μ̃1(d1; d2, d3) = 0,

lim
d1→∞

μ̃2(d1; d2, d3) =
1

2d2d3

{
a33d2 + a22d3 −

√
Δ1

}
≡ μ∗

2(d2, d3) > 0,

lim
d1→∞

μ̃3(d1; d2, d3) =
1

2d2d3

{
a33d2 + a22d3 +

√
Δ1

}
≡ μ∗

3(d2, d3) > 0.

(5.6)

Moreover, when d1 ≥ D∗
1 ,⎧⎪⎪⎨

⎪⎪⎩
−∞ < μ̃1(d1; d2, d3) < 0 < μ̃2(d1; d2, d3) < μ̃3(d1; d2, d3),

A(d1, d3;μ) < 0 if μ ∈ (−∞, μ̃1(d1; d2, d3)) ∪ (μ̃2(d1; d2, d3), μ̃3(d1; d2, d3)),

A(d1, d3; μ) > 0 if μ ∈ (μ̃1(d1; d2, d3), μ̃2(d1; d2, d3)) ∪ (μ̃3(d1; d2, d3),∞).

(5.7)
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Similarly, we consider d3 as the parameter, and d1 and d2 satisfy

a11d2 + a22d1 > 0, Δ2 ≡ (a11d2 + a22d1)
2 − 4d1d2(a11a22 − a12a21) > 0;(5.8)

then we have the following proposition.
Proposition 5.3. Assume that (5.4) holds and that d1 and d2 satisfy (5.8). Then

there exists a positive constant D∗
3 such that when d3 ≥ D∗

3 , the three roots μ̃1(d3; d1,
d2), i = 1, 2, 3, of A(d1, d3;μ) = 0 are all real and satisfy⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

limd3→∞ μ̃1(d3; d1, d2) ≤ 0,

lim
d3→∞

μ̃2(d3; d1, d2) =
1

2d1d2

{
a11d2 + a22d1 −

√
Δ2

}
≡ μ∗

2(d1, d2) ≥ 0,

lim
d3→∞

μ̃3(d3; d1, d2) =
1

2d1d2

{
a11d2 + a22d1 +

√
Δ2

}
≡ μ∗

3(d1, d2) > 0.

Moreover, when d3 ≥ D∗
3 ,⎧⎪⎪⎨

⎪⎪⎩
−∞ < μ̃1(d3; d1, d2) < 0 < μ̃2(d3; d1, d2) < μ̃3(d3; d1, d2),

A(d1, d3; μ) < 0 if μ ∈ (−∞, μ̃1(d3; d1, d2)) ∪ (μ̃2(d3; d1, d2), μ̃3(d3; d1, d2)),

A(d1, d3; μ) > 0 if μ ∈ (μ̃1(d3; d1, d2), μ̃2(d3; d1, d2)) ∪ (μ̃3(d3; d1, d2), ∞).

Remark 5.1. Simple computations show that μ∗
2(d1, d2) = 0 if and only if a11a22−

a12a21 ≤ 0.
In virtue of Theorems 4.3 and 4.2 and Propositions 5.1 and 5.2, the first result of

the existence of nonconstant positive solutions of (2.5) can be stated as follows.
Theorem 5.1. Assume that a1 < 1, (5.4), (5.5), and assumptions in Theorem 4.3

hold. If μ∗
2(d2, d3) ∈ (μi, μi+1) and μ∗

3(d2, d3) ∈ (μj , μj+1) for some j > i ≥ 0, where

μ∗
2(d2, d3), μ

∗
3(d2, d3) are defined in Proposition 5.2, and the sum

∑j
n=i+1 dimE(μn)

is odd, then there exists a positive constant D̃1 such that, if d1 ≥ D̃1, (2.5) admits at
least one nonconstant positive solution.

Proof. By Proposition 5.2 and our assumptions, there exists a positive constant
D̃1, such that when d1 ≥ D̃1, (5.7) holds and

μi < μ̃2(d1; d2, d3) < μi+1, μj < μ̃3(d1; d2, d3) < μj+1.(5.9)

According to Theorem 4.2, for d̂1 and d̂3 satisfying μ1d̂1 > 1, μ1d̂3 > m2 − b2, there
exists a large d̂2 such that (2.5) has no constant positive solutions when d1 ≥ d̂1,

μ1d2 ≥ d̂2, and d3 ≥ d̂3. In addition, since det{Gu(ũ)} < 0 and limn→∞ μn = ∞,

from (5.3), we can further choose d̂1, d̂2, and d̂3 to be so large that

H(d̂1, d̂2, d̂3; μn) > 0 for all n ≥ 0.(5.10)

Now we show that for any d1 ≥ D̃1, (2.5) has at least one nonconstant positive
solution. The proof, which is accomplished by a contradiction argument, is based on
the homotopy invariance of the topological degree. Suppose on the contrary that the
assertion is not true for some d1 = d̃1 ≥ D̃1.

We fix d1 = d̃1. Let di(t) = tdi + (1 − t)d̂i, i = 1, 2, 3, and define D(t) =
diag(d1(t), d2(t), d3(t)). Now we consider the problem{ −D(t)Δu = G(u) in Ω,

∂νu = 0 on ∂Ω.
(5.11)
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Then u is a positive solution of (2.5) if and only if it is a positive solution of (5.11)
for t = 1. It is obvious that ũ is the unique constant positive solution of (5.11) for
any 0 ≤ t ≤ 1. For any 0 ≤ t ≤ 1, u is a positive solution of (5.11) if and only if

F(t; u) ≡ u − (I − Δ)−1
{
D−1(t)G(u) + u

}
= 0 for u ∈ X+.

Clearly, F(1; u) = F(u). Theorem 4.2 shows that the only positive solution of
F(0; u) = 0 is ũ. From direct calculation,

DuF(t; ũ) = I − (I − Δ)−1{D−1(t)Gu(ũ) + I}.

In particular,

DuF(0; ũ) = I − (I − Δ)−1{D̂−1Gu(ũ) + I},
DuF(1; ũ) = I − (I − Δ)−1{D−1Gu(ũ) + I} = DuF(ũ),

where D̂ = diag(d̂1, d̂2, d̂3). From (5.2) and (5.3) we see that

H(d1, d2, d3; μ) =
1

d1d2d3
A(d1, d3; μ).(5.12)

In view of (5.7) and (5.9), it follows from (5.12) that⎧⎪⎨
⎪⎩

H(d1, d2, d3; μ0) = H(0) > 0,

H(d1, d2, d3; μn) < 0, i + 1 ≤ n ≤ j,

H(d1, d2, d3; μn) > 0, 1 ≤ n ≤ i and n ≥ j + 1.

Therefore, zero is not an eigenvalue of the matrix μiI−D−1Gu(ũ) for all n ≥ 0, and

∑
n≥0,H(d1,d2,d3;μn)<0

dimE(μn) =

j∑
n=i+1

dimE(μn) = an odd number.

Then Proposition 5.1 shows that

index(F(1; ·), ũ) = (−1)γ = −1.(5.13)

On the other hand, by (5.10) and Proposition 5.1 again, we obtain that

index(F(0; ·), ũ) = (−1)0 = 1.(5.14)

In view of d̃1 > D̃1, by Theorem 4.3, there exists a positive constant C = C(D̃1, d2,

d3, d̂1, d̂2, d̂3,Λ) such that, for all 0 ≤ t ≤ 1, the positive solutions of (5.11) satisfy
1/C < u1, u2, u3 < C. Therefore, F(t; u) �= 0 on ∂B(C) for all 0 ≤ t ≤ 1. By the
homotopy invariance of the topological degree,

deg (F(1; ·), 0, B(C)) = deg (F(0; ·), 0, B(C)).(5.15)

Moreover, under our assumptions, the only positive solution of both F(1;u) = 0 and
F(0; u) = 0 in B(C) is ũ, and hence, by (5.13) and (5.14),

deg (F(0; ·), 0, B(C)) = index(F(0; ·), ũ) = 1

and

deg (F(1; ·), 0, B(C)) = index(F(1; ·), ũ) = −1.

This contradicts (5.15), and the proof is complete.
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Remark 5.2. When d3 is fixed, we note that limd2→0 μ
∗
2(d2, d3) = (a22a33 −

a23a32)/(a22d3), limd2→0 μ
∗
3(d2, d3) = ∞, and (5.5) is automatically fulfilled for small

d2. Therefore, if for all i = 0, 1, 2, . . . , μi are simple and (a22a33 − a23a32)/(a22d3) �=
μi, by Theorem 5.1, when a1 < 1 and the assertion of Theorem 4.3 hold, there
exist two sequences of intervals {(θ1

n, θ
2
n)}∞n=1 and {(Θ1

n,Θ
2
n)}∞n=1 satisfying θ2

n+1 <
θ1
n, Θ2

n < Θ1
n+1, and θ1

n, θ
2
n → 0+ while Θ1

n, Θ2
n → ∞ as n → ∞ such that (2.5)

admits at least one nonconstant positive solution for all d1 ∈ (Θ1
n,Θ

2
n) and d2 ∈

(θ1
n, θ

2
n), n = 1, 2, 3, . . . . Recall that Theorem 4.3 holds when condition (i) or (ii) in

Lemma 4.1 holds. When (i) (same as (3.8)) holds, (5.4) is not satisfied. But when
(ii) in Lemma 4.1 holds, conditions in Theorem 5.1 can be satisfied.

Similarly, let us consider the case of large d3. By Proposition 5.3 and Remark 5.1,
we have the following theorem.

Theorem 5.2. Assume that a1 < 1, (5.4), (5.8), and Theorem 4.3 hold.

(i) If a11a22 − a12a21 > 0, then μ∗
2(d1, d2) ∈ (μi, μi+1), μ∗

3(d1, d2) ∈ (μj , μj+1)

for some j > i ≥ 0, and
∑j

n=i+1 dimE(μn) is odd.

(ii) If a11a22 −a12a21 ≤ 0, μ∗
3(d1, d2) ∈ (μj , μj+1) for some j > 0, and

∑j
n=1 dim

E(μn) is odd, where μ∗
2(d1, d2), μ

∗
3(d1, d2) are defined in Proposition 5.3, then there

exists a positive constant D̃3 such that, if d3 ≥ D̃3, (2.5) admits at least one noncon-
stant positive solution.

Remark 5.3. By Proposition 5.3, regardless of the sign of a11a22 − a12a21, we
have a conclusion similar to that in Remark 5.2. In addition, we mention that the
sign of a11a22 − a12a21 is indefinite when a1 < 1, a22 > 0, ũ exists, and the assertion

of Theorem 4.3 holds (note that, if
√
a2 + m2 <

√
m1 − b1 +

√
b2, then Theorem 4.3

is true by Lemma 4.1). The detailed analysis on this claim is left to the appendix.

Remark 5.4. Fix d1 and d2; by Remark 3.1, if m1 = (b1 + a2(m2 − b2)/m2)
2
/(b1+

a2(m2 − b2)
2/m2

2) − o(b1), and b1 → 0, a2, b2, m2 are properly chosen and either
a1 → 1/2 or a1 → 1, and d3 is sufficiently large, Turing instability actually happens.
Furthermore, combined with the analysis of the appendix, Proposition A.2(i) also
holds for such chosen parameters. With proper choices of d1 and d2, we can find
certain parameter ranges guaranteeing the existence of both Turing instability and
the nonconstant positive solution to (2.5) by Theorem 5.2(i). As a consequence,
Turing patterns exist for these parameter ranges.

6. Conclusions. In this paper, we analyze a reaction-diffusion food chain model
with ratio-dependent functional response. We are mainly concerned with the coex-
istence of the three species and focus on the case of a weak predation rate for the
pest species (i.e., a1 < 1). In particular, the existence and nonexistence of noncon-
stant positive steady states have been established. The existence results provide a
theoretical support for pattern formation caused by diffusion.

We summarize our investigation here and hope to reveal some interesting phe-
nomena of pattern formation in population ecology. We always assume the existence
of a constant coexistence. The main results of sections 3 and 4 show that this constant
coexistence steady state ũ is the only steady state if (a) both of the predation rates
a1 and a2 are small; (b) a1 is small while a2 is suitably chosen, and either the pest or
the other two species diffuse quickly (Theorem 4.4). In the former case, we are also
able to find a more restrictive parameter range so that ũ is globally asymptotically
stable (Theorem 3.3). This can also be seen from a bifurcation point of view. Here if
we assume that a1 is small, then stronger stability results of ũ can be proved when a2

is smaller. When a2 is close to zero, then ũ is globally asymptotically stable; when a2
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increases, ũ is still locally asymptotically stable but may not be globally asymptotically
stable, and it is still the only steady state; and when a2 further increases, ũ becomes
unstable for both the ODE and the reaction-diffusion system, and nonconstant pat-
terns exist in this case. In the latter case, the diffusion of the first or third species
must be large enough (see Theorems 5.1 and 5.2). Thus for small a1 and suitable a2,
the quick migration of the plant or top predator enhances the formation of spatial
pattern for the system. In contrast, the quick migration of the pest or both the plant
and top predators tends to prevent the system from generating pattern. It is well
known that fast diffusion of all species in a biological system will not lead to spatial
inhomogeneous patterns; see [6]. Our result shows the importance of the diffusion
rate of the middle species in a food chain. The large diffusion rate of the pest (mid-
dle species) alone can lead to the nonexistence of spatial patterns, but if the pest
diffusion rate is not large, then all other diffusion rates must be large to prevent the
occurrence of patterns. On the other hand, a large diffusion rate of the top species
or bottom species will help the generation of patterns. This demonstrates that, in an
ecological model, different diffusions may play essentially different roles in developing
spatial patterns. In addition, taking into account the close relationship between the
time-dependent solutions to a reaction-diffusion system and the corresponding steady
state solutions, to a great extent, the dynamical behaviors of (2.4) will be determined
by the diffusions of the three species.

These conclusions can also be compared with those in [28] and [36]. In the absence
of u3, (2.4) becomes the prey-predator model studied by Pang and Wang in [28]. The
results of the existence and nonexistence of nonconstant positive solutions there indi-
cate that large d2 contributes to the evolution of heterogeneousness for the dynamics,
while large d1 tends to increase the possibility of spatial uniform distribution. There-
fore, combined with the our conclusions for (2.5), this suggests that the structure
of solutions to the model in [28] will be significantly different due to the emergence
of the top predator, which in turn leads to the qualitative change of the biological
mechanism of the system. Such a phenomenon was also discussed by Lou, Martinez,
and Ni for the classical Lotka–Volterra competition model in [20].

In [36], Wang investigated a three-species prey-predator model. In that model, the
interaction between the lower and middle species is described by Holling II-type func-
tional response (prey-dependent), while the functional response between the middle
and top species is ratio-dependent (predator-dependent). It was proved that Turing
pattern may appear if both d1 and d3 are large, but will not if d2 is large. There-
fore the results of the present paper and [36] show that the formation of Turing
pattern in the biological models with the same degree of complexity depends on the
choices of functional responses. In other words, the feeding strategy of predators
may be one of the determining factors in producing Turing pattern. In a very recent
work [2], Alonso, Bartumeus, and Catalan performed some numerical calculations
indicating that predator-dependent models are sometimes capable of generating Turing
pattern, while similar prey-dependent models are not. Hence our theoretical analy-
sis for the food chain model rigorously confirms the outcome of computer simulation
in [2].

Finally we point out that some of our mathematical techniques in sections 4
and 5 can be applied to deal with the prey-predator model proposed by Pang and
Wang in [28] and derive some new a priori estimates for positive steady state solutions
and nonexistence results for nonconstant positive steady state solutions.

Appendix A. In section 6, to prove the existence of nonconstant positive solutions
to (2.5), we have made some hypotheses, namely, a1 < 1, a22 > 0, ũ exists, and The-
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orem 4.3 holds (in particular,
√
a2 + m2 <

√
m1 − b1 +

√
b2 means that Theorem 4.3

is true). We list these conditions as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1 < 1, m2 > b2, A > 1 ⇐⇒ a2(m2 − b2)/m2 + b1 < m1,

√
a2 + m2 <

√
m1 − b1 +

√
b2 ⇐⇒ (

√
a2 + m2 −

√
b2 )2 + b1 < m1,

a22 > 0 ⇐⇒ m1 < (b1 + a2(m2 − b2)/m2)
2
/(b1 + a2(m2 − b2)

2/m2
2).

(A.1)

In the following, we will verify the claim made in Remark 5.3, which says that
a11a22 − a12a21 is indefinite when (A.1) holds. First of all, by the definitions of
a11, a22, a12, a21, the direct computations yield the following proposition.

Proposition A.1. Define

Q ≡ −(1 − a1)a2b2(m2 − b2)A
3 + (1 − a1)m1m

2
2A

2

+ [(2a1 − 1)m1m
2
2 − a1a2b2(m2 − b2)]A− a1m1m

2
2;

then a11a22 − a12a21 > 0 ⇐⇒ Q > 0. Moreover, we note that
(i) as a1 → 0, Q → (m1m

2
2(A− 1) − a2b2(m2 − b2)A

2)A;
(ii) as a1 → 1/2, Q → − 1

2a2b2(m2 − b2)A
3 − 1

2a2b2(m2 − b2)A + 1
2m1m

2
2(A +

1)(A− 1);
(iii) as a1 → 1, Q → m1m

2
2(A− 1) − a2b2(m2 − b2)A.

Proposition A.2. The following results hold:
(i) If we take m1 = (b1 + a2(m2 − b2)/m2)

2
/(b1 +a2(m2 − b2)

2/m2
2)− o(b1), then

(A.1) can be satisfied and Q > 0 if b1 → 0, a2, b2, m2 are properly chosen and either
a1 → 1/2 or a1 → 1.

(ii) If we take m1 = b1 + 1, then (A.1) can be satisfied and Q < 0 if b1 → ∞,
a2 > 1, b2, m2 are properly chosen and either a1 → 0 or a1 → 1/2 or a1 → 1.

Proof. (i) As b1 → 0, m1 → a2, and A → m2/(m2 − b2), it is clear that Q > 0
provided that b1 → 0 and either a1 → 1/2 or a1 → 1 by Proposition A.1. On the
other hand, it is clear that there are a2, b2, m2 such that (i) holds.

Now, we verify (ii). If a1 → 1, Q → m1m
2
2(A−1)−a2b2(m2−b2)A. Choosing m1 =

b1 +1 and letting b1 → ∞, we note that A → 1 and m1(A−1) → 1−a2(m2− b2)/m2.
Therefore,

Q < 0 ⇐⇒ 1 − a2(m2 − b2)/m2 < a2b2(1 − b2/m2)/m2.(A.2)

By the above choice, (A.1) becomes equivalent to

a2(m2 − b2)/m2 < 1,(A.3)

1 + a2(m2 − b2)
2/m2

2 < 2a2(m2 − b2)/m2,

√
a2 + m2 < 1 +

√
b2.

Claim. There exist a2, b2, m2, and b2 < m2 such that (A.2) and (A.3) are true.
In fact, let b2 = αm2, where α ∈ (0, 1) will be determined later. If a2 > 1, solving
(A.3), we have

(a2 − 1)/a2 < α <
√

(a2 − 1)/a2 and α >
(√

1 + a2/m2 −
√

1/m2

)2

.
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It is evident that if √
(a2 − 1)/a2 >

(√
1 + a2/m2 −

√
1/m2

)2

,(A.4)

there is α such that (A.3) holds. We verify that there exist a2 and m2 such that (A.4)
is valid. Let a2 = βm2, where β ∈ (0,∞) will be determined later, and denote

f(β) = 4
√

1 − 1/a2 +
√
β/a2 −

√
1 + β.

So, for some β > 0, f(β) > 0 ⇐⇒ (A.4) holds for some a2 and m2. Simple analysis
shows that f(β) attains its maximal value at β = 1/(a2 − 1) and f(1/(a2 − 1)) > 0.
Take β = 1/(a2 − 1). According to our notation, (A.2) becomes equivalent to
a2(1 − α2) − 1 > 0. If α =

√
(a2 − 1)/a2, a2(1 − α2) − 1 = 0. Hence, we can

find α which is close to but less than
√

(a2 − 1)/a2 such that (A.2) is valid. Conse-
quently, our claim holds.

For a1 → 0 or a1 → 1/2, as above, similar analysis can be done. Therefore, from
these arguments, it can follow that (ii) is also true under our requirements.
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A SIMPLE ILLUSTRATION OF A WEAK SPECTRAL CASCADE∗
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Abstract. The textbook first encounter with nonlinearity in a partial differential equation
(PDE) is the first-order wave equation: ut + uux = 0. Often referred to as the inviscid Burgers
equation, this equation is familiar to many in the theoretical contexts of characteristics, wavebreaking,
or shock propagation. Another canonical behavior contained within this simplest of PDEs is the
spectral cascade. Surprisingly, buried in a little-known 1964 article by G.W. Platzman is an elegant
example of an exact Fourier series solution associated with a purely sinusoidal initial condition. This
Fourier representation, valid prior to wavebreaking, is generalized to arbitrary continuous initial
conditions on both the periodic and infinite domains. For the specific example of Platzman’s original
problem, the Fourier coefficients decay exponentially with increasing wavenumber, and the decay
rate flattens to zero precisely at the time of wavebreaking. It is demonstrated that two simplified
descriptions, a downscale truncation and a linearization from initial conditions, also produce an
exponential spectral cascade uniformly to large wavenumbers. This weak cascade is responsible for
the initial generation of Fourier harmonics in the viscous Burgers equation.

Key words. spectral cascade, nonlinear wave, inviscid Burgers equation

AMS subject classifications. 35L60, 76M45

DOI. 10.1137/040619090

1. Introduction. One of the first nonlinear partial differential equations (PDEs)
typically encountered in the applied mathematical canon is the wave equation

ut + uux = 0,(1.1)

which, though elementary, provides a rich introduction to nonlinearity. As a first-order
PDE, it provides an example with exact representations for the quasi-linear charac-
teristics. Convergence of these characteristics leads to wavebreaking, multivaluedness,
and the development of shock structures. Subsequent propagation of discontinuities is
governed by Rankine–Hugoniot conditions obtained from conservation law properties
of weak solutions. Beyond this, there is a vast literature associated with this equation
whose early references include the simple wave of advection in one-dimensional fluid
flow [7], the inviscid limit of the Burgers equation [2], and the kinematic wavespeed
equation [21].

Without the advantages of linearity, the usual applications of Fourier methods
do not generate modal solutions to (1.1). Rather the opposite occurs, as the forward
time evolution from a sinusoidal initial condition, via the wave steepening process,
immediately generates a solution with nonzero Fourier amplitudes at all scales. This
is an example of a spectral cascade, whereby the nonlinear interaction of Fourier
modes leads to an increase in the Fourier amplitudes at shorter spatial scales (higher
wavenumbers). While this imagery of the downscale cascade is quite intuitive, as the
textbook Fourier methods do not apply to nonlinear PDEs, the absence of illustrative
examples is one barrier to elementary-level analysis of this process. It is relatively
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unknown, however, that a Fourier series solution, whose coefficients are expressed as
Bessel functions, can be elegantly derived for the evolution of (1.1) in the special case
of a sinusoidal initial condition. This surprising result, by Platzman in 1964, appeared
in Tellus, a journal for dynamic meteorology and oceanography [15].

In this article, we generalize this result to obtain an integral representation of the
Fourier coefficients for arbitrary periodic initial conditions, which is valid up to the
time of first wavebreaking. This gives an exact formula for each Fourier amplitude as
a function of wavenumber and time, which requires only a spatial quadrature over the
initial condition. For the wave equation (1.1), the Fourier spectrum is characterized
by an exponential decay with wavenumber [18]. The increase in the decay rate with
time is a convenient measure of the developing cascade. The weak cascade process is
further investigated from the perspectives of spectral dynamics and linearized PDE
dynamics about small amplitude initial conditions. For the specific case of sinusoidal
initial conditions, both these perspectives on the cascade dynamics also produce short-
time approximations where the exponential decay of the Fourier spectrum is uniform
to large wavenumbers. The inviscid cascade is shown to be consistent with initial
growth of the exponential spectra observed for the viscous Burgers equation. Finally,
the Fourier solution of the wave equation is extended to the infinite line, where it is
applied to the downscale cascade from a Gaussian initial condition.

The primary intent here is the presentation of explicit PDE solutions which illus-
trate the downscale cascade. First, we examine an exact integral formula for obtaining
the Fourier coefficients of solutions to the nonlinear wave initial value problem (1.1).
Additionally, the special Platzman solution, whose Fourier coefficients are expressible
using Bessel functions, provides a benchmark against which we can compare vari-
ous approximate descriptions of the cascade process. As it happens, the concepts
required to relate this particular story nearly read as an introductory syllabus of
applied mathematics: characteristics, Fourier representations, special functions, per-
turbation series, contour integration, and integral asymptotics. So, in keeping with
the illustrative nature of this problem, these calculations have been presented in a
manner to emphasize its more expository aspects.

2. From characteristics to Fourier series. Consider the general initial value
problem of the nonlinear wave equation

ut + uux = 0, u(x, 0) = f(x),(2.1)

periodic on a domain −π ≤ x ≤ π. The characteristics are curves in x-t space which
are defined by the ordinary differential equation (ODE)

dx

dt
= u, x(0) = x0,(2.2)

where x0 labels the originating initial point at (x, t) = (x0, 0). Along this character-
istic, the PDE (2.1) is now seen to be the perfect derivative

du

dt
= 0, u(0) = f(x0),(2.3)

which shows that u maintains the constant value established at its initial point (x0, 0).
Solutions to the ODEs (2.2) and (2.3) produce the wave solution

u = f(x0), x = ut + x0,(2.4)
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Fig. 2.1. Wavebreaking evolution of u(x, t)/ε beginning from a sinusoidal initial condition (2.6).
Shown are scaled times εt = 0, 1/2, 1, 3/2 with the initial and critical wavebreaking profiles in solid
and an overturning profile in gray dashed. Obtained from the parametric solution (2.4), the dots
track values of u = f(x0) corresponding to characteristics labeled by x0 at intervals of π/20.

expressed as a parametrization on x0. Eliminating the parameter immediately pro-
duces the well-known implicit general solution for u(x, t):

u = f(x− ut).(2.5)

It is a consequence of the nonlinearity in (1.1) that (nontrivial) solutions beginning
from smooth initial conditions will eventually develop a finite-time derivative sin-
gularity. Figure 2.1 shows the solution u(x, t) beginning from the sinusoidal initial
condition

f(x) = −ε sinx(2.6)

at times εt = 0, 1/2, 1, 3/2, where the critical wavebreaking event occurs at εtc = 1.
Although the ε can be removed by rescaling, it is retained for future convenience in
the short-time analyses in later sections.

At first glance, construction of a Fourier series solution directly from the PDE
(1.1) seems unlikely since nonlinearity precludes the usual application of Fourier trans-
forms. It is a truly remarkable consequence from Platzman’s original analysis that
the Fourier series representation of u(x, t),

u(x, t) =
a0

2
+

∞∑
n=1

[an(t) cosnx + bn(t) sinnx],(2.7)

an(t) =
1

π

∫ +π

−π

u(x, t) cosnx dx,(2.8)

bn(t) =
1

π

∫ +π

−π

u(x, t) sinnx dx,(2.9)

has coefficients an(t) and bn(t), which can be manipulated into integrals completely
determined by the given initial profile f(x). For the sine coefficient bn(t), this refor-
mulation begins from an integration by parts of (2.9), followed by a replacement of
ux using the parametrized form of the characteristic x = ut + x0 (2.4),
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bn(t) =
1

πn

∫ +π

−π

ux(x, t) cosnx dx

=
1

πnt

∫ +π

−π

(
1 − dx0

dx

)
cosnx dx.(2.10)

Noting that only the dx0/dx-term contributes to the full-period integration, changing
the variable of integration to x0 gives

bn(t) = − 1

πnt

∫ +π

−π

cos[nx0 + nt f(x0)]dx0(2.11)

and achieves a final integral which involves only the initial condition (2.1). Analogous
operations obtain the cosine coefficients for n ≥ 0:

an(t) =

⎧⎪⎪⎨
⎪⎪⎩

1

π

∫ +π

−π

f(x0)dx0 for n = 0,

1

πnt

∫ +π

−π

sin[nx0 + nt f(x0)]dx0 for n > 0,

(2.12)

where the exceptional n = 0 case is simply the conservation of the mean by the PDE
(1.1). It is important to note that the use of integration by parts assumes that the
solution remains continuous and hence is not valid after wavebreaking.

A further step can be taken by substituting the Fourier coefficients (2.12) and
(2.11) back into the series (2.7). First, the Fourier sine and cosine sums collapse into
a single sum

u(x, t) =
a0

2
+

∞∑
n=1

1

πnt

∫ +π

−π

sinn[x− x0 − tf(x0)]dx0

=
a0

2
+

1

t

∫ +π

−π

[(
x− x0 − t f(x0)

2π
mod1

)
− 1

2

]
dx0;(2.13)

then an interchange of sum and integral yields what seems to be a quadrature solution
for (2.1). Prior to crossing of characteristics, however, u(x, t) cannot depend globally
on the initial condition, but is determined exactly by one value of the initial condi-
tion. The resolution of this apparent nonlocality is the presence of the modulus in
(2.13), which produces a discontinuous integrand. The discontinuity occurs precisely
at the unique value of x0 parametrizing the characteristic (2.4) that determines u(x, t).
Shifting the integration domain to the periodic interval x0 − 2π ≤ y ≤ x0 allows the
removal of the modulus

u(x, t) =
a0

2
+

1

t

∫ x0

x0−2π

[
x− y − t f(y)

2π
− 1

2

]
dy

=

[
a0

2
− 1

2π

∫ x0

x0−2π

f(y) dy

]
+

∫ x0

x0−2π

[
x− x0

2πt
− y − (x0 − π)

2πt

]
dy

=
x− x0

t
= f(x0)(2.14)

and, after some grouping of terms, reduces the integral to the local value f(x0).
Similarly, for the case when several characteristics are involved, the integral then



1508 DAVID J. MURAKI

0 3

0

1

 u
(x

,t
) 

/ ε

 x

Fig. 2.2. The characteristic solution (2.4) from Figure 2.1 (thick, light curve) beyond the wave-
breaking time (εt = 3/2) compared with the Fourier series representation (3.2), which is single-valued
and continuous (thin, dark curve). The two solutions differ only in regions where the characteristic
solution is multivalued.

becomes a weighted sum over all such characteristic values ±f(x0), where the sign
matches that of dx/dx0. For instance, when the characteristic solution becomes triple-
valued (ub < um < ut), the series adopts the value ub − um + ut. This averaging
effect within the Fourier series is illustrated by the thin dark curve in Figure 2.2, in
comparison to the multivalued characteristic solution (εt = 3/2) as replicated from
Figure 2.1. Thus, although the Fourier series defined by (2.11) and (2.12) no longer
satisfies the original PDE (1.1) after wavebreaking, the series retains a meaning related
to the multivaluedness of the characteristic solution (2.4), but not one connected with
any of the usual entropy solutions [8].

3. Platzman’s solution and its downscale cascade. The specific example
considered by Platzman [15] was based upon the sinusoidal initial condition (2.6),
whose forward evolution is shown as Figure 2.1. It is this solution for which Platzman
essentially realized that the Fourier coefficient (2.11),

bn(t) = − 1

πnt

∫ +π

−π

cos(nx0 − ntε sinx0)dx0 = −2
Jn(εnt)

nt
,(3.1)

resulted in a standard integral representation of the Bessel function of order n [1]. This
produced a solution to the nonlinear wave equation (1.1) having an exact expression
for its Fourier sine series

u(x, t) = −2

∞∑
n=1

Jn(εnt)

nt
sinnx,(3.2)

where, in the t → 0+ limit, only the n = 1 term is nonzero and the initial condi-
tion (2.6) is satisfied. In classical analysis, summations whose terms involve Bessel
functions of increasing indices and arguments are known as Kapteyn series [19]. As a
historical aside, Platzman also recognized that the identical series also appears in the
analysis of the Keplerian orbital problem.

It is clear from the coefficients (3.1) that all modes become activated for t > 0.
This is an illustration of a downscale spectral cascade whereby the nonlinear evolution
from a single initial Fourier mode leads to the immediate appearance of all smaller
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Fig. 3.1. Semilog plot of spectral amplitudes bn(t)/ε for Platzman’s Fourier series solution (3.2)
showing the growth of the n > 1 modes at scaled times εt = 1/4, 1/2, 3/4. The exponential spectrum
is indicated by linear asymptotes (3.5), which are becoming flatter with time (dash-dot, dash, solid),
and thus illustrates a downscale spectral cascade. The decrease in the fundamental n = 1 mode is
not discernable on this semilog axis.

scales. A Bessel recurrence identity [1] gives an alternate expression for (3.1),

bn(t) = −ε
Jn+1(εnt) + Jn−1(εnt)

n
,(3.3)

from which it follows that the n ≥ 2 amplitudes |bn(t)| are strictly increasing up to the
time of wavebreaking, since J ′

n(z) > 0 in the interval 0 < z < n [19]. The exception is
the fundamental amplitude |b1(t)|, the source of the cascade, which decreases steadily
and is roughly 88% of its original amplitude at the time of critical wavebreaking.
Figure 3.1 shows a semilog plot of the Fourier amplitudes against wavenumber for the
times εt = 1/4, 1/2, 3/4.

Also shown in Figure 3.1 are lines indicating the large-n asymptotic slopes of the
semilog spectral amplitudes. These are evident from the Debye expansions for the
Bessel functions of large index and argument [1],

|bn| ∼
√

2

πt2 tanhα
n−3/2en(−α+tanhα) as n → ∞,(3.4)

where coshα = 1/εt. This wavenumber-dependence of the Fourier coefficient reflects
the (real) analytic nature of the solution u(x, t) [3]. The spectral slope, −α+ tanhα,
represents the exponential decay rate with wavenumber and can be explicitly written
in terms of εt:

ln |bn|
n

∼ ln

(
εt

2

)
+
√

1 − ε2t2 − ln

(
1 +

√
1 − ε2t2

2

)
as n → ∞.(3.5)

This expression is equivalent to that deduced by Sulem, Sulem, and Frisch [18] from
the pole singularities of the analytic continuation of u(x, t) to the complex x-plane.1

The early cascade has a spectral slope whose growth is logarithmic in time and corre-
sponds to a geometric decay of the Fourier amplitudes by the factor εt (as illustrated

1Also in [18] is the identification of a narrow n−4/3 spectral regime which occurs just prior to
the critical wavebreaking time. This corresponds to a special case of the Bessel asymptotics [1].
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later in (5.3)). However, as the wavebreaking εt = 1 is approached, the spectral
slope flattens to zero. After this time, the decay becomes algebraic following the
development of the derivative singularities such as those shown in Figure 2.2.

The connection of (3.1) to a known integral identity appears to be unique to the
Platzman initial condition. More generally, however, the form of (2.12) and (2.11)
is such that when the integrands are analytic, extraction of the exponential cascade
can be approached by deforming the path of integration into the complex x-plane.
For entire f(x), the method of steepest descent applies, as the integration path can
be deformed such that the large n contribution is localized to a saddle point. This
approach can also be used to obtain (3.4). The saddle-point method is illustrated by
the example for the infinite line formulation in section 7.

4. Spectral dynamics and the short-time cascade. A conventional approach
for analyzing the cascade is by direct substitution of the series (2.7) into the PDE
(1.1). For the special case of a Fourier sine series, the terms involved in the sinnx-
mode are

· · · + b′n sinnx + · · ·

+

n−1∑
1

kbkbn−k cos kx sin(n− k)x

+

∞∑
1

kbkbn+k cos kx sin(n + k)x

+

∞∑
1

(n + k)bn+kbk cos(n + k)x sin kx + · · · = 0.

(4.1)

After applying a trigonometric product identity and reorganizing the terms, a descrip-
tion of the spectral dynamics is obtained as coupled ODEs:

b′n = −n

4

n−1∑
1

bkbn−k +
n

2

n−1∑
1

bkbn+k +
n

2

∞∑
n

bkbn+k(4.2)

for the amplitudes bn(t) over wavenumbers n. The first of the three sums corresponds
to downscale transfer involving longer waves with wavenumbers from below, k < n
and (n − k) < n. The second corresponds to mixing transfer involving straddling
wavenumbers, k < n < n+k, while the third corresponds to upscale transfer involving
only shorter waves, n ≤ k < n+ k. These last two summations can be combined into
a single sum. It is quite unclear as to how the Bessel amplitudes (3.1) could possibly
have been directly obtained beginning only from the spectral ODEs (4.2) and the
initial conditions {bn(0)} = {−ε, 0, 0, . . .}.

Analytical progress is possible, however, in the limit of small ε. At O(1) times,
the assumption of small amplitude initial condition leads to a wavenumber scaling of
the Fourier amplitudes bn(t) = O(εn) and allows a natural truncation of the spectral
dynamics (4.2) to involve only the downscale transfer summation

b̃′n =

⎧⎪⎪⎨
⎪⎪⎩

0 for n = 1,

−n

4

n−1∑
1

b̃k b̃n−k for n ≥ 2.
(4.3)
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This will be referred to as the downscale cascade truncation. The exact solution to
the above truncation must therefore be the small ε limit of Platzman’s solution (3.1),

b̃n(t) = −ε
nn−1

n!

(
εt

2

)n−1

,(4.4)

which derives from the first nonzero term of the Taylor expansion for the Bessel
function [1]. Verification of this, by direct substitution of (4.4) into (4.3), yields
a combinatorial identity of uncommon origin—one such instance is found in graph
theory as an elementary counting of trees [10]. A direct approach for arriving at
expression (4.4) is via a generating function

B(z, t) =

∞∑
n=1

b̃n(t)
einz

2i
.(4.5)

By virtue of the downscale spectral dynamics (4.3), B(z, t) also satisfies the same
nonlinear wave equation (1.1),

Bt + BBz = 0, B(z, 0) = ε
eiz

2i
,(4.6)

but now with a complex-valued initial condition that is exactly the restriction of the
original sinusoid to the positive wavenumber modes. Solution by characteristics leads
to the implicit relation

iBteiBt =
εt

2
eiz,(4.7)

whose inversion can be expressed in terms of Lambert’s transcendental equation (see
also [20]), and otherwise designated by the W-function [6],

B(z, t) = − i

t
W

(
εt

2
eiz

)
.(4.8)

However, explicit recovery of the formula for the coefficients (4.4) follows more directly
from (4.7) with the application of the Lagrange inversion theorem. Using the Stirling
approximation for the factorial in (4.4) gives the large wavenumber behavior

b̃n ∼ −
√

2

πt2
n−3/2 en

(
εt

2

)n

for n → ∞(4.9)

and implies the downscale spectral slope

ln |b̃n|
n

∼ ln

(
εt

2

)
+ 1 as n → ∞ for εt � 1.(4.10)

The difference here from the full cascade (3.5) is that the slope from the downscale
cascade truncation (4.10) is less steep, as the exclusion of any upscale transfers results
in a more rapid generation of a smaller-scale spectrum. Hence, at short times (εt � 1),
the spectral slope (3.5) for Platzman’s example is well described by the downscale
cascade approximation (4.3).
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5. A linearized description of the weak cascade. One conclusion from the
previous section is that even the truncation of the spectral dynamics to the downscale
transfer requires the solution of a fully nonlinear problem. As such, the results relied
upon considerable good karma in there being an exact solution (4.4) to a system
of nonlinear equations (4.3). In this section, a linear approach is investigated for
constructing an approximate solution to the PDE (2.1) that involves the full spectrum
of wavenumbers.

Consider a weakly nonlinear analysis which seeks the form of a perturbation
expansion

u(x, t) ∼ f(x) + u2(x, t) + u3(x, t) + · · · ,(5.1)

where the first term is a small amplitude initial condition f(x) = O(ε) 	 u2(x, t) 	
u3(x, t) . . . for ε � 1. The simplest such expansion assumes that the corrections
un(x, t) = O(εn). Substituting (5.1) into the PDE and collecting on powers of ε gives
the sequence of equations

∂un

∂t
= −

n−1∑
1

un−k
∂uk

∂x
, un(x, 0) = 0,(5.2)

which can be solved iteratively for n ≥ 2 by direct integration for t > 0. For the
sinusoidal initial conditions, the first two corrections are

u2(x, t) =−ε

(
εt

2

)
sin 2x,

u3(x, t) =−ε

(
εt

2

)2 {
3

2
sin 3x− sinx

}
;

(5.3)

subsequent terms un(x, t) contain only O(εn) expressions, which include not only the
short-time harmonic b̃n(t) sinnx from the downscale transfer (4.4), but also smaller
harmonics due to contributions from the straddling and upscale transfers (4.2). Finite
application of this method thus produces an O(εn) series expansion limited to the first
n harmonics. Such a finite expansion is not a uniform approximation over wavenum-
bers, since for the sinusoidal initial condition the extent to which the spectral cascade
is realized is limited by the number of terms in the expansion (5.1).

To develop an approach which involves all harmonics, consider the solution as a
disturbance from a small amplitude initial condition

u(x, t) = f(x) + ũ(x, t),(5.4)

so that ũ(x, t) � f(x) = O(ε). This results in the exact disturbance equation

ũt = −ffx − (fũ)x − ũũx, ũ(x, 0) = 0,(5.5)

where the right-hand side terms are nominally O(ε2), O(ε3), and O(ε4). If (5.5) is
approximated by keeping only the ffx-term, then the disturbance ũ(x, t) is O(ε2)-
correct and would be identical to u2(x, t) as determined by (5.2). Alternatively, an
additional order in ũ(x, t) is achieved if only the last and nonlinear disturbance term
is neglected. This truncation can be interpreted as a first Newton iterate, since the
ũ-correction is obtained by a linearized solve against a residual error (in the form of
the ffx-term). Thus we consider the linearized problem

Ut + (fU)x = −ffx, U(x, 0) = 0,(5.6)
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so that u(x, t) ∼ f(x)+U(x, t) constitutes an O(ε3)-correct asymptotic representation.
Multiplying the equation though by f(x) and defining v(x, t) = f(x)U(x, t) gives

vt + fvx = −1

2
f(f2)x, v(x, 0) = 0,(5.7)

which is a first-order but nonconstant coefficient and inhomogeneous PDE. Unlike the
original PDE (1.1), the characteristics for the linearization (5.6) do not depend on
the solution, but only on the initial condition, via

dx

dt
= f(x), x(0) = x0,(5.8)

where again x0 labels the originating initial point at (x, t) = (x0, 0). Along this
characteristic, the PDE (5.8) now becomes the perfect derivative

dv

dt
= −1

2

dx

dt
(f2)x = −1

2

d(f2)

dt
, v(x0, 0) = 0,(5.9)

which relies upon the t-independence of f2. Direct integration from a zero initial
condition gives the solutions

v(x, t) =−1

2

(
f2(x) − f2(x0)

)
,

U(x, t) =−1

2

(
1 − f2(x0)

f2(x)

)
f(x),

(5.10)

where the label x0 = x0(x, t) is obtained by inverting the solution of the characteristic
ODE (5.8). Specifically for Platzman’s initial condition, it is shown next that this
correction term is no longer spectrally limited to a few harmonics but embodies a
cascade across all wavenumbers.

For the case of f(x) = −ε sinx, the characteristic ODE (5.8) is a nonlinear but
separable equation; hence

ln

(
tanx/2

tanx0/2

)
=

∫ x

x0

dx

sinx
= −ε

∫ t

0

dt = −εt,(5.11)

from which the trigonometric relation tan(x0/2) = eεt tan(x/2) follows. Using this
and a half-angle identity gives

sinx0 =
2 tan(x0/2)

1 + tan2(x0/2)
=

2eεt tan(x/2)

1 + e2εt tan2(x/2)
=

sechεt

1 − tanh εt cosx
sinx,(5.12)

which, in the Platzman case, effects the inversion of the characteristic label x0 into the
original x, t-coordinates. Thus, the linearized solution (5.10) leads to the asymptotic
approximation

u(x, t) ∼ −ε sinx +
ε

2

(
1 − sech2εt

(1 − tanh εt cosx)2

)
sinx + O(ε4),(5.13)

where the second term is actually O(ε2) with the vanishing of the bracketed factor
when ε = 0.
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Obtaining the spectral cascade requires finding the Fourier series representation
of (5.13). The obvious problematic term is the second term in the correction whose
Fourier-sine coefficient is the imaginary part of

− ε

2π
sech2εt

∫ +π

−π

einx sinx

(1 − tanh εt cosx)2
dx.(5.14)

This expression can be evaluated via complex contour integration around a rectangle
whose corners are {−π,+π,+π + iY,−π + iY }. Contributions from the sides parallel
to the imaginary axis cancel by the periodicity of the integrand, and the contribution
from the side with Im(z) = Y tends to zero as Y → +∞ by the decay of the integrand.
The closed contour contains only a double pole at zp, where

cos zp = cosh izp =
tanh(εt2) + coth(εt2)

2
= coth εt

⇒ eizp = tanh(εt2),(5.15)

and thus is located along the positive imaginary axis for εt > 0. The end result of
this residue calculation is the series representation for (5.13):

u(x, t) ∼ − ε

2

(
sinx + sech2(εt2)

∞∑
1

n tanhn−1(εt2) sinnx

)
,(5.16)

which reveals that again the spectrum has exponential decay, whose spectral slope is

slope ∼ ln

∣∣∣∣tanh
εt

2

∣∣∣∣ as n → ∞ for εt � 1.(5.17)

Thus the logarithmic part of the εt � 1 spectral slope is obtained. It is empha-
sized that this is really just a scaling result on the amplitudes, indicating only that
harmonics decay as powers of εt. This limited result is not too surprising since the
downscale cascade within the short-time and linear approximation is still a fully non-
linear process (4.3). Nonetheless, for the sinusoidal initial condition, the linearization
(5.6) does produce, after just one perturbative calculation, an explicit short-time cor-
rection (5.13) that is asymptotically valid only to O(ε3) yet captures the exponential
decay of the spectrum uniformly to large wavenumbers.

More generally, the linearization generates Fourier harmonics through the action
of the nonconstant coefficient (5.7), as the Fourier harmonics are no longer the linear
modes. In essence, this allows a coupling between Fourier coefficients, but one where
the strength of the interaction is determined by the nonconstant coefficient and hence
is fixed in time by the initialized state. The above example shows that even when the
coupling is established by an initial condition consisting only of a single initial sinusoid,
the cascade described by (5.6) captures the downscale cascade with an exponential
decay in wavenumber. A second example of a linearized cascade based on a spectrally
richer initial Gaussian is computed for the infinite line case of section 7.

6. The weak cascade of the Burgers equation. The exponential spectrum
appears in the wave equation (1.1) as a consequence of pole singularities associated
with the analytic continuation of the inversion (2.5) over complex x [18]. An expo-
nential spectrum is also common to solutions of the Burgers equation [16, 18], and it
includes the effect of viscous, linear dissipation into the nonlinear wave equation [2]:

ut + uux = σuxx, u(x, 0) = f(x).(6.1)
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Fig. 6.1. Top panel shows a Burgers solution beginning from a sinusoidal initial condition
for ε = 0.5, σ = 1.0 at times t = 0.1, 0.4, 2.0 (dash-dot, dashed, solid). Bottom panel shows
the corresponding semilog Fourier spectra with the asymptotic slopes indicated. The spectral slope
initially increases until roughly t = 0.4, and then decreases linearly in time.

A familiar spectral result [2, 18, 4] is the exponential spectrum for the steady-state
tanh-solution. It is also well known that the Burgers dynamics is equivalent to the
linear diffusion equation via the Hopf–Cole transformation [21],

u = −2σ
ψx

ψ
, ψt = σψxx.(6.2)

For Hopf–Cole functions ψ(x, t) which are meromorphic over complex x, the evaluation
of Fourier coefficients

bn(t) = −2σ

π
Imag

∫ +π

−π

ψx(x, t)

ψ(x, t)
einxdx(6.3)

by a contour integration of the type used to obtain (5.14) involves only simple poles.
The residue of the pole with smallest imaginary part determines the spectral slope of
the exponential spectrum [18].

The upper panel of Figure 6.1 shows the decay of the Burgers solution beginning
from an initial sinusoid (2.6) of small amplitude (ε = 0.5, σ = 1.0) as computed by a
fully spectral code. Clearly apparent in the lower panel of Figure 6.1 are the linear
asymptotes in the corresponding semilog plots of Fourier amplitudes. Inspection of
the chronology of the spectra (dash-dot, dashed, solid) reveals that the spectral slopes
initially increase in time, and subsequently decrease through the action of viscous
dissipation. Figure 6.2 (solid) shows the best-fit spectral slopes, as a function of
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Fig. 6.2. The semilog spectral slope as a function of log-time for the evolution of Figure 6.1 as
obtained by the best-fit line over modes n = 80–100 (solid). At short times, the Platzman spectral
slope (4.10) illustrates that the growth of the initial cascade scales similarly as the inviscid dynamics
(gray dashed). At long times, the slope follows the asymptote as obtained from the Hopf–Cole
solution (6.8) and shows the erosion of the spectrum by the viscous decay (dashed).

log-time, for the evolution of Figure 6.1. In terms of the spectral slope, the Burgers
cascade exhibits the same growth as the inviscid cascade (4.10) at very early times
(gray dashed). At later times, when the amplitudes are decaying, the spectral slope
approaches a linear-in-time asymptote (dashed). It is not apparent how to obtain the
early-time spectral growth directly from the Hopf–Cole solution, but the long-time
behavior is easily extracted.

The initial Hopf–Cole function is given by

ψ(x, 0) = exp
(
− ε

2σ
cosx

)
= I0

( ε

2σ

)
+ 2

∞∑
1

In

(
− ε

2σ

)
cosnx,(6.4)

where the series representation [1] involves a modified Bessel identity which is closely
related to that used in the Platzman cascade (3.1). The time-dependent evolution
thus has the exact Fourier solution

ψ(x, t) = I0

( ε

2σ

)
+ 2

∞∑
1

In

(
− ε

2σ

)
e−σn2t cosnx.(6.5)

After sufficiently long times (regardless of the values of ε and σ), the Hopf–Cole
dynamics is dominated by the slowest decaying n = 1 mode,

ψ(x, t) ∼ I0

( ε

2σ

)
− 2I1

( ε

2σ

)
e−σt cosx.(6.6)

The corresponding Burgers solution then has the form

u(x, t)∼−4σ
I1(ε/2σ)e−σt sinx

I0(ε/2σ) − 2I1(ε/2σ)e−σt cosx

=−4σ
∞∑
1

enρ sinnx,

(6.7)

where the spectral slope, ρ, calculated using the same contour used to obtain (5.14),
is given by

ρ = − cosh−1

(
I0(ε/2σ)

2I1(ε/2σ)
eσt

)
∼ −σt + ln

(
I1(ε/2σ)

I0(ε/2σ)

)
for t 	 1.(6.8)
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This is the long-time asymptote (dashed) shown in Figure 6.2 and is the generic
spectral behavior once the Burgers evolution is dominated by a largest scale mode.

The special case of the sinusoidal initial condition illustrates that the initial down-
scale cascade evolves on the inviscid timescale, εt, despite the fact that the advective
term is a weakly nonlinear effect. The cascade then transitions to dissipation on the
viscous timescale, σt, as the solution comes to be dominated by the slowest decaying
mode u(x, t) ∼ e−σt sinx. The modal dissipation is then driven by weak nonlinearity,

as harmonics decay as e−nσt, in contrast to the e−n2σt decay of linear diffusion.

7. Fourier solution on the infinite line. The derivation of the periodic
Fourier coefficients (2.11), (2.12) is easily modified to obtain an analogous integral
for the Fourier transform solution on the infinite line. Defining the Fourier transform
representation of continuous solutions to (1.1) by

u(x, t) =

∫ +∞

−∞
c(k, t)e−ikxdk,(7.1)

the coefficients c(k, t) can also be shown to derive from the initial profile u(x, 0) =
f(x). Beginning from the Fourier integral, an integration by parts is performed,

c(k, t) =
1

2π

∫ +∞

−∞
u(x, t)eikxdx =

i

2πk

∫ +∞

−∞
ux(x, t)eikxdx,(7.2)

which again assumes continuity as well as sufficiently fast decay of the solution at
x → ±∞. In a slight departure from the periodic case, the next step introduces the
parametric solution u = f(x0),

c(k, t) =
i

2πk

∫ +∞

−∞
f ′(x0)

dx0

dx
eikxdx

=
i

2πk

∫ +∞

−∞
f ′(x0) exp[ik(x0 + tf(x0))]dx0,

(7.3)

where decay of the integrand is ensured through the initial profile. (Note that an
analogous formula can also be derived for the periodic case.)

For example, the solution from an initial Gaussian profile f(x) = e−x2/2 remains
single-valued up until the breaking time of tc =

√
e (Figure 7.1). In the limit of

large wavenumber k, the Fourier integral (7.3) can be approximated by the method

of steepest descent. The complex plane for the phase function φ(z) = i(z+ te−z2/2) is
shown as Figure 7.2. The saddle points of the phase are determined by the stationary
points φ′(zs) = 0, which for the Gaussian profile can be expressed as the condition

(−z2
s)e

(−z2
s) = − 1

t2
.(7.4)

Thus the saddle points are complex-valued solutions to Lambert’s transcendental
equation z2

s = −W (−1/t2). Figure 7.2 shows the four saddle points closest to the real
z-axis at time t/tc = 3/4. The integration along the real axis (7.3) can be deformed
into a scalloped contour (solid curve in Figure 7.2) in the upper half-plane, so that
the dominant contribution will be localized to the saddle point with the maximum
Re(φ(zs)). The quadratic Taylor expansion of the phase function at a saddle point
simplifies to

φ(z) ∼ i

(
zs +

1

zs

)
+

i

2

(
zs −

1

zs

)
(z − zs)

2(7.5)
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Fig. 7.1. Wavebreaking evolution of u(x, t)/ε beginning from a Gaussian initial condition.
Shown are scaled times t/tc = 0, 1/2, 1, 3/2 with the initial and critical wavebreaking profiles in solid
and an overturning profile in gray dashed. Obtained from the parametric solution (2.4), the dots
track values of u = f(x0) corresponding to characteristics labeled by x0 at intervals of 1/5.

Fig. 7.2. Complex plane for the phase function φ(z; t) for t/tc = 3/4. The grayscale indicates
Re(φ(z; t)), where darker regions correspond to exponential smallness of the integrand. The contours
shown are associated with the four saddle points closest to the real axis (closest zs ≈ 0.95 + 0.55i).
Solid contours are paths of steepest descent to regions of exponentially small integrand. Dashed
contours are level curves of the magnitude.

and gives the steepest descent contribution√
1

2πi(zs − 1/zs)t2
k−3/2ei(zs+1/zs)k,(7.6)

where additional time-dependence lies in the location of the saddle point (7.4). Using
only the dominant saddle point, this gives an expression for the spectral slope:

ln |c(k, t)|
k

∼ − Im

(
zs +

1

zs

)
as k → ∞,(7.7)

which is verified by the lines in Figure 7.3. As expected, the breaking time tc =√
e coincides with the first real root of the saddle-point condition (7.4), where the

spectral decay changes from exponential to algebraic. Thus, at finite times 0 < t < tc,
the spectrum decays exponentially despite its beginning from more rapid quadratic
Gaussian decay (light curve).
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Fig. 7.3. Semilog plot of spectral amplitudes cn(t)/ε of a pseudospectral computation (de-aliased
to 2048 modes on a 4π-periodic domain) from a Gaussian initial condition (leftmost curve). The
downscale spectral cascade is illustrated by the growth of the Fourier amplitudes (other dark solid)
over times t/tc = 1/4, 1/2, 3/4. The flattening of the exponential spectrum is indicated by the linear
asymptotes (dash-dot, dash, solid) as calculated from the steepest descent contribution (7.7) from
the saddle point nearest the real axis.
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Fig. 7.4. Semilog plot of spectral amplitudes cn(t)/ε for the linearized evolution (5.6) from
an initial Gaussian (gray solid) shows that its cascade also develops an exponential spectrum. The
numerical parameters are the same as those of the nonlinear computation of Figure 7.3. The flat-
tening of the spectrum is shown for earlier times t/tc = 1/12, 1/6, 1/4, based on the breaking time
of the nonlinear evolution. The slope of the linearized cascade at t = tc/4 lags just behind the fully
nonlinear cascade shown in Figure 7.3.

The development of the linearized spectrum from the Gaussian initial condition
is shown in Figure 7.4. Although the communication between the Fourier modes is
fixed by the spectral characteristics at the initial time in (5.6), the linear evolution
still generates a downscale cascade with an exponential decay with wavenumber.

8. Closing thoughts. The Fourier results presented here are spectral identities
which follow from Platzman’s observation that ux is simply related to the change
of variable dx0/dx via the parametric solution (2.4) for (1.1). This is a rather un-
usual situation that does not readily apply beyond the characteristic wave equation.
Nonetheless, one generalization for which such spectral formulas can be stated is

ut + g(u, x)ux = h′(t)u, u(x, 0) = f(x).(8.1)
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On the infinite line, the Fourier transform is expressible as the integral

c(k, t) =
i

2πk
eh(t)−h(0)

∫ +∞

−∞
f ′(x0)e

ik x(x0,t)dx0,(8.2)

where x(x0, t) is determined by the characteristic ODE

dx

dt
= g(f(x0)e

h(t)−h(0), x), x(0) = x0.(8.3)

The occurrence of nontrivial examples where the formulas (8.2), (8.3) allow further
analysis is a rare event. However, a decaying version of Platzman’s example with the
additional effect h′ = −α, a constant value, yields

bn(t) =
2α

n(1 − eαt)
Jn

(
εn(1 − e−αt)

α

)
,(8.4)

an exercise that reveals a suppression of the wavebreaking when α > ε.
As an explicit Fourier analysis of the inviscid Burgers equation, the spectral for-

mulas (2.12), (2.11), (7.3) can be used to investigate cascades from other initial condi-
tions. Although Platzman’s example highlighted the downscale cascade, the dynamics
of upscale transfers to large scales from smaller scales can also be addressed by ini-
tial sums of sinusoids. For real analytic initial conditions, the method of steepest
descent generally applies for obtaining the asymptotic exponential spectrum. In con-
trast, compactly supported (but piecewise continuous) initial conditions yield simple
examples whose spectra have algebraic decay.

The Burgers equation, and its inviscid limit, have long been used as a pedagog-
ical introduction to the nonlinearity of fluid motions [2, 5, 9]. This generalization of
Platzman’s result provides explicit formulas for one-dimensional, deterministic, and
continuous realizations of the spectral cascade — hence the qualification to a weak cas-
cade. Large wavenumber asymptotics for the integral formula allow direct calculation
of the exponential decay of the Fourier spectrum. The inviscid cascade is observed to
characterize the early development of the spectrum in the viscous Burgers equation.
The examples shown here are direct spectral illustrations of the nonlinear cascade but
are far from those required to understand the multidimensional, statistical nature of
fluid turbulence. Nonetheless, they are a clear demonstration of a nonlinear process
by which advection can sustain an exponential spectrum in the dissipation range, the
scales at which the fields are smooth [17, 12]. The turbulence question aside, these
results provide an elementary contribution to the broader effort to understand the
spectral signatures of singularities in nonlinear PDEs [14, 18, 16].

Although the existence of an exact solution (2.5) would seemingly render (1.1)
as fully understood, recent revisitations in the research literature remind that this
textbook equation still serves as a source of inspiration for investigations in nonlin-
earity. Weideman [20] used complex-valued solutions as tests for a method for tracking
singularities using numerical analytical continuation. In particular, the dynamics of
the logarithmic branch point was computed for the initial condition u(x, 0) = eix.
The sinusoidal initial condition has also been used by Majda and Timofeyev [11] to
initiate postbreaking ergodic dynamics among the Fourier modes for a Galerkin trun-
cation of the spectral dynamics. The truncated dynamics exhibits a chaos which is
shown to have a well-defined statistical equilibrium. Finally, the linearization result is
very closely related to some current investigations of Mattingly, Soudian, and Vanden-
Eijnden [13], who are constructing linear spectral cascade models with exact solutions.
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These models have spectral dynamics which are limited to linear coupling of nearest
neighbors (in wavenumber), of which (5.6) is an inviscid example. Their analyses
involve an unexpected generalization of the generating function method that is based
on orthogonal eigenfunction expansions.

In these investigations the wave equation (1.1) is utilized as a testbed for furthering
our understanding of nonlinearity. It is in a similar spirit that these one-dimensional
Fourier results, although limited to continuous solutions, are communicated for their
novelty as an exact spectral viewpoint.
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Abstract. In this paper we examine matrices which arise naturally as Jacobians in chemical
dynamics. We are particularly interested in when these Jacobians are P matrices (up to a sign
change), ensuring certain bounds on their eigenvalues, precluding certain behavior such as multiple
equilibria, and sometimes implying stability. We first explore reaction systems and derive results
which provide a deep connection between system structure and the P matrix property. We then
examine a class of systems consisting of reactions coupled to an external rate-dependent negative
feedback process and characterize conditions which ensure that the P matrix property survives the
negative feedback. The techniques presented are applied to examples published in the mathematical
and biological literature.

Key words. chemical reactions, P matrices, injectivity, stability, mass action

AMS subject classifications. 80A30, 15A48, 34D30

DOI. 10.1137/060673412

1. Introduction. In this paper we will study chemical reaction systems and
systems derived from them. Chemical reaction systems have Jacobians with more
structure than those of arbitrary dynamical systems. Under mild assumptions we
derive a condition on the reaction structure which ensures that a reaction system has

Jacobians in a particular class, P
(−)
0 matrices, to be defined below. This condition

is algorithmically easy to check, and immediately implies the absence of multiple
equilibria as long as there are appropriate outflow conditions. A weaker condition is
then derived specifically for mass action reaction systems, which ensures that they
have Jacobians in this class and hence, under appropriate outflow conditions, cannot
have multiple equilibria. These conditions are shown to be not only sufficient to
preclude multiple equilibria, but also necessary to ensure that the Jacobians can
never be singular. Finally a class of systems of particular importance in biochemistry
is examined. These systems involve reactions interacting with some external quantity
giving rise to a negative feedback process. Necessary and sufficient conditions are
derived which ensure that the P matrix properties of the system without feedback
persist with the feedback.

2. Basic material. We start with some basic definitions and observations.

2.1. Chemical reaction systems. A chemical reaction system in which n re-
actants participate in m reactions has dynamics governed by the ordinary differential
equation

(2.1) ẋ = Sv(x).
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Here x = [x1, . . . , xn]T is the nonnegative n-vector of reactant concentrations, v =
[v1, . . . , vm]T is the m-vector of reaction rates, and S is the n × m stoichiometric
matrix. Equation (2.1) defines a dynamical system on R

n
+ (the nonnegative orthant

in R
n). The entries in S are constants—generally integers—with |Sij | describing how

many molecules of substrate i are involved in reaction j. The sign of Sij reflects an
arbitrary choice of direction for the reaction, with no implication of reversibility or
irreversibility. We will generally assume that substrates occur only on one side of a
reaction (more on this later), and if Sij < 0, we will say that substrate i occurs on
the “left-hand side” of reaction j, and on the “right-hand side” if Sij > 0.

The same form (2.1) can represent either a closed reaction system, where there is
no inflow or outflow of reactants, or an open system. For an open system we simply
allow some of the reactions to have empty left- or right-hand sides. We will refer to
reactions not involving any inflow or outflow as “true” reactions. S describes a linear
mapping between the reaction rates and the time derivatives of the concentrations,
and any steady states of (2.1) must correspond to reaction rates lying in the kernel
of S. Thus a nontrivial kernel means that there are steady states corresponding to
nonzero reaction rates.

The m× n matrix V (x) defined by Vij(x) ≡ ∂vi

∂xj
describes the dependence of the

reaction rates on the concentrations. For later notational convenience we will write
V instead of V (x). The Jacobian of (2.1) is then just SV .

To make progress, we need to narrow the class of reactions a little. We call a
reaction system nonautocatalytic (NAC) if the stoichiometric matrix S and the matrix
V T have opposite sign structures in the following sense: SijVji ≤ 0 for all i and j,
and Sij = 0 ⇒ Vji = 0. These assumptions are quite general—they mean that if
a substrate is used up (created) in a reaction, then increasing the concentration of
this substrate, while holding all others constant, cannot cause the reaction rate to
decrease (increase). Further, if a substrate does not participate in a reaction, then
it is not allowed to influence the reaction rate. As we allow SijVji = 0, even when
Sij �= 0, irreversible reactions are implicitly allowed by this definition.

The assumption that the system is NAC holds for mass action systems, Michaelis–
Menten systems, etc., provided that a reactant occurs only on one side of a reaction.
It is possible to violate this condition, for example with reactions such as A+B � 2A,
where perhaps for small concentrations of A net flux is to the right, while for large
concentrations it is to the left. Sometimes, in practice, such reactions actually rep-
resent the amalgamation of several NAC reactions. For example, the above system
might actually represent A + B � C, C � 2A, where C is some short-lived interme-
diate complex. If a reaction can be rewritten in this way, then it becomes amenable
to the analysis presented here.

Most results in this paper are independent of the functional forms chosen for
the reaction dynamics, apart from the assumption that reactions are NAC, as just
described. However, some of the results which motivated this work are those of
Craciun and Feinberg [5, 6] on the possibility of multiple equilibria in mass action
systems, and the techniques they present to deduce the absence of multiple equilibria
from the reaction network structure alone. Since we have included some results on
mass action systems, we define these here. Let νj be the set of indices of the reactants
on the left-hand side of the jth reaction, and ρj be the set of indices of the reactants on
the right-hand side of the jth reaction. Further, let Lij be the number of molecules of
substrate i occurring on the left-hand side of the jth reaction, and Rij be the number
of molecules of substrate i occurring on the right-hand side of the jth reaction. Then,



P MATRICES AND CHEMICAL REACTION SYSTEMS 1525

for a mass action system, the reaction rate vj for the jth reaction takes the form

vj = kj
∏
i∈νj

x
Lij

i − k−j

∏
i∈ρj

x
Rij

i ,

where kj and k−j are nonnegative constants, known as the forward and backward
rate constant for the jth reaction. When the reaction is NAC, this can be rewritten
in terms of entries in the stoichiometric matrix to get

vj = kj
∏
i∈νj

x
−Sij

i − k−j

∏
i∈ρj

x
Sij

i .

We can clearly write a single reversible reaction as two irreversible reactions.

2.2. P matrices and related classes. For some matrix A, A(α|γ) will refer to
the submatrix of A with rows indexed by the set α and columns indexed by the set γ.
A principal submatrix of A is a submatrix containing columns and rows from the same
index set, i.e., of the form A(α|α), which we will abbreviate to A(α). A minor is the
determinant of a square submatrix. If A(α|γ) is a square submatrix of A (i.e., |α| =
|γ|), then A[α|γ] will refer to the corresponding minor, i.e., A[α|γ] = det(A(α|γ)). A
principal minor of a matrix is the determinant of a principal submatrix. A[α] will
refer to the principal minor corresponding to submatrix A(α).

P matrices are square matrices all of whose principal minors are positive. They
are nonsingular, and their eigenvalues are excluded from a certain wedge around the
negative real axis [15]. If −A is a P matrix, then we will say that A is a P (−) matrix.
These matrices were originally called N−P matrices in [17]. Throughout this paper,
when A is a matrix such that −A belongs to some class C, then we will say that A
belongs to the class C(−). If A is a P (−) matrix, this means that each k× k principal
minor of A has sign (−1)k. The problem of checking whether a given matrix is a P
matrix is in general NP hard [19].

Another important characterization of P matrices is that a matrix A is a P matrix
iff for any nonzero vector y there is some index i such that yi(Ay)i > 0 [3]. It follows
immediately that a matrix A is a P (−) matrix iff for any nonzero vector y there is
some index i such that yi(Ay)i < 0. In other words a P (−) matrix maps each nonzero
vector y out of any orthants in which it lies. (As orthants share boundaries, y may
lie in several orthants at once.)

P matrices contain other important classes of matrices, such as positive definite
matrices and also so-called nonsingular M matrices. As these will be mentioned again
later, we define them here. Z matrices are square matrices all of whose off-diagonal
entries are less than or equal to zero. Nonsingular M matrices are precisely those
matrices which are both Z matrices and P matrices, i.e., matrices whose off-diagonal
elements are nonpositive and all of whose principal minors are positive. Using the
notational convention defined above, M (−) matrices are matrices which are both Z(−)

matrices and P (−) matrices.
A related class of matrices are P0 matrices consisting of the closure of the set of

P matrices. These are matrices all of whose principal minors are nonnegative [14].

Similarly A is a P
(−)
0 matrix if −A is a P0 matrix. A matrix A is a P0 matrix iff for

any nonzero vector y there is some index i such that yi(Ay)i ≥ 0, and similarly it is a

P
(−)
0 matrix iff for any nonzero vector y there is some index i such that yi(Ay)i ≤ 0.

By definition, P0 and P
(−)
0 matrices can be singular.
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2.3. Implications of a P (−) Jacobian: Injectivity and stability. In the
work of Craciun and Feinberg [5, 6] global injectivity, and hence the absence of mul-
tiple equilibria, follows from the nonsingularity of the Jacobian. This is not true for
general functions—it is well known that nonsingularity of the Jacobian alone does not
imply global injectivity of arbitrary polynomial functions [18]. In this direction there
are several results connecting properties of functions with injectivity. A well-known
theorem of Hadamard [12] states that nonsingularity of the Jacobian ensures global
injectivity, provided that the function is proper—i.e., the preimage of any compact
set is compact. Recent elegant work such as that in [9] and [20] provides conditions
(not all spectral) which ensure that a function is globally injective.

Regarding P matrices, there is a result stating that if the Jacobian of a function is
a P matrix (or equivalently a P (−) matrix), this guarantees injectivity of the function
on any rectangular region of R

n [10]. The result for all of R
n also follows from the

geometric fact mentioned in section 2.2 that P (−) matrices map vectors out of the
orthants in which they lie. Thus, for a fixed nonzero vector y, every P (−) matrix must
rotate y by at least some angle θ > θy > 0, where θy is the infimum of the angular
distance from y to an orthant to which y does not belong; thus for any unit vector y
and any set of P (−) matrices A(x),

sup
x

〈
y,

A(x) y

|A(x) y|

〉
< cos θy < 1.

From Theorem 2 in [20], this condition on the Jacobian guarantees global injectivity
of the function.

[10] also contains the following strengthened result, which weakens the condition
needed for injectivity: If the Jacobian of a function is a nonsingular P0 matrix (termed
a “weak P matrix” in this reference), this guarantees injectivity of the function on any

rectangular region of R
n. The result obviously holds for a nonsingular P

(−)
0 matrix

as well.
While the ruling out of multiple equilibria is the first and perhaps most important

consequence of finding that a particular dynamical system gives rise to P (−) matrix
Jacobians, sometimes stronger conclusions can be drawn. In particular, if a matrix J
is a P (−) matrix, then Hurwitz stability of J may follow from additional observations.
We list three of these:

1. If J is similar to a symmetric matrix, and thus has real eigenvalues, then it
must be Hurwitz stable.

2. If all off-diagonal elements of J are nonnegative, then it is in fact a nonsingular
M (−) matrix [3] and hence Hurwitz stable.

3. A weaker condition is when J is “sign-symmetric,” meaning that all symmet-
rically placed pairs of minors have the same sign: Then it is stable because
sign-symmetric P (−) matrices are Hurwitz stable [14]. Certain physical as-
sumptions can give rise to Jacobians which are sign-symmetric.

In this paper we will refer to a reaction system whose Jacobians are always P (−)

matrices as P (−) systems, and ones whose Jacobians are always P
(−)
0 matrices as P

(−)
0

systems.

2.4. Rate-dependent negative feedback processes. The assumption that
a reaction is NAC means, roughly speaking, that every substrate interacts with the
reactions in which it participates in the following way: If it is produced by a reaction,
then it inhibits the reaction. If it is used up by a reaction, then it activates the
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reaction. Physically any scalar quantity ψ which behaves like this participates in
rate-dependent negative feedback, and adding such a quantity to a system adds a
rate-dependent negative feedback process to the system. Although ψ might be the
concentration of a chemical, this need not be the case—for example, ψ may take
negative values. In an example of biological importance discussed in [1] and used to
illustrate our results below, ψ is in fact a chemical and electrical gradient with which
some of the reactions interact because they pump material across a membrane. This
is a frequent occurrence in biochemistry: Quite generally where reactions involve the
build-up of gradients between compartments, we get such systems.

Adding a rate-dependent negative feedback process, whether a reactant or not, to
a reaction system involves choosing two vectors x1, x2 ∈ R

m and adding a row xT
1 to

S and a column x2 to V to get augmented versions, Saug and Vaug, of these matrices.
The negative feedback assumption means that x1 and x2 lie in opposite orthants, so
that x1,ix2,i ≤ 0. In general, if x1,i = 0, then x2,i = 0, but it is convenient to ignore
this and ask the more general question: Given that SV is a P (−) matrix, when will

SaugVaug be a P
(−)
0 matrix for all possible x1, x2 ∈ R

m lying in (specified) opposite
orthants? Given particular orthants, it is possible to state necessary and sufficient
conditions on S and V which answer this question, and with appropriate outflow

conditions to replace P
(−)
0 with P (−) in the above statement.

3. P (−) matrices and general reaction systems. We now examine the close
connection between P (−) matrices and reaction systems of the form (2.1). After
some preliminaries we present a structural result giving a sufficient condition on the

stoichiometric matrix S, which will ensure that the Jacobian will be a P
(−)
0 matrix.

In a sense to be made precise this condition is also a necessary condition.
We need some definitions first. A real matrix S determines a qualitative class [4]

of all matrices with the same sign pattern as S, which we will refer to as Q(S). It is
helpful to think of Q(S) as a matrix with entries consisting of zeroes and variables
of fixed sign, and det(Q(S)) is then a polynomial in these variables. If det(Q(S)) is
not identically zero, then it is a sum of monomials, each of which is either positive or
negative. It also makes sense to refer to Q(S) as the closure of Q(S) (regarded as a
set of matrices), and det(Q(S)) as the same polynomial as det(Q(S)), with variables
now allowed to take the value zero. In this terminology a reaction system is NAC if
V ∈ Q(−ST ).

A square matrix is sign-nonsingular (SNS) [4] if the sign of its determinant is
nonzero and can be determined from the signs of its entries. In other words, it is SNS
if the sign of the determinant is the same for every matrix in its qualitative class. For
example, any 2-by-2 matrix with a single negative, positive, or zero entry is SNS. On
the other hand, a 2-by-2 matrix with two positive and two negative entries is not SNS.
If any square matrix T is SNS, then it makes sense to talk about sign(det(Q(T ))).

A (not necessarily square) matrix S will be termed strongly sign determined (SSD)
if all square submatrices of S are either SNS or singular. SSD matrices intersect var-
ious classes of matrices discussed in [4], for example the so-called totally L-matrices
and the S2NS matrices, and the SSD property is algorithmically quick and easy to
check. Some results concerning SSD matrices are collected in Appendix A. These
properties show among other things that alternative notational choices in chemical
dynamics—for example, the choice to represent one reversible reaction as two irre-
versible ones, which side of a reaction to consider as the left-hand side, how to order
the set of substrates, or how to order the set of reactions—never change whether the
stoichiometric matrix is SSD or not.
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For the proofs which follow in this section, it is convenient to set up the follow-
ing notational conventions. S will always refer to some particular, but unspecified,
stoichiometric matrix. Since we are interested in NAC, but otherwise unspecified,
reaction systems in this section, given a matrix S, it is convenient for V to refer to
the closure of a whole class Q(−ST ). Similarly V (γ|α) will refer to Q(−S(α|γ)), and
V [γ|α] will refer to the polynomial det(Q(−S(α|γ))). If we refer to a “choice of V ,”

then this means some particular matrix in Q(−ST ). Objects defined as products will
take the appropriate meanings; for example, an object such as S[α|γ]V [γ|α] is again
a polynomial.

It helps to note a few obvious, but important, preliminaries about SSD matrices:

1. If a matrix S is SSD, then so is −S. In particular, given any square submatrix
S(α|γ) which is SNS,

sign(det(−S(α|γ))) = (−1)|α|sign(det(S(α|γ))).

On the other hand, if S(α|γ) is singular, then so is −S(α|γ).
2. If a stoichiometric matrix S is not SSD, then there is some square subma-

trix S(α|γ) such that det(Q(S(α|γ)))—and hence V [γ|α]—contains both a
positive and a negative term.

We can now state our first theorem.

Theorem 3.1. If the stoichiometric matrix S of an NAC reaction system is SSD,

then the Jacobian J = SV is a P
(−)
0 matrix.

Proof. Let J [α] be the principal minor of J corresponding to the submatrix with
rows and columns indexed by a set α ⊂ {1, . . . , n}. By the Cauchy–Binet formula
(see [11], for example) we get

J [α] = (SV )[α] =
∑

γ⊂{1,...,m}
|γ|=|α|

S[α|γ]V [γ|α].

The sum is over all subsets of {1, . . . ,m} of size |α|, if any such subsets exist. Since
the reaction system is NAC and S is SSD, for each γ, either S[α|γ] is zero or S(α|γ)
is SNS, in which case

sign(V [γ|α]) = (−1)|α|sign(S[α|γ])

by preliminary 1 above. So J [α] is a sum of terms each of which is either zero or has
sign (−1)|α|, and thus either J [α] = 0 or sign(J [α]) = (−1)|α|.

A natural question which arises is whether there is any kind of converse to Theo-
rem 3.1 or, equivalently, whether there could be a weaker condition on the stoichiomet-

ric matrix which would still always ensure a P
(−)
0 Jacobian. The answer, provided in

the next theorem, is that there is no weaker condition guaranteeing a P
(−)
0 Jacobian.

Theorem 3.2. Assume that the stoichiometric matrix S of an NAC system is

not SSD. Then there is some choice of V for which SV is not a P
(−)
0 matrix.

Proof. Since S is not SSD, there are sets α0 ⊂ {1, . . . , n}, γ0 ⊂ {1, . . . ,m} with
|α0| = |γ0| such that S(α0|γ0) is neither SNS nor singular. Consider

J [α0] =
∑

γ⊂{1,...,m}
|γ|=|α0|

S[α0|γ]V [γ|α0].
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Since S(α0|γ0) is not SNS, V [γ0|α0] contains a term t such that S[α0|γ0]t is of the
“wrong” sign: (−1)|α0|+1. This follows because, as noted in preliminary 2 earlier, since
S(α0|γ0) is not SNS, V [γ0|α0] contains both positive and negative terms. However, t
is just a term in the determinant of a submatrix of V , i.e., a product of entries of V .
Set all entries in V which do not figure in t to 0. Since determinants are homogeneous
polynomials in the entries of a matrix, and since no entry has power higher than 1,
all terms in J [α0] other than S[α0|γ0]t become zero, so that J [α0] = S[α0|γ0]t, which

has sign (−1)|α0|+1. Hence J is not a P
(−)
0 matrix. By continuity, since the set of

matrices which are not P
(−)
0 matrices is open, the argument still holds if entries in V

not occurring in t are sufficiently small but nonzero.
Incidentally we could phrase the above two results together as the following corol-

lary, possibly of broad interest.
Corollary 3.3. Consider an n ×m matrix A. Then A is SSD iff AB is a P0

matrix for every m×n matrix B which satisfies AijBji ≥ 0 and Aij = 0 ⇒ Bji = 0.
Proof. The proof is immediate from the previous two results.

Although the discussion so far has been of P
(−)
0 matrices, it is clear from the proofs

that if, in addition to S being SSD, for α = {1, . . . , n} there is some γ such that S[α|γ]

and V [γ|α] are both nonzero, then J is in fact nonsingular P
(−)
0 , and the function is

injective. And if, for every α, there is some γ such that S[α|γ] and V [γ|α] are both
nonzero, then J is in fact a P (−) matrix (and injective). This often arises in practice
because there are inflow and outflow processes contributing terms on the diagonal of
SV . For example, continuous flow stirred tank reactors (CFSTRs) as presented in [5]

have properties which ensure that for nonzero flow rate any Jacobian which is a P
(−)
0

matrix is in fact a P (−) matrix. Using S to refer to the stoichiometric matrix of the
“true” reactions in a CFSTR (excluding the inflow and outflow processes), a CFSTR
system can be written as

(3.1) ẋ = q(xin − x) + Sv(x),

where q is a positive scalar representing the flow rate through the reactor and xin is a
nonnegative vector representing the “feed” concentration. We then have the following
result.

Theorem 3.4. Assume that all the reactions in a CFSTR are NAC. If the
stoichiometric matrix S is SSD, then the Jacobian of the system is a P (−) matrix.

Proof. The full stoichiometric matrix Sf of a CFSTR system can be written in
block form,

Sf = [S| −In],

where S is the matrix of true reactions and In is the n × n unit matrix. Similarly
define Vf by

Vf =

[
V
qIn

]
.

The Jacobian of the system is

J ≡ SfVf = −qI + SV,

where I is the identity matrix. Since the reactions are NAC and S is SSD this means,

by Theorem 3.1, that SV is a P
(−)
0 matrix. As mentioned in section 2.2, a matrix A
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is a P0 matrix iff for any nonzero vector y there is some index i such that yi(Ay)i ≥ 0,
and similarly it is a P matrix iff for any nonzero vector y there is some index i such
that yi(Ay)i > 0. So any P0 matrix plus a positive diagonal matrix is a P matrix. It

follows that a P
(−)
0 matrix plus a negative diagonal matrix is a P (−) matrix. Thus J

is a P (−) matrix.

Combined with the result of Gale and Nikaido [10], this can be stated as the
following corollary.

Corollary 3.5. If the reactions in a CFSTR are NAC, and the stoichiometric
matrix S is SSD, then the system does not admit multiple equilibria.

This result is independent of the nature of the reactions (mass action, Michaelis–
Menten, etc.).

For CFSTR systems the result presented in Theorem 3.2 can be strengthened. If
the stoichiometric matrix of true reactions in a CFSTR system is not SSD, and hence
the Jacobian can fail to be a P (−) matrix, then it can in fact be singular.

Theorem 3.6. Assume that all the reactions in a CFSTR are NAC, and that
the stoichiometric matrix of true reactions, S, is not SSD. Then there is some choice
of entries in V for which det(J) has sign (−1)n+1 (i.e., the “wrong” sign).

Proof. The result follows as long as there is a term of the wrong sign in the
expansion of the determinant, and this term can be made to dominate all other terms
in the expansion.

As in the proof of Theorem 3.2, when S is not SSD, this implies the existence of
sets α0 ⊂ {1, . . . , n}, γ0 ⊂ {1, . . . ,m} with |α0| = |γ0| such that V [γ0|α0] contains a
term t such that S[α0|γ0]t has sign (−1)|α0|+1.

Let Sf and Vf be defined as in the proof of Theorem 3.4. The structure of Sf and
Vf means that there is a term in det(SfVf ) of the form (−q)n−|α0|S[α0|γ0]t, which is
clearly of sign (−1)n+1. As the determinant of any submatrix of Vf is a homogeneous
polynomial in the entries of Vf , and no entry from V can occur more than once in
any term, setting all entries in V other than those which occur in t to zero ensures
that

det(SfVf ) = (−q)n−|α0|S[α0|γ0]t + higher order terms in q.

Choosing any fixed values for entries in t, then for small enough q, the lowest order
term (−q)n−|α0|S[α0|γ0]t is the dominant term in this expression, and hence det(SfVf )
has sign (−1)n+1. As in the proof of Theorem 3.2, by continuity, the argument remains
true for small nonzero entries in Vf .

This last theorem is more important than it may at first seem. It implies that
if S is not SSD, then the Jacobian can be made singular by choosing entries in V
appropriately. Thus finding that a particular reaction system has a stoichiometric
matrix which is SSD is a necessary condition to ensure that under arbitrary choice of
dynamics the Jacobian of the CFSTR system can never be singular.

The astute reader will have noticed that combination of the previous theorems
implies that, for a CFSTR system, nonsingularity of the Jacobian (for all entries
in V ) is equivalent to injectivity of the system. This implies that when checking
whether a system is necessarily injective, rather than checking whether S is SSD, one
could instead check whether all n × n submatrices of Sf are either SNS or singular.
Although at first glance the second strategy appears easier, the two problems are
computationally equivalent, as computing the determinants of all n × n submatrices
of Sf requires computation of the determinants of all square submatrices of S.
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4. P (−) matrices and mass action systems. In this section we present some
results on mass action systems. It is possible to prove stronger results about mass
action systems than arbitrary reaction systems because the matrix V has additional
structure beyond its sign structure. Our concern now is with the question of when
a reaction system, as a result of its structure combined with the assumption of mass

action dynamics, generates a P
(−)
0 matrix Jacobian (or, in the case of CFSTR systems,

a P (−) matrix Jacobian). Of course, if a substrate never occurs on both sides of any
reaction, then the mass action form guarantees that all reactions are NAC, and so

if the stoichiometric matrix S is SSD, this will ensure a P
(−)
0 Jacobian. We show,

however, that in the case of mass action systems it is possible to weaken the condition

that S must be SSD and still get a P
(−)
0 Jacobian.

It is important at the outset to highlight the close relationship between results
in this section and results in [5]. The techniques given in [5] for confirming whether
a reaction system is injective are more general than ours in that they apply to au-
tocatalytic reactions as well. We are unable to make claims about injectivity of
autocatalytic reactions using our techniques because the stoichiometric matrix “loses
information” about reactions which have the same substrate occurring on both sides
of the equation—it encodes only net production or loss of a substrate in a reaction,
rather than absolute quantities on each side of a reaction. There is some overlap in
our methods of proof, although there are also important differences. We will return
to this theme at the end of the section.

To formulate the results to follow we need to note that any mass action system can
be written as a system of irreversible reactions by considering any reversible reaction
as two irreversible reactions. From Lemma A.2 in Appendix A, rewriting the system
in this way does not affect whether the stoichiometric matrix is SSD.

We now define a property of stoichiometric matrices weaker than the property of
being SSD. Given a matrix S, define S− to be the matrix S with all positive entries
replaced with zeroes. Let a constant matrix S be weakly sign determined (WSD)
if every square submatrix S̃ of S satisfies det(S̃)det(S̃−) ≥ 0. In Lemma A.3 of
Appendix A it is shown that every SSD matrix is WSD. The two are not equivalent,
however—for example, the matrix

S̃ =

[
1 −1
−2 1

]
is neither SNS nor singular, but it does satisfy det(S̃)det(S̃−) ≥ 0. Results in Appen-
dix A also show that the choice of how to order the set of substrates or reactions does
not affect whether the stoichiometric matrix is WSD or not. However, as we shall see
later, the choice to represent one reversible reaction as two irreversible ones can affect
whether the stoichiometric matrix is WSD or not.

We can now restate Theorem 3.1 for mass action systems.
Theorem 4.1. Consider the stoichiometric matrix S of an NAC mass action

reaction system written as a system of irreversible reactions. If S is WSD, then the

Jacobian J is a P
(−)
0 matrix.

Proof. The reaction rate for the ith reaction takes the form

vi = ki
∏
j∈νi

x
−Sji

j ,

where ki is the rate constant for the ith reaction and νi is the set of indices of the
reactants on the left-hand side of the ith reaction. Thus the entries in V take the



1532 MURAD BANAJI, PETE DONNELL, AND STEPHEN BAIGENT

form

Vij =
∂vi
∂xj

=

{
−Sji

xj
vi (j ∈ νi),

0 (j �∈ νi).

As above, define S− to be the matrix S with all positive entries replaced with zeroes.
Further, let Dx be the n×n positive diagonal matrix with entries 1

xj
on the diagonal

(defined when xj > 0 for all j). Finally, let Dv be the m×m positive diagonal matrix
with entries vi on the diagonal. With this notation the matrix V can be written

V = −DvS
T
−Dx

(again formally defined only when all xj > 0, although of course V exists in the limit
as well). Now consider an arbitrary minor of V , V [γ|α] with α ⊂ {1, . . . , n} and
γ ⊂ {1, . . . ,m}, and |α| = |γ|. Application of the Cauchy–Binet formula combined
with the fact that only principal minors of a diagonal matrix are nonzero gives

V [γ|α] = (−1)|α|Dv[γ]ST
−[γ|α]Dx[α].

Thus a principal minor of the Jacobian takes the form

J [α] = (SV )[α] =
∑

γ⊂{1,...,m}
|γ|=|α|

S[α|γ]V [γ|α]

= (−1)|α|
∑

γ⊂{1,...,m}
|γ|=|α|

S[α|γ]Dv[γ]ST
−[γ|α]Dx[α]

= (−1)|α|Dx[α]
∑

γ⊂{1,...,m}
|γ|=|α|

S[α|γ]S−[α|γ]Dv[γ].

Since Dx and Dv are positive diagonal matrices, Dx[α] and Dv[γ] are positive.
Thus J [α] has sign (−1)|α| or is zero, provided that every S[α|γ] and S−[α|γ] have
the same sign (or one of them is zero).

The argument presented above shows that if S is WSD, then the Jacobian of a

mass action system is a P
(−)
0 matrix in the interior of the positive orthant. However,

the set of P
(−)
0 matrices is closed, and since the Jacobian depends continuously on

the values of xi, it must be P
(−)
0 everywhere in the closed positive orthant.

The following corollary is immediate.
Corollary 4.2. Assume that all the reactions in a CFSTR are NAC mass action

reactions. If the stoichiometric matrix S of the system written as a set of irreversible
reactions is WSD, then the Jacobian of the system is a P (−) matrix.

Proof. The proof is identical to that of Theorem 3.4: A P
(−)
0 matrix plus a

negative diagonal matrix is a P (−) matrix.
There is a kind of converse to Theorem 4.1 showing that the condition of being

WSD is necessary to guarantee that the Jacobian of a mass action system will be a

P
(−)
0 matrix.

Theorem 4.3. Assume that the stoichiometric matrix S of an NAC mass action
system written as a set of irreversible reactions is not WSD. Then there is some

choice of rate constants ki for which SV is not a P
(−)
0 matrix.
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Proof. If S is not WSD, then S[α0|γ0]S−[α0|γ0] < 0 for some α0 ⊂ {1, . . . , n},
γ0 ⊂ {1, . . . ,m} with |α0| = |γ0|. We have from above

J [α0] = (−1)|α0|Dx[α0]
∑

γ⊂{1,...,m}
|γ|=|α0|

S[α0|γ]S−[α0|γ]Dv[γ].

Since Dv[γ] =
∏

j∈γ vj , choosing kj = 0 for all j �∈ γ0 and kj �= 0 for all j ∈ γ0

sets all Dv[γ] = 0 for γ �⊆ γ0. So with this choice

J [α0] = (−1)|α0|Dx[α0]S[α0|γ0]S−[α0|γ0]Dv[γ0],

which has sign (−1)|α0|+1 everywhere in the interior of the positive orthant. By
continuity, J [α0] continues to have sign (−1)|α0|+1 in some region of the positive
orthant when kj , j �∈ γ0, are small but nonzero.

For mass action systems, the condition of being WSD is thus necessary to guar-

antee that the Jacobian will be a P
(−)
0 matrix. In fact, in the case of CFSTR mass

action systems there is an analogue of the general result in Theorem 3.6: The property
of S being WSD is necessary to guarantee that the Jacobian will be nonsingular.

Theorem 4.4. Assume that the stoichiometric matrix S of the true reactions in
an NAC mass action CFSTR system written as a set of irreversible reactions is not
WSD. Then there is some choice of flow rate q, rate constants ki, and concentrations
xi for which det(SV ) has sign (−1)n+1 (i.e., the “wrong” sign).

Proof. The proof is a little harder than the equivalent proof for general systems,
but again, the result follows as long as there is a term of the wrong sign in the
expansion of the determinant, and this term can be made to dominate all other terms
in the expansion.

Since S is not WSD, S[α0|γ0]S−[α0|γ0] < 0 for some sets α0 ⊂ {1, . . . , n}, γ0 ⊂
{1, . . . ,m} with |α0| = |γ0|.

The Jacobian J = SV −qI, and the determinant of the Jacobian is det(SV −qI).
Expanding this, we get

det(SV − qI) =

n∑
j=0

(−1)jqj
∑

α⊂{1,...,n}
|α|=n−j

SV [α]

=

n∑
j=0

(−1)jqj
∑

α⊂{1,...,n}
|α|=n−j

(−1)n−jDx[α]
∑

γ⊂{1,...,m}
|γ|=|α|

S[α|γ]S−[α|γ]Dv[γ]

= (−1)n
n∑

j=0

qj
∑

α⊂{1,...,n}
|α|=n−j

Dx[α]
∑

γ⊂{1,...,m}
|γ|=|α|

S[α|γ]S−[α|γ]Dv[γ].

Setting all ki �∈ γ0 equal to zero, we get

det(SV − qI) = (−1)nqn−|γ0|Dv[γ0]
∑

α⊂{1,...,n}
|α|=|γ0|

Dx[α]S[α|γ0]S−[α|γ0]

+ higher order terms in q.

We know that S[α0|γ0]S−[α0|γ0] < 0. Since Dx[α] =
∏

i∈α x−1
i , by fixing values

of xi for i ∈ α0 and increasing the values of xi for i �∈ α0 we can make Dx[α0] much
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larger than Dx[α] for any α �= α0 in the sum above, thus ensuring that the term

Dv[γ0]Dx[α0]S[α0|γ0]S−[α0|γ0]

is the dominant term in the coefficient of qn−|γ0| and thus that this coefficient has sign
(−1)n+1. (Note that increasing the values of xi �∈ α0 affects, but can never decrease,
the size of Dx[α0]Dv[γ0].)

Once we have ensured that the coefficient of qn−|γ0| has sign (−1)n+1, we can
choose q small so that the term of order qn−|γ0| is the dominant term in det(SV −qI).
Thus for small q, small xi ∈ α0 (and all other xi sufficiently large), large ki ∈ γ0 (and
all other ki sufficiently small) we can ensure that det(SV −qI) has sign (−1)n+1.

This final result shows that if S is not WSD, then for some choices of rate constants
and flow rate the Jacobian of a CFSTR system will be singular. Thus the property
of S being WSD is both sufficient and necessary to ensure that the Jacobian of an
NAC mass action CFSTR system is always nonsingular. It is also sufficient and
necessary to ensure that the Jacobian is always a P (−) matrix and hence that the
system is injective. Together these facts imply that nonsingularity of the Jacobian
of an NAC mass action CFSTR system is equivalent to injectivity for these systems.
This theorem overlaps with Theorem 3.3 in [5]: Both theorems rely on the fact that
for the polynomials which define the determinants in CFSTR systems positivity of
the numerical coefficients is necessary to ensure positivity of the polynomial.

There are further close relationships between the theorems here and those in [5].
In Theorem 3.1 of [5] it is proved directly that mass action systems are injective
iff their Jacobians are nonsingular for all positive values of the rate constants and
concentrations. As just related, we come to the same conclusion for NAC systems via
a different route: We have proved that the condition that S is WSD is equivalent both
to injectivity and to nonsingularity of the Jacobian in the CFSTR case, and thus that
these two are themselves equivalent. This in turn implies that the condition that the
stoichiometric matrix of true reactions must be WSD and the requirement that the
quantity in (3.4) of [5] must be positive are equivalent for NAC mass action systems
embedded in a CFSTR.

One apparent difference between the results here and those in [5] lies in the
fact that, in Theorem 3.2 of [5], only determinants of n × n submatrices of the full
stoichiometric matrix are needed, whereas when checking the WSD condition we have
to check all square submatrices of the stoichiometric matrix. However, this difference
is only apparent, and the remark that we made about general systems applies again
here: Checking whether S is WSD is computationally equivalent to checking whether
all n× n submatrices T of Sf = [S| −In] satisfy det(T̃ )det(T̃−) ≥ 0.

5. Examples. We present some examples to illustrate the theoretical points in
the previous sections.

5.1. Examples from [5]. The phenomenon of S being SSD is more common
than it might at first seem. We first examined the reaction system (1.1) in [5] and
examples (i) to (viii) presented in Table 1.1 of that reference. Of these, examples (vi),
(vii), and (viii) have reactants on both sides of the reactions, and are discussed below
in section 5.4. Our analysis of the other examples is presented in Table 5.1. In all
cases, we found that whether or not the system had the capacity for multiple equilibria
corresponded precisely to whether or not the stoichiometric matrix was SSD. We can
thus state for the three systems in which multiple equilibria were ruled out—system
(1.1) and systems (ii) and (iv) in Table 1.1—that this remains true if we violate the
mass action assumption.
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Table 5.1

Behavior of some reaction systems presented in [5]. In all the examples where the systems are
WSD, the systems are also in fact SSD, and thus multiple equilibria are ruled out in a CFSTR
under arbitrary dynamics.

Reaction system SSD WSD

(i)
A + B � P
B + C � Q
C � 2A

not SSD not WSD

(ii)

A + B � P
B + C � Q
C + D � R
D � 2A

SSD WSD

(iii)

A + B � P
B + C � Q
C + D � R
D + E � S
E � 2A

not SSD not WSD

(iv)
A + B � P
B + C � Q

C � A
SSD WSD

(v)

A + B � F
A + C � G
C + D � B
C + E � D

not SSD not WSD

Ex. 1.1

A + B � C
X � 2A + D
2A + D � Y
D � C + W
B + D � Z

SSD WSD

It is no surprise that the NAC systems which were proved to be injective in [5]
proved to be WSD since, as shown in the previous section, the stoichiometric matrix
being WSD is necessary for injectivity of the Jacobian for all values of the rate con-
stants. What is surprising is that all of these examples turned out also to be SSD,
and thus that the conclusions about these systems in [5] turn out to be more generally
true.

5.2. Systems which are WSD but not SSD. Although the examples taken
from [5] and presented in Table 5.1 are all either both SSD and WSD or neither, it
is possible to construct examples of systems which are WSD but not SSD. Consider
the reaction system

A + B � C, 2A + B � D,

which has stoichiometric matrix, in reversible and irreversible forms,

Sr =

⎡
⎢⎢⎣

−1 −2
−1 −1
1 0
0 1

⎤
⎥⎥⎦ , Sir =

⎡
⎢⎢⎣

−1 1 −2 2
−1 1 −1 1
1 −1 0 0
0 0 1 −1

⎤
⎥⎥⎦ .

It is quick to check that Sr (and hence Sir) is not SSD. On the other hand Sir is
WSD. Thus if these reactions are embedded in a CFSTR, multiple equilibria can be
ruled out as long as the dynamics are mass action dynamics, but not in the general
case.
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5.3. The reaction system as a reversible/irreversible system. To illus-
trate that it is essential to consider a system as a set of irreversible reactions when
checking whether a stoichiometric matrix is WSD or not, consider the following reac-
tion system:

2A � B + C, A � B,

which has stoichiometric matrix, in reversible and irreversible forms,

Sr =

⎡
⎣ −2 −1

1 1
1 0

⎤
⎦ , Sir =

⎡
⎣ −2 2 −1 1

1 −1 1 −1
1 −1 0 0

⎤
⎦ .

Here Sr is WSD, but Sir is not. Thus examining Sr alone could give rise to the wrong
conclusion that multiple equilibria can be ruled out in the mass action case.

This example also illustrates the importance of reversibility in the mass action
case. Consider the above system with one reaction now irreversible:

2A � B + C, B → A.

This has stoichiometric matrix, in irreversible form

Sir =

⎡
⎣ −2 2 1

1 −1 −1
1 −1 0

⎤
⎦ ,

which is in fact WSD. Thus with mass action dynamics this system does not admit
multiple equilibria when embedded in a CFSTR. It is perhaps surprising that if the
reaction B → A were replaced with A → B, then the system would no longer be
WSD, and the conclusion would no longer hold. Instead, for certain choices of the
rate constants, the system would cease to be injective, and multiple equilibria, while
not guaranteed, can no longer be ruled out by this method.

5.4. Autocatalytic reactions. Consider the reactions in [5] of the form

m1A + m2B � (m1 + m2)A

for some positive integers m1 and m2. Recasting these as

m1A + m2B � C, C � (m1 + m2)A

and assuming NAC dynamics gives rise to stoichiometric matrices, in reversible and
irreversible forms,

Sr =

⎡
⎣ −m1 (m1 + m2)

−m2 0
1 −1

⎤
⎦ , Sir =

⎡
⎣ −m1 m1 (m1 + m2) −(m1 + m2)

−m2 m2 0 0
1 −1 −1 1

⎤
⎦ .

Barring the trivial possibilities that m1 = 0 or m2 = 0, Sr is never SSD and Sir

is never WSD. Thus multiple equilibria cannot be ruled out in general or for mass
action systems. However, for mass action dynamics in the cases m1 = 1, m2 = 1 and
m1 = 1, m2 = 2, it is known that multiple equilibria cannot exist [5], illustrating that
singularity of the Jacobian is not sufficient to guarantee multiple equilibria. This is



P MATRICES AND CHEMICAL REACTION SYSTEMS 1537

because, although a function in some class may fail to be injective, the class may not
allow this failure to occur near its zeroes.

In fact it is easy to show that when a reactant occurs on both sides of a reaction
with different stoichiometries, and we rewrite the system as two NAC reactions with
an intermediate complex, the system cannot be SSD or WSD. Consider the reaction
system

nA + · · · � C, C � mA + · · · ,

which might result from such a rewriting. Assume for definiteness that m > n. Then
the irreversible stoichiometric matrix Sir has a 2 × 2 submatrix of the form

T =

[
−n m
1 −1

]
,

which is clearly not SNS, not singular, and does not satisfy det(T )det(T−) ≥ 0 either.

5.5. Computational considerations. Although it is easy to write down al-
gorithms to check whether a given matrix is SSD or WSD, the actual computation
involves checking a large number of submatrices, and can be lengthy if the reaction
network is large. Since large stoichiometric matrices are in general highly sparse,
considerable speed-up can be achieved by using algorithms to identify submatrices
which have (identically) zero determinant without actually attempting to compute
the determinant. Similarly, intelligent algorithms should avoid recomputation of the
determinants of matrices when they occur as submatrices in larger matrices.

Another technique which can speed up the classification of a matrix as SSD or
WSD relies on the fact that it is possible to ignore all substrates which occur in only
one reaction, as shown in Lemmas A.4–A.6 in Appendix A. This greatly shortens the
calculations in many real examples. Consider example (i) in Table 5.1:

A + B � P, B + C � Q, C � 2A,

which has stoichiometric matrix, in reversible and irreversible forms,

Sr =

⎡
⎢⎢⎢⎢⎣

−1 0 2
−1 −1 0
0 −1 −1
1 0 0
0 1 0

⎤
⎥⎥⎥⎥⎦ , Sir =

⎡
⎢⎢⎢⎢⎣

−1 1 0 0 2 −2
−1 1 −1 1 0 0
0 0 −1 1 −1 1
1 −1 0 0 0 0
0 0 1 −1 0 0

⎤
⎥⎥⎥⎥⎦ .

Since P and Q each occur only in a single reaction, when checking whether the
system is SSD and WSD, respectively, it suffices to check the reduced matrices

S̃r =

⎡
⎣ −1 0 2

−1 −1 0
0 −1 −1

⎤
⎦ , S̃ir =

⎡
⎣ −1 1 0 0 2 −2

−1 1 −1 1 0 0
0 0 −1 1 −1 1

⎤
⎦ ,

which considerably reduces the computational effort.

6. Rate-dependent negative feedback processes. Having seen that NAC

reaction systems often give rise to Jacobians which are P
(−)
0 or P (−) matrices, and

how this property is deeply associated with reaction structure rather than reaction
details, we now examine the process of adding a rate-dependent negative feedback
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process to a given system—i.e., adding a scalar quantity ψ (perhaps the concentration
of another reactant) which inhibits or activates reactions according to whether it is
produced or used up in them. We also allow ψ to be subject to an outflow/degradation
process.

The full system becomes

(6.1) ẋ = Sv(x, ψ), ψ̇ = C(v(x, ψ)) − L(ψ).

The function C(v) represents the reaction-rate-dependent creation of ψ, while L(ψ)
represents its level-dependent outflow or degradation.

We define the following quantities:
1. F ≡ ∂v

∂ψ . This m vector describes the dependence of the reaction rates on ψ.

2. P ≡
(
∂C
∂v

)T
. This m vector describes the way that the production of ψ

depends on the reaction rates.
3. u ≡ ∂L

∂ψ . This scalar describes the rate of decay of ψ.
The most general mathematical meaning of the negative feedback assumption is

that the vectors F and P lie in opposite cones generated by some set of m orthogonal
vectors. Thus for some orthogonal transformation U ,

P ∈ K ≡ U(Rm
+ ) and F ∈ −K.

The case generally encountered in examples is where K is a particular orthant so
that U is a so-called signature matrix (a diagonal matrix with diagonal entries ±1)
and we know the signs of the elements of P and F , but not their values. In fact we
will initially assume that U = I, the identity matrix, i.e., P ∈ R

m
+ and F ∈ R

m
− ,

showing later how the results can be extended to the general case.
The Jacobian of (6.1) is now the key object of interest. It can be written in block

form:

(6.2) J =

[
SV SF
PTV PTF − u

]
.

We will prove all the results in this section by examining matrices (and submatrices)
of the form J above. In order to discuss the negative feedback assumption, we adopt
the following standard notation (see [3], for example): Given a vector y ∈ R

n,
• y ≥ 0 will mean that yi ≥ 0 for all i,
• y > 0 will mean that y ≥ 0 and y �= 0,
• y � 0 will mean that yi > 0 for all i,
• y ≤ 0, y < 0, and y � 0 will have analogous meanings.

With this notation, the negative feedback assumption can be rephrased as F < 0 and
P > 0. We will assume that u > 0 and make claims about when J is a P (−) matrix—
the extension to u = 0 and the P

(−)
0 case will be automatic, using the continuous

dependence of determinants on the entries in a matrix.
Having discussed these preliminaries, we now ask the following question: Assum-

ing that SV is a P (−) matrix, under what conditions will the Jacobian J in (6.2)
remain a P (−) matrix for all values of F < 0, P > 0, and u > 0? The complete
answer to this question is contained in Theorems 6.2 and 6.3.

In what is to follow, we will make use of the following formula for the determinant
of a matrix.

Lemma 6.1. Let A be any matrix written in block form as follows:

A =

[
A11 A12

A21 A22

]
,
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where A11 and A22 are square matrices. Assuming that A11 is nonsingular, then

det(A) = det(A22 −A21A
−1
11 A12)det(A11).

Proof. See, for example, [16, p. 46].
Note that if A22 is a scalar, the equation becomes

det(A) = (A22 −A21A
−1
11 A12)det(A11).

We now state the basic theorem about the determinant of Jacobians of the form
in (6.2), from which results on P (−) properties will follow easily.

Theorem 6.2. Consider a matrix J of the form in (6.2). Define S = ker(S) and
V = ker(V T ). Assume that det(SV ) has sign (−1)n. Define Z ≡ V (SV )−1S. Then
the following statements are equivalent:

(A) Given any vector w1 ∈ S satisfying w1 �≥ 0, we can find a vector w2 ∈ V
satisfying w2 > 0 such that 〈w1, w2〉 < 0.

(B) det(J) has sign (−1)n+1 for any choice of F < 0, P > 0, and u > 0.
(C) I − Z is a nonnegative matrix.
Before we begin the proof of the theorem we discuss a couple of the assumptions.

The assumption that det(SV ) is always of sign (−1)n implies that ker(V ) and ker(ST )
consist only of 0. The condition that ker(ST ) consists only of 0 in turn means that
there are no conserved quantities in the system [8], certainly true in the CFSTR
case. In any case, where there are conserved quantities, the system can generally be
redefined with some variables being eliminated to remove these.

A situation in which the theorem is trivially satisfied is when S and hence V are
square matrices—i.e., there are the same number of substrates and reactions. Then
the condition that SV is nonsingular implies that S and V are both nonsingular and
hence both S and V consist only of zero, and there are no vectors w1 ∈ S satisfying
w1 �≥ 0. In this case the matrix Z is the identity. As mentioned earlier, if S is a
nonsingular square matrix, then any equilibria correspond to all reaction rates being
zero.

During the proof, we will see that condition (A) of the theorem has the following
geometric interpretation: It means that the projection of any nonnegative vector y > 0
along VT onto S is nonnegative. We remark that there is an important special case
where condition (A) is immediately satisfied—this is when S is one dimensional, lying
entirely in the nonnegative and nonpositive orthants, and V contains some strictly
positive vectors. Then given w1 ∈ S, w1 �≥ 0 ⇒ w1 < 0, and given any w2 ∈ V
satisfying w2 � 0, we have 〈w1, w2〉 < 0. In general, however, where S can intersect
other orthants, the existence of the vector w2 will depend on the structures of S and V.

Proof of Theorem 6.2. We show that both (A) and (B) are equivalent to (C),
starting with (B) ⇔ (C). Using Lemma 6.1, we get that

det(J) = (PTF − u− PTV (SV )−1SF )det(SV )

= (PT (I − Z)F − u)det(SV ),

where I is the m×m unit matrix. Since det(SV ) has sign (−1)n, this means immedi-
ately that (6.2) will have determinant of sign (−1)n+1 as long as PT (I−Z)F −u < 0.
This is true for all u > 0 iff PT (I − Z)F ≤ 0. This in turn is true for all P > 0,
and F < 0 iff (I − Z) is a nonnegative matrix (i.e., it leaves the nonnegative orthant
invariant). Otherwise we can choose F and P appropriately so that PT (I−Z)F > 0.
Thus (B) ⇔ (C).
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We now show that (A) ⇒ (C). It is easy to see that Z2 = Z—i.e., Z is a
projection. As SV is nonsingular, ker(Z) = ker(S) = S and ker(ZT ) = ker(V T ) = V.
Thus Z acts as a projection along S onto V⊥, and I − Z projects along V⊥ onto S.

Consider an arbitrary vector y > 0. Write y = y1 + y2, where y1 ≡ (I − Z)y ∈ S
and y2 ≡ Zy ∈ V⊥. Now if y1 �≥ 0, then by assumption we can choose a vector z ∈ V
satisfying z > 0 and 〈z, y1〉 < 0. But then 〈z, y〉 = 〈z, y1〉 < 0, contradicting the
fact that z > 0 and y > 0. So y1 ≥ 0. Thus (I − Z) leaves the nonnegative orthant
invariant and is a nonnegative matrix. Thus (A) ⇒ (C).

Finally, (C) ⇒ (A): If (I − Z) is a nonnegative matrix, we show that, given any
y1 ∈ S satisfying y1 �≥ 0, there is a z ∈ V satisfying z > 0 such that 〈z, y1〉 < 0. Note
that if y1 �≥ 0, then there is some vector r � 0 such that 〈r, y1〉 < 0. So

0 > 〈r, y1〉 = 〈r, (I − Z)y1〉 = 〈(I − ZT )r, y1〉.

Now note that (I − ZT )r > 0 because (I − ZT ) = (I − Z)T is a nonnegative
matrix and r � 0. Moreover, (I − ZT )r ∈ V since (I − ZT ) is a projection along S⊥

onto V. So z ≡ (I − ZT )r is a positive vector in V which satisfies 〈z, y1〉 < 0.
Theorem 6.2 leads immediately to the following.
Theorem 6.3. Let J be a matrix of the form defined in (6.2). Let α be some

subset of {1, . . . , n}, Sα be the matrix S with rows belonging to α deleted, and V α

the matrix V with columns belonging to α deleted. Define Sα = ker(Sα) and Vα =
ker((V α)T ).

Assume that SV is a P (−) matrix. Then the following statements are equivalent:
(A) For every α ⊂ {1, . . . , n}, given any vector w1 ∈ Sα satisfying w1 �≥ 0, we

can find a vector w2 ∈ Vα satisfying w2 > 0 such that 〈w1, w2〉 < 0.
(B) J is a P (−) matrix for any choice of F < 0, P > 0, and u > 0.
Proof. Since SV is a P (−) matrix, to prove that J is a P (−) matrix it suffices to

treat all the principal submatrices of J obtained by deleting a set of rows/columns
not including the final row and column. We show that for any α ⊂ {1, . . . , n} the
principal minor corresponding to the deletion of rows and columns from α has sign
(−1)n+1−|α|.

In the trivial case where α = {1, . . . , n}, the principal submatrix corresponding
to the removal of rows and columns from α is simply the scalar PTF − u, which we
know to be negative. In the case where α = ∅, the principal submatrix is J itself.
In general the principal submatrix corresponding to the removal of rows and columns
from α is

Jα ≡
[

SαV α SαF
PTV α PTF − u

]
.

SαV α is a principal submatrix of SV , and since SV is a P (−) matrix, its deter-
minant has sign (−1)n−|α|. Jα is of the form in (6.2), and to prove that det(Jα) has
sign (−1)n+1−|α| it suffices by Theorem 6.2 that given any vector w1 ∈ Sα satisfying
w1 �≥ 0, we can find a vector w2 ∈ Vα satisfying w2 > 0 such that 〈w1, w2〉 < 0.

The converse result follows because of the sufficiency of the condition set out in
Theorem 6.2.

Although the results above are about the P (−) case, they extend to the P
(−)
0 case,

as seen in the next result.
Corollary 6.4. Assume that the conditions of Theorem 6.3 are fulfilled and

hence that the matrix J in (6.2) is a P (−) matrix for all values of F < 0, P > 0, and

u > 0. Then J is a P
(−)
0 matrix for all values of F ≤ 0, P ≥ 0, and u ≥ 0.
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Proof. Given any particular F̃ ≤ 0, P̃ ≥ 0, and ũ ≥ 0 and J constructed using
these, we can construct a sequence of P (−) matrices {Ji} converging to J by choosing
sequences {Fi} < 0, {Pi} > 0, and {ui} > 0 converging to F̃ , P̃ , and ũ, respectively.

Thus J lies in the closure of the P (−) matrices and must be a P
(−)
0 matrix.

6.1. Extension to the general case. We now show briefly how the arguments
in Theorems 6.2 and 6.3 extend to the general case where U is some orthogonal
transformation, K = U(Rm

+ ), P ∈ K, and F ∈ −K. For arbitrary orthogonal U , the
statement of Theorem 6.2 modifies to the following.

Theorem 6.5. Consider a matrix of the form J in (6.2), and let U be any m×m
orthogonal matrix. Define K = U(Rm

+ ), S = ker(SU), and V = ker(V TU). Assume
that det(SV ) has sign (−1)n. Define Z ≡ V (SV )−1S. Then the following statements
are equivalent:

(A) Given any vector w1 ∈ S satisfying w1 �≥ 0, we can find a w2 ∈ V satisfying
w2 > 0 such that 〈w1, w2〉 < 0.

(B) det(J) has sign (−1)n+1 for any choice of F ∈ −K, P ∈ K, and u > 0.
(C) I − UTZU is a nonnegative matrix
Proof. The proof is identical to that of Theorem 6.2. In following through the

steps the only things to note are that UTP ∈ R
m
+ and UTF ∈ R

m
− . Further,

PT (I − Z)F = PTUUT (I − Z)UUTF

= PTU(I − UTZU)UTF,

and UTZU is a projection, now projecting along ker(SU) onto ker(V TU).
Similarly, Theorem 6.3 extends to the following.
Theorem 6.6. Let J be a matrix of the form defined in (6.2) and U be any

orthogonal matrix. Define K = U(Rm
+ ). Let α be some subset of {1, . . . , n}, Sα be

the matrix S with rows belonging to α removed, and V α the matrix V with columns
belonging to α removed. Define Sα = ker(SαU) and Vα = ker((V α)TU).

Assume that SV is a P (−) matrix. Then the following statements are equivalent:
(A) For every α, given any vector w1 ∈ Sα satisfying w1 �≥ 0, we can find a vector

w2 ∈ Vα satisfying w2 > 0 such that 〈w1, w2〉 < 0.
(B) J is a P (−) matrix for any choice of P ∈ K, F ∈ −K, and u > 0.
Proof. The proof follows directly from that of Theorem 6.5.

6.2. Two examples. The way the above theorems can be used is seen in the
two examples to follow. The first is a rather trivial example for illustrative purposes;
the second is considerably harder and arises from a real biological system.

It is appropriate to mention that because for NAC reaction systems (see sec-
tion 3) S and V T have opposite sign structures, there are certain natural relation-
ships between ker(Sα) and ker((V T )α). However, this fact alone does not imply that
condition (A) of Theorem 6.2 is automatically fulfilled. Our first example illustrates
this.

Example 1. Consider an open reaction system in which a single substrate x is
involved in three processes, one of which produces a molecule of x, one of which
produces two molecules of x, and one of which degrades a molecule of x, so that
S = [1, 2,−1]. Let V T = [−a,−b, c], where a, b, c ≥ 0 and not all are equal to zero.
Now SV = −(a+ 2b+ c) < 0, so the Jacobian of the basic system is a negative scalar
and hence a P (−) matrix. S is the plane in R

3 satisfying x1 + 2x2 − x3 = 0, while V
is the plane satisfying ax1 + bx2 − cx3 = 0.
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Now assume that there is a rate-dependent feedback process such that the three
reactions all create and are inhibited by some quantity. With Pi and Fi taking their
usual meanings, we can check that the Jacobian of the system is

J =

[
−(a + 2b + c) F1 + 2F2 − F3

−aP1 − bP2 + cP3 P1F1 + P2F2 + P3F3 − u

]
.

It is not immediately obvious by inspection that there are indeed choices of Pi ≥ 0
and Fi ≤ 0 for which J is not a P (−) matrix, but an easy calculation gives

I − V (SV )−1S =
1

(a + 2b + c)

⎡
⎣ 2b + c −2a a

−b a + c b
c 2c a + 2b

⎤
⎦ ,

which is clearly not a nonnegative matrix unless a and b are both zero. So, for small
u > 0 and some choices of P and F , J is indeed not a P (−) matrix, and can in fact
be singular. Thus the P (−) matrix property can be destroyed by a rate-dependent
negative feedback process for this NAC reaction system.

Example 2. In [1] a model of mitochondrial metabolism was presented consisting
of a system of coupled redox reactions, some of which interacted with the proton
gradient across the mitochondrial membrane. Without this gradient the Jacobian of
the system could be written as the product of a matrix

S =

⎡
⎢⎢⎢⎢⎢⎣

−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
0 0 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 1

⎤
⎥⎥⎥⎥⎥⎦

and a matrix V :

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f11 0 0 · · · 0 0
−F21 f22 0 · · · 0 0

0 −F32 f33 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · fn−1,n−1 0
0 0 0 · · · −Fn−1,n fnn
0 0 0 · · · 0 −Fn+1,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

All quantities of the form Fij and fii are strictly positive. Note that V is a
rectangular (n + 1) × (n) matrix (i.e., V : R

n → R
n+1), while S is a rectangular

(n) × (n + 1) matrix (i.e., S : R
n+1 → R

n), and they have opposite sign structures.
The Jacobian J of the full system with the potential included is an (n+1)×(n+1)

matrix of the form:⎡
⎢⎢⎢⎢⎢⎣

−f11 − F21 f22 · · · 0 F2 − F1

F21 −f22 − F32 · · · 0 F3 − F2

...
...

. . .
...

...
0 0 · · · −fnn − Fn+1,n Fn+1 − Fn

P1f11 − P2F21 P2f22 − P3F32 · · · Pnfnn − Pn+1Fn+1,n −u +
∑n+1

i=1 (PiFi)

⎤
⎥⎥⎥⎥⎥⎦ .
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Elementary physical assumptions imply that u > 0, P ≡ [P1, P2, . . . Pn+1]
T > 0,

and F ≡ [F1, F2, . . . , Fn+1]
T < 0. (Note that in the notation of [1], Pi = pi and

Fi = −Fiψ.)
We wish to use Theorem 6.2 to show that J is a P (−) matrix for all P > 0, F < 0,

and u > 0. Incidentally this is hard to show by any direct method but becomes almost
immediate by Theorem 6.2. Note first that SV is of the form discussed in Appendix B,
and thus SV is a nonsingular M (−) matrix and hence a P (−) matrix.

We start by showing that the sign of det(J) is (−1)n+1. Since det(SV ) has sign
(−1)n, it suffices to examine ker(S) and ker(V T ). We can see that the ker(S) consists
only of multiples of the vector [1, 1, . . . , 1]T . On the other hand, by inspection or
induction, the strictly positive vector defined by

y1 = 1,(6.3)

yi+1 =
fi,i

Fi+1,i
yi, i = 1, . . . , n,(6.4)

spans ker(V T ). Thus this situation corresponds to the special case where ker(S) lies
entirely in the nonnegative and nonpositive orthants of R

n+1 and ker(V T ) contains a
strictly positive vector, confirming that det(J) has sign (−1)n+1.

We now show that J is a P (−) matrix, using Theorem 6.3. For any α ⊂ {1, . . . , n},
the coordinates of a vector x ∈ ker(Sα) are defined by the equations

xi+1 = xi, i = 1, . . . , n, i �∈ α.

On the other hand, vectors y ∈ ker((V α)T ) satisfy

yi+1 =
fi,i

Fi+1,i
yi, i = 1, . . . , n, i �∈ α.

Let x be an arbitrary vector in ker(Sα) with some coordinates xj , . . . , xj+k neg-
ative. Then, regardless of the sizes of fii and Fij , we can choose a positive vector
y ∈ ker((V α)T ) with yj , . . . , yj+k much larger in magnitude than the other coordi-
nates of y so that 〈x, y〉 < 0. Thus the conditions of Theorem 6.3 are satisfied, and
the Jacobian is a P (−) matrix.

7. Conclusions and extensions. We have shown that the structure of chemical
reaction systems alone can determine whether their Jacobians are P (−) matrices.
The property of the stoichiometric matrix being SSD for general reaction systems,
and WSD for mass action reactions, has been shown to be fundamentally linked to
whether these systems can admit multiple equilibria. A technique has been presented
to study when the P (−) matrix property is preserved under rate-dependent negative
feedback.

There are several possible extensions to this work. In the discussion on rate-
dependent negative feedback processes, an arbitrary row with particular sign structure
was added to the stoichiometric matrix S, and a column with opposite sign structure
to the matrix V . However, in the case where the extra row in S corresponds to a
chemical reactant this row is a constant, and only the column added to V can vary.
This situation clearly gives rise to less restrictive conditions on S and V , which would
preserve the P (−) property of the Jacobian under the feedback. A related question
is to find a geometric (rather than a combinatorial) characterization of when adding
a row (column) to a given SSD matrix preserves the SSD property. Finding such a
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characterization would be helpful in explaining why many real reaction systems have
the SSD property.

The reader might have noted that during this paper we have nowhere used the
law of atomic balance [7]. Intuitively we know that the two reactions A � B and
A � 2B cannot both be true reactions (with no inflow or outflow involved). Math-
ematically this corresponds to the fact that the stoichiometric matrix S of the true
reactions should have at least one (often more) nonnegative left eigenvectors of zero,
corresponding to conserved quantities. This endows S with additional structure, and
it would be of interest to examine how this extra structure affects the likelihood of a
given stoichiometric matrix being SSD.

We discussed the fact that certain additional assumptions can mean that P (−)

matrices are actually Hurwitz. One of the most interesting of these is sign-symmetry,
which can be implied by certain physical assumptions. We hope, in future work, to
expand on these ideas, as they form an interesting extension to the results in this
paper.

On the same theme, when reaction systems have Jacobians with more structure
than simply being a P (−) matrix, and can be shown to be Hurwitz, it may sometimes
be possible to write down sufficient conditions which guarantee that the system with
feedback remains Hurwitz, for example, if the Jacobian of the full system is an H
matrix [13], or is similar to one by a transformation preserving the M (−) structure of
the original system.

Appendix A. Properties of SSD and WSD matrices. We collect a few easy
results on SSD and WSD matrices which are needed for the arguments in this text.
Note that, by definition, any submatrix of an SSD (WSD) matrix is SSD (WSD).
Note also that swapping rows/columns of a matrix does not alter whether it is SSD
(WSD).

The first result is a trivial consequence of the definitions and the properties of
determinants.

Lemma A.1. Let S be any square matrix. Multiply some column or row in S by
a scalar constant to get a new matrix S̃. Then if S is SNS or singular, so is S̃.

The next result states that it is possible to augment matrices in certain simple
ways and preserve the SSD property.

Lemma A.2. Let S be an SSD matrix. Augment S with a single column (row)
which is a scalar multiple of some column (row) of S to get a new matrix Saug. Then
Saug is SSD.

Proof. Any square submatrix of Saug either

1. occurs in S, in which case it is SNS or singular because S is SSD,
2. is a square submatrix of S with one column/row multiplied by a scalar, in

which case it is SNS or singular by Lemma A.1,
3. contains some subset of both the original column/row and its multiple and

hence is singular.

Incidentally the above result would not hold if we replaced SSD by WSD: Al-
though by definition any submatrix of a WSD matrix is WSD, the augmented versions
of WSD matrices are not necessarily WSD. Thus in the statements of the theorems
on mass action systems in section 4 it is essential that the systems be written as sets
of irreversible reactions.

The next result shows that the set of WSD matrices contains the set of SSD
matrices. (This is also a corollary of Theorem 1.2.5. in [4].)
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Lemma A.3. Let S be an SNS or singular matrix and S− be the matrix S with
all positive entries set to zero. Then det(S)det(S−) ≥ 0.

Proof. If S is singular, the result is trivial, so assume that S is SNS. Consider
the family of matrices Sp = (1 − p)S + pS− with p ∈ [0, 1]. By the definition of SNS,
if S is SNS, then Sp is in the same qualitative class as S for p ∈ [0, 1). By continuity
of the determinant, S− either has the same sign as S or is singular.

From the previous two results it follows that if the stoichiometric matrix of a
system of reactions is SSD, then it is also SSD when written as a system of irreversible
reactions, in which case it is WSD when written this way.

The next few results are useful from an algorithmic point of view—they can
considerably reduce the computational effort involved in calculating whether a matrix
is SSD/WSD or not.

Lemma A.4. Let S be an SSD matrix. Let Saug be the matrix S with a row/
column containing at most one nonzero element added. Then Saug is SSD.

Proof. Any square submatrix of Saug is either

1. a submatrix of S, and hence SNS or singular,
2. a single element and hence trivially SNS or singular, or
3. a submatrix of S augmented with an extra row/column containing at most

one nonzero element. In this case the determinant is either zero or the product
of a nonzero element and the determinant of a submatrix of S which is itself
SNS or singular.

From this the next result follows immediately.

Lemma A.5. Let S be a matrix which is not SSD. Let Sdim be the matrix S with
some rows/columns containing no more than one nonzero element removed. Then
Sdim is not SSD.

Proof. Suppose that Sdim is SSD. A square submatrix of S is either

1. diagonal,
2. a submatrix of Sdim,
3. a submatrix of Sdim augmented with rows/columns containing no more than

one nonzero element.

In the first two cases it is trivial that the square submatrix is SNS or singular. In the
third case the result follows from repeated application of Lemma A.4.

Since any submatrix of an SSD matrix is SSD by definition, it follows that the
full stoichiometric matrix of a CFSTR system (termed Sf in the text) is SSD iff
the stoichiometric matrix S of the true reactions is SSD. In other words, columns
containing a single element (corresponding to inflow/outflow processes) can be ignored
when checking whether a matrix is SSD. Lemma A.5 also often considerably reduces
the computational effort involved in checking whether a matrix is SSD, by allowing
one to ignore rows in S containing a single element (i.e., to ignore reactants which
participate in only one reaction).

The above result also extends to WSD matrices and thus reduces the computa-
tional effort involved in checking whether a matrix which has been shown not to be
SSD is actually WSD. The next lemma, while tedious to state, is actually very useful
in practice.

Lemma A.6. Let Sr refer to the stoichiometric matrix of a system of reactions,
and Sir refer to the stoichiometric matrix of the system written as a set of irreversible
reactions. Let α be the set of rows in Sr containing a single element, and γ be the set
of columns in Sr containing a single element. Let Sdim be the matrix Sir with rows
from α and columns from γ deleted. Then Sir is WSD iff Sdim is.



1546 MURAD BANAJI, PETE DONNELL, AND STEPHEN BAIGENT

Proof. The “only if” part is trivial, as Sdim is a submatrix of Sir. Suppose that
Sir is not WSD, and consider a square submatrix T of Sir which does not satisfy
det(T )det(T−) ≥ 0. Any elements of T not in Sdim must lie in rows/columns of T
containing a single nonzero element, because if they lie in rows containing a single
positive and a single negative element, then two columns of T will be multiples of
each other and hence T will be singular. Further, any nonzero elements of T not in
Sdim must be negative, since otherwise T− would contain a row of zeroes and thus
be singular. The only way that det(T ) can be nonzero is if it takes the form of the
product of these negative elements with the determinant of a submatrix T̃ of Sdim.
Similarly det(T−) must take the form of the product of these negative elements with
the determinant of T̃−. Thus det(T )det(T−) is a positive multiple of det(T̃ )det(T̃−),
implying that det(T̃ )det(T̃−) < 0. Thus Sdim is not WSD.

This final lemma means that in checking whether a non-SSD matrix is actually
WSD one can first remove rows corresponding to reactants which occur only in one
(perhaps reversible) reaction from the stoichiometric matrix before checking the ma-
trix.

Appendix B. Binary reaction systems. We present an important class of
systems which give rise to P (−) matrix Jacobians. Consider a set of n reactants Ai, i =
1, . . . , n. Assume that the only reactions taking place are (reversible or irreversible)
interconversions between the reactants along with some inflow and outflow processes.
It is reasonable to assume that the rates depend on the substrates in a monotone way,
so such systems are nonautocatalytic. They have been discussed in some detail in [2],
where global stability of a unique equilibrium was shown using techniques connected
with logarithmic norms. Each column of the stoichiometric matrix S contains either
a +1 and a −1 (interconversion) or a single negative entry (outflow). It can be shown
inductively that this structure implies that S is SSD and hence that the Jacobian is

a P
(−)
0 matrix.
Here we show that, subject to a weak assumption on the inflow and outflow

processes, the Jacobian J is a P (−) matrix and in fact a nonsingular M (−) matrix.
Associated with any such interconversion network is a directed graph G on n+ 1

nodes. Nodes i = 1, . . . , n correspond to the n substrates, while the extra node which
we term node 0 corresponds to the zero complex, i.e., to the outside of the system.
For i, j ≥ 1, there is an edge from node i to node j (i �= j) iff Jji > 0—i.e., Ai can
be converted to Aj , or alternatively the rate of conversion of Aj to Ai is inhibited by
the concentration of Ai. On the other hand, for i ≥ 1, there is an edge from node i
to node 0 iff Ai is subject either to an outflow process or to an inflow process whose
rate is inhibited by an increase in the concentration of i. This has the consequence of
ensuring that J is strictly dominant in the ith column.

Our assumption is that there is a directed path in G from any node to node 0. This
has the physical interpretation that the concentration of any substrate is affected by
the “outside,” a considerably weaker condition than insisting on a CFSTR. We refer
the reader to [2] for the details, but the above assumptions together imply that the
following hold:

1. J has negative diagonal entries.
2. J has nonnegative off-diagonal entries.
3. There is a constant coordinate transformation T such that TJT−1 still sat-

isfies conditions 1 and 2 and is also strictly diagonally dominant in every
column; hence J is Hurwitz.

These three facts combine to ensure that J is a nonsingular M (−) matrix [3].
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Nonsingular M (−) matrices are a subset of P (−) matrices. In fact, all trajectories
converge to a unique equilibrium [2].

Note that the basic system of coupled redox reactions presented in [1] gives rise to
a Jacobian of the above form, even though in this case electrons are being transferred
rather than reactants interconverted.

Acknowledgment. Thanks are due to the reviewer of this manuscript who
helped us understand several connections between this work and the work in [5].
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WEAK LACUNAE OF ELECTROMAGNETIC WAVES
IN DILUTE PLASMA∗

S. V. TSYNKOV†

Abstract. The propagation of waves is said to be diffusionless, and the corresponding governing
PDE (or system) is said to satisfy Huygens’ principle if the waves due to compactly supported sources
have sharp aft fronts. The areas of no disturbance behind the aft fronts are called lacunae. Dif-
fusionless propagation of waves is rare, whereas its opposite—diffusive propagation accompanied
by aftereffects—is common. Nonetheless, lacunae can still be observed in a number of important
applications, including the Maxwell equations in vacuum or in dielectrics with static response. In the
framework of these applications, lacunae can be efficiently exploited for the numerical simulation of
unsteady waves, and considerable progress has been made toward the development of lacunae-based
methods for computational electromagnetism. Maxwell equations in vacuum are Huygens’ because
they reduce to a set of d’Alembert equations. Besides d’Alembert equations, there are no other
scalar Huygens’ equations in the standard 3 + 1-dimensional Minkowski space-time. In terms of
physics, this means that the mechanisms of dissipation and dispersion destroy the lacunae. In fact,
all conventional low-frequency electromagnetic models, such as metals with Ohm conductivity, semi-
conductors, and magnetohydrodynamic media, are diffusive. An important case of the propagation
of high-frequency electromagnetic waves in plasma is governed by the Klein–Gordon equation. It
does not reduce to the d’Alembert equation either, and therefore the corresponding propagation is
diffusive as well. However, one can still identify “weak lacunae” in the solutions of the Klein–Gordon
equation, with the aft fronts that can be clearly observed, although they may not be as sharp as in
the pure Huygens’ case. Moreover, one can show that the “depth” of a weak lacuna is controlled by
the dimensionless ratio of the Langmuir frequency to the primary carrying frequency of the waves.

Key words. Huygens’ principle, wave diffusion, aftereffects, aft fronts, lacunae, ionospheric
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1. Introduction.

1.1. The Huygens’ principle. Consider a three-dimensional Cauchy problem
for the wave (d’Alembert) equation:

(1.1)

1

c2
∂2ϕ

∂t2
− Δϕ = f(x , t), ϕ(x , 0) = ϕt(x , 0) = 0,

R
3 � x = (x1, x2, x3).

The fundamental solution of the d’Alembert operator is the expanding spherical wave
(single layer)

(1.2) E(x , t) =
Θ(t)

4π

δ(|x | − ct)

t
,
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where Θ(t) is the Heaviside function, and the solution to the Cauchy problem (1.1) is
given by the convolution of the fundamental solution (1.2) with the right-hand side
f(x , t), i.e., by the Kirchhoff integral

(1.3) ϕ(x , t) = E ∗ f =
1

4π

∫∫∫
�≤ct

f (ξ, t− �/c)

�
dξ,

where R
3 � ξ = (ξ1, ξ2, ξ3) and � = |x − ξ|.

Assume now that the right-hand side f(x , t) is compactly supported in space
and in time, i.e., that supp f ⊆ Q, where Q is a bounded region in R

3 × [0,+∞) ≡
{(x , t) |x ∈ R

3, 0 ≤ t < +∞}. Then, the Kirchhoff formula (1.3) immediately implies
that

(1.4) ϕ(x , t) ≡ 0 for (x , t) ∈
⋂

(ξ,τ)∈Q

{
(x , t)

∣∣|x − ξ| < c(t− τ), t > τ
}
.

The region of space-time defined by formula (1.4) is known as the lacuna of the
solution ϕ(x , t) of problem (1.1), because the solution vanishes there. This region
can be interpreted as the intersection of all the characteristic cones of the d’Alembert
equation, once the vertex of the cone sweeps the support Q of the right-hand side.

The presence of lacunae (or lacunas) in the solution is equivalent to the existence
of the sharp aft fronts of the waves. In other words, the perturbation due to a
compactly supported source first reaches a given fixed location of the observer and
then ceases completely once a finite interval of time has elapsed. Subsequently, the
solution at this location remains identically zero. Lacunae can then be viewed as areas
of “quietness” behind the aft fronts, and the latter, reciprocally, serve as boundaries
of the lacunae.

Differential equations, for which lacunae can be identified in their solutions, are
said to satisfy the Huygens’ principle. The most well-known classical example is
provided by the foregoing d’Alembert equation. The Huygens’ principle should not
be confused with another concept that bears the same name and that often appears
in the context of wave propagation in optics. Namely, according to the Huygens’
construction, at every given moment of time the front of the propagating wave can
be considered a collection of secondary sources that altogether define the wave field
at subsequent moments of time [5].

Existence of the lacunae is a rare and fragile property. Its opposite is known
as the diffusion of waves and is considered common. The diffusion manifests itself
by aftereffects that accompany the propagation of waves governed by non-Huygens’
equations. In this case, there are no sharp aft fronts, and once the perturbation has
reached a given observation point it will never cease but only decay in amplitude.

A key constraint that distinguishes between the diffusionless and diffusive prop-
agation is that lacunae may exist only if the number of space dimensions is odd. In
particular, the propagation of waves governed by the d’Alembert equation on the
plane (R2, as opposed to R

3) is already characterized by aftereffects.
Another important consideration is that studying the wave phenomena in the

time domain is essential for the analysis and interpretation of the Huygens’ principle.
Indeed, a standard frequency-domain model is the Helmholtz equation

(1.5) Δϕ̂ + k2ϕ̂ = f̂ ,

which is obtained from the d’Alembert equation by applying the Fourier transform in
time. In (1.5), k2 = ω2/c2, and ϕ̂ denotes the complex amplitude of the time-harmonic



1550 S. V. TSYNKOV

wave at the frequency ω (i.e., the ω Fourier coefficient). Solutions of the Helmholtz
equation (1.5) are known to be analytic in the areas of homogeneity; therefore, they
may not turn into zero only on a subdomain.

A review of the facts and publications in the literature pertaining to the Huygens’
principle can be found in [3]; see also [10, 11]. The question of describing the hyper-
bolic differential equations and systems that admit the diffusionless propagation of
waves was first formulated by Hadamard [12, 13, 14]. He did not know any other
examples besides the classical d’Alembert equation. The notion of lacunae was intro-
duced and studied by Petrowsky in [23]; see also [7, Chapter VI]. He obtained general
conditions for the coefficients of hyperbolic equations/systems that guaranteed the
presence of lacunae. Subsequent work in this direction was done by Atiyah, Bott, and
Gȧrding in [1, 2]. However, no other constructive examples of lacunae in the solutions
have been found besides solutions of the wave equation and its equivalents. In fact,
Matthisson [20] has shown that in the standard 3 + 1-dimensional Minkowski space-
time the only scalar hyperbolic equation that satisfies the Huygens’ principle is the
wave equation. From the standpoint of applications, this result provides one of the
most convenient and useful criteria. Namely, the equation may be Huygens’ only if it
is equivalent to the d’Alembert equation. We will employ this criterion for the anal-
ysis in the current paper. In this regard, we also emphasize that the aforementioned
equivalence does not have to be global; a given equation may only locally reduce to the
d’Alembert equation. An interesting illustration of this fact is provided by Lax and
Phillips in [19]—they analyze the waves that propagate on an n-dimensional sphere,
where n is odd, and prove that the propagation is diffusionless. The first examples of
nontrivial scalar equations (i.e., nonequivalent to the d’Alembert equation) that sat-
isfy the Huygens’ principle were built by Stellmacher (see [28, 16, 29]) in the spaces
R

n for odd n ≥ 5. His examples have the form c−2ϕtt − Δϕ + H(x , t)ϕ = 0, where
the function H(x , t) is specially chosen to guarantee the diffusionless propagation, in
which case it is called the Huygens’ potential [3]. There are also examples of non-
trivial diffusionless (i.e., Huygens’) systems (as opposed to scalar equations) in the
standard Minkowski 3 + 1 space-time [26, 3, 10], as well as examples of nontrivial
scalar Huygens’ equations in a 3 + 1-dimensional space-time but equipped with an
alternative metric (the so-called plane wave metric); see [3, 10, 9].

1.2. Applications of lacunae. Lacunae of a given differential equation or sys-
tem can be efficiently exploited for designing advanced numerical integration tech-
niques. Lacunae-based methods have been developed previously for solving the scalar
wave equation [25, 24], as well as for the problems of computational acoustics [31]
and computational electromagnetism [32, 33, 34]. For the simplest possible setup
that involves the radiation of waves by a known source, these methods guarantee that
the grid convergence of a given discrete approximation will be uniform in time. For a
more general setting that involves a sophisticated or potentially unknown mechanism
of wave generation confined to a bounded region, lacunae-based methods facilitate
construction of highly accurate unsteady artificial boundary conditions (ABCs) with
only fixed and limited extent of temporal nonlocality in time. Note that overcom-
ing the nonlocality of the exact unsteady ABCs in time has long been regarded as a
challenging numerical issue [30]. From this perspective it is important to emphasize
that the bound on temporal nonlocality obtained through the use of lacunae does not
come at the expense of any approximation and/or simplification of the model; it is
rather an implication of the fundamental properties of the corresponding solutions.

In addition to having the aforementioned computational benefits, lacunae can
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also be instrumental in performing a number of tasks other than numerical ones. For
example, explicit knowledge of their shape can help in planning of electromagnetic
measurements and subsequent interpretation of the results.

In the current paper, we are not going to concentrate on numerical issues, except
in section 3.5. Instead, we will focus on the phenomenon of lacunae itself. In partic-
ular, we will see that in the context of electromagnetism, only the simplest models
that involve the propagation of waves in vacuum or in dielectrics with static response
admit lacunae in the classical sense of the word. Many other traditional low-frequency
models, such as different types of dielectrics, metals, semiconductors, magnetohydro-
dynamic media (MHD), turn out to be diffusive. However, for the important case of
the propagation of high-frequency electromagnetic waves in dilute plasma, lacunae can
still be identified in the solutions of the Maxwell equations in some approximate sense.
Moreover, one can show that the quality, or “depth,” of these weak lacunae is con-
trolled by the ratio of the Langmuir frequency, which is a key parameter that char-
acterizes temporal responses of the plasma to the primary carrying frequency of the
incident wave.

2. Traditional electromagnetic models.

2.1. The Maxwell system of equations. Lacunae in vacuum. The evolu-
tion of electromagnetic field in vacuum is governed by the classical Maxwell equations

(2.1)

1

c

∂B

∂t
+ curlE = 0 , divB = 0,

1

c

∂E

∂t
− curlB = −4π

c
jext, divE = 4πρext.

In system (2.1), E and B are intensities of the electric and magnetic field, respectively,
c is the speed of light, jext is the density of the extraneous current, and ρext is the
density of the extraneous electric charge [17]. A necessary solvability condition for
system (2.1) is continuity of the charges and currents:

(2.2)
∂ρext

∂t
+ divjext = 0.

Equation (2.2) is obtained by taking divergence of the second unsteady equation
of (2.1) and then substituting the second steady-state equation of (2.1). From the
standpoint of physics, continuity (2.2) implies the conservation of electric charge. The
rate of change of the total charge contained in any given region of space is equal to
the flux of the charge, i.e., the total current, through the boundary of this region.

By differentiating each unsteady equation of (2.1) with respect to time, taking
curl of the other unsteady equation, substituting curlcurl[ · ] = graddiv[ · ]−Δ[ · ], and
employing the corresponding steady-state equation of (2.1), we arrive at the following
individual equations for the field intensities B and E :

(2.3)

1

c2
∂2B

∂t2
− ΔB =

4π

c
curljext,

1

c2
∂2E

∂t2
− ΔE =−4π

[
1

c2
∂jext

∂t
+ gradρext

]
.

Equations (2.3) are vector d’Alembert equations with the propagation speed c. Each
equation of (2.3) is Huygens’ in R

3, and hence system (2.1) is also Huygens’. If the
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charges ρext and currents jext are compactly supported, then the solution of (2.1)
will have a lacuna of the same structure as determined by the Kirchhoff integral
(1.3). Hence, the three-dimensional propagation of electromagnetic waves in vacuum
is diffusionless.

Equations (2.1) will also remain a valid model for describing the electromagnetic
field in various materials, but only on the microscopic level. The macroscopic equa-
tions are obtained by averaging; see [18]. In doing so, the impinging electromagnetic
field may give rise to the induced charges and currents (see section 2.2), which, in turn,
may affect the fields themselves. This range of phenomena is described by introduc-
ing the electric induction (or displacement) D and the magnetic field H , whereas the
“old” quantity B is referred to as the magnetic induction. The macroscopic Maxwell
equations in the medium then become

(2.4)

1

c

∂B

∂t
+ curlE = 0 , divB = 0,

1

c

∂D

∂t
− curlH = −4π

c
jext, divD = 4πρext.

Note that once B is referred to as the induction, and H as the magnetic field, sys-
tem (2.4) looks mathematically more symmetric. However, as far as the physics is
concerned, the true intensity of the magnetic field1 is B rather than H . As for the
right-hand sides’ jext and ρext of system (2.4), they may be interpreted differently for
different types of media and may sometimes be treated only as formal mathematical
source terms.

System (2.4) is underdetermined unless additional relations are specified between
the electric quantities E and D and the magnetic quantities H and B . These relations
are determined by the medium, across which the electromagnetic waves propagate.
They are called the responses. The responses may vary drastically for different types
of media and different regimes of propagation. The simplest response is static.

2.2. Dielectric media with static response. Lacunae. A dielectric medium
may not support a constant (i.e., steady-state) electric current. Responses of a
dielectric medium can be characterized in terms of the electric polarization P , which
is the induced electric dipole moment per unit volume, and magnetization M , which
is the induced magnetic dipole moment per unit volume. Then, by definition,

(2.5) D = E + 4πP and B = H + 4πM .

In an isotropic dielectric with static response, the electric induction D is assumed
directly proportional to the electric field E , and the magnetic induction B is assumed
directly proportional to the magnetic field H :

(2.6) D = εE and B = μH ,

where the dielectric permittivity ε = const and the magnetic permeability μ = const.
In vacuum, we have ε = μ = 1, so that (2.4), (2.6) transform back to (2.1). In
dielectric media other than vacuum, the assumptions of ε = const and μ = const
may hold only for static incident fields. They can be used in the case of unsteady
fields as well, but only as approximations and provided that the incident frequencies

1A quantitative characteristic of the field that determines how it affects the moving charged
particles.
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are low,2 i.e., considerably lower than the typical frequencies of the molecular or
electronic oscillations that are responsible for the onset of electric polarization and/or
magnetization of the medium.

Under the assumption of a static response (2.6), the Maxwell equations (2.4)
reduce to

(2.7)

μ

c

∂H

∂t
+ curlE = 0 , divH = 0,

ε

c

∂E

∂t
− curlH = −4π

c
jext, divE =

4π

ε
ρext.

Then, a procedure identical to the one used when deriving equations (2.3) from (2.1)
yields

(2.8)

εμ

c2
∂2H

∂t2
− ΔH =

4π

c
curljext,

εμ

c2
∂2E

∂t2
− ΔE = −4π

[
μ

c2
∂jext

∂t
+

1

ε
gradρext

]
.

Thus, equations (2.8) that individually govern the fields H and E in R
3 are Huygens’.

As such, so is system (2.7). The corresponding wave speed c/
√
εμ is slower than the

speed of light c.
Unfortunately, the propagation in vacuum or in dielectrics with static response is

practically the only case of electromagnetic propagation with no aftereffects. In sec-
tions 2.3, 2.4, and 2.5, we will see that many conventional electrodynamic models
appear diffusive even before the onset of dispersion, i.e., for low frequencies, when
static relations between D , B and E , H can still be employed for unsteady fields.
The propagation remains diffusive in the case of higher incident frequencies as well.3

Note also that the description of the responses in terms of the polarization P
and magnetization M (see (2.5)) naturally brings along the definition of the induced
charge ρind and the induced current jind:

(2.9) ρind = −divP , jind =
∂P

∂t
+ c curlM .

Substitution of (2.5) and (2.9) into the Maxwell equations (2.4) yields

(2.10)

1

c

∂B

∂t
+ curlE = 0 , divB = 0,

1

c

∂E

∂t
− curlB = −4π

c
(jext + jind), divE = 4π(ρext + ρind).

System (2.10) is identical to (2.1), except that on its right-hand side we have the
full current j = jext + jind and the full charge ρ = ρext + ρind instead of only the
extraneous quantities. This is an alternative way of representing the electromagnetic
field inside a material—by looking at the actual intensities B and E only, but driven
by the induced sources added to the original extraneous sources.4

2The notion of incident frequency is to be interpreted broadly here as frequency of any external
excitation to the field inside the material, whether it be the frequency of the actual impinging wave
or the frequency of the extraneous sources.

3Incident frequencies on the order of, or higher than, the characteristic microscopic frequencies
for a given medium.

4Extraneous sources may or may not be present in every particular case.
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2.3. Ohm conductivity in metals. In contradistinction to dielectrics, con-
ducting materials can support a constant electric current. The steady-state model of
a conductor can be obtained by dropping the displacement current ∂D

∂t = ε∂E
∂t from

the second unsteady Maxwell equation (2.4) or (2.7), which yields

(2.11) curlH =
4π

c
jc.

The quantity jc on the right-hand side of (2.11) is called the conductivity current. In
the pure static case it is assumed given, and then (2.11) is solved along with divB = 0
to determine the magnetic field. Note that according to formula (2.11) the conduc-
tivity current is solenoidal, divjc = 0, which is a manifestation of the conservation of
charge in this case.

The foregoing static model for conducting materials such as metals can also be
applied to the analysis of slowly varying electromagnetic fields. In this case, however,
the conductivity current jc shall no longer be treated as given. It rather becomes an
unsteady current induced by the electric field that, in turn, is due to the variation
in the magnetic field. Then, one also needs to add the first unsteady equation of the
Maxwell system (2.4) or (2.7) to (2.11) and divB = 0. In doing so, the displacement
current may still remain omitted from (2.11). The justification for not including it
into the unsteady analysis is outlined in section 2.4, where a more comprehensive
model is considered that includes semiconductors.

The key relation that one still needs in order to complete the unsteady model
is a connection between the conductivity current and the electric field. Often, this
connection is provided by the same classical Ohm law of electrostatics that establishes
the direct proportionality between jc and the electric intensity E :

(2.12) jc = σE .

The quantity σ in formula (2.12) is the electric conductivity; in the isotropic case
it is a scalar. The conductivity σ can be assumed constant, and accordingly, static
relations (2.11), (2.12) can be used for the unsteady fields in metals, under conditions
similar to those discussed in section 2.2. Namely, the frequency of the incident field
must be much lower than the characteristic frequencies of the microscopic mechanism
of conductivity, which is due to the collisions between the conductivity electrons and
atoms of the crystal lattice. Therefore, the incident frequency must be much lower
than the collision frequency O(ve/δ), where ve is the electron thermal speed and δ is
the mean free path.

By combining the first two equations of (2.4) with relations (2.11) and (2.12), we
obtain the following system of equations that governs the unsteady electromagnetic
field in metals:

(2.13)

1

c

∂B

∂t
+ curlE =0 , divB = 0,

curlH =
4π

c
σE ,

where we again assume that B = μH with μ = const. From system (2.13) we easily
obtain

1

c

∂B

∂t
+ curl

c

4πσ
curlH = 0 ,
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which, along with divB = μdivH = 0, yields the following parabolic equation for the
magnetic field H :

(2.14)
∂H

∂t
− c2

4πσμ
ΔH = 0 .

Once (2.14) is solved, the electric field E is determined by the magnetic field through
the last equation of (2.13). Equation (2.14) is not equivalent to the d’Alembert
equation. Hence, according to the Matthisson criterion [20], it is not Huygens’, and
there may be no lacunae in its solutions.

We should also notice that (2.14) is homogeneous and therefore may only be driven
by the initial and/or boundary conditions, whereas previously we have analyzed
lacunae in the solutions due to the compactly supported right-hand sides. Thus,
let us see how a source term for (2.14) can be generated.

Let us introduce a nonphysical artificial current ja that will be included on the
right-hand side of (2.11) and as such will be affecting the magnetic field H ,

(2.15) curlH =
4π

c
jc +

4π

c
ja,

but will not itself be driven by the induced electric field E through the Ohm law (2.12).
Then, we use (2.15) instead of (2.11) and obtain a modified form of system (2.13):

(2.16)

1

c

∂B

∂t
+ curlE =0 , divB = 0,

curlH =
4π

c
σE +

4π

c
ja.

The conservation of charge in the case is expressed as the total current being solenoidal:
div(jc + ja) = 0. For simplicity, and with no substantial loss of generality (see
Theorem 1 in [34]), we can also assume that the artificial current ja itself is divergence-
free, divja = 0. In this case, the electric field will remain solenoidal as in system (2.13):
divE = 0. From (2.16) we obtain the inhomogeneous counterpart of (2.14):

(2.17)
∂H

∂t
− c2

4πσμ
ΔH =

1

σ
curlja.

Solutions of (2.17) do not have lacunae even if ja is compactly supported. We can
therefore conclude that the propagation of electromagnetic waves in the media with
Ohm conductivity is diffusive.

2.4. Semiconductors. Let us now look more thoroughly into how one shall
actually treat the displacement current for conducting materials. Keeping the unsteady
term 1

c
∂D
∂t = ε

c
∂E
∂t , i.e., considering

(2.18) curlH =
4π

c
σE − ε

c

∂E

∂t

instead of (2.11), (2.12), can make sense only under the special circumstances when
the second term on the right-hand side of (2.18) is of the same order of magnitude as
the first term, or at least not negligibly small compared to the first term. If the field is
time-harmonic, then the ratio of these two terms is O

(
εω
4πσ

)
. In metals, we typically

have ω
σ � 1 for the entire range of frequencies, for which the conductivity σ can still

be considered constant [18]. Therefore, (2.18) in metals indeed reduces to (2.13).
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In semiconductors, however, because of the low concentration of conductivity
electrons, the value of σ could be very small, so that for all those frequencies, for
which σ and ε can still be regarded as constants, we may already have εω

4πσ = O(1).
Then, the Maxwell equations become (cf. formulae (2.13) and (2.7))

(2.19)

μ

c

∂H

∂t
+ curlE = 0 , divH = 0,

ε

c

∂E

∂t
+

4π

c
σE − curlH = 0 , divE = 0.

By differentiating the second unsteady equation of (2.19) with respect to t, taking
curl of the first unsteady equation, and then substituting divE = 0, we arrive at the
telegrapher’s equation for the electric field:

(2.20)
εμ

c2
∂2E

∂t2
+

4πμσ

c2
∂E

∂t
− ΔE = 0 .

A right-hand side for (2.20) can be built similarly to how it was done in section 2.3 for
(2.14). Namely, if we were to formally add the artificial source terms − 4π

c ja and 4π
ε ρa

to the second pair of the Maxwell equations (2.19), then we would have obtained the
following equation instead of (2.20):

(2.21)
εμ

c2
∂2E

∂t2
+

4πμσ

c2
∂E

∂t
− ΔE = −4π

[
μ

c2
∂ja
∂t

+
1

ε
gradρa

]
.

The operator on the left-hand side of (2.21) is not equivalent to the d’Alembert
operator. Therefore, the Huygens’ principle will not hold, and there will be no lacunae.
Note also that the larger the ratio εω

4πσ , the more of a standard dielectric behavior will
be displayed by the medium governed by (2.18).

2.5. Magnetohydrodynamics. The case of a conducting medium in motion
is not very different from the stationary conducting medium analyzed in section 2.3.
Instead of the Ohm law (2.12) we now have

(2.22) jc = σ

(
E +

1

c
u ×B

)
,

where u denotes the velocity of the conducting fluid. The second term on the right-
hand side of (2.22) is the so-called Lorentz correction that helps obtain the electric
field in the frame of reference that moves with the velocity u , provided that |u | � c;
see [17]. Accordingly, instead of system (2.13) we obtain

1

c

∂B

∂t
+ curlE = 0 , divB = 0,

curlH =
4π

c
σ

(
E +

1

c
u ×B

)
,

and instead of (2.14) we have

(2.23)
∂H

∂t
− curl(u ×H ) − c2

4πσμ
ΔH = 0 .

As before, (2.23) is to be solved under the condition that the magnetic field is
solenoidal: divH = 0.
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Unlike in section 2.3, in magnetohydrodynamics the electromagnetic equations
are not independent. They are coupled to the equations of the fluid flow through
the quantity u in (2.23). Moreover, the ponderomotive force 1

c jc × H is added to
the right-hand side of the momentum equation of the fluid, and the Joule heat j 2

c /σ
is added to the right-hand side of the energy equation of the fluid. Therefore, we
cannot directly apply the Matthisson criterion to (2.23); this can only be done if we
consider the velocity field u as given. Then, the answer is still negative—(2.23) is not
Huygens’.

Of particular interest may be the case of very large (theoretically, infinite) con-
ductivities σ, when the dissipative term ∼ ΔH can be dropped from (2.23). Let us
then consider the equations of inviscid compressible flow coupled with (2.23) for the

magnetic field with no magnetic viscosity, c2

4πσμ = 0:

(2.24)

d�

dt
+ �divu = 0,

�
du

dt
+ gradp=

1

4π
curlH ×H ,

∂H

∂t
= curl(u ×H ).

In system (2.24), �, p, and T are the density, pressure, and temperature of the fluid,
respectively, and d

dt = ∂
∂t + (u · grad). It is easy to show (see, e.g., [27, Vol. 1])

that infinite conductivity also implies the adiabatic nature of the flow, because the
Joule heat 1

σ j 2
c must be disregarded. Then, instead of the energy equation, system

(2.24) can be supplemented by the Poisson adiabatic relation between the pressure
and density of a thermodynamically ideal fluid: p = const · �γ , where γ =

cp
cv

is the
ratio of specific heats.

Let us linearize equations (2.24) at the background of an ambient conducting fluid
immersed into a constant magnetic field, i.e., at the background of a constant solution:
� = �0, p = p0, u = u0 = 0 , and H = H0. Let � = �0 + �̃, p = p0 + p̃, u = ũ ,
and H = H0 + H̃ , where all the quantities with the tilde are small perturbations.
Retaining only the first order terms with respect to these perturbations, we obtain

∂�̃

∂t
+ �0divũ = 0,

�0
∂ũ

∂t
+ gradp̃=

1

4π
curlH̃ ×H0,

∂H̃

∂t
= curl(ũ ×H0),

p̃=
γp0

�0
�̃.

Then, introducing the displacement vector x as ∂x
∂t = ũ , we can derive the following

equation (see [15]):

(2.25)
∂2x

∂t2
= c2sgraddivx + c2Agrad⊥divx⊥ + c2A

∂2x⊥
∂z2

,

where cs =
√
γp0/�0 is the conventional speed of sound, cA = |H0|/

√
4π�0 is the

Alfvén speed, and x⊥ and grad⊥ are the components of x and the gradient, respectively,
orthogonal to the magnetic field H0.
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For a particular class of transverse displacements, x = x⊥ and divx⊥ = 0, we
obtain from (2.25)

(2.26)
∂2x⊥
∂t2

= c2A
∂2x⊥
∂z2

.

This is a one-dimensional d’Alembert equation that describes the propagation of the
so-called Alfvén waves along the magnetic field with the speed cA. Even though
the number of space dimensions in (2.26) is odd, the one-dimensional case is special.
Solutions to (2.26) may display the Huygens’ behavior only if the equation is driven
by some particular classes of initial data, whereas for the general RHS there is wave
diffusion.

If the component of x along the magnetic field H0 is not zero, i.e., x3 = 0, then
(2.25) yields

(2.27)
∂2x3

∂t2
= c2s

∂2x3

∂z2
+ c2s

∂

∂z
divx⊥.

For divx⊥ = 0, (2.27) governs the propagation of the so-called ion sound along the
magnetic field with the speed cs. As in the previous case of the Alfvén waves, the
propagation of ion sound is diffusive.

To supplement (2.27), a second equation can be derived from (2.25) that would
govern divx⊥:

(2.28)

∂2divx⊥
∂t2

= c2sdivgrad⊥ divx︸︷︷︸
divx⊥+

∂x3
∂z

+ c2A

[
divgrad⊥divx⊥ +

∂2divx⊥
∂z2

]
︸ ︷︷ ︸

Δdivx⊥

= c2sdivgrad⊥divx⊥ + c2sdivgrad⊥
∂x3

∂z
+ c2AΔdivx⊥.

Equations (2.27) and (2.28) form a system with the unknowns x3 and divx⊥. These
equations decouple only when cs � cA. In this case, the terms ∼ c2s on the right-hand
side of (2.28) can be disregarded, which yields

(2.29)
∂2divx⊥

∂t2
= c2AΔdivx⊥.

Equation (2.29) governs the so-called magnetoacoustic waves that propagate with the
Alfvén speed cA. It is a true three-dimensional d’Alembert equation and as such,
is Huygens’. The assumption of the speed of sound cs being much slower than the
Alfvén speed cA holds when the thermodynamic pressure p0 is much lower than the
quantity H 2

0 /8π, which can be interpreted as pressure of the magnetic field [15].
Hence, lacunae can potentially exist in the solutions for the transverse quantity

divx⊥. However, divx⊥ is then substituted into (2.27) to find the longitudinal dis-
placement x3 in magnetoacoustic waves, and the spatially one-dimensional solution
for x3 will, generally speaking, be diffusive. Altogether, the propagation of waves
governed by (2.29), (2.27) will be only partially diffusionless.

2.6. Summary on low-frequency models. Having analyzed a number of con-
ventional low-frequency electromagnetic models, we conclude that for most of them
the propagation of waves is diffusive; i.e., the Huygens’ principle does not hold. The
driving frequency in these models is assumed lower than the characteristic microscopic
frequencies of the medium, so that the material coefficients can be taken as constants
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(permittivity, permeability, and conductivity). The mechanism that destroys the
lacunae in all these cases is typically of a dissipative nature, related to the electric
conductivity. An exception, for which the Huygens’ principle holds, is pure dielectric
materials with static response. Another partial exception is magnetoacoustic waves
in the medium with infinite conductivity.

When the incident (driving) frequency becomes higher, the material coefficients
can no longer be assumed constant. Instead, they become frequency-dependent, and
while relations (2.6) can still keep their form, all the quantities involved have to be con-
sidered in the frequency domain rather than in the time domain. In other words, rela-
tions (2.6) transform into the corresponding relations between the Fourier coefficients
of the fields and of material “constants,” while in the physical space the medium
responses typically appear nonlocal in time (given by convolution-type integrals);
see [18]. It is also known that the discrepancy between H and B becomes unimpor-
tant/negligible even for relatively low frequencies. Hence, for higher frequencies only
the discrepancy between D and E matters.

Hereafter, we will depart from the low-frequency framework and analyze the prop-
agation of high-frequency electromagnetic waves in the dilute ionospheric plasma. We
will see that in this case the key mechanism that can destroy the lacunae is of a dis-
persive nature. We will also see that under certain assumptions lacunae can still be
identified in this dispersive medium, but in an approximate sense.

3. High-frequency electromagnetic waves in dilute plasma.

3.1. Characteristics of the medium. Our ultimate goal will be to work out an
approximate interpretation of the Huygens’ principle as it applies to the propagation
of electromagnetic waves through the Earth’s ionosphere. The ionosphere is a layer
of dilute plasma (weakly ionized rarefied gas which is electrically neutral as a whole)
surrounding the Earth at heights roughly between 60 km and 400 km from the surface.
The primary source of ionization in the ionosphere is solar radiation. The negatively
charged particles in the ionosphere are electrons with the charge of e = −4.803 ·10−10

Gaussian units and the mass of me = 9.1 ·10−28g, and the positively charged particles
are ions that are much heavier: mi/me � 2.93·104. The ionosphere is, in fact, layered,
and its local parameters strongly depend on the altitude; this dependence for key
characteristics, such as the concentrations of charged particles, may be nonmonotonic.
The parameters of the ionosphere also change between day and night and winter and
summer, and depend on the level of solar activity; more detail can be found, e.g.,
in [8, 6]. In our subsequent considerations, we will be quoting the parameters typical
for the so-called F-layer (that starts at about 130 km above the Earth’s surface) during
the periods of low solar activity. The concentrations of the negatively and positively
charged particles are equal, and we will mostly use the electron concentration: ne ≈
106cm−3. Note that the concentration of neutral atoms and molecules in the F-layer
could be as high as nm = 1010cm−3. A typical value of the electron temperature in
the F-layer is Te ≈ 2000K; the ions are a few times colder.

Several key quantities that depend on the foregoing parameters characterize the
properties of the ionospheric plasma. The plasma electron frequency, also known

as the Langmuir frequency, is defined as ωpe =
√

4πe2ne

me
; it provides a fundamental

temporal scale. For the specific parameters of the plasma given above we obtain
ωpe ≈ 5.64 · 107rad/s ≈ 9 MHz; in the literature, one can find the range of values for
the Langmuir frequency in the ionosphere between 3 MHz and 15 MHz. The thermal
speed of the electrons, ve =

√
3κTe/2me ≈ 3 · 107 cm/s, provides a characteristic
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velocity, where κ = 1.38 · 10−16erg/K is the Boltzmann constant; the speed ve is
roughly three orders of magnitude slower than the speed of light in vacuum, c = 3·1010

cm/s. The speed of the waves that propagate through the plasma will subsequently
need to be compared to the characteristic velocity ve. The Debye shielding length,

d =
√

κTe

8πe2ne
≈ 0.22 cm, provides a characteristic spatial scale for the shielding of a

point charge immersed into the plasma by other charges; shielding effectively results in
multiplication of the classical Coulomb electrostatic potential by the rapidly decaying
function e−r/d.

Another important parameter yet to be included in the consideration is the mag-
netic field of the Earth, B0, |B0| ≈ 0.3G. It brings along another characteristic

frequency known as the electron cyclotron frequency, Ωe = e|B0|
c·me

≈ 0.8 MHz, which is
about an order of magnitude lower than the Langmuir frequency. The presence of B0

implies anisotropy of the plasma and transforms it into a gyrotropic medium; see [18].
The propagation of electromagnetic waves through such a medium is accompanied
by interesting effects, e.g., the Faraday rotation. In the literature, these effects are
typically studied in the frequency domain (see [18, Chapter XI]); for our analysis we
will use the time domain (see section 3.6).

3.2. Cold plasma. In the Maxwell system of equations (2.10), assume that
no extraneous charges or currents are present; then take curl of the first unsteady
equation and by substitution eliminate the magnetic field from the second unsteady
equation, having differentiated it with respect to time. This yields

(3.1)
∂2E

∂t2
+ c2curlcurlE = −4π

∂jind

∂t
.

Equation (3.1) is the key governing equation for the electric field. However, it still
requires that the time derivative of the induced current on the right-hand side be spec-
ified. To do so, we will use the approximation known as cold plasma (see, e.g., [8, 21]);
the meaning of the term will be explained later.

To obtain the current, let us write Newton’s second law of motion for the electrons:

(3.2) me
du

dt
+ meνeffu = −eE − e

c
u ×B .

As the ions are much heavier than the electrons, their motion is not taken into account.
In (3.2), u denotes the velocity of the electrons due to the applied electromagnetic
field (as opposed to the thermal velocity). Equation (3.2) is nonrelativistic because
κT/mec

2 ≈ 3.37 · 10−7 � 1. The quantity νeff in (3.2) is the effective frequency
of collisions between the electrons and other particles (both charged and neutral).
Note that the acceleration term in (3.2) is important in the case of high frequencies,
whereas in the low-frequency case it is often omitted. Omitting the acceleration term
results in (3.2) being transformed into the (generalized) Ohm law; see [15]. In the
high-frequency case we can instead drop the collision term meνeffu on the left-hand
side of (3.2). This term is responsible for the mechanism of Ohm conductivity in
the plasma and is dropped because typical collision frequencies νeff in the ionosphere
are low. A thorough analysis of collisions in dilute plasma requires the calculation of
cross-sections using the apparatus of quantum mechanics; it goes beyond the scope
of this paper, and we refer the reader to [8]. Here we only mention that for the
collisions of electrons with either positive ions or neutral molecules in the F-layer we
have νeff ∼ 102s−1 � ωpe, and as we are predominantly interested in high incident
frequencies, ω � ωpe, we can indeed disregard the collisions term in (3.2).
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In the isotropic case, when the constant magnetic field B0 is not taken into
account, the Lorentz term on the right-hand side of (3.2) can also be neglected. The
reason is that unlike, for example, the case of MHD (section 2.5), when plasma is
immersed into the magnetic field and the electric field is induced, here we are assuming
that both the electric field and the magnetic field have roughly the same magnitude in
the impinging wave. Then, the term − e

cu×B becomes a small relativistic correction,
because |u | � c. The latter relation always holds, because even when the plasma
is not at thermal equilibrium, i.e., when the velocity distribution function is not
Maxwellian, the speed of systematic motion |u | is still much slower than the average
particle speed

√
2K/mee (K is the kinetic energy), which, in turn, is much slower

than the speed of light. Altogether, (3.2) then reduces to

(3.3) me
du

dt
= −eE .

Next, by expressing the induced current as jind = −eneu , we transform (3.3) into

(3.4)
∂jind

∂t
= −ene

∂u

∂t
=

e2ne

me
E .

In doing so we note that the foregoing expression jind = −eneu corresponds to a
simplified framework, whereas, strictly speaking, we should have written jind = −e∫

vf(v)dv , where f(v) is the probability distribution function for electron velocities.
In this paper, however, we employ the elementary approach rather than the full-
fledged kinetic considerations.

We would also like to emphasize that the relation (3.4) between the induced
current and the electric field is local in space, because (3.3) is an ordinary differential
equation. In the frequency domain, when all the variables are interpreted as Fourier
components, we immediately have

jind(ω) =
ωpe

4π

1

iω
E(ω),

and since ∂D
∂t = ∂E

∂t + 4π ∂P
∂t = ∂E

∂t + 4πjind (assuming μ = 1; see (2.5), (2.9)), we
obtain

(3.5) D(ω) = E(ω) −
ω2

pe

ω2
E(ω)

def
= εE(ω) ⇒ ε = 1 −

ω2
pe

ω2
.

In other words, the electric permittivity ε depends only on the incident frequency
ω and does not depend on the wavenumber k . This is equivalent to neglecting the
phenomenon of spatial dispersion in the plasma. It can indeed be neglected if a � λ,
where a is a characteristic length and λ is the wavelength in the plasma. For the
characteristic length we are taking the distance traveled by the electron during one
period of fast oscillation, a = 2πve/ω, and λ = 2πvph/ω = 2π/k, where k = |k | and
vph is the phase speed of the waves. Hence, we need to require that the phase speed
be much faster than the thermal speed of the electrons:

(3.6) vph =
ω

k
� ve =

√
3κT

2me
,

which is also equivalent to requiring that kd � ω/ωpe, where d is the Debye shielding
length. The meaning of the term cold plasma can be explained with the help of
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relation (3.6). Namely, the temperature should be sufficiently low so that the thermal
speed is much slower that the phase speed of the waves.

Finally, by substituting expression (3.4) into the right-hand side of (3.1), we
obtain

(3.7)
∂2E

∂t2
+ c2curlcurlE + ω2

peE = 0 .

Equation (3.7) is a self-contained governing equation for the electric field E . It no
longer includes any other unknown quantities that need to be determined through
additional considerations. Equation (3.7) admits different types of propagating waves
that we are going to analyze.

3.3. Longitudinal and transverse waves. According to the Helmholtz theorem
(see [22, section 1.5]), any vector field has a unique representation as a sum of its
irrotational (longitudinal) and solenoidal (transverse) components. In other words,
we can write

(3.8) E = E� + E⊥, where curlE� = 0 and divE⊥ = 0.

Note that calling the curl-free and divergence-free parts of the field by their alter-
native names—the longitudinal and transverse components, respectively—has a clear
physical interpretation. Namely, in the frequency domain a plane wave propagating
in an isotropic medium has the form E ∼ eiωt+ik ·r , where r is the radius vector.
Then, clearly, curlE ∼ k × E and divE ∼ k · E . As such, curlE� = 0 would mean
that k × E� = 0 , or in other words, that E� is parallel to the wave vector k , which
justifies its name of the longitudinal component. Similarly, divE⊥ = 0 would imply
that k · E⊥ = 0, or in other words, that E⊥ is perpendicular to the wave vector k ,
which justifies its name of the transverse component.

Let us consider the longitudinal waves first. In this case, (3.7) reduces to

(3.9)
∂2E�

∂t2
+ ω2

peE� = 0 .

Equation (3.9) governs the so-called Langmuir waves in plasma. As there is no spatial
differentiation in (3.9), the Langmuir waves can basically be interpreted as high-
frequency oscillations of the entire volume of plasma. The dispersion relation for
the Langmuir waves is straightforward: ω2 = ω2

pe, which means that the oscillations

always occur with one and the same frequency ωpe =
√

4πe2ne

me
. Accordingly, the

group velocity of these waves is zero: vgr
def
= ∂ω

∂k = 0, which means that no energy
transport is associated with the Langmuir waves.

On the other hand, propagation of the Langmuir waves is accompanied by pertur-
bations of the local electric neutrality of the plasma. Indeed, according to the second
steady-state Maxwell equation (2.10), when there are no extraneous charges we have

ρind =
1

4π
divE =

1

4π
divE�,

and, consequently, the density of the induced charge ρind undergoes oscillations with
the frequency ωpe, because it is governed by the same differential equation as (3.9):

∂2ρind

∂t2
+ ω2

peρind = 0.
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Let us reemphasize that the foregoing considerations are valid only when the
phase velocity of the waves is large; see (3.6). By substituting ω = ωpe we obtain
vph = ωpe/k � ωped = ve, which means kd � 1, or in other words, the wavelength
must be much greater than the Debye shielding length: λ � d. If this constraint does
not hold, i.e., if kd ∼ 1, then vph ∼ ve, and the assumption of cold plasma breaks
down. In this case, the dispersion relation of the plasma can be obtained only by
solving the kinetic equation. As shown, e.g., in [21, Chapter 13], the Langmuir waves
become dispersive for slower phase speeds: ω2 = ω2

pe + 3k2v2
e . Going even further

down in the phase speed, i.e., allowing for vph � ve, would necessitate taking the
ions’ motion into account; this leads to the ion sound that has been briefly discussed
in section 2.5.

Having provided this very concise account of longitudinal oscillations, we will next
turn to the primary subject of our discussion, the transverse high-frequency waves.

3.4. Transverse waves. To study the evolution of the transverse component
E⊥ of the electric field, we first notice that divE⊥ = 0 implies curlcurlE⊥ = −ΔE⊥,
and, consequently, (3.7) transforms into the well-known Klein–Gordon equation

(3.10)
∂2E⊥
∂t2

− c2ΔE⊥ + ω2
peE⊥ = 0 .

The dispersion relation for the Klein–Gordon equation (3.10) is easy to obtain. It
reads

(3.11) ω2 = ω2
pe + c2k2,

which, in particular, means that similarly to the previous longitudinal case (see
section 3.3), only high-frequency transverse waves can propagate in the plasma gov-
erned by (3.10). The range of allowable frequencies that corresponds to (3.11) is
defined as ω > ωpe.

From relation (3.11), one can easily obtain the phase speed and the group speeds
of the waves:

vph = c
(
1 + ω2

pe/c
2k2

) 1
2 > c,(3.12)

vgr = c
(
1 + ω2

pe/c
2k2

)− 1
2 < c.(3.13)

Unlike in the longitudinal case of section 3.3, the propagation of transverse waves
preserves the local electric neutrality of the plasma, because divE⊥ = 0. Moreover, it
is possible to show (see [21, Chapter 13]), that even if one employs kinetic consider-
ations for the analysis of transverse waves with a slow phase speed, ω/k � ve, there
will, in fact, be no such waves. In other words, there are no thermal transverse modes
analogous to the thermal longitudinal modes.

The dispersion properties of high-frequency transverse waves are of particular
interest. Let us first assume that

ωpe

ck = ve

ckd � 1, which implies that kd � ve

c ≈ 10−3,
or in other words, that the waves are short: λ � 103d, with the wavelength much
shorter than a thousand times the Debye shielding length. These waves exhibit
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a weakly dispersive behavior, as substitution of
ωpe

ck � 1 into (3.12) and (3.13)
immediately yields

vph ≈ c

(
1 +

ω2
pe

2c2k2

)
,(3.14)

vgr ≈ c

(
1 −

ω2
pe

2c2k2

)
.(3.15)

We indeed see that both the phase speed vph of (3.14) and the group speed vgr of
(3.15) are close to the speed of light c, with the former being slightly faster than c and
the latter being slightly slower than c. The frequency in this case, according to (3.11),
is approximately equal to the speed of light times the wavenumber (ω ≈ ck � ωpe),
and is also much higher than the Langmuir frequency. Note that the ultimate case
of vph = vgr = c, ω = ck, would correspond to the propagation of waves with no
dispersion in the framework of a pure d’Alembert equation rather than the Klein–
Gordon equation.

In contradistinction to the short waves, the long transverse waves governed by
(3.10) are similar to the longitudinal waves. Indeed, let

ωpe

ck � 1; it means that λ �
103d and also that ω � ωpe, i.e., that the waves propagate with the frequencies close to
the lowest possible frequency ωpe. In this case, vph ≈ ωpe/k, and vgr = c· ck

ωpe
� c; i.e.,

the expression for the phase velocity is basically the same as that in the longitudinal
case (see section 3.3), while the group velocity is small (in the pure longitudinal case
it is equal to zero). This behavior is not surprising because the longer the wave, the
less of a spatial variation per unit length it undergoes, and, consequently, the more
the corresponding oscillations should resemble the oscillations of the entire plasma
volume as a whole, which are characteristic of the longitudinal case.

In general, we should mention that the foregoing dispersion properties, while not
completely unparalled, are, perhaps, still less typical than the inverse situation, when
the long waves, rather than the short waves, exhibit a weakly dispersive behavior;
see [15]. Our primary goal, however, is to see what can be said about the lacunae and
the Huygens’ principle for the waves governed by (3.10). From the previous considera-
tions we conclude that it is for the short waves, which are only weakly dispersive, that
one can possibly observe some sort of “lacunae” in the solutions of (3.10). Indeed,
in this case the propagation speeds (3.12) and (3.13) (see also (3.14) and (3.15)) are
close to the nondispersive propagation velocity c, and therefore one may expect to
see relatively few aftereffects behind what would have been the sharp aft fronts in
the genuine Huygens’ case. To provide a somewhat more accurate yet still qualitative
argument, let us consider the waves propagating from an instantaneous point source
located at the origin. Given the distance to the source r and the moment of time t,
one can easily see that only those waves that have the group velocity vgr = r/t can
reach the location r precisely at the moment t. Using expression (3.13) for the group
velocity, we obtain a formula for k as it depends on r and t:

(3.16) k =
ωpe

c

(
c2t2

r2
− 1

)− 1
2

.

We see that the wavenumbers are defined only inside the light cone r ≤ ct. Formula
(3.16) also indicates that for a given moment of time t, the larger the r, the larger the k.
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In other words, the closer the value of r to ct, the shorter the wave that reaches this
location at time t, and ultimately, for the purely nondispersive propagation r = ct
the wavelength λ = 2π/k defined by (3.16) becomes equal to zero.

Let us now fix some large wavenumber k1 � ωpe

c and consider a wave packet
propagating from the origin with the range of wavenumbers k ≥ k1. By noticing that
the group velocity vgr of (3.13) is a monotone increasing function of k, we conclude
that the range of group velocities for this packet will be

c
(
1 + ω2

pe/c
2k2

1

)− 1
2 ≤ vgr < c.

Therefore, at every given moment of time t we can easily estimate how wide this
packet is going to be. The width of the packet can be thought of as the spatial extent
of the “tail” behind the aft front r = ct:

(3.17) δtail = (c− min
k

vgr)t = c

⎡
⎣1 −

(
1 +

ω2
pe

c2k2
1

)− 1
2

⎤
⎦ t ≈ ct ·

ω2
pe

2c2k2
1

.

We see that the tail expands linearly with time and shrinks quadratically as the
minimum borderline wavenumber k1 for the packet increases. We also note that the
short waves, as they are defined above, k � ωpe

c , propagate with high frequencies
ω ≈ ck � ωpe. Therefore, we can equivalently reformulate our general expectation
in terms of the frequency rather than the wavelength. Namely, we hope that lacunae
could be approximately observed in the solutions of (3.10) for high frequencies ω �
ωpe, whereas the overall range of frequencies allowed by the dispersion relation (3.11)
is ω > ωpe. Using the dispersion relation (3.11), we can also recast estimate (3.17)
for the width of the aftereffects region (the tail) as

(3.18) δtail ≈ ct ·
ω2

pe

2ω2
1

,

where ω2
1 = ω2

pe + c2k2
1 is the minimum borderline frequency for the packet we are

considering: ω ≥ ω1 � ωpe. We also note that the ratio of the Langmuir frequency
over the driving frequency of the waves that appears in formula (3.18) is going to play
a key role in our subsequent analysis.

Let us emphasize, however, that the entire discussion based on the dispersion
relation (3.11) is basically conducted in the frequency domain. On the other hand,
we have seen in section 1.1 that the frequency domain is inadequate for the analysis
of lacunae and the Huygens’ principle. A time-domain analysis is needed in order to
see how the Huygens’ principle can be interpreted for the weakly dispersive transverse
waves governed by (3.10).

Consider a three-dimensional Cauchy problem for the inhomogeneous Klein–
Gordon equation (cf. (1.1)):

(3.19)

∂2ϕ

∂t2
− c2Δϕ + ω2

peϕ = f(x , t), ϕ(x , 0) = ϕt(x , 0) = 0,

R
3 � x = (x1, x2, x3).

Compared to the vector equation (3.10), the differential equation in (3.19) is scalar
and may govern, e.g., one Cartesian component of the total field. The right-hand side
f(x , t) may be due to the extraneous current.
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The Klein–Gordon equation is obviously not equivalent to the d’Alembert equa-
tion, and therefore, according to the Matthisson criterion [20], its solutions must be
diffusive and may have no lacunae in the classical sense of the word. The discrepancy
between the two equations is accounted for by the term ω2

peϕ in (3.10). This term is
responsible for the onset of dispersion that ruins the lacunae. We still hope, though,
that the behavior of solutions to (3.10) will be close to Huygens’ when the dispersion
is weak. Therefore, while it is clear that the term ω2

peϕ in the Klein–Gordon equation
may not be completely disregarded, we would nonetheless like to see when it can be
legitimately classified as “small.” Note that it is not as straightforward as simply call-
ing the coefficient ω2

pe small, because this coefficient is is not dimensionless. As such,
we would rather need to identify special classes of solutions ϕ = ϕ(x, t), for which the
entire term ω2

peϕ can be deemed small. The previous frequency-domain considerations
suggest that this may be the case when a high driving frequency ω � ωpe is brought
into the time-domain analysis.

The fundamental solution for the Klein–Gordon operator can be obtained in the
closed form (see [4]):

(3.20) E(x , t) =
Θ(t)

2πc
δ
(
β2

)
︸ ︷︷ ︸

E1(x ,t)

−
ω2

pe

4πc3
Θ(t)Θ

(
β2

) J1(y)

y︸ ︷︷ ︸
E2(x ,t)

,

where β2 = c2t2 − |x |2, y =
ωpe

c β, J1( · ) is the Bessel function, and Θ( · ) denotes the
Heaviside function, as before. The first term E1(x , t) on the right-hand side of formula
(3.20) is the same as the fundamental solution of the d’Alembert operator; see (1.2).
The second term E2(x , t) can be interpreted as a correction due to the presence of
ω2

peϕ in (3.19). Accordingly, solution ϕ = ϕ(x , t) of the Cauchy problem (3.19) is
given by the convolution

(3.21) ϕ = E ∗ f = E1 ∗ f − E2 ∗ f = ϕ1 − ϕ2,

where the first term ϕ1 = E1∗f on the right-hand side of (3.21) is the Kirchhoff integral
(cf. formula (1.3)), while the second term ϕ2 = E2∗f is basically what “contaminates”
the lacuna. We are going to study the properties of exactly this contaminating term
for a particular choice of f .

Namely, we will consider the following point excitation for problem (3.19):

(3.22) f(x , t) =

{
M · δ(x ) · sin(ωt) ≡ δ(x )f̃(t), 0 ≤ t ≤ T,

0, t < 0 and t > T,

where M > 0 and T > 0 are two parameters and ω denotes the driving frequency.
We will assume that the source (3.22) undergoes sufficiently many oscillations with
frequency ω during the interval 0 ≤ t ≤ T . At the same time, this interval still remains
finite, which allows us to preserve the time-dependent nature of the problem rather
than have it transformed into the frequency domain. Choosing the right-hand side
f(x , t) of (3.19) in the form (3.22) enables us to perform a sufficiently straightforward
analysis on one hand, and, on the other hand, it still allows us to illustrate the key
phenomena of interest.



WEAK LACUNAE IN PLASMA 1567

According to the definition of the fundamental solution (see (3.20)), we have

(3.23)

ϕ2 =
ω2

pe

4πc3

∫ t

0

∫∫∫
|x−ξ|≤c|t−τ |

f(ξ, τ)J1

(
ωpe

√
(t− τ)2 − |x − ξ|2/c2

)
ωpe

√
(t− τ)2 − |x − ξ|2/c2

dξdτ

=
ω2

pe

4πc3

∫ T1

0

f̃(τ)J1

(
ωpe

√
(t− τ)2 − |x |2/c2

)
ωpe

√
(t− τ)2 − |x |2/c2

dτ =
ω2

pe

4πc3

∫ T1

0

f̃(τ)J1(y)

y
dτ,

where T1 = min{(t − |x |/c), T}, y = y(τ, t,x ) = ωpe

√
(t− τ)2 − |x |2/c2, and f̃(τ)

denotes the temporal dependence of the source term (3.22): f̃(τ) = M sin(ωτ). We
will analyze the cases of small and large arguments y of the Bessel function J1 in

formula (3.24). Let us first note that if y is small, or more precisely, if 0 ≤ y ≤ μ
(2)
1 ,

where μ
(2)
1 is the first positive root of the Bessel function J2(y), then the function

G(y)
def
=

J1(y)

y

is a monotone decreasing function of the argument y. Indeed, we have

G′(y) =
d

dy

[
J1(y)

y

]
= −J2(y)

y
≤ 0 if y ∈ [0, μ

(2)
1 ].

The inequality 0 ≤ y ≤ μ
(2)
1 implies a constraint on the maximum value of t. In the

worst-case scenario—τ = 0 and |x | = 0—this constraint reads

(3.24) t ≤ μ
(2)
1 /ωpe ≡ T0,

and from here on we will require that the most conservative sufficient condition (3.24)
hold in order to guarantee that the value of y be sufficiently small.

We also notice that the function y = y(τ, · ) is a monotone decreasing function
of its argument τ on the interval 0 ≤ τ ≤ T1. Consequently, the composite function
G̃(τ) = G(y(τ, · )) is a monotone increasing function of τ . We can then apply the
Bonnet theorem (second mean value theorem) (see [35]), to the last integral from
(3.24) and obtain

(3.25) ϕ2 =
ω2

pe

4πc3

[
G̃(0)

∫ η

0

f̃(τ)dτ + G̃(T1)

∫ T1

η

f̃(τ)dτ

]
,

where η is some point of the interval [0, T1].
We note that the contaminating part ϕ2 of the solution will eventually need to

be compared against its regular part ϕ1, which, according to (1.3), is given by

(3.26) ϕ1(x , t) =
1

4πc2
f̃(t− |x |/c)

|x | ,

where, again, f̃(t) = M sin(ωt) for t ∈ [0, T ]; see (3.22). The function ϕ1 of (3.26)
represents a genuine d’Alembert wave packet due to the source (3.22); it may differ
from zero only on the region c(t − T ) ≤ |x | ≤ ct. For |x | > ct we have ϕ1(x , t) = 0
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because the propagation speed is finite, and for |x | < c(t − T ) we have ϕ1(x , t) = 0
because this is a lacuna of the wave equation.

Similarly, for |x | > ct we also have ϕ2(x , t) = 0. However, otherwise ϕ2(x , t) = 0
either in the wave packet area c(t−T ) ≤ |x | ≤ ct or in the lacuna area |x | < c(t−T ).
The wave packet area corresponds to T1 = (t − |x |/c) ≤ T ; then y(T1, · ) = 0,
and, consequently, G̃(T1) = G(0) = 1/2 in formula (3.25). In contradistinction to
that, the area that would have been a lacuna in the nondispersive case corresponds
to T1 = T < t − |x |/c, which means y(T1, · ) = y(T, · ) > 0 and G̃(T1) < 1/2.
Altogether, the constants in formula (3.25) can be estimated as follows (recall that

μ
(2)
1 ≈ 5.13562230):

(3.27) −6.61397437 · 10−2 = G(μ
(2)
1 ) ≤ G̃(0) < G̃(T1) ≤ G(0) =

1

2
.

By evaluating the integrals in (3.25), we obtain

(3.28)
ϕ2 =

ωpeM

4πc3
ωpe

ω

[
G̃(0) (1 − cos(ωη)) + G̃(T1) (cos(ωη) − cos(ωT1))

]
=

ωpeM

4πc3
ωpe

ω

[
G̃(0) + (G̃(T1) − G̃(0)) cos(ωη) − G̃(T1) cos(ωT1)

]
,

and according to estimates (3.27), the absolute value of the quantity in rectangular

brackets in formula (3.28) may never exceed 3/2 −G(μ
(2)
1 ).

Let us now compare the dispersionless solution ϕ1 of (3.26) with the dispersion-
induced correction ϕ2 of (3.28). Note that ϕ1 is defined only inside the wave packet
area, c(t − T ) ≤ |x | ≤ ct, including the aft front |x | = c(t − T ). We can then recast
formula (3.26) as

(3.29) ϕ1(x , t) =
M

4πc3
sin(ωT1)

t− T1

and thus obtain

(3.30)

sup
|x |≤ct

|ϕ2(x , t)|

sup
c(t−T )≤|x |≤ct

|ϕ1(x , t)|
=

(
3
2 −G(μ

(2)
1 )

)
ωpe(t− T1)

ωpe

ω
.

In formula (3.29), we can always consider ωpe(t − T1) < μ
(2)
1 because of inequality

(3.24). As such,

(3.31)
sup |ϕ2|
sup |ϕ1|

= O
(ωpe

ω

)
.

Estimate (3.31) is important as it quantifies the previously outlined “tentative” con-
sideration that the higher the driving frequency, the more of a lacuna one might be
able to observe in the corresponding solution. It is because of this particular estimate
(see (3.31)) that we can call the region |x | < c(t − T ) for t ≤ T0 a weak lacuna and
also refer to the quantity on the left-hand side of (3.31) as its “depth.” Indeed, the
region |x | < c(t− T ) corresponds to the genuine lacuna of the d’Alembert equation.
In the dispersive case, there is still a residual field inside this region, but its magnitude
relative to the magnitude of the field in the packet (the depth of a weak lacuna) is
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small and, quantitatively, is proportional to the ratio of the Langmuir frequency over
the driving frequency of the waves.

Next, we will consider the opposite case—that of the large argument y of the
Bessel function J1 in formula (3.24). Our goal will be to justify a relation similar to
(3.31) for long propagation times.

Let y � 1. Then, we will use the asymptotic form of the Bessel function J1(y),

(3.32) J1(y) =

√
2

πy
cos

(
y − 3π

4

)
+ O

(
y−

3
2

)
,

which means that by disregarding the higher order terms O(y−
5
2 ) in the integral (3.24)

we can recast it as

(3.33) ϕ2 ≈
ω2

pe

4πc3

√
2

π

∫ T1

0

f̃(τ)y−
3
2 cos

(
y − 3π

4

)
dτ.

We would like to estimate the magnitude of ϕ2(x , t) of (3.33) for |x | < c(t− T ), i.e.,
inside the region that would have been a lacuna in the nondispersive case. This means
that the upper integration limit in formula (3.33) can be taken as T1 = T .

Let us first analyze the expression for y = y(τ, t,x ) = ωpe

√
(t− τ)2 − |x |2/c2 that

enters into formulae (3.32) and (3.33) and see under what conditions it can indeed be
regarded as large. Obviously, as τ ∈ [0, T ], then minτ y(τ, t,x ) = y(T, t,x ), and it
will be sufficient to see when y(T, t,x ) is large. To begin with, we notice that for a
given moment of time t, the quantity y(T, t,x ) cannot be large all across the lacuna,
because on the aft front |x | = c(t − T ) we have y(T, t, c(t − T )) = 0. Consequently,
to be able to legitimately use the asymptotics (3.32) we will need to step inside the
lacuna.

Then we introduce the distance δ between a given point inside the lacuna and
the aft front at the moment of time, t. For |x | = c(t − T ) − δ we have y =
ωpe

c

√
2c(t− T )δ − δ2. We can therefore conclude that if we consider δ as a function

of time, δ = δ(t), and require that

lim
t→∞

[2c(t− T ) · δ(t) − δ2(t)] = ∞,

then the quantity y = y(T, t,x ) will increase with no bound when t −→ ∞ and
|x | ≤ c(t− T )− δ(t). Clearly, in so doing the “gap width” δ itself may even decrease
as t increases, but only more slowly than (t − T )−1. On the other hand, δ may also
be a constant or an increasing function of the argument t; in the latter case it may
not increase faster than linearly because the lacuna itself expands only linearly with
respect to time.

To summarize, we can claim that

lim
t→∞

y(T, t,x ) = ∞

uniformly for all x such that |x | ≤ c(t− T ) − δ(t), provided that

(3.34)
const

(t− T )ζ(t)
≤ δ(t) ≤ (c− c1)(t− T ),

where c1 < c and ζ(t) is an auxiliary function such that ζ(t) = o(1) as t −→ ∞.
Clearly, the most conservative strategy for choosing the gap width, δ = (c−c1)(t−T ),
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where c1 < c, will guarantee the fastest growth of y in a narrower cone |x | < c1(t−T ):

(3.35)
∀x : |x | ≤ c1(t− T ), c1 < c & ∀τ ∈ [0, T ] :

y(τ, t,x ) ≥ y(T, t,x ) ≥ ωpe

√
1 − c21/c

2(t− T ).

Estimate (3.35) will allow us to use the asymptotic formulae (3.32) and (3.33) for
sufficiently large times t.

Next, we notice that y−
3
2 is a monotone decreasing function of y for y > 0, and

as y = y(τ, t,x ) is, in turn, a monotone decreasing function of τ for τ ∈ [0, T ], it

follows that y−
3
2 is a monotone increasing function of τ . Consequently, we can apply

the Bonnet theorem again, this time to the integral (3.33), and obtain (recall that
T1 = T for the interior of the lacuna)

(3.36)

ϕ2 ≈
ω2

pe

4πc3

√
2

π

[
(y(0, t,x ))−

3
2

∫ η

0

f̃(τ) cos

(
y(τ, t,x ) − 3π

4

)
dτ

+ (y(T, t,x ))−
3
2

∫ T

η

f̃(τ) cos

(
y(τ, t,x ) − 3π

4

)
dτ

]
,

where η ∈ [0, T ]. Let us now substitute f̃(τ) = M sin(ωτ) into (3.36):

ϕ2≈
Mω2

pe

8πc3

√
2

π

[
(y(0, t,x ))−

3
2

∫ η

0

{
sin

(
ωτ + y(τ, t,x ) − 3π

4

)

− sin

(
ωτ − y(τ, t,x ) +

3π

4

)}
dτ

+(y(T, t,x ))−
3
2

∫ T

η

{
sin

(
ωτ + y(τ, t,x ) − 3π

4

)

− sin

(
ωτ − y(τ, t,x ) +

3π

4

)}
dτ

]
.

The argument
(
ωτ ± y(τ, t,x ) ∓ 3π

4

)
of the sine functions above can be approximated

as follows. Denote ν = T − τ , 0 ≤ ν ≤ T , and recast y in the form

(3.37) y(τ, t,x ) = ωpe

√
(t− T )2 − |x |2/c2

√
1 +

2(t− T )ν + ν2

(t− T )2 − |x |2/c2 .

Notice that if

2(t− T )ν

(t− T )2 − |x |2
c2

=
2ν

(t− T )
(
1 − |x |2

(t−T )2c2

) � 1,

then also

ν2

(t− T )2 − |x |2
c2

=
ν2

(t− T )2
(
1 − |x |2

(t−T )2c2

)

=

⎡
⎣ ν

(t− T )
(
1 − |x |2

(t−T )2c2

)
⎤
⎦2 (

1 − |x |2
(t− T )2c2

)
� 1.
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Consequently, if the linear term with respect to ν under the second square root in
formula (3.37) is indeed small, then the quadratic term can be disregarded, which
yields

y(τ, t,x ) ≈ y(T, t,x ) +
ω2

pe(t− T )ν

y(T, t,x )
= y(T, t,x ) +

ω2
pe(t− T )T

y(T, t,x )︸ ︷︷ ︸
does not depend on τ

−
ω2

pe(t− T )τ

y(T, t,x )
.

Therefore, we can write

ϕ2≈
Mω2

pe

8πc3

√
2

π

[
(y(0, t,x ))−

3
2

∫ η

0

{
sin ((ω + γωpe)τ − α)

− sin ((ω + γωpe)τ − α)
}
dτ

+ (y(T, t,x ))−
3
2

∫ T

η

{
sin ((ω − γωpe)τ + α)

− sin ((ω + γωpe)τ − α)
}
dτ

]
,

where γ =
ωpe(t−T )
y(T,t,x) and α = y(T, t,x ) +

ω2
pe(t−T )T

y(T,t,x) − 3π
4 . The integrals can now be

explicitly evaluated:

ϕ2≈
Mω2

pe

8πc3

√
2

π

[
(y(0, t,x ))−

3
2

{
cosα− cos((ω − γωpe)η + α)

ω − γωpe

− cosα− cos((ω + γωpe)η − α)

ω + γωpe

}

+ (y(T, t,x ))−
3
2

{
cos((ω − γωpe)η + α) − cos((ω − γωpe)T + α)

ω − γωpe

−cos((ω + γωpe)η − α) − cos((ω + γωpe)T − α)

ω + γωpe

}]
,

and using (3.35) we obtain

|ϕ2(x , t)| ≤
Mω2

pe

4πc3

√
2

π

[
(y(0, t,x ))−

3
2 + (y(T, t,x ))−

3
2

]

·
{

1

ω − γωpe
+

1

ω + γωpe

}

≤
Mω2

pe

πc3

√
2

π
ω
− 3

2
pe (t− T )−

3
2 (1 − c21/c

2)−
3
4

ω

ω2 − γ2ω2
pe

.

We also note that, according to (3.35), the quantity γ is bounded: γ =
ωpe(t−T )
y(T,t,x) ≤

1√
1−c21/c

2
. Then, assuming that ω � ωpe, we drop the quadratic term O(

γ2ω2
pe

ω2 )

and get

(3.38) |ϕ2(x , t)| ≤
M

πc3

√
2

π
ω
− 1

2
pe (t− T )−

3
2 (1 − c21/c

2)−
3
4
ωpe

ω
.
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Estimate (3.38) for the correction ϕ2 is valid inside the lacuna of the wave equation
in a narrower cone |x | < c(t − T ) − δ(t) = c1(t − T ). As before, the magnitude of
the correction ϕ2 now needs to be compared against the magnitude of the solution ϕ1

inside the wave packet. For the purpose of comparison, we will consider ϕ1 given by
(3.26) on the boundary of the lacuna, i.e., exactly at the aft front |x | = c(t− T ):

ϕ1(x , t) =
M

4πc3
sin(ωT )

t− T
.

Using estimate (3.38), we can therefore write (cf. formula (3.31))

(3.39)
sup |ϕ2|
sup |ϕ1|

= O
(
ω
− 1

2
pe (t− T )−

1
2
ωpe

ω

)
.

From estimate (3.39) we see not only that for long propagation times the depth of a
weak lacuna is controlled by the ratio

ωpe

ω (similar to the case of short times) but that
it also decays with the rate proportional to the inverse square root of time. We need
to remember, however, that whereas in the previous estimate (3.31) we could use the
maximum of the residual field ϕ2 all across the lacuna |x | < c(t − T ), in estimate
(3.39) it can be taken only across a narrower cone |x | < c(t− T ) − δ(t) = c1(t− T );
see formula (3.35).

Let us additionally note that if we were to allow regions wider than the cone
|x | < c1(t−T ) when analyzing the rate of growth of y, i.e., if we were to take the gap
width δ(t) increasing more slowly than (c − c1)(t − T ) (see formula (3.34)), then we
would still obtain the key quantification of the depth of the weak lacuna by means

of
ωpe

ω , but we could lose the additional decay ∼ ω
− 1

2
pe (t− T )−

1
2 for long propagation

times. For example, let δ(t) = A(t− T )
1
3 , where A is an appropriate constant needed

to take into account that t is time and δ is distance. Then, for large times t we would
obviously have δ2(t) � 2c(t − T )δ(t) and, consequently, y =

ωpe

c

√
2c(t− T )δ − δ2 ≈

ωpe

c

√
2cA(t− T )

2
3 . In other words, instead of (3.35) we obtain

(3.40)
∀x : |x | ≤ c(t− T ) −A(t− T )

1
3 & ∀τ ∈ [0, T ] :

y(τ, t,x ) ≥ y(T, t,x ) � ωpe

c

√
2cA(t− T )

2
3 .

Accordingly, estimate (3.38) gets replaced by

(3.41) |ϕ2(x , t)| ≤
M

2πc3

√
2

π
ω
− 1

2
pe (t− T )−1

(
2A

c

)− 3
4 ωpe

ω
,

and instead of (3.39) we obtain a simpler relation (cf. formula (3.31)):

(3.42)
sup |ϕ2|
sup |ϕ1|

= O
(ωpe

ω

)
.

Clearly, estimate (3.39) guarantees a deeper lacuna for large times t than estimate

(3.42) does. However, estimate (3.42) is valid on the region |x | < c(t−T )−A(t−T )
1
3 ,

which is wider than the cone |x | < c1(t− T ), c1 < c, on which estimate (3.39) holds.
We should reemphasize, however, that both estimates (3.31) and (3.39) (as well as

(3.42)) are only asymptotic results, for the small and large values, respectively, of the
argument y of the Bessel function J1 in formula (3.24). To corroborate and further
expand the scope of these results, we will evaluate the convolution (3.24) numerically.
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Table 3.1

The depth of the weak lacuna for different moments of time.

ωpe

ω
1
10

1
20

1
40

1
80

t = 0.8 1.16 · 10−3 4.57 · 10−4 1.95 · 10−4 1.01 · 10−4

t = 4 7.64 · 10−2 3.96 · 10−2 2.0 · 10−2 1.04 · 10−2

t = 10 3.87 · 10−1 1.98 · 10−1 1.04 · 10−1 5.43 · 10−2

t = 20 1.04 · 100 4.88 · 10−1 2.47 · 10−1 1.35 · 10−1

This is done using the Simpson rule on a very fine grid of the argument τ in order to
guarantee that the level of the truncation error is far below the magnitude of either ϕ1

or ϕ2. To provide a most transparent interpretation of the numerical results, we also

adopt a slightly different notion of the depth of a weak lacuna, namely, max |ϕlacuna|
max |ϕpacket| ,

where ϕlacuna = ϕ2 and ϕpacket = ϕ1+ϕ2. This new definition immediately provides a
quantitative measure of how big the residual field inside the lacuna is compared to the
total field inside the wave packet. For computations, we select ωpe = 1, T = 2π/10,
and in Table 3.1 present the depth of the weak lacuna for different values of ωpe/ω
and different moments of time t.

From Table 3.1, one can clearly see that for all moments of time—small, interme-
diate (not covered by the asymptotics), and large—the depth of the weak lacuna is
indeed proportional to the quantity ωpe/ω. However, the maximum of the contami-
nating field ϕ2 is taken in Table 3.1 across the entire lacuna |x | < c(t−T ). Therefore,
as expected, we do not observe any decay of the depth as the time increases; we rather
observe the increase. In fact, this increase is due to the “tail” of the residual field
that decays toward the center of the lacuna, as shown in Figure 3.1.

On the other hand, if we were to take a region narrower than the cone |x | < c(t−T )
to evaluate the depth of the weak lacuna, then we would be able to actually see its
decrease in time, as prescribed previously by the asymptotic estimates. In Table 3.2,
we present the same quantity as in Table 3.1, except that max |ϕlacuna| = max |ϕ2|
is evaluated on a narrower cone |x | < c1(t − T ), where c1 = 0.75c; see formula
(3.35). The time range in Table 3.2 covers only intermediate to large intervals. From
Table 3.2, one can clearly see not only that the depth of the weak lacuna is inversely
proportional to ωpe/ω for every particular moment of time, but that it also decays
roughly as the inverse square root of time for every particular value of ωpe/ω; see
formula (3.39).

An intermediate conclusion that we can draw, based on the combined use of
asymptotic arguments and numerical quadratures, is that for high-frequency trans-
verse electromagnetic waves that propagate in a dilute isotropic plasma (with par-
ticular pointwise excitation) one can still observe lacunae in the solutions but only
in an approximate sense. The depth of these approximate, or weak, lacunae is
proportional to the ratio of the Langmuir frequency of the plasma over the primary
carrier frequency of the waves.

3.5. Numerical tests. In this section, we report on some results enabled by
exploiting the weak lacunae in the computational context. As of yet, these results do
not amount to a systematic numerical study. They rather provide a proof-of-concept
illustration, whereas a broader and more coherent account of numerical simulations
will be reported later.
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Fig. 3.1. Solution of the Klein–Gordon equation inside the lacuna and inside the wave packet.

Table 3.2

The depth of a weak lacuna for c1 = 0.75c and different moments of time.

ωpe

ω
1
10

1
20

1
40

1
80

t = 4 4.80 · 10−2 2.48 · 10−2 1.26 · 10−2 6.52 · 10−3

t = 10 3.64 · 10−2 1.81 · 10−2 9.47 · 10−3 4.93 · 10−3

t = 20 3.14 · 10−2 1.33 · 10−2 6.56 · 10−3 3.56 · 10−3

We apply the lacunae-based algorithm of [24] to the Klein–Gordon equation
(3.19). The algorithm of [24] was originally developed for the d’Alembert equation.
It yields nonlocal ABCs that enable the computation of an unsteady wave field on a
given finite region of interest. The rest of the space beyond this finite computational
region is truncated, and the ABCs provide the required closure at the external arti-
ficial boundary so that the outgoing waves can propagate without any nonphysical
reflections. Our objective hereafter is to demonstrate that the weak lacunae of sec-
tion 3.4 can sometimes substitute for the actual lacunae in the numerical framework.

Lacunae-based ABCs for the genuine diffusionless case are constructed in two
stages. Below we provide only a very brief description of the method and refer the
reader to [24, 25] for details. A key initial assumption is that the overall infinite-
domain problem has a unique solution and that (at least) outside of the aforementioned
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finite region of interest this solution is governed by a linear homogeneous equation,
such as the d’Alembert equation. At the first stage, the original problem is decom-
posed into two subproblems that depend on one another. The interior subproblem is
formulated on the bounded computational domain. It inherits all the structure and
properties of the original problem on this domain. As the computational domain is
obtained by truncation, the interior subproblem obviously requires a closure, i.e., the
ABCs, at the outer boundary. The ABCs are to be provided by the solution of the
exterior subproblem. The latter, in turn, is formulated on the entire space and is
driven by the special auxiliary sources that depend on the solution of the interior
problem. The governing equation for the the exterior subproblem on the entire space
is the same linear homogeneous equation that governs the solution of the original
problem outside the region of interest.

At the second stage, the two problems are integrated concurrently. In doing so,
the algorithm for integrating the exterior problem is built around the presence of
lacunae. The continuously operating auxiliary sources are partitioned in time into
finite fragments. The solution due to each fragment has a lacuna, and the entire
domain of interest falls inside this lacuna after a predetermined interval of time.
Once this happens, the computation for this particular fragment does not need to be
continued any further. Moreover, no wave can travel more than a certain fixed distance
away from the source during this interval of time, which implies that the computations
can always be conducted on a bounded auxiliary domain of a fixed nonincreasing size.
This is the mechanism of transition from an infinite-domain formulation to a finite-
domain one. Altogether, one can show that at any given moment of time only a finite
fixed number of fragments contribute to the solution of the exterior problem, and
each contribution needs to be computed only over a fixed time interval. This yields
the exact unsteady ABCs with only fixed and limited extent of nonlocality in time.
The performance of these ABCs does not deteriorate when integrating over long time
intervals [24].

Replacing genuine lacunae by weak lacunae in the framework of the ABC al-
gorithm basically means that the interior problem is still integrated in its entirety,
whereas the dispersive effects for the exterior problem, i.e., for the boundary condi-
tions, are artificially “cut short.” Indeed, for each element of the source partition
the solution to the exterior problem is computed only until the region of interest falls
inside the lacuna. The effect of the corresponding mismatch on the overall numerical
performance will be throughly studied in the future. In the meantime, we simply
provide some computational examples.

We are solving a model problem of radiation of waves by a known source. The
exact solution for this problem is available; it is obtained by reverse engineering, i.e.,
by picking a function, substituting it under the differential operator, and deriving the
right-hand side. For actual computations, we choose the Yee scheme [36], which is a
well-known staggered central-difference scheme that has second order accuracy. We
also set ωpe/ω = 1/100 and select other parameters (grids, geometry, etc.) as in [24].
Namely, the computations are conducted on a uniform grid in the cylindrical coordi-
nates. The methodology does not require that the grid be fitted to the shape of the
domain of interest, and we choose the latter spherical. Note that the parameter c1 (see
formulae (3.34) and (3.35)), is not specified explicitly as input for the computational
procedure, but other parameters are specified so as to effectively make it c1/c ≈ 0.9.

In Figure 3.2, we present the results of the grid convergence study (binary logarithm
of the maximum norm of the error as a function of time) for two different values of
the diameter of the sphere. The grid dimensions shown in Figure 3.2 pertain to the



1576 S. V. TSYNKOV

0 5 10 15 20 25 30
Time

-9

-8

-7

-6

-5

-4

L
og

2 
of

 e
rr

or

64x128 grid
128x256 grid
256x512 grid

(a) Diameter 1.2

0 10 20 30 40
Time

-9

-8

-7

-6

-5

-4

-3

L
og

2 
of

 e
rr

or

64x128 grid
128x256 grid
256x512 grid

(b) Diameter 1.8

Fig. 3.2. Numerical performance of the ABCs based on weak lacunae.

auxiliary domain of cylindrical coordinates that has radius π and length 2π. The
propagation speed is taken equal to one, and the computations are conducted over
the time interval equivalent to 20 times the time required for the waves to travel
across the sphere. At least for the particular setup selected, the plots in Figure 3.2
experimentally corroborate the design convergence rate of the scheme (second order)
equipped with the ABCs based on the weak lacunae.

3.6. Anisotropic case. As has been mentioned, the primary source of anisotropy
in the ionospheric plasma is the magnetic field of the Earth. It may play an impor-
tant role for the propagation of electromagnetic waves. In particular, it may affect
the structure and depth of the weak lacunae. In this section, we outline an approach
to analyzing the weak lacunae in the presence of a constant external magnetic field.

Let B0 = const be the magnetic field of the Earth. Then, the Lorentz term is to
be kept on the right-hand side of (3.2), and instead of (3.3) we obtain

(3.43) me
du

dt
= −eE − e

c
u ×B0.

We now need to find the first time derivative of the induced current that provides the
excitation for the electric field on the right-hand side of the governing equation (3.1).
Substituting jind = −eneu into (3.43), we obtain

(3.44) j ′ind =
ω2

pe

4π
E − Ωejind × B0

|B0|
.

Equation (3.44) is a first order ordinary differential equation with respect to the
unknown current jind, which is a function of time. It needs to be solved along with
(3.1). It is clear that in doing so the dependence of j ′ind on E will be given by a
convolution, which means that the responses of the anisotropic medium (3.43) will,
generally speaking, be nonlocal in time. Later in the section we will see, however,
that under certain assumptions the effect of anisotropy can still be regarded as small.

We begin with providing an elementary frequency-domain analysis. The use of
the variable P (polarization), where jind = ∂P

∂t , will be more convenient on some
occasions, because it has the same dimension as the field E . In the frequency domain,
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(3.44) can be transformed into

(3.45) ω2P(ω) + iωΩeP(ω) × B0

|B0|
= −

ω2
pe

4π
E(ω).

Assuming with no loss of generality that the magnetic field B0 is aligned with the
Cartesian coordinate z, we solve (3.45) with respect to P(ω) and obtain

(3.46)

P(ω) = −
ω2

pe

4πω2
E(ω)+

ω2
pe

4πω2

iωΩe

ω2 − Ω2
e

E(ω) × B0

|B0|

−
ω2

pe

4πω2

Ω2
e

ω2 − Ω2
e

⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦E(ω).

Note that the first term on the right-hand side of (3.46) is exactly the same as we
obtained in the isotropic case; see formula (3.5). The second and third terms on
the right-hand side of (3.46) are due to the presence of the magnetic field B0. These
terms, which are proportional to the first and second power of the cyclotron frequency
Ωe, respectively, are known to be responsible for the effects of gyrotropy and Faraday
rotation that accompany the propagation of electromagnetic waves in the anisotropic
plasma; see [18, 21].

The case of particular interest for us is that of the high-frequency propagation.
If ω � ωpe, then also ω � Ωe, because according to section 3.1, Ωe is about an order
of magnitude lower than ωpe for the typical range of parameters that characterize the
ionospheric plasma. Consequently, instead of (3.46) we can write

(3.47) P(ω) ≈ −
ω2
pe

4πω2
E(ω) +

ω2
pe

4πω2

iΩe

ω
E(ω) × B0

|B0|
.

Note that B0/|B0| on the right-hand side of (3.47) is a dimensionless unit vector
in the direction of the magnetic field B0. Then, by comparing the two terms on
the right-hand side of (3.47) and by recalling that the effect of the first term on
lacunae back in the time domain is O(

ωpe

ω ) (see estimates (3.31) and (3.39)), we can
qualitatively conjecture that the additional effect of anisotropy on lacunae is likely to

be O(
ωpe

ω ·
√

Ωe

ω ). It is expected to be much smaller than the O(
ωpe

ω ) attributed to
the “primary” dispersion, because the extra factor contained in the second term on
the right-hand side of (3.47) is Ωe/ω � 1.

To conduct the analysis in the time domain, we employ the Laplace transform
instead of the Fourier transform and, assuming homogeneous initial conditions for the
polarization, obtain (cf. formula (3.45))

(3.48) s2P(s) + sΩeP(s) × B0

|B0|
=

ω2
pe

4π
E(s).

The primary quantity of interest for us is s2P , because j ′ind = P ′′, and we find

s2P(s) =
ω2

pe

4π
E(s) +

ω2
pe

4π

⎡
⎢⎢⎣
− Ω2

e

s2+Ω2
e

− Ωes
s2+Ω2

e
0

Ωes
s2+Ω2

e
− Ω2

e

s2+Ω2
e

0

0 0 0

⎤
⎥⎥⎦E(s).
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Consequently,

(j′ind)x = P ′′
x =

ω2
pe

4π
Ex +

ω2
peΩe

4π
[− sin(Ωet) ∗ Ex(t) − cos(Ωet) ∗ Ey(t)] ,

(j′ind)y = P ′′
y =

ω2
pe

4π
Ey +

ω2
peΩe

4π
[cos(Ωet) ∗ Ex(t) − sin(Ωet) ∗ Ey(t)] ,

(j′ind)z = P ′′
z =

ω2
pe

4π
Ez.

From the previous expressions we see that electromagnetic responses of the aniso-
tropic plasma involve off-diagonal terms, i.e., relate different components of the field
and current vectors (as opposed to only respective components). Therefore, we will
employ diagonalization by means of the transformation T :

T =

⎡
⎣i −i 0

1 1 0
0 0 1

⎤
⎦ , T −1 =

⎡
⎢⎣−i/2 1/2 0

i/2 1/2 0

0 0 1

⎤
⎥⎦ .

Let E = T G and P = T Q . Then, (3.48) transforms into

(3.49) s2Q(s) =
ω2

pe

4π
G(s) +

ω2
pe

4π

Ωe

s2 + Ω2
e

⎡
⎣−Ωe + is 0 0

0 −Ωe − is 0
0 0 0

⎤
⎦G(s).

If we also define jind = T q , then sq(s) = s2Q(s), and from (3.49) we find

q′x(t) =
ω2

pe

4π
Gx(t) + i

ω2
peΩe

4π

[
eiΩet ∗Gx(t)

]
,

q′y(t) =
ω2

pe

4π
Gy(t) − i

ω2
peΩe

4π

[
e−iΩet ∗Gy(t)

]
,(3.50)

q′z(t) =
ω2

pe

4π
Gz(t).

To quantify the effect of anisotropy, we will need to analyze the convolutions on
the right-hand side of the first two equations (3.50):

e±iΩet ∗Gx, y(t) =

∫ t

0

e±iΩe(t−v)Gx, y(v)dv = e±iΩet

∫ t

0

e∓iΩevGx, y(v)dv.

Consider, for example, the component Gx and introduce the following ansatz: Gx(v) =
eiωtG̃x(v), where G̃x(v) is assumed to be a slowly varying function. Then, we integrate
by parts twice and obtain∫ t

0

e−iΩevGx(v)dv =
1

i(ω − Ωe)

[
Gx(t)e−iΩet −

∫ t

0

ei(ω−Ωe)vG̃′
x(v)dv

]

=
1

i(ω − Ωe)
Gx(t)e−iΩet +

G̃′
x(t)ei(ω−Ωe)t − G̃′

x(0)

(ω − Ωe)2

− 1

(ω − Ωe)2

∫ t

0

ei(ω−Ωe)vG̃′′
x(v)dv.
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Consequently,

∂qx
∂t

=
ω2

pe

4π
Gx(t) +

ω2
pe

4π

Ωe

ω − Ωe
Gx(t)

+ eiΩet
ω2

pe

4π

Ωe

ω − Ωe

G̃′
x(t)ei(ω−Ωe)t − G̃′

x(0)

ω − Ωe
(3.51)

− eiΩet
ω2

pe

4π

Ωe

ω − Ωe

1

ω − Ωe

∫ t

0

ei(ω−Ωe)vG̃′′
x(v)dv.

Slow variation of G̃x(v) means that it is slow on the scale of the high-frequency
oscillation ω, and in many cases this slowness is a natural assumption about the field.
Under this assumption, the third and fourth terms on the right-hand side of equality
(3.51) can be neglected. Indeed, the third term is small compared to the second one
because

max |G′
x|

ω − Ωe
� max |Gx|.

As for the fourth term on the right-hand side of (3.51), using the Riemann–Lebesgue
lemma we can write∫ t

0

ei(ω−Ωe)vG̃′′
x(v)dv = o (max |G′′

x|) as ω → ∞.

Therefore, for high carrier frequencies it is also small compared to the second term.
Consequently,

(3.52)
∂qx
∂t

≈
ω2

pe

4π

(
1 +

Ωe

ω − Ωe

)
Gx(t),

and a similar expression can be obtained for q′y. Hence, when the field is represented
as the product of a rapidly oscillating carrier times a slowly varying envelope, the
nonlocal responses due to the anisotropy can be approximated by local expressions of
the type (3.52).

Finally, let us revisit the governing equation for the field (3.1). We note that
when plasma becomes anisotropic, the notion of longitudinal and transverse waves
often changes its meaning, and in the literature one would typically consider the waves
that propagate along the magnetic field and those that propagate perpendicular to
the magnetic field; see, e.g., [8]. Of course, other propagation angles are also possible,
and, in general, the split into the longitudinal and transverse components is not
always straightforward. We will, however, still consider the transverse field E⊥ in the
previous sense of the word, i.e., the one that satisfies divE⊥ = 0. Let also E⊥ = T G;
then from (3.1) we obtain

∂T G

∂t
− c2Δ(T G) + 4π

∂T q

∂t
= 0 .

Since T is a constant matrix, and the vector Laplacian in the Cartesian coordinates
applies independently to individual components, we can use formulae (3.50), (3.52)
and write

∂G

∂t
− c2ΔG + ω2

pe

⎡
⎢⎣1 + Ωe

ω−Ωe
0 0

0 1 + Ωe

ω−Ωe
0

0 0 1

⎤
⎥⎦G = 0 .
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This is a vector equation, which is equivalent to three scalar Klein–Gordon equations.
For the first two components the dispersive term is ∼ ω2

pe(1 + Ωe

ω−Ωe
) as opposed to

simply ∼ ω2
pe, which was the case in section 3.4. We therefore conclude that the

additional effect of anisotropy on weak lacunae of electromagnetic waves in the dilute

ionospheric plasma can be approximately measured as O(
ωpe

ω

√
Ωe

ω−Ωe
).

4. Discussion. Classical lacunae can be observed in the solutions of the Maxwell
equations only when the electromagnetic waves propagate in vacuum or in dielectric
media with static response. Otherwise, the propagation is accompanied by aftereffects,
and there are no sharp aft fronts and no lacunae in the solutions. For low incident
frequencies, the mechanism that destroys the lacunae can largely be attributed to
dissipation due to the Ohm conductivity. For high incident frequencies, when the
material coefficients can no longer be considered constant, the diffusion of waves is
basically caused by the physical dispersion. However, for the propagation of transverse
electromagnetic waves in dilute plasma, when the incident frequency is much higher
than the Langmuir frequency, lacunae can still be identified in the corresponding
solutions of the Maxwell equations, although in an approximate sense. The depth of
these weak lacunae, i.e., the magnitude of the residual field relative to the magnitude
of the field in the primary wave packet, is proportional to the ratio of the Langmuir
frequency over the primary carrying frequency of the waves. In the anisotropic case,
when the plasma is immersed into the external magnetic field, there is an additional
small factor, approximately equal to the square root of the ratio of the cyclotron
frequency over the carrier frequency, that affects the depth of the weak lacunae.

An interesting subject for future study could be analysis of the case when
anisotropic responses should remain nonlocal in time, as well as a more careful anal-
ysis of the conductivity mechanisms in the ionosphere. On the numerical side, the
future direction is the ABC algorithm based on the weak lacunae.
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ACTIVE CONTROL OF SOUND FOR COMPOSITE REGIONS∗

A. W. PETERSON† AND S. V. TSYNKOV‡

Abstract. We present a methodology for the active control of time-harmonic wave fields,
e.g., acoustic disturbances, in composite regions. This methodology extends our previous approach
developed for the case of arcwise connected regions. The overall objective is to eliminate the effect
of all outside field sources on a given domain of interest, i.e., to shield this domain. In this context,
active shielding means introducing additional field sources, called active controls, that generate the
annihilating signal and cancel out the unwanted component of the field. As such, the problem of
active shielding can be interpreted as a special inverse source problem for the governing differential
equation or system. For a composite domain, not only do the controls prevent interference from
all exterior sources, but they can also enforce a predetermined communication pattern between the
individual subdomains (as many as desired). In other words, they either allow the subdomains to
communicate freely with one another or otherwise have them shielded from their peers. In the paper,
we obtain a general solution for the composite active shielding problem and show that it reduces
to solving a collection of auxiliary problems for arcwise connected domains. The general solution
is constructed in two stages. Namely, if a particular subdomain is not allowed to hear another
subdomain, then the supplementary controls are employed first. They communicate the required
data prior to building the final set of controls. The general solution can be obtained with only
the knowledge of the acoustic signals propagating through the boundaries of the subdomains. No
knowledge of the field sources is required, nor is any knowledge of the properties of the medium
needed.

Key words. active shielding, noise control, inverse source problem, time-harmonic acoustic
fields, composite domain, communication pattern, the Helmholtz equation, generalized Calderon’s
potentials, exact volumetric cancellation, general solution, incoming and outgoing waves, wave split
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1. Introduction. Active shielding and control of noise is a very rich field with
a variety of applications. In the most general terms, exercising active control means
introducing additional sources of sound, called controls, to facilitate a specific change
in the overall acoustic field. In particular, the desired change may imply canceling
all or part of the field on a given region. Referring the reader to other, more detailed
sources for a comprehensive review (see [17, 8, 24]), we mention several representative
publications in the area. Research by Elliott, Stothers, and Nelson [7] focused on
the minimization of noise at pointwise locations. Wright and Vuksanovic expanded
the field to include directional noise cancellation in [30, 31]. A large portion of the
research done today has been motivated by the airline industry and its desire to control
unwanted engine noise in the cabin during flight. There are various methods of dealing
with in-flight noise. Damping structural vibrations is one approach to attenuating low
frequencies. This is done by placing actuators and sensors throughout the cabin at
optimized locations. Kincaid, Laba, and Padula worked extensively on this problem
[12, 11]. A comprehensive account of the area, along with many additional references,
can be found in [4]. Another method involves placing a series of microphones and
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speakers throughout the cabin and uses acoustic excitation to cancel unwanted noise.
Passive techniques such as sound insulation are more effective in dealing with high
frequencies. Van der Auweraer et al. tackled the problem of aircraft noise in [26] by
using a combination of both methods.

In [9], Fuller and von Flotow present an overview of current common practices in
active noise control. One of the most popular algorithms used today in the control
of noise is based on a least mean squares (LMS) method. It is employed to tune the
control filter to reduce unwanted noise near the sensors and was first introduced by
Burgess in [1] and by Widrow, Shur, and Shaffer in [29]. This algorithm was later
improved upon by Cabell and Fuller in [2]. While LMS methods offer good results
near the sensors in small-scale applications such as mobile phones, they do not allow
for the exact volumetric cancellation of noise desired in an airline cabin.

In the current paper, we introduce and study a new formulation of active noise
control problem. Namely, the overall region of space to be protected from noise is
assumed to be composed of a number of simple, i.e., arcwise connected, (sub)domains.
The standard part of the formulation involves shielding the overall domain, i.e., the
union of all subdomains, from the unwanted noise. In addition, the individual subdo-
mains are selectively allowed to either communicate freely with one another according
to a predetermined pattern or else be shielded from their peers. In doing so, no reci-
procity is assumed; i.e., for a given pair of subdomains one may be allowed to hear
the other, but not vice versa.

The method of analysis used in this paper builds upon the previous research
done by Lončarić, Ryaben’kii, and Tsynkov in [13] and by Tsynkov in [25] for the
case of a single arcwise connected domain, and subsequently extended in [14, 15, 16]
by investigating various optimization formulations. The approach of [13] allows for
the exact volumetric cancellation of time-harmonic noise in a given region. In other
words, this region is shielded from the unwanted sound that comes from the outside.
The shielding is achieved by first splitting the total acoustic field into the incoming
and outgoing components. This can be done unambiguously using only the knowledge
of the field and its normal derivative measured at the boundary of the region to be
protected. Subsequently, the unwanted incoming component of the field is canceled by
additional sources that are insensitive to the outgoing component. Other methods,
such as those employed by Nelson and Elliott in [17], require that the noise to be
canceled be measured at the boundary by itself, and be distinguished from other
components of the acoustic field ahead of time. This restriction does not exist in
the methodology presented herein. Moreover, our methodology requires knowledge of
neither the volumetric properties of the medium nor the location and strength of the
noise sources. Decomposition of the overall sound field into incoming and outgoing
components, as well as design of the antinoise sources, are accomplished by applying
Calderon’s potentials and projections [3]; see also [23]. This is a very convenient
and powerful apparatus that allows one to describe all appropriate control sources in
closed form. In the simplest case of constant coefficients, the Calderon operators can
be obtained using boundary integrals of classical potential theory.

There are two types of control sources that can be explored, volumetric and
surface. In [13], it is determined that the general solution for volumetric controls
g = g(x) is given by

g(x) = −Lw

outside of the region to be shielded, where w is a special auxiliary function which
must satisfy the Sommerfeld radiation condition at infinity, as well as coincide with



1584 A. W. PETERSON AND S. V. TSYNKOV

the acoustic field u and its normal derivative ∂u
∂n at the boundary. Here L = Δ + k2I

denotes the Helmholtz operator. Since these are fairly loose restrictions, volumetric
controls define a very broad class of solutions to the problem.

Surface controls are concentrated at the boundary. They are given by

g(surf) = −
[
∂w

∂n
− ∂u

∂n

]
Γ

δ(Γ) − ∂

∂n
([w − u]Γδ(Γ)),

where the auxiliary function w is additionally required to satisfy the homogeneous
Helmholtz equation, Lw = 0, outside the boundary but is no longer required to satisfy
any boundary conditions at Γ. The general solution to the surface control problem is
discussed in [25]. It is to be noted that surface controls have the same fundamental
properties as volumetric controls. A universal framework for both volumetric and
surface controls is built by Ryaben’kii and Utyuzhnikov in the recent paper [22]; it
treats the governing equation for the field in an operator form.

We should also emphasize that the continuous formulation is not practical for
implementation. Any realistic implementation would consist only of a finite number
of sensors (microphones) and actuators (speakers). This will lead to a discretization
of the problem on a grid. Discrete active shielding problems were analyzed, and
the corresponding solutions obtained in [14, 15, 16, 25], as well as more recently in
[22]. The finite-difference analysis of [14, 15, 16, 22, 25] uses the constructs developed
previously in the works by Ryaben’kii [18] and by Veizman and Ryaben’kii [27, 28].

Specific objective of the current paper. We will extend the methodology of
[13] to the case of composite regions. This will allow two or more separate subregions
to be fully protected from the influence of outside sources. Moreover, according to a
predetermined communication pattern, each individual subregion may or may not be
allowed to hear any other subregion. As in [13], only the total acoustic field and its
normal derivative specified at the boundaries will be needed for the exact volumetric
cancellation of the outside noise, as well as for the realization of a given communication
pattern. It will not be necessary to distinguish the “adverse,” i.e., unwanted, part of
the acoustic field from its “friendly,” i.e., wanted, part as this is done automatically
by the control system. The methodology will provide a closed form general solution
for the controls, including the case of an inhomogeneous medium.

2. Two regions. In this section, the formulation for two separate domains will
be discussed. In other words, we will distinguish between the two given disjoint
regions and the rest of the space. Let it be noted, however, that the forthcoming
methodology could be presented in a more general framework. The rest of the space
outside of the two given regions can be treated as a third region on equal terms
with the first two. This formulation lends itself more naturally to surface controls
separating the three regions. A rigorous analysis of this approach for the finite-
difference setting can be found in the recent paper [21], which, in turn, builds upon
[18]. We, however, choose a simpler form of presentation in order to make it more
accessible for applications. Accordingly, the focus will be on volumetric controls,
which will allow for more flexibility in their construction.

2.1. Formulation. Let Ω1 and Ω2 be given, where Ωi ⊆ R
2 or R

3 is either
bounded or unbounded. For simplicity we will first assume that Ω1 and Ω2 are two
separate bounded regions of R

n (see Figure 2.1), and such that dist(Ω1,Ω2) ≥ ε > 0.
Let Γ1 and Γ2 be the boundaries of Ω1 and Ω2, respectively. Consider the time-
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Fig. 2.1. Two domains.

harmonic acoustic field u = u(x) governed by the inhomogeneous Helmholtz equation:

(2.1) Lu ≡ Δu + k2u = f = f+
1 + f+

2 + f−,

where for the sources we have suppf+
1 ⊂ Ω1, suppf+

2 ⊂ Ω2, and suppf− ⊂ R
n\(Ω1 ∪

Ω2). The overall acoustic field can be represented as

(2.2a) u = u+
1 + u+

2 + u−,

where

Lu+
1 = f+

1 ,(2.2b)

Lu+
2 = f+

2 ,(2.2c)

and

(2.2d) Lu− = f−.

Our first goal is to eliminate all sound from the exterior sources f− inside Ω1 and
Ω2 while allowing sound from the sources f+

1 and f+
2 to propagate freely between Ω1

and Ω2. This is to be achieved by introducing a new control source g. After that, the
total acoustic field ũ will be governed by

Lũ = f+
1 + f+

2 + f− + g.

We would like to choose the controls g to guarantee

ũ|x∈Ω1 = (u+
1 + u+

2 )|x∈Ω1

and

ũ|x∈Ω2
= (u+

1 + u+
2 )|x∈Ω2

.



1586 A. W. PETERSON AND S. V. TSYNKOV

In other words, the field after the control inside either Ω1 or Ω2 should contain no
contribution from the sources f−. Notice that g = −f− is a solution to the problem,
but it can be very difficult to implement and also requires previous knowledge of the
sources f−. Therefore, other, less expensive, solutions that do not require extensive
knowledge of the exterior sources are preferable.

Our second goal is to selectively eliminate the sound that propagates between the
regions Ω1 and Ω2. This is to be done in addition to the cancellation of the common
exterior sound. For example, Ω1 may be allowed to hear Ω2, but not vice versa.

Note that the problem of active noise control as formulated above is, in fact, a
problem of enabling a desired change in the solution of a given differential equation by
appropriately modifying its source terms, i.e., by adding new sources. Consequently,
it can be interpreted as an inverse source problem for the corresponding differential
equation. Inverse source problems have been extensively studied in the literature,
both from the standpoint of physics/engineering (see, e.g., [6, 5]), as well as from the
standpoint of mathematics (see, e.g., [10]).

2.2. General solution. Let us first recall that in order to guarantee uniqueness
of the solution to the Helmholtz equation (2.1) on unbounded regions, we must require
that this solution satisfy the Sommerfeld radiation condition at infinity:

(2.3a)
∂v(x)

∂|x| + ikv(x) = o(|x|−1/2), x ∈ R
2,

or

(2.3b)
∂v(x)

∂|x| + ikv(x) = o(|x|−1), x ∈ R
3.

In particular, for any sufficiently smooth function v = v(x) that satisfies the Sommer-
feld condition we get

(2.4) v(x) =

∫
Rn

G(x− y)Lv(y)dy,

where

Lv = Δv + k2v

is the Helmholtz operator and G = G(x) is its fundamental solution on R
n. For R

2,
the fundamental solution is given by

(2.5) G(x) = − 1

4i
H

(2)
0 (k|x|),

where H
(2)
0 (z) is the Hankel function of the second kind defined by means of the Bessel

functions J0(z) and Y0(z) as H
(2)
0 (z) = J0(z) − iY0(z). For R

3, we have

(2.6) G(x) = − 1

4π

e−ik|x|

|x| .

Note that the fundamental solutions (2.5) and (2.6) satisfy the Sommerfeld radiation
condition at infinity (2.3a) and (2.3b), respectively.
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2.2.1. Straightforward cancellation. Let u = u(x) be the overall acoustic
field (see (2.1)) and n be the exterior normal to the boundary, and introduce an
auxiliary function w = w(x) such that

w
∣∣
Γ1∪Γ2

= u
∣∣
Γ1∪Γ2

and

∂w

∂n

∣∣∣
Γ1∪Γ2

=
∂u

∂n

∣∣∣
Γ1∪Γ2

(recall that dist(Γ1,Γ2) ≥ ε > 0). We also require that w(x) satisfies the Sommerfeld
condition (2.3a) or (2.3b). Next, we define the control sources as follows:

(2.7) g(x) =

{
−Lw, x ∈ {R

n\(Ω1 ∪ Ω2)},
0, x ∈ (Ω1 ∪ Ω2).

To analyze properties of the controls (2.7), we must determine their output v =
v(x) for x ∈ R

n. Using (2.4), we get1

v(x) =

∫
Rn

Ggdy = −
∫

Rn\(Ω1∪Ω2)

GLwdy

= −
(
w(x) −

∫
Ω1

GLwdy −
∫

Ω2

GLwdy

)
,

where the individual integrals on the right-hand side are computed by integrating over
Ω1 and Ω2 and are completely independent. Yet we emphasize that even though the
computation of v(x) can be reduced to integration over Ω1 and Ω2, the shape of w(x)
inside these two domains will not affect the output v(x) since the original controls g
are defined outside of Ω1 ∪ Ω2; see formula (2.7).

Let us examine the individual terms. By Green’s theorem, for x ∈ Ω1 we obtain

w(x) −
∫

Ω1

GLwdy =

∫
Γ1

(
w
∂G

∂n
− ∂w

∂n
G

)
dsy

=

∫
Γ1

(
u
∂G

∂n
− ∂u

∂n
G

)
dsy

= u−(x) + u+
2 (x), x ∈ Ω1,

where n is the normal exterior to Γ1 and u−(x) and u+
2 (x) are defined by (2.2d) and

(2.2c), respectively. This expression yields the entire incoming component of the field
for the domain Ω1. Next, we need to see what the contribution of −

∫
Ω1

GLwdy will be

outside of Ω1. Introduce a smooth auxiliary function w1(x) such that w1(x) = w(x)
on Ω1 and w1(x) is compactly supported on a small neighborhood of Ω1. Then, for

1All integrals hereafter are of the convolution type, as in formula (2.4).
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x ∈ R
n\Ω1 we have

−
∫

Ω1

GLwdy = −
∫

Ω1

GLw1dy

= −
∫

Ω1

GLw1dy + w1 − w1

=

∫
Rn\Ω1

GLw1dy − w1

=

∫
Γ1

(
w1

∂G

∂n
− ∂w1

∂n
G

)
dsy

= −u+
1 (x), x ∈ R

n\Ω1,

where the third equality in the chain is obtained with the help of formula (2.4) applied
to w1(x). Therefore, we can write

−
∫

Ω1

GLwdy =

⎧⎨
⎩−u+

1 , x ∈ R
n\Ω1,

−w + u− + u+
2 , x ∈ Ω1.

We also have a similar output from Ω2 given by

−
∫

Ω2

GLwdy =

⎧⎨
⎩−u+

2 , x ∈ R
n\Ω2,

−w + u− + u+
1 , x ∈ Ω2.

Altogether, the full output of the controls g(x) of (2.7) is as follows:

v(x) = −
(
w −

∫
Ω1

GLwdy −
∫

Ω2

GLwdy

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−(u− + u+

2 ) + u+
2 = −u−, x ∈ Ω1,

−(u− + u+
1 ) + u+

1 = −u−, x ∈ Ω2,

−(w − u+
1 − u+

2 ), x ∈ R
n\(Ω1 ∪ Ω2).

Consequently, these controls enable the cancellation of sound due to the exterior
sources f− on the domains Ω1 and Ω2 regardless of the specific choice of the auxiliary
function w. The output of the controls outside Ω1 ∪ Ω2 is given by u+

1 + u+
2 − w. It

duplicates the acoustic field generated inside the two regions with the correction −w.
Let us elaborate a little further on the structure of the control output v(x).

Assume that x ∈ Ω1. Then,

v(x) = − w(x) +

∫
Ω1

GLwdy +

∫
Ω2

GLwdy

= − w + w − (u− + u+
2 )︸ ︷︷ ︸

contribution due to Ω1

+ u+
2︸︷︷︸

due to Ω2

= − u−(x), x ∈ Ω1,
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where −(u− + u+
2 ) from the second term above renders cancellation of the entire

incoming wave for Ω1, and u+
2 is the interior sound from Ω2 duplicated by the controls.

The same is true for Ω2. Hence we conclude that the controls double the output of
the sources interior to a region on the way out and then halve it as it comes into the
other region. As such, the overall acoustic field after the control is given by

(2.8)

u = u+
1 + u+

2 + u− + v

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u+

1 + u+
2 , x ∈ Ω1,

u+
1 + u+

2 , x ∈ Ω2,

−w + u− + 2u+
1 + 2u+

2 , x ∈ R
n\(Ω1 ∪ Ω2),

allowing the domains Ω1 and Ω2 to communicate freely with each other without
interference from outside sources.

2.2.2. Selective cancellation. Now suppose that we would like Ω1 to hear Ω2

without outside interference, but we do not allow Ω2 to hear anything from outside
its boundary, including Ω1. To achieve this we must elaborate further on how the
split between the incoming and outgoing waves works. Consider just one domain Ω1

with the boundary Γ1 and again choose the auxiliary function w1 = w1(x). Let

(2.9a) w1

∣∣
Γ1

= u
∣∣
Γ1

and

(2.9b)
∂w1

∂n

∣∣∣
Γ1

=
∂u

∂n

∣∣∣
Γ1

,

where u = u−
1 + u+

1 is the total acoustic field and u−
1 = u− + u+

2 is the acoustic field
generated outside of Ω1. Then the surface integral gives us

∫
Γ1

(
w1

∂G

∂n
− ∂w1

∂n
G

)
dsy =

⎧⎨
⎩u−

1 , x ∈ Ω1,

−u+
1 , x ∈ R

n\Ω1.

With respect to the domain Ω1, the field u−
1 is incoming, and u+

1 is outgoing. Assum-
ing that w1(x) also satisfies the appropriate Sommerfeld radiation condition (2.3a)
or (2.3b), the surface integral can be replaced by the volumetric integral, so that for
x ∈ Ω1 we have∫

Γ1

(
w1

∂G

∂n
− ∂w1

∂n
G

)
dsy = w1 −

∫
Ω1

GLw1dy
∣∣∣
x∈Ω1

=

∫
Rn\Ω1

G(x− y)Lw1(y)dy
∣∣∣
x∈Ω1

.

This is precisely why we would choose the controls as g1(x) = −Lw1|Rn\Ω1
if we were

to completely eliminate all of the outside sound on Ω1—because they produce −u−
1

on Ω1. At the same time, on the complementary domain R
n\Ω1 the output of the
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controls g1(x) is the duplicate of the outgoing field u+
1 corrected by −w1:

(2.10)

∫
Rn

G(x− y)g1(y)dy = −
∫

Rn\Ω1

G(x− y)Lw1(y)dy

= w1 −
∫

Rn\Ω1

GLw1dy − w1

= −
∫

Γ1

(
w1

∂G

∂n
− ∂w1

∂n
G

)
dsy − w1 = u+

1 − w1.

Having described individual controls g1 for a single domain Ω1, we are now ready
to construct the controls so that Ω1 will hear Ω2 without outside interference, but Ω2

will not hear anything from outside its boundary, including Ω1. The procedure will
consist of two stages. At the first stage, we will use the controls g1(x) as a supple-
mentary tool. Namely, choose an auxiliary function w1(x) that satisfies conditions
(2.9a) and (2.9b), as well as the Sommerfeld condition at infinity. In addition, require
that w1 be compactly supported near Ω1, in particular, that w1(x) = 0 near Ω2. This
is clearly possible since the distance between the subdomains Ω1 and Ω2 is positive.
Then, build the supplementary controls

(2.11) g1(x) = −Lw1|Rn\Ω1
, g1(x) = 0|Ω1

.

According to formula (2.10), the output of these controls on R
n\Ω1 is

(2.12) v1 =

∫
Rn

Gg1dy = u+
1 − w1, x ∈ R

n\Ω1,

and since w1 is compactly supported near Ω1, we have v1 = u+
1 near Ω2.

At the second stage of building the controls, we begin as usual with our auxiliary
function w. It is still required that w satisfy the Sommerfeld condition at infinity,
while on Γ1 we still impose the same boundary conditions (2.9a) and (2.9b):

w
∣∣
Γ1

= u
∣∣
Γ1

and

∂w

∂n

∣∣∣
Γ1

=
∂u

∂n

∣∣∣
Γ1

,

where u is the given total acoustic field. The difference is in the boundary conditions
on Γ2. Here it is required that

w
∣∣
Γ2

= (u + v1)
∣∣
Γ2

≡ (u + u+
1 )
∣∣
Γ2

and

∂w

∂n

∣∣∣
Γ2

=
∂(u + v1)

∂n

∣∣∣
Γ2

≡ ∂(u + u+
1 )

∂n

∣∣∣
Γ2

,

where v1 was obtained at the first stage; see (2.12). Then, defining the controls as

g(x) = −Lw|Rn\(Ω1∪Ω2), g(x) = 0|(Ω1∪Ω2)
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yields the output

(2.13)

v(x) = −
(
w −

∫
Ω1

GLwdy −
∫

Ω2

GLwdy

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−(u− + u+

2 ) + u+
2 = −u−, x ∈ Ω1,

−(u− + 2u+
1 ) + u+

1 = −(u− + u+
1 ), x ∈ Ω2,

−(w − u+
1 − u+

2 ), x ∈ R
n\(Ω1 ∪ Ω2).

Therefore, we see that Ω1 hears Ω2 without outside interference, but Ω2 does not hear
anything from outside its boundary, including Ω1.

2.2.3. Proofs. We will now prove that what we have obtained is, in fact, a
general solution for the controls with the prescribed properties. That is, we will prove
that our method of construction gives all possible controls.

Theorem 2.1. Suppose that Ω1 ⊂ R
n and Ω2 ⊂ R

n are two disjoint regions:
dist(Ω1,Ω2) ≥ ε > 0, with the boundaries ∂Ω1 = Γ1 and ∂Ω2 = Γ2. Assume that the
total acoustic field in R

n is governed by Lu ≡ Δu + k2u = f = f+
1 + f+

2 + f−, where
the sources f are located according to suppf+

1 ⊂ Ω1, suppf+
2 ⊂ Ω2, and suppf− ⊂

R
n\(Ω1 ∪ Ω2). Let the overall acoustic field u be represented as u = u+

1 + u+
2 + u−.

Let a control source g = g(x) be added to the other sources f(x) such that the
overall field ũ governed by Lũ = f+

1 + f+
2 + f− + g satisfies

(2.14) ũ =

{
u+

1 + u+
2 , x ∈ Ω1,

u+
1 + u+

2 , x ∈ Ω2.

Then the general solution for the desired control is given by

(2.15) g = −Lw|Rn\(Ω1∪Ω2), g = 0|(Ω1∪Ω2),

where w satisfies the Sommerfeld condition (2.3a) or (2.3b) at infinity, as well as the
interface conditions

(2.16a) w
∣∣
Γ1∪Γ2

= u
∣∣
Γ1∪Γ2

and

(2.16b)
∂w

∂n

∣∣∣
Γ1∪Γ2

=
∂u

∂n

∣∣∣
Γ1∪Γ2

.

Proof. We need to prove that any control g given by (2.15) is an appropriate
control and, conversely, that any appropriate control g can be obtained by using a
suitable auxiliary function w. Suppose we have a function w(x) that satisfies (2.16a),
(2.16b), and the Sommerfeld condition at infinity. Then, according to formula (2.8),
the corresponding control g given by formula (2.15) yields the desired properties by
eliminating u− on Ω1 ∪ Ω2.

Conversely, suppose that a control g achieves the desired cancellation; see formula
(2.14). Then, substituting ũ = ũ(x) into the equation Lũ = f+

1 + f+
2 + f− + g, we

immediately obtain that g(x) = 0 for x ∈ (Ω1 ∪ Ω2). In other words, supp g ⊂
R

n \ (Ω1 ∪ Ω2). Consequently, the output v of the control g is as follows:

v(x) =

∫
Rn\(Ω1∪Ω2)

Ggdy =

⎧⎨
⎩−u−, x ∈ Ω1,

−u−, x ∈ Ω2.
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Consider the equation −Lw = g − f+
1 − f+

2 , where f+
1 and f+

2 are the sound sources
from Ω1 and Ω2, respectively. Its solution, subject to the Sommerfeld condition at
infinity (2.3a) or (2.3b), satisfies

w = −v + u+
1 + u+

2

=

⎧⎨
⎩u− + u+

1 + u+
2 = u, x ∈ Ω1,

u− + u+
1 + u+

2 = u, x ∈ Ω2.

Since w(x) is at least C1 smooth on R
n, we can claim that it satisfies relations (2.16a)

and (2.16b). Therefore, the control g(x) can be obtained by formula (2.15), since
suppf+

1 ⊂ Ω1 and suppf+
2 ⊂ Ω2.

Theorem 2.2. Suppose that Ω1 ⊂ R
n and Ω2 ⊂ R

n are two disjoint regions:
dist(Ω1,Ω2) ≥ ε > 0, with the boundaries ∂Ω1 = Γ1 and ∂Ω2 = Γ2. Assume that the
total acoustic field in R

n is governed by Lu ≡ Δu + k2u = f = f+
1 + f+

2 + f−, where
the sources f are located according to suppf+

1 ⊂ Ω1, suppf+
2 ⊂ Ω2, and suppf− ⊂

R
n\(Ω1 ∪ Ω2). Let the overall acoustic field u be represented as u = u+

1 + u+
2 + u−.

Let a control source g = g(x) be added to the other sources f(x) such that the
overall field ũ governed by Lũ = f+

1 + f+
2 + f− + g satisfies

(2.17) ũ =

⎧⎨
⎩u+

1 + u+
2 , x ∈ Ω1,

u+
2 , x ∈ Ω2.

Then the general solution for the desired control is given by

(2.18) g = −Lw|Rn\(Ω1∪Ω2), g = 0|(Ω1∪Ω2),

where w = w(x) satisfies the Sommerfeld condition (2.3a) or (2.3b) at infinity and
the following interface conditions:

(2.19a) w
∣∣
Γ1

= u
∣∣
Γ1
, w

∣∣
Γ2

= (u + u+
1 )
∣∣
Γ2

and

(2.19b)
∂w

∂n

∣∣∣
Γ1

=
∂u

∂n

∣∣∣
Γ1

,
∂w

∂n

∣∣∣
Γ2

=
∂(u + u+

1 )

∂n

∣∣∣
Γ2

.

The function u+
1 on Γ2 can be obtained as the output v1 given by formula (2.12) of

the supplementary controls g1 of (2.11).
Theorem 2.2 essentially implies that the controls (2.18) are obtained by means

of a predictor-corrector procedure. The predictor stage consists of computing v1 of
(2.12) as the output of the control g1 of (2.11), whereas the corrector stage consists of
obtaining the overall composite controls g(x) with the help of the auxiliary function
w(x) defined via (2.19).

Proof. We need to prove that any control g given by (2.18) is an appropriate
control and, conversely, that any appropriate control g can be obtained by using a
suitable auxiliary function w. Suppose we have a function w(x) that satisfies (2.19a),
(2.19b), and the Sommerfeld condition at infinity. Then, according to formula (2.13),
the corresponding control given by (2.18) provides the desired properties eliminating
u− on Ω1 ∪ Ω2 and additionally eliminating u+

1 on Ω2.
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Conversely, suppose that a control g achieves the desired cancellation; see formula
(2.17). Then, supp g ∈ R

n \ (Ω1 ∪Ω2), and the output of the control, v, is as follows:

v(x) =

∫
Rn\(Ω1∪Ω2)

Ggdy =

⎧⎨
⎩−u−, x ∈ Ω1,

−u− − u+
1 , x ∈ Ω2.

Consider the equation −Lw = g − f+
1 − f+

2 . Its solution, subject to the Sommerfeld
condition at infinity (2.3a) or (2.3b), satisfies

w = −v + u+
1 + u+

2

=

⎧⎨
⎩u− + u+

1 + u+
2 = u, x ∈ Ω1,

u− + 2u+
1 + u+

2 = u + u+
1 , x ∈ Ω2.

Since w(x) is at least C1 smooth on R
n, it satisfies relations (2.19a) and (2.19b).

Therefore, the control g(x) can be obtained by formula (2.18) since suppf+
1 ⊂ Ω1 and

suppf+
2 ⊂ Ω2.

3. Multiple regions.

3.1. Formulation. Let Ω1,Ω2, . . . ,ΩN be given, where Ωi ⊆ R
2 or R

3 is either
bounded or unbounded. For simplicity we will assume that Ω1,Ω2, . . . ,ΩN are sepa-
rate bounded regions of R

n. Let Γ1,Γ2, . . . ,ΓN be the boundaries of Ω1,Ω2, . . . ,ΩN

respectively. Consider the time-harmonic acoustic field u governed by the inhomoge-
neous Helmholtz equation:

Lu ≡ Δu + k2u = f = f+
1 + f+

2 + · · · + f+
N + f−,

where the sources are suppf+
1 ⊂ Ω1, suppf+

2 ⊂ Ω2, . . . , suppf+
n ⊂ ΩN , and suppf− ⊂

R
n\(Ω1 ∪ Ω2 ∪ · · · ∪ ΩN ). Therefore, the overall acoustic field can be represented as

u = u+
1 + u+

2 + · · · + u+
N + u−,

where

Lu+
1 = f+

1 ,

Lu+
2 = f+

2 ,

. . .

Lu+
N = f+

N ,

and

Lu− = f−.

Our goal is to eliminate all sound from the sources f− inside Ω1,Ω2, . . . ,ΩN , while
allowing sound from the sources f+

1 , f+
2 , . . . , f+

N to propagate between Ω1,Ω2, . . . ,ΩN

as we see fit. That is, we wish to selectively eliminate unwanted sound from various
regions while leaving other regions free to receive predetermined communications.
This is done as before by introducing a new control source g. Therefore, the total
acoustic field is now governed by the modified equation

Lũ = f+
1 + f+

2 + · · · + f+
N + f− + g.
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3.2. General solution.

3.2.1. Straightforward cancellation. We will first demonstrate how to elimi-
nate all sound in Ω1∪Ω2∪· · ·∪ΩN that originates from R

n\(Ω1∪Ω2∪· · ·∪ΩN ) . As
before, we introduce an auxiliary function w = w(x), which satisfies the Sommerfeld
condition (2.3a) or (2.3b) at infinity, and is such that

w
∣∣
Γi

= u
∣∣
Γi

and

∂w

∂n

∣∣∣
Γi

=
∂u

∂n

∣∣∣
Γi

for all i = 1, . . . , N .

Next, we define the control sources as (cf. formula (2.7))

g(x) =

⎧⎨
⎩−Lw, x ∈ {R

n\(Ω1 ∪ Ω2 ∪ · · · ∪ ΩN )},

0, x ∈ (Ω1 ∪ Ω2 ∪ · · · ∪ ΩN ),

and see that their output v = v(x), x ∈ R
n, is given by

v(x) =

∫
Rn

Ggdy = −
∫

Rn\(Ω1∪Ω2∪···∪ΩN )

GLwdy

= −
(
w(x) −

∫
Ω1

GLwdy −
∫

Ω2

GLwdy − · · · −
∫

ΩN

GLwdy

)
,

where the individual integrals are computed by integrating over Ω1,Ω2, . . . ,ΩN and
are completely independent. Again, all integrals are convolutions, as in section 2.

Let us examine the individual terms. By Green’s theorem, for x ∈ Ωi, where
i ∈ {1, 2, . . . , N}, we obtain

w(x) −
∫

Ωi

GLwdy =

∫
Γi

(
w
∂G

∂n
− ∂w

∂n
G

)
dsy

=

∫
Γi

(
u
∂G

∂n
− ∂u

∂n
G

)
dsy

= u−(x) +
∑

j=1,2,...,N
j �=i

u+
j (x), x ∈ Ωi.

This is the entire incoming component for the domain Ωi. Now the effect of the
integral −

∫
Ωi

GLwdy outside of Ωi must be examined. To do this, we introduce a

smooth auxiliary function wi(x) such that wi(x) = w(x) on Ωi and wi(x) is compactly
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supported on a small neighborhood of Ωi. Consequently, for x ∈ R
n\Ωi we have

−
∫

Ωi

GLwdy = −
∫

Ωi

GLwidy

= −
∫

Ωi

GLwidy + wi − wi

=

∫
Rn\Ωi

GLwidy − wi

=

∫
Γi

(
wi

∂G

∂n
− ∂wi

∂n
G

)
dsy

= −u+
i (x), x ∈ R

n\Ωi.

Therefore we can write

−
∫

Ωi

GLwdy =

⎧⎪⎪⎨
⎪⎪⎩
−u+

i , x ∈ R
n\Ωi,

−w + u− +
∑

j=1,2,...,N,
j �=i

u+
j , x ∈ Ωi.

Altogether, the full output of the controls g(x) is as follows:

(3.1)

v(x) = −

⎛
⎝w −

∫
Ωi

GLwdy −
∑
j �=i

∫
Ωj

GLwdy

⎞
⎠

=

⎧⎪⎪⎨
⎪⎪⎩
−u−, x ∈ Ωi, i = 1, 2, . . . , N,

−

⎛
⎝w −

∑
j=1,2,...,N

u+
j

⎞
⎠ , x ∈ R

n\(Ω1 ∪ Ω2 ∪ · · · ∪ ΩN ).

Consequently, these controls enable the cancellation of sound due to the exterior
sources on the domains Ω1,Ω2, . . . ,ΩN regardless of the specific choice of the auxil-
iary function w. The output of the controls outside Ω1 ∪ Ω2 ∪ · · · ∪ ΩN is given by∑

j=1,2,...,N u+
j − w. It basically duplicates the acoustic field generated inside the re-

gions with the correction −w. More specifically, for any given Ωi the controls double
the output of the sources interior to a region on the way out and then halve the result
as it comes into another region. As such, the overall acoustic field is given by

u = u+
1 + u+

2 + · · · + u+
N + u− + v

=

⎧⎨
⎩u+

1 + u+
2 + · · · + u+

N , x ∈ Ωi, i = 1, 2, . . . , N,

−w + u− + 2u+
1 + 2u+

2 + · · · + 2u+
N , x ∈ R

n\(Ω1 ∪ Ω2 ∪ · · · ∪ ΩN ),

which means that the subdomains Ω1,Ω2, . . . ,ΩN can communicate freely with each
other without interference from outside sources.

Theorem 3.1. Suppose that Ω1,Ω2, . . . ,ΩN are given, where Ωi ⊆ R
n are dis-

joint regions: dist(Ωi,Ωj) ≥ ε > 0 if i �= j, with the boundaries ∂Ω1 = Γ1, ∂Ω2 =
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Γ2, . . . , ∂Ωn = ΓN . Assume that the total acoustic field in R
n is governed by Lu ≡

Δu+ k2u = f = f+
1 + f+

2 + · · ·+ f+
N + f−, where the sources are located according to

suppf+
1 ⊂ Ω1, suppf+

2 ⊂ Ω2, . . . , suppf+
n ⊂ ΩN , and suppf− ⊂ R

n\(Ω1 ∪ Ω2 ∪ · · · ∪
ΩN ). Let the overall acoustic field u be represented as u = u+

1 + u+
2 + · · · + u+

N + u−.
Let a control source g = g(x) be added to the other sources f(x) such that the

overall field ũ governed by Lũ = f+
1 + f+

2 + · · · + f+
N + f− + g satisfies

(3.2) ũ =
∑

j=1,2,...,N

u+
j , x ∈ Ωi, i = 1, 2, . . . , N.

Then the general solution for the desired control is given by

(3.3) g = −Lw|Rn\(Ω1∪Ω2∪···∪ΩN ), g = 0|(Ω1∪Ω2∪···∪ΩN ),

where w = w(x) satisfies the Sommerfeld condition at infinity and the following in-
terface conditions:

(3.4a) w
∣∣
Γi

= u
∣∣
Γi

and

(3.4b)
∂w

∂n

∣∣∣
Γi

=
∂u

∂n

∣∣∣
Γi

for all i = 1, . . . , N .
Proof. We need to prove that any control g given by (3.3) is an appropriate control

and, conversely, that any appropriate control g can be obtained by using a suitable
auxiliary function w. Suppose we have a function w(x) that satisfies (3.4a), (3.4b),
and the Sommerfeld condition (2.3a) or (2.3b) at infinity. Then, formula (3.1) implies
that the corresponding control (3.3) provides the desired properties eliminating the
exterior sound u− on Ω1 ∪ Ω2 ∪ · · · ∪ ΩN .

Conversely, suppose a control g achieves the desired cancellation, so that equality
(3.2) holds. Then, clearly, g(x) = 0 for x ∈ Ω1 ∪ Ω2 ∪ · · · ∪ ΩN . Consequently, the
output v of the control g is as follows:

v(x) =

∫
Rn\(Ω1∪Ω2∪...ΩN )

Ggdy = −u−, x ∈ Ωi, i = 1, . . . N.

Consider the equation −Lw = g − f+
1 − f+

2 − · · · − f+
N . Its solution, subject to

the Sommerfeld condition at infinity (2.3a) or (2.3b), satisfies

w = −v + u+
1 + u+

2 + · · · + u+
N

= u, x ∈ Ωi, i = 1, 2, . . . , N.

Since w(x) is at least C1 smooth on R
n, it satisfies relations (3.4a) and (3.4b).

Therefore the control g(x) can be obtained by formula (3.3) applied to this particular
w(x), since suppf+

1 ⊂ Ω1, suppf+
2 ⊂ Ω2, . . . , suppf+

N ⊂ ΩN .

3.2.2. Selective cancellation. Now suppose that in each subdomain Ωi, we
would like to eliminate all outside interference and, in addition, selectively eliminate
sound from some other subdomains. It will be helpful to formulate a convenient way
of keeping track of communications between the subdomains. For that purpose, let us
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introduce an N ×N matrix M, such that each row i corresponds to a region Ωi, and
the entry (0 or 1) in each column is used to determine whether this Ωi hears a region
corresponding to that column or not. In other words, if the entry at the intersection
of row i and column j is 0, then Ωi hears Ωj . If this entry is 1, then it does not.
Obviously the diagonal of M is filled with zeros since the regions hear themselves. So,
in the case of Theorem 2.1 we have

M =

(
0 0
0 0

)

and for Theorem 2.2 we get

M =

(
0 0
1 0

)
.

Notice that no reciprocity in the communication pattern is assumed; i.e., the matrix
M is not necessarily symmetric.

For a given matrix M that corresponds to a specific communication pattern be-
tween the regions Ω1,Ω2, . . . ,ΩN , we will now build the auxiliary function w(x) and
the controls g(x) as before, i.e., in two stages. At the first stage, we take the auxiliary
functions wi(x) for all Ωi, i = 1, . . . , N , that satisfy

wi

∣∣
Γi

= u
∣∣
Γi

and

∂wi

∂n

∣∣∣
Γi

=
∂u

∂n

∣∣∣
Γi

,

as well as the Sommerfeld condition at infinity. We also require that each wi be
compactly supported near the corresponding Ωi. Then, we build the supplementary
controls:

gi(x) = −Lwi|Rn\Ωi
, gi(x) = 0|Ωi

.

According to formula (2.10) applied to a given subdomain Ωi, the output of these
controls on R

n\Ωi is

(3.5) vi =

∫
Rn

Ggidy = u+
i − wi, x ∈ R

n\Ωi,

and since wi is taken compactly supported near Ωi, we have vi = u+
i near Ωj , where

j = 1, 2, . . . , N and j �= i.
At the second stage, we start with introducing the auxiliary function w(x), which

satisfies the Sommerfeld radiation condition (2.3a) or (2.3b) at infinity. In addition,
on each Γi we require that

w
∣∣
Γi

= (u + eTi Mv)
∣∣
Γi

and

∂w

∂n

∣∣∣
Γi

=
∂(u + eTi Mv)

∂n

∣∣∣
Γi

.
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In these formulae, ei is a vector with its ith component equal to 1 and all other
components equal to 0, and

v =

⎛
⎜⎜⎜⎝

v1

v2

...
vN

⎞
⎟⎟⎟⎠ ,

where each vi is obtained at the first stage with the help of the supplementary controls
gi(x) according to formula (3.5).

Next, we define the control sources g(x) as

g(x) = −Lw|Rn\(Ω1∪Ω2∪···∪ΩN ), g(x) = 0|(Ω1∪Ω2∪···∪ΩN ).

Their output v = v(x), x ∈ R
n, is given by

(3.6)

v(x) =

∫
Rn

Ggdy

= −
∫

Rn\(Ω1∪Ω2∪···∪ΩN )

GLwdy

= −
(
w(x) −

∫
Ω1

GLwdy −
∫

Ω2

GLwdy − · · · −
∫

ΩN

GLwdy

)
,

=

⎧⎨
⎩−(u− + eTi Mv), x ∈ Ωi,

−(w − u+
1 − u+

2 − · · · − u+
N ), x ∈ R

n\(Ω1 ∪ Ω2 ∪ · · · ∪ ΩN ),

which obviously enables the desired cancellation.
We now prove that this is in fact the general solution for the controls with the

prescribed properties, i.e., that we obtain all possible controls.
Theorem 3.2. Suppose that Ω1,Ω2, . . . ,ΩN are given, where Ωi ⊆ R

n are dis-
joint regions: dist(Ωi,Ωj) ≥ ε > 0 if i �= j, with the boundaries ∂Ω1 = Γ1, ∂Ω2 =
Γ2, . . . , ∂Ωn = ΓN . Assume that the total acoustic field in R

n is governed by Lu ≡
Δu+ k2u = f = f+

1 + f+
2 + · · ·+ f+

N + f−, where the sources are located according to
suppf+

1 ⊂ Ω1, suppf+
2 ⊂ Ω2, . . . , suppf+

n ⊂ ΩN , and suppf− ⊂ R
n\(Ω1 ∪ Ω2 ∪ · · · ∪

ΩN ). Let the overall acoustic field u be represented as u = u+
1 + u+

2 + · · · + u+
N + u−.

Let a control source g = g(x) be added to the other sources f(x) such that the
overall field ũ governed by Lũ = f+

1 + f+
2 + · · · + f+

N + f− + g satisfies

(3.7) ũ = eTi (1 − M)u, x ∈ Ωi, i = 1, 2, . . . , N,

where 1 is an N ×N matrix with all entries equal to 1, and

u =

⎛
⎜⎜⎜⎜⎜⎜⎝

u+
1

u+
2

...

u+
N

⎞
⎟⎟⎟⎟⎟⎟⎠ .
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Then, the general solution for the desired control is given by

(3.8) g = −Lw|Rn\(Ω1∪Ω2∪···∪ΩN ), g = 0|(Ω1∪Ω2∪···∪ΩN ),

where w = w(x) satisfies the Sommerfeld condition at infinity and the following in-
terface conditions:

(3.9a) w
∣∣
Γi

= (u + eTi Mv)
∣∣
Γi

and

(3.9b)
∂w

∂n

∣∣∣
Γi

=
∂(u + eTi Mv)

∂n

∣∣∣
Γi

for all i = 1, . . . , N . Note that if M = 0, then (3.7) reduces to (3.2), and the current
theorem becomes the same as Theorem 3.1.

Similarly to Theorem 2.2, Theorem 3.2 implies that the controls (3.8) are built
using a predictor-corrector procedure. The predictor stage consists of computing v of
(3.5), whereas the corrector stage consists of obtaining the overall composite controls
g(x) by means of the auxiliary function w(x) defined via (3.9).

Proof. We need to prove that any control g given by (3.8) is an appropriate
control and, conversely, that any appropriate control g can be obtained by using a
suitable auxiliary function w. Suppose we have a function w(x) that satisfies (3.9a),
(3.9b), and the Sommerfeld condition at infinity. Then, according to formula (3.6),
the corresponding control (3.8) provides the desired properties as it eliminates u−

on Ω1 ∪ Ω2 ∪ · · · ∪ ΩN and selectively allows the sound to propagate between the
subdomains following a predetermined pattern M.

Conversely, suppose that a control g achieves the desired cancellation; see formula
(3.7). Then, g(x) = 0 for x ∈ Ω1 ∪Ω2 ∪ · · · ∪ΩN , and the output v of the control g is

v(x) =

∫
Rn\(Ω1∪Ω2∪···∪ΩN )

Ggdy

= −(u− + eTi Mv), x ∈ Ωi, i = 1, 2, . . . , N.

Consider the equation −Lw = g − f+
1 − f+

2 − · · · − f+
N . Its solution, subject to the

Sommerfeld condition at infinity (2.3a) or (2.3b), satisfies

w = −v + u+
1 + u+

2 + · · · + u+
N

= eTi (1 − M)u, x ∈ Ωi, i = 1, 2, . . . , N.

Since w(x) is at least C1 smooth on R
n, it satisfies the interface conditions (3.9a) and

(3.9b). Therefore, the control g(x) can be obtained by formula (3.8) applied to this
w(x), because suppf+

1 ⊂ Ω1, suppf+
2 ⊂ Ω2, . . . , suppf+

N ⊂ ΩN .

4. Generalized Calderon’s potentials. We will now show how the split be-
tween u+

1 , u
+
2 , . . . , u

+
N , and u− can be conveniently described in terms of the gener-

alized potentials and boundary projection operators of Calderon’s type. For more
detail, the reader is referred to the work of Lončarić, Ryaben’kii, and Tsynkov [13].

Consider some function u(x) that satisfies Lu = 0, where x ∈ Ωi for a given i.
Then the Green’s formula yields

(4.1) u(x) =

∫
Γi

(
u
∂G

∂n
− ∂u

∂n
G

)
dsy, x ∈ Ωi.
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Note than the direction of the normal n is fixed to always point outward from a
given domain Ωi. A generalized potential of Calderon’s type with vector density
ξΓi = (ξ0, ξ1) specified on Γi is defined by the following formula:

(4.2) PΩiξΓi(x) =

∫
Γi

(
ξ0

∂G

∂n
− ξ1G

)
dsy, x ∈ Ωi,

which is similar to (4.1) except that we do not require ahead of time that ξ0 and ξ1
in (4.2) be the boundary values of some function u that solves Lu = 0 on Ωi and its
normal derivative. With the help of (4.2), formula (4.1) can be rewritten as

u = PΩi

(
u,

∂u

∂n

) ∣∣∣∣
Γi

, x ∈ Ωi.

Next, for any sufficiently smooth function v specified on Ωi, we define its vector trace
on Γi as

(4.3) Tri v =

(
v,

∂v

∂n

)∣∣∣∣
Γi

and then introduce the boundary operator as PΓi as a combination of the potential
PΩi

of (4.2) and trace Tri of (4.3):

(4.4) PΓiξΓi
= Tri PΩiξΓi .

Note that the operator PΓi is a projection, P 2
Γi

= PΓi .
The previous construction can easily be changed from the use of surface integrals

to that of volume integrals. Given a vector density ξΓi
= (ξ0, ξ1), we take a sufficiently

smooth auxiliary function w(x) that is compactly supported near Γi and such that

(4.5) Tri w = ξΓi
.

Then, the potential (4.2) can be redefined as follows:

(4.6)

PΩi
ξΓi(x) = w(x) −

∫
Ωi

GLwdy

=

∫
Rn\Ωi

GLwdy, x ∈ Ωi.

Note that PΩiξΓi
(x) of (4.6) does not depend on the specific choice of w(x) as long as

condition (4.5) is satisfied. We can also define the exterior potential, QRn\Ωi
ξΓi

(x),
x ∈ R

n\Ωi, for the complementary domain R
n\Ωi as

(4.7)

QRn\Ωi
ξΓi

(x) =w(x) −
∫

Rn\Ωi

GLwdy

=

∫
Ωi

GLwdy, x ∈ R
n\Ωi.

The exterior projection operator QΓi will be given by

(4.8) QΓiξΓi = Tri QRn\Ωi
ξΓi .
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Combining (4.2), (4.6), and (4.7), we obtain a scalar function defined on both Ωi and
R

n\Ωi:

(4.9)

∫
Γi

(
ξ0

∂G

∂n
− ξ1G

)
dsy =

⎧⎨
⎩PΩi

ξΓi
(x), x ∈ Ωi,

−QRn\Ωi
ξΓi(x), x ∈ R

n\Ωi.

As has already been seen, we can calculate each branch of (4.9) using volumetric
integrals instead of surface integrals.

Now let u = u+
i + u−

i , where u+
i originates inside its corresponding Ωi and u−

i

originates from outside of Ωi. That is, u−
i = u− +

∑
j �=i u

+
i is the entire incoming

component for Ωi. Also denote ξΓi
= (u, ∂u

∂n )|Γi and

ξ+
Γi

=
(
u+
i ,

∂u+
i

∂n

)∣∣∣
Γi

,

ξ−Γi
=
(
u−
i ,

∂u−
i

∂n

)∣∣∣
Γi

.

According to formula (4.9) and definitions of the projections (4.4) and (4.8), we then
have

(4.10)
PΓi

ξΓi
= ξ−Γi

,

QΓiξΓi = ξ+
Γi
.

Hence the sum of the two projections is the identity PΓi+QΓi = I. Formula (4.10) ren-
ders the wave split. The space ΞΓi

of all two-dimensional vector functions ξΓi
is split

into a direct sum of two subspaces: ΞΓi
= Ξ+

Γi
⊕ Ξ−

Γi
, where Ξ−

Γi
= ImPΓi ≡ KerQΓi

contains traces of all incoming waves and Ξ+
Γi

= ImQΓi ≡ KerPΓi contains traces of
all outgoing waves. The split is done only on the boundary, and no knowledge of the
wave sources is needed. Any function ξΓi is represented as ξ−Γi

+ ξ+
Γi

, where ξ−Γi
can be

extended to Ωi and ξ+
Γi

can be extended to R
n\Ωi, as solutions of the homogeneous

equation Lu = 0. The extensions are given by the incoming and outgoing branches
of the potential:

PΩiξΓi = PΩiξ
−
Γi

= u−
i , x ∈ Ωi,

and

QRn\Ωi
ξΓi = QRn\Ωi

ξ+
Γi

= u+
i , x ∈ R

n\Ωi,

respectively. If a given ξΓi satisfies the boundary equation with projection

(4.11) PΓiξΓi = ξΓi ,

then this function is the trace of some u−
i . That is, it is extendible to Ωi as a solution

of Lu = 0. In other words, those and only those ξΓi that are traces of solutions to the
homogeneous equation Lu = 0 on Ωi satisfy the Calderon boundary equation (4.11).
A reciprocal result holds for QΓi

ξΓi
= ξΓi

.
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Having defined the potentials and projections for individual domains Ωi, we will
now extend the definitions to the entire composite domain Ω = Ω1 ∪ Ω2 ∪ · · · ∪ ΩN .
Denote Γ = Γ1 ∪ Γ2 ∪ · · · ∪ ΓN , and let ξΓ be a two-dimensional vector function on
this composite boundary. The interior branch of the potential with the density ξΓ is
defined similarly to (4.6):

PΩξΓ(x) =

∫
Rn\Ω

GLwdy, x ∈ Ω,

where w = w(x) is an auxiliary function that satisfies the interface conditions

Tr w = ξΓ ⇐⇒
{
Tri w = ξΓ

∣∣
Γi
, i = 1, 2, . . . , N

}
and the appropriate Sommerfeld condition (2.3a) or (2.3b) at infinity. Other than
that, w(x) may be arbitrary. Likewise, the exterior branch of the potential is given
by

QRn\ΩξΓ(x) =

∫
Ω

GLwdy, x ∈ R
n\Ω.

Using definition (4.7), for the exterior region R
n\Ω we can write

(4.12) QRn\ΩξΓ(x) =

N∑
i=1

QRn\Ωi
ξΓi(x) =

N∑
i=1

u+
i (x), x ∈ R

n\Ω,

whereas for the interior of Ωi, i = 1, 2, . . . , N , we have according to (4.6) and (4.7)

(4.13)

PΩξΓ(x) = PΩiξΓi(x) −
N∑
j=1
j �=i

QRn\Ωj
ξΓj (x)

= u−
i −

N∑
j=1
j �=i

u+
j (x) = u−(x), x ∈ Ωi.

In formula (4.13), u−
i denotes the entire incoming field with respect to the domain

Ωi. In other words, u−
i is composed of u− and u+

j from all Ωj except j = i.

The projections for composite domains are defined as traces of the potentials:

(4.14)
PΓξΓ = Tr PΩξΓ,

QΓξΓ = Tr QRn\ΩξΓ.

They possess the same properties as the projections built previously for individual
subdomains. Namely, PΓ + QΓ = I, and the projections render the wave split at the
interface Γ into incoming waves ξ−Γ = PΓξΓ and outgoing waves ξ+

Γ = QΓξΓ.

Now that we have defined the potentials and projections for individual subdo-
mains and for the composite domain, we can once again obtain the controls for com-
posite domains. First, we will investigate the simple case of fully eliminating the
exterior noise inside Ω = Ω1 ∪ Ω2 ∪ · · · ∪ ΩN , i.e., eliminating the entire incoming
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component of the acoustic field with respect to Ω. Our control function g = g(x) is
defined as

(4.15) g(x) = −Lw|Rn\Ω, g(x) = 0|Ω,
giving the output v = v(x) in the form

(4.16) v(x) =

⎧⎨
⎩−PΩξΓ(x), x ∈ Ω,

−w(x) + QRn\ΩξΓ(x), x ∈ R
n\Ω.

Hence we achieve the desired cancellation on Ω, because for x ∈ Ω according to (4.13)
we have v(x) = −PΩξΓ(x) = −u−(x). As for the exterior region R

n\Ω, formulae
(4.12), (4.13), and (4.16) indicate that the controls basically duplicate the output of
a given Ωi and subsequently halve it as it enters another subdomain Ωj .

Next, we will explore the operator interpretation of the selective cancellation for
individual subdomains. As before, assume that the N ×N communication matrix M
is given that determines which regions are allowed to hear one another. If the entry
mij of this matrix at the intersection of row i and column j is equal to zero, then Ωi

hears Ωj ; otherwise, if mij = 1, then Ωi does not hear Ωj . In doing so, no reciprocity
is assumed; i.e., the matrix M is not necessarily symmetric. At the first stage of
building the selective controls, we will modify the boundary trace ξΓ with the help of
the matrix M.

Let u = u(x) be the overall acoustic field from all original sources, and let ξΓ =
Tr u. Denote ξΓi

= ξΓ
∣∣
Γi

and introduce

(4.17) ξ̃Γ
def
=

⎧⎪⎪⎨
⎪⎪⎩ξ̃Γi

, i = 1, 2, . . . , N
∣∣∣ ξ̃Γi

= ξΓi
+

N∑
j=1

mij=1

Tri QRn\Ωj
ξΓj

⎫⎪⎪⎬
⎪⎪⎭ .

At the second stage, we obtain the controls g̃ according to the same formula (4.15)
as we used previously, but substituting a different auxiliary function w̃ = w̃(x). In
addition to the appropriate Sommerfeld condition (2.3a) or (2.3b) at infinity, this new
auxiliary function is supposed to satisfy an alternative interface condition at Γ:

(4.18) Tr w̃ = ξ̃Γ,

where ξ̃Γ is defined by formula (4.17). The output of the control sources g̃(x) on the
domain Ω = Ω1 ∪ . . . ∪ ΩN is given by the potential

v(x) = − PΩξ̃Γ(x) = −PΩi ξ̃Γi(x) +

N∑
j=1
j �=i

QRn\Ωj
ξ̃Γj

= − PΩi
ξΓi

(x) −
N∑
j=1

mij=1

QRn\Ωj
ξΓj

+

N∑
j=1
j �=i

QRn\Ωj
ξ̃Γj

= − u− −
N∑
j=1
j �=i

u+
j −

N∑
j=1

mij=1

u+
j +

N∑
j=1
j �=i

u+
j

= − u− −
N∑
j=1

mij=1

u+
j , x ∈ Ωi,
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where we have taken into account that PΩi
TriQRn\Ωj

ξΓj
= QRn\Ωj

ξΓj
for x ∈ Ωi if

i �= j. Consequently, the overall field on Ω after applying the control g̃ is given by

ũ(x) = u(x) + v(x)

= u−(x) +

N∑
j=1

u+
j (x) − u−(x) −

N∑
j=1

mij=1

u+
j (x)

=
N∑
j=1

mij=0

u+
j (x), x ∈ Ωi.

In other words, the unwanted exterior noise u−(x) gets canceled out on all Ωi,
i = 1, . . . , N , as before. Moreover, the sound field on a given Ωi contains only the
contributions from those Ωj for which mij = 0, i.e., from those regions that Ωi is
allowed to hear. This is precisely the type of selective cancellation that we strived to
achieve. Note also that even though we did not formulate the results in this section
as theorems, it is clear that they are equivalent to the theorems of section 3.

5. A more realistic formulation. As of yet, we have only used the Calderon
potentials and projections of section 4 to recast the results of section 3 in a more
convenient yet equivalent operator form. However, the operator framework introduced
in section 4 will also allow us to analyze a more elaborate formulation of the problem
compared to that from section 3.

Instead of the Helmholtz equation (2.1), consider a general variable coefficient
differential (or operator) equation

(5.1) Lu = f,

where both the unknown solution u = u(x) and the given right-hand side f = f(x) are
defined on some domain Ω0 that may, but does not have to, coincide with the entire
space R

n. In the context of acoustics, (5.1) may, for example, govern the propagation
of sound through a nonhomogeneous medium, where the propagation speed depends
on the location.

A very important consideration is to define the solvability class for (5.1) on Ω0.
In most generic terms, let us require that u ∈ U , where U is a certain linear subspace
of the space of all sufficiently smooth functions on Ω0. We will assume that the
solution u = u(x) of (5.1) exists and is unique in U , provided that the right-hand side
f belongs to another appropriate class F . Note that in the context of sections 2, 3,
and 4, we had Ω0 = R

n and the class U was defined by the Sommerfeld condition
(2.3a) or (2.3b) at infinity.

Since for any f ∈ F there is a unique solution u ∈ U of (5.1), we can introduce
the inverse operator G : F �−→ U that provides the solution for a given right-hand
side:

(5.2) u = Gf, u ∈ U, f ∈ F.

Note that previously (in the context of constant coefficients) the operator G was
introduced by means of the convolution (2.4) with the fundamental solution (2.5) or
(2.6). For variable coefficients, and/or when the domain Ω0 is smaller than the entire
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space R
n, the apparatus of fundamental solutions does not apply. Yet the inverse

operator G of (5.2) is well defined. In practice, it can be computed; i.e., problem (5.1)
subject to the condition u ∈ U can be discretized on Ω0 and solved numerically.

Another very important consideration is the structure of the boundary trace that
corresponds to the new operator L of (5.1). For the Laplace and Helmholtz operators,
the vector traces on Γ are defined as traces of the solution itself and of the normal
derivative; see formula (4.3). In the general theory of Calderon’s operators (see [19]),
the traces are constructed to guarantee a key property of the potentials (4.6), (4.7) and
projections (4.4), (4.8), namely, their independence of the auxiliary function w(x) as
long as it has the correct trace, i.e., as long as the interface condition (4.5) is satisfied.
For the second order variable coefficient operators L that have the form

(5.3) Lv = ∇(p∇v) + {lower order terms}, p = p(x),

the Neumann data reduce to the standard normal derivative, and, consequently, the
previous definition of the trace (see (4.3)) applies with no change. Hereafter, we will
assume for simplicity that this is the case. This assumption does not entail a consid-
erable loss of generality because operators (5.3) cover many important applications.

Having introduced the operator equation (5.1), defined the inverse (5.2), and
identified the boundary trace Tr (4.3), we can extend all the operator constructions
of section 4 in a straightforward manner, as done in [13] for a single domain. The
only thing that will change is that every time a volumetric convolution with the
fundamental solution appears in an equation, it ought to be replaced by the operator
G of (5.2) applied to the corresponding source function. This way, we define the
generalized Calderon potentials (cf. formulae (4.6) and (4.7))

PΩiξΓi
(x) = G

{
Lw
∣∣
Rn\Ωi

}
, x ∈ Ωi,(5.4)

QRn\Ωi
ξΓi(x) = G

{
Lw
∣∣
Ωi

}
, x ∈ R

n\Ωi,(5.5)

and the boundary projection operators (cf. formulae (4.4) and (4.8))

PΓi
ξΓi

= TriPΩiξΓi ,(5.6)

QΓiξΓi = TriQRn\Ωi
ξΓi

(5.7)

for all i = 1, 2, . . . , N . Combined operators for the composite domain Ω = Ω1 ∪ Ω2 ∪
· · ·∪ΩN are also introduced similarly to section 4, according to formulae (4.12), (4.13),
and (4.14), where the individual operators are now given by (5.4)–(5.7).

The fundamental properties of the projections (5.6) and (5.7) are the same as
before. Namely, the function u ∈ U is a solution to the homogeneous equation Lu = 0
on the domain Ωi if and only if its boundary trace ξΓi = Triu satisfies the boundary
equation with projection,

(5.8) PΓiξΓi = ξΓi .

Similarly, the function u ∈ U is a solution to the homogeneous equation Lu = 0 on the
complementary domain Ω0 \ Ωi if and only if its boundary trace ξΓi = Triu satisfies
the boundary equation with projection,

(5.9) QΓi
ξΓi

= ξΓi
.
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Accordingly, if the solutions to (5.1) are interpreted as waves, then one can say that
the boundary equations with projections (5.8) and (5.9) render the wave split into
incoming and outgoing with respect to a given Ωi. If u ∈ U and Triu = ξΓi , then

ξΓi = PΓiξΓi + QΓiξΓi

def
= ξ−Γi

+ ξ+
Γi
,

where the component ξ−Γi
is the trace of the incoming field due to the sources outside

Ωi,

ξ−Γi
= Triu

−
i , Lu−

i = 0 for x ∈ Ωi,

and the component ξ+
Γi

is the trace of the outgoing field due to the sources inside Ωi,

ξ+
Γi

= Triu
+
i , Lu+

i = 0 for x ∈ R
n \ Ωi.

In doing so, the entire space ΞΓi =
{
ξΓi

}
can be represented as a direct sum of the

traces of incoming waves and those of the outgoing waves:

ΞΓi = Ξ−
Γi

⊕ Ξ+
Γi
.

The exact same results automatically extend to the operators built for the composite
domain Ω = Ω1 ∪ Ω2 ∪ · · · ∪ ΩN as well.

Moreover, all the conclusions of sections 3 and 4 regarding the active control
sources are also preserved. Namely, to cancel out the unwanted exterior sound u− on
Ω = Ω1 ∪ Ω2 ∪ · · · ∪ ΩN , we build the controls according to formula (4.15):

(5.10) g(x) = −Lw|Rn\Ω, g(x) = 0|Ω,

where the auxiliary function w = w(x) satisfies w ∈ U and Trw = Tru, and u = u(x)
is the overall acoustic field. We emphasize that in order to obtain the controls g(x) of
(5.10), we only need to know Tru at the boundary Γ = Γ1 ∪Γ2 ∪ · · · ∪ΓN . Moreover,
the coefficients of the operator L, i.e., the properties of the medium, only need to be
known outside Ω on the region where the auxiliary function w(x) �= 0. This region can
be a narrow layer outside Γ right next to it. This conclusion seems counterintuitive
at first glance, because the controls g(x) of (5.10) are supposed to eliminate the
unwanted component of the field inside Ω, and yet it seems that the properties of the
medium do not need to be known. The explanation, however, is quite simple. Both
the unwanted noise u−(x) and the output of the controls v(x) = Gg propagate across
one and the same medium, and to achieve cancellation we do not necessarily need
to know what this medium is inside Ω. Equivalently, one can think that the entire
incoming component u−(x) is canceled by the controls (5.10) right at the entry to Ω
so that it does not propagate any further; see [13, sections 4.2 and 4.3].

Active controls g̃(x) that will render the selective cancellation of sound on the
system of subdomains Ωi, i = 1, 2, . . . , N , according to a predetermined communica-
tion pattern M are also obtained with the help of formula (5.10). The only difference
is that as before, the application of this formula requires a preliminary stage. At this
preliminary stage, we construct a modified boundary trace ξ̃Γ according to formula
(4.17), where the operators QRn\Ωj

are defined by (5.5). At the final stage, we take

an auxiliary function w̃ = w̃(x) that satisfies w̃ ∈ U and Trw̃ = ξ̃Γ and substitute it
into (5.10), thus obtaining the desired selective controls g̃(x).

For more detail on the theory of generalized Calderon potentials and projections,
as well as their efficient computation by means of the method of difference potentials,
we refer the reader to the monograph [19].
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6. Conclusions. We have introduced and studied the problem of active control
of sound for composite regions. This problem is, in fact, a particular inverse source
problem for the differential equation (or system) that governs the sound field. Al-
lowing for composite domains is a key innovation proposed here as compared to our
previous work on the subject (see [13] and related references). We obtained a closed
form general solution for the control sources. This solution allows all individual sub-
domains to either communicate freely with one another or else be shielded from their
peers. In doing so, no reciprocity is assumed; i.e., for a given pair of subdomains one
may be allowed to hear the other but not necessarily vice versa.

If the controls in the composite case are built exactly as in the previously analyzed
case of simple, i.e., arcwise connected, domains, then the communications between all
subdomains is allowed. In other words, by default all subdomains hear one another. If,
however, a particular subdomain is not allowed to hear another given subdomain, then
the supplementary controls are employed prior to building the final set of controls.
The role of the supplementary controls (one can call it the predictor stage) is to
communicate the specific acoustic output of the domain not to be heard to the domain
that is not allowed to hear it. Subsequently, the final controls (corrector stage) use
these data to render the desired sound cancellation.

Moreover, the general solution requires no information on the original acoustic
sources and can be constructed based solely on the knowledge of the field quantities
at the boundaries of the subdomains. In practice, those quantities can be obtained
by measurements. In doing so, the methodology guarantees the exact volumetric
cancellation of the unwanted noise, as opposed to many other techniques available in
the literature that would only provide for a pointwise or directional cancellation, and
would not even offer an approach to selective cancellation on composite domains.

The problem is solved for a general formulation that allows the propagation of
sound across a medium with variable characteristics. In doing so, to cancel out the
outside sound on a given domain, no actual knowledge of the medium properties on
this domain is required. The explanation of this seemingly counterintuitive behavior
is simple—both the original sound and the output of the controls propagate across
one and the same medium, and for building the control sources we do not necessarily
need to know what this medium is.

It is also important to mention that for every subdomain there is a component of
the acoustic field to be canceled out and another component to be left unaffected. Yet
the quantities at the boundary that need to be measured in order to build the control
system can pertain to the overall field rather than only to its unwanted component,
and the methodology will automatically distinguish between the two. Of course, the
locations and shapes of the subdomains need to be known ahead of time.

Finally, it is clear that in the context of implementation, obtaining the continuous
data, as well as providing a continuous excitation (control sources), along the interface
Γ is not practical. Instead, the problem needs to be discretized so that only finite
arrays of individual sensors (microphones) and actuators (loudspeakers) are used. A
powerful apparatus for the analysis of discrete active shielding problems is provided by
the method of difference potentials [19]. This method offers a comprehensive finite-
difference theory, which is fully analogous to the continuous theory of Calderon’s
operators [3, 23] and in many instances even goes beyond it. As mentioned in section 1,
discrete active controls have been built, and their properties established, for various
settings; see [14, 15, 16, 18, 22, 25, 27, 28]. In particular, the case of a composite
region in the discrete framework is analyzed in [21]. A brief account of the method
of difference potentials, along with the analysis of discrete active shielding problems,
can be found in [20, Chapter 14].
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ON THE UPLINK OF A CELLULAR SYSTEM WITH IMPERFECT
POWER CONTROL AND MULTIPLE SERVICES∗
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Abstract. We analyze the reverse link of a single wireless cell in which mobile phones simulta-
neously transmit to the base station using code division multiple access (CDMA). The mobiles are
transmitting data which is delay intolerant, so that scheduling cannot be employed. There is a finite
number of data classes, and the users transmit either data or a lower rate synchronizing signal. To
overcome the near-far problem, received power control is used, which has a log-normal error. For
each class there is an outage probability that the user’s signal-to-noise ratio (SNR) will be met (when
active and when idle). Refinements of the central limit theorem are used to determine the number of
users of each class that can be supported, i.e., the capacity. The approximation can also be used to
determine the minimal target powers necessary to meet the outage requirements. Comparison with
simulation shows these approximations to be accurate.

Key words. asymptotics, capacity region, central limit approximation, code division multiple
access, log-normal errors, minimal target powers, received power control, uplink, wireless
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1. Introduction. This paper considers the capacity of the reverse link of a cellu-
lar code division multiple access (CDMA) system in which there are multiple circuit-
switched data connections, and the minimal target powers when the link is operating
within its capacity. Each data connection is drawn from one of a small number of data
classes, with its own quality of service (QoS) requirements. The data in all classes
is delay intolerant, so that scheduling of the data is infeasible. Furthermore, while
users are connected, data is transmitted periodically to the base station in “bursts”;
otherwise they are “idle,” and a synchronization signal is transmitted. Active trans-
missions are made up of a series of channel encoded frames. The base station makes
no attempt to coordinate user transmissions, and so frames will be undecodable when
there is excessive interference from other user transmissions. Interference is generated
both when users are active and when they are idle.

One way to manage this interference is to endeavor to directly control the received
signal-to-noise-ratio (SNR) of the user frames by power control [15],[16]. However,
since data transmissions are bursty, of short duration, and difficult to anticipate,
management of user SNR by such a power control may be difficult to accomplish.
Instead we propose a power control with the simpler objective of maintaining received
power only. The interference then fluctuates according to the activity of the users
themselves and the target powers. Clearly the target powers should depend on the
number of users of each class which are connected at any point as well as their QoS.
However it is not a priori clear how to set these targets. One possibility is to set
them using stochastic approximation, raising and lowering the targets according to
user performance. This is not our approach. Instead we propose to set the targets
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directly using the statistics of activity for each class, which we suppose known. (In
some implementations of the system it may be possible to actually control the degree
of activity and so make the usual trade-offs between throughput and the number of
users supported.)

Users set their transmit powers in conjunction with a pilot signal measured by
the mobile receivers. The base station then compares the user’s received power with
its target and sends corrections to the mobile phone (henceforward referred to as a
mobile) via a feedback link. The feedback link increases the accuracy of the power
control. A distributed algorithm for perfect power control, and its convergence, were
investigated in [12]. Ideal power control (very small error in the received power) is
of course difficult to achieve, however, and we suppose that there is a nonnegligible
residual error. The marginal distribution of this error at any instant we take to be
log-normal, and the underlying standard deviation is supposed known. It will be
convenient to quote relative powers in decibels (dB), which is 10 log10.

The QoS requirements specify the fraction of packets that is allowed to be un-
decodable at the receiver. We propose to control this fraction by maintaining the
received signals so that the instantaneous probability of an outage is small. An out-
age occurs when the SNR ratio falls below a predetermined threshold, which we also
suppose known. Our approach is thus related to the one described in [3] where outage
probabilities are determined by modeling the distribution of users as a spatial Poisson
process.

Each class i is thus characterized by requirements both when active and idle
and which are in general distinct. These are the users’ rate, the SNR thresholds
αi/W, βi/W , and the outage probabilities Li, li. Here W is the spread bandwidth.
Additionally we suppose that the probability that a user is active is wi. The standard
deviation of power control error may also be taken to depend on whether the user
is active as well as on the user’s data class. In what follows it will be convenient
to work with the bit-energy-to-interference density ratio Eb/I0, which determines the
performance of the base station decoder and is usually quoted in the design of wireless
communication links. Eb/I0 is related to the SNR threshold via the processing gain
to be Eb/I0 = αi/Ri, where Ri is the class i active bit rate and a similar relationship
when the user is idle.

To estimate the number of users that can be supported and determine the minimal
target powers when the link is operating within its capacity, we suppose that the
system is large-scale and use a central limit approximation. Put crudely, we are
relying on the approximately normal behavior of the interference from users in the
same cell. The statistics of this interference is a combination of random activity and
the user power control errors, as already mentioned. In order to have a satisfactory
approximation, it will turn out that estimates involving the density of these statistics
will be needed and not just their distribution. Indeed we are led to a model in
which the scaled interference converges to a fixed quantity plus a normal error with
scale 1/

√
K, where K is a scale factor for the number of users in the system. The

interference from users in adjacent cells is modeled along the lines in [3], [4], with
allowance for skewness and kurtosis.

Before continuing, we would like to discuss some other related references. First
it should be noted that the model used in our paper is very similar to Model 2
described in [1] and that we also address similar performance questions. We refer
readers to [1] but note that both papers are concerned with received power control
and corresponding received power targets, both have more than one class of users,
and both are concerned with outage, referred to as the service availability probability
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(SAP) in [1]; see our (2.8) and (2.9). Both models also consider imperfect power
control with a marginal log-normal error. However, the methods of analysis are very
different, with the imperfect power control (SAP) in [1] being approximated using
an estimate given in [8], whereas our results are obtained via refined asymptotics
based on the central limit theorem, as mentioned earlier. Finally, our results lead to
the determination of minimum feasible received power targets themselves as well as
explicit constraints for the capacity, as in Propositions 2.1 and 2.2.

Next we would like to mention other papers related to our work. Results for a
single cell, two service class system were obtained in [13] where in this case resources
were allocated according to a mechanism of dynamically adapting the spreading gain
(chip-to-data bit ratio). Second there is the well-known paper [6] which is for a pure
voice system but does not consider power control errors. (The influence of power
control error on reverse link capacity was the subject of detailed investigation in
subsequent studies; see, for example, [2] and [14].) Additionally, in our system, load
control might be affected by active rate control (via the vocoder or similar controls
for streaming video and other near-real-time applications). A related idea of adaptive
control of error correction codes, power, and scheduling of users is considered in [10]
for the downlink of a CDMA system. Finally, algorithms for joint load balancing and
cell assignment were treated by Hanly [7] as well as Yates and Huang [15], which were
indeed devised initially for the reverse link of CDMA networks.

The model is formulated in section 2, and the asymptotic results are stated there.
The asymptotic analysis is carried out in section 3, under the assumption that the
system is large-scale. The capacity of the system, in terms of the number of mobiles
requiring each service, is determined to lowest order in section 4, and correction terms
are determined in section 5. Asymptotic approximations to the minimal powers are
also determined. Numerical results are presented in section 6. These results are
used to illustrate the analysis in the relatively simple setting of distance-based path
loss laws. Subsequently, there are detailed discussions as to how to incorporate more
involved propagation models with log-normal shadowing as well as how to approximate
the multicell interference where the control is being used at each cell in a network.
Conclusions are presented in section 7.

2. Model and results. Because of the imperfect power control, we assume that

the power received at the base station from an active mobile m of class j is Pje
(j)
m ,

where Pj is the target power, and e
(j)
m = eκjξ

(j)
m , where ξ

(j)
m is normally distributed,

with zero mean and unit variance. Analogously, the power received at the base station

from an idle mobile of class j is pjε
(j)
m , where ε

(j)
m = eσjη

(j)
m and η

(j)
m is normally

distributed, with zero mean and unit variance.

Additionally, let X
(j)
m be the activity indicator for mobile m of class j. We assume

that

(2.1) wj = Pr
{
X(j)

m = 1
}

= 1 − Pr
{
X(j)

m = 0
}
, m ∈ Mj , j = 1, . . . , J,

where Mj denotes the set of mobiles of class j. We also assume that the random

variables (ξ
(j)
m , η

(j)
m ) and X

(j)
m , m ∈ Mj , j = 1, . . . , J , are mutually independent, but

we allow for possible correlation between ξ
(j)
m and η

(j)
m .

The power I(j) received at the base station due to all the mobiles of class j in the
cell under consideration is

(2.2) I(j) =
∑

m∈Mj

[
Pje

(j)
m X(j)

m + pjε
(j)
m (1 −X(j)

m )
]
.
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The total power I0 received at the base station, including that from mobiles in other
cells, is taken to be

(2.3) I0 =

J∑
l=1

I(l) + ηW + MK0 +
√
vK0 S .

Here η,M , and v are positive constants, and ηW is the local receiver noise power.
Since we are considering a wideband system, W is large. Also, K0 � 1 is the total
number of users in adjacent cells and, motivated by the results of Chan and Hanly [3],
we assume that the density of the random variable S has a truncated Edgeworth-like
expansion of the form

(2.4) p(y) =
1√
2π

e−y2/2

[
1 +

μ3

6
He3(y) +

μ4

24
He4(y) +

μ2
3

72
He6(y)

]
,

where μ3 and μ4 are O(1) constants and, in the notation of [11],

(2.5) Hen(y) = (−1)ney
2/2 dn

dyn
(e−y2/2)

are Hermite polynomials. The mean MK0 and variance vK0 of MK0 +
√
vK0S are

both O(K0), and μ3 is the skewness of S.
We define

(2.6) J (j)
m =

∑
m′ �=m

[
Pje

(j)
m′X

(j)
m′ + pjε

(j)
m′(1 −X

(j)
m′ )

]
, m ∈ Mj .

Then the interference I
(j)
m to the transmission of any mobile of class j is

(2.7) I(j)
m =

∑
l �=j

I(l) + J (j)
m + ηW + MK0 +

√
vK0 S .

The SNR requirement for an active mobile is

(2.8) Pr
{
Pje

(j)
m ≥ αj

W
I(j)
m

}
≥ 1 − Lj , m ∈ Mj , j = 1, . . . , J ,

and the SNR requirement for an idle mobile is

(2.9) Pr

{
pjε

(j)
m ≥ βj

W
I(j)
m

}
≥ 1 − lj , m ∈ Mj , j = 1, . . . , J ,

where Lj and lj are prescribed loss probabilities.
We define the outage quantiles νj and ρj by

(2.10) 1 − Lj =
1√
2π

∫ ∞

−νj

e−z2/2dz

and

(2.11) 1 − lj =
1√
2π

∫ ∞

−ρj

e−x2/2dz .
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We assume that the target powers are limited, with

(2.12) Pj ≤ P̄j , pj ≤ p̄j , j = 1, . . . , J ,

and we define

(2.13) δ0 = max
j

max

(
αj

P̄j
eκjνj ,

βj

p̄j
eσjρj

)
.

We suppose that Kj is the large number of mobiles belonging to class j, and we define

(2.14) τ =
1

W

J∑
j=1

[αje
κjνjeκ

2
j/2wj + βje

σjρjeσ
2
j/2(1 − wj)]Kj .

We first derive the following asymptotic result.
Proposition 2.1. The first order approximation to the admissible set, which

gives a constraint on the number of users of each class that can be supported, is given
by

(2.15) τ ≤ 1 −
(
η +

MK0

W

)
δ0 .

The corresponding minimal target powers necessary to meet the outage requirements
are

(2.16) P ∗
j =

αje
κjνj

(1 − τ)

(
η +

MK0

W

)
, p∗j =

βje
σjρj

(1 − τ)

(
η +

MK0

W

)
.

We remark that, to this order, the approximation does not involve the variance
or skewness of the interference from users in adjacent cells. We derive a refined
asymptotic approximation which does depend on these quantities. We define

(2.17) fj = αje
κjνjeκ

2
j/2wj + βje

σjρjeσ
2
j/2(1 − wj) ,

(2.18) ψl = α2
l e

2κlνle2κ2
l wl + β2

l e
2σlρle2σ2

l (1 − wl) − f2
l ,

(2.19) ψ = vK0W

[
(1 − τ)

(ηW + MK0)

]2

,

and

ωj =
1

2

(
νj
κj

− 1

)(
1

W

J∑
l=1

ψlKl + ψ

)
− fj ,(2.20)

ζj =
1

2

(
ρj
σj

− 1

)(
1

W

J∑
l=1

ψlKl + ψ

)
− fj ,

and

mj =
1

6
μ3ψ

3/2

[(
νj
κj

− 1

)(
νj
κj

− 2

)
− 1

κ2
j

]
,(2.21)

qj =
1

6
μ3ψ

3/2

[(
ρj
σj

− 1)

)(
ρj
σj

− 2

)
− 1

σ2
j

]
.
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Also, we let

X =
1

W

J∑
j=1

[αje
κjνjeκ

2
j/2wjωj + βje

σjρjeσ
2
j/2(1 − wj)ζj ]Kj ,(2.22)

U =
1

W

J∑
j=1

[αje
κjνjeκ

2
j/2wjmj + βje

σjρjeσ
2
j/2(1 − wj)qj ]Kj ,(2.23)

and

(2.24) δ = max
j

max

[
αj

P̄j
eκjνj

(
1 +

ωj

W
+

mj

W 3/2

)
,
βj

p̄j
eσjρj

(
1 +

ζj
W

+
qj

W 3/2

)]
.

We then have the following asymptotic results.
Proposition 2.2. The refined approximation to the admissible set is given by

(2.25) τ +
X

W
+

U

W 3/2
≤ 1 −

(
η +

MK0

W

)
δ ,

and the corresponding minimal target powers are

P ∗
j =

αje
κjνj

(
η + MK0

W

) (
1 +

ωj

W +
mj

W 3/2

)(
1 − τ − X

W − U
W 3/2

) ,(2.26)

p∗j =
βje

σjρj
(
η + MK0

W

) (
1 +

ζj
W +

qj
W 3/2

)
(
1 − τ − X

W − U
W 3/2

) .

We remark that, to this order, which neglects terms of O(1/W 2), the kurtosis μ4 in
(2.4) does not appear.

3. Asymptotic analysis. For m ∈ Mj , the error terms have first and second
moments

(3.1) E(e(j)
m ) = eκ

2
j/2, E

[
(e(j)

m )2
]

= e2κ2
j

and

(3.2) E(ε(j)m ) = eσ
2
j/2, E

[
(ε(j)m )2

]
= e2σ2

j .

From (2.1), since we have assumed that the activity and error random variables are
mutually independent,

(3.3) E
[
Pje

(j)
m X(j)

m + pjε
(j)
m (1 −X(j)

m )
]

= Pje
κ2
j/2wj + pje

σ2
j/2(1 − wj)

and

(3.4) E

{[
Pje

(j)
m X(j)

m + pjε
(j)
m (1 −X(j)

m )
]2

}
= P 2

j e
2κ2

jwj + p2
je

2σ2
j (1 − wj) .

Hence,

vj ≡ Var
[
Pje

(j)
m X(j)

m + pjε
(j)
m (1 −X(j)

m )
]

(3.5)

= P 2
j e

2κ2
jwj + p2

je
2σ2

j (1 − wj) −
[
Pje

κ2
j/2wj + pje

σ2
j/2(1 − wj)

]2

.
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Suppose that Kj is the number of mobiles belonging to class j. From (2.2) and

(2.6), since Pje
(j)
m X

(j)
m + pjε

(j)
m (1−X

(j)
m ), m ∈ Mj , are independently and identically

distributed random variables with finite third moment,

(3.6) I(j) =
[
Pje

κ2
j/2wj + pje

σ2
j/2(1 − wj)

]
Kj +

√
vjKjS

(j)

and

(3.7) J (j)
m =

[
Pje

κ2
j/2wj + pje

σ2
j/2(1 − wj)

]
(Kj − 1) +

√
vj(Kj − 1)S(j)

m ,

where S(j) and S
(j)
m are asymptotically normally distributed with zero mean, unit

variance, and error O(1/
√
Kj) as Kj → ∞; see [5, p. 539]. This is an estimate for

convergence in distribution, but it is shown in Appendix A that the densities converge

as well. The random variables S(l), l 
= j, and S
(j)
m are mutually independent. We

now take the following asymptotic scalings:

(3.8) ηW = N0K, Kj = γjK, j = 0, . . . , J ,

where N0 = 0(1) in appropriate power units and γj = O(1) as K,W → ∞. We take

K = minj Kj . If we introduce these scalings into the expression (2.7) for I
(j)
m , use

(3.6) and (3.7), and let

(3.9) N = N0 + Mγ0, V = vγ0,

we obtain

I
(j)
m

K
=

J∑
l=1

[
Ple

κ2
l /2wl + ple

σ2
l /2(1 − wl)

]
γl + N +

√
V

K
S(3.10)

+
1√
K

⎡
⎣∑

l �=j

√
vlγlS

(l) +

√
vj

(
γj −

1

K

)
S(j)
m

⎤
⎦

− 1

K

[
Pje

κ2
j/2wj + pje

σ2
j/2(1 − wj)

]
.

We define

(3.11) G =
J∑

l=1

[
Ple

κ2
l /2wl + ple

σ2
l /2(1 − wl)

]
γl + N ,

(3.12) λj =
Pj

G
, θj =

pj
G
, Φ =

V

G2
,

Γj = λje
κ2
j/2wj + θje

σ2
j/2(1 − wj) ,(3.13)

Φl = λ2
l e

2κ2
l wl + θ2

l e
2σ2

l (1 − wl) − Γ2
l ,

and

(3.14) Λ(j)
m =

∑
l �=j

√
ΦlγlS

(l) +

√
Φj

(
γj −

1

K

)
S(j)
m +

√
ΦS .
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We also introduce the scalings

(3.15)
αj

W
=

aj
K

,
βj

W
=

bj
K

, j = 1, . . . , J,

where aj = O(1) and bj = O(1) as K,W → ∞. Then, from (3.5) and (3.10)–

(3.15), the inequalities Pje
(j)
m ≥ (αj/W )I

(j)
m and pjε

(j)
m ≥ (βj/W )I

(j)
m imply that, for

j = 1, . . . , J ,

(3.16)
λj

aj
eκjξ

(j)
m ≥ 1 +

Λ
(j)
m√
K

− Γj

K
,

θj
bj
eσjη

(j)
m ≥ 1 +

Λ
(j)
m√
K

− Γj

K
.

In the next section we consider the implications of these stochastic inequalities.

4. Capacity and minimal powers. We assume that κj ≥ κ > 0 and σj ≥ σ >
0, j = 1, . . . , J , and that κ and σ are not small. We define

(4.1) Y (j)
m =

λj

aj
eκjξ

(j)
m − Λ

(j)
m√
K

, U (j)
m =

θj
bj
eσjη

(j)
m − Λ

(j)
m√
K

.

It is shown in Appendix B that the densities of (λj/aj)e
κjξ

(j)
m and (θj/bj)e

σjη
(j)
m are,

respectively,

(4.2) gj(y) =
1√

2πκjy
exp

{
−1

2

[
1

κj
ln

(
ajy

λj

)]2
}
, y > 0 ,

and

(4.3) hj(y) =
1√

2πσjy
exp

{
−1

2

[
1

σj
ln

(
bjy

θj

)]2
}
, y > 0 .

Moreover, it is shown that Y
(j)
m and U

(j)
m have densities

(4.4) gj(y) +
1

2K

(
J∑

l=1

Φlγl + Φ

)
d2gj
dy2

+
μ3Φ

3/2

6K3/2

d3gj
dy3

+ O

(
1

K2

)
, y > 0,

and

(4.5) hj(y) +
1

2K

(
J∑

l=1

Φlγl + Φ

)
d2hj

dy2
+

μ3Φ
3/2

6K3/2

d3hj

dy3
+ O

(
1

K2

)
, y > 0 ,

respectively.
From (2.8)–(2.11), (3.16), and (4.1)–(4.3), the QoS requirements are

(4.6) Pr

{
Y (j)
m ≥ 1 − Γj

K

}
≥

∫ ∞

λj
aj

e−κjνj

gj(y)dy

and

(4.7) Pr

{
U (j)
m ≥ 1 − Γj

K

}
≥

∫ ∞

θj
bj

e−σjρj

hj(y)dy .
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With the densities of Y
(j)
m and U

(j)
m given by (4.4) and (4.5), these inequalities are

asymptotically equivalent to

(4.8)∫ ∞

λj
aj

e−κjνj

gj(y)dy

≤
∫ ∞

1−Γj
K

gj(y)dy −
1

2K

(
J∑

l=1

Φlγl + Φ

)
dgj
dy

(1) − μ3Φ
3/2

6K3/2

d2gj
dy2

(1) + O

(
1

K2

)

and

(4.9)∫ ∞

θj
bj

e−σjρj

hj(y)dy

≤
∫ ∞

1−Γj
K

hj(y)dy −
1

2K

(
J∑

l=1

Φlγl + Φ

)
dhj

dy
(1) − μ3Φ

3/2

6K3/2

d2hj

dy2
(1) + O

(
1

K2

)
.

However, from (4.2) and (4.3),

dgj
dy

(1) = −
[
1 +

1

κ2
j

ln

(
aj
λj

)]
gj(1),(4.10)

d2gj
dy2

(1) =

{[
1 +

1

κ2
j

ln

(
aj
λj

)][
2 +

1

κ2
j

ln

(
aj
λj

)]
− 1

κ2
j

}
gj(1) ,

and

dhj

dy
(1) = −

[
1 +

1

σ2
j

ln

(
bj
θj

)]
hj(1),(4.11)

d2hj

dy2
(1) =

{[
1 +

1

σ2
j

ln

(
bj
θj

)][
2 +

1

σ2
j

ln

(
bj
θj

)]
− 1

σ2
j

}
hj(1) .

Also ∫ ∞

1− (ζ+ξ)
K − η

K3/2

gj(y)dy(4.12)

=

∫ ∞

1− ζ
K

gj(y)dy +

(
ξ

K
+

η

K3/2

)
gj(1) + O

(
1

K2

)
and ∫ ∞

1− (ζ+μ)
K − ν

K3/2

hj(y)dy(4.13)

=

∫ ∞

1− ζ
K

hj(y)dy +
( μ

K
+

ν

K3/2

)
hj(1) + O

(
1

K2

)
.
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It follows from (4.8)–(4.13) that, for j = 1, . . . , J ,

λj

aj
e−κjνj ≥ 1 − Γj

K
− 1

2K

(
J∑

l=1

Φlγl + Φ

)[
1 +

1

κ2
j

ln

(
aj
λj

)]
(4.14)

+
μ3Φ

3/2

6K3/2

{[
1 +

1

κ2
j

ln

(
aj
λj

)][
2 +

1

κ2
j

ln

(
aj
λj

)]
− 1

κ2
j

}

+ O

(
1

K2

)
and

θj
bj
e−σjρj ≥ 1 − Γj

K
− 1

2K

(
J∑

l=1

Φlγl + Φ

)[
1 +

1

σ2
j

ln

(
bj
θj

)]
(4.15)

+
μ3Φ

3/2

6K3/2

{[
1 +

1

σ2
j

ln

(
bj
θj

)][
2 +

1

σ2
j

ln

(
bj
θj

)]
− 1

σ2
j

}

+ O

(
1

K2

)
.

These are the deterministic inequalities implied by the stochastic ones in (3.16).
To lowest order,

(4.16) λj ≥ aje
κjνj

[
1 + O

(
1

K

)]
, θj ≥ bje

σjρj

[
1 + O

(
1

K

)]
.

Hence, from (3.12),

(4.17) Pj ≥ aje
κjνjG

[
1 + O

(
1

K

)]
, pj ≥ bje

σjρjG

[
1 + O

(
1

K

)]
.

We define

(4.18) τ =
J∑

j=1

[
aje

κjνjeκ
2
j/2wj + bje

σjρjeσ
2
j/2(1 − wj)

]
γj .

Then, from (3.11) and (4.17), we obtain

(4.19)

[
1 − τ + O

(
1

K

)]
G ≥ N .

We assume that the target powers are limited, as in (2.12), and we define

(4.20) Δ0 = max
j

max

(
aj

P j

eκjνj ,
bj
pj

eσjρj

)

and assume that NΔ0 < 1. It follows from (4.17) that

(4.21)
1

G
≥ Δ0

[
1 + O

(
1

K

)]
,
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and (4.19) implies that

(4.22) τ ≤ 1 −NΔ0 + O

(
1

K

)
,

which is the lowest-order approximation to the admissible set. Also, from (4.17) and
(4.19), the minimal powers are

(4.23) P ∗
j =

Naje
κjνj

[
1 + O

(
1
K

)][
1 − τ + O

(
1
K

)] , p∗j =
Nbje

σjρj
[
1 + O

(
1
K

)][
1 − τ + O

(
1
K

)] .

We investigate correction terms in the next section.

5. Refined approximation. The minimal powers P ∗
j and p∗j correspond to

equality in (4.17) and (4.19) and hence, from (3.12),

(5.1) λj = aje
κjνj

(
1 +

nj

K

)
, θj = bje

σjρj

(
1 +

rj
K

)
,

where nj = O(1) and rj = O(1), and

(5.2)
1

G
=

(1 − τ)

N
+ O

(
1

K

)
.

Then, from (3.12), (3.13), (5.1), and (5.2),

(5.3) Γj = Θj + O(1/K), Φl = Ψl + O(1/K) , Φ = Ψ + O(1/K) ,

where

(5.4) Θj = aje
κjνjeκ

2
j/2wj + bje

σjρjeσ
2
j/2(1 − wj)

and

(5.5) Ψl = a2
l e

2κlνle2κ2
l wl + b2l e

2σlρle2σ2
l (1 − wl) − Θ2

l , Ψ = V

(
1 − τ

N

)2

.

Also, (4.14) and (4.15) imply that

(5.6) nj ≥ Ωj +
Mj√
K

+ O

(
1

K

)
, rj ≥ Zj +

Qj√
K

+ O

(
1

K

)
,

where

Ωj =
1

2

(
νj
κj

− 1

)(
J∑

l=1

Ψlγl + Ψ

)
− Θj ,(5.7)

Zj =
1

2

(
ρj
σj

− 1

)(
J∑

l=1

Ψlγl + Ψ

)
− Θj ,

and

Mj =
1

6
μ3Ψ

3/2

[(
νj
κj

− 1

)(
νj
κj

− 2

)
− 1

κ2
j

]
,(5.8)

Qj =
1

6
μ3Ψ

3/2

[(
ρj
σj

− 1

)(
ρj
σj

− 2

)
− 1

σ2
j

]
.
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We define

χ =

J∑
j=1

[aje
κjνjeκ

2
j/2wjΩj + bje

σjρjeσ
2
j/2(1 − wj)Zj ]γj ,(5.9)

u =

J∑
j=1

[
aje

κjνjeκ
2
j/2wjMj + bje

σjpjeσ
2
j/2(1 − wj)Qj

]
γj .

From (3.12), (5.1), and (5.6), we obtain lower bounds on Pj and pj . If we multiply
these expressions by wjγj exp(κ2

j/2) and (1 − wj)γj exp(σ2
j /2), respectively, sum on

j, and use the definition of G in (3.11) and those of τ , χ, and u in (4.18) and (5.9),
we obtain

(5.10)

[
1 − τ − χ

K
− u

K3/2
+ O

(
1

K2

)]
G ≥ N .

The minimal powers, corresponding to equality in (5.6) and (5.10), are

(5.11) P ∗
j =

Naje
κjνj

[
1 +

Ωj

K +
Mj

K3/2 + O
(

1
K2

)]
[
1 − τ − χ

K − u
K3/2 + O

(
1

K2

)]
and

(5.12) p∗j =
Nbje

σjρj

[
1 +

Zj

K +
Qj

K3/2 + O
(

1
K2

)]
[
1 − τ − χ

K − u
K3/2 + O

(
1

K2

)] .

However, P ∗
j ≤ P j and p∗j ≤ pj , j = 1, . . . , J . We define

Δ = max
j

max

[
aj
P̄j

eκjνj

(
1 +

Ωj

K
+

Mj

K3/2

)
,(5.13)

bj
p̄j

eσjρj

(
1 +

Zj

K
+

Qj

K3/2

)]
,

and assume that NΔ < 1. Then, from (3.12), (5.1), and (5.6),

(5.14)
1

G
≥ Δ

[
1 + O

(
1

K2

)]
,

and, from (5.10), the refined approximation to the admissible set is

(5.15) τ +
χ

K
+

u

K3/2
≤ 1 −NΔ + O

(
1

K2

)
.

We now express the results in terms of the original variables and define

fj =
W

K
Θj , ψj =

(
W

K

)2

Ψj , ψ =
W

K
Ψ ,(5.16)

ωj =
W

K
Ωj , ζj =

W

K
Zj ,(5.17)

mj =

(
W

K

)3/2

Mj , qj =

(
W

K

)3/2

Qj ,
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and

(5.18) δ0 =
W

K
Δ0, δ =

W

K
Δ, X =

W

K
χ, U =

(
W

K

)3/2

u .

Then, from (3.8), (3.9), (3.15), (5.4), (5.5), (5.7), and (5.8), we obtain (2.17)–(2.21).
Also, from (3.8), (3.15), (4.18), and (5.9), we obtain (2.14), (2.22), and (2.23). Finally,
from (3.15), (4.20), and (5.13), we obtain (2.13) and (2.24).

To lowest order, from (4.22) and (4.23), ignoring the O(1/K) terms, the admissible
set is given by (2.15), and the minimal powers by (2.16). In the refined approximation,
from (5.11), (5.12), and (5.15), ignoring the O(1/K2) terms, we obtain (2.25) and
(2.26).

6. Numerical results. The first order approximation is that given by Propo-
sition 2.1. The second order approximation corresponds to setting μ3 = 0, i.e., to
neglecting the effects of skewness, so that, from (2.21) and (2.23), mj = 0, qj = 0,
and U = 0 in (2.24)–(2.26). The third order approximation retains μ3 
= 0.

In the following results the external interference is simulated (as well as analyzed)
as being statistically independent of the power control processes which are taking
place in the desired or target cell. This is obviously a simplification of what would
happen in an actual network. We further suppose that the first three moments (mean,
variance, and skewness) of this external interference are known exactly at the desired
cell. Thus the impact on capacity of estimation error is neglected. Finally, we neglect
background noise, which is supposed to be small in comparison with the interference.

The path loss propagation law is taken to be

γLoss ∝ R−α
D ,

where γloss is the absolute path loss, RD is the distance between the mobile and
base, and α > 0 is a small positive constant taken to be roughly 2 ≤ α ≤ 4 in most
wireless network models. The constant of proportionality is neglected for the results
presented, as the background noise is not taken into account.

The simulations all use the power settings derived from the preceding analysis
for the second order approximation. The sample outages over 100000 trials were then
examined for numbers of mobiles varying close to the second order approximation.
The largest number of mobiles achieving an outage strictly smaller than the target is
given as the result of the simulation. A more thorough trial and error search for the
optimal power ratio was not conducted.

In general all three approximations were in complete agreement with the simu-
lation (after rounding down, rather than up, to avoid violating any constraint de-
termined by the asymptotics). However, we did obtain discrepancies between the
first order approximation and the simulated results in some cases, and to a lesser
extent between the second- and third order approximations and the simulations. The
following is an example.

In this example the interference is taken to be normal, with the mean and variance
of the interference per mobile being M = 0.6 and v = 0.015, respectively. There were
6 interfering cells, corresponding to a hexagonal cellular array. The power control
error was taken as 10 log10 κ = 10 log10 ρ = 1 dB. The number K0 of interfering
mobiles and other parameters is given in Table 1. The received power target was set
according to the second order approximation.
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Table 1

Parameters for the normal interference experiment.

K0 Actv/Idle pwr w L/l W (MHz) α/β × 103

12 1.0 (0 dB)/0.12589 (−9 dB) 0.5 0.002/0.01 10 384/48

Table 2

Simulation, first-, and second order capacity estimates.

# Simul. 1st order 2nd order

19 21 (21.44578) 19 ( 19.214888)

Table 3

Parameters for capacity with normal interference experiment.

K0 P p w L/l W (MHz) α/β × 103

120 1.0 (0 dB) 0.12589 (−9 dB) 0.5 0.1/0.1 5 48/6

Our results are given in Table 2. These show that the first order approximation
overestimates the capacity of the desired cell by 2, whereas the second order and sim-
ulation results are in agreement. The received power limits were P , p = 1, 0.12589, re-
spectively. Under the second order approximation the actual targets were 1, 0.1070825
so that the active power target was at constraint.

Since in all of our numerical results the third order approximation, which includes
the skewness of the external interference, differed only slightly from the second order,
we have omitted any presentation of these results. However, it was imperative to
ascertain that the skewness made only a slight difference; see [3].

6.1. Normal interference. Here we examine the impact of the mean interfer-
ence on capacity. The external interference is modeled as normal, independent of the
target cell. The mean and variance of the interference are K0M and K0v, where K0

is the total number of mobiles in the interfering cells. v = 0.0025, and the remaining
parameters for the simulation runs are given in Table 3.

Our results are presented in Table 4. Where the first order approximation does
not agree with the simulation it underestimates the capacity only by 1. The second
order approximation is in complete agreement with the simulation, with one exception
due to rounding down.

6.2. Capacity and control error. In this experiment external interference is
generated by K0 mobiles which are placed at random in cells surrounding the desired
cell. The positions of these mobiles are fixed throughout the simulation. Since the
path loss for each mobile is determined with an exponent of 3.5, this is also fixed.

The other parameters for the experiment are tabulated in Table 5. Note that
since both outages and control errors (see Tables 5, 7) are the same, the ratio of the
active to idle transmit powers equals the ratio of α to β. Since this also holds for the
interfering cells, in this special case, the statistics of the interference are completely
determined. Furthermore, as there is no external noise, performance does not depend
on the transmitted powers as such. An increase in transmitted powers in the desired
cell by any given factor leads to an increase in transmitted power in the interfering
cells by the same factor. Thus performance depends only on the active to idle power
ratio. (In more general cases, the idle and active transmit powers are not in this ratio
and do depend on the external interference.)
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Table 4

Capacity versus M with normal interference.

M 1st order 2nd order Simul.

0.020000 34 (34.4284) 34 (34.9288) 34
0.029000 33 (33.1721) 33 (33.6907) 33
0.038000 31 (31.9158) 32 (32.4527) 32
0.047000 30 (30.6595) 31 (31.2147) 31
0.056000 29 (29.4032) 29 (29.9768) 30
0.065000 28 (28.1469) 28 (28.7390) 28
0.074000 26 (26.8906) 27 (27.5011) 27
0.083000 25 (25.6343) 26 (26.2633) 26
0.092000 24 (24.3780) 25 (25.0255) 25
0.101000 23 (23.1217) 23 (23.7877) 23
0.110000 21 (21.8654) 22 (22.5499) 22
0.119000 20 (20.6091) 21 (21.3121) 21
0.128000 19 (19.3528) 20 (20.0744) 20
0.137000 18 (18.0965) 18 (18.8367) 18
0.146000 16 (16.8402) 17 (17.5990) 17
0.155000 15 (15.5839) 16 (16.3613) 16
0.164000 14 (14.3276) 15 (15.1237) 15
0.173000 13 (13.0713) 13 (13.8860) 13
0.182000 11 (11.8150) 12 (12.6484) 12
0.191000 10 (10.5587) 11 (11.4108) 11
0.200000 9 (9.3024) 10 (10.1732) 10

Table 5

Parameters for capacity and control error experiment.

K0 Actv/Idle pwr w L/l W (MHz) α/β × 103

120 1.0 (0 dB) /0.12589 (-9 dB) 0.5 0.1 5 48/6

Table 6

Mean and variance per mobile.

M v M̂ v̂

0.026437 0.002286 0.02642 0.0022788

Table 6 shows the results for the mean and variance of the interference. These
were calculated using the activity and power variables given in Table 5. The activity
of the interfering mobiles was simulated and used in determining interference. The
mean and variance of this interference was sampled during the simulation, and illus-
trative results are also tabulated in Table 6, which are consistent with the calculated
values. Our results are depicted in Table 7. These results indicate that capacity is
significantly affected by power control error. In fact, the capacity diminishes by a
factor of roughly 10 as the power control error increases from 0.5 to 5.0 dB. The
second order approximation is in complete agreement with the simulation; however,
the first order calculation has a small error in the cases of 0.5 dB (overestimate) and
5.0 dB (underestimate).

6.3. Minimal powers. As described earlier, if the system is underloaded, the
powers may be reduced, thus restricting the interference caused to adjacent cells. The
parameters used are the same as for the previous simulations except that the powers
were set according to Table 8 and the power control error was taken as 10 log10 κ =
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Table 7

Impact of κ on capacity.

κ 1st order 2nd order Simul.

0.5/0.5 153 151 151
1.0/ 1.0 128 128 128
1.5/ 1.5 106 106 106
2.0/2.0 86 86 86
2.5/2.5 69 69 69
3.0/3.0 54 54 54
3.5/3.5 42 42 42
4.0/4.0 31 32 32
4.5/4.5 23 23 23
5.0/5.0 16 17 17

Table 8

Optimal power settings.

# Mobiles Active power Idle power

20 7.882376e-02 9.852970e-03
40 1.080771e-01 1.350964e-02
60 1.733684e-01 2.167105e-02
80 4.486806e-01 5.608508e-02

Table 9

Mobiles supported and simulated outages.

# Mobiles Simul. Actv outage Idle outage

20 20 9.983743e-02 9.930380e-02
40 40 9.998671e-02 9.985218e-02
60 60 9.992572e-02 9.991928e-02
80 80 9.988996e-02 9.975853e-02

10 log10 ρ = 2dB. The capacity of the system was determined to be 86 mobiles using
both the first- and second order approximations.

The results from the simulations are given in Table 9. The left-hand column is
the desired number of mobiles to support. The simulation column gives the maximum
number of mobiles which achieved an outage strictly smaller than the desired outages.
The final columns give the outages achieved for the desired number of mobiles given
in the first column. The results show that the actual outages are very close to their
desired values and that the simulation and desired number of mobiles are in agreement.

6.4. Two-class example. Table 10 gives the class dependent parameters which
were used in the simulation. In addition, W = 5 MHz, M = 0.05, v = 0.005,K0 =
10. The first- and second order capacity regions were determined in two steps. In
the first step the maximum number of users in each class was determined using the
asymptotics for a single class, yielding Kmax

1 ,Kmax
2 . Then in the second step the

maximum number of class 2 users was obtained, with class 1 users fixed at K1 =
1, . . . ,Kmax

1 . This search was performed by binary chop for both first- and second
order approximations. Table 11 shows the results for both the first- and second order
capacity regions. The simulation results were also obtained by fixing the number of
class 1 users and then the number of class 2 users for an interval centered on the
second order approximation. The powers were set for each pair of points (K1,K2)
according to the second order approximation at the boundary. The largest value of
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Table 10

Parameters for the two-class experiment.

Class Actv/Idle pwr w L/l κ/ρ (dB) α/β × 103

1 1.0/0.125 0.3 0.1/0.01 2/2 250/5
2 1.0/0.125 0.4 0.1/0.1 2/2 125/5

Table 11

Results from the two-class experiment.

K1 Simul. 1st order 2nd order

1 42 44 (44.442818) 43 (43.877646)
2 41 42 (42.920880) 42 (42.307850)
3 39 41 (41.398941) 40 (40.737816)
4 38 39 (39.877002) 39 (39.167544)
5 36 38 (38.355064) 37 (37.597036)
6 35 36 (36.833125) 36 (36.026291)
7 33 35 (35.311186) 34 (34.455309)
8 31 33 (33.789248) 32 (32.884093)
9 30 32 (32.267309) 31 (31.312641)
10 28 30 (30.745370) 29 (29.740956)
11 27 29 (29.223432) 28 (28.169036)
12 25 27 (27.701493) 26 (26.596883)
13 24 26 (26.179555) 25 (25.024498)
14 22 24 (24.657616) 23 (23.451881)
15 20 23 (23.135677) 21 (21.879032)
16 19 21 (21.613739) 20 (20.305951)
17 17 20 (20.091800) 18 (18.732641)
18 16 18 (18.569861) 17 (17.159100)
19 14 17 (17.047923) 15 (15.585330)
20 13 15 (15.525984) 14 (14.011330)
21 11 14 (14.004045) 12 (12.437102)
22 9 12 (12.482107) 10 (10.862646)
23 8 10 (10.960168) 9 (9.287963)
24 6 9 (9.438229) 7 (7.713053)
25 5 7 (7.916291) 6 (6.137915)
26 3 6 (6.394352) 4 (4.562552)
27 1 4 (4.872413) 2 (2.986963)

K2 so that all outage probabilities were strictly met was given as the result of the
simulation. The maximum number of K1 users was determined by the second order
approximation.

As the results show, the first order approximation and to a lesser extent the second
order approximation overestimate the capacity region. This latter approximation
agreed with simulation at both end points (the results were 28 (28.24095) and 45
(45.447203)).

The reader is cautioned against using the multiclass results when not all classes
have a large number of mobiles, and in particular for empty classes. In the latter case,
the maxima in the expressions for δ0 and δ in (5.27) and (5.28), and for Δ0 and Δ in
(4.22) and (5.13), should be taken over nonempty classes.

6.5. Numerical result extensions. So far we have considered networks in
which the mean path loss (average over fading) is determined by distance alone.
However, more realistic models of networks of mobile phones often suppose that this
quantity is determined as the product of the deterministic distance loss and an addi-
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tional random log-normal shadowing factor

SF ∼ lognormal(0, σ2).

We now discuss how our results can be used to examine the coverage and capacity
of networks in which such log-normal shadowing is present. To do so we consider a
single class of mobiles in all cells to avoid obscuring the discussion with unnecessary
details. We also go in more detail into the question of obtaining numerical results
where there are interfering cells.

As far as coverage is concerned, let PT be the maximum transmit power of the
mobile device used in the network. Once shadowing is determined by a random factor
such as SF , it is no longer the case that all mobiles within a distance Rc from the base
station can meet the maximum received power requirement Q = max(P , p). (Here

Rc =

(
PTC

Q

) 1
α

,

and P , p are the common active and idle receive power targets.) Instead, only a
random fraction are within coverage, and the cell sizes are chosen to ensure that
this fraction is suitably high, say fc. Thus coverage must now be expressed as the
maximum distance Rc such that

Pr

{
PTC

Rα
M

≥ Q

}
≥ fc.

Of course, similar criteria may be used. In any case, whether or not there is log-normal
shadowing, there is always in addition a coverage versus capacity trade-off in that the
higher the maximum received power target, the higher the system capacity but the
smaller the coverage area which can be supported. This trade-off can be explored
using our results. See [1] for typical values of transmit power, acceptable path loss,
and so on in both voice systems such as IS-95 and data services.

Log-normal shadowing also impinges on the capacity directly, in that it affects the
distribution of interference between mobiles. Note that mobiles are usually assigned
to the base station offering the lowest degree of path loss, and log-normal shadowing to
distinct base stations is usually taken to be independent. Under these assumptions,
the shadowing distribution is determined as order statistics of log-normal random
variables, with means varying with mobile positions. If coverage is taken into account,
then these log-normal random variables are truncated accordingly.

A final but very important general consideration is that the minimal received
power targets (the ones likely to be used in practice) depend on the interference from
the surrounding base stations, which in turn depend on their own receive power tar-
gets. In symmetrical cases it is reasonable to apply common received power targets
at each cell and so establish the corresponding cell capacity. By varying the tar-
gets, capacity can be optimized. Moreover, this can be done in conjunction with the
independent shadowing distribution so that the moments needed for the Edgeworth
expansion of a random mobile’s interference can be obtained by using, e.g., simulation
or some other numerical technique. Obviously other factors, such as the distribution
of position of the mobiles within the cells, numbers of interfering cells, etc., also have
to be taken into account. Only results for a symmetrical case with mobiles along the
cell edges were obtained in [1].
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Of course if we fix the maximum received powers as target at each cell, distinct
cell loadings may also be treated. Further work is needed to establish estimates for
what the minimum feasible targets should be for heterogeneous cell loadings. As this
goes into the question of power control interactions between cells, it is beyond the
scope of this paper.

7. Conclusions. We have investigated a model of the reverse link of a single
wireless cell with imperfect power control. For each class there is a specified small
probability that the user’s SNR will fall below a prescribed threshold, when active and
when idle. We have investigated the capacity of the system, i.e., the number of users
of each class that can be supported, and the minimal transmission powers when the
link is operating within capacity. We have performed an asymptotic analysis, based
on a large number of users in each class. The mean of the interference from users in
adjacent cells affects the lowest order asymptotic approximation to the minimal powers
and the capacity region, while the variance, and to a lesser extent the skewness, affects
the refined approximation. Comparison with simulation illustrates that the refined
approximation is good even for only moderately large numbers of users in each class.

The results have significant practical interest for power control in cellular systems.
The power available at a mobile device for transmission in the reverse link is limited, so
the minimal powers required to achieve the desired outage probabilities are important.
It is essential to consider different classes of users, since voice transmission is often
acceptable despite a significant error rate, while data transmission at such significant
error rates would not be acceptable.

Also our results do carry implications for current commercial CDMA networks
(see, e.g., [6]) even though these do not quite work according to our model. In par-
ticular, the received power targets (more precisely, Eb/I0 targets) are determined by
using feedback control instead of being determined in advance as here. (For example,
in mobile voice this control reacts to the loss of speech frames by increasing the target
sharply, and otherwise gradually decrementing it.) Nevertheless, our results show how
sensitive the capacity is to fast power control error, and we anticipate that this will
remain the case for the commercial systems too. Nor do we expect any significant
difference in the capacities of commercial systems from the values which would be
predicted by our approximation. Finally, our results concerning the received power
targets should provide insight as to how the Eb/I0 targets should be set in actual
systems.

Further research is needed to examine the accuracy of our approach for a network
of CDMA cells. In particular, the accuracy of the independence assumption is yet
to be fully assessed. To conduct an analysis taking into account such dependence in
detail appears difficult. Such a model would involve asymptotics for the joint state of
the mobiles across the cells in the network. In particular, the computation of capacity
would involve the asymptotics of the eigenvalues for a matrix determining the received
power targets and would involve the propagation between desired base stations and
interfering mobiles.

Appendix A. Uniform convergence to Gaussian density. We here establish
(3.6), where S(j) is asymptotically normally distributed with zero mean, unit variance,
and error O(1/

√
Kj) as Kj → ∞. We define

(A.1) φ(κ;T ) =
1√
2π

∫ ∞

−∞
eiTeκξ

e−ξ2/2dξ .
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Then, from (2.1), since e
(j)
m = eκjξ

(j)
m and ε

(j)
m = eσjη

(j)
m , where ξ

(j)
m and η

(j)
m are

normally distributed, with zero mean and unit variance, and (ξ
(j)
m , η

(m)
m ) and X

(j)
m are

mutually independent,

uj(t) ≡ E
(
exp

{
it[Pje

(j)
m X(j)

m + pjε
(j)
m (1 −X(j)

m )]
})

(A.2)

= wjφ(κj ;Pjt) + (1 − wj)φ(σj ; pjt) .

We first show that φ(κ;T ), where κ > 0, is absolutely integrable for −∞ < T <
∞. From (A.1), we have |φ(κ;T )| ≤ 1. If we integrate twice by parts for T 
= 0, we
obtain

φ(κ;T ) = − i√
2πκT

∫ ∞

−∞
eiTeκξ

(κ + ξ)e−κξe−ξ2/2dξ

=
1√

2π(κT )2

∫ ∞

−∞
eiTeκξ

[1 − (κ + ξ)(2κ + ξ)]e−2κξe−ξ2/2dξ .(A.3)

Hence,

|φ(κ;T )| ≤ 1√
2π(κT )2

∫ ∞

−∞
|[1 − (κ + ξ)(2κ + ξ)]| e−2κξe−ξ2/2dξ ≡ C(κ)

T 2
,(A.4)

which shows that φ(κ;T ) is absolutely integrable. We assume that κj > 0 and σj > 0,
and that Pj > 0, pj ≥ 0, and 0 < wj ≤ 1. If pj > 0 or wj = 1, then uj(t) is absolutely
integrable, and (3.6) follows from (1.5.9) of [9].

If pj = 0 and 0 < wj < 1, then we must modify the estimate (1.5.9) in [9], since
|uj(t)|ν is not absolutely integrable for any ν ≥ 1 in this case. We now adopt the
notation in [9] and, dropping the subscripts and superscripts and rescaling t, we define

(A.5) γ(t) = wφ(κ; t) + 1 − w .

To establish our result, we need to estimate

(A.6) R =

(∫ √
nr

√
nc3

+

∫ −√
nc3

−√
nr

)[
γ

(
t√
n

)]n
e−iμ1

√
nte−iytdt

as n → ∞, for real y = O(1) and r > c3 > 0. Here the mean μ1 = weκ
2/2 > 0.

Now, for |x| < δ,

|(1 + x)n − 1| =

∣∣∣∣∣x
n∑

s=1

(
n
s

)
xs−1

∣∣∣∣∣(A.7)

≤ |x|
δ
|(1 + δ)n − 1| ≤ |x|

δ
(1 + δ)n .

However, |φ(κ;T )| ≤ ε < 1 for |T | ≥ c3. It follows that

(A.8) |[γ(T )]n − (1 − w)n| ≤ 1

ε
|φ(κ;T )|(1 − w + εw)n, |T | ≥ c3 .

Hence, ∣∣∣∣∣
∫
|t|≥√

nc3

{[
γ

(
t√
n

)]n
− (1 − w)n

}
e−iμ1

√
nte−iytdt

∣∣∣∣∣(A.9)

≤
√
n

ε
(1 − w + εw)n

∫
|T |≥c3

|φ(κ;T )|dT → 0



1630 JOHN A. MORRISON AND PHIL WHITING

as n → ∞, since 0 < 1 − w + εw < 1.
Next, for y = 0(1) and μ1

√
n + y > 0,∣∣∣∣∣

(∫ √
nr

√
nc3

+

∫ −√
nc3

−√
nr

)
e−μ1

√
nte−iytdt

∣∣∣∣∣(A.10)

≤
∣∣∣∣ i

(μ1
√
n + y)

{
[e−iμ1

√
nte−iyt]

√
nr√
nc3

+ [e−iμ1

√
nte−iyt]

−√
nc3

−√
nr

}∣∣∣∣
≤ 4

(μ1
√
n + y)

.

This holds for all r > c3. Hence, from (A.6), (A.9), and (A.10), we obtain

(A.11) |R| ≤
√
n

ε
(1 − w + εw)n

∫
|T |≥c3

|φ(κ;T )|dT +
4(1 − w)n

(μ1
√
n + y)

.

With this modification of the estimate in (1.5.9) in [9], the result in (3.6) follows.

Appendix B. Density calculations. We here determine the densities of the

random variables Y
(j)
m and U

(j)
m defined in (4.1), where Λ

(j)
m is given by (3.14). Since

ξ
(j)
m and η

(j)
m are normally distributed with zero mean and unit variance, the charac-

teristic functions of (λj/aj)e
κjξ

(j)
m and (θj/bj)e

σjη
(j)
m are

(B.1)
1√
2π

∫ ∞

−∞
eit(λj/aj)e

κjζ

e−ζ2/2dζ =

∫ ∞

0

eitygj(y)dy

and

(B.2)
1√
2π

∫ ∞

−∞
eit(θj/bj)e

σjζ

e−ζ2/2dζ =

∫ ∞

0

eityhj(y)dy,

where the densities are given by (4.2) and (4.3).

The random variables S(l) and S
(j)
m are asymptotically normally distributed with

zero mean and unit variance and densities. Since Kl = O(K), l = 1, . . . , J , it follows
from (1.5.3) of [9] that, for t = O(1),

E
(
eit

√
ΦlγlS

(l)/
√
K
)

= e−Φlγlt
2/(2K)

[
1 + O

(
1

K2

)]
,(B.3)

E
(
eit

√
Φj(γj− 1

K )S(j)
m /

√
K
)

= e−Φjγjt
2/(2K)

[
1 + O

(
1

K2

)]
.

From (2.5), after integration by parts n times,

(B.4)
1√
2π

∫ ∞

−∞
eit

√
Φy/

√
Ke−y2/2Hen(y)dy =

(
it
√

Φ√
K

)n

e−Φt2/(2K) ,

and hence, from (2.4),

(B.5) E
(
eit

√
ΦS/

√
K
)

= e−Φt2/(2K)

[
1 − iμ3Φ

3/2

6K3/2
t3 + O

(
1

K2

)]
.
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Thus, from (3.14), since S, S(l), l 
= j, and S
(j)
m are mutually independent,

E(eitΛ
(j)
m /

√
K)(B.6)

= exp

(
− 1

2K

[
J∑

l=1

Φlγl + Φ

]
t2

)[
1 − iμ3Φ

3/2

6K3/2
t3 + O

(
1

K2

)]

= 1 − 1

2K

[
J∑

l=1

Φlγl + Φ

]
t2 − iμ3Φ

3/2

6K3/2
t3 + O

(
1

K2

)

for t = O(1).

Since the random variables (ξ
(j)
m , η

(j)
m ) and Λ

(j)
m are independent, it follows from

(4.1), (B.1), (B.2), and (B.6) that the characteristic functions of Y
(j)
m and U

(j)
m are[

1 − 1

2K

(
J∑

l=1

Φlγl + Φ

)
t2 +

iμ3Φ
3/2

6K3/2
t3 + O

(
1

K2

)]∫ ∞

0

eitygj(y)dy(B.7)

and [
1 − 1

2K

(
J∑

l=1

Φlγl + Φ

)
t2 +

iμ3Φ
3/2

6K3/2
t3 + O

(
1

K2

)]∫ ∞

0

eityhj(y)dy ,(B.8)

and hence the densities are given by (4.4) and (4.5), respectively.
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CAVITATION ON DEFORMABLE GLACIER BEDS∗

CHRISTIAN SCHOOF†

Abstract. The formation of water-filled cavities at the interface between a glacier and its bed
can significantly affect the drainage of meltwater along the base of a glacier, which in turn is one
of the most important controls on glacier sliding. In this paper, we analyze a mathematical model
for cavity formation on deformable glacier beds. By contrast with the case of rigid glacier beds,
the cavities described here are the result of an interfacial instability in coupled ice-sediment flow.
This instability causes bumps on the ice-sediment interface to grow until normal stress in the lee
of bed bumps drops to the local porewater pressure, at which point the ice begins to lose contact
with the surface of the sediment. We extend the basic instability model to cover the case of cavity
formation, and analyze the corresponding traveling wave problem. This takes the form of a viscous
contact problem in which the obstacle on the boundary—the traveling bed bump caused by the
initial instability—must be determined as part of the solution. A classical complex variable method
allows the traveling wave problem to be cast as an eigenvalue problem which is straightforward to
solve numerically. Our results show that solutions for different wavelengths can be obtained from an
apparently unique solution to a scaled problem, and that the amplitude of traveling waves increases
with wavelength, while their speed decreases with wavelength.
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1. Introduction. The ice contained in many glaciers, especially those in mid-
latitude mountain ranges, is close to the melting point, and meltwater generated at the
glacier surface can reach the glacier bed through a network of conduits or moulins in
the ice. The subsequent routing of meltwater via the glacier bed not only affects water
discharge from the glacier, but also the dynamics of the glacier itself. The downslope
motion of a glacier—which can be treated as a slowly flowing viscous body—consists
of shearing in the ice and sliding at its base. High water pressure at the base of
a glacier weakens the contact between ice and bed, and consequently reduces the
amount of friction generated at the bed by sliding [7, 20, 17].

The presence of water-filled cavities at the interface between a glacier and its
bed can play an important role in the drainage of meltwater along the glacier bed.
The purpose of this paper is to analyze a model for the formation of such cavities.
Previously developed mathematical models for subglacial cavitation [6, 17] deal with
the flow of ice over a rigid glacier bed, and are essentially viscous analogues of elastic
Signorini-type contact problems [13], although the subtle differences between the elas-
tic and viscous cases appear to preclude a variational formulation for the latter. In
contrast, the model considered here describes the spontaneous formation of cavities on
a bed composed of deformable sediment. Consequently, the bed no longer represents
a fixed “obstacle,” but evolves as a result of stresses at the ice-sediment interface.

The instability mechanism which causes the formation of cavities in our model was
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first proposed by Hindmarsh [11] and Fowler [8], and is described in detail in Schoof
[19]. It relies on the pressure-dependence of the viscosity of subglacial sediment. (More
precisely, sediment viscosity is assumed to depend on effective pressure, the difference
between total pressure and porewater pressure, which controls how hard sediment
grains are pressed together.) The mechanism may be summed up as follows: A shallow
bump in the interface between ice and sediment causes a perturbation in the flow of
ice over the bed, which leads to higher compressive normal stress being exerted on the
upstream side of the bump than its lee. In turn, this causes increased effective pressure
in the sediment layer upstream of the bump compared with downstream. Moreover,
if the viscosity of the sediment is much lower than that of ice, the horizontal velocity
of the interface is approximately constant (i.e., independent of position). Then, if the
sediment rheology is such that flux in a thin sediment layer increases with effective
pressure when the surface velocity of the layer is fixed, this implies that more sediment
flows into the bump than out, causing it to grow.

This mechanism can be shown to work for a variety of viscous sediment rheologies,
and numerical solutions of a simplified model show that growth of the instability
is generally unbounded before the onset of cavitation [16, 19], which occurs when
compressive normal stress in the lee of a bed bump drops to the local porewater
pressure. In this paper, we will be concerned with the extension of that model to the
case of cavitation. Our interest in this problem is largely motivated by the fact that
cavity formation introduces a nonlinearity into the model, which may be sufficient to
lead to bounded growth of the instability. Due to the complexity of the problem, we
do not, however, consider the full time-dependent problem of cavity evolution, but
restrict ourselves mostly to the case of traveling wave solutions, in the hope that these
represent the fully evolved ice-bed interface.

The paper is structured as follows. In section 2, we describe the extension of
the basic instability model to the case of cavitation. Subsequently, we formulate the
traveling wave problem in section 3 and present a method of solution based on a
classical complex variable approach. Results are discussed in section 4.

2. The model. We consider a simplified two-dimensional model for the spatially
periodic flow of ice over a thin layer of water-saturated subglacial sediment in the
absence of cavitation, as detailed in Schoof [19]. We set out the full time-dependent
model here, first in the absence of cavitation and subsequently with cavitation. The
analysis in this paper will, however, deal almost exclusively with the corresponding
traveling wave problem, which we describe in the next section.

The basic assumptions of the model derived in [19] are the following. Ice is treated
as an incompressible Newtonian fluid, while subglacial sediment is modeled as an
incompressible shear-thinning viscous material whose viscosity additionally depends
on effective pressure, defined as the difference between the ordinary pressure variable
(the spherical part of the stress tensor in the language of continuum mechanics) and
a prescribed porewater pressure. In particular, the rheology of subglacial sediment
may be taken to be of the form

Dij = KN−nτm−1τij ,(2.1)

where Dij is strain rate, N is effective pressure, and τij is deviatoric stress with

second invariant τ =
√
τijτij/2, while K, m, and n are positive constants. This

rheological model has the qualitative features that strain rate increases with stress,
as required for a viscous material, while strain rate decreases with effective pressure,
corresponding to sediment grains less able to move past each other when pressed
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harder together. The model described below makes a further approximation, treating
only the parametric limit n ≈ m � 1 in the rheology (2.1). This corresponds to a
“nearly plastic” behavior, in which shear stress is only weakly dependent on strain
rate [12]. As described in [19, section 7], this greatly simplifies expressions for volume
flux in the sediment layer and shear stress at its surface, and leads to a more tractable
ice flow problem.

Moreover, the model assumes that unstable waves generated at the ice-sediment
interface have wavelengths that are long compared with the thickness of the sediment.
Consequently, the sediment layer is treated as thin, with small surface slopes that allow
the ice flow domain to be approximated by a half-space. Treating the sediment layer
as thin further allows it to be described by a depth-integrated model that appears in
the Stokes flow problem for the ice in the form of boundary conditions at the lower
boundary. These boundary conditions can be derived essentially by integrating (2.1).
For reasons of space, we refer to [19] for a more detailed derivation of the model.

Below, x and y are Cartesian coordinates parallel and perpendicular, respectively,
to the mean bed elevation, while t is time and subscripts x, y, and t denote the
corresponding partial derivatives. u(x, y, t) is a dimensionless velocity perturbation
in the ice relative to a mean shearing flow, and p(x, y, t) a dimensionless pressure
perturbation about a mean hydrostatic pressure field. If a is the spatial period of the
bed, u = (u, v) and p satisfy Stokes’ equations on a semi-infinite strip in the upper
half-plane:

∇2u −∇p = 0, ∇ · u = 0 on (x, y) ∈ (0, a) × (0,∞),(2.2)

with periodic boundary conditions applied at x = 0 and x = a. The interface between
ice and sediment remains, at leading order, at y = 0 if waves on the bed are shallow.
We denote the amplitude of these waves by h(x, t), and sediment flux in the direction
of the x-axis by q(x, t). Effective pressure (the difference between confining normal
stress and a prescribed porewater pressure) at the sediment surface will be denoted by
N(x, t), and shear stress at the ice-sediment interface by τb(x, t). Lastly, the velocity
of the ice-sediment interface will be denoted by U . As before, all of these quantities
have been scaled as in [19] and are dimensionless. Boundary conditions for the Stokes
flow problems (2.2) are then

uy + vx → γ−1,
p → 0

}
as y → ∞,(2.3)

γ (uy + vx) = τb,
1 + p− 2vy = N,

v = Uhx + ht

⎫⎬
⎭ on y = 0.(2.4)

Above, γ > 0 is the ratio of mean dimensional effective pressure to far-field shear
stress. Hence γ−1 is a dimensionless far-field shear stress in (2.3)1, while (2.3)2 en-
sures that the pressure perturbation p vanishes at large distances from the bed. The
boundary conditions (2.4)1,2 at the bed relate the appropriate stress components in
the Stokes problem to interfacial shear stress and effective pressure, while (2.4)3 re-
lates normal velocity at the bed to the evolution of bed wave amplitude h. h itself
satisfies the evolution equation

ht + qx = 0.(2.5)

As described at the beginning of this section, interfacial shear stress τb and flux q
in the boundary conditions (2.4) must be determined through a model for the thin-
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film flow of subglacial sediment. With the rheological specifications based on (2.1)
described above, we find the appealingly simple (and linear) relationships

τb(x, t) = N(x, t), q(x, t) = N(x, t).(2.6)

Meanwhile, interface velocity is determined by a large-scale ice flow problem [18, 19],
and in scaled terms we can simply set

U = 1,(2.7)

while the x-component of the velocity u = (u, v) is subject to
∫ a

0
u(x, 0) dx = 0 (this

condition being necessary to ensure a unique solution for u).
As described above, the “constitutive relations” (2.6) are appropriate for a sedi-

ment layer flowing in simple shear with rheology given by (2.1) in the parametric limit
m ∼ n � 1 [19, section 7]. The relations are thus not completely general, though
rheological tests support them [12]. As described in [16, 19] more general sediment
rheologies can be introduced into the model simply by changing the prescriptions for
τb and N in (2.6). We persist with (2.6) in part because it is supported by empirical
evidence [12], and also because it is the simplest physically motivated choice we can
make, yielding a linear relationships between τb, q, and N . However, as we point out
in section 4, other rheological models for sediment may also be of practical interest,
but these introduce the additional complication of nonlinear constitutive relations in
(2.6), which are beyond the scope of this paper.

It is straightforward to show that the trivial solution h(x, t) ≡ 0 to (2.2)–(2.6) is
unstable: The model admits Fourier mode solutions of the form h(x, t) = Re(exp(ikx+
σt)), where σ = 2|k|3/(1+2ik|k|) has a positive real part, and growth of the instability
is apparently unbounded. However, this is physical only while effective pressure N is
positive everywhere, which ensures that normal stress at the top of the sediment layer
exceeds the porewater pressure within. Once N = 0 somewhere, compressive normal
stress at the top of the sediment layer at that location equals porewater pressure, and
porewater starts to leak out of the sediment. The ice loses contact with the sediment,
and a water-filled cavity forms, as also happens in glacier sliding over undeformable
beds [6, 17].

When a cavity has formed, different boundary conditions apply to (2.2) on those
parts of the bed where cavities are present from those in effect where ice is in contact
with sediment. Let the cavitated part of the bed at time t be denoted by C(t), and
the contact areas by C ′(t); the closure of C ∪ C ′ is then the interval [0, a]. The
boundary conditions (2.4) together with the constraint N ≥ 0 (which ensures that
normal stress in contact areas cannot drop below the porewater pressure) still hold
on y = 0, x ∈ C ′. On cavitated parts of the bed, we require that effective pressure
and shear stress vanish, as water pressure equals normal stress in the ice, and the
water is assumed to be inviscid. This is tantamount to setting τb = N = 0 in (2.4).
In addition, the cavity roof must be above the surface of the sediment over cavitated
parts of the bed and must satisfy a kinematic boundary condition analogous to (2.4)3.
We denote the dimensionless elevation of the cavity roof by hC(x, t) (see Figure 2.1)
and assume that the cavity roof has a low aspect ratio, comparable with that of the
sediment layer. Then we have [16, Chapter 6]

1 + p− 2vy = 0,
uy + vx = 0,

v = UhCx + hCt

⎫⎬
⎭ on y = 0, x ∈ C,(2.8)
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water−filled cavities

Fig. 2.1. Illustration of cavity and contact areas, and the definition of h and hC . The model
assumes that bed slopes are small, so that the lower boundary of the ice flow domain can be reduced
to y = 0 in dimensionless terms. Note that we generally assume discontinuities in h at downstream
endpoints of contact areas. These sediment shocks are shown as dotted lines.

while the absence of traction at the surface of the sediment in the cavities also implies

ht = 0, q = 0, on y = 0, x ∈ C,(2.9)

combined with the constraint hC > h.
In addition to the boundary conditions (2.4) and (2.8) for the two-dimensional

Stokes equations (2.2) and the evolution equation (2.5), we require jump conditions
on h and hC at the boundary points of C and C ′. Based on physical considerations
[16], we require that there be no discontinuities in the elevation of the lower boundary
of the ice. Defining hC everywhere as the scaled elevation of the base of the ice,
so that hC(x) = h(x) for x ∈ C ′, this implies that hC is continuous across the
endpoints of C and C ′. It turns out that the same degree of continuity cannot be
imposed on the sediment wave amplitude h, and a discontinuity must be expected
at at least one endpoint of each individual contact area. Such discontinuities are not
entirely unexpected: For the somewhat similar problem of dune formation in deserts
and on river beds [9], the equivalent would be a slip face. The flow of sediment
close to a contact point where h is discontinuous cannot be resolved by our thin-film
approximation for the sediment. However, instead of attempting to solve an extremely
complicated local sediment flow problem, we argue heuristically. We assume that the
propagation speed of the contact point is determined by a Rankine–Hugeniot condition
which ensures conservation of sediment:

Vs = [q]+−/[h]+−,(2.10)

where Vs is the propagation speed of the sediment shock and [·]+− denotes the jump in
the bracketed quantity across the shock. With q = N , it follows from the continuity of
hC and the inequality constraints on h and N that the jump in q must have the same
sign as the jump in h, and hence the sediment shock must propagate downstream
with Vs > 0.

If there were a sediment shock at the upstream end of a contact area, then effective
pressure would be positive downstream of the contact point and zero in the cavity.
The resulting pressure difference should drive a local sediment flow (not resolved
by our thin-film approximation) into the cavity, that is, in the upstream direction
and therefore opposite to that required by (2.10). As a consequence, we permit
discontinuities in h only at the downstream ends of contact areas and require that h
be continuous across the upstream end of each contact area.

As we shall see below, these jump conditions on h and hC lead to an apparently
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well-posed traveling wave problem. Whether or not they can in fact be applied to the
general time-dependent problem is a matter for future research.

3. Traveling waves. In what follows, we consider solutions in which h and hC

depend on x and t only through the traveling wave coordinate

η = x− V t,(3.1)

where V > 0 is the unknown pattern speed of the traveling wave. Note that negative
pattern speeds are not possible because sediment shocks must propagate downstream,
as explained above. Writing ∇̂ = (∂/∂η, ∂/∂y), the model can then be cast in the
form

∇̂2u − ∇̂p = 0, ∇̂ · u = 0 on (η, y) ∈ (0, a) × (0,∞),(3.2)

uy + vη → γ−1,
p → 0

}
as y → ∞,(3.3)

γ (uy + vη) = τb,
1 + p− 2vy = N,

v = (U − V )h′,
q′ − V h′ = 0,

N ≥ 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

on η ∈ Ĉ ′, y = 0,(3.4)

uy + vη = 0,
1 + p− 2vy = 0,

v = (U − V )h′
C ,

h′ = 0,
hC > h

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

on η ∈ Ĉ, y = 0,(3.5)

q = N on η ∈ Ĉ ′,(3.6)

q = 0 on η ∈ Ĉ,(3.7)

τb = N, U = 1.(3.8)

Here primes on h, hC , and q denote differentiation with respect to η, and Ĉ ′ = C ′(0)
and Ĉ = C(0) denote contact and cavity areas, respectively, at the bed in the (η, y)
coordinate system. In addition, we consider only the case of a single cavity per bed
period, and without further loss of generality we can set

Ĉ ′ = (0, b), Ĉ = (b, a),(3.9)

where the contact point η = b is to be determined as part of the solution. As before, we
impose periodic boundary conditions on η = 0 and η = a. The continuity requirements
on h and hC at the contact points are

h(0+) = h(a−) = hC(a−), h(b−) = hC(b+),(3.10)

where superscripts + and − indicate limits taken from above and below, respectively
(and where, in an abuse of notation, we have replaced the arguments (x, t) by η).
Lastly, the jump condition (2.10) for a sediment shock at η = b propagating at the
pattern speed Vs = V becomes

V = −q(b−)/(h(b+) − h(b−)),(3.11)

where we recognize that q(b+) = 0 from (3.7).
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Some small simplifications are immediately possible. As the model is invariant
under changes of h and hC by the same constant, we can without loss of generality
set h = 0 in Ĉ by (3.5)4. (3.4)4 and (3.11) combined then require that

q = V h on Ĉ,(3.12)

and the jump conditions on h and hC become

h(0+) = hC(a−) = 0, h(b−) = hC(b+).(3.13)

Equations (3.12) and (3.13) then replace (3.4)4, (3.10), and (3.11) in the subsequent
analysis.

The model described above is in many ways similar to the viscous contact prob-
lems considered by Fowler [6] and Schoof [17], in the sense that we have a Stokes flow
problem with mixed boundary conditions prescribed on parts of the boundary which
are not known a priori but must be found as part of the solution so as to satisfy the
inequality constraints (3.4)5 and (3.5)5. This introduces an important nonlinearity
into the problem which is missing in the original linear evolution problem and, as we
shall see, allows for the existence of (nontrivial) traveling wave solutions, which are
not possible without cavitation. The crucial difference between the model considered
here and that in [6, 17] is that the bed elevation h is not fixed here but forms part of
the solution. This renders the problem considerably more complicated.

The remainder of this section will be devoted to constructing a method of solution.
Our approach consists of the following steps. First, we represent the solution of the
Stokes equations (3.2) in terms of complex potentials. When mapped conformally so
as to make use of the periodic boundary conditions at the sides of the domain, the
boundary conditions (3.3)–(3.5) lead to a pair of Hilbert problems for these complex
potentials, which admit explicit solutions in terms of the unknown functions N and
τb and the contact point position b. Finally, applying the remaining conditions (3.8),
(3.12), and (3.13) allows the problem of finding N and τb to be recast as an eigenvalue
problem for h (which simultaneously determines the pattern speed V ), and b can be
determined through an additional integral constraint which ensures that the lower ice
surface has no discontinuities.

3.1. Complex variable formulation. We introduce a stream function ψ such
that

u = ψy + y/γ, v = −ψη,(3.14)

where the additional shearing term in the definition of u accounts for the far-field
shear stress. Further, we define the complex variables z = η + iy and z = η − iy. ψ
satisfies the biharmonic equation, which can be written in terms of z and z as

∇̂4ψ = 4ψzzzz = 0.(3.15)

Using standard methods in complex analysis [5], ψ can be shown to take the general
form

ψ = (z − z)θ(z) + φ(z) + (z − z)θ(z) + φ(z)(3.16)

for z in the semi-infinite strip 0 < η < a, 0 < y, where θ and φ are analytic functions
and an overbar denotes complex conjugation. Furthermore, the Stokes equations (3.2)
become

∇̂2ψy = pη, −∇̂2ψη = py,(3.17)
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which are the Cauchy–Riemann relations for p + i∇̂2ψ (i.e., pressure p and vortic-
ity ∇̂2ψ are harmonic conjugates). Using standard differentiation rules [5], ∇̂2ψ =
4(θ′(z) + θ′(z)) = 8Im(iθ′(z)), where a prime denotes differentiation. Consequently,

p = C0 + 8Re(iθ′(z)) = C0 + 4i(θ′(z) − θ′(z)),(3.18)

where C0 is a real constant. The value of this constant can be chosen arbitrarily: If
C0 �= 0, we can add iC0z/8 to θ(z) and simultaneously add iC0z

2/8 to φ(z) while
leaving the stream function ψ in (3.16) unchanged. By redefining θ and φ in this way,
we ensure that C0 = 0 in (3.18), and we will henceforth assume this to be the case.

In order to satisfy the periodic boundary conditions imposed on the problem, it
suffices to ensure that u, v, and p can be extended to sufficiently smooth functions in
the half-space y > 0, which are periodic in η with period a. Anticipating therefore that
p and vorticity ∇2ψ can be extended to harmonic functions which are appropriately
periodic, we conclude that θ′(z) can be continued to an analytic function in the upper
half-plane which is periodic in Re(z) with period a. Furthermore, we have for y > 0

u = 4yRe [θ′(z)] + 2Im [2θ(z) − φ′(z)] ,(3.19)

v = −4yIm [θ′(z)] − 2Re [φ′(z)] .(3.20)

Hence, if θ′(z) can be continued to a periodic analytic function, it suffices to ensure in
addition that Im[2θ(z) − φ′(z)] and Re[φ′(z)] can be extended to harmonic functions
in the upper half-plane with period a in Re(z). From the periodicity of Re[φ′(z)],
it follows that φ′′(z) can be continued to an appropriately periodic analytic function
in the entire upper half-plane Im(z) > 0. Moreover, the periodicity of Re[φ′(z)] and
Im[2θ(z) − φ′(z)] are equivalent to

Re [φ′(a + iy) − φ′(iy)] = Re

[∫ a

0

φ′′(η + iy) dη

]
= 0,(3.21)

Im

[∫ a

0

2θ′(η + iy) − φ′′(η + iy) dη

]
= 0(3.22)

for all y > 0.
We complete our complex variable formulation by casting the boundary conditions

(3.3)–(3.5) in terms of θ and φ. At the lower boundary y = 0

2i(φ′′(η) − φ′′(η)) =

{
N(η) − 1, η ∈ Ĉ ′,

−1, η ∈ Ĉ,
(3.23)

2(2θ′(η) − φ′′(η) + 2θ′(η) − φ′′(η)) =

{
γ−1 (τb(η) − 1) , η ∈ Ĉ ′,

−γ−1, η ∈ Ĉ,
(3.24)

−(φ′(η) + φ′(η)) =

{
(U − V )h′(η), η ∈ Ĉ ′,

(U − V )h′
C(η), η ∈ Ĉ,

(3.25)

combined with (3.8), (3.12), and (3.13). Naturally, θ′, φ′, and φ′′ are defined on
the real axis as boundary values taken as z approaches the axis from above. As
Im(z) = y → ∞, we have from (3.3)

4i
[
θ′(z) − θ′(z)

]
→ 0,(3.26)

−2
[
φ′′(z) − 2iyθ′′(z) − 2θ′(z) + φ′′(z) + 2iyθ′′(z) − 2θ′(z)

]
→ 0.(3.27)
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3.2. Reformulation as a Hilbert problem. In order to exploit the periodicity
of the problem, and to obtain a straightforwardly solved pair of Hilbert problems for
proxies of θ′ and φ′′, we map conformally to the ζ-plane as

ζ = exp(i2πz/a), ξ = exp(i2πη/a),(3.28)

where 0 < η = Re(z) < a. We denote by Γ and Γ′ the images of Ĉ and Ĉ ′ under this
mapping. Γ and Γ′ are then disjoint arcs of the unit circle in the ζ-plane, and the
closure of Γ ∪ Γ′ is the unit circle itself. We also define Ñ(ξ) = N(η), τ̃b(ξ) = τb(η),
and let

Ω(ζ) =

{
φ′′(z), |ζ| > 1,
φ′′(z), 0 < |ζ| < 1,

(3.29)

ω(ζ) = φ′(z), 0 < |ζ| < 1,(3.30)

Θ(ζ) =

{
θ′(z), |ζ| > 1,
θ′(z), 0 < |ζ| < 1.

(3.31)

From the Schwarz reflection principle and the periodicity requirements above, it fol-
lows that Ω and Θ are analytic in the finite ζ-plane cut along the unit circle and
punctured at the origin, while ω is analytic inside the open unit disk cut along the
nonnegative part of the real axis in the ζ-plane, where ω may be discontinuous because
we know only that Re(φ′) is periodic. As we shall show later, ω is in fact analytic
across that branch cut. Moreover, using d/dz = (i2π/a)ζ d/dζ,

Ω(ζ) = (i2π/a)ζω′(ζ)(3.32)

for |ζ| < 1, except on the branch cut.
The boundary conditions (3.23)–(3.25) become

2i
[
Ω+(ξ) − Ω−(ξ)

]
=

{
Ñ(ξ) − 1, ξ ∈ Γ′,
−1, ξ ∈ Γ,

(3.33)

2
[
2Θ+(ξ) − Ω+(ξ) + 2Θ−(ξ) − Ω−(ξ)

]
=

{
γ−1(τ̃b(ξ) − 1), ξ ∈ Γ′,
−γ−1, ξ ∈ Γ,

(3.34)

−2Re(ω+(ξ)) =

{
(U − V )h′(η), ξ ∈ Γ′,
(U − V )h′

C(η), ξ ∈ Γ,
(3.35)

where superscripts + and − denote limits taken as the unit circle is approached from
within and without, respectively. The first two of these equations take the form
of standard Hilbert problems, whose solutions depend on the behavior of Ω and Θ
at infinity. Because of the symmetry inherent in the definitions of Ω and Θ, their
behavior at infinity is determined by their behavior at the origin. From (3.27), we
have for ζ → 0

4i
[
Θ(ζ) − Θ(ζ)

]
→ 0,(3.36)

Ω(ζ) + Ω(ζ) − 2Θ(ζ) − 2Θ(ζ) − 2 log |ζ|
[
ζΘ′(ζ) + ζΘ′(ζ)

]
→ 0.(3.37)

It follows from (3.36) that Θ is analytic at the origin with Θ(0) = C1, where C1 is
a real constant. Hence limζ→0 ζ log |ζ|Θ′(ζ) = 0, and from (3.37) it follows that Ω is
also analytic at the origin with Ω(0) = 4C1 + iC2, where C2 is another real constant.
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It can then be shown from the periodicity requirements (3.22) that both C1 and C2

vanish. Specifically, (3.22) can be written as

Re

[
a

i2π

∮
L

Ω(ζ) dζ

ζ

]
= Im

[
a

i2π

∮
L

[2Θ(ζ) − Ω(ζ)]

ζ
dζ

]
= 0,(3.38)

where L is a circular contour about the origin with radius less than 1, traversed
anticlockwise. Applying the residue theorem, this implies that C1 = C2 = 0, and
hence

Ω(0) = Θ(0) = 0.(3.39)

From (3.39) and the definitions of Ω and Θ in (3.31) it finally follows that

Ω(ζ) = Ω(1/ζ), Ω(∞) = 0, Θ(ζ) = Θ(1/ζ), Θ(∞) = 0,(3.40)

which taken together also ensure the appropriate behavior at the origin.
We can now solve (3.33), (3.34), and (3.40) explicitly in terms of the as yet

unknown effective pressure N(η) and shear stress τb(η). For the sake of simplicity,
define Ξ as a proxy for Θ through

Ξ(ζ) =

{
2Θ(ζ) − Ω(ζ), |ζ| < 1,
−2Θ(ζ) + Ω(ζ), |ζ| > 1,

(3.41)

so that (3.34) becomes

Ξ+(ξ) − Ξ−(ξ) =

{
γ−1(τ̃b(ξ) − 1), ξ ∈ Γ′,
−γ−1, ξ ∈ Γ,

(3.42)

subject to Ξ(∞) = 0, Ξ(ζ) = −Ξ(1/ζ). Assuming that Ñ and τ̃b are Hölder contin-
uous and bounded on Γ′ (we exclude the possibility of integrable singularities at the
endpoints of Γ′ because N and τb are related to h through (3.8) and (3.12), and h is
clearly bounded), (3.33) and (3.42) admit solutions vanishing at infinity of the form
(see [14])

Ω(ζ) = − 1

4π

∫
Γ′

Ñ(ξ)

ξ − ζ
dξ +

1

4π

∫
Γ∪Γ′

1

ξ − ζ
dξ,(3.43)

Ξ(ζ) = γ−1

[
1

2πi

∫
Γ′

τ̃b(ξ)

ξ − ζ
− 1

2πi

∫
Γ∪Γ′

1

ξ − ζ
dξ

]
,(3.44)

where integrals over Γ and Γ′ are taken (here and in what follows) as the unit circle
is traversed in the anticlockwise direction. Note that the second integral on the right-
hand side of each equation may be recognized as

∫
Γ∪Γ′(ξ− ζ)−1 dξ = 2πi if ζ is inside

the unit circle,
∫
Γ∪Γ′(ξ − ζ)−1 dξ = 0 for ζ outside the unit circle.

It remains to ensure that Ω and Ξ satisfy (3.40)1,3. Using the fact that Ñ is real,
while ξ = 1/ξ and dξ = −1/ξ2 dξ, it follows after some manipulation that

Ω(1/ζ) = − 1

4π

∫
Γ′
Ñ(ξ)

[
1

ξ − ζ
− 1

ξ

]
dξ +

1

4π

∫
Γ′∪Γ

[
1

ξ − ζ
− 1

ξ

]
dξ,(3.45)

with a similar expression for Ξ(1/ζ). In order to satisfy Ω(ζ) = Ω(1/ζ) and Ξ(ζ) =

−Ξ(1/ζ), we therefore require∫
Γ′

Ñ(ξ)

ξ
dξ −

∫
Γ∪Γ′

dξ

ξ
= 0,

∫
Γ′

τ̃b(ξ)

ξ
dξ −

∫
Γ∪Γ′

dξ

ξ
= 0.(3.46)



CAVITATION ON DEFORMABLE GLACIER BEDS 1643

0 1
ζ

ζ
L

0

c

ξ

1

’

(a) (b)

0

branch cuts

ζ

Fig. 3.1. The contour L in (3.48) is shown in panel (a), where solid lines indicate branch cuts
in ω. The branch cuts for log(ξ′/ζ − 1) (solid line) and log(ζ) (dashed line) are shown in panel (b).

In real terms, these equations are simply

1

a

∫ b

0

N(η) dη = 1,
1

a

∫ b

0

τb(η) dη = 1,(3.47)

which physically state that the mean shear stress at the ice-sediment interface is
the far-field shear stress, and that mean effective pressure is fixed by hydrostatic ice
overburden and by porewater pressure in the bed (the difference between the two being
scaled to unity). With the particular prescription of τb in (3.8), the two equations in
(3.47) are identical, and we are left with the single constraint (3.47)1, which states
that mean effective pressure at the bed is fixed at unity.

The expressions for Ω and Ξ in (3.43) and (3.44) as well as the solvability con-
straints in (3.47) contain the unknown functions N and τb, which depend on sediment
thickness h through the constitutive relations (3.6) and (3.8) as well as through (3.12),
while h conversely depends on N and τb through (3.35). Moreover, the limits of in-
tegration appearing in (3.43) and (3.44) are not known a priori, as we have yet to
determine the position of the contact point η = b. In the next section, we show how
h (and hence N and τb) can be calculated from an eigenvalue problem arising from
(3.35), which also determines the pattern speed V as its eigenvalue. Additionally, the
continuity requirements in (3.13) allow us to derive an integral constraint which fixes
the position of the contact point b.

3.3. Reduction to an eigenvalue problem. We exploit (3.35), (3.32), and
(3.43) as well as (3.6), (3.12), (3.13) and the inequality constraints in (3.4) and (3.5)
in order to obtain integral equations for h and hC . Our first task is to calculate ω,
which determines the bed slopes h′ and h′

C through (3.35). For ζ0 and ζ in the open
unit disk of the ζ-plane cut along the nonnegative half of the real axis, where ω has
a branch cut, we have from (3.32)

ω(ζ) − ω(ζ0) =
a

i2π

∫
L

Ω(ζ ′)

ζ ′
dζ ′,(3.48)

where primes on ζ ′ indicate a dummy variable, not differentiation. L is any arc
connecting ζ0 to ζ such that L lies entirely in the open unit disk and does not cross
the branch cut in ω (see Figure 3.1). It follows from (3.48) that ω is in fact continuous
and therefore analytic across that branch cut: Let ζc lie on the branch cut, and let
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ζ0 and ζ approach ζc from the first and fourth quadrants, respectively. In the limit,
L becomes a closed contour encircling the origin (Figure 3.1), and from the residue
theorem we have

ω(ζ) − ω(ζ0) → aΩ(0) = 0,(3.49)

so ω(ζc) can be assigned a unique limiting value regardless of which side the real axis
is approached from. As a corollary, we can in fact allow the arc L above to cross the
positive half of the real axis (which later allows us to establish that ω(ζ) has a unique
limit when ζ → 1 from inside the unit circle).

Using (3.43), we can evaluate the integral in (3.48) explicitly:

ω(ζ) − ω(ζ0) = − a

i8π2

∫
Γ′
Ñ(ξ′)

[
log

(
ξ′

ζ0
− 1

)
− log

(
ξ′

ζ
− 1

)]
dξ′

ξ′

+
a

4π
[log(ζ) − log(ζ0)],(3.50)

where for definiteness log(ξ′/ζ0−1) and log(ξ′/ζ−1) denote a branch of the logarithm
which has a branch cut as indicated in Figure 3.1. Similarly, log(ζ0) and log(ζ) denote
a branch which has a branch cut along the positive half of the real axis.

Next, we let ζ → ξ and ζ0 → 1 from inside the unit circle. It is easy to show
from (3.48), Cauchy’s theorem, and the continuity properties of Ω [14, pp. 53–55 and
Chapter 4] that the limit ω+(ξ) exists and is continuous as a function of ξ for all ξ
on the unit circle. Importantly, this result holds true at both endpoints of Γ′, where
ξ = 1 and ξ = exp(i2πb/a) (with continuity at ξ = 1 resulting from the continuity of
ω across the real axis). Using (3.35) and (3.50) and taking care with the branches of
the logarithms involved, we find after some elementary manipulations that

−2Re(ω+(ξ) − ω+(1)) = − 1

2π

∫ b

0

N(η′) log

∣∣∣∣ sin(π(η′ − η)/a)

sin(πη′/a)

∣∣∣∣ dη′

=

{
(U − V )(h′(η) − h′(0+)), η ∈ Ĉ ′,

(U − V )(h′
C(η) − h′(0+)), η ∈ Ĉ,

(3.51)

where ξ = exp(i2πη/a) as before and log(·) is the ordinary logarithm defined for
positive real numbers.

To proceed further, we require h′(0+). Since ω+ is continuous at ξ = 1, we
conclude from (3.35) that h′

C(a−) = h′(0+), provided V �= U . In other words, the
continuity of the y-component of velocity precludes any breaks in the slope of the
lower boundary of the ice. The local behavior of h and hC near the contact points η =
0, η = a then requires that h′

C(a−) = h′(0+) = 0 if the inequality constraints (3.4)5
and (3.5)5 on N and hC are to be satisfied close to the contact points. To see this,
note that the cavity roof is above the sediment surface and we have hC(η) > h(η) = 0
for b < η < a, while the cavity roof recontacts the bed at η = a, so that hC(a−) = 0
and hence h′(0+) = h′

C(a−) ≤ 0. Meanwhile, h(η) ≥ 0 in contact areas 0 < η < b
(as flux V h = q = N ≥ 0 and V > 0), and sediment thickness is continuous at the
downstream cavity endpoint, so that h(0) = 0, which implies h′

C(a−) = h′(0+) ≥ 0.
These two inequalities on h′(0+) can be satisfied simultaneously only if bed and cavity
roof slope vanish at the downstream cavity endpoint, h′(0+) = h′

C(a−) = 0.

An integral equation for h is now straightforward to obtain by integrating (3.51)
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once more and using h(0+) = 0:

(U − V )h(η) =

∫ η

0

(U − V )h′(η′) dη′

= − 1

2π

∫ η

0

∫ b

0

N(η′) log

∣∣∣∣ sin(π(η′ − η′′)/a)

sin(πη′/a)

∣∣∣∣ dη′ dη′′

= − 1

2π

∫ b

0

[∫ η

0

log

∣∣∣∣ sin(π(η′ − η′′)/a)

sin(πη′/a)

∣∣∣∣ dη′′
]
N(η′) dη′(3.52)

for η ∈ (0, b). As hC(a−) = 0 from (3.13), the cavity roof similarly satisfies

(U − V )hC(η) = −
∫ a

η

(U − V )hC(η′) dη′

=
1

2π

∫ b

0

[∫ a

η

log

∣∣∣∣ sin(π(η′ − η′′)/a)

sin(πη′/a)

∣∣∣∣ dη′′
]
N(η′) dη′(3.53)

for η ∈ (b, a). Solutions of these integral equations automatically satisfy (3.13)1. It
remains to ensure that hC(b+) = h(b−). Using (3.52) and (3.53), this can be written
in the form

1

2π

∫ b

0

[∫ a

0

log

∣∣∣∣ sin(π(η′ − η′′)/a)

sin(πη′/a)

∣∣∣∣ dη′′
]
N(η′) dη′ = 0.(3.54)

This equation ensures that there is no discontinuity in the ice surface at η = b, but
it generally requires a discontinuity in h (in the sense that (3.54) does not ensure
h(b−) = 0). This justifies our statement in section 2 that we cannot generally expect
sediment thickness to be continuous across all contact points; this is at least true for
traveling wave solutions.

Equation (3.54) allows the integrals above to be simplified somewhat. The kernel
on the left-hand side of (3.54) can be rewritten as∫ a

0

log

∣∣∣∣ sin(π(η′ − η′′)/a)

sin(πη′/a)

∣∣∣∣ dη′′(3.55)

=

∫ a

0

1

2

{
log

[
4 sin2

(
π(η′ − η′′)

a

)]
− log

[
4 sin2

(
πη′

a

)]}
dη′′.

But, as shown in the appendix,∫ a

0

log
[
4 sin2(π(η′ − η′′)/a)

]
dη′′ =

∫ a

0

log
[
4 sin2(πη′′/a)

]
dη′′ = 0,(3.56)

and (3.54) becomes more simply∫ b

0

log
[
4 sin2(πη/a)

]
N(η) dη = 0.(3.57)

Similarly rewriting the integral kernel in (3.52) and (3.53) and using (3.56) and (3.57)
yields the integral equations

(U − V )h(η) = − 1

4π

∫ b

0

{∫ η

0

log

[
4 sin2

(
π(η′ − η′′)

a

)]
dη′′

}
N(η′) dη′(3.58)
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for η ∈ (0, b), and

(U − V )hC(η) = − 1

4π

∫ b

0

{∫ η

0

log

[
4 sin2

(
π(η′ − η′′)

a

)]
dη′′

}
N(η′) dη′(3.59)

for η ∈ (b, a).
On writing N = q = V h and setting U = 1 from (3.6) and (3.12), the structure

of the problem finally becomes apparent: For a given contact point position b, h(η)
satisfies the eigenvalue problem

λh(η) +

∫ b

0

k(η, η′)h(η′) dη′ = 0(3.60)

for η ∈ (0, b), where the kernel k is given by

k(η, η′) =
1

4π

∫ η

0

log
(
4 sin2 [π(η′ − η′′)/a]

)
dη′′,(3.61)

and the real eigenvalue λ is a proxy for pattern velocity V , λ = (1 − V )/V . The
contact point b is constrained by (3.54), which reads

∫ b

0

log
[
4 sin2 (πη/a)

]
h(η) dη = 0.(3.62)

Finally, the eigenfunction h(η) satisfies the normalization condition (3.47), which
becomes

1

a

∫ b

0

h(η) dη = λ + 1.(3.63)

Once h, λ, and b have been found, the cavity roof shape hC(η) for η ∈ (b, a) can be
calculated from (3.53):

λhC(η) = −
∫ b

0

k(η, η′)h(η′) dη′.(3.64)

As mentioned previously, we allow only positive pattern speeds V > 0, so λ > −1,
and the mean of h is positive by (3.63). A solution h must further satisfy the stronger
pointwise constraint h(η) ≥ 0 for η ∈ (0, b), and similarly hC(η) > 0 for η ∈ (b, a).
It is by no means obvious that this will be the case: We have so far employed the
inequality constraints on h and hC only locally in order to determine the slopes of
h and hC at the contact points η = 0, η = a. Compliance with these constraints
must therefore be checked a posteriori once a solution has been found. Further,
our solution of the Hilbert problems (3.33) and (3.42) requires N(η) and τb(η) to be
Hölder continuous on C ′; that is, h(η) must be Hölder continuous on (0, b) and (to
make sense of the jump conditions (3.13)) continuous up to η = 0 and η = b from the
left and right, respectively. Moreover, h(η) must satisfy the original integrodifferential
equation (3.51), rather than simply the integrated version (3.52). In the appendix,
we show that any continuous solution h ∈ C([0, b]) of the eigenvalue problem (3.60)–
(3.62) does in fact satisfy this equation and is in C1([0, b]), which takes care of the
Hölder continuity of h. Hence it is sufficient to look for continuous h ∈ C([0, b]).
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3.4. Numerical method. In order to eliminate the arbitrary wavelength a from
the eigenvalue problem, we define

X = η/a, B = b/a, μ = λ/a2 = (1 − V )/(a2V ),

S(X) = h(η), SC(X) = hC(η).(3.65)

The equations we wish to solve are then

μS(X) +
1

4π

∫ B

0

[∫ X

0

log
[
4 sin2(π(X ′ −X ′′))

]
dX ′′

]
S(X ′) dX ′ = 0,(3.66)

∫ B

0

log
[
4 sin2(πX)

]
S(X) dX = 0,(3.67)

where the eigenfunction S is to be normalized as

∫ B

0

S(X) dX = 1 + a2μ.(3.68)

We are not interested in calculating the entire spectrum of the integral operator
in (3.66), but merely seek real eigenvalues μ > −1/a2. To this end, we can exploit
the structure of the integral operator by rewriting (3.66) in the form

μS(X) +
1

4π

∫ B

0

[∫ X−X′

0

log
[
4 sin2(πX ′′)

]
dX ′′

]
S(X ′) dX ′

= − 1

4π

∫ B

0

[∫ X′

0

log
[
4 sin2(πX ′′)

]
dX ′′

]
S(X ′) dX ′.(3.69)

The right-hand side of this equation is simply a constant, while the kernel of the
convolution-type integral operator on the left-hand side is antisymmetric and therefore
has purely imaginary eigenvalues. It follows that the constant on the right-hand
side cannot vanish unless we have the trivial solution S ≡ 0, which is, however,
precluded by the normalization condition (3.68). If we dispense temporarily with this
normalization condition by rescaling S—which we are at liberty to do because (3.66)
and (3.67) are homogeneous in S—we can therefore fix the constant on the right-hand
side of (3.69) at unity. Denoting this rescaled version of S by S̃, we obtain the pair
of equations

μS̃(X) +
1

4π

∫ B

0

[∫ X−X′

0

log
[
4 sin2(πX ′′)

]
dX ′′

]
S̃(X ′) dX ′ = 1,(3.70)

− 1

4π

∫ B

0

[∫ X′

0

log
[
4 sin2(πX ′′)

]
dX ′′

]
S̃(X ′) dX ′ = 1.(3.71)

The advantage of (3.70) is precisely that the kernel of the integral operator on the
left-hand side is antisymmetric and hence has purely imaginary eigenvalues. By the
Fredholm alternative, (3.70) has a unique solution S̃(X;μ,B) ∈ C([0, B]) for every
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real nonzero μ and every B ∈ (0, 1]. We denote this solution by S̃(X;μ,B). In terms
of S̃(X;μ,B), equations (3.71) and (3.67) can then be written in the form

f1(μ,B) :=
1

4π

∫ B

0

[∫ X

0

log
[
4 sin2(πX ′)

]
dX ′

]
S̃(X;μ,B) dX + 1 = 0,(3.72)

f2(μ,B) :=

∫ B

0

log
[
4 sin2(πX)

]
S̃(X;μ,B) dX = 0.(3.73)

The task of finding μ and B can therefore be reduced to solving two nonlinear equa-
tions, which must be done numerically. Here we use a backtracking line-search modi-
fication of Newton’s method [4], where the Jacobian is approximated by finite differ-
ences.

In order to evaluate the functions f1(μ,B) and f2(μ,B), S̃(X;μ,B) must be
calculated from (3.70). We use a degenerate kernel approximation [2, Chapter 2]: As
shown in the appendix, the kernel

K(X −X ′) =
1

4π

∫ X−X′

0

log
[
4 sin2(πX ′′)

]
dX ′′(3.74)

can be approximated uniformly by the truncated Fourier series

Kn0
(X −X ′) =

n0∑
n=−n0, n �=0

i exp(i2nπX) exp(−i2nπX ′)

8π2|n|n(3.75)

as n0 → ∞. Replacing K(X −X ′) by Kn0(X −X ′), the solution of (3.70) follows the
standard method for degenerate kernels.

4. Results and discussion. Regardless of the initial guess for μ and B, only a
single solution was found numerically, with μ = 2.971× 10−3 and B = 0.2285. Visual
inspection of the surfaces generated by f1 and f2 also suggests that this solution is
unique. In Figure 4.1, we plot the corresponding shape of S(X) and SC(X), nor-

malized so that
∫ B

0
S(X) dX = 1 (formally, this is (3.68) with a = 0, that is, the

short-wave limit). The sediment in the traveling wave is confined to a relatively short
wedge upstream of an extended cavity, and the vanishing sediment surface and cavity
roof slopes at the contact points X = 0, 1 are clearly visible. Moreover, the solution
appears to satisfy the constraints S(X) ≥ 0 for X ∈ (0, B), SC(X) > 0 for X ∈ (B, 1).
Note that a solution S(X) for a given wavelength a �= 0 can be obtained from that
plotted in Figure 4.1 simply by multiplying it by 1 + a2μ. This ensures that the
normalization condition (3.68) is satisfied. Since the amplitude of S varies with wave-
length as 1+a2μ, we see that long waves are also taller than short ones. Furthermore,
the pattern speed V can be calculated as V = 1/(1 + a2μ), which states that pattern
speed is inversely proportional to amplitude and hence that shorter waves travel faster
than longer ones. Moreover, since μ > 0, the pattern speed V is always less than the
ice velocity U . If we take a to be given as the fastest growing wavelength in the
original instability model in section 2, then a = 2π[2/

√
3]1/2 = 6.752 and V = 0.881.

These traveling waves are advected downstream at 88% of the velocity of ice at the
bed, and their amplitude is 1.135 times that shown in Figure 4.1.

The existence of a traveling wave solution suggests that cavity formation may
be sufficient to lead to bounded growth in the instability mechanism proposed by
Hindmarsh [11] and Fowler [8]. However, it also poses some interesting open questions
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Fig. 4.1. Solution S(X) for sediment surface elevation and SC(X) for cavity roof elevation,

normalized so that
∫ B
0 S(X) dX = 1 and extended periodically. The sediment shock at X = B is

shown as a dashed vertical line.

regarding the dynamical problem of section 2: First, are the traveling waves described
here stable to small perturbation, and if so, does their stability depend on their
wavelength? Second, how do waves of different wavelengths interact? Do shorter
waves merge with larger ones, and does wavelength coarsening occur? The first of
these questions may be amenable to a complex variable approach of the type used
above, using an appropriate linearization. The second is much harder and requires an
understanding of the fully nonlinear time-dependent problem.

Physically, our results also pose some additional questions. Following [11, 8],
our model assumes that porewater pressure in the sediment, and hence mean effective
pressure, are fixed by a pre-existing subglacial drainage system, most likely taking the
form of channels at the ice-bed interface [15]. However, once cavities have formed, it
is likely that they will serve as both storage volume and conduits for water flowing
beneath the glacier, and that drainage through these cavities will be instrumental in
controlling water pressures at the bed. The simplest way to understand how this type
of drainage might work is by considering cavities as a kind of macroscopic pore space,
and to consider drainage through cavities at the bed as being a two-dimensional
analogue of drainage in ordinary porous media, giving rise to a Biot-type problem
[7, 10] for water pressure on an outer length scale associated with the length of the
glacier as a whole (which is assumed to be large compared with the instability length
scale considered in the model studied in this paper). The problem with applying this
approach here is that the size of cavities increases with mean effective pressure (scaled
to unity in the dimensionless model), as can be shown from the scalings used in [19].
Specifically, the dimensional scale for h is

[h] =
[N ]

(n− 2)(1 − φ)(ρs − ρw)g
,

where [N ] is mean effective pressure at the bed (“mean” being an average taken over
the cavity length scale), n is an exponent in the assumed power-law rheology for
sediment (which gives rise to the constitutive relations for shear stress τb and flux q
in (2.6) for n � 1; see [19]), φ is the porosity of the sediment, ρs and ρw are the
densities of sediment grains and of water, and g is acceleration due to gravity. Hence
[h] increases linearly with effective pressure, and it follows that cavity size decreases
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with water pressure. This in turn means that the advocated Biot-type drainage model
takes the form of a backward diffusion problem and is therefore ill-posed.

It is unclear to what extent this result is due to the particular rheological model
employed for subglacial sediment, and an obvious avenue for further research is to
consider alternative prescriptions for τb and q from those introduced in (2.6). The
eigenvalue problem (3.58) combined with constraints of the form (3.47) and (3.54)
generalizes relatively easily to other forms of τb and q, though the resulting nonlinear
eigenvalue problem is considerably more complicated [16], and we leave a solution as
an open problem.

Appendix. Smoothness of solutions. It can be shown in the usual way from
the Arzelà–Ascoli theorem that the integral operator in (3.70) is compact on C([0, B]),
and the antisymmetry of the kernel further ensures that all its eigenvalues are purely
imaginary. By the Fredholm alternative [3, Chapter 7.5], the integral equation (3.70)
therefore has a unique solution in C([0, B]) for every real μ. In what follows, we
will show that this solution is in fact in C1([0, B]) and satisfies the integrodifferential
equation (3.51). In the process, we will also prove (3.56) and show that the degenerate
kernel approximation (3.75) converges uniformly to K in the limit n0 → ∞.

At issue is thus whether a solution of (3.70) satisfies (3.51), which in view of
(3.54), (3.6), (3.12), and the rescaling in (3.65) may be rewritten in the form

− 1

4π

∫ b

0

log
(
4 sin2[π(X −X ′)]

)
S̃(X) dX ′ = μS̃′(X)(A.1)

for X ∈ (0, B). If S̃ ∈ C([0, B]) satisfies (A.1), it follows immediately from the prop-
erties of convolution integrals that S̃′ ∈ C([0, B]), and S̃ ∈ C1([0, B]), as required.
Equation (A.1) can be obtained by differentiating (3.70) (noting that the right-hand
side is simply a constant) and by exchanging the order of differentiation and integra-
tion on the integral term. In order to prove that integration and differentiation do
commute—which is not obvious because the integrand in (A.1) has a singularity—we
approximate the integrand by a sequence of bounded integrands.

A.1. Degenerate kernel approximation. The power series

∞∑
n=1

ζn−1

n
= − log(1 − ζ)

ζ

has radius of convergence one, and therefore converges everywhere inside the unit
circle in the complex ζ-plane. The branch of the logarithm must be continuous on the
open unit disk with log(1) = 0. Note that the singularity at the origin is removable:
We can assign − 1

ζ log(1−ζ) its limiting value of 1. The series also converges pointwise

on the unit circle except at ζ = 1 [1, p. 409]. For ξ on the unit circle and r ∈ (0, 1),
we have ∣∣∣∣∣

n0∑
n=1

rn−1ξn

n

∣∣∣∣∣ ≤
n0∑
n=1

∣∣∣∣rn−1ξn

n

∣∣∣∣ =

n0∑
n=1

rn−1

n
<

log(1 − r)

r
(A.2)

for any finite n0. Since 1
r log(1 − r) is integrable over r ∈ (0, 1), so is

∞∑
n=1

rn−1ξn

n
= − log(1 − rξ)

rξ
ξ,
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deformed path
of integration

original path
of integration

0 1

branch cut

ξ

ξ

Fig. A.1. Integration paths in the degenerate kernel approximation of K(x).

and the order of summation and integration may be interchanged by the dominated
convergence theorem, i.e.,

∫ 1

0

− log(1 − rξ)

rξ
ξ dr =

∞∑
n=1

∫ 1

0

(rξ)n−1

n
ξ dr =

∞∑
n=1

ξn

n2
.(A.3)

Similarly,

∫ 1

0

− log(1 − rξ)

rξ
ξ dr =

∞∑
n=1

ξ
n

n2
.(A.4)

Subtracting the last two expressions and recognizing that ξ = 1/ξ yields

∞∑
n=−∞, n �=0

ξn

n|n| =

∫ 1

0

− log(1 − rξ)

rξ
ξ dr −

∫ 1

0

− log(1 − rξ)

rξ
ξ dr.(A.5)

However, the right-hand side is just the integral
∫
− 1

ζ log(1 − ζ) dζ taken along

the radial path from ξ to ξ via the origin (see Figure A.1). Since the integrand
− 1

ζ log(1 − ζ) can be made holomorphic in the complex plane cut along the interval

[1,∞) on the real line, the curve along which the integral is taken can be deformed to
lie on the unit circle, with a small indentation at the branch point ζ = 1 (Figure A.1).
The indentation does not contribute to the integral along the deformed curve in the
limit where the radius of the indentation tends to zero. Setting ξ = exp(i2πX), the
integral may thus be expressed as

∞∑
n=−∞, n �=0

ξn

n|n| = −i2π

∫ X

−X

log [1 − exp(i2πX ′)] dX ′

= −i2π

∫ X

0

log [1 − exp(i2πX ′)] + log [1 − exp(−i2πX ′)] dX ′

= −i2π

∫ X

0

log
[
4 sin2(πX ′)

]
dX ′.(A.6)
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Consequently, the kernel K defined by (3.74) may be written as

K(X) =
1

4π

∫ X

0

log
[
4 sin2(πX ′)

]
dX ′ =

∞∑
n=−∞, n �=0

iξn

8π2n|n| .(A.7)

The argument above has shown that the series on the right converges pointwise to the
integral in the middle. By the Weierstrass M -test, it also converges uniformly; that
is, Kn0

(X) defined in (3.75) converges to K(X) in the C([0, B]) norm as n0 → ∞.
Lastly, it follows immediately that K(1) = 0, and (3.56) holds.

A.2. Differentiation under the integral sign. We can use the series repre-
sentation (A.7) of the kernel K to show that (A.1) holds. Specifically, let

μS̃n0(X) = −
∫ B

0

Kn0(X −X ′)S̃(X ′) dX ′ + 1,(A.8)

where Kn0 is defined in (3.75). It is easy to see that S̃n0 converges to S̃ in the C([0, B])
norm. Since K ′

n0
is continuous and hence bounded, we can further differentiate di-

rectly,

μS̃′
n0

(X) = −
∫ B

0

K ′
n0

(X −X ′)S̃(X ′) dX ′,(A.9)

and S̃n0 ∈ C1([0, B]). But K ′
n0

(X) = −
∑n0

n=−n0,n �=0 exp(i2πX)/(4πn) converges
to K ′(X) almost everywhere in [0, 1] by the results of section A.1. Moreover, be-
cause

∑∞
n=1 1/|n|2 < ∞, K ′

n0
(X) also converges as a Fourier series to K ′(X) in the

L2([0, 1])-norm, and hence in the L1([0, 1])-norm. Hence, for B ∈ [0, 1],

sup
x∈[0,B]

∣∣∣∣∣
∫ B

0

K ′
n0

(X −X ′)S̃(X ′) dX ′ −
∫ B

0

K ′(X −X ′)S̃(X ′) dX ′

∣∣∣∣∣
≤ sup

X∈[0,B]

|S̃(X)|
∫ 1

0

∣∣K ′
n0

(X ′) −K ′(X ′)
∣∣ dX ′ → 0(A.10)

as n0 → ∞. By the completeness of C1([0, B]), we therefore have

μS̃′(X) = μ
d

dX
lim

n0→∞
S̃n0(X) = −

∫ B

0

K ′(X −X ′)S̃(X ′) dX ′,(A.11)

which is (A.1).
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ATTRACTORS IN CONFINED SOURCE PROBLEMS FOR
COUPLED NONLINEAR DIFFUSION∗

D. V. STRUNIN†

Abstract. In processes driven by nonlinear diffusion, a signal from a concentrated source is
confined in a finite region. Such solutions can be sought in the form of power series in a spatial
coordinate. We use this approach in problems involving coupled agents. To test the method, we
consider a single equation with (a) linear and (b) quadratic diffusivity in order to recover the known
results. The original set of PDEs is converted into a dynamical system with respect to the time-
dependent series coefficients. As an application we consider an expansion of a free turbulent jet.
Some example trajectories from the respective dynamical system are presented. The structure of the
system hints at the existence of an attracting center manifold. The attractor is explicitly found for
a reduced version of the system.

Key words. nonlinear diffusion, attractor, turbulence
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1. Introduction. A variety of physical processes are described by the nonlinear
diffusion equations

(1) ∂tK = (−1)n∇ (Km∇ΔnK) ,

where n ≥ 0 is an integer and m > 0. In the particular case of n = 0, (1) becomes
the second-order diffusion equation

(2) ∂tK = ∇ (Km∇K) .

An important common property of the nonlinear diffusion (2) and its higher-order
generalizations (1) is the finiteness of the speed of a signal propagation. If the signal
is initially confined in a finite region so that it is identically equal to zero beyond
the region, the signal remains confined during the dynamics. This property distin-
guishes the nonlinear diffusion from the linear diffusion (m = 0), where the signal
instantaneously propagates to infinity.

The range of processes described by (1)–(2) is wide. The second-order equa-
tions (2) are known as the porous medium equations and appear in models of gas
filtration in porous media [1, 2] and thin fluid films in a gravitational field (m = 3) [3].
The fourth-order equations (n = 1) emerge in lubrication models for thin viscous films
(m = 3) and Hele–Shaw flows (m = 1). The sixth-order models (n = 2) are relevant
to the process of isolation oxidation of silicon (m = 3) [4]. The models with m = 3
and different values of n describe thin viscous droplets driven by different factors:
gravity (n = 0), surface tension (n = 1), and an elastic plate (n = 2).

Various mathematical aspects of the second-order equation (2) are analyzed in [5,
6, 7]; the fourth-order model is investigated, for example, in [8]. Numerical schemes for
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solving the fourth- and sixth-order equations using finite differences or finite elements
are developed in [9, 10, 11].

In this paper we focus on attractors in coupled nonlinear diffusion with confined
sources when there are more than one diffusing agent.

To give an example of an attractor in nonlinear diffusion we consider the second-
order equation (2) in one dimension, ∂tK = ∂x(Km∂xK). Its solution evolving from
a confined initial profile is attracted to the universal regime [12, 13],

(3) K(x, t) =
γ(m)

t1/(m+2)

(
ξ2
0 − ξ2

)1/m
,

where

ξ =
x

t1/(m+2)
, ξ0 =

[
Γ
(

1
m + 3

2

)
γ(m)

√
π Γ

(
1
m + 1

) E
] m

m+2

, γ(m) =

[
m

2(m + 2)

] 1
m

,

Γ is the gamma-function, and E is the integral

E =

∫ ∞

−∞
K(x, t) dx,

which conserves during the evolution. For our purposes it is convenient to write the
attractor (3) in the form

(4) K(x, t) =
α

t1/(m+2)

(
1 − β

t2/(m+2)
x2

)1/m

,

where α and β are the coefficients depending on m and E.
Similar attractors exist for the higher-order equations (1). For example, in one

dimension for m = 1 and n = 1, i.e., for the fourth-order equation ∂tK = ∂x(K∂3
xK),

the attractor is [14]

K(x, t) =
1

120 t1/5
(
ξ2
0 − ξ2

)2
,

where

ξ =
x

t1/5
, ξ0 =

(
225E

2

)1/5

.

Recently in [11], (1) was analyzed numerically for n = 2 and m = 1, that is, the
sixth-order equation ∂tK = ∂x(K∂5

xK). It was proved that the solution converges to
the attractor found in [14].

Many processes involve more than one diffusing agent. For example, in a free
turbulent jet the diffusing turbulent energy is coupled with the diffusing momentum.
We analyze this process later in the paper. In the multicomponent problems an
important question to answer is whether there exists an attractor.

Another motivation for us to analyze this particular phenomenon stems from
fluid mechanics, where an expansion of a jet from a narrow pulse is a natural problem
formulation. For other processes, other regimes can be of interest. For example, in
the isolation oxidation of silicon, traveling waves are of major interest [10].
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In this paper we take an approach in which confined solutions are sought as
power-series in a spatial coordinate. The diffusion of the turbulent jet is one of many
problems to which this approach is applicable.

Previously [15] we studied the expansion of the turbulent jet using a nonlocal
version of the K-� model of turbulence (see, e.g., the review [16]).

In the present paper we use the K-ε model [17, 18], which is local. The locality
enables us to convert the governing PDEs into a set of ODEs. Thus, the problem
transforms into a standard dynamical system formulation, in which framework we
look for an attractor.

As a first step, in section 2 we test our approach on some standard problems to
recover known results. Then, in section 3 the approach is applied to the turbulent
jet. In section 4 we analyze in detail its reduced version. The conclusions are given
in section 5.

2. Power-series approach. In this section we formulate our approach and test
it on simple problems. We consider the nonlinear diffusion with linear and then
quadratic diffusivity.

2.1. Diffusion with linear diffusivity. Consider (2) with m = 1:

(5) ∂tK = ∂x(K∂xK).

The long-term asymptotics (4) of its pulse solution is

(6) K =
α

t1/3

(
1 − β

x2

t2/3

)
or

(7) K = a(t)
[
1 − b(t)x2

]
with

a(t) =
α

t1/3
, b(t) =

β

t2/3
.

For finite times, assuming an initial pulse is symmetric, we seek a solution in the
form

(8) K(x, t) = A(t) [1 −B2(t)x
2 −B4(t)x

4 −B6(t)x
6 − · · · ],

where A(t) > 0 is the value of K at x = 0. Expression (8) is acceptable as long
as it gives a positive answer. Thus, (8) represents the solution on some interval
0 ≤ x ≤ h(t), where h(t) is the position of the front in which K[h(t), t] = 0. Beyond
the front, for x > h(t), formula (8) does not apply; we assume K(x, t) ≡ 0 instead.
With various initial values Bk(0), k = 2, 4, . . . , the form (8) expresses a wide class of
symmetric initial conditions. Apparently Bk(t) are proportional to the Taylor-series
coefficients of K(x, t).

Substituting (8) into (5), collecting the terms with the same powers of x, and
equating the coefficients gives

Ȧ = −2A2B2,

Ḃ2 = −4AB2
2 + 12AB4,

Ḃ4 = −28AB2B4 + 30AB6,

Ḃ6 = −54AB2B6 − 28AB2
4 + 56AB8,

. . . .

(9)
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The system (9) contains no linear terms; however, we can “create” those by modifying
time. Divide all the equations in (9) by AB2 and introduce the new time τ by

(10)
d

AB2 dt
=

d

dτ
≡ ()′.

Then system (9) transforms into

A′ = −2A,

B′
2 = −4B2 + 12

B4

B2
,

B′
4 = −28B4 + 30

B6

B2
,

B′
6 = −54B6 − 28

B2
4

B2
+ 56

B8

B2
,

. . . .

(11)

Looking at the coefficients of the linear terms we notice a considerable spectral gap
between the coefficient −4 at B2 in the equation B′

2 = . . . and the coefficient −28 at
B4 in the equation B′

4 = . . . . Therefore we can expect that B4 and the subsequent Bk,
k = 6, 8, . . . , will decay much faster than A and B2. This is confirmed numerically as
demonstrated by Figure 1. The plot shows a family of trajectories for the truncated
system formed by the dynamic equations for B2, B4, and B6 in (11) with the term
containing B8 removed. The figure gives three different views of the same trajectories
to expose the faster decay of B4 and B6 in comparison to B2.

The numerical results in this paper are obtained with the MATLAB solver DAE2
developed by Roberts [19].

It is interesting to evaluate the contribution of different terms, (−Bkx
k), in the

function

(12) 1 −B2x
2 −B4x

4 −B6x
6 − · · ·

defining the shape of K(x, t). Let us compare the terms for the largest value of x inside
the signal, that is, the coordinate of the front, x = h(t). Retain the first three terms
in (12), presuming that the input of the sixth- and higher-order terms is negligible.
On the front the signal vanishes, and therefore approximately

1 −B2h
2 −B4h

4 = 0.

From here

(13) h2 =

(
−B2 +

√
B2

2 + 4B4

)/
(2B4).

Further, if we suppose that

(14) B4 � B2/h
2,

then the fourth-order term appears to be negligible compared to the quadratic term.
Inserting (13) into (14) and rearranging, we obtain

(15) B4 � 2B2
2 .
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Fig. 1. Solutions of truncated system (11).

In the numerical experiments the condition (15) was satisfied several orders over.
Tracking the value of h(t) directly from the numerical experiment confirms the negli-
gible contribution of the fourth- and higher-order terms.

Thus, the power-series approach recovered the expected result that (6) is indeed
the attractor for the diffusion problem with the linear diffusivity.

2.2. Diffusion with quadratic diffusivity. In this section we consider the
diffusion equation with quadratic diffusivity,

(16) ∂tK = ∂x
(
K2∂xK

)
.

Its pulse solution (4) has the form

(17) K =
α

t1/4

(
1 − β

x2

t1/2

)1/2

.

Expanding (17) into the Taylor-series, we get

(18) K(x, t) = a(t) [1 − b2(t)x
2 − b4(t)x

4 − b6(t)x
6 − · · · ],
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where

b2(t) = β
1

2
√
t
, b4(t) = β2 1

8t
,

b6(t) = β3 1

16t3/2
, b8(t) = β4 5

128t2
,

. . . .

(19)

It converges for βx2/t1/2 ≤ 1, that is, for all x of interest, 0 ≤ x ≤ h(t) = t1/2/β.
Any bk in (19) can be expressed through a selected one, for instance, b2:

(20) b4 =
1

2
b22, b6 =

1

2
b32, b8 =

5

8
b42, . . . .

Expressions (20) describe the attractor which we intend to reproduce by our approach.
As in the previous section, we seek a power-series solution of (16),

(21) K(x, t) = A(t) [1 −B2(t)x
2 −B4(t)x

4 −B6(t)x
6 − · · · ].

Substituting (21) into (16) leads to

Ȧ = −2A3B2,

Ḃ2 = −10A2B2
2 + 12A2B4,

Ḃ4 = −58A2B2B4 + 30A2B6 + 10A2B3
2 ,

Ḃ6 = −110A2B2B6 + 56A2B2
2B4 − 56A2B2

4 + 56A2B8,

Ḃ8 = −178A2B2B8 + 90A2B2
2B6 + 90A2B2B

2
4 − 180A2B4B6 + 90A2B10,

. . . .

(22)

We divide all the equations in (22) by A2B2 and introduce the new time τ by

(23)
d

A2B2 dt
=

d

dτ
≡ ()′.

As a result, system (22) transforms into the following form with linear terms:

A′ = −2A,

B′
2 = −10B2 +

12B4

B2
,

B′
4 = −58B4 +

30B6

B2
+ 10B2

2 ,

B′
6 = −110B6 + 56B2B4 −

56B2
4

B2
+

56B8

B2
,

B′
8 = −178B8 + 90B2B6 + 90B2

4 − 180B4B6

B2
+

90B10

B2
,

. . . .

(24)

Consider only three dynamic equations for B2, B2, and B4 with the term containing
B8 omitted. A set of trajectories for such a system is shown in Figure 2. It is clearly
seen from different angles that the trajectories are attracted to a single curve or a
one-dimensional manifold. It can be shown that the curve is described by

(25) B4 = γB3
2 , B6 = μB3

2 ,
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Fig. 2. Solutions of truncated system (24).

where γ and μ are parameters. It is interesting to compare them to their values on
the attractor defined by (20). We substitute (25) into (24) to obtain

B′
2 = (−10 + 12γ)B2,

B′
2 =

(
−29 +

15μ

γ
+

5

γ

)
B2,

B′
2 =

(
−110

3
+

56γ

3μ
− 56γ2

3μ

)
B2.

(26)

As each of the equations in (26) describes the motion on the attractor, they all must
coincide. So must the coefficients at B2 in their right-hand sides. This leads to two
algebraic equations with respect to γ and μ, giving approximately γ = 0.31, μ = 0.14.
Compare these to the exact values from (20),

γ∗ = 1/2 = 0.5, μ∗ = 1/2 = 0.5.

The departure from the exact values can be diminished by involving more equations.
For the four-equation system with respect to B2, B4, B6, and B8, with the term
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containing B10 excluded, we have

(27) B4 = γB3
2 , B6 = μB3

2 , B8 = λB4
2 .

Inserting (27) into (24) leads to a system of three equations, with respect to γ, μ, and
λ, having the approximate solution γ = 0.35, μ = 0.20, λ = 0.11. Note that from (20)
the exact value for λ is λ∗ = 5/8 = 0.62. To improve the approximation further, more
equations have to be involved.

In summary, we reproduced the well-known fact that for the diffusion with qua-
dratic diffusivity the trajectories converge to a one-dimensional manifold representing
the similarity regime (17).

3. The K-ε model of a turbulent jet. Consider a turbulent jet created in an
unbounded motionless fluid by a quick impulse shaped in space as a narrow flat layer.
For instance, some amount of fluid is quickly injected. The velocity shear between the
jet and surrounding fluid pumps up the kinetic energy of turbulence. The turbulent
region expands and, in the long term, the energy decays due to the geometric effect of
expansion and the loss into heat caused by intersections of vortices (we will call this
loss simply dissipation).

The expansion is driven by the turbulent diffusion which is essentially nonlinear.
As a consequence, the jet has a sharp front similar to the above examples. However,
the dynamics is complicated by the coupling between the kinetic energy, dissipation,
and momentum. The K-ε model of turbulence [17, 18] is written

∂tK = α1∂x

(
K2

ε
∂xK

)
+ α2

K2

ε
(∂xu)

2 − α3ε,

∂tε = β1∂x

(
K2

ε
∂xε

)
+ β2K (∂xu)

2 − β3
ε2

K
,

∂tu = χ∂x

(
K2

ε
∂xu

)
.

(28)

In (28) the coordinate x is directed across the flat turbulent layer originating in its
middle, K stands for the kinetic energy of turbulent pulsations per mass unit, and
ε is the dissipation of the turbulent energy; α1,2,3, β1,2,3, and χ are nondimensional
coefficients. The system (28) is nondimensional, obtained from dimensional form by
using some useful scales, for example, the average initial velocity across the jet, U ,
as the velocity scale; the initial width of the jet, 2h, as the length scale; U2 as the
turbulent energy scale; U3/h as the dissipation rate scale; and h/U as the time scale.

The initial profiles of K, ε, and u across the turbulent layer are assumed to have
dome-like forms. We assume that they are symmetric with respect to the middle of
the layer. On the edge, or front, of the jet the functions descend to zero and remain
zero beyond the front (see the discussion further in this section).

We look for the power-series solutions of (28),

K = A(t) [1 −B2(t)x
2 −B4(t)x

4 −B6(t)x
6 − · · · ],

ε = P (t) [1 −R2(t)x
2 −R4(t)x

4 −R6(t)x
6 − · · · ],

u = M(t) [1 −N2(t)x
2 −N4(t)x

4 −N6(t)x
6 − · · · ].

(29)

Substituting the series (29) into the dynamic equations (28) leads to
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Ȧ = −α1
2A3B2

P
− α3P,

Ṗ = −β12A
2R2 − β3

P 2

A
,

Ṁ = −χ
2A2MN2

P
,

Ḃ2 = −α1
10A2B2

2

P
+ α3

PB2

A
+ α1

6A2B2R2

P
+ α1

12A2B4

P

− α2
4AM2N2

2

P
− α3

PR2

A
,

Ṙ2 = −β1
12A2B2R2

P
+ β1

8A2R2
2

P
− β3

PR2

A
+ β1

12A2R4

P

− β2
4AM2N2

2

P
+ β3

PB2

A
,

Ṅ2 = −χ
12A2B2N2

P
+ χ

2A2N2
2

P
+ χ

6A2N2R2

P
+ χ

12A2N4

P
,

Ḃ4 = −α1
58A2B2B4

P
+ α3

PB4

A
+ α1

10A2B3
2

P
− α1

20A2B2
2R2

P

+ α1
10A2B2R

2
2

P
+ α1

10A2B2R4

P
+ α1

20A2B4R2

P
+ α1

30A2B6

P

+ α2
8AB2M

2N2
2

P
− α2

4AM2N2
2R2

P
− α2

16AM2N2N4

P
− α3

PR4

A
,

Ṙ4 = −β1
40A2B2R4

P
+ β1

2A2R2R4

P
− β3

PR4

A
+ β1

10A2B2
2R2

P

− β1
20A2B2R

2
2

P
− β1

20A2B4R2

P
+ β1

10A2R3
2

P
+ β1

30A2R2R4

P

+ β1
30A2R6

P
+ β2

4AB2M
2N2

2

P
− β2

16AM2N2N4

P
+ β3

PB2
2

A

− β3
2B2PR2

A
+ β3

B4P

A
+ β3

PR2
2

A
,

Ṅ4 = −χ
40A2B2N4

P
+ χ

2A2N2N4

P
+ χ

10A2B2
2N2

P
− χ

20A2B2N2R2

P

− χ
20A2B4N2

P
+ χ

10A2N2R
2
2

P
+ χ

10A2N2R4

P
+ χ

20A2N4R2

P

+ χ
30A2N6

P
,

. . . .

(30)

An immediate idea of how to solve (30) could be to truncate the system by re-
moving higher-order variables and solve the resulting closed system under some initial
conditions. However, such an approach has a serious flaw since there is no guarantee
that the three fronts—the energy front, dissipation front, and velocity front—would
coincide during the evolution. By the physics of diffusion, if the fronts do not coincide
initially, they must catch up with each other. Suppose, for example, that initially the
velocity front is behind the energy and dissipation fronts (suppose that these two
coincide). Then the turbulent diffusion will instantaneously transfer the momentum
forward up to the energy/dissipation front position. Conversely, if the velocity front
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is initially ahead of the energy/dissipation front, it will be motionless for some time,
as there is no turbulence in its vicinity. The velocity front would move only when
the energy/dissipation front catches up, after which all the fronts move together. The
front x = h(t), where the energy, dissipation, and velocity decrease to a zero level, is
a special point, yet the system (30) “does not know about it.” We should explicitly
impose the physical condition that the three profiles (29) must meet at the point
(K = ε = u = 0, x = h).

Let us demonstrate with a simple example that the lack of such a condition leads
to the growth of the gap between the fronts. Consider a relatively simple model

∂tK = ∂x(K∂xK),

∂tu = ∂x(K∂xu),

without attributing any physical sense to K and u. We look for power-series solutions
in the form of (29) and transfer to the new time by using AB2 dt = dτ . Retaining
only two leading equations for the series coefficients and removing terms with B4 and
N4, we have

B′
2 = −4B2,

N ′
2 = −6N2 +

2N2
2

B2
.

(31)

Upon solving (31), the front of K can be determined from

1 −B2h
2
K = 0,

and the front of u can be found from

1 −N2h
2
u = 0.

Clearly N2 = B2 satisfies (31), but is this solution stable? Introduce the perturbation
s by

(32) N2 = B2 − s.

Substituting (32) into (31) and linearizing, we get

s′ = −2s.

The perturbation decays as exp(−2τ), whereas B2 decays, according to (31), as
exp(−4τ). Thus, the perturbation goes to zero slower than the function itself. This
leads to a large discrepancy between the values of B2 and N2, and hence in the front
positions, h2

u = 1/N2 and h2
K = 1/B2. A similar effect occurs with the system (30).

Let us see how the situation changes if we require that the fronts coincide. We
augment (31) by two extra equations stating that the functions turn into zero at
the same point x = h(t), that is, K(h, t) = 0 and u(h, t) = 0, where K and u are
represented by the truncated series (29). The two extra equations bring one extra
unknown, h. Therefore we need to add another unknown to have as many equations
as unknowns. Let this new unknown be N4. We get

B′
2 = −4B2,

N ′
2 = −6N2 +

12N4

B2
+

2N2
2

B2
,

1 −B2h
2 = 0,

1 −N2h
2 −N4h

4 = 0.

(33)
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Excluding h and N4 from (33) leads to

B′
2 = −4B2,

N ′
2 = −6N2 +

2N2
2

B2
+ 12(B2 −N2).

(34)

Substituting (32) into (34) and linearizing gives

s′ = −14s.

Now s decays much faster than B2 so that, in contrast to the previous case, B2 and
N2 become closer to each other.

Applying a similar approach to the system (30), we require that K, ε, and u turn
into zero at the same location x = h(t). Retaining in the power-series (29) only terms
up to the fourth order, we require

1 −B2h
2 −B4h

4 = 0,

1 −R2h
2 −R4h

4 = 0,

1 −N2h
2 −N4h

4 = 0.

(35)

Equations (35) are complemented by the truncated dynamic equations (30),

Ȧ = −α1
2A3B2

P
− α3P,

Ṗ = −β12A
2R2 − β3

P 2

A
,

Ṁ = −χ
2A2MN2

P
,

Ḃ2 = −α1
10A2B2

2

P
+ α3

PB2

A
+ α1

6A2B2R2

P
+ α1

12A2B4

P

− α2
4AM2N2

2

P
− α3

PR2

A
,

Ṙ2 = β1
8A2R2

2

P
− β3

PR2

A
− β1

12A2B2R2

P
+ β1

12A2R4

P

− β2
4AM2N2

2

P
+ β3

PB2

A
,

Ṅ2 = χ
2A2N2

2

P
− χ

12A2B2N2

P
+ χ

6A2N2R2

P
+ χ

12A2N4

P
,

(36)

Ḃ4 = −α1
58A2B2B4

P
+ α3

PB4

A
+ α1

10A2B3
2

P
− α1

20A2B2
2R2

P

+ α1
10A2B2R

2
2

P
+ α1

10A2B2R4

P
+ α1

20A2B4R2

P
+ α1

30A2B6

P

+ α2
8AB2M

2N2
2

P
− α2

4AM2N2
2R2

P
− α2

16AM2N2N4

P
− α3

PR4

A
.

The system (35)–(36) contains 10 equations with respect to 10 time-dependent func-
tions: A, P , M , B2, R2, N2, B4, R4, N4, and h.
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As before, we “create” linear terms by modifying time:

(37)
d

(A2B2/P ) dt
=

d

dτ
≡ ()′.

Dividing (36) by A2B2/P and converting to τ results in

A′ = −α12A− α3
P 2

A2B2
,

P ′ = −β1
2R2P

B2
− β3

P 3

A3B2
,

M ′ = −χ
2MN2

B2
,

B′
2 = −α110B2 + α3

P 2

A3
+ α16R2 + α1

12B4

B2

− α2
4M2N2

2

AB2
− α3

P 2R2

A3B2
,

R′
2 = −β112R2 + β1

8R2
2

B2
− β3

P 2R2

A3B2
+ β1

12R4

B2

− β2
4M2N2

2

AB2
+ β3

P 2

A3
,

N ′
2 = −χ12N2 + χ

2N2
2

B2
+ χ

6N2R2

B2
+ χ

12N4

B2
,

(38)

B′
4 = −α158B4 + α3

P 2B4

A3B2
+ α110B2

2 − α120B2R2

+ α110R2
2 + α110R4 + α1

20B4R2

B2
+ α1

30B6

B2

+ α2
8M2N2

2

A
− α2

4M2N2
2R2

AB2
− α2

16M2N2N4

AB2
− α3

P 2R4

A3B2
.

Figures 3, 4, and 5 display some trajectories for the system (35)–(38). We used
α1 = 0.09, α2 = 0.09, α3 = 1, β1 = 0.07, β2 = 0.13, β3 = 1.92, χ = 0.09. The initial
conditions were chosen to ensure the same position for the three fronts.

Figure 6 shows the front propagation. Note that the seeming acceleration occurs
only in terms of the artificial time τ . In terms of the real time t the graph will have
opposite curvature showing deceleration.

We notice a considerable spectral gap between the linear decay rates in (36): the
coefficient at B4, (−58α1), is from 5 to 6 times larger than that of B2, (−10α1), of
R2, (−12β1), and of N2, (−12χ). The numerical data show that the linear terms are
the largest in absolute value in each dynamic equation.

The numerical data also show that on the initial sections of the trajectories the
velocity terms M , N2, and N4 in the equation B′

4 = . . . are much smaller than the
terms associated with the energy and dissipation. However, after some period of time
the velocity-associated terms become comparable to the other terms.

This points to a mechanism characteristic of center manifolds, where some vari-
ables, such as B4 in our problem, rapidly decay until they are small enough to be
comparable with the nonlinear terms which come into play.
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Fig. 3. Trajectories for the model (35)–(38) in the space of the energy variables.

To illustrate this mechanism we use a simple example from [20]:

ẋ = −px− xy,

ẏ = −y + x2 − 2y2.
(39)

The linear decay rate p of x is much smaller than that of y, say p = 0.1 � 1. A set
of trajectories for the system (39) is shown in Figure 7. See that the trajectories are
attracted to a single curve. It can be shown that in the limit p = 0 the attractor is
exactly

(40) y = x2,

which is called the center manifold. Driven by the linear term (−y) the trajectories
quickly drop onto the manifold on which the nonlinear terms (x2−2y2) are comparable
to (−y). On the attractor, in view of (40), the motion is described by ẋ = −xy = −x3.
The variable y depends on t through x to which it is rigidly linked by (40).

We anticipate that a similar situation takes place in our problem with B4 being
analogous to y in the above example. However, the problem is complicated by a
multitude of variables. In this paper we investigate a simplified version of the model.
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Fig. 4. Trajectories for the model (35)–(38) in the space of the dissipation variables.

4. Reduced version of the model. In this section we simplify the K-ε model
(28) to a great extent, yet make sure that the key physical factors remain. These
factors are the nonlinear diffusion and the coupling via the velocity shear. We will
keep calling K the energy and u the velocity for consistency with the previous section.
However, these terms should not be directly associated with the physical quantities.
If we find attractors, our approach will provide a useful basis for studies of more
complicated systems.

We assume that (a) α3 = β3 = 0 to remove the dissipation terms, (b) α1 = α2 =
β1 = β2 = 1 for simplicity, and (c) initial conditions for K and ε coincide. Thus, the
problem formulations for K and ε become identical; therefore K ≡ ε at all times, that
is, A(t) ≡ P (t) and Bk(t) ≡ Rk(t), k = 2, 4, . . . . As a result, system (28) reduces to
the two equations

∂tK = ∂x (K∂xK) + K (∂xu)
2
,

∂tu = ∂x (K∂xu) .
(41)

The manipulations in section 3 automatically apply to (41). The definition of new
time (37) transforms into
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Fig. 5. Trajectories for the model (35)–(38) in the space of the velocity variables.

(42)
d

(AB2) dt
=

d

dτ
≡ ()′.

We introduce the new function

(43) T ≡ M2

A
.

It turns out that it is possible to derive a dynamic equation for T , where M and A
appear in combination (43). This equation will replace the two dynamic equations
for A and M . Differentiating (43) gives

(44) T ′ =

(
M2

A

)′
=

2MM ′A−M2A′

A2
.

The following expressions for A′ and M ′ are obtained from (38) under conditions (a),
(b), and (c): A′ = −2A and M ′ = −2MN2/B2. Substituting these into (44) gives
the equation shown below.

Under assumptions (a), (b), and (c), and in view of (44), system (35)–(38) be-
comes
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T ′ = −4N2T

B2
+ 2T,

B′
2 = −4B2 −

4N2
2T

B2
+

12B4

B2
,

N ′
2 = −6N2 +

2N2
2

B2
+

12N4

B2
,

B′
4 = −28B4 + 4N2

2T − 16N2N4T

B2
,

1 −B2h
2 −B4h

4 = 0,

1 −N2h
2 −N4h

4 = 0.

(45)
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System (45) contains six equations with respect to six unknown functions: T , B2, N2,
B4, N4, and h. We solved (45) numerically, making sure that the initial positions of
the energy and velocity fronts coincide.

Using the data from the numerical experiments we can deduce results in analytical
form. According to the data, at large times some terms in (45) become negligible,
namely, (−16N2N4T/B2) in the equation B′

4 = . . . , (12B4/B2) and (−4N2
2T/B2) in

the equation B′
2 = . . . , and (12N4/B2) in the equation N ′

2 = . . . . Also it is important
to note N2 → B2. Therefore from (45) we get asymptotically

(46) T ′ = −2T, N ′
2 = −4N2, B2 = N2,

from which we get

(47) T = T0e
−2(τ−τ0), B2 = N2 = N0e

−4(τ−τ0),

where τ0, T0, and N0 are some reference values. Substituting (47) into (45), we get

(48) B′
4 = −28B4 + 4N2

0T0e
−10(τ−τ0).

The solution of the homogeneous part of (48), ∼ exp[−28(τ−τ0)], expresses the decay
caused by the linear term (−28B4). This part of the solution is negligible compared
to the solution of the nonhomogeneous equation,

(49) B4 = Ce−10(τ−τ0),

expressing the forced dynamics of B4.
Here we recognize the center manifold mechanism: a rapid decay of a function to

a level where the linear term becomes comparable to the nonlinear term. It is easy
to find the constant by substituting (49) into (48),

C =
2

9
N2

0T0.

Hence, the variable B4 is attracted to the manifold described by

B4(τ) =
2

9
N2

0T0 exp[−10(τ − τ0)] =
2

9
N2

2T

or, using (43),

(50) B4 =
2N2

2M
2

9A
.

Let us use the numerical data directly to show that B4 is indeed attracted to (50).
There are many ways to demonstrate the attraction, and below we implement just
one of them. A graph B4 versus N2

2 and T would be a curved surface. We go over to
new variables, in terms of which the surface would be a plane,

(51) N2
2 = ξ + η, T = ξ − η.

The product N2
2T is represented by a plane in terms of ξ2 and η2:

(52) N2
2T = ξ2 − η2.
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Fig. 8. Trajectories for the reduced model (45).

The new variables are defined by (51),

ξ =
1

2

(
N2

2 + T
)
, η =

1

2

(
N2

2 − T
)
.

Figure 8 gives two views of a set of trajectories in the space (ξ2, η2). The right-
hand view shows that all the trajectories converge to a surface which, from this
particular angle, appears as a straight line. Clearly the surface is a plane.

In order to obtain a closed system from (35)–(38), we removed the term with B6

from the equation B′
4 = . . . and obtained the dynamics of N4 from the front equation

1 −N2h
2 −N4h

4 = 0 rather than from the respective dynamic equation.
To let N4 evolve according to the dynamic law, we add the equation N ′

4 = . . . .
Adding the extra equation makes it necessary to add another unknown to the system,
say B6 (or alternatively, N6; however, this is not of principle importance):

T ′ = −4N2T

B2
+ 2T,

B′
2 = −4B2 −

4N2
2T

B2
+

12B4

B2
,

N ′
2 = −6N2 +

2N2
2

B2
+

12N4

B2
,

B′
4 = −28B4 + 4N2

2T − 16N2N4T

B2
+

30B6

B2
,

N ′
4 = −20N4 +

2N2N4

B2
− 10N2B4

B2
,

1 −B2h
2 −B4h

4 −B6h
6 = 0,

1 −N2h
2 −N4h

4 = 0.

(53)

Trajectories for the system (53) are shown in Figure 9. We see the same attractor
as for the shorter version (45). In the dynamic equation B′

4 = . . . the new term
(30B6/B2) and the old term (−16N2N4T/B2) are smaller than the other terms by
two orders of magnitude.
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Fig. 9. Trajectories for the enhanced version (53) of the reduced model.

Now we look for an attractor for N4. Substituting N2 = B2 (we emphasize
that this relation is asymptotic, not exact) and the expression for B4, (50), into the
equation N ′

4 = . . . in (53) we get

(54) N ′
4 = −18N4 −

20

9
N2

0T0e
−10(τ−τ0).

As in the case for B4, the solution of the homogeneous part of this equation rapidly
decays as exp[−18(τ − τ0)] so that the solution is virtually the forced one,

(55) N4 = De−10(τ−τ0).

Substituting (55) into (54) gives D = −5N2
0T0/18, and therefore the attractor is

(56) N4 = −5N2
2M

2

18A
.

A graph N4 against ξ2 and η2 is again a plane, as is evident from Figure 10.
Remarkably, dividing (50) by (56), we find

(57)
B4

N4
= −4

5

on the attractor. The dependence B4/N4 versus time in the numerical experiments
is given in Figure 11. It clearly shows the attraction to the predicted value (−4/5) =
−0.8.

Further extension of the model can be done by involving the equation B′
6 = . . .

(without the term with B8). Accordingly we need to add another unknown, for
instance, N6, to make the front equation 1 −N2h

2 −N4h
4 −N6h

6 = 0. This process
can be continued.

More equations would give a more accurate description; however, the result about
the existence of the attractors (50) and (56) holds.

In summary, the solutions of the confined-source problem for the quasi–fluid-
dynamical system ∂tK = ∂x (K∂xK) + K (∂xu)

2
, ∂tu = ∂x (K∂xu) converge to the
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Fig. 10. Trajectories for the enhanced version (53) of the reduced model.
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Fig. 11. The ratio B4/N4 versus time.

attractor

K = A (1 −B2x
2 −B4x

4 − · · · ),
u = M (1 −N2x

2 −N4x
4 − · · · ),

where

(58) B4 =
2N2

2M
2

9A
, N4 = −5N2

2M
2

18A

and the variables A, M , B2, and N2 evolve according to (43), (53). (Note that one
should not substitute the asymptotic result (58) into (53) and then solve for A, M , B2,
and N2. This would break stability, similarly to example (34). If in (34) one replaces
12(B2 −N2) by its asymptotic value zero, the system becomes unstable; see (31).)
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5. Conclusions. We considered a process of an expansion of a turbulent jet
driven by turbulent diffusion. The mathematical model essentially involves coupling
between the turbulent energy, dissipation, and momentum. Looking for solutions in
the form of power-series in a spatial coordinate, we derived dynamical systems with
respect to time-dependent series coefficients. The system is essentially nonlinear;
however, modifying time allowed us to create linear terms, which dominate during
the early dynamics. We analyzed in detail a simplified version of the model with a
radically reduced number of variables. The numerical and analytical analyses allowed
us to find an attractor in exact form.
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Abstract. The compressible Navier–Stokes equations for an ideal polytropic gas are consid-
ered in Rn, n = 2, 3. The question of possible vacuum formation, an open theoretical problem, is
investigated numerically using highly accurate computational methods. The flow is assumed to be
symmetric about the origin with a purely radial velocity field. The numerical results indicate that
there are weak solutions to the Navier–Stokes system in two and three space dimensions, which dis-
play formation of vacuum when the initial data are discontinuous and sufficiently large. The initial
density is constant, while the initial velocity field is symmetric, points radially away from the origin,
and belongs to Hs

loc for all s < n/2. In addition, in the one-dimensional case, the numerical solutions
are in agreement with known theoretical results.
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1. Introduction. A long-standing open problem in the mathematical theory for
fluid dynamics is the question of vacuum formation in compressible flow. Roughly
stated, the issue is: Do there exist solutions of the Navier–Stokes system (3.1)–(3.3)
for viscous compressible flow that exhibit vacuum (vanishing density) in finite time
when the initial density is strictly bounded away from zero?

This problem is relevant from a modeling perspective as well as for theoretical
results. The underlying assumption in the derivation of the Navier–Stokes equations
from physical principles is that the fluid is nondilute and can be described as a con-
tinuum. A negative answer to the question above would thus provide self-consistency
of the continuum assumption for the Navier–Stokes model. On the other hand, it is
known that an a priori estimate of the form

(1.1) for a constant C = C(T ): C−1 ≤ ρ(x, t) ≤ C for all (x, t) ∈ R
n × [0, T ]

(where ρ denotes density) implies further estimates and would greatly facilitate exis-
tence proofs. For a discussion of this point, see Chapter 3 of [11].

Estimates of the above type are available for one-dimensional (1D) flow [26], even
in the case of large and discontinuous data [15]. As reviewed in section 2, large efforts
have been invested in searching for similar bounds in the multidimensional (multi-D)
case. However, no such results seem to be currently known for the standard Navier–
Stokes model with constant transport coefficients.
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To gain some insight, it is natural first to make a careful numerical study of
the simplest possible scenario where one could expect cavitation in several space
dimensions. This is the subject of the present work. In section 3, we consider 2D
and 3D flows with symmetry for the full Navier–Stokes equations, as well as for
the barotropic case (where pressure is assumed to be a function of density alone).
The equations are written in a proper nondimensionalized form, and the problem is
completed with appropriate initial and boundary conditions. More is known in the
formal limit of infinitely large Reynolds numbers, i.e., in the case of inviscid fluids.
The corresponding Euler equations and their solutions are used as a benchmark for the
numerics. Various considerations regarding the inviscid case are discussed in section 4.

The above difficulties are mirrored on the numerical side in the form of various
challenges regarding stability. The case of 1D flows illustrates this issue. Riemann
data with large jumps may lead to vacuum formation for the Euler equations while,
at least for Hoff’s solutions [15], no vacuum occurs for solutions to the correspond-
ing Navier–Stokes equations. Minimizing the amount of numerical diffusion is thus
paramount. A splitting method is used between the convective part, corresponding
to the Euler equations, and the diffusive part. The hyperbolic part is solved by com-
puting local similarity solutions. Those solutions are then “diffused,” and the process
is repeated at the next time step. A highly accurate pseudospectral spatial discretiza-
tion is used; see section 5. The stiffness [1] of the discretized-in-time system increases
as the density ρ goes to zero; for ρ = 0, the system is infinitely stiff and has degener-
ated from being purely differential to being differential algebraic. Several numerical
schemes, none of them explicit, are known to handle this kind of difficulty [1, 12]
(at least for some problems presenting this type of structure). A backward difference
formula (BDF)-type method is considered here. This approach has been successfully
tested with respect to mass conservation and energy balance. Finally, a test over the
magnitude of the density has to be done to determine whether “vacuum” has been
reached, an arduous task in finite precision computations! The solution is analyzed
both for its magnitude and its behavior in phase space.

The numerical experiments are set up so that vacuum, if any, appears first at
a known point (the origin). The calculations do not attempt to track the solution
past vacuum formation. The detection of the vacuum itself requires density to be less
than 10−14 (see criterion (6.1)), i.e., just slightly above what corresponds to machine
epsilon for the IEEE double precision machines used in the experiments.

Our detailed numerical study is described in section 6. It indicates that vacuum
formation indeed occurs for multi-D symmetric flows for sufficiently large and dis-
continuous initial data, i.e., in the regime of high Mach number and high Reynolds
number. Section 7 contains a brief summary and a conclusion of our findings.

2. Challenges and relation to other works.

2.1. Theoretical issues. There is a voluminous literature on compressible flow.
A short review of work relevant to vacuum formation and a priori estimates follows.

2.1.1. 1D flows. For 1D flow, i.e., multi-D flow with planar symmetry, much
stronger results are known than what is currently available for higher dimensions. A
seminal work of Kazhikhov and Shelukhin [26] considers the full 1D Navier–Stokes
system for an ideal polytropic gas. Building on earlier work by Kanel [21] and
Kazhikhov [25], the global existence and uniqueness of a smooth (W 1,2) solution
is proved in [26] for arbitrarily large and smooth data. In particular, a priori bounds
of the type (1.1) are established. Similar results for more general gases can be found
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in [4], [5], [24].
Highly relevant to the present work is an extension to large and rough (possibly

discontinuous) data established by Hoff [15]. This result pertains to isentropic or
isothermal flow with data (ρ0, u0) satisfying

ρ0 ∈ L∞(R) , ess infR ρ0 > 0 ,

and

ρ0 − ρ̄ , u0 − ū ∈ L2(R) ,

where ρ̄, ū are monotone functions that agree outside a bounded interval with the
limiting values of ρ and u at ±∞. Hoff [15] proves that there exists a global weak
solution which satisfies (1.1). This result shows that there is at least one solution of
the Navier–Stokes equations that does not exhibit cavitation, even for Riemann-type
data with arbitrarily large jumps. (For an extension of this result to certain flows for
the full Navier–Stokes system see [20].) This is in contrast to the 1D inviscid Euler
equations, for which it is well known that vacuum formation can occur [36]. The
present numerical study does not contradict Hoff’s result. Indeed, while our results
clearly indicate the possibility of vacuum formation in higher dimensions, we have not
numerically observed cavitation in solutions of the 1D Navier–Stokes system.

A significant result concerning cavitation in 1D flow is given by Hoff and Smoller
[19]. They demonstrate that any, everywhere defined, weak solution of the Navier–
Stokes (barotropic or full) system which satisfies some natural weak integrability
assumptions cannot contain a vacuum in a nonempty open set unless the initial data
do so. (For a refinement of this result, see [9].) Xin and Yuan [38] have recently
performed a corresponding analysis for spherically symmetric solutions in R

2 and
R

3. For everywhere defined solutions they give detailed information on the behavior
of vacuum regions (if any), and they also provide sufficient conditions to rule out
cavitation.

2.1.2. Multi-D flows. Much less is known about compressible flow in higher
dimensions. Global existence of weak solutions is a formidable problem, and the
theory is far from complete. Roughly speaking, currently known results are of two
types: (A) for large and rough data that possibly contain vacuum states, and (B) for
small, rough (discontinuous) data with ess inf ρ0 > 0.

In the former case, Lions [28] has established existence of global weak solutions in
the case of compressible barotropic flow. For recent extensions, including results for
the full Navier–Stokes system, see [10], [11] and references therein. It is not known if
a bound of the type (1.1) holds for these solutions when the data satisfy ess inf ρ0 > 0.

More is known for “small” data, i.e., data close to a constant state in a suit-
able norm. In particular, small and sufficiently smooth data generate global smooth
solutions without cavitation for the full Navier–Stokes system [31], [22], [23]. For a
representative result in the case of barotropic flow, see Chapter 9 in [33]. In a series
of papers [6], [7], [8], Danchin has established global existence, and also uniqueness, of
compressible flows in several space dimensions for solutions in so-called critical spaces.
For flows with even less regularity, possibly with discontinuities across hypersurfaces,
Hoff [14] has shown that if the data are sufficiently close to a constant state, in a
suitable norm, and with initial density and temperature bounded away from zero,
then there exists a global weak solution with the same properties at all later times.
No corresponding result seems to be known for large data in several space dimensions.
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There are somewhat stronger results available for the type of symmetric (quasi-1D)
flows that we consider in this paper. For isothermal flow with spherical symmetry,
Hoff [13] establishes existence of a global weak solution for large symmetric data. The
solution is obtained as the limit of solutions in shells {0 < a ≤ r ≤ b} as a ↓ 0.
By rewriting the equations in Lagrangian coordinates and exploiting the energy esti-
mate, certain a priori bounds are obtained that are independent of the inner radius
a. However, while guaranteeing existence of a weak solution, the available a priori
bounds do not seem strong enough to determine whether the constructed solution
contains a vacuum at the center of motion. (For an extension of this result to the full
Navier–Stokes system, see [17].)

We note that the higher the dimension of the space, the easier it should be
to generate a vacuum, as the fluid is free to move in more directions. This can
be quantified for the corresponding inviscid system. Consider the isentropic Euler
equations with spherically symmetric Riemann-type data. Let the initial velocity
field have constant magnitude ū and be directed radially away from the origin. In
this case, there is a threshold value û(n) of ū, depending on the dimension n, above
which a vacuum is formed immediately [43]. One can verify that û(1) > û(2) > û(3).
For the 1D Navier–Stokes system, we know from Hoff’s result [13] that there exists
a weak solution without vacuum; i.e., “û(1) = ∞” for these solutions. However,
in higher dimensions it may well be that there are solutions with strictly positive
density everywhere at time zero, but which develop a vacuum at later times.1 There
are also technical reasons that seem to prevent a priori bounds on the density in
higher dimensions. More precisely, in the 1D analysis of [26], [13] the bounds on the
density are derived from the a priori bounds one gets “for free” from the equations
themselves. These are integral bounds that are strictly stronger in one dimension
than in higher dimensions due to the geometrical factor of rn−1 in the space integrals
(i.e., dx = const.rn−1 dr).

2.2. Additional remarks.
Cavitation and uniqueness. The issue of cavitation is closely related to the ques-

tion of uniqueness and to the concept of solution that one works with. To illustrate
this consider the 1D Navier–Stokes equations with Riemann-type data:

(2.1) ρ0(x) ≡ ρ̄ > 0 , u0(x) =

{
−ū for x < 0 ,
ū for x > 0 ,

where ū > 0. One weak solution to this problem is provided by Hoff’s result [15], and
this solution does not exhibit cavitation. However, a different solution can also be
constructed, with the same data, by piecing together solutions of two disjoint flows
into surrounding vacuum. More precisely, consider the two sets of initial data

(2.2) ρ−0 (x) =

{
ρ̄ for x < 0 ,
0 for x > 0 ,

u−
0 (x) =

{
−ū for x < 0 ,
∅ for x > 0 ,

and

(2.3) ρ+
0 (x) =

{
0 for x < 0 ,
ρ̄ for x > 0 ,

u+
0 (x) =

{
∅ for x < 0 ,
ū for x > 0 .

(Here ∅ indicates that the velocity is left undefined where there is no matter.) One
can now construct solutions (ρ−, u−) and (ρ+, u+) corresponding to these data, which

1Furthermore, the possibility remains that there are other weak solutions exhibiting vacuum even
in one dimension (see below for further comments on uniqueness).
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in addition satisfy a physical no-traction boundary condition along a vacuum-fluid
interface; see [4], [5], [24], [25]. By concatenating the two solutions, a solution to
the original problem (2.1) is obtained, and in this solution an open vacuum region is
present from time t = 0+ (and staying at least for a short time). In the region between
the two solutions, one may simply consider the flow to be undefined. Without going
into the discussion of which solution is more relevant, we note that Hoff’s solution [15]
is defined everywhere on R × R+, while the second solution is defined only on the
support of its density. The issue of nonuniqueness for 1D compressible Navier–Stokes
in connection with vacuums is treated in detail by Hoff and Serre [18].

For flow in several space dimensions, the picture is less clear since we do not even
know if there is a solution without cavitation in this case. The present work indicates
that there is at least one solution where a vacuum forms. Uniqueness of general weak
solutions, i.e., without any regularity assumptions beyond what is necessary to make
sense of a weak formulation, is not known. On the other hand, sufficiently smooth
and small solutions are unique (see [31]), as are flows belonging to critical spaces (see
Danchin [6], [7], [8]). To the best of our knowledge, the only uniqueness result for
flows with possible discontinuities in the density field is given in a recent work by
Hoff [16].

Continuum assumption and physical boundary conditions. In view of the 1D
examples above, one should be cautious in making claims about the “physicality” of
constructed or computed solutions to the standard Navier–Stokes model (3.1)–(3.3)
in the low-density regime. Of course, from a modeling point of view, this is not sur-
prising. The Navier–Stokes system is derived under the assumption that the fluid can
be described as a continuum with everywhere strictly positive mass density. Issues
related to nonuniqueness in the presence of vacuum are therefore not surprising. For
a discussion of this point, see [11]. It is also known [37] that the lifespan of smooth,
everywhere defined solutions to the Navier–Stokes system (with vanishing heat con-
ductivity) is finite whenever the initial density is compactly supported.

Once a vacuum has developed, one should impose the physical boundary condition
of vanishing traction at the vacuum-fluid interface. In other words, the vacuum should
not exert a force on the fluid. Note that in the present work we track the onset of
vacuum formation, not its subsequent evolution.

Well-posedness. In view of both physical arguments as well as the apparent lack
of good a priori estimates for the standard Navier–Stokes model, it is natural to ask
whether more accurate models would lead to stronger results. In particular, models
where the transport coefficients λ, μ, κ depend on the thermodynamical state have
been considered.2 Recent results for such models are given in [2] and [32]. Several
issues pertaining to well-posedness in the presence of vacuum have been analyzed in
[29], [30], [39], [40], [41], [42]. These results show that the nonuniqueness observed
in [18] can be attributed to the unphysical assumption of constant viscosity coefficient.
The corresponding problem for the full system appears to require new methods. For
results in this direction for the full 1D system, see [4], [5], [24], and see the recent
monograph by Feireisl [11] for the multi-D case.

2.3. Precise formulation. After the above remarks, our original question can
be formulated precisely as follows. Given the standard multidimensional Navier–
Stokes model with constant transport coefficients, let the pressure be that of an ideal

2In the isentropic case a relevant assumption is that the viscosity μ depends on the density. In
accordance with kinetic theory it is natural to consider the case with μ ∼ ρk, for a constant k > 0.
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polytropic gas or, in the case of barotropic flow, of the form Aργ with γ ≥ 1. Consider
the initial-boundary value problem in a ball centered at the origin, with initial density
strictly bounded away from zero and with a possibly discontinuous initial velocity field.
Then: Does there exist an everywhere defined weak solution of the equations with the
property that its density reaches zero in finite time?

3. The full compressible Navier–Stokes equations. Consider the compress-
ible Navier–Stokes equations for a Newtonian fluid in R

n, n = 1, n = 2, or n = 3,
with no external forces or heat sources. The invariant form of the equations in spatial
(Eulerian) formulation is

ρt + div(ρ�u) = 0,(3.1)

(ρ�u)t + div(ρ�u⊗ �u) = grad(−p + λ div �u) + div(2μD),(3.2)

Et + div
(
(E + p)�u

)
= div

(
λ(div �u)�u + 2μD · �u− �q

)
,(3.3)

where ρ is the density, �u = (u1, . . . , un)T is the fluid velocity, p is the pressure, E is
the total energy, D is the deformation rate tensor, �q is the heat flux vector, and λ
and μ are the viscosity coefficients. Equations (3.1)–(3.3) are often referred to as the
continuity equation, the conservation of momentum equation, and the conservation
of energy equation, respectively. We also have

E = ρ(e + |�u|2/2), Dij = (∂iuj + ∂jui)/2, �q = −κ∇θ,

where e stands for the internal energy, κ is the coefficient of heat conductivity, and
θ is the temperature. In what follows, we restrict ourselves to the study of ideal and
polytropic (perfect) gases such that

(3.4) p = Rρθ, e = cvθ,

where R is the gas constant and cv is the specific heat at constant volume. The local
sound speed c is then given by

c =

√
γp

ρ
,

where γ = 1+R/cv is the adiabatic exponent. All the transport coefficients cv, λ, μ, κ
are assumed to be constant. For the derivation of the equations, see, e.g., [33], [34].

3.1. Equations for symmetric flow. We next consider the case of flow with
symmetry; i.e., the velocity is directed (radially when n = 2, 3) away from the origin,
and all quantities are functions only of the distance to the origin and of time. Let x
denote a point in space, and set r = |x|. Setting

ρ(r, t) = ρ(x, t), �u(x, t) = u(r, t)
x

r
, etc.,

leads to the following system of equations:

ρt + (ρu)ξ = 0,(3.5)

ρ(ut + uur) + pr = νuξr,(3.6)

cvρ(θt + uθr) + puξ = κθrξ + ν(uξ)
2 − 2mμ

rm
(rm−1u2)r ,(3.7)

where we have used the notation

m = n− 1, ∂ξ = ∂r +
m

r
, ν = μ + 2λ .

(Note that ∂ξr �= ∂rξ for n = 2 and n = 3.)
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We consider spherically symmetric flows (3.5)–(3.7) in the interior of the interval/
disk/ball Bb of fixed outer radius b:

(3.8) ρ(r, 0) = ρ0(r), u(r, 0) = u0(r), θ(r, 0) = θ0(r) for r ≤ b.

In the 1D case we require that (3.8) hold for all |r| ≤ b. Throughout, we consider only
the case where the gas is set in motion in the outward direction; i.e., we assume that
u0 is a nonnegative function in two and three dimensions and is odd with positive
values for r > 0 in one dimension. Suitable boundary conditions are discussed in 3.4.

3.2. Nondimensional form of symmetric equations. Using the initial data,
characteristic length, velocity, density, and temperature can be defined as follows:

r̄ := b ,

ū := max
0≤r≤b

|u0(r)| ,

ρ̄ := max
0≤r≤b

ρ0(r) ,

θ̄ := max
0≤r≤b

θ0(r) .

From these we define characteristic time and pressure by

t̄ :=
r̄

ū
,

p̄ := p(ρ̄, θ̄) .

The dimensionless independent variables are then

R :=
r

r̄
, T :=

t

t̄
,

and the dimensionless dependent variables are

D :=
ρ

ρ̄
, U :=

u

ū
, Θ :=

θ

θ̄
, P :=

p

p̄
.

Regarding D, U , Θ, P as functions of R and T , we obtain the nondimensionalized
system

ρt + (ρu)ξ = 0,(3.9)

ρ(ut + uur) +
1

γM2
(ρθ)r =

1

Re
uξr,(3.10)

ρ(θt + uθr) + (γ − 1)ρθuξ =
1

Pr Re
θrξ

+ γ(γ − 1)
M2

Re

(
(uξ)

2 − 2mμ

ν

(rm−1u2)r
rm

)
,(3.11)

where we have reverted to the original symbols and where

M :=
|ū|
c̄

= Mach number, c̄ = sound speed =

√
γp̄

ρ̄
,

Re :=
r̄ρ̄ū

ν
= Reynolds number,

Pr :=
νcv
κ

= Prandtl number.

These equations are valid also for n = 1 (m = 0), provided that r is interpreted as
the position along the x-axis; in this case ∂ξ = ∂r = ∂x.
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3.3. Barotropic equations. If the pressure p is considered as a function of the
density ρ only, the energy equation (3.7) decouples from the mass and momentum
conservation equations (3.5), (3.6). Here, we consider exclusively the isentropic and
isothermal cases where

(3.12) p(ρ) = aργ , γ ≥ 1 ,

and where a > 0 is a constant. A nondimensional version of the barotropic equations
can be derived in very much the same way as (3.9)–(3.11) were derived, except for
the characteristic pressure, which is now taken as

p̄ = p(ρ̄) = aρ̄γ .

This leads to the nondimensionalized system for barotropic flow

ρt + (ρu)ξ = 0,(3.13)

ρ(ut + uur) +
1

γM2
(ργ)r =

1

Re
uξr ,(3.14)

where the Mach number at the reference state is now given by

M :=
|ū|
c̄

=
|ū|

aγρ̄γ−1
.

3.4. Initial and boundary conditions: Balance relations. The following
initial and boundary conditions are considered throughout:

ρ(r, 0) = ρ0(r) = 1 for r ≥ 0, u(r, 0) = u0(r) =

{
1 if r > 0,
0 if r = 0,

(3.15)

u(1, t) = 1, t > 0,(3.16)

where r = 1 corresponds now to the outer boundary of the computational domain.
Furthermore, by symmetry, one has

(3.17) u(0, t) = 0, t > 0.

A calculation shows that the initial velocity field is in Hs
loc(R

n) for all s < n/2.
It may seem more natural to consider a homogeneous condition of the type

u(1, t) = 0, instead of (3.16), since existence of weak solutions has been established
in the former case. However, such a condition leads to steep gradients and unwanted
numerical boundary layer effects on the outer boundary of the domain. A vanishing
boundary condition at x = 1 would thus complicate the numerical resolution of the
problem by making it more susceptible to spurious oscillations. In any case, under
the above type of initial conditions (3.15), vacuum formation (if any) is expected to
be initiated at the origin (see section 6). For short time intervals one would therefore
expect that the outer boundary condition does not significantly influence the behavior
of the solution near the origin.

4. The isentropic Euler equations. The isentropic Euler equations are easily
obtained from (3.13), (3.14) by formally taking the limit Re → ∞, i.e.,

ρt + (ρu)ξ = 0,(4.1)

ρ(ut + uur) +
1

γM2
(ργ)r = 0.(4.2)
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4.1. The 1D case. Let us consider (4.1), (4.2) together with the Riemann data

(4.3) ρ(r, 0) = 1 for all r, u(r, 0) =

{
−1 if r < 0,

1 if r > 0.

As is well known, the above Riemann problem can easily be solved. Interestingly, the
isothermal case, γ = 1, and the general isentropic case, γ > 1, are quite different.

The isothermal case γ = 1. For the “symmetric data” (4.3), the solution is
found to consist of two rarefaction waves:

[
ρ
u

]
(r, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1

−1

]
if r

t < −1 − 1
M ,

[
e−(M r

t +M+1)

r
t + 1

M

]
if −1 − 1

M < r
t < − 1

M ,

[
e−M

0

]
if − 1

M < r
t < 1

M ,

[
eM r

t −M−1

r
t −

1
M

]
if 1

M < r
t < 1 + 1

M ,

[
1
1

]
if 1 + 1

M < r
t .

Note that, regardless of the values of the Mach number, M, the above solution does
not lead to cavitation. Indeed, the smallest value of the density is found to be e−M.

The case γ > 1. Again, the solution is found to consist of two rarefaction waves
for the data (4.3). However, in the present case, cavitation can occur. More precisely,
if M > 2

γ−1 , the solution [ ρu ] (r, t) is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1

−1

]
if r

t < −1 − 1
M ,

⎡
⎢⎣
(

2
γ+1 − M γ−1

γ+1 (1 + r
t )
)2/(γ−1)

1
M(γ+1)

(
2 + (1 − γ)M + 2M r

t

)
⎤
⎥⎦ if −1 − 1

M < r
t < −1 + 2

γ−1
1
M ,

[
0
∅

]
if −1 + 2

γ−1
1
M < r

t < 1 − 2
γ−1

1
M ,

⎡
⎣ (

2
γ+1 + M γ−1

γ+1 (−1 + r
t )
)2/(γ−1)

1
M(γ+1)

(
−2 + (−1 + γ)M + 2M r

t

)
⎤
⎦ if 1 − 2

γ−1
1
M < r

t < 1 + 1
M ,

[
1
1

]
if 1 + 1

M < r
t .

Note that, for this latter solution, no velocity u is specified in the vacuum. If, on the
other hand, the fluid is not sheared as hard, i.e., if 0 < M < 2

γ−1 , then no cavitation
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takes place and the solution [ ρu ] (r, t) is found to be⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1

−1

]
if r

t < −1 − 1
M ,

⎡
⎢⎣
(

2
γ+1 − M γ−1

γ+1 (1 + r
t )
)2/(γ−1)

1
M(γ+1)

(
2 + (1 − γ)M + 2M r

t

)
⎤
⎥⎦ if −1 − 1

M < r
t < − 1

M + γ−1
2 ,

[(
1 − M

2 (γ − 1)
) 2

γ−1

0

]
if − 1

M + γ−1
2 < r

t < 1
M − γ−1

2 ,

⎡
⎣ (

2
γ+1 + M γ−1

γ+1 (−1 + r
t )
)2/(γ−1)

1
M(γ+1)

(
−2 + (−1 + γ)M + 2M r

t

)
⎤
⎦ if 1

M − γ−1
2 < r

t < 1 + 1
M ,

[
1
1

]
if 1 + 1

M < r
t .

4.2. The multidimensional axisymmetric case. Similarity solutions to the
Euler equations have also been considered for the 2D and 3D axisymmetric problems
that are studied in this paper. Even though no closed form solutions can be found,
the analysis reveals that solutions without swirls may exhibit cavitation if γ > 1 but
not if γ = 1; see [43, section 7.4].

More precisely, let us concentrate on the case γ > 1. Following [43], self-similar
solutions to (4.1), (4.2) are sought in the form

ρ = ρ(s), u = u(s), where s =
t

r
.

This leads to the ODE system

ρs = m
ρu(1 − su)

s2c2 − (1 − su)2
,(4.4)

us = m
sc2u

s2c2 − (1 − su)2
,(4.5)

ρ(0) = 1, u(0) = 1,(4.6)

where c = 1
M ρ

γ−1
2 . The generalization of the 2D results of [43] to 3D problems is

straightforward. It is presented here for the sake of completeness. Introducing the
variables

I = su and K = sc,

relations (4.4), (4.5) can be written

dI

dτ
= I

(
(1 − I)2 − (1 + m)K2

)
≡ I F(I,K),(4.7)

dK

dτ
= K

(
(1 − I)2 −K2 − m

2
(γ − 1)I(1 − I)

)
≡ K G(I,K),(4.8)

ds

dτ
= s

(
(1 − I)2 −K2

)
,(4.9)
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Fig. 4.1. Left: Phase diagram (I = su, K = sc) of the solutions to (4.7), (4.8), (4.9) for
m = 1 (2D) and γ = 1.4. Solutions “leaving” (0, 0) are represented for values of the Mach number
M = 1.1, 1.2, 1.3, . . . , 10. Right: Dependency of the critical Mach number M� on γ for 2D and 3D
problems as obtained through numerical integration of (4.4), (4.5), (4.6). Vacuum takes place if and
only if M > M�.

with the obvious definitions for F and G and where τ is a new independent variable
defined by (4.9), which is introduced to make (4.7), (4.8) an autonomous system. In
the (I,K)-phase plane, the stationary points of (4.7), (4.8) are found to be

(0, 0), (1, 0), (0, 1) and Q =

(
2

γ(1 + m) + 1 −m
,

1√
1 + m

γ(1 + m) − 1 −m

γ(1 + m) + 1 −m

)
.

Let us consider the region Ω ⊂ R
2 defined by

Ω =

{
(I,K); I > 0,K > 0,

G > 0 for 0 < I ≤ 2

γ(1 + m) + 1 −m
,

F > 0 for
2

γ(1 + m) + 1 −m
≤ I < 1

}
.

A simple sign study along ∂Ω shows that Ω is invariant under (4.7), (4.8). The system
(4.7), (4.8), (4.9) then has integral curves from (0, 0) to either (0, 1), (1, 0) or Q.

Lemma 1. Let m = 1 (two space dimensions) or 2 (three space dimensions) and
let γ > 1. Then there exists M� = M�(m, γ) > 0 such that

• if M < M�, the solution (ρ, u) of (4.4), (4.5), (4.6) is defined for 0 < s < s̄ <
∞, where s̄ is such that (ρ(s̄), u(s̄)) = (ρ̄, 0) (convergence to (I,K) = (0, 1)
at a finite s-value, no vacuum);

• if M > M�, the solution (ρ, u) of (4.4), (4.5), (4.6) is defined for 0 < s < s̄ <
∞, where s̄ is such that (ρ(s̄), u(s̄)) = (0, ū) (convergence to (I,K) = (1, 0)
at a finite s-value, vacuum);

• if M = M�, the solution (ρ, u) of (4.4), (4.5), (4.6) is defined for 0 < s < ∞
and converges to (I,K) = Q as s → ∞ (critical case).

Proof. The proof follows in a straightforward way from [43, section 7.4]
There does not appear to be an explicit formula for the critical value M�. However,

equations (4.4), (4.5), (4.6) can be solved numerically and an approximate value of M�

inferred from the corresponding results. The feasibility of this approach is illustrated
in Figure 4.1(left), which is in exact agreement with the above lemma.
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The above observations provide a relatively easy way to numerically investigate
vacuum formation for the multidimensional Euler equations. A standard ODE solver
can be used to integrate the above equations. It is worth noting that the points
(I,K) = (0, 1) or (1, 0) are reached for finite values of s; the solution can then be
continuously extended toward r = 0. We omit the details. Figure 4.1(right) illustrates
the dependency of M� on γ for 2D and 3D problems as found through numerical
investigation.

5. Discretization and numerical analysis. The numerical approach for solv-
ing the Navier–Stokes equations (3.9), (3.10), (3.11) under the specific assumptions
considered here is based on a splitting between the Euler equations, on the one hand,
and a diffusive equation, on the other hand. This way, one can take advantage of
the similarity solutions considered in the previous section (which can be solved to a
high degree of accuracy by ODE solvers; see below). At each space/time node, such
a solution is locally constructed. This process is akin to numerically solving fami-
lies of local Riemann problems, as is routinely done in many numerical schemes for
hyperbolic conservation laws; see, e.g., [27].

The splitting algorithm is illustrated in the case of the barotropic equations (4.1),
(4.2). Let (ρn, un) be the solution at some time tn = nΔt, where Δt is the time step.
To obtain the solution (ρn+1, un+1) at a later time tn+1 = (n+1)Δt, an “Euler step”
is first taken; i.e., one solves (4.1), (4.2) from tn to tn+1 with the initial condition

ρ(·, tn) = ρn, u(·, tn) = un.

The resulting solution at time tn+1 is denoted (ρ�, u�). The following diffusive step is
then taken:

ρ�ut =
1

Re
uξr, t ∈ (tn, tn+1),(5.1)

u(·, tn) = u�.(5.2)

As both steps have to be solved numerically, their respective discretization is now
described. For notational convenience, the diffusive step is described first.

5.1. The diffusive step. Equation (5.1) is discretized in space using Chebyshev
collocation methods [3]. Such methods deliver high accuracy with a low number of
nodes for smooth solutions (which are expected here for t > 0). To circumvent the
coordinate singularity at r = 0 of the 2D and 3D problems, Chebyshev–Gauss–Radau
nodes are used instead of the more common Chebyshev–Gauss–Lobatto nodes. In the
spatial domain (0, 1) those nodes have location

rj =
1

2

(
1 + cos

(
2πj

2N − 1

))
, j = 0, . . . , N − 1.

In each case, N stands for the number of nodes. For r ∈ (0, 1) and t > 0, we seek an
approximation uN of u of the form

uN (r, t) =

N−1∑
i=0

Ui(t)ψi(r),

where {ψi}N−1
i=0 are the Lagrange interpolation polynomials at the Chebyshev–

Gauss–Lobatto/Radau nodes on [0, 1], i.e., ψi(xj) = δij .
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Interpolation at one of the above sets of nodes of a function v = v(r, t) simply
takes the form

INv(r, t) =

N−1∑
j=0

v(rj , t)ψj(r).

By definition, the Chebyshev collocation derivative of v with respect to r at those
nodes is then

∂

∂r
(INv)(rl, t) =

N−1∑
j=0

v(rj , t)ψ
′
j(rl) =

N−1∑
j=0

Dljv(rj , t),

with Dlj = ψ′
j(rl). The collocation derivative at the nodes can then be obtained

through matrix multiplication.
The discrete velocity uN takes the form

uN (r, t) =

N−1∑
i=0

Ui(t)ψi(r).

The semidiscretized in space problem (5.1) has the form

(5.3) ZU ((INρ�). ∗ U ′) =
(
D2 + mdiag(1./R)D −mdiag 1./(R.̂2)

)
U + BU ,

with the obvious notation for U and D; the vector R is the node vector, Rj = rj ,
j = 0, . . . , N−1. The matrix ZU zeroes the first and/or the last entry(ies) of a vector,
and further BU is a vector related to the boundary conditions (to be specified below).
In the above equations, a “dotted operation” (for instance .∗) refers to that operation
being performed elementwise (for instance, U.∗V is the vector of ith component UiVi,
i = 0, . . . , N − 1).

The computations are carried out with the boundary condition (3.16). In case the
density vanishes (or becomes very small) at some node ri at time t, i.e., INρ�(ri, t) = 0,
then the differential equation for Ui(t) degenerates into an algebraic equation; in other
words, (5.3) becomes differential algebraic. How much of a numerical problem this
is depends on the index of the system. The minimum number of times one has to
differentiate all or part of (5.3) to recover an ODE system is the index of the differ-
ential algebraic equation (DAE) [1]. Here the index is easily found to be equal to
1. Indeed, differentiating the algebraic equation for Ui leads to an ODE, provided
that the operator D2 +mdiag(1./R)D−mdiag 1./(R.̂2) with proper side conditions
applied to U ′ is nonsingular. The side conditions are that the velocity is fixed on the
outer boundary and thus U ′

1(t) = 0 and that nonsingular solutions are sought. The
above operator can be checked to be nonsingular by direct inspection of the matrices
involved. Alternatively, at the continuous level, one can check that the only nonsin-
gular solution to ∂rru̇ + m/r∂ru̇ − mu̇/r2 = 0 with u̇(1) = 0 is the trivial solution
u̇ ≡ 0 (where u̇ = ut).

In the presence of vacuum, the system (5.3) is a DAE that is semiexplicit of
index 1; as such it is amenable to relatively simple time discretization such as BDF [1].
Here, we used the MATLAB routine ODE15s, which implements a variant of BDF [35].

5.2. The Euler step. Let (ρn(rj), un(rj)) be given values for the density and
velocity at time tn at the node rj , j = 0, . . . , N−1. A family of N similarity solutions
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Fig. 5.1. Meshes used for the diffusive step ({rj , tn}N−1,Nt
j=0,n=0) and Euler step ({snj }

N−1,Nt
j=0,n=0).

is now defined in the same way as in section 4.1. More precisely, let snj = tn

rj
be the

slopes corresponding to the above data points, and let sn+1
j = tn+1

rj
be the slopes at

the next time step; see Figure 5.1. Then, for each j = 0, . . . , N − 1, equations (4.4),
(4.5) are solved from s = snj to sn+1

j with initial conditions

(5.4) ρ(snj ) = ρn(rj), u(snj ) = un(rj).

5.3. The splitting algorithm. For given Mach and Reynolds numbers, and
given spatial and temporal resolutions, i.e., N and Δt being chosen, the following
steps are taken for Nt time steps:

• initialize ρ0 and u0 according to (3.15),
• for n = 0 to Nt − 1

– for j = N − 1 to 0 by −1
∗ EULER: solve (4.4), (4.5), (5.4)
∗ set ρ�(rj) = ρ(sn+1

j ) = ρn+1(rj) and u�(rj) = u(sn+1
j )

– end
– DIFFUSION: solve (5.1), (5.2) through (5.3)
– set un+1(rj) = u(rj , tn+1), j = 0, . . . , N − 1

• end

6. Numerical results. The problem (3.13), (3.14) has been solved using the
method described in the previous section with various values of the physical parame-
ters (Mach number M, Reynolds number Re, and adiabatic coefficient γ). The initial
and boundary conditions are given by (3.15) and (3.16), respectively. The mesh size
is fixed at N = 32 for all the results given below.

For all our examples, the numerical density ρN is an increasing function of r, and
thus the numerical solution is probed at the node closest to the origin for vacuum
detection. Vacuum formation, if it occurs, is expected to take place during a fast initial
transient phase. A comparison with the inviscid case is instructive. If cavitation takes
place for the Euler equations, it does so instantaneously (at the origin), i.e., for t = 0+.
For the 1D case, this fact is obvious from the explicit self-similar solutions given in
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Fig. 6.1. Phase diagram corresponding to the evolution of the solutions, at the node closest
to the origin, of the Euler solution (left) and the Navier–Stokes solution (right) (see section 4 for
definition of I and K). The parameters are taken as m = 2 (3D) and M = 1.2 (no vacuum) and
M = 2.7 (vacuum); for the Navier–Stokes solution (right), the Reynolds number Re is 106.

section 4. Regarding the Navier–Stokes equations, our efforts are concentrated on
the multidimensional cases for which there is no node at the origin. For the node
closest to the origin, phase space trajectories can be used in a way similar to what
was done in Figure 4.1(left), giving a clear picture of the evolution of the density
there. Using the same notation as in section 4, Figure 6.1 illustrates the difference
between the evolution of the Euler solutions (left panel) and Navier–Stokes solutions
(right panel).

Based on the above remarks, a specific calculation is said to lead to vacuum
formation if for some time t, 0 < t < .005,

(6.1) ρN (rN−1, t) < tol = 10−14,

where rN−1 = 1
2 (1+cos( 2N−1

2N−2π)) is the Chebyshev–Gauss–Radau node closest to the
origin. In some cases, the time asymptotic behavior of the solution at rN−1 was not
clear based on a phase plane analysis. Those cases are reported below as inconclusive,
even if the density itself satisfied (6.1).

6.1. The 1D case. The above method cannot be used directly in the 1D case.
Using an adapted method (details are omitted), no vacuum formation was numerically
observed for the 1D Navier–Stokes solution as is shown in Figure 6.2. The absence
of vacuum in the solutions to the 1D Navier–Stokes system is consistent with the
solutions found by Hoff [15], who considers discontinuous data of the same type as in
the present paper.

6.2. The multi-D barotropic case. The 2D and 3D barotropic flows (3.13),
(3.14) with initial and boundary conditions (3.15), (3.16) are solved, for fixed values
of the adiabatic coefficient γ, on grids in “Reynolds and Mach number space,” i.e.,
for a collection of values of those two parameters.

Figure 6.3 corresponds to the value γ = 1.4 for the 2D and 3D cases, in the left
and right panels, respectively. As explained above, the gray area corresponds to values
of the parameters for which the numerical calculations were inconclusive, for instance
due to the absence of a clear asymptotic behavior in phase space during the allotted
computational time. It clearly illustrates that for large enough values of M there
appears to be vacuum formation. The displayed results are relatively insensitive to
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Fig. 6.2. 1D Navier–Stokes and Euler solutions for γ = 1.4, M = 10. Left: Solutions at time
t = 0.5 with Re = 10,000 (for the Navier–Stokes flow). Right: Solutions at time t = .002 with
Re = 1,000,000 (for the Navier–Stokes flow). For these values, both the 1D Euler solution and the
multi-D Navier–Stokes solution exhibit cavitation (see Figure 6.3 below), while the 1D Navier–Stokes
solution does not.
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Fig. 6.3. Vacuum formation for 2D (left) and 3D (right) barotropic flows (3.13), (3.14) with
initial and boundary conditions (3.15), (3.16) and γ = 1.4.

the discretization parameters. It is also observed that vacuum is more easily formed
in three than in two dimensions, in agreement with the remarks in section 2.1.2.

Similar results were observed for larger values of γ: it gets easier to create vacuum
as γ increases.

6.3. The full system. As mentioned in section 4.2, the construction of self-
similar solutions for the nonisentropic Euler equations (3.1)–(3.3) appears to be open.
Therefore, we do not have the benefit of using this tool as part of the numerical algo-
rithm. While more research is needed, preliminary calculations based on an unsplit
algorithm indicate vacuum formation here as well.

7. Conclusion. Our numerical results indicate that vacuum formation is possi-
ble in solutions of the multidimensional compressible Navier–Stokes equations. This
applies to discontinuous and sufficiently large data where the initial density is uniformly
bounded away from zero. The same numerical code gives results for one-dimensional
flow that are in agreement with the known analytical results. The conclusions do not
contradict the currently known results for multi-D flow.
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No attempt was made to follow the solutions past vacuum formation. The present
study also leaves unanswered the issue of whether vacuum formation is instantaneous,
as is the case for the corresponding solutions to the Euler equations.
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cussions about the vacuum problem in compressible flow. The clarity and accuracy
of this article were significantly improved by the criticism of an anonymous referee.
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DELAY FOR TUMOR–IMMUNE SYSTEM COMPETITION MODEL∗
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Abstract. This paper deals with the qualitative analysis of the solutions to a model that refers
to the competition between the immune system and an aggressive host such as a tumor. The model
which describes this competition is governed by a system of differential equations with one delay. It
is shown that the dynamics depends crucially on the time delay parameter. By using the time delay
as a parameter of bifurcation, the analysis is focused on the Hopf bifurcation problem to predict the
occurrence of a limit cycle bifurcating from the nontrivial steady state. The obtained results depict
the oscillations, given by simulations (see [M. Galach, Int. J. Appl. Math. Comput. Sci., 13 (2003),
pp. 395–406]), which are observed in reality (see [D. Kirschner and J. C. Panetta, J. Math. Biol., 37
(1998), pp. 235–252]). It is suggested to examine by laboratory experiments how to employ these
results for control of tumor growth.
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tion, periodic solutions
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1. Introduction. We consider a model concerning the competition of tumor
cells with the immune system. The modeling approach, proposed by many authors,
uses ordinary and delayed differential equations; see [14, 16, 19, 20, 24, 27]. Other
authors use kinetic equations that give a complex description, at the cellular scale,
in comparison with other, simpler models. Kinetic models are needed to describe
heterogeneity of virulence; see [1, 2, 3, 4, 9, 26].

Modeling in other fields of biology also uses kinetic equations; for instance, [11] de-
velops a kinetic theory approach to describe population dynamics, while [3] deals with
the development of suitable general mathematical structures including a large variety
of Boltzmann-type models. Other authors use models based on partial differential
equations corresponding to population dynamics of cells with internal structure [22]
(however, not heterogeneous) or models based on interacting agents [21].

The reader interested in a more complete bibliography about the evolution of
a cell, and the pertinent role of cellular phenomena in directing the body toward
recovery or toward illness, is referred to [13, 17]. A detailed description of virus,
antivirus, and body dynamics can be found in [8, 12, 23, 25].

The mathematical model under consideration was proposed in a recent paper by
Galach [16], who proposed a simple model, with one delay, of tumor–immune system
competition. The idea is inspired from [20]. He also refers to numerical results in [20]
to compare them with those obtained in his paper [16].

The mathematical analysis of this present paper is motivated by experimental
and numerical results; see [19, 16], respectively. These results give evidence that
the oscillating state of the tumor is more desirable, from the medical point of view,
than the monotonically growing state, presumably because oscillations prolong the
nonterminal phase of disease. We can ask what are the conditions and feedback loops
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which make oscillations possible and whether the tumor can be preserved in such an
oscillating state by therapeutic means for an indefinite time. This leads to study of the
model in terms of a time delay ordinary differential equation system. We believe that
it makes sense to ask qualitative questions about the behavior of the system locally
with respect to time, such as questioning the existence and stability of fixed points
and the existence of Hopf bifurcation. Being interested in periodic or quasi-periodic
behavior of the tumor, we investigate the model with respect to existence of the Hopf
point.

This paper is organized as follows. In section 2, we introduce the model. In
section 3, we establish some results on the stability of the possible steady states
(trivial and nontrivial) of the delayed system (2.4). The existence of a critical value
of the delay in which the nontrivial steady state changes stability is investigated. The
main result of this paper is given in section 4. Based on the Hopf bifurcation theorem,
we show the occurrence of Hopf bifurcation when the delay crosses some critical value.
Section 5 is devoted to a numerical application for the parameter values of system
(2.4). In section 6, we give short discussions.

2. Mathematical model. When unknown tissues, organisms, or tumor cells
appear in a body the immune system tries to identify them and, if successful, attempts
to eliminate them. The immune system response consists of two different interacting
responses: the cellular response and the humoral response. The cellular response is
carried by T lymphocytes. The humoral response is related to the class of cells called
B lymphocytes. A dynamics of the antitumor immune response in vivo is complicated
and not well understood.

The immune response begins when tumor cells are identified. Then tumor cells are
caught by macrophages, which are found in all tissues in the body and circulate in the
blood stream. Macrophages absorb tumor cells, destroy them, and release a series of
cytokines which activate T helper cells (i.e., a subpopulation of T lymphocytes). These
latter cells coordinate the counterattack. T helper cells can also be directly stimulated
to interact with antigens. These helper cells cannot kill tumor cells, but they send
urgent biochemical signals to a special type of T lymphocytes called natural killers
(NKs). T cells begin to multiply and release other cytokines that further stimulate
more T cells, B cells, and NK cells. As the number of B cells increases, T helper
cells send a signal to start the production of antibodies. Antibodies circulate in the
blood and are attached to tumor cells, which implies that the tumor cells are more
quickly engulfed by macrophages or killed by NK cells. Like all T cells, NK cells are
programmed to recognize one specific type of infected cell or cancer cell. NK cells are
lethal and constitute a critical line of the defense.

The model proposed in [20] describes the response of effector cells (ECs) to the
growth of tumor cells (abbreviated TCs from here on). This model differs from others
because it takes into account the penetration of TCs by ECs, which simultaneously
causes the inactivation of ECs. It is assumed that interactions between ECs and TCs
in vitro can be described by the kinetic scheme shown in Figure 1, where E, T , C,

k1 k2

E + T � C ↗ E+T∗

↘ E∗+T

k−1 k3

Fig. 1. Kinetic scheme describing interactions between ECs and TCs (see [16]).



HOPF BIFURCATION IN TUMOR–IMMUNE SYSTEM MODEL 1695

E∗, and T ∗ are the local concentrations of ECs, TCs, EC–TC complexes, inactivated
ECs, and “lethally hit” TCs, respectively. k1 and k−1 denote the rates of bindings of
ECs to TCs and the detachment of ECs from TCs without damaging TCs, k2 is the
rate at which EC–TC interactions program TCs for lysis, and k3 is the rate at which
EC–TC interactions inactivate ECs.

Kuznetsov and Taylor’s model [20] is as follows:

(2.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dE
dt = s + F (C, T ) − d1E − k1ET + (k−1 + k2)C,

dT
dt = aT (1 − bT ) − k1ET + (k−1 + k3)C,

dC
dt = k1ET − (k−1 + k2 + k3)C,

dE∗

dt = k3C − d2E
∗,

dT∗

dt = k2C − d3T
∗,

where s is the normal (i.e., not increased by the presence of the tumor) rate of the
flow of adult ECs into the tumor site. F (C, T ) describes the accumulation of ECs in
the tumor site; d1, d2, and d3 are the coefficients of the processes of destruction and
migration for E, E∗, and T ∗, respectively; a is the coefficient of the maximal growth
of tumor; and b is the environment capacity.

It is claimed in [20] that experimental observations motivate the approximation
dC
dt ≈ 0. Therefore, it is assumed that C ≈ KET , where K = k1

k2+k3+k−1
, and the

model can be reduced to two equations which describe the behavior of ECs and TCs
only. Moreover, in [16] it is suggested that the function F should be in the form
F (C, T ) = F (E, T ) = θET . Therefore, the model (2.1) takes the form

(2.2)

⎧⎨
⎩

dE
dt = s + α1ET − dE,

dT
dt = aT (1 − bT ) − nET,

where α1 = θ −m, and a, b, s have the same meanings as n = Kk2, m = Kk3, and
d = d1, respectively, in (2.1). All coefficients except α1 are positive. The sign of α1

depends on the relation between θ and m. If the stimulation coefficient of the immune
system exceeds the neutralization coefficient of ECs during the formation of EC–TC
complexes, then α1 > 0. We use the dimensionless form of model (2.2),

(2.3)

⎧⎨
⎩

dx
dt = σ + ωxy − δx,

dy
dt = αy(1 − βy) − xy,

where x denotes the dimensionless density of ECs; y stands for the dimensionless
density of the population of TCs; α = a

nT0
, β = bT0, δ = d

nT0
, σ = s

nE0T0
, and ω = α1

n
represent the immune response to the appearance of the tumor cells; and E0 and T0

are the initial conditions. The existence, uniqueness, and nonnegativity of solutions
are analyzed in [16], and the nonexistence of a nonnegative periodic solution of system
(2.3) is proved. The existence and stability of a periodic solution of system (2.3) are
studied in [28].

For ω > 0 and αδ < σ, system (2.3) has one nonnegative steady state P0, which
is stable, and for ω > 0 and αδ > σ (2.3) has two possible nonnegative steady states
P0 and P2, where the first is unstable and the second is stable (see [16]).
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The delayed mathematical model corresponding to (2.3) is given by the following
system [16]:

(2.4)

⎧⎨
⎩

dx
dt = σ + ωx(t− τ)y(t− τ) − δx,

dy
dt = αy(1 − βy) − xy,

where the parameter τ is the time delay which the immune system needs to develop
a suitable response after the recognition of nonself cells (see [16]). Time delays in
connection with tumor growth also appear in [5, 6, 7, 15].

The existence and uniqueness of solutions of system (2.4) for every t > 0 are
established in [16], and in the same paper it is shown that

(1) if ω ≥ 0, these solutions are nonnegative for any nonnegative initial conditions
(biologically realistic case);

(2) if ω < 0, there exist nonnegative initial conditions such that the solution
becomes negative in a finite time interval.

The existence and stability of periodic solution of system (2.4) when ω < 0 are
studied in [29, 30], respectively.

Our goal in this paper is to consider case (1) when ω > 0 (this case corresponds
to the existence of a nonnegative solution), which is the most biologically meaningful
one. We study the asymptotic behavior of the possible steady states P0 and P2 with
respect to the delay τ . We establish that the Hopf bifurcation may occur by using
the delay as a parameter of bifurcation. This result is depicted numerically.

3. Steady states and stability for positive delays. Consider the system
(2.4), and suppose that ω > 0. We distinguish between two cases, αδ < σ and
αδ > σ.

Let the following hypotheses hold:
(A1) ω > 0 and αδ < σ.
(A2) ω > 0 and αδ > σ.
Under hypothesis (A1), system (2.4) has a unique positive equilibrium P0 given

by P0 = (σδ , 0), and the linearized system around P0 takes the form

(3.1)

⎧⎨
⎩

dx
dt = ω σ

δ y(t− τ) − δx,

dy
dt = (α− σ

δ )y,

which leads to the characteristic equation

(3.2) W (λ) =
(
λ +

σ

δ
− α

)
(λ + δ).

Therefore, we have the following result.
Proposition 3.1. Assume (A1). The equilibrium point P0 is asymptotically

stable for all τ > 0.
Proof. The characteristic equation (3.2) has two roots λ1 = −σ

δ +α and λ2 = −δ
which are independent of τ and are negative. From [18], the equilibrium point P0 is
asymptotically stable for all τ > 0.

Under hypothesis (A2), system (2.4) has two equilibrium points P0 = (σδ , 0) and
P2 = (x2, y2), where

x2 =
−α(βδ − ω) +

√
Δ

2ω
, y2 =

α(βδ + ω) −
√

Δ

2αβω
,
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with Δ = α2(βδ − ω)2 + 4αβσω.
From the characteristic equation (3.2), we state the following result.
Proposition 3.2. Assume (A2). Then, the equilibrium point P0 is unstable for

all τ > 0.
Proof. The characteristic equation (3.2) has two roots λ1 = −σ

δ +α and λ2 = −δ
which are independent of τ . As αδ > σ, we have λ1 > 0. From [18], the equilibrium
point P0 is unstable for all τ > 0.

In the next sections, we shall study the stability of the nontrivial equilibrium
point P2.

Let z(t) = (u(t), v(t)) = (x(t), y(t)) − (x2, y2); then system (2.4) is written as a
functional differential equation in C := C([−τ, 0],R2),

(3.3)
dz(t)

dt
= L(τ)zt + f(zt, τ),

where L(τ) : C −→ R
2 (a linear operator) and f : C×R −→ R

2 are given, respectively,
by

L(τ)ϕ =

(
ωy2ϕ1(−τ) + ωx2ϕ2(−τ) − δϕ1(0)

−y2ϕ1(0) + (α− 2αβy2 − x2)ϕ2(0)

)

and

f(ϕ, τ) =

(
σ + ωϕ1(−τ)ϕ2(−τ) + ωx2y2 − δx2

−αβϕ2
2(0) + αy2 − αβy2

2 − ϕ1(0)ϕ2(0) − x2y2

)

for ϕ = (ϕ1, ϕ2) ∈ C and zt ∈ C, defined by zt(θ) = z(t + θ), for all θ ∈ [−τ, 0].
The characteristic equation of linearized equation

(3.4)
dz(t)

dt
= L(τ)zt

has the form

(3.5) W (λ, τ) = λ2 + pλ + r + (sλ + q)e−λτ = 0,

where p = δ +αβy2 > 0, r = δαβy2 > 0, s = −ωy2 < 0, and q = αωy2(1− 2βy2) > 0.
The stability of the equilibrium point P2 is a result of the localization of the roots

of (3.5); then we have the following theorem.
Theorem 3.3. Assume (A2) and α > sup(ωβ ,

σ
δ ). Then, there exist β1 > 0 and

τl > 0 such that, for all 0 < β < β1, the nontrivial steady state P2 is asymptotically
stable for τ < τl and unstable for τ > τl, where

τl =
1

ζl
arccos

{
q(ζ2

l − r) − psζ2
l

s2ζ2
l + q2

}
,(3.6)

ζ2
l =

1

2
(s2 − p2 + 2r) +

1

2
[(s2 − p2 + 2r)2 − 4(r2 − q2)]

1
2 ,(3.7)

β1 =
2ω(2σ − αδ) −

√
Δ1

2α2δ2
> 0,(3.8)
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and

(3.9) Δ1 = 4α2ω2(4σ2 − 4αδσ + 2α2δ2) > 0.

For the proof of Theorem 3.3, we need Lemma 3.4.
Consider the equation

(3.10) λ2 + pλ + r + (sλ + q)e−λτ = 0,

where p, r, q, and s are real numbers.
Let the following hypotheses hold:
(H1) p + s > 0.
(H2) q + r > 0.
(H3) r2 − q2 < 0 or (s2 − p2 + 2r > 0 and (s2 − p2 + 2r)2 = 4(r2 − q2)).
Lemma 3.4 (see [10]). If (H1)–(H3) hold, then when τ ∈ [0, τl) all roots of (3.10)

have negative real parts; when τ = τl (3.10) has a pair of purely imaginary roots ±iζl;
and when τ > τl (3.10) has at least one root with positive real part, where τl and ζl
are defined as in Theorem 3.3.

Proof of Theorem 3.3. From the hypothesis α > sup(ωβ ,
σ
δ ) and the expressions of

p, q, s, and r, we have p+ s > 0 and q + r > 0. Therefore, hypotheses (H1) and (H2)
are satisfied.

Then, all roots of the characteristic equation (3.5) have negative real parts for
τ = 0, and the steady state P2 is asymptotically stable for τ = 0.

By Rouche’s theorem, it follows that the roots of (3.5) have negative real parts
for some critical value of the delay τ .

We want to determine if the real part of some root increases to reach zero and
eventually becomes positive as τ varies.

If iζ is a root of (3.5), then

(3.11) −ζ2 + ipζ + isζ(cos(τζ) + i sin(τζ)) + r + q(cos(τζ) + i sin(τζ)) = 0.

Separating the real and imaginary parts, we have

(3.12)

{ −ζ2 + r = −q cos(τζ) + sζ sin(τζ),

pζ = −sζ cos(τζ) − q sin(τζ).

It follows that ζ satisfies

(3.13) ζ4 − (s2 − p2 + 2r)ζ2 + (r2 − q2) = 0.

The two roots of the above equation can be expressed as follows:

(3.14) ζ2 =
1

2
(s2 − p2 + 2r) ± 1

2
[(s2 − p2 + 2r)2 − 4(r2 − q2)]

1
2 .

As

r2 − q2 = α2y2
2(δ2β2 − ω2(1 − 2βy2)

2),

the sign of r2 − q2 is deduced from the sign of

(3.15) (δβ − ω(1 − 2βy2)) =
2αβδ −

√
Δ

α
,

which is negative for 0 < β < β1, where β1 is given by (3.8). Because the discriminant
of (3.15) is positive for all α > 0, we have δ, σ > 0.

Therefore, we have r2 − q2 < 0, and hypothesis (H3) is satisfied, which concludes
the proof of Theorem 3.3.
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4. Hopf bifurcation occurrence. We apply the Hopf bifurcation theorem to
show the existence of a nontrivial periodic solution of system (3.3), for suitable values
of parameter delay, and use the Hopf bifurcation as a bifurcation parameter. There-
fore, the periodicity is a result of changing the type of stability from a stable stationary
solution to a limit cycle.

In what follows, we recall the formulation of the Hopf bifurcation theorem for
retarded differential equations. Let the equation

(4.1)
dx(t)

dt
= F (α, xt)

hold with F : R × C −→ R
n, F of class Ck, k ≥ 2, F (α, 0) = 0 for all α ∈ R, and

C = C([−r, 0],Rn) the space of continuous functions from [−r, 0] into R
n. As usual,

xt is the function defined from [−r, 0] as R
n by xt(θ) = x(t + θ), r ≥ 0, and n ∈ N

∗.
The following assumptions are stated:
(M0) F is of class Ck, k ≥ 2, F (α, 0) = 0 for all α ∈ R, and the map (α,ϕ) −→

Dk
ϕF (α,ϕ) sends bounded sets into bounded sets.

(M1) The characteristic equation

(4.2) Δ(α, λ) = det(λId−DϕF (α, 0) exp(λ(.)Id))

of the linearized equation of (4.1) around the equilibrium v = 0,

(4.3)
dv(t)

dt
= DϕF (α, 0)vt,

has in α = α0 a simple imaginary root λ0 = λ(α0) = i; all other roots λ satisfy
λ �= mλ0 for m ∈ Z.

(M2) λ(α) is the branch of roots passing through λ0, and we have

(4.4)
∂

∂α
Reλ(α)/α=α0

�= 0.

Theorem 4.1 (see [18]). Under assumptions (M0), (M1), and (M2), there exist
constants ε0 > 0 and δ0, functions α(ε), T (ε), and a T (ε)-periodic function x∗(ε)
such that

(a) all of these functions are of class Ck−1 with respect to ε, for ε ∈ [0, ε0[,
α(0) = α0, T (0) = 2π, x∗(0) = 0;

(b) x∗(ε) is a T (ε)-periodic solution of (4.1), for the parameter values equal to
α(ε);

(c) for |α−α0| < δ0 and |T−2π| < δ0, any T -periodic solution p, with ‖p‖ < δ0, of
(4.1) for the parameter value α, there exists ε ∈ [0, ε0[ such that α = α(ε), T = T (ε),
and p is up to a phase shift equal to x∗(ε).

We notice that (M1) implies that the root λ0 lies on a branch of roots λ = λ(α)
of (4.2) of class Ck−1.

The following theorem gives the main result of this paper.
Theorem 4.2. Assume (A2) and α > sup(ωβ ,

σ
δ ). There exists ε1 > 0 such

that, for each 0 ≤ ε < ε1, (3.3) has a family of periodic solutions pl(ε), with period
Tl = Tl(ε), for the parameter values τ = τ(ε) such that pl(0) = P2, Tl(0) = 2π

ζl
, and

τ(0) = τl, where τl and ζl are given, respectively, as in (3.6) and (3.7).
Proof. For the proof of Theorem 4.2, we apply the Hopf bifurcation theorem,

Theorem 4.1.
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From the expression of f in (3.3), we have

f(0, τ) = 0 for all τ > 0

and

∂f(0, τ)

∂ϕ
= 0 for all τ > 0.

Then hypothesis (M0) is satisfied. From (3.5) and Theorem 3.3, the characteristic
equation (3.5) has a pair of simple imaginary roots λl = iζl and λl = −iζl at τ = τl.

From (3.5), we have

W (λl, τl) = 0,

and, by differentiation, we find

∂

∂λ
W (λl, τl) = 2iζl + p + (s− τ(isζl + q))e−iζlτl �= 0.

According to the implicit function theorem, there exist neighborhoods U ⊂ R and
V ⊂ C of τl and λl, respectively, and a complex function λ = λ(τ) defined from U to
V, such that

λ(τl) = λl,

and we have

(4.5) W (λ(τ), τ) = 0 for τ ∈ U ;

thus, we find

(4.6) λ′(τ) = −∂W (λ, τ)/∂τ

∂W (λ, τ)/∂λ
for τ ∈ U .

From (3.5), we have

∂

∂τ
W (λ, τ) = −λ(sλ + q)e−λτ

= λ(λ2 + pλ + r)

and

∂

∂λ
W (λ, τ) = 2λ + p + (s− τsλ− τq)e−λτ

= 2λ + p + τ(λ2 + pλ + r) − s

(
λ2 + pλ + r

sλ + q

)
.

From these expressions, a simple calculation leads to

(4.7) λ′(τ) =
λ(sλ + q)e−λτ

2λ + p + (s− τsλ− τq)e−λτ
.

From (3.5), (4.5), and (4.7), we obtain the following expression of λ′(τ) for τ ∈ U :

(4.8) λ′(τ) = −λ
A(λ)

B(τ, λ)
,
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where

A(λ) = sλ3 + (sp + q)λ2 + (sr + pq)λ + qr

and

B(τ, λ) = τsλ3 + (s + τ(sp + q))λ2 + (2q + τ(sr + pq))λ + pq − sr + τqr.

Let λ(τ) = κ(τ) + iζ(τ) (where κ and ζ are the real and imaginary parts of λ such
that κ(τl) = 0 and ζ(τl) = ζl, respectively).

From (4.8) and for τ = τl, we have

(4.9) λ′(τ)/τ=τl = −iζl
A(iζl)

B(τl, iζl)
.

By separating the real and imaginary parts in (4.9), we deduce that

κ′(τ)/τ=τl =
∂

∂τ
Reλ(τ)/τ=τl

= ζ2
l

s2ζ4
l + (sqr(τl − 1) + 2q2)ζ2

l + sr2(q − sr)

A2 + B2

+
pq2(p + r) − qr(2q + τl(sr + pq))

A2 + B2
,

where

A = −(s + τl(sp + q))ζ2
l + pq − sr + τqr

and

B = −τlsζ
3
l + (2q + τl(sr + pq))ζl.

As ζl (which exists for 0 < β < β1) is a root of (3.13), we conclude that

κ′(τ)/τ=τl �= 0.

Then hypotheses (M1) and (M2) are satisfied, which completes the proof of Theo-
rem 4.2.

5. Application. Let us fix the parameters of the model as follows: α = 1.636,
β = 0.002, σ = 0.1181, δ = 0.3747, and 0.00184 < ω < 0.01185. Moreover, assume
ω = 0.04 according to medical experiments (Kuznetsov and Taylor [20]). Therefore,
αβ = 0.003272 > ω for ω = 0.04. αδ = 0.6160372 > σ, β < β1 = 0.04654.

The nontrivial steady state P2 = (x2, y2) is given by x2 = 1.6113, y2 = 7.5352,
p = 0.3994, r = 0.0092, s = −0.3014, and q = 0.4782.

It is easy to verify that the conditions of Theorem 4.2 are fulfilled. A limit cycle
bifurcation occurs when the time delay parameter τ passes through τ = τl = 2.3581,
where the relative eigenvalues are λl = i0.2010. Moreover, we can compute the
approximate period of the bifurcating periodic solution by

Tl =
2π

|λl|
= 9.2681 days.

The bifurcating periodic solution of (2.4) is visualized with the aid of MATLAB
software.
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Fig. 2. The bifurcating periodic solution of (2.4) in (t, x) and (t, y) planes for the delay
parameter value τ = τl.

We can deduce, according to Theorem 4.2, that the nontrivial stationary point P2

is asymptotically stable when τ < τl. In this case the model allows for the possibility
of a small tumor mass. When τ > τl, P2 becomes unstable and a large tumor mass
appears.

After extension of the time delay τ , the stable equilibrium is lost and the tumor
starts to oscillate periodically (period equal to 9.2681 days). See Figure 2. Because
of those oscillations the tumor can disappear (if the periodic oscillations are stable)
or the patient can die (if the periodic oscillations are unstable).

6. Discussions. A numerical investigation, given in [16], shows that the char-
acteristic equation (3.5) of the linearized system (2.4) around the nontrivial steady
state P2 has a purely imaginary root for some τ = τ0, and the switching of stability
may occur by using the Mikhailov hodograph.

In this paper, we gave an analytical study of stability (with respect to the time
delay τ) of the possible steady states P0 and P2 for the positive values of the param-
eter ω.

In section 4 we prove that system (2.4) has a family of periodic solutions bifur-
cating from the nontrivial steady state.

We hope the results proposed in this paper improve the understanding of the
qualitative properties of the description delivered by model (2.4). So far we now have
a description of stability properties and Hopf bifurcation with a detailed analysis of
the influence of delays terms. As demonstrated, whenever time delay was introduced
into the tumor immune model, a Hopf point was found, leading to oscillatory behavior.
It seems to us worthwhile to examine these results in the clinical context, that is, to
check whether or not one can contain tumor growth by imposing (by use of certain
drugs) time delay in tumor immune system competition.

Acknowledgments. I am very grateful to Professor N. Bellomo for improving
this paper and I thank the two referees for their valuable suggestions.
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A STOCHASTIC MODEL AND ASSOCIATED FOKKER–PLANCK
EQUATION FOR THE FIBER LAY-DOWN PROCESS IN

NONWOVEN PRODUCTION PROCESSES∗
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Abstract. In this paper we present and investigate a stochastic model and its associated Fokker–
Planck equation for the lay-down of fibers on a conveyor belt in the production process of nonwoven
materials. The model is based on a stochastic differential equation taking into account the motion
of the fiber under the influence of turbulence. A reformulation as a stochastic Hamiltonian system
and an application of the stochastic averaging theorem lead to further simplifications of the model.
Finally, the model is used to compute the distribution of functionals of the process that are important
for the quality assessment of industrial fabrics.

Key words. fiber dynamics, stochastic Hamiltonian system, Fokker–Planck equations, stochas-
tic averaging
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1. Introduction. The understanding of the forms generated by the lay-down
of flexible fibers onto a moving conveyor belt is of great interest in the production
process of nonwovens that find their applications in, e.g., composite materials (filters),
textiles, and the hygiene industry [3]. In the melt-spinning process of nonwoven
materials, hundreds of individual endless fibers obtained by the continuous extrusion
of a melted polymer are stretched and entangled by highly turbulent air flows to
finally form a web on the conveyor belt. The quality of this web and the resulting
nonwoven material—in terms of homogeneity and load capacity—depends essentially
on the dynamics and the deposition of the fibers.

A mathematical model and numerical simulations for the nonwoven production
process are presented in [12]. The paper focuses on the fiber spinning and lay-down,
where the fiber dynamics in the deposition region close to the conveyor belt is domi-
nated by the turbulent air flow. For the description of the interaction between fibers
and turbulent flow, a stochastic force model is derived and analyzed in [18] as well
as experimentally validated in [19]. Applying this concept, the fiber fabric can in
principle be numerically generated and its quality investigated in the spirit of the
multiscale image analysis of [22]. However, these or similar simulations usually lead
to excessively large computation times, when all physical details of the production
process are considered. Thus, simplified models for the lay-down process are needed.
In particular, this is true for optimization and control procedures where many differ-
ent simulations are needed. Experimental studies on the forms of threads laid on a
moving belt as well as a simplified general theory for the buckling of the fibers can be
found in [11]. The coiling behavior of flexible rods is investigated in [17].
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Fig. 1. Fiber scenario on the conveyor belt.

Motivated by the research work done in the field of woven textile composites [7],
e.g., modeling [15], numerical and asymptotical stress analysis [23], and stiffness/load
capacity investigations [6], we focus in this paper on the modeling of nonwoven tex-
tiles and the determination of textile properties, e.g., weight distribution, that are
important for the quality assessment of industrial nonwoven fabrics. In particular, we
present a new simplified stochastic model for the fiber lay-down process, i.e., for the
generation of the fiber web on the conveyor belt that is assumed for simplicity to be
nonmoving. Taking into account the fiber motion under the influence of turbulence,
the process is described by a stochastic differential system in section 2. Its associated
Kolmogoroff equation and stationary solution are investigated in section 3. Moreover,
we include remarks on the identification of the process parameters. Section 4 contains
an investigation of the scaled stochastic Hamiltonian system using stochastic averag-
ing. In section 5 we conclude with the computation of the probability distribution of
process functionals.

2. Stochastic model for fiber lay-down. In the industrial application a non-
woven material is generated by the superposition of many elastic, slender, and inex-
tensible fibers. The nonwoven quality is measured by the homogeneity of the fiber
mass distribution. Neglecting the interaction of neighboring fibers, we focus here on
a single fiber in an isotropic lay-down process. Instead of describing this lay-down
process in all physical details, we directly model the resulting fiber on the conveyor
belt as an arc-length parameterized curve ξ : R

+
0 → R

2 satisfying ‖∂tξ‖ = 1; see
Figure 1. Assuming constant cross sections, the curve carries the full information of
the mass contribution of this fiber to the mass distribution of the nonwoven material.
We prescribe ξ by a dynamical system with respect to the arc-length t that contains
the crucial physical characteristics of the lay-down process, i.e., buckling/coiling of
the fiber as well as the influence of the turbulent air flow in the deposition region on
the fiber. Assuming for simplicity a nonmoving conveyor belt, the dynamical system
is modeled by the following stochastic differential equations:

dξt = τ(αt) dt,

dαt = −b(‖ξ‖) ξt
‖ξt‖

· τ⊥(αt) dt + AdWt,

where τ(α) = (cosα, sinα)T denotes the normalized tangent on the fiber. Since a
curved fiber returns to the reference point of the spinning process determined by the
nozzle position according to its coiling behavior, the change of the angle α is assumed
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to be proportional to ξ · τ⊥(α) with τ⊥(α) = (− sinα, cosα)T . The amplitude of this
drive is prescribed by a continuously differentiable function b : R

+
0 → R with b(r) > 0

for r > 0 and b′(r) ≥ 0 for r ≥ 0. Let r0 be the argument that satisfies b(r0) = 1/r0.
The effect of the turbulent flow on the fiber in the deposition region close to the
conveyor belt yields a stochastic force in the fiber lay-down process that is modeled
here by a Wiener process Wt in R with amplitude A.

The parameters A and b depend on the specific industrial application and need
to be adapted to experimental data. In case of an anisotropic lay-down process the
scalar-valued function b has to be replaced by an appropriate matrix-valued one, i.e.,

dαt = − ξt
‖ξt‖

M(‖ξt‖)τ⊥(αt) dt + AdWt,

where M(r) ∈ R
2×2 denotes a positive definite matrix.

Since length, i.e., fiber (arc-)length t and position ξ, is the only dimension in
the lay-down process, the system can be nondimensionalized by scaling it with the
typical deposition radius r0. Then, we have b�(r�) = r0 b(r0r

�) and A� =
√
r0A.

Consequently, b�(1) = 1 holds, and the dimensionless noise amplitude A� characterizes
the relation between stochastic and deterministic rates in the behavior of the system.
Figure 2 shows examples for the pathwise behavior of the solution for varying noise
A with constant drive b(r) = 1 and fixed fiber length. Physically relevant scenarios
typically include parameters ranging from A = 0.1 to A = 5 depending on the size of
the turbulent force exerted on the fiber. Note that for convenience we have skipped
the superscript star � denoting the dimensionless quantities. Moreover, we embed our
model in the context of dynamical systems and stochastic processes and use in the
following the notation and interpretation of time for the arc-length parameter.

Introducing polar coordinates ξ = (r cosφ, r sinφ)T , r = ‖ξ‖ and the angle β =
α − φ with φ in ξ-space (Figure 1), the given stochastic differential system can be
rewritten in terms of (r, β) ∈ [0,∞) × [0, 2π]:

drt = cosβt dt,(2.1a)

dβt =

(
b(rt) −

1

rt

)
sinβt dt + AdWt,(2.1b)

dφt =
sinβt

rt
dt.(2.1c)

Due to symmetry, we can restrict ourselves to β ∈ [0, π]. Since the equation for
φt is decoupled from the remaining (rt, βt)-process, this transformation leads to a
dimension reduction of the problem. The deterministic (r, β)-system with A = 0
moves on closed orbits in the (r, β)-plane, as illustrated in Figure 3. Its fixpoint is
(r, β) = (1, π/2). The periodic orbits are given by level sets H(r, β) = h ∈ [0,∞) of
the Hamiltonian

H(r, β) = B(r) − ln r − ln sinβ,

where B(r) =
∫ r

1
b(r′) dr′. For fixed energy h, the radius r takes values in [rmin(h),

rmax(h)] with 0 < rmin(h) < 1 < rmax(h).

We can rewrite (2.1) in Hamiltonian coordinates (r, z) ∈ [0,∞) × (−∞,∞) with
z = ln tan(β/2), i.e., β = 2 arctan(ez), z′ = 1/ sinβ, β′ = sinβ. Using Ito’s formula
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Fig. 2. Representative path behavior for balanced (A = 1) as well as deterministic (A < 1) and
stochastic (A > 1) dominated (ξ, α)-systems.
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then gives

drt = cosβ(zt) dt,(2.2a)

dzt =

(
b(rt) −

1

rt

)
dt− A2 cosβ(zt)

2 sin2 β(zt)
dt +

A

sinβ(zt)
dWt(2.2b)

and consequently, with H(r, z) = B(r) − ln(r) − ln sin(2 arctan(ez)),

drt = −∂zH(rt, zt) dt,

dzt = ∂rH(rt, zt) dt− A2 cosβ(zt)

2 sin2 β(zt)
dt +

A

sinβ(zt)
dWt.

Remark 1. Linearizing the system in (2.2) around the fixpoint (r, z) = (1, 0), we
obtain a Hamiltonian system with the Hamiltonian function

Hlin(r, z) =
1

2

(
b′(1) + 1

)
(r − 1)2 +

1

2
z2

being a harmonic oscillator. Its period of motion [4] is Tlin = 2π/
√
b′(1) + 1.

In general, as in the nonlinear case considered above, the period of motion TH is
not constant but depends on the energy h. An integral representation for TH stated
in (3.4) can be derived analytically; see below and [4] for further investigations. For
small h, the nonlinear period of motion tends obviously to the linearized one.

Example 1. Considering the linearized system, the period of motion is Tlin = 2π
for b(r) = 1 and Tlin = 2π/

√
2 for b(r) = r. For the corresponding nonlinear cases,

numerical evaluations of TH are presented in Figure 4.

3. Kolmogoroff equation and stationary solution. We start the investiga-
tion of the fiber lay-down model by considering the associated Fokker–Planck equation
and determining its stationary distribution as t → ∞. We use the term “associated
Fokker–Planck equation” for the Kolmogoroff forward equation of the stochastic pro-
cess. The solution of this equation gives the probability density of the stochastic
process for a given initial distribution; see, for example, [5].

The Fokker–Planck equation for the density p1 : (t, r, β) �→ p1(t, r, β) of system
(2.1) with r ∈ [0,∞), β ∈ [0, 2π) is given by

(3.1) ∂tp1 + cosβ ∂rp1 +

(
b(r) − 1

r

)
∂β(sinβ p1) =

A2

2
∂ββp1,
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where the initial condition p1(t = 0, r, β) is prescribed. Moreover, periodic boundary
conditions for β and the additional condition∫ 2π

0

∫ ∞

0

p1(t, r, β) dr dβ = 1

are prescribed. A stationary solution is obviously

(3.2) pS1(r, β) = Cre−B(r)

with the normalization constant C. In Hamiltonian coordinates (r, z = ln tan(β/2))
of system (2.2) we have

pS2
(r, z) = pS1(r, β(z))β′(z) = Cre−B(r) sinβ(z) = Ce−H(r,z)

due to the transformation of measures. Note that the subscript of the stationary
solution indicates the corresponding system.

Remark 2. In Hamiltonian coordinates the Fokker–Planck equation reads with
the Hamiltonian function H(r, z) = V (r) − W (z), where V (r) = B(r) − ln(r) and
W (z) = ln sinβ(z):

∂tp2 − ∂r(p2∂zH) + ∂z(p2∂rH) =
A2

2
∂z(e

−2W (∂zp2 + p2∂zH)).

Obviously, a solution is e−H , as one would expect from physical considerations; see,
e.g., Risken [21].

In the energy variable H the stationary distribution reads

pSH
(h) =

d

dh

∫
H(r,z)<h

pS2(r, z) dr dz = C e−h d

dh

∫
H(r,z)<h

dr dz

= C e−h TH(h)(3.3)

because the period of motion of the deterministic system is given by

(3.4) TH(h) =
d

dh

∫
H(r,z)<h

dr dz.
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for b(r) = 1.

This follows from the following consideration (cf. [4]). Take the reduced one-para-
metric family of deterministic processes with initial condition H(r(0), β(0)) = h; then
every point (r, z) in the phase-space can be prescribed by h and the first time t to reach
this point. As a simple consequence of the conservation of energy and the canonical
structure of the Hamiltonian system, the functional determinant of the corresponding

transformation is one. Hence,
∫
H(r,z)<h

dr dz =
∫ h

0

∫ TH(h′)

0
dtdh′ which yields (3.4).

A Monte Carlo simulation of the stochastic model (2.1) with b(r) = 1 enables the
computation of the time development of the solution and the comparison of the ana-
lytical stationary distributions pS1 with the stationary distribution of the rt-process
and, respectively, the comparison of pSH

with the numerically computed stationary
distribution of the energy process Ht; see Figure 5. For further simulations of the
time development of the stochastic model, see the next section.

Remark 3. Alternatively, to obtain the stationary solution and the time evolu-
tion of the density one can solve the partial differential equation (3.1) numerically;
see [14]. The solutions indicate the convergence to the stationary solution with a rate
of convergence depending on A, where the convergence is slow for A small and A
large and fast for intermediate A. Compare also Figure 2 showing the paths of the
stochastic process for different A.

Remark 4. An analytical investigation of the convergence towards equilibrium
and the rate of convergence is complicated due to the degeneracy of the Fokker–Planck
equation (3.1) with respect to the variable r. For related problems we refer to [24, 8].
A proof of ergodicity and convergence to the stationary distribution is performed
in [10].

Remark 5. The identification of the parameters, i.e., drive b and noise amplitude
A, in the lay-down model is important for the realistic description of industrially
relevant scenarios. Comparing the stationary distribution pS1 with experimentally
available data, we can determine the function B and thus its derivative b. The noise
amplitude A can in principle be computed from

(dαt)
2 = A2 dt

or alternatively from

lim
h→0

E
[
(αt+h − αt)

2
]

h
= A2,
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supposing that the real process is prescribed by white noise. More sophisticated
approaches can be found in [16].

4. Stochastic averaging and energy equation. In the following we consider
lay-down processes (2.1) with small noise A =

√
εÃ on associated long “time” scales

t = t̃/ε with 0 < ε 	 1; see Figure 2 for the pathwise behavior for different noise levels.
In this case, a simplified approximation of the dynamics can be given by stochastic
averaging. This leads to a reduced system as ε → 0, i.e., a stochastic differential
equation for the limit energy process for which we determine the drift and variance
coefficients.

Dropping the tildes, the rescaled (rεt , β
ε
t )-system reads

drεt =
1

ε
cosβε

t dt,(4.1)

dβε
t =

1

ε

(
b(rεt) −

1

rεt

)
sinβε

t dt + AdWt.

Applying Ito’s formula, the resulting energy process Hε
t = H(rεt , β

ε
t ) fulfills the equa-

tion

dHε
t = ∂rH drεt + ∂βH dβε

t +
1

2
∂ββH (dβε

t )
2

=

(
b(rεt) −

1

rεt

)
drεt − cotβε

t dβε
t +

1

2 sin2 βε
t

(dβε
t )

2

=
A2

2 sin2 βε
t

dt−A cotβε
t dWt.

Using formally the stochastic averaging theorem (see, e.g., [13] or [20] and [1, 2] for an
application to stochastic Hamiltonian systems), the limit equation for Hε

t as ε tends
to 0 is given by

dH0
t = aH(H0

t ) dt + σH(H0
t ) dWt

with drift and variance

(4.2) aH(h) =
A2

2TH(h)

∫ TH(h)

0

1

sin2 β(t)
dt, σ2

H(h) =
A2

TH(h)

∫ TH(h)

0

cot2 β(t) dt.

In these formulas β denotes the solution of the deterministic (r, β)-process for fixed
energy h. The expressions for aH and σ2

H can be rewritten in explicit form as

(4.3) aH(h) =
A2

2

(
1 + TH(h)

)
, σ2

H(h) = A2 TH(h),

with

TH(h) =
e2h

TH(h)

∫ h

0

TH(h′)e−2h′
dh′.

The derivation of (4.3) is based on two equations for the coefficients a and σ. First,
due to their form in (4.2) we have

(4.4) 2aH(h) − σ2
H(h) = A2.
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The second equation is obtained from the stationary distribution. Consider the
Fokker–Planck equation corresponding to H0

t :

∂tpH + ∂h (aH(h)pH) =
1

2
∂hh

(
σ2
H(h)pH

)
.

Looking for integrable solutions of the stationary equation, we consider

2aH(h) pSH
= ∂h

(
σ2
H(h) pSH

)
.

The solution reads

pSH
(h) = C̃ exp

(
−
∫ h (σ2

H)′(h′) − 2aH(h′)

σ2
H(h′)

dh′

)

with the normalizing constant C̃. On the other hand, the stationary solution for the
(rεt , β

ε
t )-process is independent of ε, and according to (3.3),

pSH
(h) = Ce−h TH(h)

holds for all ε and therefore also for the limit process. Hence, from the comparison of
the different expressions for pSH

, we obtain

(4.5)
(σ2

H)′(h) − 2aH(h)

σ2
H(h)

= 1 − (lnTH(h))′.

Equations (4.4) and (4.5) yield a differential equation for the variance

(σ2
H)′(h) = A2 + 2σ2

H(h) − (lnTH(h))′ σ2
H(h)

from which the explicit formulas in (4.3) can be concluded.
Summarizing, the energy equation for the limit process H0

t and its associated
Fokker–Planck equation read

dH0
t =

A2

2
(1 + TH(H0

t )) dt + A

√
TH(H0

t ) dWt,

∂tpH +
A2

2
∂h

(
(1 + TH(h)) pH

)
=

A2

2
∂hh

(
TH(h) pH

)
.

The introduction of the alternative energy process

Gε
t = e−Hε

t = rεt e
−B(rεt ) sinβε

t

is more suitable for the following numerical simulations since it is restricted on the
interval [0, 1]. Analogously to the previous averaging procedure or directly from Hε

t

by means of the Ito calculus, i.e.,

dG0
t = −e−H0

t dH0
t +

1

2
e−H0

t (dH0
t )2,

we determine the limit process G0
t as

(4.6) dG0
t = aG(G0

t ) dt + σG(G0
t ) dWt
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with drift and variance

(4.7) aG(g) = −A2

2
g, σ2

G(g) =
A2g2

TG(g)

∫ TG(g)

0

cot2 β(t) dt

or the explicit version,

σ2
G(g) = A2TG(g),(4.8)

TG(g) =
1

TG(g)

∫ 1

g

TG(g′) g′ dg′.

Here, the period of motion TG is defined by the associated transformation TG(g) =
TH(− ln g). The associated Fokker–Planck equation is

(4.9) ∂tpG − A2

2
∂g(gpG) =

A2

2
∂gg(TG(g)pG).

The equation is complemented with an initial condition and conservation of mass∫ 1

0

pG(t, g) dg = 1.

The transformed stationary solution of the Fokker–Planck equation is

pSG
(g) = C TG(g), g ∈ [0, 1].

Remark 6. Equation (4.9) can be rewritten in the usual form of a Sturm–Liouville
problem. For a more detailed treatment of these problems, see, for example, [25]. At
least formally it is easily observed that the rate of convergence to equilibrium for this
equation is faster as A becomes larger, which is consistent with the statement on the
speed of convergence of the full problem (3.1) in Remark 3.

Remark 7. For TH(h) tending to infinity as h → ∞ (as motivated by Figure 4) and
TG(g) g being integrable over [0, 1], we observe from (4.8) that the variance satisfies
σ2
G(g = 0) = 0 with σ2

G(g) ∼ (TH(− ln g))−1 as g → 0. See Figure 6 for a numerical
evaluation of σG for b(r) = 1 and A = 1.
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A numerical simulation of the corresponding stochastic differential equations (4.1)
and (4.6) yields the stationary distributions of the energy process Gε

t, ε = 1, and the
limit process G0

t that are plotted against the theoretical stationary distribution pSG

in Figure 7. The temporal evolution of the mean value and the standard deviation of
the two energy processes is visualized in Figure 8, where ε is chosen as ε = 1, 0.1. The
results for smaller ε are similar to the case ε = 0.1. We observe that for large ε the
decay in the beginning differs significantly, before the final behavior of the processes
is driven by the standard noise of Monte Carlo simulations. For smaller values of ε
the time evolutions of the full process and the limit process coincide.

5. Distributions of process functionals. An important issue for the quality
assessment of fabrics is the distribution of fiber length that lies in a prescribed spatial
domain, since this information yields the weight distribution in the physical space and
thus gives insight into the structure of the nonwoven material, i.e., holes, thinning,
swelling. In the context of stochastic processes the distribution of the length of the
fibers laid down in a prescribed domain is associated with the distribution of the time
the process stays in this domain. In the following we perform a numerical study of
such functionals of the process.

The “time” spent in a domain D of the (r, β)–phase-space is described by the

distribution of the random variable I =
∫ T

t0
χD(rt, βt) dt for fixed T , where χD is the

characteristic function of D. Alternatively for domains given by the energy functional
G = e−H , e.g., D = Dg = {(r, β) | G(r, β) < g}, we can also use the approximate

equations for G0
t to determine an approximation IG for I with IG =

∫ T

t0
χ[0,g](G

0
t ) dt.

Remark 8. The distribution of the above functionals can in principle be deter-
mined by solving a related partial differential equation to obtain the characteristic
function of I. The distribution of I is then computed using the inverse Fourier trans-
form; see [9]. However, for the nonlinear processes considered here there is no explicit
solution of these equations, and a direct evaluation of the functionals by a Monte
Carlo method is more straightforward.

Figure 9 shows the distribution of the functionals I/T and IG/T with D = Dg =
{(r, β) | G(r, β) < g} for initial values G0 = 0.53, t0 = 0, g = 0.3 and final time
T = 40, 200, 400 using the (rεt , β

ε
t )-process with ε = 1 and the G0

t -process, respectively.
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Fig. 9. Probability distribution of time spent in Dg, g = 0.3, P (Dg) = 0.39 using the (rεt , β
ε
t )-

process, ε = 1 (line), and G0
t -process (line and marker) for T = 40 ( ··), 200 (- -), 400 (–).

Obviously, in these cases evaluating the functionals with the limit G0
t -process gives a

good approximation of the true value even for ε = 1.

Remark 9. For large times T , starting with the stationary distribution, the
distribution of IG tends towards a δ-distribution at the value P (Dg) :=

∫ g

0
pSG

(g′) dg′:
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lim
T→∞

1

T

∫ t0+T

t0

χ[0,g](G
0
t ) dt = P (Dg).

This means that, at least numerically, the distribution function behaves as predicted
by the ergodic theorem.

6. Conclusion and outlook. In this paper we presented a new stochastic model
for the lay-down of fibers which can be used as a basis for further investigations of the
production process of nonwovens. We have determined the associated Kolmogoroff
equation and stationary solution of the model and derived the corresponding energy
process with drift and variance coefficients by help of stochastic averaging. The limit
energy process enables the simple computation of probability distributions of process
functionals, e.g., fiber length distribution, that are helpful for the quality assessment
of nonwoven materials. Some points which need to be discussed in further detail are
listed below:

• The application of the above results on the industrial process requires the
extension of the model with regard to an anisotropic lay-down process and a
moving conveyor belt. This generalization will lead to a matrix-valued drive
function and an additional drift (transport) term in the (ξ, α)-system. For
example, for a moving conveyor belt, we have to distinguish between the fiber
curve η on the conveyor belt and the deviation ξ of the fiber from the now
moving reference point of the spinning process

ηt = ξt − κte1,

where κ ∈ [0, 1] is the speed of the belt moving in direction e1 relative to the
spinning velocity of the fiber. The inextensibility condition holds for ηt; i.e.,
‖∂tη‖ = 1. Hence, in generalization to the presented model ξt fulfills

dξt = τt dt + κe1 dt,

dαt = −b(‖ξt‖)
ξt
‖ξt‖

τ⊥t dt + AdWt.

• The practical relevance of the model has to be guaranteed by the identifica-
tion of the parameters, i.e., drive and noise amplitude. Therefore, appropriate
validation data will be generated by the simulation of the complete physical
production process as discussed above. Both parameters can be identified
from the simulation of the complete production process of nonwovens, ac-
cording to [12, 18], for different industrially relevant cases.

• The theoretical and numerical analysis of the solution of the degenerate
Fokker–Planck equation (3.1) or the associated equation for the (ξt, αt)-
process and, in particular, the rates of convergence to equilibrium, gives
valuable insight into the behavior of the process. A detailed analytical inves-
tigation with explicit rates of convergence for the process is presented in [10].
For a numerical investigation we refer to [14].

• The analytical investigation of the Fokker–Planck equation for the limit en-
ergy process G0

t is also a point of interest that is left to future work.
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PULSE PROPAGATION AND TIME REVERSAL IN RANDOM
WAVEGUIDES∗

JOSSELIN GARNIER† AND GEORGE PAPANICOLAOU‡

Abstract. Mode coupling in a random waveguide can be analyzed with asymptotic analysis
based on separation of scales when the propagation distance is large compared to the size of the
random inhomogeneities, which have small variance, and when the wavelength is comparable to the
scale of the inhomogeneities. In this paper we study the asymptotic form of the joint distribution
of the mode amplitudes at different frequencies. We derive a deterministic system of transport
equations that describe the evolution of mode powers. This result is applied to the computations of
pulse spreading in a random waveguide. It is also applied to the analysis of time reversal in a random
waveguide. We show that randomness enhances spatial refocusing and that diffraction-limited focal
spots can be obtained even with small-size time-reversal mirrors. The refocused field is statistically
stable for broadband pulses in general. We show here that it is also stable for narrowband pulses,
provided that the time-reversal mirror is large enough.

Key words. acoustic waveguides, random media, asymptotic analysis
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1. Introduction. In a perfect waveguide, energy propagates through its guided
wave modes, which do not interact with each other. Imperfections in the mate-
rial or in the geometrical properties of the waveguide induce mode coupling. These
imperfections are usually small, but their effects accumulate over large propagation
distances and can be significant. In this paper we consider wave propagation in
an acoustic waveguide whose bulk modulus is a three-dimensional random function.
Using the propagating modes of the unperturbed waveguide, we can reduce the three-
dimensional wave propagation problem to the analysis of a system of coupled ordinary
differential equations with random coefficients. It is in the frequency domain that the
mode amplitudes satisfy these differential equations. We can analyze them as a sys-
tem of random differential equations in a diffusion approximation, in which the mode
amplitudes are a multidimensional diffusion process. This coupled mode asymptotic
analysis was considered previously for applications in underwater acoustics [14, 5],
fiber optics [17], and quantum mechanics [11].

The main purpose of this paper is to analyze the asymptotic behavior of the
coupled mode amplitudes in the time domain. This requires the analysis of the joint
distribution of the mode amplitudes at two nearby frequencies, which results in a
system of transport equations for the mode powers. This is done in section 6. In
section 7 we apply this result to the analysis of pulse spreading in a random waveguide.

In section 8 we consider time reversal in a random waveguide and present the
first analysis of the phenomenon of side-lobe suppression, which has been observed in
experiments [15] and in numerical simulations [2]. Side-lobe suppression is the main
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application of our asymptotic analysis. Time-reversal refocusing has been studied
extensively both experimentally and theoretically, in various contexts such as in ul-
trasound and underwater acoustics, as reviewed in [7, 8]. A time-reversal mirror is an
active array of transducers that records a signal, time reverses it, and re-emits it into
the medium. The waves generated at the time-reversal mirror propagate back to their
source and focus near it, as if wave propagation was run in reverse time. Surprisingly,
random inhomogeneities enhance the refocusing of the time-reversed waves near the
original source location [4, 8]. Ultrasonic wave propagation and time reversal in homo-
geneous waveguides is studied experimentally and theoretically in [22]. Time-reversal
refocusing was experimentally investigated in underwater acoustics in [15, 23], where
the random inhomogeneities in the environment reduce the side-lobes that are seen
in refocusing in a homogeneous waveguide.

In addition to enhanced refocusing and side-lobe suppression, statistical stabil-
ity of the refocused field is critical for applications in communications and detection.
Statistical stability means that the refocused field does not depend on the particu-
lar realization of the random medium. It has been studied in broadband regimes of
propagation in one-dimensional random media [3, 10], in three-dimensional randomly
layered media [9, 10], and in three-dimensional wave propagation in the paraxial ap-
proximation [2, 21]. Stabilization of the refocused field for broadband pulses results
from the superposition of its many approximately uncorrelated frequency components.
We show in section 8 that in random waveguides we have statistical stability of the
refocused field even for narrowband pulses, provided that the number of propagating
modes and the size of the time-reversal mirror are large enough.

2. Propagation in homogeneous waveguides. In this section we study wave
propagation in an acoustic waveguide that supports a finite number of propagating
modes. In an ideal waveguide the geometric structure and the medium parameters can
have a general form in the transverse directions but must be homogeneous along the
waveguide axis. There are two general types of ideal waveguides: those that surround
a homogeneous region with a confining boundary, and those in which the confinement
is achieved with a transversely varying index of refraction. We will present the anal-
ysis of the effects of random perturbations on waveguides of the first type and will
illustrate specific results with a planar waveguide. The main difference in working
with waveguides of the second type is that the transverse wave mode profiles depend
on the frequency, but this does not affect the theory we present here.

2.1. Modeling of the waveguide. We consider linear acoustic waves propa-
gating in three space dimensions modeled by the system of wave equations

(2.1) ρ(r)
∂u

∂t
+ ∇p = F ,

1

K(r)

∂p

∂t
+ ∇ · u = 0 ,

where p is the acoustic pressure, u is the acoustic velocity, ρ is the density of the
medium, and K is the bulk modulus. The source is modeled by the forcing term
F(t, r). We assume that the transverse profile of the waveguide is a simply connected
region D in two dimensions. The direction of propagation along the waveguide axis
is z and the transverse coordinates are denoted by x ∈ D. In the interior of the
waveguide the medium parameters are homogeneous:

ρ(r) ≡ ρ̄, K(r) = K̄ for x ∈ D and z ∈ R .
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By differentiating the second equation of (2.1) with respect to time and substituting
the first equation into it, we get the standard wave equation for the pressure field,

(2.2) Δp− 1

c̄2
∂2p

∂t2
= ∇ · F ,

where Δ = Δ⊥ + ∂2
z and Δ⊥ is the transverse Laplacian. The sound speed is c̄ =√

K̄/ρ̄. We must now prescribe boundary conditions on the boundary ∂D of the
domain D. In underwater acoustics, or in seismic wave propagation, the density
is much smaller outside than inside the waveguide. This means that we must use
a pressure release boundary condition since the pressure is very weak outside, and
therefore, by continuity, the pressure is zero just inside the waveguide. Motivated by
such examples, we will use Dirichlet boundary conditions

(2.3) p(t,x, z) = 0 for x ∈ ∂D and z ∈ R .

We could also consider other types of boundary conditions if, for example, the bound-
ary of the waveguide is a rigid wall, in which case the normal velocity vanishes. By
(2.1) we obtain Neumann boundary conditions for the pressure.

2.2. The propagating and evanescent modes. A waveguide mode is a mono-
chromatic wave p(t,x, z) = p̂(ω,x, z)e−iωt with frequency ω, where p̂(ω,x, z) satisfies
the time harmonic form of the wave equation (2.2) without a source term:

(2.4) ∂2
z p̂(ω,x, z) + Δ⊥p̂(ω,x, z) + k2(ω)p̂(ω,x, z) = 0 .

Here k = ω/c̄ is the wavenumber and we have Dirichlet boundary conditions on ∂D.
The transverse Laplacian in D with Dirichlet boundary conditions on ∂D is self-adjoint
in L2(D). Its spectrum is an infinite number of discrete eigenvalues

−Δ⊥φj(x) = λjφj(x), x ∈ D, φj(x) = 0, x ∈ ∂D

for j = 1, 2, . . . . The eigenvalues are positive and nondecreasing, and we assume for
simplicity that they are simple, so we have 0 < λ1 < λ2 < · · · . The eigenmodes are
real and form an orthonormal set∫

D
φj(x)φl(x)dx = δjl ,

with δjl = 1 if j = l and 0 otherwise. For a given frequency ω, there exists a unique
integer N(ω) such that λN(ω) ≤ k2(ω) < λN(ω)+1 , with the convention that N(ω) = 0
if λ1 > k(ω). The modal wavenumbers βj(ω) ≥ 0 for j ≤ N(ω) are defined by

(2.5) β2
j (ω) = k2(ω) − λj .

The solutions p̂j(ω,x, z) = φj(x)e±iβj(ω)z, j = 1, . . . , N(ω), of the wave equation
(2.4) are the propagating waveguide modes. For j > N(ω) we define the modal
wavenumbers βj(ω) > 0 by β2

j (ω) = λj − k2(ω), and the corresponding solutions

q̂j(ω,x, z) = φj(x)e±βj(ω)z of the wave equation (2.4) are the evanescent modes.
In this paper we shall illustrate some results for the planar waveguide. This is the

case where D is (0, d) × R, and we consider only solutions that depend on x ∈ (0, d).
In this case we have λj = π2j2/d2, φj(x) =

√
2/d sin (πjx/d), j ≥ 1, and the number

of propagating modes is N(ω) = [(ωd)/(πc̄)], where [x] is the integer part of x.



TIME REVERSAL IN RANDOM WAVEGUIDES 1721

2.3. Excitation conditions for a source. We consider a point-like source
located at (x0, z = 0) that emits a signal with orientation in the z-direction:

F(t,x, z) = f(t)δ(x − x0)δ(z)ez .

Here ez is the unit vector pointing in the z-direction. By the first equation of (2.1),
this source term implies that the pressure satisfies the following jump conditions across
the plane z = 0:

p̂(ω,x, z = 0+) − p̂(ω,x, z = 0−) = f̂(ω)δ(x − x0) ,

while the second equation of (2.1) implies that there is no jump in the longitudinal
velocity so that the pressure field also satisfies ∂z p̂(ω,x, z = 0+) = ∂z p̂(ω,x, z = 0−).

Here f̂ is the Fourier transform of f with respect to time:

f̂(ω) =

∫
f(t)eiωtdt, f(t) =

1

2π

∫
f̂(ω)e−iωtdω .

The pressure field can be written as a superposition of the complete set of modes,

p̂(ω,x, z) =

⎡
⎣ N∑
j=1

âj(ω)√
βj(ω)

eiβjzφj(x) +

∞∑
j=N+1

ĉj(ω)√
βj(ω)

e−βjzφj(x)

⎤
⎦1(0,∞)(z)

+

⎡
⎣ N∑
j=1

b̂j(ω)√
βj(ω)

e−iβjzφj(x) +

∞∑
j=N+1

d̂j(ω)√
βj(ω)

eβjzφj(x)

⎤
⎦1(−∞,0)(z) ,

where âj is the amplitude of the jth right-going mode propagating in the right half-

space z > 0, b̂j is the amplitude of the jth left-going mode propagating in the left

half-space z < 0, and ĉj (resp., d̂j) is the amplitude of the jth right-going (resp.,
left-going) evanescent mode. Substituting this expansion into the jump conditions,
multiplying by φj(x), integrating with respect to x over D, and using the orthogonality
of the modes, we express the mode amplitudes in terms of the source:

âj(ω) = −b̂j(ω) =

√
βj(ω)

2
f̂(ω)φj(x0) , ĉj(ω) = −d̂j(ω) = −

√
βj(ω)

2
f̂(ω)φj(x0) .

3. Mode coupling in random waveguides. We consider a randomly per-
turbed waveguide section occupying the region z ∈ [0, L/ε2], with two homogeneous
waveguides occupying the two half-spaces z < 0 and z > L/ε2. The bulk modulus
and the density have the form

1

K(x, z)
=

{
1
K

(1 + εν(x, z)) for x ∈ D, z ∈ [0, L/ε2],

1
K

for x ∈ D, z ∈ (−∞, 0) ∪ (L/ε2,∞),

ρ(x, z) = ρ̄ for x ∈ D, z ∈ (−∞,∞) ,

where ν is a zero-mean, stationary, and ergodic random process with respect to the
axis coordinate z. Moreover, it is assumed to possess enough decorrelation; more
precisely, it fulfills the condition that “ν is φ-mixing, with φ ∈ L1/2(R+)” [16, section
4.6.2].
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The perturbed wave equation satisfied by the pressure field is

(3.1) Δp− 1 + εν(x, z)

c̄2
∂2p

∂t2
= ∇ · F ,

where the average sound speed is c̄ =
√
K̄/ρ̄. The pressure field also satisfies the

boundary conditions (2.3). We consider that a point-like source located at (x0, 0)
emits a pulse f(t) and we denote by âj,0(ω) the initial mode amplitudes as described
in the previous section. The weak fluctuations of the medium parameters induce a
coupling between the propagating modes, as well as between propagating and evanes-
cent modes, which build up and become of order one after a propagation distance of
order ε−2, as expected from the diffusion approximation theory.

3.1. Coupled amplitude equations. We fix the frequency ω and expand the
field p̂ inside the randomly perturbed waveguide in terms of the transverse eigenmodes,

(3.2) p̂(ω,x, z) =

N(ω)∑
j=1

φj(x)p̂j(ω, z) +

∞∑
j=N(ω)+1

φj(x)q̂j(ω, z) ,

where p̂j is the amplitude of the jth propagating mode and q̂j is the amplitude of the
jth evanescent mode. We introduce the right-going and left-going mode amplitudes
âj(ω, z) and b̂j(ω, z), defined by

p̂j =
1√
βj

(
âje

iβjz + b̂je
−iβjz

)
,

dp̂j
dz

= i
√
βj

(
âje

iβjz − b̂je
−iβjz

)
for j ≤ N(ω). The total field p̂ satisfies the time harmonic wave equation

(3.3) Δp̂(ω,x, z) + k2(ω)(1 + εν(x, z))p̂(ω,x, z) = 0 .

Using (3.2) in this equation, multiplying it by φl(x), and integrating over x ∈ D,
we deduce from the orthogonality of the eigenmodes (φj)j≥1 the following system of
coupled differential equations for the mode amplitudes:

dâj
dz

=
iεk2

2

∑
1≤l≤N

Cjl(z)√
βjβl

(
âle

i(βl−βj)z + b̂le
−i(βl+βj)z

)
,(3.4)

db̂j
dz

= − iεk2

2

∑
1≤l≤N

Cjl(z)√
βjβl

(
âle

i(βl+βj)z + b̂le
i(βj−βl)z

)
,(3.5)

where

(3.6) Cjl(z) =

∫
D
φj(x)φl(x)ν(x, z)dx ,

and we have neglected the evanescent modes. The system (3.4)–(3.5) is complemented
with the boundary conditions

(3.7) âj(ω, 0) = âj,0(ω), b̂j

(
ω,

L

ε2

)
= 0

for the propagating modes. The second condition indicates that no wave is incoming
from the right.
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It is possible to carry out a complete asymptotic analysis, including the coupling
with the evanescent modes, in a general context of random ordinary differential equa-
tions [20], and specifically for random waveguide problems [13, 12] and shallow water
waves [18]. The evanescent modes do affect the propagation statistics in the asymp-
totic regime considered here. A detailed asymptotic analysis shows, however, that the
coupling with evanescent modes does not remove energy from the propagating modes.
This coupling changes only the frequency-dependent phases of the propagating mode
amplitudes. The overall effect for these modes is an additional dispersive term, which
is given in terms of the two-point statistics of the random process ν, in the same
asymptotic regime as the one considered here. This effective dispersion affects the
operator L for the statistics of the complex mode amplitudes in (4.1) but not the
operator LP for their square modulus in (4.10). Therefore, all results that involve
the propagation of energy, which includes nearly all results presented here, are not
affected by the evanescent modes. We indicate in the following where the results are
affected and refer to [12] for their form when full evanescent coupling is included.

3.2. Propagator matrices. We introduce the rescaled propagating mode am-
plitudes âεj , b̂

ε
j , j = 1, . . . , N(ω), given by

(3.8) âεj(ω, z) = âj

(
ω,

z

ε2

)
, b̂εj(ω, z) = b̂j

(
ω,

z

ε2

)
.

The two-point linear boundary value problem (3.4), (3.5), (3.7) for (âε, b̂ε) can be
solved using propagator matrices. We first put the problem in vector-matrix form:

(3.9)
dXε

ω

dz
=

1

ε
Hω

( z

ε2

)
Xε

ω .

Here the 2N(ω)-vector Xε
ω, obtained by concatenating the N(ω)-vectors âε and b̂ε

and the 2N(ω) × 2N(ω) matrix Hω, is defined by

(3.10) Xε
ω(z) =

[
âε(ω, z)

b̂ε(ω, z)

]
, Hω(z) =

[
H

(a)
ω (z) H

(b)
ω (z)

H
(b)
ω (z) H

(a)
ω (z)

]
,

where the entries of the N(ω) ×N(ω) matrices H
(a)
ω (z) and H

(b)
ω (z) are given by

(3.11) H
(a)
ω,jl(z) =

ik2

2

Cjl(z)√
βjβl

ei(βl−βj)z , H
(b)
ω,jl(z) =

ik2

2

Cjl(z)√
βjβl

e−i(βl+βj)z .

The propagator matrices Pε
ω(z) are the 2N(ω) × 2N(ω) random matrices solution of

the initial value problem

(3.12)
dPε

ω

dz
=

1

ε
Hω

( z

ε2

)
Pε

ω ,

with the initial condition Pε
ω(z = 0) = I. The solution of (3.4), (3.5), (3.7) satisfies

(3.13)

[
âε(ω,L)

0

]
= Pε

ω(L)

[
â0(ω)

b̂ε(ω, 0)

]
,

so that âε(ω,L) can be expressed in terms of the entries of the propagator matrix
Pε

ω(L). The symmetry relation (3.10) satisfied by the matrix Hω imposes the condi-
tion that the propagator has the form

(3.14) Pε
ω(z) =

[
Pε,a

ω (z) Pε,b
ω (z)

Pε,b
ω (z) Pε,a

ω (z)

]
,
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where Pε,a
ω (z) and Pε,b

ω (z) are N(ω) × N(ω) matrices. Note that the matrix Pε,a
ω

describes the coupling between different right-going modes, while Pε,b
ω describes the

coupling between right-going and left-going modes.

3.3. The forward scattering approximation. The limit as ε → 0 of Pε
ω can

be obtained and identified as a multidimensional diffusion process, meaning that the
entries of the limit matrix satisfy a system of linear stochastic differential equations.
This follows from the application of the diffusion-approximation theorem proved in
[19]. The stochastic differential equations for the limit entries of Pε,b

ω (z) are coupled
to the limit entries of Pε,a

ω (z) through the coefficients∫ ∞

0

E[Cjl(0)Cjl(z)] cos((βj(ω) + βl(ω))z) dz, j, l = 1, . . . , N(ω) .

This is because the phase factors present in the matrix H
(b)
ω (z) are ±(βj + βl)z. On

the other hand, the stochastic differential equations for the limit entries of Pε,a
ω (z)

are coupled to each other through the coefficients∫ ∞

0

E[Cjl(0)Cjl(z)] cos((βj(ω) − βl(ω))z) dz, j, l = 1, . . . , N(ω) .

This is because the phase factors present in the matrix H
(a)
ω (z) are ±(βj −βl)z. If we

assume that the power spectral density of the process ν (i.e., the Fourier transform
of its z-autocorrelation function) possesses a cut-off frequency, then it is natural to
consider the case where

(3.15)

∫ ∞

0

E[Cjl(0)Cjl(z)] cos((βj(ω) + βl(ω))z) dz = 0, j, l = 1, . . . , N(ω),

while (at least) some of the intracoupling coefficients (those with |j − l| = 1) are not
zero. As a result of this assumption, the asymptotic coupling between Pε,a

ω (z) and
Pε,b

ω (z) becomes zero. If we also take into account the initial condition Pε,b
ω (z = 0) =

0, then the limit of Pε,b
ω (z) is 0.

In the forward scattering approximation, we neglect the left-going (backward)
propagating modes. As we have just seen, it is valid in the limit ε → 0 when the
condition (3.15) holds. In this case we can consider the simplified coupled mode
equation given by

(3.16)
dâε

dz
=

1

ε
H(a)

ω

( z

ε2

)
âε ,

where H
(a)
ω is the N(ω) × N(ω) complex matrix given by (3.11). The system (3.16)

is provided with the initial condition âεj(ω, z = 0) = âj,0(ω). Note that the matrix

H
(a)
ω is skew Hermitian, which implies the conservation relation

∑N
j=1 |âεj(L)|2 =∑N

j=1 |âj,0|2. We finally introduce the transfer, or propagator matrix Tε(ω, z), which
is the fundamental solution of (3.16). It is the N(ω) ×N(ω) matrix solution of

(3.17)
d

dz
Tε(ω, z) =

1

ε
H(a)

ω

( z

ε2

)
Tε(ω, z) ,

starting from Tε(ω, 0) = I. The (j, l)-entry of the transfer matrix is the transmission
coefficient T ε

jl(ω,L), i.e., the output amplitude of the mode j when the input wave is
a pure l mode with amplitude one. The transfer matrix Tε(ω,L) is unitary because

H
(a)
ω is skew Hermitian.
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4. The time harmonic problem. In this section we consider the system of
random differential equations (3.16) for a single frequency ω. Most of the results
presented in this section can be found in [14] and are known collectively as the “coupled
mode theory.” We reproduce this theory because the original two-frequency analysis
presented in the next section will give a new point of view on it.

4.1. The coupled mode diffusion process. We now apply the diffusion ap-
proximation theorem [19] to the system (3.16). The limit distribution of âε as ε → 0
is a diffusion on C

N(ω). We will assume that the longitudinal wavenumbers βj , along
with their sums and differences, are distinct. In this case the infinitesimal generator
of the limit â has a simple form, provided we write it in terms of â and â rather than
in terms of the real and imaginary parts of â. We get the following result.

Proposition 4.1. The mode amplitudes (âεj(ω, z))j=1,...,N converge in distribu-
tion as ε → 0 to the diffusion process (âj(ω, z))j=1,...,N , whose infinitesimal generator
is

L =
1

4

∑
j �=l

Γ
(c)
jl (ω)

(
AjlAjl + AjlAjl

)
+

1

2

∑
j,l

Γ
(1)
jl (ω)AjjAll

+
i

4

∑
j �=l

Γ
(s)
jl (ω)(All −Ajj) ,(4.1)

Ajl = âj
∂

∂âl
− âl

∂

∂âj
= −Alj .(4.2)

Here we have defined the complex derivatives in the standard way: if z = x+ iy, then
∂z = (1/2)(∂x − i∂y) and ∂z = (1/2)(∂x + i∂y). The coefficients Γ(c), Γ(s), and Γ(1)

are given by

Γ
(c)
jl (ω) =

ω4γ
(c)
jl (ω)

4c̄4βj(ω)βl(ω)
if j 
= l , Γ

(c)
jj (ω) = −

∑
n �=j

Γ
(c)
jn (ω) ,(4.3)

γ
(c)
jl (ω) = 2

∫ ∞

0

cos ((βj(ω) − βl(ω))z) E[Cjl(0)Cjl(z)]dz ,(4.4)

Γ
(s)
jl (ω) =

ω4γ
(s)
jl (ω)

4c̄4βj(ω)βl(ω)
if j 
= l , Γ

(s)
jj (ω) = −

∑
n �=j

Γ
(s)
jn (ω) ,(4.5)

γ
(s)
jl (ω) = 2

∫ ∞

0

sin ((βj(ω) − βl(ω))z) E[Cjl(0)Cjl(z)]dz ,(4.6)

Γ
(1)
jl (ω) =

ω4γ
(1)
jl

4c̄4βj(ω)βl(ω)
for all j, l ,(4.7)

γ
(1)
jl = 2

∫ ∞

0

E[Cjj(0)Cll(z)]dz .(4.8)

Let us discuss some qualitative properties of the diffusion process â.
(1) The coefficients of the second derivatives of the generator L are homogeneous

of degree two, while the coefficients of the first derivatives are homogeneous of degree
one. As a consequence we can write closed differential equations for moments of any
order, as we shall see in the next sections.

(2) The coefficients γ
(c)
jl , and thus Γ

(c)
jl , are proportional to the power spectral

densities of the stationary process Cjl(z) for j 
= l. They are, therefore, nonnegative.
In this paper we assume that the off-diagonal entries of the matrix Γ(c) are positive.
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(3) We have Ajn

(∑N
l=1 |âl|2

)
= 0 for any j, n, so that the infinitesimal generator

satisfies L
(∑N

l=1 |âl|2
)

= 0. This implies that the diffusion process is supported
on a sphere of C

N , whose radius R0 is determined by the initial condition R2
0 =∑N

l=1 |âl,0(ω)|2. The operator L is not self-adjoint on the sphere because of the term
Γ(s) in (4.1). This means that the process is not reversible. However, the uniform
measure on the sphere is invariant, and the generator is strongly elliptic. From the
theory of irreducible Markov processes with compact state space, we know that the
process is ergodic, which means in particular that for large z, the limit process â(z)
converges to the uniform distribution over the sphere of radius R0. This fact can be
used to compute the limit distribution of the mode powers (|âj |2)j=1,...,N for large z,
which is the uniform distribution over HN ,

(4.9) HN =

⎧⎨
⎩(Pj)j=1,...,N , Pj ≥ 0,

N∑
j=1

Pj = R2
0

⎫⎬
⎭ .

In the next section we carry out a more detailed analysis that is valid for any z.
(4) As noted at the end of section 3.1, coupling to the evanescent modes does

affect L in (4.1). All the coefficients (4.3)–(4.8) remain the same except for Γ
(s)
jl (ω)

in (4.5) which has an additional term [12]. This modification affects (6.1) and (6.7)
in the following sections.

4.2. Coupled power equations. The generator of the limit process â possesses
an important symmetry, which follows from noting that, when applying the generator
to a function of (|â1|2, . . . , |âN |2), we obtain another function of (|â1|2, . . . , |âN |2).
This implies that the limit process (|â1(z)|2)j=1,...,N is itself a Markov process.

Proposition 4.2. The mode powers (|âεj(ω, z)|2)j=1,...,N converge in distribution
as ε → to the diffusion process (Pj(ω, z))j=1,...,N , whose infinitesimal generator is

(4.10) LP =
∑
j �=l

Γ
(c)
jl (ω)

[
PlPj

(
∂

∂Pj
− ∂

∂Pl

)
∂

∂Pj
+ (Pl − Pj)

∂

∂Pj

]
.

As pointed out above, the diffusion process (Pj(ω, z))j=1,...,N is supported in HN .
As a first application of this result, we compute the mean mode powers:

P
(1)
j (ω, z) = E[Pj(ω, z)] = lim

ε→0
E[|âεj(ω, z)|2] .

Using the generator LP we get the following proposition.

Proposition 4.3. The mean mode powers E[|âεj(ω, z)|2] converge to P
(1)
j (ω, z),

which is the solution of the linear system

(4.11)
dP

(1)
j

dz
=
∑
n �=j

Γ
(c)
jn (ω)

(
P (1)
n − P

(1)
j

)
,

starting from P
(1)
j (ω, z = 0) = |âj,0(ω)|2, j = 1, . . . , N .

The solution of this system can be written in terms of the exponential of the
matrix Γ(c)(ω). We note that the vector P (1)(ω, z) has a probabilistic interpretation,
which we consider in some detail in section 6.3. We give here some basic properties.
First, the matrix Γ(c)(ω) is symmetric and real, its off-diagonal terms are positive,
and its diagonal terms are negative. The sums over the rows and columns are all
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zero. As a consequence of the Perron–Frobenius theorem, Γ(c)(ω) has zero as a simple
eigenvalue, and all other eigenvalues are negative. The eigenvector associated with
the zero eigenvalue is the uniform vector (1, . . . , 1)T . This shows that

sup
j=1,...,N

∣∣∣∣P (1)
j (ω, z) − 1

N
R2

0

∣∣∣∣ ≤ Ce−z/Lequip(ω),

where R2
0 =

∑N
j=1 |âj,0(ω)|2 and Lequip(ω) is the absolute value of the reciprocal of

the second eigenvalue of Γ(c)(ω). In other words, the mean mode powers converge
exponentially fast to the uniform distribution, which means that we have asymptotic
equipartition of mode energy. The length Lequip(ω) is the equipartition distance for
the mean mode powers.

4.3. Fluctuations theory. Proposition 4.2 also allows us to study the fluc-
tuations of the mode powers by looking at the fourth-order moments of the mode
amplitudes:

P
(2)
jl (ω, z) = lim

ε→0
E
[
|âεj(ω, z)|2|âεl (ω, z)|2

]
= E[Pj(ω, z)Pl(ω, z)] .

Using the generator LP we get a system of ordinary differential equations for limit

fourth-order moments (P
(2)
jl )j,l=1,...,N of the form

dP
(2)
jj

dz
=
∑
n �=j

Γ
(c)
jn

(
4P

(2)
jn − 2P

(2)
jj

)
,

dP
(2)
jl

dz
= −2Γ

(c)
jl P

(2)
jl +

∑
n

Γ
(c)
ln

(
P

(2)
jn − P

(2)
jl

)
+
∑
n

Γ
(c)
jn

(
P

(2)
ln − P

(2)
jl

)
, j 
= l .

The initial conditions are P
(2)
jl (z = 0) = |âj,0|2|âl,0|2. This is a system of linear ordi-

nary differential equations with constant coefficients that can be solved by computing
the exponent of the evolution matrix.

It is straightforward to check that the function P
(2)
jl ≡ 1 + δjl is a stationary

solution of the fourth-order moment system. Using the positivity of Γ
(c)
jl , j 
= l, we

conclude that this stationary solution is asymptotically stable, which means that the

solution P
(2)
jl (z) starting from P

(2)
jl (z = 0) = |âj,0|2|âl,0|2 converges as z → ∞ to

P
(2)
jl (z)

z→∞−→

⎧⎪⎨
⎪⎩

1

N(N + 1)
R4

0 if j 
= l ,

2

N(N + 1)
R4

0 if j = l ,

where R2
0 =

∑N
j=1 |âj,0|2. This implies that the correlation of Pj(z) and Pl(z) con-

verges to −1/(N − 1) if j 
= l and to (N − 1)/(N + 1) if j = l as z → ∞. We see
from the j 
= l result that if, in addition, the number of modes N becomes large, then
the mode powers become uncorrelated. The j = l result shows that, whatever the
number of modes N , the mode powers Pj are not statistically stable quantities.

5. Pulse propagation in waveguides. Bandwidth plays a basic role in the
propagation of pulses in a waveguide because of dispersion. We assume that a point
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source located inside the waveguide at (z = 0,x = x0) emits a pulse with carrier
frequency ω0 and bandwidth of order ε2:

(5.1) Fε(t,x, z) = fε(t)δ(x − x0)δ(z)ez , fε(t) = f(ε2t)eiω0t .

We have assumed in this model a narrowband source whose duration is of order ε−2,
that is, of the same order as the travel time through the waveguide whose length
is L/ε2. This is not the typical situation encountered in ultrasonic and underwater
sound experiments in connection with time reversal [22, 15], where broadband pulses
are used and, in the notation of this paper, fε(t) = f(εpt)eiω0t with 0 ≤ p < 2. The
analysis of these broadband regimes is carried out in [10]. The main results are similar
in the two regimes, except for those regarding statistical stability in time reversal. We
discuss this issue in sections 8.3 and 8.4, where we show that statistical stability in the
narrowband case (5.1) can be achieved by mode diversity rather than by frequency
diversity. The latter is typical for time-reversal refocusing of broadband pulses [10].
This is the reason that we consider the narrowband case in this paper.

The point source (5.1) generates left-going propagating modes that we do not
need to consider, as they propagate in a homogeneous half-space, and right-going
modes that we do analyze. As shown in section 2.3, the interface conditions at z = 0,
which are initial conditions in the forward scattering approximation, have the form

âεj(ω, 0) =
1

2

√
βj(ω)f̂ε(ω)φj(x0) , f̂ε(ω) =

1

ε2
f̂

(
ω − ω0

ε2

)
for j ≤ N(ω). The transmitted field observed in the plane z = L/ε2 and at time t/ε2

has the form

pεtr(t,x, L) := p

(
t

ε2
,x,

L

ε2

)
,

pεtr(t,x, L) =
1

4πε2

∫ N(ω)∑
j,l=1

√
βl(ω)√
βj(ω)

φj(x)φl(x0)f̂

(
ω − ω0

ε2

)
T ε
jl(ω)ei

βj(ω)L−ωt

ε2 dω .

We change variables ω = ω0 + ε2h and expand βj(ω0 + ε2h) with respect to ε:

pεtr(t,x, L) =
1

4π

∫ N∑
j,l=1

√
βl√
βj

φj(x)φl(x0)

×f̂(h)T ε
jl(ω0 + ε2h)ei

βj(ω0)L−ω0t

ε2 ei[β
′
j(ω0)L−t]hdh .(5.2)

Here β′
j(ω) is the ω-derivative of βj(ω). We do not show the dependence of N on ω0

after we approximate N(ω0 + ε2h) by N(ω0).
In a homogeneous waveguide we have that T ε

jl = δjl and

(5.3) pεtr (t,x, L) =
1

2

N∑
j=1

φj(x)φj(x0)e
i
βj(ω0)L−ω0t

ε2 f
(
t− β′

j(ω0)L
)
.

The transmitted field is therefore a superposition of modes, each of which is centered
around its travel time β′

j(ω0)L. The modal dispersion makes the overall spreading of
the transmitted field linearly increasing with L.

In a random waveguide, the integral representation (5.2) shows that the moments
of the transmitted field depend on the joint statistics of the entries of the transfer
matrix at different frequencies. The next section will give the needed results.
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6. Statistics of the transfer matrix.

6.1. Single frequency statistics of the transfer matrix. Using Proposition
4.1 with the special initial conditions âj(0) = δjl, we obtain the first moments of the
transmission coefficients.

Proposition 6.1. The expectations of the transmission coefficients E[T ε
jl(ω,L)]

converge to zero as ε → 0 if j 
= l and to T̄j(ω,L) if j = l, where

(6.1) T̄j(ω,L) = exp

(
Γ

(c)
jj (ω)L

2
−

Γ
(1)
jj (ω)L

2
+

iΓ
(s)
jj (ω)L

2

)
.

The real part of the exponential factor is [Γ
(c)
jj (ω) − Γ

(1)
jj (ω)]L/2. The coefficient

Γ
(c)
jj (ω) is negative. The coefficient Γ

(1)
jj (ω) is nonnegative because it is proportional

to the power spectral density of Cjj at zero-frequency. As a result, the damping
coefficient has a negative real part, and therefore the mean transmission coefficients
decay exponentially with propagation distance.

Using Proposition 4.3, we immediately get the following result.

Proposition 6.2. The mean square moduli of the transmission coefficients have

limits as ε → 0, limε→0 E[|T ε
jl(ω,L)|2] = T (l)

j (ω,L), which are the solutions of the
system of linear equations

(6.2)
dT (l)

j

dz
=
∑
n �=j

Γ
(c)
jn (ω)

(
T (l)
n − T (l)

j

)
, T (l)

j (ω, z = 0) = δjl .

The coefficients Γ
(c)
jl are given by (4.3).

From the analysis of section 4.2, we know that the mean square moduli of the
entries of the transfer matrix converge exponentially fast to the constant 1/N .

6.2. Transport equations for the autocorrelation of the transfer matrix.
In many physically interesting contexts, such as in calculating the mean transmitted
intensity or the mean refocused field amplitude, we need two-frequency statistical
information. We now introduce a proposition that describes the two-frequency statis-
tical properties that we will need in the applications discussed in this paper.

Proposition 6.3. The autocorrelation function of the transmission coefficients
at two nearby frequencies admits a limit as ε → 0:

E[T ε
jj(ω,L)T ε

ll(ω − ε2h, L)]
ε→0−→ eQjl(ω)L if j 
= l ,(6.3)

E[T ε
jl(ω,L)T ε

jl(ω − ε2h, L)]
ε→0−→ e−iβ′

j(ω)hL

∫
W(l)

j (ω, τ, L)eihτdτ ,(6.4)

E[T ε
jm(ω,L)T ε

ln(ω − ε2h, L)]
ε→0−→ 0 in the other cases,(6.5)

where (W(l)
j (ω, τ, z))j=1,...,N(ω) is the solution of the system of transport equations

(6.6)
∂W(l)

j

∂z
+ β′

j(ω)
∂W(l)

j

∂τ
=
∑
n �=j

Γ
(c)
jn (ω)

(
W(l)

n −W(l)
j

)
,
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starting from W(l)
j (ω, τ, z = 0) = δ(τ)δjl. The coefficients Γ

(c)
jl are given by (4.3). The

damping factors Qjl are

Qjl(ω) =
Γ

(c)
jj (ω) + Γ

(c)
ll (ω)

2
−

Γ
(1)
jj (ω) + Γ

(1)
ll (ω) − 2Γ

(1)
jl (ω)

2

+i
Γ

(s)
jj (ω) − Γ

(s)
ll (ω)

2
.(6.7)

We note that the real parts of the damping factors Qjl are negative and that the

solutions of the transport equations are measures. If j 
= l, then W(l)
j has a continuous

density, but W(l)
l has a Dirac mass at τ = β′

l(ω)z with weight exp(Γ
(c)
ll z), where Γ

(c)
ll

is given by (4.3), and a continuous density denoted by W(l)
l,c (ω, τ, z):

W(l)
l (ω, τ, z)dτ = eΓ

(c)
ll (ω)zδ(τ − β′

l(ω)z)dτ + W(l)
l,c (ω, τ, z)dτ .

Note also that by integrating the system of transport equations with respect to τ , we
recover the result of Proposition 6.2.

The system of transport equations describes the coupling between the N right-
going modes. It is the main theoretical result of this paper. It describes the evolution
of the coupled powers of the modes in frequency and time, with transport velocities
equal to the group velocities of the modes 1/β′

j(ω). Therefore, the transport equations
(6.6) could have been written as the natural space-time generalization of the coupled
power equations (6.2). The mathematical content of Proposition 6.3 gives the precise
connection between the quantities that satisfy this simple and intuitive space-time
extension of (6.2) and the moments of the random transfer matrix. The two-frequency
nature of the statistical quantities that satisfy the transport equations is clear in
Proposition 6.3.

Proof. For fixed indices m and n we consider the product of two transfer matrices,

Uε
jl(ω, h, z) = T ε

jm(ω, z)T ε
ln(ω − ε2h, z) ,

and note that it is the solution of

dUε
jl

dz
=

N∑
j1=1

1

ε
H

(a)
ω,jj1

( z

ε2

)
Uε
j1l +

N∑
l1=1

1

ε
H

(a)
ω−ε2h,ll1

( z

ε2

)
Uε
jl1 ,

with the initial conditions Uε
jl(ω, h, z = 0) = δmjδnl. We expand β·(ω − ε2h) with

respect to ε, and we introduce the Fourier transform

V ε
jl(ω, τ, z) =

1

2π

∫
e−ih(τ−β′

l(ω)z)Uε
jl(ω, h, z)dh ,

which is the solution of

∂V ε
jl

∂z
+ β′

l(ω)
∂V ε

jl

∂τ
=

N∑
j1=1

1

ε
H

(a)
ω,jj1

( z

ε2

)
V ε
j1l +

N∑
l1=1

1

ε
H

(a)
ω,ll1

( z

ε2

)
V ε
jl1 ,

with the initial conditions V ε
jl(ω, τ, z = 0) = δmjδnlδ(τ). We can now apply the

diffusion approximation theorem [19] and get the result stated in the proposition.
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6.3. Probabilistic interpretation of the transport equations. The trans-
port equations (6.6) have a probabilistic representation that can be used for Monte
Carlo simulations as well as for getting a diffusion approximation result. It is primar-
ily this diffusion approximation that we want to derive in this section. We will use
it in the applications that follow. We introduce the jump Markov process Jz, whose
state space is {1, . . . , N(ω)} and whose infinitesimal generator is

(6.8) Lφ(j) =
∑
l �=j

Γ
(c)
jl (ω) (φ(l) − φ(j)) .

We also define the process Bz by

(6.9) Bz =

∫ z

0

β′
Js
ds , z ≥ 0 ,

which is well defined because Jz is piecewise constant. In a manner similar to that
in [1], we get the probabilistic representation of the solutions to system (6.2) and the
solutions to the transport equations (6.6) in terms of the jump Markov process Jz:

T (n)
j (ω,L) = P (JL = j | J0 = n) ,(6.10) ∫ τ1

τ0

W(n)
j (ω, τ, L)dτ = P (JL = j , BL ∈ [τ0, τ1] | J0 = n) .(6.11)

The process Jz is an irreducible, reversible, and ergodic Markov process. Its
distribution converges as z → ∞ to the uniform distribution over {1, . . . , N}. The
convergence is exponential with a rate that is equal to the second eigenvalue of the

matrix Γ(c) = (Γ
(c)
jl )j,l=1,...,N . The first eigenvalue of this matrix is zero and the asso-

ciated eigenvector is the uniform distribution over {1, . . . , N}. The second eigenvalue
can be written in the form −1/Lequip, which defines the equipartition distance Lequip.

We next determine the asymptotic distribution of the process Bz. From the
ergodic theorem we have that with probability one,

(6.12)
Bz

z

z→∞−→ β′(ω) , where β′(ω) =
1

N(ω)

N(ω)∑
j=1

β′
j(ω) .

We can interpret the z large limit to mean that z is considerably larger than Lequip.

For a planar waveguide we have that βj =
√
ω2/c2 − π2j2/d2 and N(ω) =

[(ωd)/(πc̄)]. In the continuum limit N(ω) � 1, we obtain the expression β′(ω) =
π/(2c̄) , which is independent of ω. This ω independence property is likely to hold for
a broad class of waveguides.

By applying a central limit theorem for functionals of ergodic Markov processes,
we find that, in distribution,

(6.13)
Bz − β′(ω)z√

z

z→∞−→ N (0, σ2
β′(ω)) .

Here N (0, σ2
β′(ω)) is a zero-mean Gaussian random variable with variance

(6.14) σ2
β′(ω) = 2

∫ ∞

0

Ee

[
(β′

J0
(ω) − β′(ω))(β′

Js
(ω) − β′(ω))

]
ds ,
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where Ee stands for expectation with respect to the stationary process Jz. These
limit theorems imply that when L � Lequip, we have

T (n)
j (ω,L)

L�Lequip 1

N(ω)
,(6.15)

W(n)
j (ω, τ, L)

L�Lequip 1

N(ω)

1√
2πσ2

β′(ω)L
exp

(
− (τ − β′(ω)L)2

2σ2
β′(ω)L

)
.(6.16)

The asymptotic result (6.15) shows that T (n)
j becomes independent of n, the initial

mode index, and uniform over j ∈ {1, . . . , N(ω)}. This is the regime of energy equipar-
tition among all propagating modes. The asymptotic result (6.16) is equivalent to the
diffusion approximation for the system of transport equations (6.6).

7. Pulse propagation in random waveguides. We consider the transmitted
field (5.2) obtained in the setup described in section 5, and we now address the case of a
random waveguide. By Proposition 6.1, the mean transmitted field in the asymptotic
ε → 0 is given by

E[pεtr (t,x, L)] =
1

2

N∑
j=1

φj(x)φj(x0)T̄j(ω0, L)ei
βj(ω0)L−ω0t

ε2 f
(
t− β′

j(ω0)L
)
.

As in the homogeneous case, the mean field is a superposition of modes in the random
case, but the mean transmission coefficients are exponentially damped and vanish for
L large, L > Lequip(ω0). Therefore, the mean field vanishes for large L. We now turn
our attention to the mean intensity, which accounts for the conversion of the coherent
field into incoherent wave fluctuations. We express the transmitted intensity as the
expectation of a double integral

E

[
|pεtr(t,x, L)|2

]
=

1

16π2

N∑
j,l=1

N∑
m,n=1

√
βlβn√
βjβm

φj(x)φl(x0)φm(x)φn(x0)

×ei
[βj(ω0)−βm(ω0)]L

ε2

∫ ∫
f̂ (h) f̂ (h′)E[T ε

jl(ω0 + ε2h)T ε
mn(ω0 + ε2h′)]

×ei[β
′
j(ω0)L−t]h−[β′

m(ω0)L−t]h′
dhdh′ .

Using Proposition 6.3 we see that there are two contributions to this integral:

(7.1) E

[
|pεtr(t,x, L)|2

]
= Iε1(t,x, L) + Iε2(t,x, L) .

The limit of the first contribution is

Iε1(t,x, L)
ε→0 1

4

N∑
j �=m=1

φj(x)φj(x0)φm(x)φm(x0)e
i
[βj(ω0)−βm(ω0)]L

ε2

×eQjm(ω0)Lf(t− β′
j(ω0)L)f(t− β′

m(ω0)L) .(7.2)

We see that it decays exponentially with the propagation distance because of the
damping factors exp(Qjm(ω0)L). We can therefore neglect this contribution for L �
Lequip(ω0). The limit of the second contribution is

(7.3) Iε2(t,x, L)
ε→0 1

4

N∑
j,l=1

βl

βj
φ2
j (x)φ2

l (x0)

∫
W(l)

j (ω0, τ, L)f(t− τ)2dτ .
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In the asymptotic equipartition regime L � Lequip(ω0) we use the diffusion approxi-
mation (6.16). We conclude that

(7.4) lim
ε→0

E

[
|pεtr (t,x, L)|2

] L�Lequip Hω0,x0(x) × [Kω0,L ∗ (f2)](t) ,

where the spatial profile Hω0,x0 and the time convolution kernel Kω0,L are given by

Hω0,x0(x) =
1

4N(ω0)

N(ω0)∑
j=1

φ2
j (x)

βj(ω0)
×

N(ω0)∑
l=1

φ2
l (x0)βl(ω0) ,(7.5)

Kω0,L(t) =
1√

2πσ2
β′(ω0)

L
exp

(
− (t− β′(ω0)L)2

2σ2
β′(ω0)

L

)
.(7.6)

To sum up, the main results of this section are that
• the mean field decays exponentially with propagation distance,
• the mean transmitted intensity converges to the transverse spatial profile
Hω0,x0

, and

• the mean transmitted intensity is concentrated around the time β′(ω0)L with
a spread that is of the order of σβ′(ω0)

√
L ∼

√
LLequip(ω0)/c̄ for a pulse with

carrier frequency ω0.
Note that σβ′(ω0)

√
L � L/c̄, which means that pulse spreading increases as

√
L in a

random waveguide while it increases linearly in a homogeneous one. This is because
the modes are strongly coupled together and propagate with the same “average”
group velocity 1/β′(ω0) in the random waveguide. The “average” group velocity is
the harmonic average of the group velocities of the modes 1/β′

j(ω0). These results are
intuitively clear, but they were not discussed in detail in the early literature [14, 5].
We note that in (7.4) it is the mean of the pulse intensity that has the asymptotic
form that we have derived. The pulse intensity fluctuations can also be computed
and are not small.

8. Time reversal in a waveguide.

8.1. Time reversal setup. We now consider time reversal in a waveguide. A
point source located in the plane z = 0 at the lateral position x0 emits a pulse fε(t) of
the form (5.1). A time-reversal mirror is located in the plane z = L/ε2 and occupies
the subdomain DM ⊂ D. The transmitted wave observed in the plane z = L/ε2 at
time t/ε2 is (5.2). The time-reversal mirror records the field from time t0/ε

2 up to
time t1/ε

2, time reverses it, and sends it back into the waveguide. The new source at
the time-reversal mirror that generates the back propagating waves is

Fε
TR(t,x, z) = fε

TR(t,x)δ

(
z − L

ε2

)
ez ,(8.1)

fε
TR(t,x) = pεtr

(
t1 − ε2t,x, L

)
G1(t1 − ε2t)G2(x) ,

where pεtr is given by (5.2), G1 is the time-window function of the form G1(t) =
1[t0,t1](t), and G2 is the spatial-window function G2(x) = 1DM

(x). We have seen
that the power delay spread of the transmitted signal is not very long in the forward
scattering approximation. This is because there is no backscattering to produce long
codas (i.e., long incoherent wave fluctuations). Moreover, we focus our attention
more on spatial effects in this paper, so it is reasonable to assume that we record the
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field for all time at the time-reversal mirror. This means that we have G1(t) = 1
and Ĝ1(h) = 2πδ(h). Therefore, the left-going propagating modes generated by this
source have amplitudes

b̂m(ω) = −
√

βm(ω)

2

∫
D
f̂ε
TR(ω,x)φm(x)dxeiβm(ω) L

ε2

=
1

4ε2

N∑
j,l=1

√
βlβm√
βj

Mmjφl(x0)f̂

(
ω − ω0

ε2

)
T ε
jl(ω)ei[βm(ω)−βj(ω)] L

ε2
+iω

t1
ε2 ,(8.2)

where the coupling coefficients Mjl are given by

(8.3) Mjl =

∫
D
φj(x)G2(x)φl(x)dx .

We have explicit formulas for the coupling coefficients Mjl in two cases as follows:
• If the mirror spans the complete cross section D of the waveguide, then we

have G2(x) = 1 and Mjl = δjl.
• If the mirror is point-like at x = x1, meaning G2(x) = |D|δ(x−x1), with the

factor |D| added for dimensional consistency, then Mjl = |D|φj(x1)φl(x1).
The refocused field observed in the plane z = 0 in the Fourier domain is given by

(8.4) p̂TR(ω,x, 0) =

N∑
m,n=1

(Tε)Tnm(ω)b̂m(ω)√
βn

φn(x) .

Here (Tε)T (ω) is the transfer matrix for the left-going modes propagating from L/ε2

to 0, and it is the transpose of Tε(ω). This follows from the unitarity of the transfer
matrix Tε(ω). In the time domain, the refocused field observed at time tobs/ε

2 is

pTR

(
tobs

ε2
,x, 0

)
=

1

4π

N∑
j,l,m,n=1

√
βlβm√
βjβn

Mmjφn(x)φl(x0)e
i[βm−βj ](ω0)

L
ε2

+iω0
t1−tobs

ε2

×
∫

f̂ (h)T ε
jl(ω0 + ε2h)T ε

mn(ω0 + ε2h)ei{[β
′
m−β′

j ](ω0)L+(t1−tobs)}hdh .(8.5)

8.2. Refocusing in a homogeneous waveguide. In this case, T ε
jl = δjl and

the refocused field is

pTR

(
tobs

ε2
,x, 0

)
=

1

2
eiω0

t1−tobs
ε2

N∑
j,m=1

ei[βm−βj ](ω0)
L
ε2

×Mmjφm(x)φj(x0)f
(
[β′

m − β′
j ](ω0)L + t1 − tobs

)
.(8.6)

The refocused field is a weighted sum of modes, whose weights depend on the mirror
through the coefficients Mmj . The oscillatory terms in (8.6) produce transverse side-
lobes in the refocused field, as seen in Figure 8.1.

8.3. The mean refocused field in a random waveguide. In the analysis
of time reversal considered up to now [3, 9, 2, 21], statistical stability is shown by
a frequency decoherence argument. More precisely, it is shown that the refocused
field is the superposition of many approximately uncorrelated frequency components,
which ensures self-averaging in the time domain. This argument cannot be used in
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the narrowband case (5.1) that we consider here. This is because the decoherence
frequency, which is of order ε2, is comparable to the bandwidth, which is also of order
ε2. In broadband cases with a bandwidth of order εp, p ∈ [0, 2), statistical stability
can be obtained by the usual frequency decoherence argument [10].

First we compute the mean refocused field and then consider the statistical stabil-
ity. By taking the expectation of (8.5), we find that the mean refocused field involves
the second-order moments of the transfer matrix. From Proposition 6.3 we have the
limit values of these second-order moments, so we can write

E

[
pTR

(
tobs

ε2
,x, 0

)]
= pε1 + pε2 ,(8.7)

pε1
ε→0 1

2

N∑
j �=m=1

Mmjφm(x)φj(x0)e
i[βm−βj ](ω0)

L
ε2

+iω0
t1−tobs

ε2

×eQjm(ω0)Lf
(
[β′

m − β′
j ](ω0)L + t1 − tobs

)
,

pε2
ε→0 1

2
eiω0

t1−tobs
ε2 f (t1 − tobs)

N∑
j,l=1

Mjjφl(x)φl(x0)T (l)
j (ω0, L) .

The term pε1 decays exponentially with propagation distance because of the damping
factors coming from Qjm. We can therefore neglect this term in the asymptotic
equipartition regime. The term pε2 does contribute and it refocuses around the time
tobs = t1 with the original pulse shape time reversed. The spatial focusing profile
is a weighted sum of modes, with weights that depend on the time-reversal mirror

through the coefficients Mjl and on the mean square transmission coefficients T (l)
j .

In the asymptotic equipartition regime L � Lequip, the coefficients T (l)
j (ω0, L)

converge to 1/N for all j and l, which for the mean refocused field gives

lim
ε→0

E

[
pTR

(
tobs

ε2
,x, 0

)]
L�Lequip eiω0

t1−tobs
ε2 f (t1 − tobs)

× 1

N(ω0)

N(ω0)∑
j

Mjj ×
1

2

N(ω0)∑
l=1

φl(x)φl(x0) .(8.8)

We note the difference between this expression and (8.6) in a homogeneous waveguide.
The oscillatory terms in (8.6) which generate the side-lobes are suppressed in (8.8).
The analytical understanding of side-lobe suppression in time reversal in random
waveguides is a new result in this paper.

The spatial refocusing profile can then be computed explicitly because it does
not depend on the mirror shape or size. In the case of a planar waveguide, we have
φj(x) =

√
2/d sin(πjx/d), and in the continuum limit N � 1, we have

1

2

N∑
l=1

φl(x)φl(x0)
N�1 1

λ0
sinc

(
2π

x− x0

λ0

)
.

The mean refocused field is therefore concentrated around the original source location
x0 with a resolution of half of a wavelength, which is the diffraction limit.

8.4. Statistical stability of the refocused field. As we noted already, we
cannot claim that the refocused field is statistically stable by using the same argument
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as in the broadband case, because here we have a narrowband pulse. However, we
can achieve statistical stability through the summation over the modes. We will
show this in the quasi-monochromatic case, where the pulse envelope f(t) = 1 and

f̂(h) = 2πδ(h). In this case, it is clear that statistical stability cannot arise from time
averaging, and the refocused field is

pTR

(
tobs

ε2
,x, 0

)
=

1

2

N∑
j,l,m,n=1

√
βlβm√
βjβn

Mmjφn(x)φl(x0)

×ei[βm−βj ](ω0)
L
ε2

+iω0
t1−tobs

ε2 T ε
jl(ω0)T

ε
mn(ω0) .(8.9)

From (8.8), the mean refocused field at x = x0 is in the asymptotic equipartition
regime

(8.10) lim
ε→0

E

[
pTR

(
tobs

ε2
,x0, 0

)]
L�Lequip eiω0

t1−tobs
ε2

R2
0

2N

N∑
j=1

Mjj ,

where R2
0 =

∑N
l=1 φ

2
l (x0). We now compute the second moment of the refocused field

observed at x = x0. By taking the expectation of the square of (8.9), we find that
this moment involves fourth-order moments of the transfer matrix. From the results
of section 4.3, we have

lim
ε→0

E[T ε
jlT

ε
mnT

ε
j′l′T

ε
m′n′ ]

L�Lequip

⎧⎪⎪⎨
⎪⎪⎩

2
N(N+1) if (j, l) = (m,n) = (j′, l′) = (m′, n′) ,

1
N(N+1) if (j, l) = (m,n) 
= (j′, l′) = (m′, n′) ,

1
N(N+1) if (j, l) = (m′, n′) 
= (j′, l′) = (m,n) ,

0 otherwise .

Using these fourth-order moment results in the expression for the second moment of
the refocused field we see that, in the limit ε → 0 and in the asymptotic equipartition
regime L � Lequip,

lim
ε→0

E

[∣∣∣∣pTR

(
tobs

ε2
,x0, 0

)∣∣∣∣2
]

L�Lequip R4
0

4N(N + 1)

⎡
⎢⎣
⎛
⎝∑

j

Mjj

⎞
⎠2

+
∑
j,j′

M2
jj′

⎤
⎥⎦ .

Let us introduce the relative standard deviation S of the refocused field amplitude,

(8.11) S2 := lim
ε→0

E

[∣∣pTR

(
tobs

ε2 ,x0, 0
)∣∣2]− ∣∣E [pTR

(
tobs

ε2 ,x0, 0
)]∣∣2∣∣E [pTR

(
tobs

ε2 ,x0, 0
)]∣∣2 .

We have statistical stability when S is small. In the asymptotic equipartition regime,
S2 is given by

(8.12) S2
L�Lequip − 1

N + 1
+

N

N + 1

1

Qmirror
, Qmirror =

∑N
j,l=1 MjjMll∑N

j,l=1 M
2
jl

.

The quality factor Qmirror depends only on the time-reversal mirror. We will have
statistical stability when the number of modes N is large and when the quality factor
Qmirror is large. This analytical criterion for statistical stability in narrowband time
reversal is a new result in this paper.

We can consider two extreme cases:
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• If the time-reversal mirror spans the waveguide cross section, then Mjl = δjl
and the quality factor is equal to N , which is optimal since the relative
standard deviation is then zero for any N . This result is not surprising since
the time-reversal mirror records the transmitted signal fully, in both time and
space, which implies optimal refocusing.

• If the time-reversal mirror is point-like at x1, then Mjl = φj(x1)φl(x1) and
the quality factor is 1, which is bad, because the relative standard deviation S
is asymptotically equal to

√
N − 1/

√
N + 1. The fluctuations of the refocused

field are, therefore, of the same order as the mean field, which means that
there is no statistical stability.

In the next section, we address a particular case which allows explicit calculations.

8.5. Numerical illustration. In this section we illustrate the time reversal
results in the quasi-monochromatic case for a particular random waveguide. We
consider a random planar waveguide with diameter d. The random process ν is
stationary and mixing in the z-direction. Its autocorrelation function is

E[ν(x, z)ν(x′, z′)] = σ2 exp

(
−|z − z′|

lc

)
R(x, x′) ,

where the support of R is contained in [0, d]2, σ is the standard deviation of the
medium fluctuations, and lc is the axial correlation length. This decomposition of the

autocorrelation function makes it easy to compute the effective coefficients Γ
(c)
jl , Γ

(s)
jl ,

and Γ
(1)
jl . We obtain

γ
(c)
jl =

2σ2lcGl,j

1 + (βj − βl)2l2c
, γ

(s)
jl =

2σ2(βj − βl)l
2
cGl,j

1 + (βj − βl)2l2c
, γ

(1)
jl = 2lcGl,j ,

Gl,j = Sj−l,j−l + Sj+l,j+l − Sj−l,j+l − Sj+l,j−l ,

where

Sj,l =
1

d2

∫ d

0

∫ d

0

cos

(
jπx

d

)
cos

(
lπx′

d

)
R(x, x′)dxdx′ .

For simplicity, we shall make two hypotheses. First, we introduce a band-limiting
idealization; i.e., we assume that the support of S lies with a finite square so that
S(j, l) 
= 0 only if |j| ≤ 1 and |l| ≤ 1. Second, we assume that lc is smaller than
βj −βj−1 for all j. The expressions of the effective coefficients can then be simplified.

The matrix Γ
(s)
jl is essentially zero, while the matrices Γ

(c)
jl and Γ

(s)
jl are tridiagonal,

Γ
(c)
jl  Γ

(1)
jl  ω4σ2lcdS1,1

4c̄4βj(ω)βl(ω)
if |j − l| = 1 , Γ

(1)
jj  ω4σ2lcdS0,0

4c̄4β2
j (ω)

,

and Γ
(c)
jj is chosen so that the lines of the matrix are zero.

Homogeneous waveguide. In the homogeneous case the spatial profile of the re-
focused field is (8.6). Let us consider a time-reversal mirror of size a located in
x ∈ [d/2 − a/2, d/2 + a/2]: G2(x) = 1[d/2−a/2,d/2+a/2](x). We then have

Mjl =
a

d

[
cos

(
(j − l)π

2

)
sinc

(
(j − l)πa

2d

)
− cos

(
(j + l)π

2

)
sinc

(
(j + l)πa

2d

)]
.

Using these formulas, we plot in Figure 8.1 the spatial profile of the refocused field for
different sizes a of the time-reversal mirror. The peak at the original source location
is there in all cases, but for small time-reversal mirrors, large side-lobes appear.
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Fig. 8.1. Transverse profile of the refocused field in a homogeneous waveguide with diameter
d and length L. Here d = 20, L = 200, and λ0 = 1, so there are 40 modes. The original source
location is x0 = 8. The dashed curve is the sinc profile, which is the focusing profile of a full-
size time-reversal mirror. The solid curves are refocusing profiles for time-reversal mirrors of size
a = 2.5 (a) and a = 10 (b).
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Fig. 8.2. (a) Transverse profile of the mean refocused field in a random waveguide with diameter
d and length L. Here d = 20, L = 200, λ0 = 1, the time-reversal mirror has size a = 5, and the
original source location is x0 = 8. The axial correlation length of the random medium is lc = 0.25
and the random fluctuations have standard deviation σ. The dashed curve is the spatial profile
obtained in homogeneous medium σ = 0. The solid lines stand for the mean profiles obtained in
random media σ = 0.015. The random case is very close to the equipartition regime, for which the
focusing profile is a sinc. (b) The relative standard deviation S, from (8.12), of the refocused field
in the equipartition regime as a function of the mirror size a. Here d = 20 and λ0 = 1.

Random waveguide. The mean spatial profile of the refocused field is (8.7). In
the absence of randomness, this formula reduces to (8.6). The mean spatial profile
is plotted in Figure 8.2(a), which illustrates the transition from the poor spatial
refocusing in a homogeneous medium to the diffraction-limited refocusing obtained in
the equipartition regime. In the equipartition regime L � Lequip, the mean spatial
profile is given by (8.8) and becomes independent of the mirror size, up to an amplitude
factor. However, the statistical stability of the refocused field depends on the size of
the time-reversal mirror, as shown in Figure 8.2(b).

9. Summary and conclusions. The main result of this paper is the derivation
from first principles of the system of transport equations (6.6) for the coupled mode
powers, in the asymptotic limit of section 3. It is easy to write such equations by
simply adding a time-dispersive term in (4.11). We identify here the field quantity
that has the mean which satisfies this space-time transport equation.

We apply the transport equation (6.6) to pulse spreading in order to get (7.4),
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which shows how randomness reduces time dispersion at the expense of introducing
random fluctuations. We also apply it to time reversal in a random waveguide, in a
narrowband regime, and show in (8.8) how side-lobes are suppressed in refocusing. We
also show in (8.12) how statistical stability depends on the quality factor Qmirror. This
quality factor does not depend on the random medium in the energy equipartition
regime, but it does depend on the size of the time-reversal mirror relative to the
waveguide cross section.
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THE DYNAMICS AND INTERACTION OF QUANTIZED VORTICES
IN THE GINZBURG–LANDAU–SCHRÖDINGER EQUATION∗
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Abstract. The dynamic laws of quantized vortex interactions in the Ginzburg–Landau–Schrödinger
equation (GLSE) are analytically and numerically studied. A review of the reduced dynamic laws
governing the motion of vortex centers in the GLSE is provided. The reduced dynamic laws are
solved analytically for some special initial data. By directly simulating the GLSE with an efficient
and accurate numerical method proposed recently in [Y. Zhang, W. Bao, and Q. Du, Numerical sim-
ulation of vortex dynamics in Ginzburg–Landau–Schrödinger equation, European J. Appl. Math.,
to appear], we can qualitatively and quantitatively compare quantized vortex interaction patterns of
the GLSE with those from the reduced dynamic laws. Some conclusive findings are obtained, and
discussions on numerical and theoretical results are made to provide further understanding of vortex
interactions in the GLSE. Finally, the vortex motion under an inhomogeneous potential in the GLSE
is also studied.

Key words. Ginzburg–Landau equation, nonlinear Schrödinger equation, complex Ginzburg–
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tex interaction
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1. Introduction. One of the most well-studied equations in nonlinear science is
the Ginzburg–Landau–Schrödinger equation (GLSE) of the form [36]

(α− iβ)∂tψ(x, t) = ∇2ψ +
1

ε2

(
V (x) − |ψ|2

)
ψ, x ∈ R

2, t > 0,(1.1)

ψ(x, 0) = ψ0(x), x ∈ R
2.(1.2)

Here, t is time, x = (x, y)T ∈ R
2 is the Cartesian coordinate vector, (r, θ) is the

polar coordinate system, ψ = ψ(x, t) is a complex-valued wave function (or order
parameter), V (x) is a real-valued external potential satisfying lim|x|→∞ V (x) = 1,
ε > 0 is a constant, and α and β are two nonnegative constants satisfying α+ β > 0.
A vortex-like solution satisfies a nonzero far-field condition as follows: For a given
integer m ∈ Z,

(1.3) |ψ(x, t)| → 1 (e.g., ψ → eimθ), t ≥ 0, when r = |x| =
√
x2 + y2 → ∞.

The GLSE (1.1) describes a large variety of nonlinear phenomena, including non-
linear waves, phase transitions, superconductivity, superfluidity, liquid crystals, and
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strings in the field theory. For example, when α = 1 and β = 0, it collapses into the
nonlinear heat equation (NLHE) or the Ginzburg–Landau equation (GLE) [27, 28].
The GLE with a complex order parameter is well known for modeling superconduc-
tivity [10, 11, 14, 12, 19], while that with a real order parameter corresponds to the
Allen–Cahn equation in phase transition [13]. When α = 0 and β = 1, the GLSE
reduces to the nonlinear Schrödinger equation (NLSE) [27, 31, 22] for modeling, for
example, superfluidity or Bose–Eistein condensation (BEC). While α > 0 and β > 0,
it is the complex Ginzburg–Landau equation (CGLE), or NLSE with a damping
term [3], which also arises in the study of the hydrodynamic instability [1].

It is known that there are stationary vortex solutions with a single winding number
or index m ∈ Z of the GLSE (1.1) with ε = 1 and V (x) ≡ 1 [27, 14, 36], which take
the form

(1.4) φm(x) = fm(r) eimθ, x = (r cos θ, r sin θ)T ∈ R
2,

where the modulus fm(r) is a real-valued function satisfying

1

r

d

dr

(
r
dfm(r)

dr

)
− m2

r2
fm(r) +

(
1 − f2

m(r)
)
fm(r) = 0, 0 < r < ∞,(1.5)

fm(0) = 0, fm(r) = 1 when r → ∞.(1.6)

The modulus as well as the core sizes of such vortex states have been calculated in
the literature [27, 36] by numerically solving the boundary value problem (1.5)–(1.6).
Numerical and analytical results suggest that the vortex states with winding number
m = ±1 are dynamically stable, and, respectively, |m| > 1 dynamically unstable
[27, 34, 25, 26, 22, 2, 36] (note that the stability and interaction laws of a quantized
vortex in the Gross–Pitaevskii equation for BEC [3, 4, 5] may be very different from
that studied here due to the different far-field boundary conditions).

In this paper, we study the GLSE (1.1) with initial conditions containing several,
say N , vortices. A precise definition of vortex solutions can be found in [22, 19]. We
are mainly concerned with the following initial condition:

(1.7) ψ0(x) =

N∏
j=1

φmj

(
x − x0

j

)
=

N∏
j=1

φmj

(
x− x0

j , y − y0
j

)
, x ∈ R

2,

where N is the total number of vortices and φmj is the vortex state as defined in
(1.4) with winding number mj = ±1 (see [36] for their numerical solutions). We may
then consider the interaction of N vortices with their initial centers shifted from the
origin (0, 0) to x0

j =
(
x0
j , y

0
j

)T
(1 ≤ j ≤ N). Taking m =

∑N
j=1 mj in (1.3), we refer

to vortices with the same winding numbers as like vortices and those with different
winding numbers as opposite vortices.

When ε = 1 and V (x) ≡ 1 in (1.1), it is known that for N well-separated vortices
of winding numbers mj = ±1 and locations xj (1 ≤ j ≤ N), the leading asymptotic
expansion of the energy is

(1.8) E ∼
N∑
j=1

Ej − π
∑
j �=l

mj ml ln |xl − xj | ,

where Ej is the self-energy of the vortex at xj , and the second term corresponds
to the well-known Kirchoff–Onsager Hamiltonian. From (1.8), we can obtain the
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vortex dynamic laws of the induced motion in the leading order, i.e., the adiabatic
approximation [27]. For the GLE, i.e., α = 1 and β = 0 in (1.1), the vortex dynamics
satisfies [27, 14, 15, 19]

κvj(t) := κ
dxj(t)

dt
= 2mj

N∑
l=1, l �=j

ml
xj(t) − xl(t)

|xj(t) − xl(t)|2
, t ≥ 0,(1.9)

xj(0) = x0
j , 1 ≤ j ≤ N,(1.10)

where κ is a constant determined from the initial setup (1.7). On the other hand, for
the NLSE, i.e., α = 0 and β = 1 in (1.1), it satisfies [27, 14, 8, 19]

vj(t) :=
dxj(t)

dt
= 2

N∑
l=1, l �=j

ml
J (xj(t) − xl(t))

|xj(t) − xl(t)|2
, t ≥ 0,(1.11)

xj(0) = x0
j , 1 ≤ j ≤ N,(1.12)

where J is a symplectic matrix defined as

(1.13) J =

(
0 −1
1 0

)
.

For asymptotic study of the vortex motions in the GLE and the NLSE, we refer to
[7, 8, 9, 6, 20, 18, 29, 31, 32, 33, 35] and references therein.

The aim of this paper is to provide a more detailed and accurate account of the
vortex dynamics governed by the GLSE, in particular, to address some open questions
concerning the range of validity of the reduced dynamic laws. Our approach is to first
solve analytically the ordinary differential equations (ODEs) (1.9) and (1.11) for any
N under a few types of initial data, and then compare these solutions with those
from direct simulation results of the GLSE (1.1) by using the efficient and accurate
numerical method proposed recently in [36]. The key features of the numerical method
include (i) the application of a time-splitting technique for decoupling the nonlinearity
in the GLSE; (ii) the adoption of polar coordinates to effectively match and resolve
the nonzero far-field conditions (1.3) in phase space; and (iii) the utilization of Fourier
pseudospectral discretization in the transverse direction and a second order (or fourth
order) finite difference or (finite element) discretization in the radial direction [36].

There are naturally many interesting issues concerning the vortex dynamics in
various limiting cases, such as the interaction of well-separated vortices with smaller
and smaller vortex cores (ε → 0), and when the distances between the vortices become
comparable with the core sizes (initially, both ε and the distances are of O(1)). Our
approach and numerical methods are applicable to both of these situations, but due
to page limitation, our main focus here is on the latter and we leave the discussion on
the former to future studies. The main findings in this paper provide justification of
the asymptotic vortex dynamic laws in some situations while unveiling limitations in
other cases; they also reveal interesting phenomena on the sound wave propagation
and the radiation effect associated with the vortex interaction.

The results of the paper are organized as follows. In section 2, based on the
nonlinear ODEs of the reduced dynamic laws, we prove the conservation of the mass
center and signed mass center of the N vortex centers, respectively, and solve ana-
lytically the reduced dynamic laws with a few types of initial data. In section 3, the
dynamics and interaction of quantized vortices in the GLE are directly simulated by
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solving (1.1) and compared with those from the reduced dynamic laws. Similar results
for the NLSE are reported in section 4. The vortex motions in the CGLE, and in the
GLSE under an inhomogeneous external potential, are reported in section 5. Finally,
some conclusions are drawn in section 6.

2. The reduced dynamic laws. In this section, we first prove the conserva-
tion of the mass center and signed mass center of the N vortex centers in the reduced
dynamic laws (1.9) and (1.11) for the GLE and the NLSE, respectively. These con-
servation properties can be used to solve the dynamic laws in special cases and to
compare with the direct numerical simulation results of the GLE and the NLSE. We
then solve the nonlinear ODEs analytically for several special types of initial data;
such analytical solutions can again be compared with the numerical solutions of the
GLE and the NLSE.

2.1. Conservation laws. Define, respectively, the mass center x and the signed
mass center x̃ of the N vortices as

(2.1) x(t) :=
1

N

N∑
j=1

xj(t) and x̃(t) :=
1

N

N∑
j=1

mj xj(t).

Let

Zj =

N∑
l=1, l �=j

ml
xj(t) − xl(t)

|xj(t) − xl(t)|2
.

It is easy to see that

(2.2)

N∑
j=1

mjZj =

N−1∑
j=1

N∑
j<1≤N

mj ml

[
xj(t) − xl(t)

|xj(t) − xl(t)|2
+

xl(t) − xj(t)

|xl(t) − xj(t)|2

]
= 0.

Then we have the following.
Lemma 2.1. The mass center of the N vortices in the reduced dynamic laws (1.9)

for the GLE is conserved, i.e.,

(2.3) x(t) :=
1

N

N∑
j=1

xj(t) ≡ x(0) :=
1

N

N∑
j=1

xj(0) =
1

N

N∑
j=1

x0
j , t ≥ 0.

Proof. Summing (1.9) for 1 ≤ j ≤ N and noting (2.1) and (2.2), we get for t ≥ 0,

dx(t)

dt
=

1

N

N∑
j=1

dxj(t)

dt
=

2

κN

N∑
j=1

mjZj = 0.

Thus the conservation law (2.3) is a combination of the above and (1.7).
Similarly, we have the following.
Lemma 2.2. The signed mass center of the N vortices in the reduced dynamic

laws (1.11) for the NLSE is conserved, i.e.,

(2.4) x̃(t) :=
1

N

N∑
j=1

mj xj(t) ≡ x̃(0) :=
1

N

N∑
j=1

mj xj(0) =
1

N

N∑
j=1

mj x0
j , t ≥ 0.
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Proof. Multiplying (1.11) by mjNJ−1, summing (1.11) for 1 ≤ j ≤ N , and noting
(2.1) and (2.2), we have for t ≥ 0,

NJ−1 dx̃(t)

dt
=

N∑
j=1

mjJ
−1 dxj(t)

dt
= 2

N∑
j=1

mjZj = 0.

Thus the conservation law (2.4) is a combination of the above and (1.7).

2.2. Initial conditions used for the study of vortex dynamics. Due to
the special structures of the nonlinear ODEs (1.9) and (1.11), we can solve them
analytically when the N vortices are initially located symmetrically on a circle or at
its center. By the conservation of the mass center and signed mass center in (1.9) and
(1.11), we assume without loss of generality that the circle is centered at the origin
with radius r0 = a > 0.

For simplicity, we denote θ0 as a given constant, denote m0 = +1 or −1, and
consider the following five patterns for the initial conditions in (1.7).

Pattern I. N (N ≥ 2) like vortices uniformly located on a circle, i.e.,

(2.5) x0
j = a

(
cos

(
2jπ

N
+ θ0

)
, sin

(
2jπ

N
+ θ0

))T

, and mj = m0 for 1 ≤ j ≤ N.

Pattern II. N (N ≥ 3) like vortices located on a circle and its center, i.e.,

(2.6) x0
N = (0, 0)

T
, m

N
= m0,

and for 1 ≤ j ≤ N − 1,

(2.7) x0
j = a

(
cos

(
2jπ

N − 1
+ θ0

)
, sin

(
2jπ

N − 1
+ θ0

))T

with mj = m0.

Pattern III. The same as Pattern II, except m
N

= −m0 for the center vortex.
Pattern IV. Two opposite vortices, i.e., for j = 1, 2,

(2.8) x0
j = a (cos (jπ + θ0) , sin (jπ + θ0))

T
with m1 = −m2 = m0.

Pattern V. Three vortices (N = 3) with nonsymmetric initial setups.
Here we consider the following three different cases (with m1 = m3 = +1):
Case 1. x0

1 = (−a,−b/2)T , x0
2 = (0, b)T , x0

3 = (a,−b/2)T , m2 = +1.
Case 2. x0

1 = (−
√

3a/2,−a/2)T , x0
2 = (0, a)T , x0

3 = (
√

3a/2,−a/2)T ,m2 =−1.
Case 3. x0

1 = (−a,−b/2)T , x0
2 = (0, b)T , x0

3 = (a,−b/2)T , m2 = −1.
Notice that for all five types of patterns, we have x(t) = x(0) = (0, 0)T for

t ≥ 0. Moreover, for the first three patterns and the first case of Pattern V, we have
x̃(t) = x̃(0) = 0.

2.3. Analytical solutions of the reduced dynamics for the GLE. Noting
(2.3), we can solve the nonlinear ODEs (1.9) analytically when the initial conditions
in (1.10) are given by Patterns I–IV.

Lemma 2.3. If the initial data in (1.10) satisfy (2.5), i.e., Pattern I, then the
solutions of (1.9)–(1.10) can be given, for 1 ≤ j ≤ N with N ≥ 2, by

(2.9) xj(t) =

√
a2 +

2 (N − 1)

κ
t

(
cos

(
2jπ

N
+ θ0

)
, sin

(
2jπ

N
+ θ0

))T

, t ≥ 0.
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Proof. For any N ≥ 2, based on the structures of the ODEs (1.9) and the initial
data (2.5), we take the ansatz for the solution as

(2.10) xj(t) = c
N

(t)x0
j , t ≥ 0, 1 ≤ j ≤ N,

where c
N

(t) is a function of time t and c
N

(0) = 1. Substituting (2.10) into (1.9),
applying a dot-product on both sides by x0

j , and noting (2.5), we get

c′
N

(t) =
2

κa2c
N

(t)

N∑
l=1, l �=j

mjml

(x0
j − x0

l ) · x0
j

|x0
j − x0

l |2

=
2

κa2c
N

(t)

N∑
l=1, l �=j

a2 − x0
l · x0

j

2a2 − 2x0
l · x0

j

=
N − 1

κa2c
N

(t)
, t ≥ 0.

Solving the above ODE and noting that c
N

(0) = 1, we obtain

(2.11) c
N

(t) =

√
1 +

2(N − 1)

a2κ
t, t ≥ 0.

Thus the solution (2.9) is a combination of (2.10), (2.11), and (2.5).
From the results in Lemma 2.3 we can see that, when the N vortices are uniformly

located on a circle initially, i.e., as in Pattern I, by the reduced dynamic law each
vortex moves outside along the line passing through its initial location and the origin,
and these N vortices are located on a circle at any time t with its radius increasing
by time c

N
(t) as in (2.11).

Lemma 2.4. If the initial data in (1.10) satisfy (2.6)–(2.7), i.e., Pattern II, then
the solutions of (1.9)–(1.10) are

(2.12) xN (t) ≡ (0, 0)T , t ≥ 0,

and for 1 ≤ j ≤ N − 1 with N ≥ 3,

(2.13) xj(t) =

√
a2 +

2N

κ
t

(
cos

(
2jπ

N − 1
+ θ0

)
, sin

(
2jπ

N − 1
+ θ0

))T

, t ≥ 0.

Proof. Due to the symmetry of the ODEs (1.9), the initial data (2.5), and the
conservation of mass center (2.3), we can immediately obtain the solution (2.12). As
in the proof of Lemma 2.3, we assume

xj(t) = dN (t)x0
j , t ≥ 0, 1 ≤ j ≤ N − 1,

where dN (t) is a function of time t and dN (0) = 1. Substituting the above into (1.9),
applying a dot-product on both sides by x0

j , and noting (2.7) and (2.12), we get

d′N (t) =
2

κa2dN (t)

[
mjmN

(x0
j − x0

N ) · x0
j

|x0
j − x0

N |2 +

N−1∑
l=1, l �=j

mjml

(x0
j − x0

l ) · x0
j

|x0
j − x0

l |2

]

=
2

κa2dN (t)

[
m2

0 +

N−1∑
l=1, l �=j

m2
0

a2 − x0
l · x0

j

2a2 − 2x0
l · x0

j

]
=

N

κa2dN (t)
, t ≥ 0.
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Solving the above ODE and noting that dN (0) = 1, we obtain

(2.14) dN (t) =

√
1 +

2N

a2κ
t, t ≥ 0.

Thus the solution (2.13) is a combination of the above and (2.7).
From the results in Lemma 2.4 we can see that, for the dynamics of (1.9)–(1.10) in

Pattern II, by the reduced dynamic law the vortex initially at the center of the circle
does not move for any time t ≥ 0, each of the other N−1 vortices moves outside along
the line passing through its initial location and the origin, and these N − 1 vortices
are located on a circle at any time t with its radius increasing by time dN (t) as in
(2.14).

Lemma 2.5. If the initial data in (1.10) are as in Pattern III, then the solutions
of (1.9)–(1.10) are

(2.15) xN (t) ≡ (0, 0)T , t ≥ 0,

and for 1 ≤ j ≤ N − 1 with N ≥ 3,

(2.16) xj(t) =

√
a2 +

2(N − 4)

κ
t

(
cos

(
2jπ

N − 1
+ θ0

)
, sin

(
2jπ

N − 1
+ θ0

))T

.

The proof follows from the analogous results in Lemma 2.4. From the results in
Lemma 2.5 we can see that, for the dynamics of (1.9)–(1.10) in Pattern III, by the
reduced dynamic law (i) the vortex initially at the origin does not move during the
interaction, each of the other N − 1 vortices moves along the line passing through its
initial location and the origin, and these N − 1 vortices are located on a circle at any
time t; (ii) when N = 3, the two vortices with the same index move towards each
other and collide with the vortex having the opposite index at the origin and at time
t = tc = κa2/2; (iii) when N = 4, all four vortices do not move but remain at their
initial locations for any t ≥ 0; and (iv) when N ≥ 5, the N − 1 vortices with the
same index move outside and never collide with the vortex with the opposite index
no matter how small the initial radius of the circle is.

Lemma 2.6. If the initial data in (1.10) satisfy (2.8), i.e., Pattern IV, then the
solutions of (1.9)–(1.10) can be given by

(2.17) xj(t) =

√
a2 − 2

κ
t (cos (jπ + θ0) , sin (jπ + θ0))

T
, 0 ≤ t ≤ tc, j = 1, 2,

with tc = κa2/2.
The proof is similar to that of Lemma 2.3. From the results in Lemma 2.6 we

can see that, for the dynamics of (1.9)–(1.10) in Pattern IV, when 0 ≤ t < tc = a2κ/2
the two vortices move towards each other along a line passing through their initial
locations and collide at the origin at time t = tc = O(a2) according to the reduced
dynamic law.

2.4. Analytical solutions of the reduced dynamics for the NLSE. Simi-
larly, noting (2.4) we can also solve the nonlinear ODEs (1.11) analytically when the
initial conditions in (1.12) are given by Patterns I–IV.

Lemma 2.7. If the initial data in (1.12) satisfy (2.5), i.e., Pattern I, then the
solutions of (1.11)–(1.12) can be given, for 1 ≤ j ≤ N with N ≥ 2, by
(2.18)

xj(t) = a

(
cos

(
2jπ

N
+ θ0 +

m0(N − 1)

a2
t

)
, sin

(
2jπ

N
+ θ0 +

m0(N − 1)

a2
t

))T

.
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Proof. For any N ≥ 2, based on the structures of the ODEs (1.11) and the initial
data (2.5), we take the ansatz for the solution with 1 ≤ j ≤ N as

(2.19) xj(t) = a

(
cos

(
2jπ

N
+ θ0 + αN (t)

)
, sin

(
2jπ

N
+ θ0 + αN (t)

))T

, t ≥ 0,

where αN (t) is a function of time and αN (0) = 0.

Now, let x⊥
j (t) = a

(
− sin

(
2jπ
N +θ0 +αN (t)

)
, cos

(
2jπ
N +θ0 +αN (t)

))T
. By (1.13),

we have the elementary identity

N∑
l=1, l �=j

m0

x⊥
j · (Jxj) − x⊥

j · (Jxl)

|xj |2 + |xl|2 − 2xj · xl

=

N∑
l=1, l �=j

m0

1 − cos
(

2(j−l)π
N

)
2 − 2 cos

(
2(j−l)π

N

) =
m0(N − 1)

2
.(2.20)

Inserting (2.19) into (1.11) and applying a dot-product on both sides with x⊥
j (t),

we get

α′
N (t) =

2

a2

N∑
l=1, l �=j

ml

x⊥
j · [J(xj − xl)]

|xj − xl|2
=

m0(N − 1)

a2
, t ≥ 0.

Solving the above ODE and noting that αN (0) = 0, we obtain αN (t) = m0(N − 1)t/a2

for t ≥ 0. Thus a combination of the above leads to the solution (2.18).
From the results in Lemma 2.7 we can see that, when the N like vortices are uni-

formly located on a circle initially, i.e., for the dynamics of (1.11)–(1.12) in Pattern I,
they rotate along the circle (counterclockwise if m0 = +1 and clockwise if m0 = −1)
with angular frequency ω = (N − 1)/a2 (cf. Figure 13(a),(d)).

Lemma 2.8. If the initial data in (1.12) satisfy (2.6)–(2.7), i.e., Pattern II, then
the solutions of (1.11)–(1.12) are

(2.21) xN (t) ≡ (0, 0)T , t ≥ 0,

and for 1 ≤ j ≤ N − 1 with N ≥ 3,

(2.22) xj(t) = a

(
cos

(
2jπ

N − 1
+ θ0 +

m0N

a2
t

)
, sin

(
2jπ

N − 1
+ θ0 +

m0N

a2
t

))T

.

Proof. Due to the symmetry of the ODEs (1.11), the initial data (2.6)–(2.7), and
the conservation of signed mass center (2.4), we can immediately get the solution
(2.21). As in the proof of Lemma 2.7, we assume for 1 ≤ j ≤ N − 1 that

(2.23) xj(t) = a

(
cos

(
2jπ

N − 1
+ θ0 + βN (t)

)
, sin

(
2jπ

N − 1
+ θ0 + βN (t)

))T

,

where βN (t) is a function of time and βN (0) = 0. Inserting (2.23) into (1.11), applying
a dot-product on both sides with

x⊥
j (t) = a

(
− sin

(
2jπ

N − 1
+ θ0 + βN (t)

)
, cos

(
2jπ

N − 1
+ θ0 + βN (t)

))T

,
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and noting (1.13), (2.21), and (2.20) (with N replaced by N − 1), we get

β′
N (t) =

2

a2

[
m

N

x⊥
j · [J(xj − xN )]

|xj − xN |2 +

N−1∑
l=1, l �=j

ml

x⊥
j · [J(xj − xl)]

|xj − xl|2

]

=
2

a2

[
m0

x⊥
j · (Jxj)

|xj |2
+

N−1∑
l=1, l �=j

m0

x⊥
j · (Jxj) − x⊥

j · (Jxl)

|xj |2 + |xl|2 − 2xj · xl

]
=

m0N

a2

for t ≥ 0. Solving the above ODE and noting that βN (0) = 0, we obtain βN (t) =
m0Nt/a2 for t ≥ 0. Thus a combination of the above leads to the solution (2.22).

From the results in Lemma 2.8 we can see that, for the dynamics of (1.11)–(1.12)
in Pattern II, the vortex initially at the center of the circle does not move for any
time t ≥ 0, and the other N − 1 vortices rotate along the circle (counterclockwise if
m0 = +1 and clockwise if m0 = −1) with angular frequency ω = N/a2 (cf. Figure
14(a),(d)).

Lemma 2.9. If the initial data in (1.12) are as in Pattern III, then the solutions
of (1.11)–(1.12) are

(2.24) xN (t) ≡ (0, 0)T , t ≥ 0,

and for 1 ≤ j ≤ N − 1 with N ≥ 3,

(2.25) xj(t) = a

(
cos

(
2jπ

N − 1
+ θ0 + m0ωN t

)
, sin

(
2jπ

N − 1
+ θ0 + m0ωN t

))T

,

where ωN = (N − 4)/a2.
The proof is similar to that of Lemma 2.8. From the results in Lemma 2.9, we

can see for the dynamics of (1.11)–(1.12) in Pattern III that (i) the vortex initially
at the origin does not move during the interaction; (ii) when N = 3, the two vortices
initially located on a circle rotate along the same circle (clockwise if m0 = +1 and
counterclockwise if m0 = −1) with frequency ω(a) = 1/a2 (cf. Figure 15(a)); (iii) the
case of N = 4 is rather special, and the reduced dynamics implies that all four vortices
do not move and stay at their initial locations for any t ≥ 0 (cf. Figure 15(d)); and
(iv) when N ≥ 5, the N − 1 vortices initially located on a circle rotate along the
same circle (counterclockwise if m0 = +1 and clockwise if m0 = −1) with angular
frequency ωN = (N − 4)/a2 (cf. Figure 15(g)).

Lemma 2.10. If the initial data in (1.12) satisfy (2.8), i.e., Pattern IV, then the
solutions of (1.11)–(1.12) can be given by

(2.26) xj(t) = x0
j +

m0

a
t (− sin θ0, cos θ0)

T
, t ≥ 0, j = 1, 2.

Proof. From the conservation of the signed mass center (2.4), we have

(2.27) x̃(t) =
x1(t) − x2(t)

2
≡ x1(0) − x2(0)

2
= a (cos θ0, sin θ0)

T
, t ≥ 0.

On the other hand, from the ODEs (1.11), we obtain

dx1(t)

dt
= −2m0

J (x1(t) − x2(t))

|x1(t) − x2(t)|2
,

dx2(t)

dt
= 2m0

J (x2(t) − x1(t))

|x2(t) − x1(t)|2
.
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Summing up the above equations and combining with (2.27), we get

(2.28)
dx1(t)

dt
= −m0

a
J (cos θ0, sin θ0)

T , t ≥ 0, with x1(0) = x0
1.

Solving (2.28) and noting (2.27), we obtain (2.26) immediately.
From the results in Lemma 2.10 we can see that, for the dynamics of (1.11)–(1.12)

in Pattern IV, the two opposite vortices move along two parallel lines which are
perpendicular to the line passing through their initial locations with constant velocity
(cf. Figures 16(b) and 20(a))

(2.29) v(t) =
dx1(t)

dt
=

dx2(t)

dt
≡ m0

a
(− sin θ0, cos θ0)

T
, t ≥ 0.

3. Numerical results for vortex dynamics in the GLE. In this section,
we report the numerical results of the vortex dynamics and interaction by directly
simulating the GLE; i.e., we take α = 1, β = 0, ε = 1, and V (x) ≡ 1 in (1.1), with
the efficient and accurate time-splitting method introduced in [36]. For the choice of
mesh size and time step, as well as the size of the bounded computational domain,
we refer to [36]. For comparison, we also exhibit the motion of the vortex centers
solved from the reduced dynamics (1.9) in each case. In the figures, the symbols used
include + (center of a vortex with index m = +1), − (center of a vortex with index
m = −1), and o (collision position of two or more opposite vortices).

3.1. Interactions of N (N ≥ 2) like vortices, Patterns I and II. Figure 1
displays the surface plots of −|ψ| at different times when the initial data in (1.7) are
chosen as (2.5) with N = 2, m0 = +1, and a = 2, and Figure 2 shows the time
evolution of the vortex centers for different number of vortices N ≥ 2, i.e., Pattern I.
In addition, Figure 3 shows the time evolution of the vortex centers when the initial
data in (1.7) is chosen as (2.6)–(2.7) with m0 = +1 and a = 3 for different number of
vortices N ≥ 3, i.e., Pattern II.

Fig. 1. Surface plots of −|ψ| at different times for the GLE when the initial condition is chosen
as Pattern I with N = 2, m0 = +1, and a = 2 in (2.5).

From Figures 1–3, and additional numerical experiments not shown here, we can
draw the following conclusions for the interaction of N like vortices in the GLE when
the initial data are chosen as either Pattern I or II:

(i) The mass center of the vortex centers is conserved for any time t ≥ 0 (cf. Fig-
ures 2 and 3), which confirms the conservation law in (2.3).

(ii) Vortices with the same index undergo a repulsive interaction and they never
collide (cf. Figures 1, 2, and 3). Their speeds depend on their distances to the origin,
i.e., the larger the distance, the slower the motion (cf. Figures 2 and 3). In addition,
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Fig. 2. Time evolution of vortex centers by directly simulating the GLE when the initial data
are chosen as Pattern I with a = 2 and m0 = +1 for different N . (a) N = 2; (b) N = 3.
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Fig. 3. Time evolution of vortex centers by directly simulating the GLE when the initial data
are chosen as Pattern II with a = 3 and m0 = +1 for different N . (a) N = 3; (b) N = 4.

in Pattern II the vortex initially at the origin does not move during the dynamics
(cf. Figure 3), which confirms the analytical solution (2.12).

(iii) Due to the symmetry of the initial data, the vortices of those initially located
on a circle move along lines passing through their initial locations and the origin, and
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at any time t ≥ 0, these vortex centers are always on a circle (cf. Figures 2 and 3),
which confirms the analytical solutions (2.9) and (2.13).

(iv) In Patterns I and II, the solutions of the reduced dynamic laws agree qual-
itatively with our numerical results of the GLE, and quantitatively if a proper κ in
(1.9) is chosen, which depends on the initial setup in (1.7). For example, in Pattern I
with N = 2, we numerically find that the two solutions are the same when we choose
κ ≈ 2.1279, 2.1690, 2.2589, and 2.3116 for a = 4, 5, 10, and 20, respectively, which
suggests that 1

κ ≈ 0.424 + 0.1897
a when a ≥ 4.

3.2. Interactions of N (N ≥ 3) opposite vortices, Pattern III. Figure 4
shows time evolution of the vortex centers when the initial data in (1.7) are chosen
as Pattern III with m0 = +1 and a = 3 for different N ≥ 3.
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Fig. 4. Time evolution of vortex centers by directly simulating the GLE when the initial data
are chosen as Pattern III with a = 3 and m0 = +1 for different N . (a) N = 3; (b) N = 4;
(c) N = 5.

From Figure 4, and additional numerical experiments not shown here, we can
draw the following conclusions for the interaction of N opposite vortices in the GLE
when the initial data are chosen as Pattern III:

(i) The mass center of the vortex centers is conserved for any time t ≥ 0 (cf. Fig-
ure 4), which confirms the conservation law in (2.3).
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(ii) The vortex initially at the origin does not move for any time t ≥ 0 (cf. Fig-
ure 4), which confirms the analytical solution (2.15). The vortices of those initially
located on a circle move to the origin when N = 3 or 4 and, respectively, move away
when N ≥ 5, along lines passing through their initial location and the origin, and
at any time t ≥ 0, these vortex centers are always on a circle (cf. Figure 4), which
confirms the analytical solutions (2.16). Their speeds depend on their distances to
the origin, i.e., the larger the distance, the slower the motion.

(iii) When N = 3 or 4, collisions between the vortex centers are observed at a
critical time tc (cf. Figure 4(a),(b)). The collision time is quadratically proportional to
the initial distance a. Before collision, the interaction is attractive. When N = 3, they
collide at the origin, and after the collision, there is one vortex with index m = m0

left, and it stays at the origin forever (cf. Figure 4(a)). On the other hand, when
N = 4, one of the three vortices initially located on the circle collides with the one
initially at the origin. After the collision, two like vortices remain and they undergo
a repulsive interaction (cf. Figure 4(b)).

(iv) When N ≥ 5, the vortices undergo repulsive interactions and never collide
(cf. Figure 4(c)).

(v) In Pattern III, when N = 3 or N ≥ 5, the solutions of the reduced dynamic
laws qualitatively agree with our numerical results of the GLE. On the contrary,
they are completely different for N = 4. One may argue that a possible cause is
the fact that this case corresponds to a degenerate case of the reduced dynamics
(1.9)–(1.10) for which the vortices remain stationary, and thus the next order effect
becomes important in the underlying vortex motion of the original GLE. In fact, the
collision time needed for N = 4 (tc ≈ 28; cf. Figure 4(b)) is much longer than that for
N = 3 (tc ≈ 1.8; cf. Figure 4(a)) with the same initial radius of the circle at a = 3.

3.3. Interactions of two opposite vortices, Pattern IV. Figure 5 displays
the surface plots of −|ψ| at different times and Figure 6 shows time evolution of the
vortex centers when the initial data in (1.7) are chosen as (2.8) with m0 = +1 and
a = 1.5, i.e., Pattern IV.
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Fig. 5. Surface plots of −|ψ| at different times for the GLE when the initial condition is chosen
as Pattern IV (2.8) with m0 = +1 and a = 1.5.

From Figures 5–6, we can draw the following conclusions for the interaction of
two opposite vortices in the GLE when the initial condition is chosen as Pattern IV:

(i) The mass center of the two vortex centers is conserved for any time t ≥ 0
(cf. Figure 6), which again confirms the conservation law in (2.3).

(ii) Two vortices with opposite winding numbers undergo an attractive inter-
action (cf. Figure 5), and their centers move along a straight line passing through
their locations at t = 0 (cf. Figure 6). The speed of the motion for the two vortex
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Fig. 6. Time evolution of vortex centers by directly simulating the GLE when the initial data
are chosen as Pattern IV with a = 1.5 and m0 = +1.

centers depends on their distance. The smaller the distance, the faster the motion
(cf. Figure 6).

(iii) There exists a critical time tc > 0, and the two opposite vortices collide with
each other at the origin (cf. Figure 5). From our numerical results, we find numerically
that the collision time depends on the distance of the two vortex centers at t = 0 as

(3.1) tc ≈
1

14.8710
d2.0715
0 with d0 = 2a, a > 0.

This immediately implies that tc = O
(
a2
)
, which confirms the analytical result of the

collision time in Lemma 2.6.
(iv) Again, in Pattern IV the solutions of the reduced dynamic laws agree qual-

itatively with our numerical results of the GLE, and quantitatively if a proper κ in
(1.9) is chosen, which depends on the initial distance between the two vortex centers.

3.4. Interactions of vortices with nonsymmetric setups. Figures 7–9 show
the time evolution of the vortex centers when the initial data in (1.7) are chosen as
the three cases in Pattern V, respectively.

Based on Figures 7–9 and our additional numerical experiments, we can draw the
following conclusions for three vortices with nonsymmetric initial setups:

(i) When they have the same index, they never collide (cf. Figure 7). On the
contrary, when they have opposite indices, they collide at a finite time (cf. Figures 8
and 9), and after collision, only one vortex is left.

(ii) The mass centers of the vortex centers are not conserved (cf. Figures 7–9)
during the dynamics within the time frame we computed the solutions, which sug-
gests that there is a considerable discrepancy between the reduced dynamics law
(1.9)–(1.10) and the original dynamics in some regimes. One may argue that a pos-
sible cause is the fact that the reduced dynamic law is the adiabatic approximation
in the leading order when the N vortices are well separated, and thus the next order
effect becomes important in the underlying vortex motion of the original GLE when
the N vortices are not well separated. In fact, in our numerical results, the larger the
distance between the vortex centers, the better the conservation of the mass center
(cf. Figures 7–9). This suggests that the reduced dynamics law (1.9)–(1.10) is still a
reasonable approximation to the vortex motion of the original GLE in a nonsymmetric
initial setup when the N vortices are well separated.

4. Numerical results for vortex dynamics in the NLSE. Similarly, in this
section we report the numerical results of the vortex dynamics and interaction by
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Fig. 7. Time evolution of vortex centers by directly simulating the GLE when the initial data
are chosen as Case 1 in Pattern V with different a and b. (a) a = 1, b = 4; (b) a = 3, b = 6.
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Fig. 8. Time evolution of vortex centers by directly simulating the GLE when the initial data
are chosen as Case 2 in Pattern V with different a. (a) a = 2; (b) a = 5.

directly simulating the nonlinear Schrödinger equation; i.e., we take α = 0, β = 1,
ε = 1, and V (x) ≡ 1 in (1.1), with the numerical method introduced in [36]. All the
computational setups are the same as in the previous section.
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Fig. 9. Time evolution of vortex centers by directly simulating the GLE when the initial data
are chosen as Case 3 in Pattern V with different a and b. (a) a = 2, b = 4; (b) a = 8, b = 4.

Fig. 10. Surface plots of −|ψ| at different times for the NLSE when the initial condition is
chosen as Pattern I (2.5) with N = 2, m0 = +1, and a = 2.

4.1. Interactions of N (N ≥ 2) like vortices, Patterns I and II. Figures
10–12 give the surface plots of −|ψ| at different times, the slice plots of |ψ(x, 0, t)| at
different times, and some dynamical laws when the initial data in (1.7) are chosen
as (2.5) with N = 2 and m0 = +1, i.e., interaction of two like vortices. In addition,
Figure 13 shows time evolution of the vortex centers when the initial condition is
chosen as Pattern I (2.5) for different N ≥ 2, and Figure 14 depicts similar results for
Pattern II (2.6)–(2.7).

From Figures 10–14, and additional numerical experiments not shown here, we
can draw the following conclusions for the interaction of N like vortices in the NLSE
when the initial condition is chosen as either Pattern I or II:

(i) The signed mass center of the vortex centers is conserved for any time t ≥ 0
(cf. Figures 13(b),(c),(e),(f); 14(b),(c),(e),(f)), which confirms the conservation law in
(2.4).

(ii) Vortices with the same index behave like point vortices in an ideal fluid and
never collide (cf. Figures 10, 13, and 14). In fact, there exists a critical time t0 > 0,
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Fig. 11. Plots of |ψ(x, 0, t)| (x ≥ 4) at different times for the NLSE when the initial condition
is chosen as Pattern I (2.5) with N = 2, m0 = +1, and a = 2, showing the sound wave propagation.
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Fig. 12. Dynamical laws of interaction between two like vortices, i.e., Pattern I with N = 2, in
the NLSE. (a) Frequency ω of the rotation (solid line is from (2.18) and asterisks are our numerical
results); (b) diameter d1 = |x1(t0) − x2(t0)| when the two vortices start to rotate on a circle;
(c) α(d0) in (4.1) (the asterisks are our numerical results and the solid line is from the theoretical
predication α = 26 · 3π [30]); (d) errors of the vortex centers between the solution (2.18) of the
reduced dynamic laws (denoted xrd(t)) and our directly simulating results of the NLSE (denoted
x(t)) for different initial distance d0 = 2a.

depending on the initial distance to the origin, i.e., a, such that before time t0, i.e.,
when 0 ≤ t ≤ t0, the vortices initially located on a circle move from their initial
locations to another circle, and the change in distance between each vortex to the
origin is rapid (cf. Figures 13(b), 14(b)); after time t0, i.e., for t ≥ t0, the vortices
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Fig. 13. Time evolution of vortex centers for the NLSE when the initial condition is chosen as
Pattern I with different N . (a) and (d) are from the reduced dynamic laws (2.18); (b) and (e) and
(c) and (f) show direct simulation results of the NLSE with a = O(r01) and a � r01, respectively.
Case 1: N = 2 with (b) a = 0.5 and (c) a = 6.

rotate uniformly along a circle (counterclockwise when winding number m0 = +1 and
clockwise when m0 = −1) with angular frequency ω depending on a and the radius
of the circle increasing very slowly. The sound wave propagation is clearly observed
during the interaction (cf. Figure 11). In addition, in Pattern II, the vortex initially
at the origin does not move during the dynamics (cf. Figure 14(b),(c),(e),(f)), which
confirms the analytical solution (2.21).

(iii) For Pattern I with N = 2, we also present the comparison quantitatively
(cf. Figure 12). In this case, denote d0 = |x0

1 −x0
2| = 2a and d1 = |x1(t0)−x2(t0)| for

the initial distance and the diameter of the circle at time t = t0 of the two vortices,
respectively. The angular frequency predicted by the reduced dynamics is confirmed
by our numerical simulations (cf. Figure 12(a)) when d0 = 2a is large, and it is invalid
when d0 is small; i.e., the reduced dynamics is invalid when the vortex pair initially
has overlapping support. Furthermore, even when the two vortices are well separated,
the reduced dynamics fails to take into account the effect of the excessive energy and
the radiation, which play important roles in the NLSE vortex dynamics. For example,
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Fig. 13 (cont.). Case 2: N = 3 with (e) a = 1 and (f) a = 6.

by analyzing the next-order approximation for the interaction of two well-separated
vortices in the NLSE, it was derived in [30] that the diameter of the circle increases
on the order of O(t1/6), i.e., asymptotically,

(4.1) d(t) = |x1(t) − x2(t)| =
(
|x0

1 − x0
2|6 + 26 · 3πt

)1/6
=

(
d6
0 + 26 · 3πt

)1/6
.

This departs from the constant distance prediction made from the reduced dynamic
laws (1.11). Numerically, we fit the distance between the two vortex centers d(t) =
|x1(t) − x2(t)| for t ≥ t0 by

(4.2) d(t) = |x1(t) − x2(t)| =
(
d(t0)

6 + α(d0)(t− t0)
)1/6

, t ≥ t0,

with α(d0) being a constant depending on d0. The results show that (4.1) is a very
good prediction (cf. Figure 12(c)). Of course, much more detailed information on the
vortex dynamics in the NLSE can be found through our numerical simulations. For
example, our simulations suggest that when the initial distance between the two vortex
centers increases, the time t0 increases, the diameter d1 = d(t0) of the circle at t = t0
increases (cf. Figure 12(b)), and α(d0) in (4.2) increases (cf. Figure 12(c)). From Fig-
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Fig. 14. Time evolution of vortex centers for the NLSE when the initial condition is chosen as
Pattern II with different N . (a) and (d) are from the reduced dynamic laws (2.21)–(2.22); (b) and (e)
and (c) and (f) show direct simulation results of the NLSE with a = O(r01) and a � r01, respectively.
Case 1: N = 3 with (b) a = 0.5 and (c) a = 10.

ure 12(b), we have the numerical dynamical laws for the diameter d1 for different d0:

d1 := d(t0) ≈
{

d0 + d0.9053
0 /2.9189, d0 < r0

1,

d0 + 1.4453/d0.7996
0 , d0 > 2r0

1,

where r0
1 ≈ 1.75 [36] is the core size for the vortex state φm in (1.4) of the GLSE with

winding number m = ±1.
(iv) In Patterns I and II, the solutions of the reduced dynamic laws agree qual-

itatively with our numerical results of the NLSE, and quantitatively when time t is
small and they are well separated, i.e., a � r0

1 = 1.75 [36]. In general, for a fixed
initial distance, i.e., a, the error increases when time increases; for a given time, the
error decreases when the initial distance increases (cf. Figure 12(d)). This again sug-
gests that the reduced dynamics for governing time evolution of the vortex centers
in the NLSE is valid only when time t is small and the initial distance is very large.
Corrections must be added, e.g., such as (4.1), when either the time t is large or the
initial distance is not very large.
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Fig. 14 (cont.). Case 2: N = 4 with (e) a = 1 and (f) a = 6.

(v) The results in Figure 12, as well as in Figure 21, also confirm Kirchoff’s laws
rigorously derived in [23, 24] for the interaction of two vortices in the NLSE, i.e.,
α = 0, β = 1, V (x) ≡ 1 in (1.1), when ε → 0 with the initial distance between the two
vortex centers fixed. In fact, the vortex interactions of (1.1) with V (x) ≡ 1, ε = 1,
and increased initial distances between the vortex centers are equivalent to those of
(1.1) with V (x) ≡ 1, ε → 0, and fixed initial distances between the vortex centers by
applying a rescaling.

4.2. Interactions of N (N ≥ 3) opposite vortices, Pattern III. Figure 15
shows the time evolution of the vortex centers for different N ≥ 3 when the initial
data in (1.7) are chosen as in Pattern III with m0 = +1 for different N and a.

From Figure 15, and additional numerical experiments not shown here, we can
draw the following conclusions for the interaction of N opposite vortices in the NLSE
when the initial data are chosen as Pattern III:

(i) The signed mass center of the vortex centers is conserved for any time t ≥ 0
(cf. Figure 15(b),(c),(e),(f),(h),(i)), which confirms the conservation law in (2.4).

(ii) The vortex initially at the origin does not move for any time t ≥ 0 (cf. Figure
15(b),(c),(e),(f),(h),(i)), which confirms the analytical solution (2.24). After a critical
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Fig. 15. Time evolution of vortex centers for the NLSE when the initial condition is chosen
as Pattern III with different N and a. (a), (d), and (g) are from the reduced dynamic laws (2.25);
(b), (e), and (h) and (c), (f), and (i) show direct simulation results of the NLSE with a = O(r01)
and a � r01, respectively. Case 1: N = 3 with (b) a = 3 and (c) a = 6.

time tc depending on the initial radius a, the vortices initially located on a circle
rotate clockwise when N = 3 and a > acr ≈ 2r0

1 or N = 4, and, respectively,
counterclockwise when N ≥ 5, along a circle, and at any time t ≥ 0, these vortex
centers are always on a circle (cf. Figure 15(b),(c),(e),(f),(h),(i)), which confirms the
analytical solutions (2.25). Their angular frequencies depend on their distances to the
origin, i.e., the larger the distance, the slower the motion.

(iii) For the case of N = 3, when the initial radius a < 2r0
1, the three vortices

undergo attractive interactions, and the two vortices initially on a circle move sym-
metrically towards the center before a critical time tc. When t = tc, they collide at
the origin (cf. Figure 15(b)), and after it, only one vortex with a winding number m0

is left and stays at the point (0, 0) for any time t > tc. On the other hand, when
a > 2r0

1, the two vortices rotate (clockwise for m0 = +1, and, respectively, counter-
clockwise for m0 = −1) on a circle whose radius increases very slowly with time t
(cf. Figure 15(c)).

(iv) When N = 4, the three vortices initially on a circle move to another circle
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Fig. 15 (cont.). Case 2: N = 4 with (e) a = 1.6 and (f) a = 6.

with radius a1 < a; then they rotate (clockwise for m0 = +1, and, respectively,
counterclockwise for m0 = −1) on a circle whose radius increases very slowly with
time t (cf. Figure 15(e),(f)). The four vortices never collide no matter how small a is.

(v) When N ≥ 5, the N − 1 vortices initially on a circle move to another circle
with radius a1 > 0; then they rotate (counterclockwise for m0 = +1, and, respectively,
clockwise for m0 = −1) on a circle whose radius increases very slowly with time t
(cf. Figure 15(h),(i)).

(vi) In Pattern III, when N = 3 and a > 2r0
1 or N ≥ 5, the solutions of the

reduced dynamic laws agree qualitatively with our numerical results of the NLSE.
On the contrary, when N = 4 or N = 3 with a < 2r0

1, they are completely different!
This may be attributed to the lack of well separation between the vortex cores and/or
the next-order effect in the underlying vortex motion of the original NLSE. In fact,
the angular frequency for N = 4 is much larger than that for N = 3 with the same
initial radius of the circle (cf. Figure 15(c),(f)).

4.3. Interactions of two opposite vortices, Pattern IV. Figure 16 displays
the surface plots of −|ψ| at different times when the initial data in (1.7) are chosen
as (2.8), i.e., Pattern IV, with m0 = +1 and a = 1.5 or a = 5. Figures 17 and 18–19
plot |ψ(x, y(t), t)| and |ψ(0, y, t)|, respectively, to show the sound wave propagation
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Fig. 15 (cont.). Case 3: N = 5 with (h) a = 1 and (i) a = 6.
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Fig. 16. Surface plots of −|ψ| at different times for the NLSE when the initial condition is
chosen as Pattern IV (2.8) with m0 = +1. I. a = 1.5 = O(r01).

during the dynamics. Figure 20 shows the time evolution of the two vortex centers
with different d0 = 2a. In addition, Figure 21 shows some dynamical laws for the
interaction.

From Figures 16–21, we can draw the following conclusions for the interaction of
two opposite vortices in the NLSE when the initial condition is chosen as Pattern IV:

(i) The signed mass center of the two vortex centers is not conserved, at least
when either the initial distance between the two vortices is not large or time t is small
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Fig. 16 (cont.). II. a = 5 � r01.
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Fig. 17. Plots of |ψ(x, y(t), t)| at different times for the NLSE when the initial condition
is chosen as Pattern IV (2.8) with m0 = +1 and a = 1.5, showing sound wave propagation and
radiation with the values of y(t) given in the labels. Here y = y(t) is the line passing through the
two vortex centers at time t before they merge with each other around tc ≈ 3.0.
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Fig. 18. Plots of |ψ(0, y, t)| at different times for the NLSE when the initial condition is chosen
as Pattern IV (2.8) with m0 = +1 and a = 1.5, showing solitary-like wave propagation.

(cf. Figure 20(b),(c),(d)), which suggests that the conservation law in (2.4) is invalid
when the initial distance between the two vortex centers at time t = 0 is not large.

(ii) There is a critical distance dcr satisfying that, for d0 = |x0
1 − x0

2| < dcr, the
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Fig. 19. Plots of |ψ(0, y, t)| at different times for the NLSE when the initial condition is chosen
as Pattern IV (2.8) with m0 = +1 and a = 5 � r01 for solitary wave propagation.

two vortices approach each other while drifting sideways and then collide and are
annihilated at time t = tc (cf. Figures 16, 20(b)), and for d0 = |x0

1 − x0
2| > dcr, they

move almost in a parallel course, perpendicular to the line joining them (cf. Figures
19, 20(c),(d)). Our numerical simulations suggest that dcr ≈ 2r0

1 = 2 × 1.75 = 3.5,
i.e., double the size of the core size r0

1, which is almost triple the size of the theoretical
prediction dcr ≈

√
2 derived in [30].

(iii) When d0 < dcr = 2r0
1, before collision, our numerical simulation reveals

that two sound waves moving towards each other are generated along the line joining
the centers of the two vortices (cf. Figure 17), which cause the collision, while no
radiation is observed; after the collision, some outgoing radiation is observed along
with a solitary-like sound wave also being observed in the y-axis (cf. Figure 18). In
addition, a discontinuity or shock wave in the hydrodynamic velocity is observed just
after the collision. Furthermore, for the initial setup in Pattern IV, the two vortices
collide at the point (0,−d2) with d2 > 0 when t = tc. When the initial distance d0

increases, both tc and d2 increase, and our numerical results suggest the following
relation between them:

tc ≈
1

7.0790
d2.0954
0 , d1 ≈ 1

1.9300
d1.0365
0 , with d1 =

√
d2
0 + d2

2.

(iv) When d0 � dcr = 2r0
1, the two vortices drift almost on two parallel lines,

perpendicular to the line joining them with a constant speed. Our numerical results
confirm the speed (2.29) when d0 = 2a is large (cf. Figure 21(a)). In addition, a
solitary wave is observed during the dynamics (cf. Figure 19).

(v) Again, in Pattern IV the solutions of the reduced dynamic laws agree qualita-
tively with our numerical results of the NLSE when a � r0

1 and they are completely
invalid when a is small (cf. Figure 20). When a > r0

1, in general, for a fixed initial
distance, the error increases when time increases; for a given time, the error decreases
when the initial distance increases (cf. Figure 21(b)).

4.4. Interactions of vortices with nonsymmetric setups. Figures 22–24
show time evolution of the vortex centers when the initial data in (1.7) are chosen as
the three cases in Pattern V, respectively.



1766 YANZHI ZHANG, WEIZHU BAO, AND QIANG DU

(a)
−2 0 2

−25

−15

−5

x

y 0 10 20 30 40 50

−20

−10

0

t

x 1(t)
 o

r y
1(t)

0 10 20 30 40 50
−1

0

1

t

x
1
−x

2
−4

y
1
−y

2

(b)
−2 −1 0 1 2

−3

−2

−1

0

x

y 0 0.5 1 1.5 2 2.5 3

−2

0

2

t

x 1(t)
 o

r y
1(t)

0 0.5 1 1.5 2 2.5 3

0

1

2

3

t

x
1
−x

2
y

1
−y

2

(c)
−2 −1 0 1 2

−100

−60

−20

20

x

y

0 50 100 150
−100

−50

0

t

x 1(t)
 o

r y
1(t)

0 50 100 150
−1.5

−1

−0.5

0

0.5

t

x
1
−x

2
−4

y
1
−y

2

(d)
−5 0 5

−10

0

10

x

y 0 20 40 60 80
−10

0

10

t

x 1(t)
 o

r y
1(t)

0 20 40 60 80

−0.2

−0.1

0

0.1

t

x
1
−x

2
−10

y
1
−y

2

Fig. 20. Time evolution of vortex centers for the NLSE when the initial condition is chosen
as Pattern IV. (a) is from the reduced dynamic laws (2.26), and (b), (c), and (d) show direct
simulation results of the NLSE with m0 = +1 and a = 1.5 < r01, a = 2 > r01, and a = 5 � r01,
respectively.

Based on Figures 22–24 and our additional numerical experiments, we can draw
the following conclusions for three vortices with nonsymmetric initial setups:

(i) When they have the same index, they rotate and never collide (cf. Figure 22).
On the contrary, when they have opposite indices, there exists a critical distance dcr,
when their initial distances are less than dcr, they collide at finite time (cf. Figures
23(a), 24(a)), and after collision, only one vortex is left; on the other hand, when their
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Fig. 21. Dynamic laws for two opposite vortices, i.e., Pattern IV with N = 2, in the NLSE.
(a) Speed v of the parallel motion. (b) Errors of the vortex centers between the solution (2.26) of the
reduced dynamic laws (denoted as xrd(t)) and our directly simulating results of the NLSE (denoted
as x(t)) for different initial distance d0 = 2a.
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Fig. 22. Time evolution of vortex centers for the NLSE when the initial condition is chosen as
Case 1 in Pattern V with different a and b. (a) a = 1, b = 4. (b) a = 3, b = 6.

initial distances are larger than dcr, two of them move in a parallel course and never
collide (cf. Figures 23(b), 24(b)).

(ii) The signed mass centers of the vortex centers are not conserved (cf. Fig-
ures 22–24) during the dynamics, and these suggest that the reduced dynamics law
(1.11)–(1.12) has considerable discrepancy in some regimes. Again, one may argue
that a possible cause is the fact that the reduced dynamic law is the adiabatic ap-
proximation in the leading order when the N vortices are well separated, and thus the
next-order effect becomes important in the underlying vortex motion of the original
NLSE when the N vortices are not well separated. Also in our numerical results,
the larger the distance between the vortex centers, the better the conservation of the
signed mass center (cf. Figures 22–24). This again suggests that the reduced dynam-
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Fig. 23. Time evolution of vortex centers for the NLSE when the initial condition is chosen as
Case 2 in Pattern V with different a. (a) a = 2. (b) a = 5.
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Fig. 24. Time evolution of vortex centers for the NLSE when the initial condition is chosen as
Case 3 in Pattern V with different a and b. (a) a = 2, b = 4. (b) a = 8, b = 4.

ics law (1.11)–(1.12) is still a reasonable approximation to the vortex motion of the
original NLSE in a nonsymmetric initial setup when the N vortices are well separated.

5. Vortex dynamics in the CGLE or in the GLSE with an external
potential. In many applications of the GLSE, the physical situation is often more
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Fig. 25. Time evolution of vortex centers for the CGLE when the initial condition is chosen
as Patterns I–IV with different a. (a) Pattern I with N = 2 and a = 2. (b) Pattern I with N = 3
and a = 1.5. (c) Pattern II with N = 3 and a = 2. (d) Pattern IV with a = 3.

complicated than the GLE and NLSE cases considered in the earlier sections. As an
illustration, in this section we report numerical results of vortex interaction in the
CGLE and vortex motion in the GLSE with an inhomogeneous external potential.

5.1. Numerical results for vortex dynamics in the CGLE. We take α =
β = 1, ε = 1, and V (x) ≡ 1 in (1.1). Figure 25 shows the various time evolutions of
the vortex centers when the initial data in (1.7) are chosen as Patterns I, II, and IV.
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Based on Figure 25 and our additional numerical experiments, we can draw the
following conclusions for vortex dynamics in the CGLE:

(i) Vortices with the same index undergo repulsive interactions and never collide.
The trajectories are combinations of those from the GLE and the NLSE (cf. Figure
25(a), (b), and (c)).

(ii) Two vortices with opposite indices collide after some time tc (cf. Figure 25(d))
and the collision position is (0,−d2). The collision time and position depend on the
initial distance between the two vortices d0 = 2a. Our numerical results suggest the
following relation between them:

tc ≈
1

8.9837
d2.0655
0 , d1 ≈ 1

4.7781
d1.0184
0 , with d1 =

√
d2
0 + d2

2.

In addition, based on the numerical results in Figure 25 it is reasonable to make
the following conjecture about the reduced dynamic laws for the interaction of N
well-separated vortices with winding number mj = +1 or −1:

vj(t) :=
dxj(t)

dt
= 2

N∑
l=1, l �=j

ml
Qj (xj(t) − xl(t))

|xj(t) − xl(t)|2
, t ≥ 0,(5.1)

xj(0) = x0
j , 1 ≤ j ≤ N,(5.2)

where Qj is given as

Qj =

(
mj κ1 −κ2

κ2 mj κ1

)
= mjκ1 I + κ2 J, j = 1, 2, . . . , N,

with κ1 and κ2 being constants determined from α, β in (1.1) and the initial setup
(1.7). Formal derivation of the above reduced dynamics laws (5.1) for the CGLE can
be followed from those in [27] for the GLE and NLSE. Again, the nonlinear ODEs
(5.1) can be solved analytically as those in section 2.3 for the GLE and section 2.4 for
the NLSE when the initial conditions in (5.2) are given by Patterns I–IV in section 2.2.
The details are omitted here. For comparison, Figure 26 shows numerical solutions
of (5.1) for different initial setups. This figure clearly confirms our conjecture (5.1)
about the reduced dynamic laws of the CGLE for the interaction of N well-separated
vortices with winding number mj = +1 or −1.

5.2. Vortex motion under an inhomogeneous external potential. The
particular external potential we take is of the form

(5.3) V (x) =
1
2 + γxx

2 + γyy
2

1 + γxx2 + γyy2
= 1 − 1

2 (1 + γxx2 + γyy2)
, x ∈ R

2,

where γx and γy are two positive constants. It is easy to see that V (x) attains its
minimum value 1/2 at the origin (0, 0). Here we study numerically the dynamics of a
vortex in the following two cases:

Case I. Isotropic external potential, e.g., γx = γy = 1 in (5.3).
Case II. Anisotropic external potential, e.g., γx = 1 and γy = 5 in (5.3).

For the GLE, i.e., α = 1 and β = 0 in (1.1), the velocity of the induced motion
due to the inhomogeneous impurities was obtained in [17]:

(5.4) v(t) :=
dx(t)

dt
= −∇ lnV (x(t)), t ≥ 0, with x(0) = x0.
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Fig. 26. Numerical solutions of the reduced dynamical laws (5.1) for the CGLE with κ1 = 3
and κ2 = 1 for different initial setups. (a) Pattern I with N = 2 and a = 2. (b) Pattern II with
N = 3 and a = 2. (c) Pattern IV with a = 3.

This implies that here, the vortex would move to the minimizer of the external po-
tential V (x). Furthermore, if the external potential is isotropic, the trajectory is a
segment connecting x0 and the minimization point of V (x), while for the NLSE and
CGLE, the dynamic laws with impurities remain to be established.

The initial condition in (1.2) is chosen as ψ(x, 0) = φ1

(
x−x0

)
for x ∈ R

2, where
φ1 = φ1(x) is the vortex state solution (1.4) with winding number m = +1 and x0 is
a given point. Figure 27 displays the time evolution of the vortex center in the GLE
with x0 = (1, 2)T for different ε, and Figures 28 and 29 show similar results for the
CGLE and NLSE, respectively.

From Figures 27–29, we can draw the following conclusions. First, for the GLE
and CGLE, the vortex center moves monotonically to the position where the external
potential V (x) attains its minimum value (cf. Figures 27 and 28). The speed of the
motion depends on the values of the parameter ε. The trajectory of the vortex center
depends on the external potential V (x), which agrees with the analytical results for
the GLE in [16, 17, 21]. After the vortex reaches the minimum point of the external
potential, it always stays at that point, which illustrates the pinning effect. Second,



1772 YANZHI ZHANG, WEIZHU BAO, AND QIANG DU

(a)
0.2 0.6 1

0

0.5

1

1.5

2

x

y

ε = 1
ε = 1/2
ε = 1/4
ε = 1/8

(c)
0 20 40 60

0

0.5

1

1.5

t

| x
(t)

− 
x rd

(t)
|

ε = 1
ε = 1/2
ε = 1/4
ε = 1/8

(b)
0.2 0.6 1

0

0.5

1

1.5

2

x

y

ε = 1
ε = 1/2
ε = 1/4
ε = 1/8

(d)
0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

1.2

t

| x
(t)

− 
x rd

(t)
|

ε = 1
ε = 1/2
ε = 1/4
ε = 1/8

Fig. 27. Time evolution of the vortex center under an inhomogeneous external driving potential
in the GLE. (a), (b): Case I and II, respectively. Trajectory for different ε. (c), (d): Errors between
the numerical results of the GLE (denoted as x(t)) and the solution of the reduced dynamic laws
(5.4) (denoted as xrd(t)).

for the NLSE, the vortex center moves rotationally clockwise when m = +1 and
counterclockwise when m = −1, to the minimum position of the external potential
(cf. Figure 29). The smaller ε, the longer the vortex center stays on a circle. Additional
experiments were carried out for Case II. Similar motion patterns were observed, so
the results are omitted here.

Based on the numerical results in Figures 28–29, it is reasonable to make the
following conjectures about the vortex motion in the NLSE and CGLE: For the
NLSE under an inhomogeneous potential, the velocity of the induced motion satisfies
(cf. the right-hand side of Figure 29)

(5.5) v(t) :=
dx(t)

dt
= −mκJ∇ lnV (x(t)), t ≥ 0, with x(0) = x0,

where m is the winding number of the vortex, κ is a constant, and J is the symplectic
matrix given in (1.13), while for the CGLE, it can be given by (cf. Figure 28(c),(d))

(5.6) v(t) :=
dx(t)

dt
= −Q∇ lnV (x(t)), t ≥ 0, with x(0) = x0,

where the matrix Q = mκJ + I with κ a constant, and J and I are the symplec-
tic matrix in (1.13) and identity matrix, respectively. Their rigorous mathematical
justification is not yet available.

6. Conclusion. We have studied the dynamics and interaction of quantized vor-
tices in the Ginzburg–Landau–Schrödinger equation (GLSE) for modeling supercon-
ductivity and superfluidity both analytically and numerically. Along the analytical
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Fig. 28. Time evolution of the vortex center under an inhomogeneous external driving potential
in the CGLE. (a), (b): Case I and II, respectively. Trajectory for different ε. (c), (d): Errors
between the numerical results of the CGLE (denoted as x(t)) and the solution of the reduced dynamic
laws (5.6) with κ = 1 (denoted as xrd(t)).
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Fig. 29. Time evolution of the vortex center under an inhomogeneous external driving potential
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front, we proved the conservation of the mass center and the signed mass center of
N vortex centers governed by the reduced dynamic laws for the Ginzburg–Landau
equation (GLE) and nonlinear Schrödinger equation (NLSE), respectively. We also
solved analytically the nonlinear ordinary differential equations (ODEs) governing the
reduced dynamic laws of the GLE and NLSE for some initial data with symmetrically
placed vortices. On the numerical side, by applying an efficient, accurate, and uncon-
ditionally stable numerical method for the GLSE with nonzero far-field conditions in
two dimensions, we numerically examined issues such as the interaction of vortices
and the motion of a vortex under an inhomogeneous external potential in the GLSE.
Comparisons between the solutions of the reduced dynamic laws and direct simulation
results of the GLSE were provided. Some conclusive findings were obtained, and dis-
cussions on numerical and theoretical results were provided for further understanding
of vortex interactions in the GLSE. In addition, the vortex motion under an inhomo-
geneous external potential in the GLSE was investigated numerically for the first time
and some conjectures for the motion were made based on our computational findings.
In the future, we will extend our efficient and accurate numerical method to the study
of the dynamics and the interaction of vortex line states in three dimensions and in
bounded domains for the GLSE.
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1. Introduction. This paper is concerned with the small-time behavior of inter-
faces of zero contact angle solutions to the “thin-film” equation

∂h

∂t
= − ∂

∂x

(
hn ∂

3h

∂x3

)
,(1.1a)

with h = h0(x) at t = 0 and(1.1b)

h =
∂h

∂x
= hn ∂

3h

∂x3
= 0 at x = s(t),(1.1c)

where h ≥ 0 represents the thickness of a fluid film and x = s(t) denotes the right-hand
interface (with h ≡ 0 for x > s(t)); since we are concerned with the local behavior at
such an interface we need not specify conditions at any left-hand moving boundary.
The first boundary condition of (1.1c) defines the moving boundary (as the point at
which the film thickness reaches zero), the second ensures a zero contact angle, and
the third represents conservation of mass.

In the last few years the range 0 < n ≤ 3 has been considered in the literature from
a modeling point of view. With n = 3, (1.1a–c) models the lubrication approximation
of a surface tension-driven thin viscous film spreading on a solid horizontal surface,
with a no-slip condition at the solid/liquid/air interface [5, 6, 10, 11, 12, 14, 34].
However, the no-slip condition implies an infinite force at the interface [19, 27]. To
avoid this, more realistic models allowing slip have been proposed (see, e.g., [4, 22, 26])
for which it has been shown that the qualitative behavior of solutions in the vicinity
of the interface corresponds to that of the solution of (1.1a–c) with n ∈ (0, 3); this
applies to questions of spreading or nonspreading as well as to questions of locally
preserved positivity and local film rupture [17]. We also note that an application of
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(1.1a) with 2 < n < 3 to power-law shear-thickening fluids is derived in [30]. With
n ∈ (0, 3) it is also well known (see, e.g., [7, 8]) that (1.1a–c) admits solutions with a
finite speed of propagation property; i.e., s(t) represents a moving boundary, which
moves at finite speed.

In this paper we thus consider only values of n in the moving front regime 0 < n <
3, and we assume further that the film is thick enough that Van der Waals forces play
no part. When considering solutions to (1.1a–c), the primary physical question is often
to do with the movement of the free boundary. Where h = 0 there is no diffusion
in (1.1a), and this can lead to waiting-time behavior, where the interface remains
stationary for a period before moving; alternatively the interface may either advance
or retreat immediately. A determination of the regimes in which such behavior can
occur has considerable implications regarding the possibility of film rupture in the
presence of a very thin prewetting layer; see, e.g., [31].

There has been much recent effort in the literature to answer outstanding ques-
tions about the initial movement of the interface. Theoretical results in [4, 5] have
shown that the interface cannot retreat if n ≥ 3/2, but that film rupture may occur
for n < 1/2 (see also [13, 14]). Moreover, numerical evidence [4, 10, 12] suggests that
for small values of n solutions which are initially strictly positive may vanish at some
point x0 after a finite time t0, with the solution becoming zero on a set of positive
measure shortly after the finite time singularity, a phenomenon called “dead core” in
other fields. The existence of a critical exponent (a value of n∗ > 0 for which solutions
stay positive for n > n∗ and where finite-time singularities are possible for n ≤ n∗)
has been conjectured in [11], where it is remarked that numerical simulations suggest
1 < n∗ < 3.5. Our results below support and clarify these conjectures; in particular,
here we provide the first concrete solutions to (1.1a–c) displaying retreat.

As explained in [31], subsequent to any waiting time the local behavior of solutions
to (1.1a–c) takes the form

h ∼
(

n3ṡ

3(3 − n)(2n− 3)
(s− x)3

) 1
n

as x → s− for
3

2
< n < 3,(1.2)

h ∼
(

3

4
ṡ(s− x)3 ln

[
1

(s− x)

]) 2
3

as x → s− for n =
3

2
,(1.3)

h ∼ B(t)(s− x)2 as x → s− for n <
3

2
.(1.4)

With 0 < n < 3, in (1.2) we require that ṡ > 0, whereas in (1.4) the interface velocity
ṡ may take either sign, with B(t) determined as part of the solution. One of the key
motivations for the current analysis is to provide criteria under which ṡ < 0 holds
for sufficiently small time; since ṡ > 0 typically holds for large times, for example for
the Cauchy problem with initial data of finite mass, a large-time analysis provides no
insight into such matters.

For definiteness, we shall consider the case

(1.5) h0(x) ∼ A0(x0 − x)α + C0(x0 − x)β as x → x−
0 ,

where A0, α, and β are positive constants with β > α; C0 is a constant; and x0 = s(0).
Extensive studies of the small-time behavior have already been done for the cor-

responding second-order problem, the porous-medium equation:

(1.6)
∂h

∂t
=

∂

∂x

(
hn ∂h

∂x

)
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Fig. 1.1. A summary of the possible small-time behaviors with respect to n and α. By “shock”
we mean that a steep front suddenly overruns the interface. In the region max(2, 3/n) < α < 4/n
a diverse range of waiting-time scenarios are seen: specifically (see sections 4.4.1 and 4.6.1) the
interface waits, but the local profile changes instantaneously from that of the initial data and can
exhibit monotonic (if α5 < α < 4/n) or oscillatory (if α2 < α < α5) decay to the local solution, or
limit-cycle behavior (if max(2, 3/n) < α < α2).

with n > 0. We present our results in this context. The variety of possible small-
time behaviors for (1.1a–c) is summarized in Figure 1.1, and can be characterized as
follows:

(i) For α greater than some critical value, the interface “waits” for some finite
time tw, whereby

s(t) = x0 for 0 ≤ t ≤ tw,

after which time it moves. (See also [18, 21, 23] for rigorous studies of such
waiting-time phenomena for (1.1a).) For α = 4/n an upper bound on tw
can be deduced from the local behavior of the solution (cf. [33] for the corre-
sponding case (1.6)); more generally, information about tw can be obtained
from the full (global) solution (cf. [32] for (1.6)).

(ii) For α below the critical value, the interface will move at once, with (in view
of (1.2)–(1.3))

s(t) > x0 for t > 0

for 3/2 ≤ n < 3 (cf. [25] for (1.6)). For n < 3/2, however, ṡ < 0 is also
possible, so a further classification is required according to whether ṡ > 0 or
ṡ < 0 for small t > 0. This does not arise in the corresponding analysis of
(1.6), since ṡ ≥ 0 necessarily holds.

In addition, the higher order of (1.1a) leads, as we shall see, to a much more diverse
range of waiting-time scenarios than that which occurs for (1.6), as shown in Figure 1.1.
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The definitions of α2 and α5 are rather complicated; for details we refer to section
4.4.1, section 4.6.1, and Appendix A.

In seeking a physical explanation for these results, we remark that larger n implies
weaker slip, and large α a shallow initial “contact angle.” Broadly speaking, the larger
the value of n/α, the stronger is the tendency of solutions to stay positive. The cur-
rent phenomena are associated with perfectly wetting (zero-contact-angle) boundary
conditions and should not be confused with those associated with finite static contact
angles. In the latter (i.e., partially wetting) case, for viscous fluids with an initial
condition characterized by a contact angle sufficiently greater (respectively, less) than
equilibrium, the droplet tends to spread (contract) with no waiting. For intermedi-
ate contact angles, waiting-time behavior associated with contact-angle hysteresis can
occur. Although such behavior has some similarities with that described below (in
particular, retreating contact lines are associated with initial data that are “smaller”
than advancing ones), there are also important differences, notably that waiting-time
behavior is in general associated with the “smallest” initial data.

We are not aware of any experimental evidence to support our conjectures, but in
light of our results such experiments might be timely. For a discussion of the physical
length scales pertinent to the slip-dominated (n = 2) model, see, for example, [20],
and also references therein regarding such strong slip conditions. (We note that this
paper also includes an additional term, not present in the thin-film equation, that
is relevant for slip lengths even longer than those for which (1.1a–c) applies with
n = 2.) Instead, we support our asymptotic conjectures with numerical results.
Without loss of generality we assume that s(0) > 0 and, for numerical purposes, we
first approximate (1.1a–c) by replacing (1.1c) by

(1.7c)
∂h

∂x
= hn ∂

3h

∂x3
= 0 for x = 0, l,

where l � s(0), and restrict (1.1a) to hold on (0, l). Existence of solution concepts
for (1.1a,b), (1.7c) may be found in [5, 9, 14] and the references cited therein.

As described in [2], we discretize (1.1a,b), (1.7c) using finite elements in space and
finite differences in time, using uniform spatial and temporal discretization parameters
δx and δt, respectively; see section 2 for details. We expect that this method will be
able to compute the zero contact angle solution for the following reasons:

1. In [5], the existence of solutions to (1.1a,b), (1.7c) is proved for 0 < n < 3,
where h(·, t) may be C1([0, l]) for almost every t > 0 (the zero contact angle
solution), or alternatively h(·, t) may have nonexpansive support.

2. In [2] it was proved that the numerical solution converges, as δx, δt → 0,
to a weak solution of (1.1a,b), (1.7c) (in the sense of [5, 9, 14]). The only
remaining question is whether this is the zero contact angle solution or a
solution with nonexpansive support.

3. In a sequence of experiments, taking δt = O(δx
1
2 ), the numerical method

computes a solution with nonexpansive support.
4. In a sequence of experiments, taking δt = O(δx2), the numerical method can

compute solutions where |ṡ(0)| = ∞ (zero contact angle solutions).
5. In [2] a self-similar source type solution was successfully computed with

δt = O(δx2). Moreover, taking a nonsmooth stationary solution as ini-
tial data, i.e., h0(x) = αmax{γ2 − x2, 0} and 0 < γ < l, the numerical
method computed a smooth solution for 0 < n < 3, and it was concluded
that h(x, t) ≡ h0(x) for n > 3.
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Hence in our experiments, in order to be sure that we are approximating the zero
contact angle solution we always choose δt = O(δx2). We report that the numerical
solution always appears to be smooth.

An outline of the paper is as follows. We begin in section 2 by describing
our numerical scheme in more detail. We then proceed in sections 3 and 4 with a
formal asymptotic analysis, supported by numerical experiments, for the two cases
α ≥ 4/n and α < 4/n, respectively. Videos demonstrating more graphically how
some of the numerical solutions of these sections evolve over time can be found
online at http://www.personal.rdg.ac.uk/∼sms03sl/4thorder/4thorder.html. Finally,
in section 5 we present some conclusions.

2. Numerical approximation. Following the approach of [2], and as described
in section 1, we restrict (1.1a) to a finite space interval (0, l), introduce a potential w,
and rewrite it as the system of equations

∂h

∂t
=

∂

∂x

(
hn ∂w

∂x

)
in (0, l) × (0, T ),(2.1a)

− ∂2h

∂x2
= w in (0, l) × (0, T ).(2.1b)

A nonnegativity constraint is imposed on (2.1b) via a variational inequality in the
weak form, and then we discretize (2.1a,b) using the finite element method. Now,
given positive integers N and M , denote by δt := T/M and δx := l/N the tempo-
ral and spatial discretization parameters, tk := kδt, k = 1, . . . ,M , and xj = jδx,
j = 0, . . . , N ; then the discretization may be written in the following way.

For k = 1, . . . ,M and j = 1, . . . , N − 1 find {Hk+1
j ,W k+1

j } such that

Hk+1
j −Hk

j

δt
+

1

δx2

[∫ xj

xj−1

(
(x− xj−1)

δx
Hk

j +
(xj − x)

δx
Hk

j−1

)n

dx

](
W k+1

j −W k+1
j−1

δx

)

+
1

δx2

[∫ xj+1

xj

(
(x− xj)

δx
Hk

j+1 +
(xj+1 − x)

δx
Hk

j

)n

dx

](
W k+1

j −W k+1
j+1

δx

)
= 0,(2.2a)

[
−Hk+1

j+1 + 2Hk+1
j −Hk+1

j−1

δx2
−W k+1

j

]
Hk+1

j = 0,(2.2b)

−Hk+1
j+1 + 2Hk+1

j −Hk+1
j−1

δx2
−W k+1

j ≥ 0,(2.2c)

Hk+1
j ≥ 0,(2.2d)

where Hk
j ≈ h(xj , tk), W

k
j ≈ w(xj , tk), H

0
j = h0(xj); similar equations/inequalities

appropriate for boundary data (1.7c) hold for j = 0, N when k = 1, . . . ,M . This non-
linear system is solved using a Gauss–Seidel algorithm in multigrid mode; for details
we refer to [3]. We found this approach to have several advantages over some other
algorithms previously proposed in the literature, such as the Uzawa-type algorithm
[2, (3.7a–c)], [24]. Specifically, we find the following:

1. If Hk
j−1 = Hk

j = Hk
j+1 = 0, then it follows from (2.2a) that Hk+1

j = Hk
j = 0,

so that the free boundary advances at most one mesh point from time level k
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to time level k + 1. The advantage of using the nonsymmetric Gauss–Seidel
smoother is that this constraint is easier to impose on the numerical method
than with a symmetric smoother.

2. Working within a multigrid framework significantly increases the rate of con-
vergence. This allows us to reduce the tolerance for the stopping criterion of
the iterative scheme (the maximum absolute difference in successive iterates
is smaller than tol) to tol = 10−12, as compared with tol = 10−8 in [2], and
therefore to solve the nonlinear system more accurately, thereby helping to
avoid spurious behavior.

3. Nonnegativity of the computed numerical solution is guaranteed, and so defin-
ing the position xk

c of the numerical free boundary at time tk to be

xk
c := {xj > 0 : Hk

m ≤ ε for all m ≥ j, Hk
j−1 > ε},

we take ε = 0, which tracks the free boundary more accurately than with
ε > 0; this compares with ε = 10−6 in [2]. We remark that because the
numerical free boundary is defined on a discrete set of points, its movement
appears to “stutter” in the figures below. Although the interface always
advances or retreats with a stepping motion, oscillations are seen only in
certain cases. Moreover, it is sometimes the case that the oscillations in Hk

j

begin and grow before the contact line moves; hence they do not appear to
be caused by this “stuttering.”

In the numerical experiments of sections 3 and 4 we solve (1.1a,b), (1.7c) with
l = 1 and

(2.3) h0(x) = 5 max
{(

9
16 − x2

)α
, 0
}

;

the key properties are that the maximum value of h0 is O(1) and the thin film is
symmetrically distributed about 0 with x0 = 3/4. These experiments were performed
for a sequence of space steps δx, where δt = Cα,nδx

2 and convergence of (2.2a)–(2.2d)
to a weak solution of (1.1a,b), (1.7c), (2.3) was assured (see [2]). For reasons of space
we refer to [15] for further figures and numerical results, including results from many
more experiments with values of n and α closer to the edges of the parameter regimes.

3. Formal asymptotic analysis and numerical results for α ≥ 4/n. For
α ≥ 4/n, the formal asymptotic analysis of this section suggests that we might expect
waiting-time behavior. In particular, for α > 4/n (section 3.1) we anticipate “global”
waiting-time behavior, by which we mean that the asymptotic expansion tells us
to expect a waiting time but gives no clue as to the local behavior; in this case
the interface starts to move due to shock formation, with the gradient becoming
unbounded near the free boundary. For α = 4/n (section 3.2) this global breakdown
can occur for the full range 0 < n < 3, but for 2 < n < 3 “local” waiting-time
behavior is also possible; by this we mean that the dominant term in the asymptotic
expansion switches at the end of the waiting time.

3.1. α > 4/n: Global waiting-time behavior. Provided that h0(x) is ana-
lytic away from the interfaces, then the small-time expansion

(3.1) h ∼ h0 −
d

dx

(
h3

0

d3h0

dx3

)
t as t → 0+
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Fig. 3.1. Waiting-time behavior, various n, α.

holds, at least away from the interface. From (1.5) we have

d

dx

(
hn

0

d3h0

dx3

)
∼ α(α− 1)(α− 2)((n + 1)α− 3)An+1

0 (x0 − x)(n+1)α−4

+ (nα(α− 1)(α− 2) + β(β − 1)(β − 2)) (nα + β − 3)An
0C0(x0 − x)nα+β−4

as x → x−
0 ;(3.2)

for α > 4/n we have (n + 1)α− 4 > α, and we may expect the local behavior

(3.3) h ∼ A0(x0 − x)α as x → x−
0

to hold up to some finite time t = tw > 0, implying a waiting-time scenario in which
the local behavior at the interface does not change for some nonzero waiting time.

To test this conjecture, we ran numerical experiments for a large range of n and
α > 4/n, considering in particular n = 0.75, 1.0, 1.75, and 2.5, so as to cover all of
the different regimes important in the case α < 4/n (see section 4).

In the upper left panel of Figure 3.1 we plot xk
c against tk for n = 1.75 and

α = 3.0 > 4/n = 2.29. The numerical free boundary remains stationary for a period
before advancing. We also plot profiles of Hk

j in the vicinity of the interface at times

just before and just after xk
c begins to move (lower left panel). Shock-type behavior

at the end of the waiting time can be observed (cf. [32] for the second-order case).
Similar waiting-time behavior, with shock type behavior at the end of the waiting

time, was observed for all n, α combinations tested in this range. Approximate waiting
times are plotted against α in the right half of Figure 3.1, for n = 0.75, 1.0, 1.75, 2.5
and for various α > 4/n. For fixed n, the waiting time increases as α increases.

3.2. α = 4/n: Local waiting-time behavior for 2 < n < 3. In the critical
case, the leading term in (1.5) suggests the separable local behavior

(3.4) h ∼ Λ(t)(x0 − x)4/n as x → x−
0 ,

with (1.1a–c) implying

Λ̇ = − 4
n

(
4
n − 1

) (
4
n − 2

) (
4
n + 1

)
Λn+1.
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Hence if n �= 2 (recalling that we consider in this paper only 0 < n < 3), then

(3.5) Λ = A0

(
1 +

8(4 − n)(2 − n)(n + 4)An
0 t

n3

)− 1
n

.

This local solution also represents waiting-time behavior; (3.5) blows up in finite time
if 2 < n < 3, so the waiting time tw then satisfies

tw ≤ tc ≡
n3

8(4 − n)(n− 2)(n + 4)An
0

;

Λ(t) decreases with time for 0 < n < 2, but we nevertheless expect (3.4) to remain
valid only up to some finite tw, after which the front begins to move due to shock,
as described in section 3.1. Thus for 2 < n < 3 local waiting-time behavior (tw =
tc) is possible, analogous to that for the porous-medium equation [33], while global
breakdown (tw < tc for 2 < n < 3) can occur for the full range 0 < n < 3 (cf. [32]).

4. Formal asymptotic analysis and numerical results for α < 4/n. We
begin in section 4.1 by deriving some local similarity solutions. Based on these and
the local behavior indicated in (1.2)–(1.4), we conjecture in sections 4.2–4.6 some
parameter regimes for the small-time behavior when α < 4/n, in which case (3.3)
fails for any t > 0. This does not mean that for α < 4/n there is no waiting-time
behavior; on the contrary, unlike for the corresponding second-order problem (1.6),
a diverse range of waiting-time scenarios can occur in this case. In addition to these
waiting-time scenarios, the front may also advance or retreat instantaneously. Many
of our conjectures are supported by extensive numerical verifications, detailed below;
we leave open their rigorous confirmation.

4.1. Local similarity solutions. In view of (1.5), a natural conjecture for the
small-time behavior for α < 4/n (balancing the terms in the expansion so that they
are of the same size) is the self-similar form

(4.1) h ∼ t
α

4−nα f
(
(x− x0)/t

1
4−nα

)
, s(t) ∼ x0 + η0t

1
4−nα ,

where with η := (x− x0)/t
1/(4−nα), f(η) satisfies the boundary-value problem

(4.2)
1

4 − nα

(
αf − η

df

dη

)
= − d

dη

(
fn d3f

dη3

)
,

as η → −∞, f ∼ A0(−η)α − α(α− 1)(α− 2)((n + 1)α− 3)An+1
0 (−η)(n+1)α−4,(4.3a)

at η = η0, f =
df

dη
= fn d3f

dη3
= 0.(4.3b)

Here s(t) is the position of the interface at time t, and η0 is a free constant determined
by the boundary-value problem.

The behavior as η → −∞ in (4.3a) thereby matches via (3.1) with the leading
terms in (1.5) and (3.2). The constant A0 can be removed via the change of variables

f = A
4

4−nα

0 f̂ , η = A
n

4−nα

0 η̂,

suggesting in particular the delicacy of the limit α → (4/n)−, and the transformation

f = |η| 4
n g(ξ), ξ = ln |η|
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enables (4.2) to be reduced to a fourth-order autonomous problem. Nevertheless, the
complexities of the resulting four-dimensional phase space mean that a global analysis
of (4.2) (akin to that in [33] for the second-order problem) is not practicable here.
Instead we base our conjectures in large part on a number of closed-form solutions
to (4.2), which we now note. We assume (4.2)–(4.3a,b) to have a unique nonnegative
solution.

(I) Separable solution

(4.4) f(η) =

(
n3

8(4 − n)(2 − n)(n + 4)
(−η)4

) 1
n

is an explicit solution to (4.2) for 0 < n < 2, providing a possible local
behavior as η → 0− for solutions with η0 = 0; the circumstances under which
(4.4) may be applicable are clarified in Appendix A.

(II) Steady-state solution

(4.5) f(η) = A0(−η)2, η0 = 0,

gives the solution to (4.2)–(4.3a,b) when α = 2.
(III) Traveling wave solution

(4.6) f(η) = A0(η0 − η)
3
n , η0 =

3(3 − n)(2n− 3)An
0

n3
,

is the solution to (4.2)–(4.3a,b) when α = 3/n, n �= 3/2; here η0 > 0 if
3/2 < n < 3, and η0 < 0 if 0 < n < 3/2.

To complete our catalogue of pertinent closed-form solutions we note that for n = 1
the polynomial solution (cf. [28])

h =
A3

0

4(1 + 30C2
0 t/A0)C2

0

(
(1 + C0(x0 − x)/A0)

2 − (1 + 30C2
0 t/A0)

2
5

)2

,

s = x0 −A0

(
(1 + 30C2

0 t/A0)
1
5 − 1

)
/C0,(4.7)

corresponds to

(4.8) h0 = A0(x0 − x)2 + C0(x0 − x)3 + C2
0 (x0 − x)4/(4A0),

so that α = 2, β = 3 in (1.5); hence s initially decreases if C0 > 0 but increases if
C0 < 0, with

(4.9) s(t) ∼ x0 − 15C0t as t → 0+,

this dependence on the sign of C0 being perhaps counter intuitive, which is far from
unusual in such high-order diffusion problems.

4.2. Small-time behavior for 2 < n < 3. In this regime, the solution (4.4)
is not available to describe the local behavior of f(η) at the interface; (4.6) has the
expected local behavior (1.2), while (4.5) corresponds to α > 4/n and therefore lies
in the waiting-time regime discussed in section 3.1. We thus anticipate that for any
α < 4/n the support of h expands immediately according to (4.1) with η0 > 0 and,
in (4.2)–(4.3a,b),

(4.10) f(η) ∼
(

n3η0

3(3 − n)(2n− 3)(4 − nα)
(η0 − η)3

) 1
n

as η → η−0 ,
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Fig. 4.1. Numerical results for n = 2.5, α = 0.5, T = 10−8 (left), and for n = 2.5, α = 1.4,
T = 10−3 (right). In the top panels the advancing free boundary is shown. In the bottom panels
log tk is plotted against log(xk

c − x0
c) as a discrete set of points, with the solid line following from a

least squares fitting, the straight dotted line from asymptotic theory, and the dashed line in the lower
right section from a least squares fitting with the early data removed.

which follows from (1.2). The interface advances with unbounded initial velocity for
α < 3/n, with finite positive initial velocity if α = 3/n (with f(η) given by (4.6)),
and with velocity tending to zero as t → 0+ for α > 3/n. The behavior in this regime
is very much analogous to that exhibited by the porous-medium equation (cf. [25]).

To test this conjecture we ran numerical experiments for n = 2.5, for which
3/n = 1.2 and 4/n = 1.6, and for α ∈ [0.5, 1.5]. Our results support the conjecture.
In each case xk

c advances, with the speed of the advance decreasing as α increases from
0.5 to 1.5. We plot xk

c against tk for n = 2.5 and for α = 0.5 < 3/n and α = 1.4 > 3/n
in the upper half of Figure 4.1. Note the different time scales on the two plots.

In the lower half of Figure 4.1 we test the hypothesis that for small times

(4.11) xk
c = x0

c + Atγk ,

for some constants A > 0 and γ, by plotting log(xk
c − x0

c) against log tk (as a discrete
set of points—these appear to “stutter” since the numerical free boundary advances
by one discrete mesh point at a time). If the hypothesis is correct, we expect a
straight line with slope γ. To estimate the value of γ we take a least squares fit. For
presentational purposes we plot the best fitting least squares line as a solid line, and
for comparison we also plot a dotted line with slope (4 − nα)−1, the expected value
of γ (recall (4.1)).

For α = 0.5 the log-log plot is fairly straight, and the estimated value of γ = 0.31
is close to the expected value of 0.36. For α = 1.4 the best fitting least squares line
gives an estimate of γ = 1.27, which is not close to the expected value of 2.00 and is a
poor fit to the data. In this case the immediate yet slow advance of the free boundary
means that, for tk small, xk

c overestimates the exact position of the free boundary.
This is demonstrated by the fact that the lowest horizontal line of dots on the log-log
plot, corresponding to the first step in the advance of xk

c , matches very poorly with
the rest of the data. In the lower right plot of Figure 4.1 we thus also show as a
dashed line the best fitting least squares approximation to the data with the first step
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Table 4.1

Estimated and expected values of γ for n = 2.5, various α.

α 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

1
4−nα

0.36 0.40 0.44 0.50 0.57 0.67 0.80 1.00 1.33 2.00 4.00

γ 0.31 0.35 0.39 0.46 0.53 0.61 0.76 0.91 1.12 1.69 3.43

in the advance of xk
c excluded (equivalently, taking tk � 5 × 10−5 rather than tk > 0

on the log-log plot). This dashed line, with a slope of 1.69, matches the slope of the
data and the expected value of γ much more closely than our original estimate.

The expected and estimated values of γ for each value of α tested are shown in
Table 4.1. For α ≤ 1.3 we estimate γ using all of the data, but for α = 1.4 and
α = 1.5 we exclude the first step in the advance of xk

c , as discussed above. The
numerical results give a value of γ slightly lower than the expected value, but the
difference is small, and the trend of γ increasing with α is clear. Our estimate for γ
is more accurate for values of α away from the edges of the parameter regime.

4.3. Small-time behavior for n = 2. The behavior for α < 2 is as described
in section 4.2. However, for α = 2 the solution (4.1) is not applicable and, partly
because α = 2 will also play an important role in what follows, additional comments
regarding the resulting waiting-time scenario are instructive. The small-time solution
(4.5) suggests that there is initially no change in local behavior, while (3.2) becomes

(4.12)
d

dx

(
hn

0

d3h0

dx3

)
∼ (β + 1)β(β − 1)(β − 2)A2

0C0(x0 − x)βt;

both suggest seeking a local solution of the form

(4.13) h ∼ A0(x0 − x)2 + H(x, t) as x → x−
0 ;

we note that H need not be positive on x < x0 because it represents a correction term
to the (quadratic) leading order behavior. Linearizing in H yields

∂H

∂t
= −A2

0

∂

∂x

(
(x0 − x)4

∂3H

∂x3

)
,

and so, given (1.5) in which β > 2 is required, the correction term takes the separable
form

H = C0(x0 − x)β exp
(
−(β + 1)β(β − 1)(β − 2)A2

0t
)
,

consistent with (3.1), (4.12). The perturbation to the quadratic term thus decays
exponentially, and we expect (4.13) to persist up to some finite waiting time, after
which the interface will start to move due to shock formation (as in other global
waiting-time cases described here; see [32] for the second-order analogue).

4.4. Small-time behavior for 3/2 < n < 2. In this case (4.6) again has
the expected interface behavior (1.2), while (4.5) is nongeneric in the sense that it
is smoother than (1.2) at the interface; the solution of (4.2)–(4.3a,b) for α = 2 is
therefore an exceptional connection in phase space and can be expected to play a role
in separating distinct regimes, as we now suggest. The other noteworthy change to
occur as n drops below two is that the local behavior (4.4) can come into play.
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Fig. 4.2. Numerical results for n = 1.75, α = 2.24: waiting-time behavior (upper left plot);
profiles of Hk

j near the interface while the free boundary is stationary (upper right plot), and as

the free boundary advances (lower left plot); logHk
j against log(0.75− xj) in the vicinity of the free

boundary, with a dotted line from asymptotic theory (lower right plot—same legend as upper right).

4.4.1. 2 < α < 4/n. The solution to (4.2)–(4.3a,b) has the local behavior
which decays as (−η)4/n as η → 0− and exhibits a finite waiting time; for α2 < α <
4/n, where αi, i = 1, 2, 5 are defined in Appendix A, f(η) has local behavior (4.4), so
the solution decreases such that

(4.14) h ∼
(

n3(x0 − x)4

8(4 − n)(2 − n)(n + 4)t

)1/n

as x → x−
0 , 0 < t < tw,

for the duration of the period of waiting. Moreover, for α5 < α < 4/n we expect
nonoscillatory decay, whereas for α2 < α < α5 we expect damped oscillations to
occur. See Appendix A for details. For 2 < α < α2 the behavior is slightly more
subtle, with a limit cycle (see (A.5) of Appendix A) arising in the local description
for 0 < t < tw; the limiting behavior as α → 2 is addressed in Appendix B, providing
additional support for conjectures about the (rather subtle) asymptotic behavior.

We present numerical results for n = 1.75 (giving 3/n = 1.7143, α2(n) = 2.0768,
α5(n) = 2.2, 4/n = 2.2857), and for α = 2.24, 2.10 and 2.04, thus covering each of the
three parameter regimes described above. In the upper left plots of Figures 4.2, 4.3,
and 4.4, we plot xk

c against tk for n = 1.75 and α = 2.24, 2.10, and 2.04, respectively.
In each case xk

c remains stationary for a period before advancing, with the length of
the waiting period appearing to decrease as α decreases. We also plot in each figure
profiles of Hk

j near the interface at various times while the free boundary is stationary
(upper right plot) and just as the free boundary is beginning to advance (lower left
plot). In each case as x → x−

0 the profile of Hk
j appears to remain unchanged for

a short waiting period. In the lower right plot of each figure we plot logHk
j against

log(0.75 − xj) in the vicinity of the free boundary at the same times and using the
same legend as in the upper right plot of each figure, plotting also a dotted line with
slope 4/n for comparison.

For α = 2.24 (Figure 4.2) the (nearly) straight lines with slopes 2.26 for tk =
2.5 × 10−4 and 2.29 for tk = 5.0 × 10−4 (estimated as before) compare well with the
value of 4/n = 2.29 proposed in the conjecture. For tk = 7.5 × 10−4 the log-log plot
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Fig. 4.3. Numerical results for n = 1.75, α = 2.10: waiting-time behavior (upper left plot);
profiles of Hk

j near the interface while the free boundary is stationary (upper right plot), and as the

free boundary advances (lower left plot); logHk
j against log(0.75 − xj) in the vicinity of the free

boundary, with a dotted line from asymptotic theory (lower right plot—same legend as upper right).
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Fig. 4.4. Numerical results for n = 1.75, α = 2.04: waiting-time behavior (upper left plot);
profiles of Hk

j near the interface while the free boundary is stationary (upper right plot), and as the

free boundary advances (lower left plot); logHk
j against log(0.75 − xj) in the vicinity of the free

boundary, with a dotted line from asymptotic theory (lower right plot—same legend as upper right).

is no longer straight, and the best fitting least squares line has a slope of 2.47; by this
time the profile of Hk

j has begun to change.

For α = 2.10 (Figure 4.3), the (nearly) straight lines have slopes 2.17 for tk =
2.5 × 10−4 and 2.18 for tk = 5.0 × 10−4. These values are slightly lower than for
α = 2.24, but still compare fairly well with the value of 4/n = 2.29 proposed in the
conjecture. For tk = 7.5 × 10−4 again the log-log plot is no longer straight, and the
best fitting least squares line has a slope of 1.27; by this time the profile of Hk

j has
again begun to change.

For α = 2.04 (Figure 4.4) each log-log plot is again (nearly) a straight line;
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however, the slopes of 2.09 for tk = 2.0 × 10−4 and 2.08 for tk = 3.0 × 10−4 are
somewhat smaller than the value of 4/n = 2.29. As tk increases from zero, the slope
of the log-log plot increases from 2.04 up to a maximum of 2.09 before decreasing.
For tk = 4.0 × 10−4 the line has a slope of 1.91; by this time the profile of Hk

j has
begun to change noticeably.

4.4.2. α = 2. This is the most delicate case, with the small-time behavior
depending on the correction term in (1.5), with β > 2. In (3.2) we have

(4.15)
d

dx

(
hn

0

d3h0

dx3

)
∼ β(β − 1)(β − 2)(2n + β − 3)An

0C0(x0 − x)2n+β−4,

and (4.13) yields

(4.16)
∂H

∂t
= −An

0

∂

∂x

(
(x0 − x)2n

∂3H

∂x3

)
,

implying, in view of (4.15), the small-time behavior

H = A
nβ

4−2n

0 C0t
β

4−2n Φ (ξ) , ξ = (x− x0)/
(
A

n
4−2n

0 t
1

4−2n

)
,

being a similarity reduction of (4.16) in which Φ(ξ;n, β) is required to satisfy the
matching conditions

as ξ → −∞, Φ ∼ (−ξ)β − β(β − 1)(β − 2)(2n + β − 3)(−ξ)2n+β−4,

at ξ = 0−, Φ = (−ξ)2n
d3Φ

dξ3
= 0,

from which it follows that

(4.17) Φ ∼ κ(β, n)(−ξ) as ξ → 0−

for some constant κ (which could in principle take either sign, reliable intuition about
the signs of such quantities being hard to come by in high-order diffusion problems).
In fact, for β = 1 + 2(2 − n)N for integer N (such that β > 2), Φ(ξ) takes the form

Φ = (−ξ)
N∑

m=0

am(−ξ)2(2−n)m

with aN = 1 and where a0 alternates in sign with increasing N . More significantly,
for β = 2(1 + (2 − n)N), we have

Φ = (−ξ)2
N∑

m=0

am(−ξ)2(2−n)m,

so that

(4.18) κ(2(1 + (2 − n)N), n) = 0

gives explicitly the values of β,

(4.19) βN = 2(1 + (2 − n)N), N = 1, 2, 3, . . . ,
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at which κ changes sign. Thus κ changes sign infinitely often as β → ∞.
In view of (4.13) and (4.17) there is a further, narrower, inner region with

(4.20) x = x0 + t
β−1
4−2n ζ, h ∼ t

β−1
2−n Ψ(ζ),

the dominant balance as t → 0+ being given by

d

dζ

(
Ψn d3Ψ

dζ3

)
= 0,

implying

(4.21)
d3Ψ

dζ3
= 0.

For C0κ > 0 we thus have instantaneous advance of the interface (with velocity zero
at t = 0+) with

(4.22) Ψ = A0(ζ0 − ζ)2, ζ0 = A
n(β+1)−4

4−2n

0 C0κ, s ∼ x0 + ζ0t
β−1
4−2n ,

in order to match with (4.17). A yet narrower inner region, with

ζ = ζ0 + O(t(β−2)/(2n−3)),

is then present near the interface, with scalings

(4.23) x = s(t) + t
β−5+2n

2(2−n)(2n−3) z, h ∼ t
β−5+2n

(2−n)(2n−3)φ(z),

whereby, matching with (4.22),

β − 1

4 − 2n
ζ0 = φn−1 d3φ

dz3
,(4.24a)

as z → −∞, φ ∼ A0(−z)2,(4.24b)

at z = 0−, φ =
dφ

dz
= 0.(4.24c)

This completes the description of the case C0κ > 0.
The problem (4.24a–c) has no solution for ζ0 < 0, corresponding to the fact that

interfaces cannot recede when n ≥ 3/2; a different scenario is therefore needed when
C0κ < 0 in which ζ = ζ0 in (4.22) no longer coincides with the interface; in other
words, a quantity σ(t), with

(4.25) σ ∼ x0 + ζ0t
β−1
4−2n as t → 0+,

replaces s(t) in (4.23) (with s(t) = x0 now holding for t ≤ tw), and (4.24a–c) becomes

β − 1

4 − 2n
ζ0(φ− φ∞) = φn d3φ

dz3
,(4.26a)

as z → −∞, φ ∼ A0(−z)2,(4.26b)

as z → ∞, φ ∼ φ∞,(4.26c)

a boundary condition count indicating that, since ζ0 < 0, (4.26a–c) suffices to deter-
mine φ(z), up to translates in z, and φ∞. The scaling properties of (4.26a–c) imply
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that φ and φ∞ are proportional to (ζ2
0/A

3
0)

1/(2n−3), with z scaling as (|ζ0|/An
0 )1/(2n−3).

In σ < x < x0, whereby

x0 − x = O
(
t

β−1
4−2n

)
, h = O

(
t

β−5+2n
(2−n)(2n−3)

)
,

we have to leading order that ∂h/∂t = 0 with, in view of (4.25)–(4.26a–c), the match-
ing condition

h ∼ ((x0 − x)/|ζ0|)α̂(β)
on t = σ−1(x),

where

α̂(β) :=
2(β − 5 + 2n)

(β − 1)(2n− 3)
,

implying that

(4.27) h ∼ ((x0 − x)/|ζ0|)α̂(β)
for σ < x < x0.

The exponent α̂(β) in (4.27) is monotonic increasing in β (given that β > 2) and
satisfies

α̂(2) = 2, α̂

(
1 +

2n

3

)
=

4

n
, α̂(∞) =

2

2n− 3
.

It follows for β > 1 + 2n/3 that α̂ lies in the regime of section 3.1, so that (4.27)
describes the behavior near the interface up to the waiting time; for 2 < β < 1+2n/3,
however, α̂ lies in the regime of section 4.4.1, so that (4.27) in turn breaks down suffi-
ciently close to the interface and (4.14) is attained locally via a small-time similarity
solution of the form (4.1)–(4.3a,b), with α replaced by α̂. Such behavior represents
a novel waiting-time phenomenon for degenerate parabolic equations (there being no
corresponding scenario for the porous-medium equation), but there are similarities
with, for example, Hele–Shaw flows with suction, whereby the free surface profile can
instantly change to a new configuration (cf. (4.27)), which then persists (see [29]).

Analysis of cases with κ = 0 requires specification of an additional term in the
local (1.5), and remarkably fine structure arises in consequence. Thus (cf. (4.18)) for

(4.28) h0(x) ∼ A0(x0 − x)2 + C0(x0 − x)2(1+(2−n)N) + D0(x0 − x)γ ,

where γ > 2(1 + (2 − n)N), we expect for each N a sequence of critical values of γ
which represent further refined dividing lines between solutions that expand at once
and those that wait; for those borderline values of γ, a further term in the expansion
of (4.28) must be incorporated and so on. The first set of these dividing lines can be
identified concisely via the one-degree-of-freedom (i.e., overspecified) family of local
solutions (obtained by constructing an algebraic expansion for h about the leading-
order term in (4.29))
(4.29)

h ∼ a(t)(x0 − x)2 − ȧ(t)

12(2 − n)(5 − 2n)(3 − n)an(t)
(x0 − x)6−2n + O((x0 − x)10−4n),

corresponding to (4.28) with N = 1 and

a(0) = A0, ȧ(0) = −12(2 − n)(5 − 2n)(3 − n)An
0C0,
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Fig. 4.5. Numerical results for n = 1.75, α < 2. On the left we show the numerical free
boundary advancing for α = 0.5, 0.6, 0.7, 0.8, T = 10−9 (upper left plot) and for α = 1.6, 1.7, 1.8, 1.9,
T = 10−3 (lower left plot); on the right we present results for α = 1.0, T = 10−6, with the numerical
free boundary plotted against time in the upper right plot, and with log tk plotted against log(xk

c −x0
c)

as a discrete set of points in the lower right plot, with the solid line following from a least squares
fitting and the straight dotted line from asymptotic theory.

and identifying the first critical value of γ for N = 1 to be 7− 4n; higher values of N
correspond to ȧ(0) = 0 in this local expansion. Because it is overspecified, the local
expansion of (4.29) pertains only when the local form of the initial data is consistent
with the powers of x0 − x therein and, as already implied, it represents a borderline
between solutions of the form (1.2) and (4.14).

4.4.3. α < 2. Here the interface advances immediately, with f(η) having local
behavior (4.10) and with unbounded initial velocity for α < 3/n, finite for α = 3/n,
and tending to zero for 3/n < α < 2. The last of these ranges disappears as n drops
below 3/2, providing one indication of the need to address this regime separately.

To test this we ran numerical experiments for n = 1.75 (giving 3/n = 1.7143,
4/n = 2.2857), with α ∈ [0.5, 1.9]. Our results again support the conjecture. In each
case xk

c advances, with the speed of the advance decreasing as α increases. This is
shown in Figure 4.5, in which xk

c is plotted against tk for n = 1.75 with α = 0.5, 0.6,
0.7, and 0.8 (upper left plot) and α = 1.6, 1.7, 1.8, and 1.9 (lower left plot). Note the
different time scales on the two axes.

In the upper right plot of Figure 4.5 we show the numerical free boundary
advancing for n = 1.75 and α = 1.0 < 3/n. As before, we test the hypothesis (4.11) by
plotting log tk against log(xk

c −x0
c) (in the lower right plot), and we estimate γ = 0.43.

For comparative purposes we plot a dotted line with slope (4 − nα)−1 = 0.44 on the
same graph. The expected and estimated values of γ are shown in Table 4.2. For
α = 1.9 we exclude the first step in the advance of xk

c , as discussed in section 4.2.
The estimates for γ are very close to the expected values, with this being especially
true for values of α away from the edges of the parameter regime.

4.5. Small-time behavior for n = 3/2. For α < 2, the support of h expands
immediately with unbounded velocity; in view of (1.3), the local behavior of f(η) then
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Table 4.2

Estimated and expected values of γ for various α, n = 1.75.

α 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

(4 − nα)−1 0.32 0.36 0.41 0.48 0.58 0.73 0.98 1.48

γ 0.30 0.34 0.40 0.47 0.58 0.73 0.98 1.53

takes the form

f(η) ∼
(

3η0

2(8 − 3α)
(η0 − η)3 ln

(
1

(η0 − η)

)) 2
3

as η → η−0 .

For 2 < α < 8/3 the behavior is again as described in section 4.4.1. The case α = 2
is particularly delicate, with the initial exponents α = 2 and α = 3/n coinciding for
n = 3/2. Much of the analysis in section 4.4.2 nevertheless still pertains—in particular
(4.17)–(4.19) hold—so that βN = 2 +N , as does (4.20)–(4.22). However, the scalings
(4.23) are evidently inapplicable for n = 3/2, and the appropriate scalings are instead
(for C0κ > 0)

(4.30) h = (s− x)2Φ(ξ, t), ξ = tβ−2 ln(1/(s− x)), s ∼ x0 + ζ0t
β−1,

so that the spatial scaling is exponentially small in t, which yield as the dominant
balance

(β − 1)ζ0 = 2Φ
1/2
0

dΦ0

dξ
,

and hence

(4.31) Φ0 =

(
A

3/2
0 +

3

4
(β − 1)ζ0ξ

)2/3

,

where we have matched with (4.22). For C0κ > 0, this has the required local behavior
(1.3) and completes the small-time analysis. For C0κ < 0, we again introduce

σ ∼ x0 + ζ0t
β−1,

which specifies the interior layer location, and replace the scalings in (4.30) by

h = (σ − x)2Φ(ξ, t), ξ = tβ−2 ln(1/(σ − x)),

to recover (4.31) with ζ0 (given by (4.22)) negative. Hence φ0 becomes zero at ξ = ξc,
where

ξc =
4A

3/2
0

3(β − 1)|ζ0|
.

There is now a further asymptotic region in which

(4.32) x = σ(t) + ρ(t)e−ξc/t
β−2

z, h ∼ |σ̇|2/3ρ2e2ξc/t
β−2

φ,

where the scaling on h is chosen to obtain the appropriate leading order balance,
namely (cf. (4.26a–c))

− (φ− φ∞) = φ3/2 d3φ

dz3
,

as z → −∞, φ ∼
(

3

4
(−z)3 ln(−z)

)2/3

,

as z → ∞, φ ∼ φ∞,
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where φ∞ is again to be determined as part of the solution and we have matched with
(4.31). The preexponential factor ρ(t) is expected to be algebraic in t; its calculation
would require correction terms in the various expansions to be evaluated and we shall
not pursue such matters further. Applying arguments similar to those in section 4.4.2,
we obtain from (4.32) that

(4.33) lnh ∼ −2ξc|ζ0|
β−2
β−1 /(x0 − x)

β−2
β−1 for σ < x < x0,

so the height of the film left behind by the retreating interior layer at x = σ is
exponentially small (and thus in particular implies waiting-time behavior at x = x0).
This reflects the status of n = 3/2 as a critical case; as we shall shortly see, for n < 3/2
the interface x = s itself retreats in the corresponding regime (in other words, the film
thickness left behind x = σ drops from being algebraically small for 3/2 < n < 2, as
in (4.27), through exponentially small for n = 3/2 (see (4.33)) to zero for n < 3/2).

4.6. Small-time behavior for n < 3/2. We have already alluded to the
qualitatively new feature, implicit in the local behavior (1.4), which can occur in
this regime, namely that the interface can retreat. Such behavior is most simply
demonstrated by the case α = 3/n in which the small-time similarity solution is given
by (4.6), with the interface retreating at a finite rate; in this regime (4.6) is nongeneric,
being smoother than the expected local behavior (1.4). For α > 3/n, we anticipate
waiting-time behavior, as in section 4.4.1; see also Appendix A. (In addition, an
analysis similar to that of Appendix B can be performed in the limit α → (3/n)+.)
The result for α = 3/n and α = 2 suggests that for α < 2 the interface expands at an
unbounded rate, with

(4.34) f(η) ∼ β(η0 − η)2 as η → η−0

for some constant η0, while for 2 < α < 3/n contraction occurs at an unbounded
rate, with η0 < 0 in (4.34). The critical case α = 2 is again of particular interest,
in particular since waiting-time behavior can in principle occur in this case also (but
only for extremely special initial data; cf. (4.29)). The analysis for α = 2 is more
straightforward than that above, since (4.22)–(4.24a–c) now apply right up to the
interface for C0κ < 0 (retreat) as well as for C0κ > 0 (advance). Such behavior
can be illustrated by the explicit solution (4.7)–(4.9) for n = 1, wherein β = 3 and
κ = −15.

For α = 2 we have that

s(t) ∼ x0 + ζ0t
β−1
4−2n as t → 0+,

which exhibits the same interface time-dependence as (4.1) with α = (4(β − 2) +
2n)/((β − 1)n); since β > 2, it follows that this α lies in the range 2 < α < 4/n,
and it implies that the same s(t) can result from quite different initial data (in this
case for 2 < α < 3/n, for which the interface retreats). This reflects the high order
of (1.1a), whereby the local behavior at the interface contains a further degree of
freedom in addition to s(t) and contrasts with the situation for the second-order case
(1.6) (cf. [1]).

4.6.1. 3/n < α < 4/n. In this regime we anticipate waiting-time behavior, as
described in section 4.4.1. For α5 < α < 4/n we expect monotonic decay onto the
4/n solution, for α2 < α < α5 we expect oscillatory decay, and for 3/n < α < α2

we expect a limit cycle to arise in the local description for 0 < t < tw (see (A.5)).
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Fig. 4.6. Numerical results for n = 0.75, α = 5.1: waiting-time behavior (upper left plot);
profile of Hk

j near the interface at various times (lower left plot); logHk
j against log(xk

c −xj) in the

vicinity of the free boundary (upper right plot), and over the whole range xj ∈ [0, xk
c ) (lower right

plot), with a dotted line of gradient 4/n (from asymptotic theory) in each case.
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Fig. 4.7. Numerical results for n = 0.75, α = 5.1; profile of Hk
j near the interface at various

times (same legend for each plot).

By monotonic decay we mean decay like η−γ , where γ is real, and by oscillatory
decay we mean that the solution decays like η−γ−iμ, where γ, μ are real. We present
numerical results below for n = 0.75 (giving 3/n = 4, α2(n) = 4.2061, α5(n) = 4.9,
4/n = 5.3333), with α = 5.1 (Figures 4.6 and 4.7), α = 4.5 (Figures 4.8 and 4.9) and
α = 4.1 (Figures 4.10 and 4.11), thus covering each of the three parameter regimes
described above (see also Appendix A). We also present results for n = 1.0 (for which
α2(n) = 3.2195) with α = 3.1 (Figures 4.12 and 4.13), with this second example in
the range 3/n < α < α2 reflecting the extremely delicate nature of the results in this
regime.

In the upper left plots of Figures 4.6, 4.8, 4.10, and 4.12 we plot xk
c against tk

for each example. In Figures 4.6 and 4.8, xk
c remains stationary for a period before
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Fig. 4.8. Numerical results for n = 0.75, α = 4.5: waiting-time behavior (upper left plot);
profile of Hk

j near the interface at various times (lower left plot); logHk
j against log(xk

c −xj) in the

vicinity of the free boundary (upper right plot), and over the whole range xj ∈ [0, xk
c ) (lower right

plot), with a dotted line of gradient 4/n (from asymptotic theory) in each case.
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Fig. 4.9. Numerical results for n = 0.75, α = 4.5; profile of Hk
j near the interface at various

times (same legend for each plot).

advancing, with a shorter waiting period in Figure 4.8. In Figures 4.10 and 4.12, xk
c

appears to immediately retreat, wait, and then advance. However, this retreat is over
a very short distance, and over a longer time scale the boundary appears to wait; note
the different scales on the two plots in the upper left corner of Figure 4.12.

In the lower left corner of Figures 4.6, 4.8, 4.10, and 4.12 we show profiles of
Hk

j in the vicinity of the free boundary at various times before the free boundary

has begun to advance. In each case the value of Hk
j drops faster further behind the

free boundary, leading to the formation of humps near the boundary. In order to
demonstrate the existence of more than one such hump, we show profiles of Hk

j on
smaller and smaller scales nearer and nearer to the free boundary in Figures 4.7, 4.9,
4.11, and 4.13. Note the different scales on the horizontal and vertical axes of each
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Fig. 4.10. Numerical results for n = 0.75, α = 4.1: motion of the numerical free boundary
(upper left plot); profile of Hk

j near the interface at various times (lower left plot); logHk
j against

log(xk
c − xj) in the vicinity of the free boundary (upper right plot), and over the whole range xj ∈

[0, xk
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Fig. 4.11. Numerical results for n = 0.75, α = 4.1; profile of Hk
j near the interface at various

times (same legend for each plot).

plot in Figures 4.7, 4.9, 4.11, and 4.13. Due to the limitations of the numerical method
and the scale of the plots it is possible that some of these results may be spurious,
but the repetition of the evidence found on the larger scales does provide a degree of
support for the conjectures.

The issue of whether these types of profiles lead to film break up (i.e., satellite
droplets separated by dead cores in which h is identically zero) is an interesting one
warranting further study. In the current context we note first that there remain open
questions regarding the range of n for which such rupture can occur, which it would not
be appropriate to explore here; second that the small-time similarity solutions cannot
exhibit such break up (each satellite drop must conserve mass, which is inconsistent
with their self-similar form); and finally, for n < 1/2 they could contain touch down
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Fig. 4.12. Numerical results for n = 1.0, α = 3.1: motion of the numerical free boundary
(upper left plots: note the different scales on each figure); profile of Hk

j near the interface at various

times (lower left plot); logHk
j against log(xk
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plot), and over the whole range xj ∈ [0, xk
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points (at which h = 0), as analyzed in [31].

In the upper right corner of Figures 4.6, 4.8, 4.10 and 4.12 we plot logHk
j against

log(xk
c − xj) in the vicinity of the free boundary at various times before the free

boundary has begun to advance. For comparison we also plot a dotted line with slope
4/n in each figure. In Figure 4.6, the best fitting least squares line for tk = 0 has a
slope of 5.10, rising to 5.26 for tk = 2.5 × 10−5 and 5.45 for tk = 5.0 × 10−5. For
tk = 7.5×10−5 the log-log plot is no longer very straight. We remark that in this case,
with n = 0.75 and α = 5.1, Hk

j is very close to zero quite far behind the free boundary,
hence the numerical results are extremely delicate. In Figure 4.8, the log-log plot is
not straight immediately in the vicinity of the free boundary for any tk > 0, although
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it is fairly straight further away from the free boundary. In Figures 4.10 and 4.12, the
log-log plots are not very straight, and the best fitting least squares lines have slopes
significantly lower than 4/n.

In the lower right corners of Figures 4.6, 4.8, 4.10 and 4.12 we plot logHk
j against

log(xk
c−xj) over the whole range xj ∈ [0, xk

c ) at various times before the free boundary
has begun to advance, plotting again a dotted line with slope 4/n for comparison. In
Figure 4.6, as tk increases, the log-log plot becomes less and less straight, and for
tk = 3.0× 10−3 the periodic behavior of the solution near the interface can clearly be
seen. The log-log plots for tk = 4.0×10−3 and tk = 5.0×10−3 are very similar to that
for tk = 3.0 × 10−3 but are not shown here. In Figure 4.8, the formation of humps
further and further from the free boundary becomes apparent. For tk = 1.0 × 10−4,
the slope of the log-log plot away from the free boundary is close to 4/n. For each of
Figures 4.10 and 4.12, as tk increases, the formation of extra humps in the vicinity of
the free boundary becomes apparent.

4.6.2. 2 < α < 3/n. To test the conjecture that the free boundary retreats
instantaneously with unbounded velocity, we ran experiments with n = 1.0 and α ∈
[2.1, 2.9]. We plot xk

c against tk in the left panel of Figure 4.14 for α = 2.2, 2.4, 2.6,
and 2.8. The results support the conjecture. In each case the free boundary retreats,
waits, and then advances, although the subsequent advance can only be seen in the
figure for α = 2.2. The initial velocity of xk

c appears to decrease as α increases,
although as α increases, the length of the period for which the free boundary retreats
also increases, so that the maximum distance retreated occurs for α = 2.9.

As before we test the hypothesis xk
c = x0

c − Atγk for some constants A > 0 and γ
by plotting log(x0

c−xk
c ) against log tk. Again, if the hypothesis is correct, we expect a

straight line with slope γ, and to estimate γ we take a least squares fit over the range
for which the log-log plot is approximately straight. In the right half of Figure 4.14
we plot xk

c against tk (upper section) and this log-log plot (lower section) for n = 1.0
and α = 2.5. The log-log plot is approximately straight, and the best fitting least
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Fig. 4.14. Numerical results for n = 1.0, 2 < α < 3/n. In the left panel we plot the retreating
free boundary for various α. In the right panels we show results for n = 1.0, α = 0.5: in the upper
right section we show the retreating free boundary; in the lower right section we plot log tk against
log(x0

c − xk
c ) as a discrete set of points, with the solid line following from a least squares fitting and

the straight dotted line from asymptotic theory.
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Table 4.3

Estimated and expected values of γ for n = 1.0, various α.

α 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

(4 − nα)−1 0.53 0.56 0.59 0.63 0.67 0.71 0.77 0.83 0.91

γ 0.44 0.53 0.58 0.63 0.67 0.72 0.77 0.81 0.85

squares line is plotted as a solid line on the same figure. For comparison we also plot
a dotted line with slope (4− nα)−1 = 0.67. The estimated value of γ = 0.67 matches
this exactly to two decimal places. The expected and estimated values of γ for each
value of α tested are shown in Table 4.3. The trend of γ increasing with α is clear,
and away from the edges of the parameter regime the estimated value of γ is very
close to the expected value.

4.6.3. α < 2. To test the conjecture that the free boundary advances in-
stantaneously, with an unbounded velocity, we ran experiments with n = 1.0 and
α ∈ [0.5, 1.9]. We plot xk

c against tk for α = 0.6, 0.7, 0.8, and 0.9 (upper left plot),
and for α = 1.5, 1.6, 1.7, and 1.8 (lower left plot) in Figure 4.15. Note the differ-
ent time scales on the two plots. The results support the conjecture, and the initial
velocity of xk

c decreases as α increases.

We again test the hypothesis (4.11), plotting xk
c against tk (upper right section

of Figure 4.15) and log(xk
c − x0

c) against log tk (lower right section of Figure 4.15)
for n = 1.0 and α = 1.2. The log-log plot is approximately straight, and the best
fitting least squares line, plotted as a solid line on the same figure, has a slope of 0.34.
For comparison we also plot a dotted line with slope (4 − nα)−1 = 0.36 on the same
figure. The expected and estimated values of γ are shown in Table 4.4. The trend of
γ increasing with α is clear, and for values of α away from the borderline value α = 2
the estimated value of γ is very close to the expected value.
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Fig. 4.15. n = 1.0, α < 2. In the left half of the figure we plot the advancing free boundary for
various α (note the different time scales on the two plots). In the right half of the figure we show
results for n = 1.0, α = 1.2: in the upper right section we show the advancing free boundary; in the
lower right section we plot log tk against log(xk

c − x0
c) as a discrete set of points, with the solid line

following from a least squares fitting and the straight dotted line from asymptotic theory.
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Table 4.4

Estimated and expected values of γ for n = 1.0, various α < 2.

α 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

(4 − nα)−1 0.29 0.30 0.32 0.34 0.37 0.40 0.43 0.48

γ 0.28 0.29 0.31 0.33 0.36 0.40 0.43 0.53

5. Conclusions. As we have seen, the thin-film equation (1.1a) exhibits a much
broader range of small-time phenomena than its second-order analogue, (1.6). Thus,
while the behavior of the former with 2 < n < 3 corresponds very closely to that
of the latter with any n > 0, for n < 2 equation (1.1a) exhibits a range of α in
which the interface waits but the local profile changes instantaneously from that of
the initial data (this combination does not occur for (1.6)) and can exhibit monotonic
or oscillatory decay to the local solution (4.14) or limit-cycle behavior of the form
(A.5). Moreover, for n < 3/2 fronts can either advance or retreat, and our small-time
classification gives rather precise criteria on the initial data in this regard. The very
delicate interlacing of initial profiles leading to immediate expansion or to a finite
waiting time, as outlined in section 4.4.2, for example, also deserves highlighting.

In Table 5.1 we demonstrate how these results apply to the cases n = 1 (which de-
scribes thin films in a Hele–Shaw cell [16] and the strong-slip limit of the Greenspan [22]
slip regularization) and n = 2 (which corresponds to the strong-slip limit of the usual
(Navier) slip-regularization; see [26], for example). See also [34] for further relevant
background. It is noteworthy that the case n = 2 is a critical one in a number of
respects (some of which are implicit in Figure 1.1).

The high-order problem (1.1) is a demanding one from the numerical point of
view; this wealth of distinct behaviors occurring over short length and time scales
necessitates particularly refined, careful, and detailed computational studies if the
relevant phenomena are to be captured adequately, and we have sought to implement
the required program of extensive numerical investigations. Taking into account the
delicacy of some of the asymptotic results and the limitations of the numerical scheme,
numerical results are shown only for those parameter regimes wide enough that suit-
able “intermediate” values of n and α can be used.

A number of generalizations immediately suggest themselves. In higher dimen-
sions, the small-time behavior of an initially smooth interface will be locally one-
dimensional, so most of the conclusions carry over. For n ≥ 3, the smoothest solutions
have fixed interfaces, and here waiting-time phenomena relate (for 3 ≤ n < 4) to a
delay in the contact angle becoming finite; we shall not elaborate on such matters

Table 5.1

Small- and waiting-time behavior for n = 1 and n = 2.

n Range of α Behavior
1 4/n = 4 < α Global waiting-time, ended by shock.

α5 ≈ 3.7 < α < 4 Interface waits but local profile changes
instantaneously from that of initial data and can

exhibit monotonic decay to local solution.
α2 ≈ 3.2 < α < 3.7 As above, but with oscillatory decay.
3/n = 3 < α < 3.2 As above, but with limit cycle behavior.

2 < α < 3 Interface retreats instantaneously.
α > 2 Interface advances instantaneously.

2 4/n = 2 ≤ α Global waiting time, ended by shock.
α < 2 Free boundary advances instantaneously.
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here, noting only that the approaches we have described above apply equally well
in such contexts. As a final instance, we note that for n < 3 a finite contact angle
condition can be imposed in place of the second of (1.1c) and a similar investigation
performed; again, we shall not report the results of such a study here.

Appendix A. Applicability of the local solution (4.4). In this appendix
we use boundary condition counting arguments to assess the applicability of (4.4) as
a local solution to (4.2) for 0 < n < 2. Writing

(A.1) f ∼
(

n3

8(4 − n)(2 − n)(n + 4)
(−η)4

) 1
n

+ F

and linearizing yields

1

4 − nα
(αF − ηFη) = − n3

8(4 − n)(2 − n)(n + 4)

d

dη

(
η4 d3F

dη3

)
− n

n + 4

d

dη
(ηF ) ,

with solutions

(A.2) F = K(−η)p,

where the possible p are the roots of the quartic

(A.3)
n3p(p− 1)(p− 2)(p + 1)

8(4 − n)(2 − n)(n + 4)
+

n(p + 1)

n + 4
+

α− p

4 − nα
= 0.

The expansion of (A.1) with F given by (A.2) is self-consistent if Re(p) > 4/n, so the
relations between α and n such that two roots of (A.3) have Re(p) = 4/n are crucial;
these relations can be shown to be

α1(n) =
α−b + αΔ

αd
, α2(n) =

α−b − αΔ

αd
,

where

αd = 2
(
n2 − n− 8

) (
7n3 − 84n2 + 400n− 640

)
n,

α−b = 47n5 − 674n4 + 3384n3 − 3520n2 − 17408n + 36864,

αΔ = (n + 4)(2 − n)(8 − n)
√

9216 − 5632n + 896n2 + 112n3 − 31n4,

so that

α1 ∼ 2 +
11

10
(2 − n) + O((2 − n)2) as n → 2−, α1 ∼ 3

n
+

5

24
+ O (n) as n → 0+,

α2 ∼ 2 +
31

22
(2 − n)

2
+ O((2 − n)3) as n → 2−, α2 ∼ 21

5n
− 1

120
+ O (n) as n → 0+.

It is also instructive to note the curves in (α, n) space on which roots of (A.3) become
complex, namely the repeated roots case in which (A.3) and

(A.4)
d

dp

[
n3p(p− 1)(p− 2)(p + 1)

8(4 − n)(2 − n)(n + 4)
+

n(p + 1)

n + 4
+

α− p

4 − nα

]
= 0

are satisfied simultaneously. These curves are shown in Figure A.1.
We define α5 = α5(n) to be the repeated root case (vb) shown in Figure A.1. The

various curves in (α, n) space relevant to our discussion are all shown in Figure A.2.
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Fig. A.1. The solutions to (A.3) and (A.4). To the right of (va) and of the rightmost of (vd)
and (ve) there are four real roots: between (va) and (vb), between (vd) and (ve), and to the left of
(vc) there are two real and two complex roots; between (vc), (vb), and the leftmost of (vd) and (ve)
there are four complex roots.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8

9

10

n

α

v
a

v
b

v
c

v
d

v
e

α
1

4/n

α
2

3/n
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and (A.4). Three of the roots become unbounded as α = 4/n is approached, with the fourth having
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In α2 < α < 4
n , two roots of (A.3) have Re(p) > 4

n , and the local expansion (A.1)
is correctly specified (the two degrees of freedom being the K’s in (A.2) corresponding
to those two roots). As α drops below α2 we anticipate that a Hopf bifurcation occurs
in (4.2)–(4.3a,b) with the local behavior as η → 0− taking for α > max(2, 3/n) the
limit-cycle form

(A.5) f ∼ (−η)
4
n Ω(− ln(−η)),

where Ω(ξ) is periodic of period P , say, in ξ. Since on α = α2

Im(p) = ± 1√
2n

√
96 − 24n− n2 −

√
9216 − 5632n + 896n2 + 112n3 − 31n4,

we anticipate that

P ∼ 2
√

2πn√
96 − 24n− n2 −

√
9216 − 5632n + 896n2 + 112n3 − 31n4

as α → α−
2 .

Note that P will depend on α and n but, in view of the scaling properties of (4.2)–
(4.3a,b), not on A0. For α5 < α < 4

n , the decay to (4.4) is nonoscillatory, while for
α2 < α < α5 damped oscillations occur.

Appendix B. 3/2 < n < 2, α → 2. We are concerned here with the behavior
of (4.2)–(4.3a,b) for α close to two. Writing α = 2 + ε, 0 < |ε|  1, we have for
η = O(1) that

(B.1) f ∼ A0(−η)2 + εf1(η)

with

1

2(2 − n)

(
2f1 − η

df1

dη
+ A0(−η)2

)
= −An

0

d

dη

(
(−η)2n

d3f1

dη3

)
,(B.2a)

as η → −∞, f1 ∼ A0(−η)2 ln(−η) − 2(2n− 1)An+1
0 (−η)2(n−1),(B.2b)

as η → 0−, f1 = (−η)2n
d3f1

dη3
= 0.(B.2c)

It follows from (B.2a–c) that

(B.3) f1 ∼ −μ(n)A
4−n

2(2−n)

0 (−η) as η → 0+;

we believe the constant μ, which is determined as part of the solution to (B.2a–c), to

be positive; the dependence on A0 in (B.3) follows from rescaling f1 by A
2/(2−n)
0 and

η by A
n/(2(2−n))
0 in (B.2a–c).

The expansion (B.1) breaks down for small η with inner scalings η = |ε|ξ, f =

|ε|2g(ξ), and d
dξ (gn0

d3g0

dξ3 ) = 0. For ε < 0 we thus have

(B.4) g0 = A0(ξ0 − ξ)2, ξ0 =
1

2
μA

n
2(2−n)

0 ,

with η0 ∼ |ε|ξ0 and with inner-inner scalings η = η0+ |ε|1/(2n−3)ζ, f = |ε|2/(2n−3)h(ζ),
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whereby

1

2(2 − n)
ξ0 = hn−1

0

d3h0

dζ3
,

as ζ → −∞, h0 ∼ A0(−ζ)2,

as ζ → 0−, h0 ∼
(

n3ξ0
6(3 − n)(2n− 3)(2 − n)

(−ζ)3
) 1

n

,

producing the desired local behavior (1.2). However, for ε > 0 the expression (B.4) is
replaced by

(B.5) g0 = A0(−ξ0 − ξ)2, ξ0 =
1

2
μA

n
2(2−n)

0 ,

and (recalling that the interface cannot contract for n > 3/2) the inner-inner scalings
read ξ = −ξc(ε) + ε2(2−n)/(2n−3)ζ, g = ε4(2−n)/(2n−3)h(ζ), where ξc(0) = ξ0 and

− 1

2(2 − n)
ξ0(h0 −H∞) = hn

0

d3h0

dζ3
,(B.6a)

as ζ → −∞, h0 ∼ A0(−ζ)2,(B.6b)

as ζ → ∞, h0 → H∞,(B.6c)

which determines both h0 (up to translations in ζ) and H∞, the decay of h0 to H∞
being nonoscillatory. In −ξ0 < ξ < 0 we then have

(B.7) h ∼ H∞
(−ξ)2

ξ2
0

,

the left-hand side of (4.2) dominating. The scaling properties of (B.6a–c) show that

h0 and H∞ scale with A
2/(2−n)
0 and ζ with A

n/(2(2−n))
0 , so we may rewrite (B.7) as

(B.8) h ∼ ν(n)A0(−ξ)2.

Now setting

(B.9) f = ν
2

2−n ε
8

2n−3 f̂ , η = ν
n

2(2−n) ε
2n

2n−3 η̂,

we have that

f̂ ∼ A0(−η̂)2 + εf1(η̂),

where f1 satisfies (B.2a–c) with η replaced by η̂, implying that the above structure
repeats itself on a sequence of finer and finer scales, consistent with the limit cycle
behavior referred to in Appendix A. Thus if we denote the variables in the mth
member of the sequence by f (m), η(m) with f (0) = f and η(0) = η, we have from (B.9)
that

f (m) ∼ ν
2

2−n ε
8

2n−3 f (m−1), η(m) ∼ ν
n

2(2−n) ε
2n

2n−3 η(m−1),

implying that

f (m)(η) ∼ ν
2m
2−n ε

8m
2n−3 f

(
η

ν
mn

2(2−n) ε
2mn
2n−3

)
,
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where leading-order expressions for f on the right-hand side are given through a single
cycle of the oscillation by (B.1), (B.5), (B.6a–c), (B.8). This is consistent with (A.5)
with

P ∼ 2n

2n− 3
ln

(
1

ε

)
− n

2(2 − n)
ln ν

being large; note that the region described by (B.6a–c) is particularly significant
because it leads to the (−η)4/n-type decay in (A.5), despite the solution behaving
quadratically in other regions.
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